Science.gov

Sample records for cultura da uva

  1. Human UVA exposures estimated from ambient UVA measurements.

    PubMed

    Kimlin, Michael G; Parisi, Alfio V; Downs, Nathan D

    2003-04-01

    The methods presented in this paper allow for the estimation of human UVA exposure using measured UVA irradiance values. Using measured broadband UVA irradiances over the period of a year, it was estimated that for humans in an upright posture and not moving the head with respect to the body, the nose received 26.5% of the available ambient UVA radiation, whilst the shoulders and vertex of the head received 81% and 100% respectively of the available ambient UVA radiation. Measurement of the exposure ratios for a series of solar zenith angles between 90 degrees and 0 degrees will allow extension of this technique to other latitudes. PMID:12760531

  2. Arctostaphylos uva urai, Bearberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Encylopedia of Fruit and Nuts is designed as a research reference source on temperate and tropical fruit and nut crops. Bearberry or kinnikinnick [Arctostaphylos uva-ursi (L.) Spreng., Ericaceae], has a circumboreal distribution. Most Arctostaphylos species (i.e A. patula Greene, A. viscida Parr...

  3. Cultura Revisited

    ERIC Educational Resources Information Center

    Furstenberg, Gilberte; English, Kathryn

    2016-01-01

    Two of the original authors of "Giving a Virtual Voice to the Silent Language of Culture: The Cultura Project", published in "Language Learning & Technology" in 2001, look back on the origin of the Cultura project, its goals, and the approach and materials used. Their commentary then focuses on the features and the…

  4. The biological effects of UVA radiation

    SciTech Connect

    Urbach, F.; Gange, R.

    1986-01-01

    Interest in the biological effects of longwave radiation has increased dramatically in the last few years. The contributors to this state of the art volume discuss the most current knowledge of biological effects of UVA and provide guidelines regarding acceptable human exposure to this type of radiation. Contents include: historical aspects of UVA effects; mechanisms of UVA photosensitization; photorecovery by UVA; photoaugmentation of UVB effects by UVA; effects of UVA radiation on tissues of the eye; new UVA sunscreen; and recommendations for future research and possible actions.

  5. Protein oxidation, UVA and human DNA repair.

    PubMed

    Karran, Peter; Brem, Reto

    2016-08-01

    Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk. PMID:27324272

  6. Influence of solar UVA on erythemal irradiances.

    PubMed

    Parisi, A V; Turnbull, D J; Kimlin, M G

    2006-06-21

    Many materials in everyday use such as window glass in homes and offices, glass in sunrooms and greenhouses, vehicle glass and some brands of sunscreens act as a barrier to the shorter UVB wavelengths while transmitting some of the longer UVA wavelengths. This paper reports on the erythemal exposures due to the UVA waveband encountered over a 12-month period for a solar zenith angle (SZA) range of 4 degrees to 80 degrees and the resulting times required for an erythemal exposure of one standard erythemal dose (SED) due to the erythemal exposures to the UVA wavelengths. The minimum time for an exposure of one SED due to the UVA wavelengths in winter is approximately double that what it is in summer. The time period of 40 to 60 min was the most frequent length of time for an exposure of one SED with 60 to 80 min the next frequent length of time required for a one SED exposure. PMID:16757874

  7. In vitro UV-A protection factor (PF-UVA) of organic and inorganic sunscreens.

    PubMed

    Couteau, C; El-Boury, S; Paparis, E; Sébille-Rivain, V; Coiffard, L J M

    2009-01-01

    The objective of this research was to evaluate the efficacy of various sunscreen agents incorporated into an O/W emulsion. Within the scope of this study only an in vitro method was used. According to selected filter UVA, we can obtain more or less effective creams. With the seven available filters, we can cover a range of values between 2 and 12. In addition to these seven filters absorbing in UVA range, variously coated titanium dioxide and zinc oxide were tested as well. So it appears that the best organic UVA filter is anisotriazine at 10% (PF-UVA = 11.82). Its effectiveness is comparable with that of the titanium dioxide forms used at 25%. Photostability in Suntest showed that the more photostable UVA-filters are the benzophenones. PMID:19630696

  8. Synergistic damage by UVA radiation and pollutants.

    PubMed

    Burke, K E; Wei, H

    2009-01-01

    Not only is skin cancer by far the most common human cancer but also the incidence of skin cancer has been increasing at an alarming rate in recent decades. Fortunately, most people now realize that sun exposure causes unattractive photoaging and skin cancer, so they do apply sunscreens conscientiously. However, until recently, most sunscreens did not adequately protect against ultraviolet A (UVA) radiation. Although UVA is indeed less erythrogenic and less carcinogenic than UVB, UVA directly causes photoaging and enhances UVB-induced skin cancer. Furthermore, recent research demonstrates that UVA combined with environmental pollutants (including cigarette smoke) significantly increases the risk of skin cancer. Similarly, previous research demonstrated another synergy between environmental pollutants and UV: When ozone exposure precedes UV exposure, there is enhancement of UV-induced depletion of protective vitamin E from the skin's stratum corneum. This article reviews experimental evidence that environmental pollutants (such as benzo[a]pyrene (BaP), a commonly used index of environmental pollution) are photosensitizers that generate reactive oxygen species (ROS) when exposed to UVA radiation. This in turn causes oxidative and genetic damage, leading to unattractive photodamage and carcinogenesis. PMID:19651790

  9. Diversity of Biological Effects Induced by Longwave UVA Rays (UVA1) in Reconstructed Skin

    PubMed Central

    Marionnet, Claire; Pierrard, Cécile; Golebiewski, Christelle; Bernerd, Françoise

    2014-01-01

    Despite their preponderance amongst the ultraviolet (UV) range received on Earth, the biological impacts of longwave UVA1 rays (340–400 nm) upon human skin have not been investigated so thoroughly. Nevertheless, recent studies have proven their harmful effects and involvement in carcinogenesis and immunosuppression. In this work, an in vitro reconstructed human skin model was used for exploring the effects of UVA1 at molecular, cellular and tissue levels. A biological impact of UVA1 throughout the whole reconstructed skin structure could be evidenced, from morphology to gene expression analysis. UVA1 induced immediate injuries such as generation of reactive oxygen species and thymine dimers DNA damage, accumulating preferentially in dermal fibroblasts and basal keratinocytes, followed by significant cellular alterations, such as fibroblast apoptosis and lipid peroxidation. The full genome transcriptomic study showed a clear UVA1 molecular signature with the modulation of expression of 461 and 480 genes in epidermal keratinocytes and dermal fibroblasts, respectively (fold change> = 1.5 and adjusted p value<0.001). Functional enrichment analysis using GO, KEGG pathways and bibliographic analysis revealed a real stress with up-regulation of genes encoding heat shock proteins or involved in oxidative stress response. UVA1 also affected a wide panel of pathways and functions including cancer, proliferation, apoptosis and development, extracellular matrix and metabolism of lipids and glucose. Strikingly, one quarter of modulated genes was related to innate immunity: genes involved in inflammation were strongly up-regulated while genes involved in antiviral defense were severely down-regulated. These transcriptomic data were confirmed in dose-response and time course experiments using quantitative PCR and protein quantification. Links between the evidenced UVA1-induced impacts and clinical consequences of UVA1 exposure such as photo-aging, photo

  10. Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin.

    PubMed

    Marionnet, Claire; Pierrard, Cécile; Golebiewski, Christelle; Bernerd, Françoise

    2014-01-01

    Despite their preponderance amongst the ultraviolet (UV) range received on Earth, the biological impacts of longwave UVA1 rays (340-400 nm) upon human skin have not been investigated so thoroughly. Nevertheless, recent studies have proven their harmful effects and involvement in carcinogenesis and immunosuppression. In this work, an in vitro reconstructed human skin model was used for exploring the effects of UVA1 at molecular, cellular and tissue levels. A biological impact of UVA1 throughout the whole reconstructed skin structure could be evidenced, from morphology to gene expression analysis. UVA1 induced immediate injuries such as generation of reactive oxygen species and thymine dimers DNA damage, accumulating preferentially in dermal fibroblasts and basal keratinocytes, followed by significant cellular alterations, such as fibroblast apoptosis and lipid peroxidation. The full genome transcriptomic study showed a clear UVA1 molecular signature with the modulation of expression of 461 and 480 genes in epidermal keratinocytes and dermal fibroblasts, respectively (fold change> = 1.5 and adjusted p value<0.001). Functional enrichment analysis using GO, KEGG pathways and bibliographic analysis revealed a real stress with up-regulation of genes encoding heat shock proteins or involved in oxidative stress response. UVA1 also affected a wide panel of pathways and functions including cancer, proliferation, apoptosis and development, extracellular matrix and metabolism of lipids and glucose. Strikingly, one quarter of modulated genes was related to innate immunity: genes involved in inflammation were strongly up-regulated while genes involved in antiviral defense were severely down-regulated. These transcriptomic data were confirmed in dose-response and time course experiments using quantitative PCR and protein quantification. Links between the evidenced UVA1-induced impacts and clinical consequences of UVA1 exposure such as photo-aging, photo-immunosuppression and

  11. Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA.

    PubMed

    Banyasz, Akos; Vayá, Ignacio; Changenet-Barret, Pascale; Gustavsson, Thomas; Douki, Thierry; Markovitsi, Dimitra

    2011-04-13

    The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ∼420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes. PMID:21417388

  12. UVA system for human cornea irradiation

    NASA Astrophysics Data System (ADS)

    Pereira, Fernando R. A.; Stefani, Mario; Otoboni, José A.; Richter, Eduardo H.; Rossi, Giuliano; Mota, Alessandro D.; Ventura, Liliane

    2009-02-01

    According to recent studies, an increase in corneal stiffness is a promising alternative for avoiding ectasias and for stagnating keratoconus of grades 1 and 2. The clinical treatment consists essentially of instilling Riboflavin (vitamin B2), in the cornea and then irradiating the corneal tissue, with UVA (365nm) radiation at 3mW/cm2 for 30min. This procedure provides collagen cross-linking in the corneal surface, increasing its stiffness. This work presents a system for UVA irradiation of the corneas at a peak wavelength of 365nm with adjustable power up to 5mW. The system has closed loop electronics to control the emitted power with 20% precision from the sated power output. The system is a prototype for performing corneal cross-linking and has been clinically tested. The closed loop electronics is a differential from the equipments available on the market.

  13. Utilising polyphenylene oxide for high exposure solar UVA dosimetry

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Schouten, P. W.

    2008-05-01

    A personal UV dosimeter that can quantitatively assess high exposure solar UVA exposures has been developed. The chemical polyphenylene oxide has been previously reported on its ability to measure high UVB exposures. This current research has found that polyphenylene oxide, cast in thin film form, is responsive to both the UVA and UVB parts of the solar spectrum. Further to this, the UVB wavelengths were filtered out with the use of mylar. This combined system responded to the UVA wavelengths only and underwent a change in optical absorbance as a result of UVA exposure. Preliminary results indicate that this UVA dosimeter saturates steadily when exposed to sunlight and can measure exposures of more than 20 MJ/m2 of solar UVA radiation with an uncertainty level of no more than ±5%.

  14. New insights in photoaging, UVA induced damage and skin types.

    PubMed

    Battie, Claire; Jitsukawa, Setsuko; Bernerd, Françoise; Del Bino, Sandra; Marionnet, Claire; Verschoore, Michèle

    2014-10-01

    UVA radiation is the most prevalent component of solar UV radiation; it deeply penetrates into the skin and induces profound alterations of the dermal connective tissue. In recent years, the detrimental effects of UVA radiation were more precisely demonstrated at cellular and molecular levels, using adequate methods to identify biological targets of UVA radiation and the resulting cascade impairment of cell functions and tissue degradation. In particular gene expression studies recently revealed that UVA radiation induces modulation of several genes confirming the high sensitivity of dermal fibroblasts to UVA radiation. The major visible damaging effects of UVA radiation only appear after years of exposure: it has been clearly evidenced that they are responsible for more or less early signs of photoageing and photocarcinogenesis. UVA radiation appears to play a key role in pigmented changes occurring with age, the major sign of skin photoaging in Asians. Skin susceptibility to photoaging alterations also depends on constitutive pigmentation. The skin sensitivity to UV light has been demonstrated to be linked to skin color type. PMID:25234829

  15. Vegetable surface sterilization system using UVA light-emitting diodes.

    PubMed

    Aihara, Mutsumi; Lian, Xin; Shimohata, Takaaki; Uebanso, Takashi; Mawatari, Kazuaki; Harada, Yumi; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2014-01-01

    Surface sterilization of fresh produce has been needed in the food manufacturing/processing industry. Here we report a UVA-LED (Ultra Violet A-Light Emitting Diode) system for surface sterilization that is safe, efficacious, low cost, and apparently harmless to fresh produce. To test the system, Escherichia coli strain DH5α was spot-inoculated onto vegetable tissues, and treated under UVA-LED. Tissues were homogenized and bacteria quantified by colony-forming assay. Possible effects of UVA-LED on vegetable quality were evaluated by HPLC. Tissue weight changes were checked after treatment at 4℃, 15℃, and 30℃. Bacterial inactivation by UVA-LED radiation was observed after a 10 min treatment and increased with increasing time of irradiation. The log survival ratio reached -3.23 after a 90 min treatment. Bacterial cells surviving treatment grew slowly compared to non-irradiated control cells. Cabbage tissue lost weight over time after treatment, and weight loss increased with increasing incubation temperature, but there was no difference between losses by UVA-LED treated and control tissues at any temperature tested. In addition, no differences of Vitamin C content in cabbage tissue were detected by HPLC after UVA-LED treatment. These results suggest that UVA-LED treatment has great potential for vegetable surface sterilization in the food manufacturing/processing industry. PMID:25264046

  16. Microvascular leakage of plasma proteins after PUVA and UVA

    SciTech Connect

    Staberg, B.; Worm, A.M.; Rossing, N.; Brodthagen, H.

    1982-04-01

    The transcapillary escape rate of albumin (TERalb), is a parameter of the leakage of macromolecules from the total microvasculature. In patients with psoriasis short-term PUVA treatment induces an increase in TERalb. In this study TERalb was measured in 3 groups of normal humans treated with PUVA, UVA and 8-methoxypsoralen. Treatment with PUVA and UVA caused a statistically significant increase in TERalb, whereas treatment with 8-methoxypsoralen did not induce any measurable changes. It is concluded that the UVA irradiation causes the abnormal leakage of macromolecules, whereas psoralen is not the responsible component. Furthermore the phenomenon can be elicited in normals and is not based on a preexisting psoriasis.

  17. UVA/UVA1 phototherapy and PUVA photochemotherapy in connective tissue diseases and related disorders: a research based review

    PubMed Central

    Breuckmann, Frank; Gambichler, Thilo; Altmeyer, Peter; Kreuter, Alexander

    2004-01-01

    Background Broad-band UVA, long-wave UVA1 and PUVA treatment have been described as an alternative/adjunct therapeutic option in a number of inflammatory and malignant skin diseases. Nevertheless, controlled studies investigating the efficacy of UVA irradiation in connective tissue diseases and related disorders are rare. Methods Searching the PubMed database the current article systematically reviews established and innovative therapeutic approaches of broad-band UVA irradiation, UVA1 phototherapy and PUVA photochemotherapy in a variety of different connective tissue disorders. Results Potential pathways include immunomodulation of inflammation, induction of collagenases and initiation of apoptosis. Even though holding the risk of carcinogenesis, photoaging or UV-induced exacerbation, UVA phototherapy seems to exhibit a tolerable risk/benefit ratio at least in systemic sclerosis, localized scleroderma, extragenital lichen sclerosus et atrophicus, sclerodermoid graft-versus-host disease, lupus erythematosus and a number of sclerotic rarities. Conclusions Based on the data retrieved from the literature, therapeutic UVA exposure seems to be effective in connective tissue diseases and related disorders. However, more controlled investigations are needed in order to establish a clear-cut catalogue of indications. PMID:15380024

  18. Photopatch test reactivity: effect of photoallergen concentration and UVA dosaging.

    PubMed

    Hasan, T; Jansen, C T

    1996-06-01

    We have studied the influence of variations in allergen concentration and UVA dosaging on the results of photopatch testing with the Scandinavian standard photopatch series in 29 patients with photocontact and/or contact allergy to 1 or several of the allergens in that series. Photocontact test reactions were more sensitive to allergen dilution than plain contact test reactions. Even dilution from the standard 5% to 2.5% significantly reduced para-aminobenzoic acid photocontact test reactions. Reducing the UVA dose from the standard 5 J/cm2 to 2.5 or 1 J/cm2 in 2 out of 5 cases turned a significant (++) reaction into a doubtful one (+). Increasing the standard UVA dose of 5 J/ cm2 to 20-40 J/cm2 turned a single + photocontact reaction to trichlorcarbanilide and a single 1 + plain contact reaction to chlorhexidine into ++ reactions. In the majority of cases, however, neither photocontact nor plain contact test reactions were augemented by UVA doses up to 80 J/cm2. We conclude that a UVA dose of 5 J/cm2 is sufficient for eliciting photocontact allergic test reactions, and that a reduction of either the UVA dose level or the standard allergen concentrations of the Scandinavian photopatch test guidelines may cause loss of significant photocontact test reactions in a proportion of the cases. PMID:8879921

  19. The genotoxicity of UVA irradiation in Drosophila melanogaster and the synergistic action of 8-methoxypsoralen and UVA.

    PubMed

    Negishi, T; Tanabe, F; Hayatsu, H

    1992-08-01

    To study the genotoxicity of near-ultraviolet light (UVA) on a whole body, Drosophila melanogaster larvae were irradiated with UVA and the emerging flies were examined for the mutant wing spot formation. The genotoxicity of UVA was also assayed with the in vivo DNA-repair test using males with repair-deficiency at the mei-9 and mei-41 locus and the matching repair-proficient females. Third-instar larvae were placed in a plastic Petri dish, which was covered with soft glass, and irradiated with black light at 4-5 W/m2. This irradiation resulted in an increase in mutant wing-hair spots. After a 15 h irradiation (approximately 240 kJ/m2), the mutant clone frequencies found in the adult flies (spots/wing) were: 1.68 for the small single spots, 0.38 for the large single spots and 0.11 for the twin spots, while at zero time they were 0.68, 0.06 and 0.02 respectively. On the other hand, the UVA irradiation was negative in the in vivo DNA-repair test, indicating that the UVA-induced DNA lesion may not be subject to repair by the mei-9 and mei-41 functions. The presence of 8-methoxypsoralen (8-MOP) during the irradiation remarkably enhanced somatic mutations, and showed a strong DNA-damaging effect in the repair test. For example, a 15 h UVA irradiation with 26.7 microM 8-MOP resulted in a 14-fold increase in the number of twin spots per wing as compared with the frequency obtained on treatment with UVA alone. Treatment of the larvae with 8-MOP alone gave no mutant clones or DNA damage. A high frequency in twin spot formation was also observed in this UVA + 8-MOP treatment, indicating that extensive chromosomal recombinations took place in the somatic cells. PMID:1499094

  20. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues.

    PubMed

    Xiao, Li; Matsubayashi, Kenji; Miwa, Nobuhiko

    2007-08-01

    The C60-fullerene derivatives are expected, as novel and potent anti-oxidants, to more effectively protect skin cells against oxidative stress. UVA-induced oxidative stress is considered to promote melanogenesis and serious skin damage. The effect of any fullerene derivatives on UVA-induced melanogenesis is still unknown. Here, we evaluated effects of a water-soluble polyvinylpyrrolidone (PVP)-wrapped fullerene derivative (named "Radical Radical Sponge" because of its anti-oxidant ability) on melanogenesis, which was promoted by UVA-irradiation to human melanocytes and skin tissues. Radical Sponge markedly scavenged UVA-induced reactive oxygen species (ROS) inside human melanocytes as shown by fluorometry using the redox indicator CDCFH-DA. After treatment with Radical Sponge or other agents, human melanocytes and skin tissues were irradiated by UVA. Then, cellular melanin content, tyrosinase activity and the ultrastructural change of skin melanosomes were examined. Radical Sponge showed to significantly inhibit UVA-promoted melanogenesis in normal human epidermis melanocytes (NHEM) and human melanoma HMV-II cells within a non-cytotoxicity dose range. As compared with two whitening agents, arbutin and L-ascorbic acid, Radical Sponge demonstrated the stronger anti-melanogenic potential according to spectrophotometric quantification for extracted melanin. In human skin cultures also, UVA-promoted melanin contents were repressed by Radical Sponge according to Fontana-Masson stain, suggesting its ability to repress UVA-induced tanning. Transmission electron microscopic ultrastructural images also proved that UVA-increased melanosomes in human skin tissue were obviously reduced by Radical Sponge. The UVA-enhanced tyrosinase enzymatic activity in NHEM melanocytes was inhibited by Radical Sponge more markedly than by arbutin and L-ascorbic acid. The UVA-enhanced tyrosinase protein expression, together with cell-size fatness and dendrite-formation, was also inhibited more

  1. UVA1 radiation triggers two different final apoptotic pathways.

    PubMed

    Godar, D E

    1999-01-01

    Because ultraviolet-A1 (UVA1; 340-400 nm) radiation is used therapeutically, this in vitro study addressed the question "how does it work?" To begin addressing this question, UVA1 radiation was first established to reduce the survival of transformed T and B lymphocytes in a linear dose-dependent manner using clonogenic reproductive assays, and that cell death occurs by apoptosis using transmission electron microscopy, Annexin V, and flow cytometry. The primary mechanism was determined to be immediate pre-programmed cell death, an apoptotic mechanism that does not require protein synthesis post-insult, by quantifying the apoptotic cells over time in the absence or presence of a translation inhibitor. To explore how UVA1 radiation induces immediate pre-programmed cell death apoptosis, reactive oxygen species and mitochondrial activity were altered during exposure using a variety of agents, while a specific fluorescent probe, 5,5',6,6'tetrachloro- 1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, was used to examine mitochondrial transmembrane depolarization. To show that UVA1 mediates singlet-oxygen damage to the mitochondrial membranes, X-rays, UVB (290-320 nm), 8-methoxypsoralen and UVA, vitamin K3, anti-Fas antibody, and blocking antibody were the negative controls, while rose bengal or protoporphyrin IX with visible light were the positive controls. Cyclosporine A, which inhibits the mitochondrial megapore from opening, was used with singlet-oxygen and superoxide-anion generators to distinguish between the two final apoptotic pathways. The collective results show that UVA1 radiation primarily mediates singlet-oxygen damage triggering immediate pre-programmed cell death apoptosis (T < 20 min) by immediately opening the cyclosporine A-sensitive ("S" site) mitochondrial megapore, while superoxide anions initiate another cyclosporine A-insensitive ("P" site) final apoptotic pathway. PMID:9886256

  2. UVA Phototransduction Drives Early Melanin Synthesis in Human Melanocytes

    PubMed Central

    Wicks, Nadine L.; Chan, Jason W.; Najera, Julia A.; Ciriello, Jonathan M.; Oancea, Elena

    2013-01-01

    Summary Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% UVA and ~5% UVB at the Earth’s surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or PLC inhibitors, or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to five-fold after 24 hours. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis, and may underlie the mechanism of IPD in human skin. PMID:22055294

  3. Application of radiochromic gel detector (FXG) for UVA dose measurements

    NASA Astrophysics Data System (ADS)

    Abukassem, Issam; Bero, Mamdouh A.

    2010-12-01

    Tissue equivalent radiochromic gel material containing ferrous ions, xylenol-orange ion indicator and gelatin as gelling agent (FXG) is known to be sensitive to γ- and X-rays; hence it has been used for ionizing radiation dosimetry. Changes in optical absorbance properties of FXG material over a wide region in the visible spectrum were found to be proportional to the radiation absorbed dose. An earlier study demonstrated the sensitivity of FXG gel detector to ultraviolet radiation and therefore that could give quantitative measure for UV exposure. This study focuses on the detection of UVA radiation (315-400 nm), which forms an important part (˜97%) of the natural solar UV radiation reaching the earth surface. A solar UV simulator device was used to deliver UVA radiation to FXG samples. The beam was optically modified to irradiate gel samples at an exposure level about 58 W/m 2, which is comparable to the summer natural UVA radiation measured outside the laboratory building at midday (˜60 W/m 2). Experimental results were used to generate mathematical second order formulas that give the relationship between UVA dose and optical absorbance changes observed at two wavelengths in the visible region of the spectrum—430 and 560 nm.

  4. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  5. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  6. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  7. Broadband Direct UVA irradiance measurement for clear skies evaluated using a smartphone.

    PubMed

    Igoe, D; Parisi, A V

    2015-12-01

    UVA wavelengths (320-400 nm) have been implicated in recent studies to contribute to melanoma induction and skin photoaging in humans and damage to plants. The use of smartphones in UVA observations is a way to supplement measurements made by traditional radiometric and spectroradiometric technology. Although the smartphone image sensor is not capable of determining broadband UVA irradiances, these can be reconstructed from narrowband irradiances, which the smartphone, with narrowband and neutral density filters, can quantify with discrepancies not exceeding 5 %. Three models that reconstruct direct broadband clear sky UVA were developed from narrowband irradiances derived from smartphone image sensor pixel data with coefficients of determination of between 0.97 and 0.99. Reasonable accuracy and precision in determining the direct broadband UVA was maintained for observations made with solar zenith angles as high as 70°. The developed method has the potential to increase the uptake of the measurement of broadband UVA irradiances. PMID:25449750

  8. UVA experimental and high energy physics. Final grant report

    SciTech Connect

    Cox, B.

    1999-10-07

    The period 1992--1997 was a mixture of frustrations and of accomplishments for the UVa HEP group. The experimental HEP group began this period with the completion of a truncated run of Experiment E771 at Fermilab in 1992. This experiment was designed to measure the cross section for beauty production in 800 GeV/c pN interactions. It succeeded in this goal as well as in obtaining one of the best limits on FCNC in charm decays by setting an upper limit on D{sup 0} {r_arrow} {mu}{sup +}{mu}{sup {minus}}. In addition, they were able to measure {Psi}, {Psi}, {chi}{sub 1},{chi}{sub 2} and upsilon production. Three UVa PhD theses have resulted from this experiment (as well as 12 other PhD's at other institutions). At the same time, the UVa experimental group was vigorously pursuing the goal of studying CP violation in B production. This took the form of a proposal to the SSC for a super fixed target facility, the SFT, which would focus on studies of B mesons. B. Cox was the spokesman of this experiment that had over thirty institutions. This proposal EOI-14 had a good reception by the SSC PAC. A R and D activity to prove the technique of crystal channeling was undertaken to prove the accelerator aspects of this proposal. This activity, known as E853 or CEX at Fermilab, resulted in proof of the crystal channeling technique as viable for the extraction of 20 TeV beam at the SSC. In addition to this activity, the UVa group investigated many other aspects of B physics at the SSC. They were among the leaders of the 1993 Snowmass meeting on B Physics at Hadronic Accelerators. The UVa HEP group worked vigorously on developing the ideas for B physics at the SSC, as evidenced by the many different studies listed in the publication list given, up to the very day the SSC was terminated by an act of Congress.

  9. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  10. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    PubMed Central

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  11. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  12. Red light interferes in UVA-induced photoaging of human skin fibroblast cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Ren, Qu; Wei, Lizhao; Li, Xiaoxin; Cai, Qing

    2014-01-01

    The possible regulation mechanism of red light was determined to discover how to retard UVA-induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light-emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm(-2), and the total doses of red light were 0.18 J cm(-2). Various indicators were measured before and after irradiation, including cell morphology, viability, β-galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging-related genes. Red light irradiation retarded the cumulative low-dose UVA irradiation-induced skin photoaging, decreased the expression of senescence-associated β-galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP-1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA-treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways. PMID:25039464

  13. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    PubMed

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation. PMID:24691875

  14. Essential role of Nrf2 in keratinocyte protection from UVA by quercetin

    SciTech Connect

    Kimura, Shintarou; Warabi, Eiji; Yanagawa, Toru; Ma, Dongmei; Itoh, Ken; Ishii, Yoshiyuki; Kawachi, Yasuhiro; Ishii, Tetsuro

    2009-09-11

    Much of the cell injury caused by ultraviolet A (UVA) irradiation is associated with oxidative stress. Quercetin is a major natural polyphenol that is known to protect cells from UVA-induced damage. Here, we investigated the molecular mechanism of this protection. Quercetin pretreatment strongly suppressed UVA-induced apoptosis in human keratinocyte HaCaT cells, markedly increased protein levels of the transcription factor Nrf2, induced the expression of antioxidative genes, and dramatically reduced the production of reactive oxygen species following UVA irradiation. Importantly, these beneficial effects were greatly attenuated by downregulating Nrf2 expression. Thus, quercetin protects cells from UVA damage mainly by elevating intracellular antioxidative activity via the enhanced accumulation of a transcription factor for antioxidant genes, Nrf2.

  15. Computational structures technology and UVA Center for CST

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    Rapid advances in computer hardware have had a profound effect on various engineering and mechanics disciplines, including the materials, structures, and dynamics disciplines. A new technology, computational structures technology (CST), has recently emerged as an insightful blend between material modeling, structural and dynamic analysis and synthesis on the one hand, and other disciplines such as computer science, numerical analysis, and approximation theory, on the other hand. CST is an outgrowth of finite element methods developed over the last three decades. The focus of this presentation is on some aspects of CST which can impact future airframes and propulsion systems, as well as on the newly established University of Virginia (UVA) Center for CST. The background and goals for CST are described along with the motivations for developing CST, and a brief discussion is made on computational material modeling. We look at the future in terms of technical needs, computing environment, and research directions. The newly established UVA Center for CST is described. One of the research projects of the Center is described, and a brief summary of the presentation is given.

  16. Prevention of UVA-Induced Oxidative Damage in Human Dermal Fibroblasts by New UV Filters, Assessed Using a Novel In Vitro Experimental System

    PubMed Central

    Emanuelli, Monica; Damiani, Elisabetta

    2014-01-01

    Background UVA rays present in sunlight are able to reach the dermal skin layer generating reactive oxygen species (ROS) responsible for oxidative damage, alterations in gene expression, DNA damage, leading to cell inflammation, photo-ageing/-carcinogenesis. Sunscreens contain UV filters as active ingredients that absorb/reflect/dissipate UV radiation: their efficiency depends on their spectral profile and photostability which should then be reflected in biological protection of underlying skin. Methods A set of new UV filters was synthesized, and the most photostable one was compared to BMDBM, a widely used UVA filter. Cultured human dermal fibroblasts were exposed to UVA radiation which was filtered by a base cream containing or not UV filters placed above cell culture wells. The endpoints measured were: cell viability (MTT assay), ROS generation (DCFH-DA assay), mitochondrial function (JC-1 assay), DNA integrity (Comet assay) and gene expression (MMP-1, COL1A1) by RT-qPCR. Results The new UV filter resulted more efficient than BMDBM in preserving cell viability, mitochondrial functionality and oxidative DNA damage, despite similar inhibition levels of intracellular ROS. Moreover, expression of genes involved in dermal photoageing were positively affected by the filtering action of the tested molecules. Conclusions The experimental model proposed was able to validate the efficacy of the new UV filter, taking into account important cellular events related to UV-induced intracellular oxidative stress, often underestimated in the assessments of these compounds. General Significance The model may be used to compare the actual biological protection of commercial sunscreens and suncare products aside from their SPF and UVA-PF values. PMID:24409282

  17. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment.

    PubMed

    Štroch, Michal; Materová, Zuzana; Vrábl, Daniel; Karlický, Václav; Šigut, Ladislav; Nezval, Jakub; Špunda, Vladimír

    2015-11-01

    We examined the acclimation response of the photosynthetic apparatus of barley (Hordeum vulgare L.) to a combination of UV-A and UV-B radiation (UVAB) and to UV-B radiation alone. Our aim was to evaluate whether UV-A radiation prevents UV-B-induced damage to the photosynthetic apparatus and whether UV-A pre-acclimation is required to mitigate the negative influence of UV-B radiation. Barley plants were grown from seeds under low photosynthetically active radiation (50 μmol m(-2) s(-1)) either in the absence or presence of UV-A radiation (UVA- and UVA+ plants, respectively). After 8 days of development, plants were exposed simultaneously to UV-A and UV-B radiation for the next 6 days. Additionally, UVA- plants were exposed to UV-B radiation alone. The UVA+ plants had a higher CO2 assimilation rate near the light-saturation region (A(N)) and a higher content of both total chlorophylls (Chls) and total carotenoids than the UVA- plants. Chls content, A(N), the potential quantum yield of photosystem II (PSII) photochemistry (F(V)/F(M)), the capacity of light-induced thermal energy dissipation and the efficiency of excitation energy transfer within PSII remained the same or even increased in both UVA+ and UVA- plants after UVAB treatment. On the contrary, exposure of UVA- plants to UV-B radiation itself led to a reduction in all these characteristics. We revealed that the presence of UV-A radiation during UVAB treatment not only mitigated but completely eliminated the negative effect of UV-B radiation on the functioning of the photosynthetic apparatus and that UV-A pre-acclimation was not crucial for development of this UV-A-induced resistance against UV-B irradiation. PMID:26233710

  18. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists.

    PubMed

    Muggeridge, David J; Sculthorpe, Nicholas; Grace, Fergal M; Willis, Gareth; Thornhill, Laurence; Weller, Richard B; James, Philip E; Easton, Chris

    2015-08-01

    Dietary nitrate supplementation has been shown to increase nitric oxide (NO) metabolites, reduce blood pressure (BP) and enhance exercise performance. Acute exposure to ultraviolet (UV)-A light also increases NO bioavailability and reduces BP. We conducted a randomized, counterbalanced placebo-controlled trial to determine the effects of UV-A light alone and in combination with nitrate on the responses to sub-maximal steady-state exercise and time trial (TT) performance. Nine cyclists (VO2max 53.1 ± 4.4 ml/kg/min) completed five performance trials comprising 10 min submaximal steady-state cycling followed by a 16.1 km TT. Following a familiarization the final four trials were preceded, in random order, by either (1) Nitrate gels (NIT) + UV-A, (2) Placebo (PLA) + UV-A, (3) NIT + Sham light (SHAM) and (4) PLA + SHAM (control). The NIT gels (2 × 60 ml gels, ~8.1 mmol nitrate) or a low-nitrate PLA were ingested 2.5 h prior to the trial. The light exposure consisted of 20 J/cm(2) whole body irradiation with either UV-A or SHAM light. Plasma nitrite was measured pre- and post-irradiation and VO2 was measured continuously during steady-state exercise. Plasma nitrite was higher for NIT + SHAM (geometric mean (95% CI), 332 (292-377) nM; P = 0.029) and NIT + UV-A (456 (312-666) nM; P = 0.014) compared to PLA + SHAM (215 (167-277) nM). Differences between PLA + SHAM and PLA + UV-A (282 (248-356) nM) were small and non-significant. During steady-state exercise VO2 was reduced following NIT + UVA (P = 0.034) and tended to be lower in NIT + SHAM (P = 0.086) but not PLA + UV-A (P = 0.381) compared to PLA + SHAM. Performance in the TT was significantly faster following NIT + UV-A (mean ± SD 1447 ± 41 s P = 0.005; d = 0.47), but not PLA + UV-A (1450 ± 40 s; d = 0.41) or NIT + SHAM (1455 ± 47 s; d = 0.28) compared to PLA + SHAM (1469 ± 52 s). These findings demonstrate that exposure to UV-A light alone does not alter the physiological responses to exercise or improve

  19. Broad-spectrum moisturizer effectively prevents molecular reactions to UVA radiation.

    PubMed

    Seité, Sophie; Reinhold, Katja; Jaenicke, Thomas; Brenden, Heidi; Krutmann, Jean; Grether-Beck, Susanne

    2012-12-01

    The damaging effects of UVA radiation have been well-documented. UVA radiation is known to induce molecular, cellular, and clinical damage. Such harm may lead to photoaging, immune system depression, altered gene expression, or oncogene and tumor suppressor gene modulation, all of which are partly responsible for the development of skin cancer. In parallel to an increased understanding of the added damage caused by UVA radiation, progress has been made in sunscreen formulation. A variety of UVA filters are now available for formulators to combine with UVB filters to reach high-level photostable protection using a minimum concentration of active ingredients. The efficacy of products that contain these UV filter combinations usually is determined by noninvasive assessments, which cause either UVA-induced erythema or skin pigmentation. However, the biologic relevance of these end points for UVA radiation-induced skin damage is unknown. In our study, we confirm that the assessment of UVA radiation-induced gene expression in skin specimens obtained from UVA-irradiated human skin by quantitative real-time polymerase chain reaction is a sensitive, reliable, and robust method to prove the efficacy of 2 daily moisturizers containing broad-spectrum sunscreen. Specifically, we demonstrate in vivo that topical application of a daily moisturizer with broad-spectrum sunscreen prevents UVA radiation-induced transcriptional expression of genes that are directly linked to skin aging (ie, matrix metalloproteinase 1 [MMP-1]) and also reflect the skin's antioxidative stress defense response (ie, catalase [CAT], superoxide dismutase [SOD], glutathione peroxidase [GPx]). Furthermore, we demonstrate that the protection against UV-induced skin damage provided by products with different sun protection factor (SPF) but the same UVA protection factor (UVA-PF) is similar, which emphasizes the importance of high UVA protection to maintain unaltered essential biologic functions. These data

  20. Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus.

    PubMed

    Qi, Hang; Fu, Hui; Dong, Xiufang; Feng, Dingding; Li, Nan; Wen, Chengrong; Nakamura, Yoshimasa; Zhu, Beiwei

    2016-05-01

    Autolysis easily happens to sea cucumber (Stichopus japonicus, S. japonicus) for external stimulus like UV exposure causing heavy economic losses. Therefore, it is meaningful to reveal the mechanism of S. japonicas autolysis. In the present study, to examine the involvement of apoptosis induction in UVA-induced autolysis of S. japonicas, we investigated the biochemical events including the DNA fragmentation, caspase-3 activation, mitogen-activated protein kinases (MAPKs) phosphorylation and free radical formation. Substantial morphological changes such as intestine vomiting and dermatolysis were observed in S. japonicus during the incubation after 1-h UVA irradiation (10W/m(2)). The degradation of the structural proteins and enhancement of cathepsin L activity were also detected, suggesting the profound impact of proteolysis caused by the UVA irradiation even for 1h. Furthermore, the DNA fragmentation and specific activity of caspase-3 was increased up to 12h after UVA irradiation. The levels of phosphorylated p38 mitogen activated protein kinase (MAPK) and phosphorylated c-Jun.-N-terminal kinase (JNK) were significantly increased by the UVA irradiation for 1h. An electron spin resonance (ESR) analysis revealed that UVA enhanced the free radical formation in S. japonicas, even through we could not identify the attributed species. These results suggest that UVA-induced autolysis in S. japonicas at least partially involves the oxidative stress-sensitive apoptosis induction pathway. These data present a novel insight into the mechanisms of sea cucumber autolysis induced by external stress. PMID:26971278

  1. Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin.

    PubMed

    Baier, Jürgen; Maisch, Tim; Maier, Max; Landthaler, Michael; Bäumler, Wolfgang

    2007-06-01

    UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation. PMID:17363921

  2. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria. PMID:25535873

  3. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    PubMed

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  4. Glutathione peroxidase-1 inhibits UVA-induced AP-2{alpha} expression in human keratinocytes

    SciTech Connect

    Yu Lei; Venkataraman, Sujatha; Coleman, Mitchell C.; Spitz, Douglas R.; Wertz, Philip W.; Domann, Frederick E. . E-mail: frederick-domann@uiowa.edu

    2006-12-29

    In this study, we found a role for H{sub 2}O{sub 2} in UVA-induced AP-2{alpha} expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2{alpha}, but also caused accumulation of H{sub 2}O{sub 2} in the cell culture media, and H{sub 2}O{sub 2} by itself could induce the expression of AP-2{alpha}. By catalyzing the removal of H{sub 2}O{sub 2} from cells through over-expression of GPx-1, induction of AP-2{alpha} expression by UVA was abolished. Induction of transcription factor AP-2{alpha} by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H{sub 2}O{sub 2} by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2{alpha} signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2{alpha} expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2{alpha} expression by suppressing the accumulation of H{sub 2}O{sub 2}.

  5. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    SciTech Connect

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-06-24

    Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  6. Contribution of UVA irradiance to the erythema and photoaging effects in solar and sunbed exposures.

    PubMed

    Sola, Yolanda; Lorente, Jerónimo

    2015-02-01

    Even though UVA irradiance had not been considered detrimental to human skin for years, nowadays it is recognized for its role in photoaging and other biological responses. The ratio UVA/UVB is about 17 at a solar zenith angle (SZA) of 20° and it is almost constant up to 60° when it rapidly increases since the UVB wavelengths (280-320nm) are more attenuated than the UVA waveband (320-400nm). For a constant SZA, the ratio increases with the ozone content. The UVA component of the solar erythemal irradiance ranges from 20% at 20° to 30% at 60°, whereas it varies from 50% to 80% in the two different types of measured sunbeds. Moreover, the different spectral distribution of the lamps used for artificial tanning leads frequently to high UVA doses. The biological responses related to skin photoaging (skin sagging and elastosis) could be around fourfold the equivalent solar irradiance at midday in summer midlatitudes and they can be important in unprotected UVA exposures to sunbeds. The UVA dose accumulated during the time required in reaching 1 minimum erythemal dose (MED) increases with the SZA since the exposure durations are longer. Indeed, seasonal differences in the mean UVA dose are observed due to variations in the ozone content that results in longer exposure times without erythema. Although an artificial tanning session is usually shorter than one hour, the UVA dose from sunbeds during the time for 1 MED for skin type II (250Jm(-2)) can be 2-4 times larger than the solar dose, depending on the lamp spectral emission. PMID:25579807

  7. [Is UV-A a cause of malignant melanoma?].

    PubMed

    Moan, J

    1994-03-20

    The first action spectrum for cutaneous malignant melanoma was published recently (2). This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B-solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagnetic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filters (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. PMID:8191472

  8. First record of Tenuipalpus uvae De Leon, 1962 (Acari: Tenuipalpidae) in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the first record of Tenuipalpus uvae De Leon (Tenuipalpidae) in Brazil. Specimens were collected from Spondias mombin L. (Anacardiaceae) in the states of Amapa (Northern Brazil) and Pernambuco (northeast)....

  9. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  10. UVA-induced erythema, pigmentation, and skin surface temperature changes are irradiance dependent

    SciTech Connect

    Kagetsu, N.; Gange, R.W.; Parrish, J.A.

    1985-11-01

    Human cutaneous erythemogenic and melanogenic responses to long-wave (UVA) ultraviolet radiation were investigated using irradiances ranging from 5-50 mW/cm2. Skin surface temperature changes resulting from the different irradiances were also compared. In general, threshold doses for erythema and pigmentation were higher when UVA was administered at the lowest irradiance (5 mW/cm2) than at the highest (50 mW/cm2). Erythema was maximal immediately after exposure to UVA. The most intense responses (erythema with edema, or intense pigmentation) were induced more frequently by the highest irradiance. Components of both the erythema and the pigment response to UVA are therefore irradiance-dependent. The greatest increase in skin surface temperature was observed after exposure to the highest irradiance.

  11. UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes

    NASA Astrophysics Data System (ADS)

    Girard, P. M.; Francesconi, S.; Pozzebon, M.; Graindorge, D.; Rochette, P.; Drouin, R.; Sage, E.

    2011-01-01

    UVA has long been known for generating an oxidative stress in cells. In this paper we review the different types of DNA damage induced by UVA, i.e. strand breaks, bipyrimidine photoproducts, and oxidatively damaged bases. Emphasis is given to the mechanism of formation that is further illustrated by the presentation of new in vitro data. Examples of oxidation of proteins involved in DNA metabolism are also given.

  12. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    SciTech Connect

    Bredberg, A.

    1981-06-01

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects.

  13. Epidermal changes in human skin following irradiation with either UVB or UVA

    SciTech Connect

    Pearse, A.D.; Gaskell, S.A.; Marks, R.

    1987-01-01

    We have demonstrated previously that following UVB irradiation to normal volunteers there is an increase in epidermal and stratum corneum thickness and an increase in the thymidine autoradiographic labeling index. These changes are coupled with alterations in epidermal glucose-6-phosphate dehydrogenase and succinic dehydrogenase activities, despite the absence of erythema clinically. The use of a sunscreen did not completely prevent these changes. In this study, we have examined the effects of repeated irradiation of human skin with either UVB or UVA alone in order to compare the changes produced in the epidermis and to ascertain whether UVA irradiation could cause these. Irradiation with either UVB or UVA alone was found to increase the mean epidermal thickness, the mean stratum corneum thickness, and mean keratinocyte height significantly. Glucose-6-phosphate dehydrogenase activity was significantly increased throughout the epidermis, and succinic dehydrogenase activity was significantly decreased. The autoradiographic labeling index was significantly increased following UVB irradiation but not following UVA irradiation. These results demonstrate that UVA alone can have a direct effect on epidermal morphology and metabolism, suggesting that protection of skin from UV radiation should include adequate protection from UVA.

  14. Effects of UVA radiation on an established immune response in humans and sunscreen efficacy.

    PubMed

    Moyal, Dominique D; Fourtanier, Anny M

    2002-01-01

    It is well established that ultraviolet radiation has immunomodulatory effects which may be involved in skin cancer. Recent studies have shown that UVA radiation (320-400 nm) as well as UVB (290-320 nm) is immunosuppressive. This means that sunscreens which mainly absorb UVB (protection against erythema) may be less effective in preventing UVR-induced immunosuppression than broad-spectrum products. We have studied the effects of UVA exposure on the human delayed-type hypersensitivity response (DTH) and compared the efficacy of sunscreens having different levels of UVA protection under both solar-simulated radiation (SSR) chronic exposures or acute exposure and outdoor real-life solar exposure conditions. DTH was assessed using recall antigens. Our studies clearly demonstrate the role of UVA in the induction of photoimmunosuppression together with the need for sunscreen products providing efficient photoprotection throughout the entire UV spectrum. These data suggest that sun protection factor may not be sufficient to predict the ability of sunscreens for protection from UV-induced immune suppression. Determining the level of UVA protection is particularly necessary, because UVA seems to have a relatively low contribution to erythema but is highly involved in immunosuppression. PMID:12444956

  15. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    NASA Astrophysics Data System (ADS)

    Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.

    2012-08-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.

  16. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect.

    PubMed

    Niculae, G; Lacatusu, I; Badea, N; Meghea, A

    2012-08-10

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions. PMID:22797534

  17. Effects of solar ultraviolet photons on mammalian cell DNA. [UVA (320-400 nm):a2

    SciTech Connect

    Peak, M.J.; Peak, J.G.

    1991-01-01

    This document presents information on the possible mechanisms of carcinogenesis caused by UVA (ultraviolet radiation in the 320--400 nm region). Most studies showing the carcinogenic effects of ultraviolet light have concentrated on UVB (280--320 nm). UVA had been considered harmless even though it penetrates biological tissues better than UVB. Recently, it has become apparent that UVA is also capable of causing damage to cellular DNA. This was unexpected because the DNA UV absorption spectrum indicates a negligible probability that photons of wavelengths longer than 320 nm will be directly absorbed. The most common defects induced in DNA by UVB are pyrimidine photoproducts, such as thymidine dimers. UVA photons produce defects resembling those caused by ionizing radiations: single- and double-strand breaks, and DNA-protein crosslinks. This paper also discusses the role of DNA repair mechanisms in UVA-induced defects and the molecular mechanisms of UVA damage induction. 38 refs. (MHB)

  18. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  19. Carcinogenic effect of sequential artificial sunlight and UV-A irradiation in hairless mice. Consequences for solarium 'therapy'.

    PubMed

    Staberg, B; Wulf, H C; Poulsen, T; Klemp, P; Brodthagen, H

    1983-08-01

    The carcinogenic effect of artificial UV sunlight followed by UV-A irradiation in human solaria doses has been studied with the use of the hairless mouse as an animal model. Artificial sunlight exposure alone induced only a moderate skin tumor incidence (animals with at least one tumor) of 0.15 after one year, and UV-A irradiation alone induced no tumor formation. However, the combination of artificial sunlight exposure and subsequent UV-A irradiation significantly increased the tumor incidence to 0.72. We conclude that, in humans, tanning with UV-A for cosmetic purposes may not be an innocuous procedure. PMID:6870317

  20. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    PubMed Central

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-01-01

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD. PMID:25775159

  1. Lonicera caerulea fruits reduce UVA-induced damage in hairless mice.

    PubMed

    Vostálová, Jitka; Galandáková, Adéla; Palíková, Irena; Ulrichová, Jitka; Doležal, Dalibor; Lichnovská, Radka; Vrbková, Jana; Rajnochová Svobodová, Alena

    2013-11-01

    UVA photons are less energetic than UVB photons but they are more abundant in solar radiation. Modern tools have shown that UVA light has serious adverse effects on the skin. We investigated the effect of consuming Lonicera caerulea berries on UVA-induced damage in SKH-1 mice. The mice were fed a diet containing L. caerulea berries (10%, w/w) for 14 days before a single UVA (30 J/cm(2)) treatment. Effects on haematological and antioxidant parameters were evaluated 4 and 24h after irradiation. The bioavailability of L. caerulea phenolics was also assessed. Consuming the L. caerulea berry-enriched diet caused reduced malondialdehyde production and increased catalase activity and glutathione levels were found in skin and erythrocytes. UVA-induced NADPH:quinone oxidoreductase-1 and gamma-L-glutamate-L-cysteine ligase protein in skin were reduced in mice fed L. caerulea berries. Enhanced heme oxygenase-1 level in skin, interleukin-17 in plasma and reduced interleukin-12 levels in plasma were found in the mice on the experimental diet. Histological (pyknotic) changes in the nuclei of basal cells induced by UVA exposure were reduced in L. caerulea berry consuming animals. HLPC-MS analysis showed high concentrations of hippuric acid, one of the main metabolites of aromatic amino acids and phenolic compounds, in skin, liver, urine and faeces of mice consuming the berries. Taken together, consumption of L. caerulea berries affords protection from the adverse effects of a single UVA exposure mainly via modulation of antioxidant parameters. PMID:23974431

  2. Quantitative Assessment of UVA-Riboflavin Corneal Cross-Linking Using Nonlinear Optical Microscopy

    PubMed Central

    Chai, Dongyul; Gaster, Ronald N.; Roizenblatt, Roberto; Juhasz, Tibor; Brown, Donald J.

    2011-01-01

    Purpose. Corneal collagen cross-linking (CXL) by the use of riboflavin and ultraviolet-A light (UVA) is a promising and novel treatment for keratoconus and other ectatic disorders. Since CXL results in enhanced corneal stiffness, this study tested the hypothesis that CXL-induced stiffening would be proportional to the collagen autofluorescence intensity measured with nonlinear optical (NLO) microscopy. Methods. Rabbit eyes (n = 50) were separated into five groups including: (1) epithelium intact; (2) epithelium removed; (3) epithelium removed and soaked in riboflavin, (4) epithelium removed and soaked in riboflavin, with 15 minutes of UVA exposure; and (5) epithelium removed and soaked in riboflavin, with 30 minutes of UVA exposure. Corneal stiffness was quantified by measuring the force required to displace the cornea 500 μm. Corneas were then fixed in paraformaldehyde and sectioned, and the collagen autofluorescence over the 400- to 450-nm spectrum was recorded. Results. There was no significant difference in corneal stiffness among the three control groups. Corneal stiffness was significantly and dose dependently increased after UVA (P < 0.0005). Autofluorescence was detected only within the anterior stroma of the UVA-treated groups, with no significant difference in the depth of autofluorescence between different UVA exposure levels. The signal intensity was also significantly increased with longer UVA exposure (P < 0.001). Comparing corneal stiffness with autofluorescence intensity revealed a significant correlation between these values (R2 = 0.654; P < 0.0001). Conclusions. The results of this study indicate a significant correlation between corneal stiffening and the intensity of collagen autofluorescence after CXL. This finding suggests that the efficacy of CXL in patients could be monitored by assessing collagen autofluorescence. PMID:21508101

  3. Protective effects of resveratrol against UVA-induced damage in ARPE19 cells.

    PubMed

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-01-01

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD. PMID:25775159

  4. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  5. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation

    PubMed Central

    Wäster, Petra; Eriksson, Ida; Vainikka, Linda; Rosdahl, Inger; Öllinger, Karin

    2016-01-01

    Ultraviolet (UV) irradiation induces skin pigmentation, which relies on the intercellular crosstalk of melanin between melanocytes to keratinocytes. However, studying the separate effects of UVA and UVB irradiation reveals differences in cellular response. Herein, we show an immediate shedding of extracellular vesicles (EVs) from the plasma membrane when exposing human melanocytes to UVA, but not UVB. The EV-shedding is preceded by UVA-induced plasma membrane damage, which is rapidly repaired by Ca2+-dependent lysosomal exocytosis. Using co-cultures of melanocytes and keratinocytes, we show that EVs are preferably endocytosed by keratinocytes. Importantly, EV-formation is prevented by the inhibition of exocytosis and increased lysosomal pH but is not affected by actin and microtubule inhibitors. Melanosome transfer from melanocytes to keratinocytes is equally stimulated by UVA and UVB and depends on a functional cytoskeleton. In conclusion, we show a novel cell response after UVA irradiation, resulting in transfer of lysosome-derived EVs from melanocytes to keratinocytes. PMID:27293048

  6. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-01

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. PMID:24491420

  7. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    PubMed

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. PMID:25500756

  8. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation.

    PubMed

    Wäster, Petra; Eriksson, Ida; Vainikka, Linda; Rosdahl, Inger; Öllinger, Karin

    2016-01-01

    Ultraviolet (UV) irradiation induces skin pigmentation, which relies on the intercellular crosstalk of melanin between melanocytes to keratinocytes. However, studying the separate effects of UVA and UVB irradiation reveals differences in cellular response. Herein, we show an immediate shedding of extracellular vesicles (EVs) from the plasma membrane when exposing human melanocytes to UVA, but not UVB. The EV-shedding is preceded by UVA-induced plasma membrane damage, which is rapidly repaired by Ca(2+)-dependent lysosomal exocytosis. Using co-cultures of melanocytes and keratinocytes, we show that EVs are preferably endocytosed by keratinocytes. Importantly, EV-formation is prevented by the inhibition of exocytosis and increased lysosomal pH but is not affected by actin and microtubule inhibitors. Melanosome transfer from melanocytes to keratinocytes is equally stimulated by UVA and UVB and depends on a functional cytoskeleton. In conclusion, we show a novel cell response after UVA irradiation, resulting in transfer of lysosome-derived EVs from melanocytes to keratinocytes. PMID:27293048

  9. Protective effects of antioxidants against UVA-induced DNA damage in human skin fibroblasts in culture.

    PubMed

    Emonet-Piccardi, N; Richard, M J; Ravanat, J L; Signorini, N; Cadet, J; Béani, J C

    1998-10-01

    Ultraviolet A radiation (UVA, 320-400 nm) is mutagenic and induces genomic damage to skin cells. N-acetyl-cysteine (NAC), selenium and zinc have been shown to have antioxidant properties and to exhibit protective effects against UVA cytotoxicity. The present work attempts to delineate the effect of these compounds on genomic integrity of human skin fibroblasts exposed to UVA radiation using the single cell gel electrophoresis (SCGE) or Comet assay. The cells were incubated with NAC (5 mM), sodium selenite (0.6 microM) or zinc chloride (100 microM). Then cells were embedded in low melting point agarose, and immediately submitted to UVA fluences ranging from 1 to 6J/cm2. In the Comet assay, the tail moment increased by 45% (1 J/cm2) to 89% (6J/cm2) in non-supplemented cells (p)<0.01). DNA damage was significantly prevented by NAC, Se and Zn, with a similar efficiency from 1 to 4J/cm2 (p < 0.05). For the highest UVA dose (6J/cm2), Se and Zn were more effective than NAC (p < 0.01). PMID:9860045

  10. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    SciTech Connect

    Quesada, A. |; Mouget, J.L.; Vincent, W.F.

    1995-04-01

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs.

  11. Adhesion of leukocytes to dermal endothelial cells is induced after single-dose, but reduced after repeated doses of UVA.

    PubMed

    Heckmann, M; Pirthauer, M; Plewig, G

    1997-12-01

    Approximately 20-50% of ultraviolet A (UVA) irradiation delivered to the skin surface may reach the human dermal microvascular endothelial cells (HDMEC) that play a pivotal role in cellular inflammatory tissue; however, the pathophysiologic role of HDMEC in UVA-induced skin changes is largely unknown. Based on previous in vivo and in vitro studies revealing UVA-induced expression of endothelial adhesion molecules, we studied isolated HDMEC under various conditions in order to further delineate the impact of UVA on these cells. The expression of cell adhesion molecules was determined by flow cytometry and the resulting changes of stable adhesion of leukocytes to endothelial cells were quantitated for granulocytes, lymphocytes, and monocytes using a newly developed multicellular adhesion assay. Additionally, antibody blocking experiments were performed to delineate the role of individual cell adhesion molecules in UVA-induced leukocyte adherence. High-dose polychromatic UVA (25 J per cm2, maximal emission at 375 nm) induced intercellular adhesion molecule-1 and E-selectin with different kinetics but correlating the adhesion of leukocyte subsets. This effect subsided, however, in the course of 3-6 daily applied UVA doses. Moreover, pro-inflammatory cytokine challenge by tumor necrosis factor-alpha and interleukin-1-alpha resulted in significantly weaker induction of intercellular adhesion molecule-1 and E-selectin in repeatedly UVA-exposed HDMEC. Differential quantitation of peripheral blood derived granulocytes, lymphocytes, and monocytes revealed reduced adhesion particularly of lymphocytes followed by monocytes and granulocytes compared with leukocyte adhesion to nonirradiated but cytokine-stimulated HDMEC. It is concluded that UVA substantially influences endothelial cell adhesion molecules expression and thus directly interferes with leukocyte adhesion to endothelial cells. Divergent UVA-induced effects in this respect can be attributed to the mode of UV exposure

  12. Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide?

    PubMed

    Parat, M O; Richard, M J; Leccia, M T; Amblard, P; Favier, A; Beani, J C

    1995-10-01

    Reactive oxygen species (ROS) are involved in the mechanism of photoaging and carcinogenesis. Skin is endowed with antioxidant enzymes including superoxide dismutases (SOD): cytosolic copper zinc SOD and mitochondrial manganese SOD. The aim of our study was to estimate the protective effect of manganese against oxidative injury on cultured human skin fibroblasts. Dithranol, hydrogen peroxide and UV-A radiation (375 nm) were employed as oxidative stressors. The supply of manganese chloride produced an increase in cellular content of this element up to 24 fold without concomitant elevation of MnSOD activity. Nevertheless, manganese protects cells against two of the three ROS generating systems assessed, namely hydrogen peroxyde and UV-A. This protective effect depends on the concentration of manganese in the medium, 0.1 mM and 0.2 mM protect against UVA cytotoxicity, only 0.2 mM protects against H2O2 cytotoxicity. PMID:7493040

  13. Thioredoxin reductase activity may be more important than GSH level in protecting human lens epithelial cells against UVA light.

    PubMed

    Padgaonkar, Vanita A; Leverenz, Victor R; Bhat, Aparna V; Pelliccia, Sara E; Giblin, Frank J

    2015-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2 , 3% and 20%, were employed during a 1 h exposure of the cells to 25 J cm(-2) of UVA radiation (338-400 nm wavelength, peak at 365 nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. PMID:25495870

  14. Thioredoxin Reductase Activity may be More Important than GSH Level in Protecting Human Lens Epithelial Cells Against UVA Light

    PubMed Central

    Padgaonkar, Vanita A.; Leverenz, Victor R.; Bhat, Aparna V.; Pelliccia, Sara E.; Giblin, Frank J.

    2014-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2, 3% and 20%, were employed during a 1 hr exposure of the cells to 25 J/cm2 of UVA radiation (338-400nm wavelength, peak at 365nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well-tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. PMID:25495870

  15. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    PubMed

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation. PMID:27301251

  16. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes).

    PubMed

    Sayed, Alla El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-08-01

    Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish. PMID:27203565

  17. Identification and transcriptional profiling of differentially expressed genes associated with response to UVA radiation in Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Zhou, Li-Jun; Zhu, Zhi-Hui; Liu, Zhen-Xing; Ma, Wei-Hua; Desneux, Nicolas; Lei, Chao-Liang

    2013-10-01

    Ultraviolet A (UVA) radiation, the major component of solar ultraviolet (UV) radiation reaching the earth's surface, leads to negative effects in insects, such as oxidative stress, photoreceptor damage, and cell death. To better understand the molecular mechanisms of insect response to UVA radiation, suppression subtractive hybridization (SSH) and real-time quantitative polymerase chain reaction approaches were combined to reveal differential transcript expression in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). In this study, two subtractive cDNA libraries were constructed and sequenced, obtaining 131 high-quality unique expressed sequence tags (ESTs) that were up- or downregulated in D. melanogaster exposed to UVA radiation for 0.5 h. Of the 131 ESTs, 102 unique ESTs were differentially expressed and classified into 10 functional categories. The results showed that UVA radiation induces expression of genes related to stress and defense response and metabolism. Potential transcription factor binding motifs upstream of these genes are associated with multiple signaling pathways that may help the insect cope with the stress of UVA radiation. To our knowledge, this is the first analysis of insect response to UVA radiation at the transcriptional level. Our results reveal that UVA radiation influences the expression profiles of stress-responsive genes and provide further insights into the mechanisms of adaptive response to UVA radiation stress. PMID:24331622

  18. Measurements of UV-A radiation and hazard limits from some types of outdoor lamps

    NASA Astrophysics Data System (ADS)

    El-Moghazy, Essam; Abd-Elmageed, Alaa-Eldin; Reda, Sameh

    2015-05-01

    Illumination using artificial light sources is common in these days. Many manufactures are paying for the design of lamps depending on high efficacy and low UV hazards. This research is focusing on the most useable lamps in the Egyptian markets; High Pressure Mercury (HPM), Metal Halide (MH), and High Pressure Sodium (HPS). A set up for relative spectral power distribution based on single monochromator and UVA silicon detector for absolute irradiance measurements are used. The absolute irradiance in (W/m2) in UVA region of the lamps and their accompanied standard uncertainty are evaluated.

  19. Photobiological implications of melanin photoprotection after UVB-induced tanning of human skin but not UVA-induced tanning

    PubMed Central

    Coelho, Sergio G.; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Hearing, Vincent J.

    2014-01-01

    Summary Repetitive suberythemal UVA and/or UVB exposures were used to generate comparable UV-induced tans in human skin over the course of 2 weeks. In order to evaluate the potential photoprotective values of those UVA- and/or UVB- induced tans and to avoid the confounding issue of residual UV-induced DNA damage, we waited 1 week before challenging those areas with a 1.5 MED dose of UVA+UVB after which we measure DNA damage. The results show that the type of UV used to induce skin pigmentation affects the redistribution of melanin in the skin and/or de novo melanin synthesis. The UVA-induced tans failed to even provide a minimal SPF of 1.5, which suggests that producing a tan with UVA-rich sunlamps prior to a holiday or vacation is completely counterproductive. PMID:25417821

  20. Pilot Study for UVA-LED Disinfection of Escherichia coli in Water for Space and Earth Applications

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina

    2010-01-01

    To test the efficacy of UVA-LED disinfection, a solution of Escherichia coli was pumped through a modified drip flow reactor at a flow rate of 1 ml/min. The experiment was conducted in a controlled environment chamber to ensure that temperature did not cause disinfection. The reactor featured three wells with different treatments: UVA-LED irradiation, UVA-LEDs with Ti02, and UVA-LEDs with nanosilver. Samples from each well were taken throughout a 340 hour period, inactivated, assayed, and analyzed for E. coli disinfection. Results of the duplicate experiments indicated longer exposure times are needed for UVA-LED disinfection of E. coli in water. Further research would consider a longer sampling period and different test conditions, such as increased contact area and various flow rates.

  1. Effects of UV-A Radiation on Desmodesmus armatus: Changes in Growth Rate, Pigment Content and Morphological Appearance

    NASA Astrophysics Data System (ADS)

    Pálffy, Károly; Vörös, Lajos

    2006-10-01

    Laboratory cultures of Desmodesmus armatus (R. Chod.) Hegew. were grown under different levels of photosynthetically active radiation (PAR) supplemented with 3.75 mW . cm-2 UV-A radiation. Growth rate was monitored daily, chlorophyl-a concentration, total carotenoid content, cell number and the relative abundance of different coenobial forms was determined at the end of each experiment. Exposure to UV-A radiation resulted in an increasing inhibition of growth towards higher PAR levels, reaching 100% at 400 μmol . m-2 . s-1. Cellular carotenoid content was higher in the presence of UV-A radiation, on the other hand no differences were observed in cellular chlorophyll-a concentration. UV-A radiation also induced changes in coenobium formation with a decreasing proportion of 4-celled coenobia and an increase in the abundance of 2-celled and teratologic coenobia, suggesting that high intensity UV-A radiation may influence cell cycle events or morphology development.

  2. In vitro photosafety and efficacy screening of apigenin, chrysin and beta-carotene for UVA and VIS protection.

    PubMed

    Freitas, Juliana Vescovi; Gaspar, Lorena Rigo

    2016-06-30

    Currently most of sunscreens provide effective protection in the full UV range but lack VIS protection. The addition of effective antioxidants to sunscreens might afford suitable UV-VIS protection. Apigenin (API), chrysin (CRI) and beta-carotene (BTC) have shown potential for UV-VIS protection. This paper reports a photosafety and efficacy screening of such antioxidants through evaluation of the photostability, photoreactivity and phototoxicity as well as UVA/UVB ratio and critical wavelength. The assessment of the photostability, photoreactivity and phototoxicity of API, CRI and BTC, isolated and combined (CMB) was performed by HPLC, ROS assay and 3T3 NRU phototoxicity test, respectively. The phototoxicity test was also performed for CMB plus bemotrizinol (BMZ). The in vitro evaluation of the UVA protection was assessed by the determination of the UVA/UVB ratio and the critical wavelength. The antioxidants API, CRI, BTC and CMB were stable under UVA/VIS and VIS light. However weak photoreactivity after UVA/VIS irradiation was observed for API, CRI and CMB in the ROS assay. In the 3T3 NRU phototoxicity test, phototoxic potential was observed for CRI, BTC, CMB and CMB+BMZ after UVA/VIS exposure, and for BTC and CMB after VIS exposure. BMZ reduced the phototoxic potential of CMB in the VIS range. In the in vitro evaluation of UVA protection API, CRI, BTC, CMB and CMB+BMZ presented ultra UVA protection (UVA/UVB ratio>0.9) and exhibited critical wavelength close to or above 370nm. In conclusion, the use of API, CRI, BTC and their CMB aiming skin photoprotection could be considered safer in the VIS range. Furthermore, API presented the best performance in the photosafety screening among the studied antioxidants, since it was photostable and non-phototoxic in UVA/VIS and photostable, non-photoreactive and non-phototoxic in VIS range. PMID:27130544

  3. In vivo UVA irradiation of mouse is more efficient in promoting pulmonary melanoma metastasis than in vitro

    PubMed Central

    2011-01-01

    Background We have previously shown in vitro that UVA increases the adhesiveness of mouse B16-F1 melanoma cells to endothelium. We have also shown in vivo that UVA exposure of C57BL/6 mice, i.v. injected with B16-F1 cells, increases formation of pulmonary colonies of melanoma. The aim of the present animal study was to confirm the previously observed in vivo UVA effect and to determine whether in vitro UVA-exposure of melanoma cells, prior the i.v. injection, will have an enhancing effect on the pulmonary colonization capacity of melanoma cells. As a second aim, UVA-derived immunosuppression was determined. Methods Mice were i.v. injected with B16-F1 cells into the tail vein and then immediately exposed to UVA. Alternatively, to study the effect of UVA-induced adhesiveness on the colonization capacity of B16-F1 melanoma, cells were in vitro exposed prior to i.v. injection. Fourteen days after injection, lungs were collected and the number of pulmonary nodules was determined under dissecting microscope. The UVA-derived immunosuppression was measured by standard contact hypersensitivity assay. Results and Discussion Obtained results have confirmed that mice, i.v. injected with B16-F1 cells and thereafter exposed to UVA, developed 4-times more of melanoma colonies in lungs as compared with the UVA non-exposed group (p < 0.01). The in vitro exposure of melanoma cells prior to their injection into mice, led only to induction of 1.5-times more of pulmonary tumor nodules, being however a statistically non-significant change. The obtained results postulate that the UVA-induced changes in the adhesive properties of melanoma cells do not alone account for the 4-fold increase in the pulmonary tumor formation. Instead, it suggests that some systemic effect in a mouse might be responsible for the increased metastasis formation. Indeed, UVA was found to induce moderate systemic immunosuppression, which effect might contribute to the UVA-induced melanoma metastasis in mice lungs

  4. Importance of UVA photoprotection as shown by genotoxic related endpoints: DNA damage and p53 status.

    PubMed

    Marrot, Laurent; Belaïdi, Jean-Philippe; Meunier, Jean-Roch

    2005-04-01

    In order to demonstrate the importance of photoprotection in the UVA range (320-400 nm), an in vitro approach where sun formulations are spread on a quartz slide, and placed over human keratinocytes in culture is proposed as a convenient test for photoprotection assessment at the DNA level. Using the comet assay, DNA strand breaks, oxidative DNA damage or drug-induced DNA breaks were assessed. Accumulation of p53 protein was also studied as a marker for UV-induced genotoxic stress. Such a method was used to compare two formulations with different photostability. Spectroradiometry showed that a photounstable formulation lost its effectiveness in UVA screening when pre-irradiated by simulated sunlight (UVB+UVA). As a consequence, it was also shown that this formulation was not as protective as the photostable one at the genomic level. These data demonstrate that the loss of absorbing efficiency within UVA wavelengths due to photounstability may have detrimental consequences leading to impairments implicated in genotoxic events. PMID:15748646

  5. [Life style, sun-bathing and tanning--what about UV-A solariums?].

    PubMed

    Thune, P

    1991-06-30

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologist have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who despite advice to the contrary, still wish to use UV-A sun beds. PMID:1871738

  6. Dynamic characterization and microprocessor control of the NASA/UVA proof mass actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1984-01-01

    The self-contained electromagnetic-reaction-type force-actuator system developed by NASA/UVA for the verification of spacecraft-structure vibration-control laws is characterized and demonstrated. The device is controlled by a dedicated microprocessor and has dynamic characteristics determined by Fourier analysis. Test data on a cantilevered beam are shown.

  7. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts.

    PubMed

    Huang, Cheng-Hua; Li, Hsin-Ju; Wu, Nan-Lin; Hsiao, Chien-Yu; Lin, Chun-Nan; Chang, Hsun-Hsien; Hung, Chi-Feng

    2016-01-01

    Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging. PMID:27583973

  8. Endonuclease IV Is the Main Base Excision Repair Enzyme Involved in DNA Damage Induced by UVA Radiation and Stannous Chloride

    PubMed Central

    Motta, Ellen S.; Souza-Santos, Paulo Thiago; Cassiano, Tuany R.; Dantas, Flávio J. S.; Caldeira-de-Araujo, Adriano; De Mattos, José Carlos P.

    2010-01-01

    Stannous chloride (SnCl2) and UVA induce DNA lesions through ROS. The aim of this work was to study the toxicity induced by UVA preillumination, followed by SnCl2 treatment. E. coli BER mutants were used to identify genes which could play a role in DNA lesion repair generated by these agents. The survival assays showed (i) The nfo mutant was the most sensitive to SnCl2; (ii) lethal synergistic effect was observed after UVA pre-illumination, plus SnCl2 incubation, the nfo mutant being the most sensitive; (iii) wild type and nfo mutants, transformed with pBW21 plasmid (nfo+) had their survival increased following treatments. The alkaline agarose gel electrophoresis assays pointed that (i) UVA induced DNA breaks and fpg mutant was the most sensitive; (ii) SnCl2-induced DNA strand breaks were higher than those from UVA and nfo mutant had the slowest repair kinetics; (iii) UVA + SnCl2 promoted an increase in DNA breaks than SnCl2 and, again, nfo mutant displayed the slowest repair kinetics. In summary, Nfo protects E. coli cells against damage induced by SnCl2 and UVA + SnCl2. PMID:20300433

  9. Varations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection.

    PubMed

    Her, Namguk; Amy, Gary; Foss, David; Chow, Jaeweon

    2002-08-01

    High performance size exclusion chromatography (HPSEC) with ultraviolet absorbance (UVA) detection has been widely utilized to estimate the molecular weight (MW) and MW distribution of natural organic matter (NOM). However, the estimation of MW with UVA detection is inherently inaccurate because UVA at 254 nm only detects limited components (mostly pi bonded molecules) of NOM, and the molar absorptivity of these different NOM constituents is not equal. In comparison, a SEC chromatogram obtained with a DOC detector showed significant differences compared to a corresponding UVA chromatogram, resulting in different MW values as well as different estimates of polydispersivity. The MWs of Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and various mixtures thereof were estimated with HPSEC coupled with UVA and DOC detectors. The results show that UVA is not an adequate detector for quantitative analysis of MW estimation but rather can be used only for limited qualitative analysis. The NOM in several natural waters (Irvine Ranch, California groundwater, and Barr Lake, Colorado surface water) were also characterized to demonstrate the different MWs obtained with the two detectors. The results of the SEC-DOC chromatograms revealed NOM constituent peaks that went undetected by UVA. Utilizing online DOC detection, a better representation of NOM MWs was suggested, with NOM displaying higher weight-averaged MW (Mw) and lower number-averaged MW (Mn) as well as higher polydispersivity. A method for estimation of the MWs of NOM fractional components and polydispersivities is presented. PMID:12188370

  10. Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens

    NASA Astrophysics Data System (ADS)

    Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Samuolienė, G.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Miliauskienė, J.; Vaštakaitė, V.; Bagdonavičienė, A.; Duchovskis, P.

    2015-01-01

    In this study, we sought to find and employ positive effects of UV-A irradiation on cultivation and quality of microgreens. Therefore, the goal of our study was to investigate the influence of 366, 390, and 402 nm UV-A LED wavelengths, supplemental for the basal solid-state lighting system at two UV-A irradiation levels on the growth and phytochemical contents of different microgreen plants. Depending on the species, supplemental UV-A irradiation can improve antioxidant properties of microgreens. In many cases, a significant increase in the investigated phytochemicals was found under 366 and 390 nm UV-A wavelengths at the photon flux density (12.4 μmol m-2 s-1). The most pronounced effect of supplemental UV-A irradiation was detected in pak choi microgreens. Almost all supplemental UV-A irradiation treatments resulted in increased leaf area and fresh weight, in higher 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging activity, total phenols, anthocyanins, ascorbic acid, and α-tocopherol.

  11. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  12. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    SciTech Connect

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dose (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.

  13. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    SciTech Connect

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-12-10

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs.

  14. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul

    2014-02-01

    The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.

  15. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  16. Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay, and comet assay

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Krasieva, Tatiana B.; Bauer, Eckhard; Fiedler, Ursula; Berns, Michael W.; Tromberg, Bruce J.; Greulich, Karl O.

    1996-04-01

    Cell damage by low-power 365-nm radiation of a 50-W high-pressure mercury microscopy lamp was studied. Exposure of Chinese hamster ovary cells to ultraviolet-A (UVA) radiation > 10 kJ/m2 resulted in significant modifications of nicotinamide adenine dinucleotide attributed autofluorescence and inhibition of cell division. Single-cell gel electrophoresis (comet assay) revealed UVA-induced single-strand DNA breaks. According to these results, UVA excitation radiation in fluorescence microscopy may damage cells. This has to be considered in vital cell microscopy, e.g., in calcium measurements.

  17. UVA-induced oxidative stress in single cells probed by autofluorescence modifications, cloning assay, and comet assay

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Krasieva, Tatjana; Bauer, Eckhard; Fiedler, Ulrich; Berns, Michael W.; Tromberg, Bruce J.; Greulich, Karl O.

    1996-01-01

    Cell damage by low-power 365 nm radiation of a 50 W high-pressure mercury microscopy lamp was studied. UVA exposure to CHO cells resulted for radiant exposures greater than 10 kJ/m2 in significant modifications of NADH-attributed autofluorescence and in inhibition of cell division. Single cell gel electrophoresis (comet assay) revealed UVA-induced single strand DNA breaks. According to these results, UVA excitation radiation in fluorescence microscopy may damage cells. This has to be considered in vital cell microscopy, e.g. in calcium measurements.

  18. Protective effects of phenolic fraction of blue honeysuckle fruits against UVA-induced damage to human keratinocytes.

    PubMed

    Svobodová, Alena; Rambousková, Jana; Walterová, Daniela; Vostálová, Jitka

    2008-06-01

    In this study, the UVA (photo)protective activity of the phenolic fraction of L. caerulea fruits (PFLC) was assessed in human keratinocytes HaCaT. The keratinocytes were pre- or post-treated with PFLC (1-250 mg/l) and exposed to UVA irradiation (10-30 J/cm(2)). The results showed that both pre- and post-treatment with PFLC significantly suppressed UVA-induced ROS production, which was also revealed as a decrease in intracellular lipid peroxidation and elevation of reduced glutathione. Protection was concentration-dependent with a maximum at 50 mg/l. These results suggest that PFLC attenuates UVA-induced oxidative stress by reduction of ROS generation and ROS-mediated damage. For this reason, PFLC has potentially skin-protective functions against the deleterious effects of sunlight. PMID:18404271

  19. UVA-induced oxidative damage in retinal pigment epithelial cells after H2O2 or sparfloxacin exposure.

    PubMed

    Verna, L K; Holman, S A; Lee, V C; Hoh, J

    2000-01-01

    Retinal impairment is one of the leading causes of visual loss in an aging human population. To explore a possible cause for retinal damage in the human population, we have monitored DNA oxidation in human retinal pigment epithelial (RPE) cells after exposure to hydrogen peroxide (H2O2) or the quinolone antibacterial sparfloxacin. When H2O2- or sparfloxacin-exposed cells were further exposed to ultraviolet A (UVA) irradiation, oxidative damage to the DNA of these cells was greatly increased over baseline values. This RPE+pharmaceutical-UVA cell system was developed to mimic in vivo retinal degeneration, seen in mouse studies using quinolone and UVA exposure. DNA damage produced by sparfloxacin and UVA in RPE cells could be remedied by the use of antioxidants, indicating a possible in vivo method for prevention or minimization of retinal damage in humans PMID:11201054

  20. Skin Treatment with Pulsed Monochromatic UVA1 355 Device and Computerized Morphometric Analysis of Histochemically Identified Langerhans Cells

    PubMed Central

    Zerbinati, Nicola; Riva, Federica; Paulli, Marco; Parodi, Pier Camillo

    2016-01-01

    Fluorescent or metal halide lamps are widely used in therapeutic applications in dermatological diseases, with broadband or narrow band emission UVA/UVA1 (320–400 nm) obtained with suitable passive filters. Recently, it has been possible for us to use a new machine provided with solid state source emitting pulsed monochromatic UVA1 355 nm. In order to evaluate the effects of this emission on immunocells of the skin, human skin samples were irradiated with monochromatic 355 nm UVA1 with different energetic fluences and after irradiation Langerhans cells were labeled with CD1a antibodies. The immunohistochemical identification of these cells permitted evaluating their modifications in terms of density into the skin. Obtained results are promising for therapeutical applications, also considering that a monochromatic radiation minimizes thermic load and DNA damage in the skin tissues. PMID:27525266

  1. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage.

    PubMed

    Fang, Xing; Ide, Naohiro; Higashi, Sho-Ichi; Kamei, Yasuhiro; Toyooka, Tatsushi; Ibuki, Yuko; Kawai, Kazuaki; Kasai, Hiroshi; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Negishi, Tomoe

    2014-09-01

    Evidence is accumulating indicating that UVA (320-400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m(-2)), levels of phosphorylated H2AvD (γ-H2AvD) increased significantly in the urate-null strain. Moreover, the level of γ-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of γ-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D

  2. UVA-induced epigenetic regulation of P16(INK4a) in human epidermal keratinocytes and skin tumor derived cells.

    PubMed

    Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Boukamp, Petra; Volkmer, Beate; Greinert, Rüdiger

    2012-01-01

    UVA-radiation (315-400 nm) has been demonstrated to be capable of inducing DNA damage and is regarded as a carcinogen. While chromosomal aberrations found in UVA-irradiated cells and skin tumors provided evidence of the genetic involvement in UVA-carcinogenesis, its epigenetic participation is still illusive. We thus analysed the epigenetic patterns of 5 specific genes that are involved in stem cell fate (KLF4, NANOG), telomere maintenance (hTERT) and tumor suppression in cell cycle control (P16(INK4a), P21(WAFI/CIPI)) in chronically UVA-irradiated HaCaT human keratinocytes. A striking reduction of the permissive histone mark H3K4me3 has been detected in the promoter of P16(INK4a) (4-fold and 9-fold reduction for 10 and 15 weeks UVA-irradiated cells, respectively), which has often been found deregulated in skin cancers. This alteration in histone modification together with a severe promoter hypermethylation strongly impaired the transcription of P16(INK4a) (20-fold and 40-fold for 10 weeks and 15 weeks UVA-irradiation, respectively). Analysis of the skin tumor-derived cells revealed the same severe impairment of the P16(INK4a) transcription attributed to promoter hypermethylation and enrichment of the heterochromatin histone mark H3K9me3 and the repressive mark H3K27me3. Less pronounced UVA-induced epigenetic alterations were also detected for the other genes, demonstrating for the first time that UVA is able to modify transcription of skin cancer associated genes by means of epigenetic DNA and histone alterations. PMID:21986889

  3. Ultraviolet (UVB and UVA) photoprotector activity and percutaneous penetration of extracts obtained from Arrabidaea chica.

    PubMed

    Siraichi, Jackeline T G; Pedrochi, Franciana; Natali, Maria R M; Ueda-Nakamura, Tânia; Filho, Benedito P Dias; Bento, Antonio C; Baesso, Mauro L; Nakamura, Celso V

    2013-10-01

    The aim of this work is to investigate the photoprotection activity and toxicity level of formulations containing the extract and its fractions obtained from leaves of Arrabidaea chica. The ex vivo percutaneous penetration of the extract was evaluated using the photoacoustic spectroscopy technique. The formulation presented optical absorption in the ultraviolet region, including UVA and UVB. This formulation was obtained without adding inorganic UV filters, as is frequently used in commercial sunscreens. The results showed a penetration rate similar to those of commercial sunscreens with its presence on the skin surface at least 180 min after the application. This formulation presented no toxic effects evaluated using hematological, biochemical, and histological assays. The results suggest that the formulation from the leaves of A. chica provides substantial protection against UVA + UVB radiation with a possible advantage of being natural and free of inorganic compounds compared with the majority of available commercial sunscreens. PMID:24067575

  4. Long-term risks of psoralen and UV-A therapy for psoriasis

    SciTech Connect

    Farber, E.M.; Abel, E.A.; Cox, A.J.

    1983-05-01

    It has been more than eight years since photochemotherapy with methoxsalen and UV-A (psoralen and UV-A (PUVA)) was introduced for the treatment of psoriasis. This treatment remained under investigation until May 1982 because of concerns about possible chronic toxic effects. With recent Food and Drug Administration approval of PUVA therapy for severe psoriasis, strict drug labeling for administration and patient use and continued monitoring of side effects have become essential. The full effects of PUVA in regard to carcinogenicity, prematurelly induced aging of the skin, pigmentary changes, immunologic alterations, and ocular side effects are still unknown. A review of the risks of PUVA therapy is presented, with the aim of maintaining a proper perspective for its limited use in treating selected patients.

  5. Impact of UV-A radiation on erythemal UV and UV-index estimation over Korea

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Lee, Yun Gon; Kim, Jung Hyun

    2015-12-01

    Because total UV (TUV) in the UV-A region is 100 times higher than in the UV-B region, UV-A is a considerable component when calculating erythemal UV (EUV) and UV-index. The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)] is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A), from the simulation study, is 6.9×10-4, changing from 6.1×10-4 to 7.0×10-4 as aerosol optical depth, total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57°N, 126.95°E), 84 m above sea level], the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site, the EUV(B) from the UV-biometer observes only 95% of total EUV, and its underestimation is caused by neglecting the effect of UV-A. However, the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320-340 nm. The correction factor for the overlap effect adjusts 8% of total EUV.

  6. Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts.

    PubMed

    Leccia, M T; Richard, M J; Beani, J C; Faure, H; Monjo, A M; Cadet, J; Amblard, P; Favier, A

    1993-10-01

    Ultraviolet A radiation participates in cytotoxicity and carcinogenesis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). Selenium in the culture medium (0.1 mg/L) in the form of sodium selenite increased the synthesis and activity of glutathione peroxidase by 60.5% in the absence of exposure to UV-A radiation and by 35% after irradiation with 5 J/cm2 (P = 0.043). The presence of this element significantly increased the survival of UV-A-irradiated fibroblasts (P < 0.0001). This confirms the essential role of Se in the detoxifying activity of the enzyme. In addition, thiobarbituric acid-reacting substances (TBAR), which are lipid peroxidation markers, decreased in the presence of exogenous Se: -19% and -22% without irradiation and after irradiation with 5 J/cm2 (P = 0.056). When Zn was added at the dose of 6.5 mg/L as ZnCl2, fibroblasts subjected to oxidizing stress induced by UV-A were protected from cytotoxicity (P < 0.0001). The TBAR production decreased significantly: -33% without irradiation and -34% after irradiation with 5 J/cm2 (P = 0.008). Superoxide dismutase activity, however, decreased after supplementing with Zn: -26% without irradiation and -20% after UV-A irradiation (P = 0.017). The antioxidant properties of Zn are thus apparently independent of superoxide dismutase activity. PMID:8248330

  7. Luteolin decreases the UVA-induced autophagy of human skin fibroblasts by scavenging ROS

    PubMed Central

    Yan, Miaomiao; Liu, Zhongrong; Yang, Huilan; Li, Cuihua; Chen, Hulin; Liu, Yan; Zhao, Minling; Zhu, Yingjie

    2016-01-01

    Luteolin (LUT) is a flavone, which is universally present as a constituent of traditional Chinese herbs, and certain vegetables and spices, and has been demonstrated to exhibit potent radical scavenging and cytoprotective properties. Although LUT has various beneficial effects on health, the effects of LUT on the protection of skin remain to be fully elucidated. The present study investigated whether LUT can protect human skin fibroblasts (HSFs) from ultraviolet (UV) A irradiation. It was found that, following exposure to different doses of UVA irradiation, the HSFs exhibited autophagy, as observed by fluorescence and transmission electron microscopy, and reactive oxygen species (ROS) bursts, analyzed by flow cytometry, to differing degrees. Following incubation with micromolar concentrations of LUT, ROS production decreased and autophagy gradually declined. In addition, the expression of hypoxia-inducible factor-1α and the classical autophagy-associated proteins, LC3 and Beclin 1 were observed by western blotting. Western blot analysis showed that the expression levels of HIF-1α, LC3-II and Beclin 1 gradually decreased in the UVA-irradiated HSFs following treatment with LUT. These data indicated that UVA-induced autophagy was mediated by ROS, suggesting the possibility of resistance against UV by certain natural antioxidants, including LUT. PMID:27430964

  8. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human.

    PubMed

    You, Ga-Eun; Jung, Bong-Jun; Kim, Hye-Rim; Kim, Han-Geun; Kim, Tae-Rahk; Chung, Dae-Kyun

    2013-10-28

    Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-α inducing MMP-1 in NHDFs. PMID:23851272

  9. The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment.

    PubMed

    Marrot, L; Belaidi, J P; Meunier, J R; Perez, P; Agapakis-Causse, C

    1999-06-01

    The induction of DNA breaks by UVA (320-400 nm) in the nucleus of normal human melanocytes in culture was investigated using single cell gel electrophoresis, also called the comet assay. Endogenous pigment and/or melanin-related molecules were found to enhance DNA breakage: comets were more intense in melanocytes than in fibroblasts, in cells with high melanin content or after stimulation of melanogenesis by supplying tyrosine in the culture medium. After UVA doses where strong comets were observed, neither cytotoxicity nor stimulation of tyrosinase activity were detected. However, the accumulation of p53 protein suggested that cells reacted to genotoxic stress under these experimental conditions. The same approach was used to compare two sunscreens with identical sun protection factors but different UVA protection factors. The results presented in this paper suggest that human melanocytes may be used as a target cell to evidence broadspectrum photoprotection. Moreover, these data appear to be helpful in getting a better understanding of the role of sunlight in the initiating steps of melanocyte transformation. PMID:10378007

  10. Mechanism of Aloe Vera extract protection against UVA: shelter of lysosomal membrane avoids photodamage.

    PubMed

    Rodrigues, Daniela; Viotto, Ana Cláudia; Checchia, Robert; Gomide, Andreza; Severino, Divinomar; Itri, Rosangela; Baptista, Maurício S; Martins, Waleska Kerllen

    2016-03-01

    The premature aging (photoaging) of skin characterized by wrinkles, a leathery texture and mottled pigmentation is a well-documented consequence of exposure to sunlight. UVA is an important risk factor for human cancer also associated with induction of inflammation, immunosuppression, photoaging and melanogenesis. Although herbal compounds are commonly used as photoprotectants against the harmful effects of UVA, the mechanisms involved in the photodamage are not precisely known. In this study, we investigated the effects of Aloe Vera (Aloe barbadensis mil) on the protection against UVA-modulated cell killing of HaCaT keratinocytes. Aloe Vera exhibited the remarkable ability of reducing both in vitro and in vivo photodamage, even though it does not have anti-radical properties. Interestingly, the protection conferred by Aloe Vera was associated with the maintenance of membrane integrity in both mimetic membranes and intracellular organelles. The increased lysosomal stability led to a decrease in lipofuscinogenesis and cell death. This study explains why Aloe Vera extracts offer protection against photodamage at a cellular level in both the UV and visible spectra, leading to its beneficial use as a supplement in protective dermatological formulations. PMID:26815913

  11. Terrestrial humic substances in Daliao River and its estuary: optical signatures and photoreactivity to UVA light.

    PubMed

    Chen, Hao; Lei, Kun; Wang, Xuechun

    2016-04-01

    Fluorescent dissolved organic matter (FDOM) components were identified by Parallel Factor Analysis (PARAFAC) in surface water of Daliao River and its estuary with a focus on terrestrial humic substance-(HS)-like FDOM identified under two contrasting hydrological conditions. The hydrological conditions did not have noticeable effect on the spectral features of the terrestrial HS-like FDOM, but did affect the components' intensities and photoreactivity: (1) the intensities of terrestrial HS-like components were higher in the normal flow period than in the high flow period, and (2) a spectrally similar terrestrial HS-like FDOM identified under the two contrasting hydrological conditions showed distinct photoreactivity to the same dose of UVA illumination. The findings indicated that terrestrial HS was generated at lower intensities at the terrestrial sources during the high flow period than during the normal flow period and that the transport of terrestrial HS material through the river-estuary system was affected dominantly by seawater dilution along the salinity gradient while fine-tuned by solar UVA illumination. This study exemplifies the effect of hydrological conditions on optical signatures of terrestrial HS-like FDOM and their photoreactivity towards UVA illumination, improving our understanding of the dynamics of terrestrial HS material in river-estuary systems in the framework of the currently proposed new conceptual model for terrestrial organic matter. PMID:26627698

  12. Evaluation of UVA-induced oxidative stress using a highly sensitive chemiluminescence method

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Xing, Da; Zhu, Debin

    2005-02-01

    Oxidative stress is mainly mediated by reactive oxygen species (ROS). Evaluation of oxidative stress is helpful for choosing an appropriate method to protect the organism from the oxidative damage. In this study, a highly sensitive and simple chemiluminescence method is presented for the evaluation of radiation-induced oxidative stress in human peripheral lymphocytes. The lymphocytes were irradiated by ultraviolet radiation (320-400nm, UVA) with different doses. The ROS generated by the lymphocytes was detected by chemiluminescence method, using a highly sensitive chemiluminescence probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-α] pyrazin-3-one (MCLA). The cell viability was detected with Cell Counting Kit-8 (CCK-8). The malondialdehyde (MDA), a marker of lipid peroxidation and oxidative stress, and the total antioxidant capacity (TAC), a parameter that is taken as evidence of oxidative stress, were measured too. The results show that both chemiluminescence intensity, cell mortality and MDA concentration of lymphocytes grow with the increase of UVA dose range from 0.5 to 8 J/cm2, while the TAC decreases. There exists a positive relationship between cell oxidative damage degree and the chemiluminescence intensity of lymphocytes. This highly sensitive chemiluminescence method would potentially provide an easy way to evaluate the level of UVA-induced oxidative stress readily, sensitively and rapidly

  13. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    SciTech Connect

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William . E-mail: william.hornebeck@univ-reims.fr

    2006-06-30

    UVA irradiation, dose-dependently (5-20 J/cm{sup 2}), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ({sup 1}O{sub 2}). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively.

  14. Electron spin resonance detection of oxygen radicals released by UVA-irradiated human fibroblasts

    NASA Astrophysics Data System (ADS)

    Souchard, J. P.; Pierlot, G.; Barbacanne, M. A.; Charveron, M.; Bonafé, J.-L.; Nepveu, F.

    1999-01-01

    This work reports the electron spin resonance (ESR) detection of oxygenated radicals (OR) released by cultured human fibroblasts after UVA (365 nm) exposure. 5,5-dimethyl-pyrroline-N-oxide (DMPO) was used as spin trap. After a UVA irradiation of one hour, followed by a latent period of at least 45 min., and an incubation time of 30 min. in a trapping medium containing DMPO, glucose, Na^+, K+ and Ca2+ an ESR signal was recorded. By contrast, an ESR signal was produced after only 15 min. incubation when calcium ionophore A23187 was used. Although the ESR signal was characteristic of the hydroxyl adduct DMPO-OH, the use of catalase and superoxide dismutase (SOD) revealed that UVA stimulated fibroblasts released the superoxide anion O2- in the medium. SOD, vitamin C and (+)-catechin inhibited the release of superoxide generated by human fibroblasts stimulated with A23187 calcium ionophore at 5 units/ml, 10-5 M and 2× 10-4 M, respectively. Dans ce travail nous présentons la détection par résonance de spin électronique (RSE) de radicaux oxygénés (RO) libérés par des fibroblastes humains en culture après irradiation aux UVA (365 nm). Le 5,5-diméthyl-1-pyrroline-N-oxyde (DMPO) a été utilisé comme piégeur de spin. Après une irradiation aux UVA d'une heure, suivie d'une période de latence d'au moins 45 min. et d'une incubation de 30 min. dans un milieu de piégeage composé de DMPO, glucose, Na^+, K+ et Ca2+, un signal RPE est enregistré. L'ionophore calcique A23187 entraîne l'apparition d'un signal RPE après seulement 15 min. d'incubation. Bien que le signal RPE obtenu corresponde à l'adduit DMPO-OH du radical hydroxyle, l'utilisation de catalase et de superoxyde dismutase (SOD) a révélé que les fibroblastes libéraient l'anion superoxyde dans le milieu de culture. Sur ce modèle cellulaire la SOD, la vitamine C et la (+) catéchine inhibent la production du radical superoxyde aux concentrations respectivement de 5 unités/ml, 10-5 M et 2× 10-4M.

  15. Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract

    PubMed Central

    Simpanya, M. Francis; Ansari, Rafat R.; Leverenz, Victor; Giblin, Frank J.

    2009-01-01

    The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA-irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA-exposed lens nuclei increased five-fold in intensity compared to controls (P < 0.05). The UVA-induced increase in apparent size of lens nuclear small diameter proteins was three-fold (P < 0.01), and the size of large diameter aggregates was more than four-fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA-irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA-irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA-induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA-irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract. PMID:18627516

  16. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  17. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  18. Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin.

    PubMed

    Ikehata, Hironobu; Kumagai, Jun; Ono, Tetsuya; Morita, Akimichi

    2013-08-01

    UVA1 exerts its genotoxicity on mammalian skin by producing cyclobutane pyrimidine dimers (CPDs) in DNA and preferentially inducing solar-UV-signature mutations, C → T base substitution mutations at methylated CpG-associated dipyrimidine (Py-mCpG) sites, as demonstrated previously using a 364 nm laser as a UVA1 source and lacZ-transgenic mice that utilize the transgene as a mutational reporter. In the present study, we confirmed that a broadband UVA1 source induced the same mutation profiles in mouse epidermis as the UVA1 laser, generalizing the previous result from a single 364 nm to a wider wavelength range of UVA1 (340-400 nm). Combined with our previous data on the mutation spectra induced in mouse epidermis by UVB, UVA2 and solar UVR, we proved that the solar-UV-signature mutation is commonly observed in the wavelength range from UVB to UVA, and found that UVA1 induces this mutation more preferentially than the other shorter wavelength ranges. This finding indicates that the solar-UV-signature mutation-causing CPDs, which are known to prefer Py-mCpG sites, could be produced with the energy provided by the longer wavelength region of UVR, suggesting a photochemical reaction through the excitation of pyrimidine bases to energy states that can be accomplished by absorption of even low-energy UVR. On the other hand, the lower proportions of solar-UV-signature mutations observed in the mutation spectra for UVB and solar UVR indicate that the direct photochemical reaction through excited singlet state of pyrimidine bases, which can be accomplished only by high-energy UVR, is also involved in the mutation induction at those shorter wavelengths of UVR. We also found that the solar-UV signature prefers 5'-TCG-3' to 5'-CCG-3' as mutational target sites, consistent with the fact that UVA induces CPDs selectively at thymine-containing dipyrimidine sites and that solar UVR induces them preferably at Py-mCpG sites. However, the mutation spectrum in human p53 gene from non

  19. Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation.

    PubMed

    Bernerd, F; Vioux, C; Asselineau, D

    2000-03-01

    We have previously shown that skin reconstructed in vitro is a useful model to study the effects of UVB and UVA exposure. Wavelength-specific biological damage has been identified such as the formation of sunburn cells (SBC) and pyrimidine dimers after UVB irradiation and alterations of dermal fibroblasts after UVA exposure. These specific effects were selected to evaluate the protection afforded by two sunscreens after topical application on the skin surface. Simplified formulations having different absorption spectra but similar sun protection factors were used. One contained a classical UVB absorber, 2-ethylhexyl-p-methoxycinnamate. The other contained a broad-spectrum absorber called Mexoryl SX, characterized by its strong absorbing potency in the UVA range. Both filters were used at 5% in a simple water/oil vehicle. The evaluation of photoprotection on in vitro reconstructed skin revealed good efficiency for both preparations in preventing UVB-induced damage, as shown by SBC counting and pyrimidine dimer immunostaining. By contrast, only the Mexoryl SX-containing preparation was able to efficiently prevent UVA-specific damage such as dermal fibroblast disappearance. Our data further support the fact that skin reconstructed in vitro is a reliable system to evaluate the photoprotection provided by different sunscreens against specific UVB and UVA biological damage. PMID:10732449

  20. UVA is the major contributor to the photodegradation of tretinoin and isotretinoin: Implications for development of improved pharmaceutical formulations.

    PubMed

    Tashtoush, Bassam M; Jacobson, Elaine L; Jacobson, Myron K

    2008-03-20

    The chemical stability of tretinoin (RA) and isotretinoin (13RA) in ethanol and dermatological cream preparations exposed to solar simulated light (SSL), UVA, and visible light has been studied. Photostability was monitored by an HPLC method that allowed simultaneous analysis of RA and 13RA, thus allowing photodegradation due to isomerization to other retinoids and photolysis to non-retinoid products to be monitored. Both retinoids undergo both isomerization and photolysis following SSL, UVA and visible light exposure but RA is more sensitive to photodegradation than 13RA. Degradation of both retinoids by photolysis is considerably greater in cream formulations than in ethanol and the photodegradation follows second order kinetics. Rate constants and half-lives for degradation of RA and 13RA in ethanol solution and cream preparations subjected to different light sources are reported. The UVA component of SSL is the major contributor to photodegradation. Since UVA penetrates deeply into skin, our results suggest that photodegradation of RA may contribute to the photosensitivity associated with RA therapy. Our studies suggest that development of improved formulations and the use of effective UVA sunscreens may reduce the side effects of RA therapy. PMID:18093761

  1. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    PubMed Central

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  2. Thymol and Thymus Vulgaris L. activity against UVA- and UVB-induced damage in NCTC 2544 cell line.

    PubMed

    Calò, Rossella; Visone, Clementina M; Marabini, Laura

    2015-09-01

    Many authors focused on the research of natural compounds in order to protect skin from indirect (UVA) and direct (UVB) ultraviolet radiation side effects. The aim of this study to evaluate the protective effect of a dry extract from T. vulgaris L. and of its major synthetic compound thymol (about 60%), against oxidative and genotoxic UVA- and UVB damage. Experiments were reproduced in a low differentiated keratinocytes cell line (NCTC 2544) Cells were pretreated for 1h, in serum-free medium, with thymol (1μg/mL) or T. vulgaris L. (1.82μg/mL) then exposed to different UVA (8-24J/cm(2)) or UVB doses (0.016-0.72J/cm(2)). Immediately after the UV exposure the intracellular redox status was evaluated by ROS quantification and by LPO. Genotoxic aspects were evaluated 24h after the end of irradiations using the alkaline comet assay, the micronucleus formation assay and the immunostaining of phosphorylated H2AX histone protein (detected 1h after the end of UV exposure). Thymol and T. vulgaris L. extract inhibited ROS generation in UVA and UVB-irradiated cells. On the contrary, MDA formation was reduced only in UVA treated cells. Both agents decreased the DNA damage evaluated by the alkaline comet assay, but not in the micronucleus and H2AX tests probably because of the severity of damage (double strands) detected. PMID:26338540

  3. Investigation of riboflavin sensitized degradation of purine and pyrimidine derivatives of DNA and RNA under UVA and UVB.

    PubMed

    Joshi, Prakash C; Keane, Thomas C

    2010-10-01

    DNA and RNA undergo photodegradation in UVC (200-290nm) due to direct absorption by the purine and pyrimidine bases. Limited effects are observed under UVB (290-320nm) or UVA (320-400nm). We have observed that an endogenous photosensitizer, riboflavin (RF), upon exposure to UVB or UVA can extensively damage the DNA and RNA bases. Guanine, uracil, thymine, adenine and cytosine were degraded by 100%, 82%, 60.4%, 46.3% and 10.3% under UVA (12J) and by 100%, 54.1%, 38.9%, 42.2% and <1.0% under UVB (6J), respectively. Guanosine and deoxyguanosine were degraded by 98±1.0% and 80±1.0% under UVA (4J) and UVB (12J), respectively. With an exception of GMP (53-82%), dGMP (51-88%) and to some extent TMP (3-4%) the remaining nucleosides and nucleotides were resistant to RF-induced photodecomposition. The photodegradation of G derivatives by RF was 2-fold higher than a well known photodynamic agent rose bengal. A comparison of the intensities of UVA and UVB sources used in this study with natural sunlight suggests that exposure with the latter along with an endogenous photosensitizer can have similar effects on DNA and RNA depending upon the duration of exposure. PMID:20816939

  4. Synthesis and luminescent properties of ternary complex Eu(UVA)3Phen in nano-TiO2

    NASA Astrophysics Data System (ADS)

    Lü, Yu-guang; Gong, Zhong-ping; Gao, Hong-bing; Zhou, Shu-jing; Lü, Kui-lin; Wang, Ying; A, Du; Du, Hao-ran; Zhang, Li; Zhang, Fu-jun

    2015-01-01

    By introducing 2-hydroxy-4-methoxy-benzophenone (UVA) and 1,10-phenanthroline (Phen) as the ligands, the ternary rare earth complex of Eu(UVA)3Phen is synthesized, and it is characterized by elemental analysis, mass spectra (MS) and infrared (IR) and ultraviolet (UV) spectroscopy. Results show that the Eu(III) in complex emits strong red luminescence when it is excited by UV light, and it has higher sensitized luminescent efficiency and longer lifetime. The organic-inorganic thin film of complex Eu(UVA)3Phen doped with nano-TiO2 is prepared, and the nano-TiO2 is used in the luminescence layer to change the luminescence property of Eu(UVA)3Phen. It is found that there is an efficient energy transfer process between ligands and metal ions. Moreover, in an indium tin oxide (ITO)/poly(N-vinylcar-bazole) (PVK)/Eu(UVA)3Phen/Al device, Eu3+ can be excited by intramolecular ligand-to-metal energy transfer process. The main peak of emission at 613 nm is attributed to 5D0→7F2 transition of the Eu3+, and this process results in the enhanced red emission.

  5. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation. PMID:26940049

  6. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A.

    PubMed

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Raveton, Muriel; Reynaud, Stéphane

    2013-09-15

    Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes. PMID:23911355

  7. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    PubMed

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic. PMID:24602819

  8. Astronomía en la cultura

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  9. Mathematical modeling of cell proliferation dynamics in psoriatic epidermis sensitized by the furocoumarins under UVA radiation

    NASA Astrophysics Data System (ADS)

    Baskakov, Pavel V.; Stolnitz, Mikhail M.

    1997-02-01

    In the work the mathematical model is presented which describes the processes in the epidermis sensitized by the furocoumarins under UVA-radiation. The model describes the processes at three levels: molecular (the photochemical transformations of the psoralen molecules and their reactions with the DNA-molecules), cellular (proliferation, differentiation and repairing of injuries), and tissue (humoral regulation, space-time cell dynamics in the epidermis). The results of the numerical simulations of both the latent period and psoriasis manifestation are given. The therapeutical effect of the UV-radiation is considered in the framework of the model.

  10. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions.

    PubMed

    Jarzycka, Anna; Lewińska, Agnieszka; Gancarz, Roman; Wilk, Kazimiera A

    2013-11-01

    The aim of our study was to investigate the photoprotective activity and photostability efficacy of sunscreen formulations containing Helichrysum arenarium, Sambucus nigra, Crataegus monogyna extracts and their combination. UV transmission of the emulsion films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection and photostability efficacy were evaluated according to the following parameters: sun protection factor (SPF), UVA protection factor (PF-UVA), UVA/UVB ratio and critical wavelength (λc) before and after UV irradiation. The results obtained show that the formulations containing polyphenols fulfill the official requirements for sunscreen products due to their broad spectrum of UV protection combined with their high photostability and remarkable antioxidant properties. Therefore H. arenarium, S. nigra, C. monogyna extracts represent useful additives for cosmetic formulation. PMID:24007865

  11. The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes.

    PubMed

    Park, Sophia L; Justiniano, Rebecca; Williams, Joshua D; Cabello, Christopher M; Qiao, Shuxi; Wondrak, Georg T

    2015-06-01

    Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  12. Chronic exposure to Rhodobacter sphaeroides extract Lycogen™ prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts.

    PubMed

    Yang, Tsai-Hsiu; Lai, Ying-Hsiu; Lin, Tsuey-Pin; Liu, Wen-Sheng; Kuan, Li-Chun; Liu, Chia-Chyuan

    2014-01-01

    UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 µM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications. PMID:24463291

  13. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    PubMed Central

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  14. The sunburn cell in hairless mouse epidermis: quantitative studies with UV-A radiation and mono- and bifunctional psoralens

    SciTech Connect

    Young, A.R.; Magnus, I.A.

    1982-10-01

    The production of the sunburn cell by UV-A radiation and topical psoralens in hairless mouse epidermis has been studied. It has been shown that the appearance of this cell is dependent on the dose of both UV-A radiation and of the psoralen. The time-course with 8-methoxypsoralen has peak sunburn cell numbers at 28 hr postirradiation. A comparison of 2 bifunctional (8-methoxypsoralen and 5-methoxypsoralen) and 2 monofunctional (angelicin and 3-carbethoxypsoralen) psoralens showed the former are more potent. This suggests that DNA crosslink lesions may play a rle in sunburn cell production.

  15. UV-A fluorescence of sunscreens and possible energy transfer to skin components

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopal; Elmets, Craig A.; Nordlund, Thomas M.

    2008-02-01

    Photophysical studies of UV-B sunscreens showed a measurable UV-A emission from padimate O (2-ethylhexyl-4-(dimethylamino)benzoate). Since recent studies associate UV-A to skin cancer induction pathways, as well as skin aging, we studied the effect of padimate O emission when applied to skin. After application of padimate O to skin the emission spectrum of skin showed a large increase in the intensity of 470 nm peak. The 470 nm emission in skin arises from a skin component, possibly collagen, which absorbs at about 360 nm, where padimate O emits. The excitation spectra of skin with padimate O measured at an emission wavelength of 468 nm show a peak at 310 nm with a broad shoulder at about 350 nm to 370 nm, which increased in intensity with time. However, the excitation spectrum of skin with octyl salicylate (another UV-B emitting sunscreen) did not show such a shoulder or increase in intensity. Thus, we attribute the presence of a shoulder in the excitation spectrum of skin and the increase in its intensity as evidence for energy transfer from padimate O to collagen. The transfer mechanism is not clear.

  16. UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae.

    PubMed

    Kozmin, S; Slezak, G; Reynaud-Angelin, A; Elie, C; de Rycke, Y; Boiteux, S; Sage, E

    2005-09-20

    UVA (320-400 nm) radiation constitutes >90% of the environmentally relevant solar UV radiation, and it has been proposed to have a role in skin cancer and aging. Because of the popularity of UVA tanning beds and prolonged periods of sunbathing, the potential deleterious effect of UVA has emerged as a source of concern for public health. Although generally accepted, the impact of DNA damage on the cytotoxic, mutagenic, and carcinogenic effect of UVA radiation remains unclear. In the present study, we investigated the sensitivity of a panel of yeast mutants affected in the processing of DNA damage to the lethal and mutagenic effect of UVA radiation. The data show that none of the major DNA repair pathways, such as base excision repair, nucleotide excision repair, homologous recombination, and postreplication repair, efficiently protect yeast from the lethal action of UVA radiation. In contrast, the results show that the Ogg1 DNA glycosylase efficiently prevents UVA-induced mutagenesis, suggesting the formation of oxidized guanine residues. Furthermore, sequence analysis of UVA-induced canavanine-resistant mutations reveals a bias in favor of GC-->TA events when compared with spontaneous or H(2)O(2)-, UVC-, and gamma-ray- induced canavanine-resistant mutations in the WT strain. Taken together, our data point out a major role of oxidative DNA damage, mostly 7,8-dihydro-8-oxoguanine, in the genotoxicity of UVA radiation in the yeast Saccharomyces cerevisiae. Therefore, the capacity of skin cells to repair 7,8-dihydro-8-oxoguanine may be a key parameter in the mutagenic and carcinogenic effect of UVA radiation in humans. PMID:16157879

  17. Effect of light irradiation and sex hormones on jurkat T cells: 17beta-estradiol but not testosterone enhances UVA-induced cytotoxicity in Jurkat lymphocytes.

    PubMed

    Cohly, Hari H P; Graham-Evans, Barbara; Ndebele, Kenneth; Jenkins, John K; McMurray, Robert; Yan, Jian; Yu, Hongtao; Angel, Michael F

    2005-04-01

    In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA) on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 x 106 cells/ml and treated with 17beta-estradiol (EST) or testosterone (TE). These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL) on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA. had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE +/- UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women may be more susceptible

  18. Five Board Games for the Language Classroom: Uvas, Montana Rusa, El Futbol, La Corrida de Verbos, Paso a Paso.

    ERIC Educational Resources Information Center

    Snyder, Barbara

    A collection of five board games for the Spanish language classroom contains gameboards, game markers, and directions for each game. It also contains general instructions for the teacher about the classroom use of board games. The games include: "Uvas," for use in vocabulary development and cultural awareness; "Montana Rusa," for general…

  19. Study of fibroblast gene expression in response to oxidative stress induced by hydrogen peroxide or UVA with skin aging.

    PubMed

    Hazane-Puch, Florence; Bonnet, Mathilde; Valenti, Kita; Schnebert, Sylvianne; Kurfurst, Robin; Favier, Alain; Sauvaigo, Sylvie

    2010-01-01

    The skin aging process, implying oxidative stress, is associated with specific gene expression. Ultraviolet A (UVA) and hydrogen peroxide (H(2)O(2)) both generate reactive oxygen species (ROS) making them relevant in the study of skin cell responses to oxidative stresses. To investigate transcript expression associated with chronological skin aging and its modulation by two oxidative stresses, cDNA micro-arrays, composed of a set of 81 expressed sequence tag (EST) clones, were used to probe the patterns of transcript expression in human fibroblasts of five young (< 21 years-old) and five older (> 50 years-old) healthy females at basal levels and 24 h after exposure to UVA (7 J/cm2) and H(2)O(2) (20 mM). At the basal state, 22% of total genes were up-regulated in the older group. Although both stresses led to the same cell mortality, H(2)O(2) induced a stronger modulation of gene expression than UVA, with 19.5% of transcripts up-regulated versus 4%. The aging process affected the response to H(2)O(2) and even though cells from old donors presented higher basal levels of transcripts they were not able to regulate them in response to the stress. Interestingly, UVA had a specific strong inhibitory effect on the expression of chemokine (C-C) motif ligand 2 (CCL2) transcript, suggesting a possible mechanism for its anti-inflammatory and immunoregulatory roles. PMID:20299309

  20. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase.

    PubMed

    Liu, Donald; Fernandez, Bernadette O; Hamilton, Alistair; Lang, Ninian N; Gallagher, Julie M C; Newby, David E; Feelisch, Martin; Weller, Richard B

    2014-07-01

    The incidence of hypertension and cardiovascular disease (CVD) correlates with latitude and rises in winter. The molecular basis for this remains obscure. As nitric oxide (NO) metabolites are abundant in human skin, we hypothesized that exposure to UVA may mobilize NO bioactivity into the circulation to exert beneficial cardiovascular effects independently of vitamin D. In 24 healthy volunteers, irradiation of the skin with two standard erythemal doses of UVA lowered blood pressure (BP), with concomitant decreases in circulating nitrate and rises in nitrite concentrations. Unexpectedly, acute dietary intervention aimed at modulating systemic nitrate availability had no effect on UV-induced hemodynamic changes, indicating that cardiovascular effects were not mediated via direct utilization of circulating nitrate. UVA irradiation of the forearm caused increased blood flow independently of NO synthase (NOS) activity, suggesting involvement of pre-formed cutaneous NO stores. Confocal fluorescence microscopy studies of human skin pre-labeled with the NO-imaging probe diaminofluorescein 2 diacetate revealed that UVA-induced NO release occurs in a NOS-independent, dose-dependent manner, with the majority of the light-sensitive NO pool in the upper epidermis. Collectively, our data provide mechanistic insights into an important function of the skin in modulating systemic NO bioavailability, which may account for the latitudinal and seasonal variations of BP and CVD. PMID:24445737

  1. Protective effects of ginseng leaf extract using enzymatic extraction against oxidative damage of UVA-irradiated human keratinocytes.

    PubMed

    Kim, Mi-Ryung; Lee, Hyun-Sun; Choi, Hyeon-Son; Kim, Sun Young; Park, Yooheon; Suh, Hyung Joo

    2014-06-01

    UVA is responsible for numerous biological effects on the skin, including premature aging characterized by wrinkles, leathery texture, and mottled pigmentation. The objective of this study was evaluating the protective effect of ginseng leaf extract prepared by Ultraflo L on skin from photodamage. Anti-wrinkle effect of ginseng leaf extract with or without Ultraflo L treatment were tested on human keratinocyte cells (HaCaT) irradiated with ultraviolet (UV) A. Ginseng leaves inhibited ROS generation, GHS depletion, and expression of MMP-2 and MMP-9 induced by UVA irradiation. The glutathione (GSH) content of the cells was significantly increased by over 25 μg mL(-1) of Ultraflo-treated extract (UTGL) as well as by over 100 μg mL(-1) of nonenzyme-treated extract (NEGL) compared to control. UTGL and NEGL treatments significantly decreased expression of metalloproteinase (MMP)-2 and 9 compared with control, but inhibitory effects of two groups on expression of MMPs were not significantly different. Overall, ULtraflo L-treated ginseng leaves inhibited ROS generation, GHS depletion, and expression of MMP-2 and MMP-9 in UVA photodamaged HaCat cells. From these results, enzyme-treated ginseng leaf extract has advantages over untreated ginseng leaves and have potential as a skin protective ingredient against UVA-induced photodamage. PMID:24736942

  2. Photoprotective effects of oxyresveratrol and Kuwanon O on DNA damage induced by UVA in human epidermal keratinocytes.

    PubMed

    Hu, Shuting; Chen, Feng; Wang, Mingfu

    2015-03-16

    Ultraviolet A not only plays a major part in photoaging and skin tanning but also induces genetic damage and mutation in the epidermal basal layer of human skin. The photoprotective effect of oxyresveratrol and kuwanon O, two phenolic compounds from the root extract of Morus australis, in human primary epidermal keratinocytes was investigated in this study. Both of them were nontoxic to cells at a concentration less than 10 and 0.5 μM, respectively. After pretreatment at the concentrations of 5 and 10 μM, oxyresveratrol increased cell viability, exhibited significant suppressions on UVA- or H2O2-induced cellular ROS. UVA-enhanced nitrotyrosine was also reduced by post-treatment with oxyresveratrol at theses concentrations. Kuwanon O presented similar inhibitions on cellular ROS and nitrotyrosine with lower concentrations (0.25 and 0.5 μM), but there is no significant protection on cell survival after UVA irradiation. Their photoprotective effects also involved the enhanced repair of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and cyclobutane pyrimidine dimers (CPDs) as mediated by the augment of p53 expression after UVA radiation. PMID:25588103

  3. A mineral sunscreen affords genomic protection against ultraviolet (UV) B and UVA radiation: in vitro and in situ assays.

    PubMed

    Cayrol, C; Sarraute, J; Tarroux, R; Redoules, D; Charveron, M; Gall, Y

    1999-08-01

    Ultraviolet (UV) radiation has been shown to be responsible for different biological effects on human skin, including the initiation of photocarcinogenesis. Both UVB and UVA have been described as mutagenic, but the processes by which they alter the DNA are different. Although cells can repair DNA damage, some deleterious mutations nevertheless appear and can promote cancer. The risk of photocarcinogenesis is acknowledged and the frequency of photogenodermatosis is increasing. In order to evaluate the protection efficacy of a high sun protection factor (SPF) mineral sunscreen against UVB- and UVA-induced genomic alterations, we have followed two approaches. First, we have tested the sunscreen for its ability to decrease the unscheduled DNA synthesis response in vitro in human fibroblasts, as an indirect measure of UVB-induced lesions (0.005 and 0.01 J/cm2), and second, we have verified its ability to reduce the in situ end-labelling intensity in human skin as a direct measure of UVA-induced single-strand breaks (10 J/cm2). Microscopic analysis clearly demonstrated the protective effect of the sunscreen against UVB and UVA. A dose-dependent effect of mineral sunscreens was observed. There was also a relationship between the SPF and genomic protection. By limiting the accumulation of UV-induced lesions on DNA, this mineral sunscreen could limit the mutation frequency. PMID:10468796

  4. Potentiating Effect of UVA Irradiation on Anticancer Activity of Carboplatin Derivatives Involving 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Trávníček, Zdeněk; Dvořák, Zdeněk; Radošová-Muchová, Tereza; Prachařová, Jitka; Vančo, Ján; Kašpárková, Jana

    2015-01-01

    The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7–14.4 μM), prostate LNCaP (IC50 = 18.7–30.8 μM) and prostate PC-3 (IC50 = 17.6–42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1–6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4–6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark. PMID:25875850

  5. Potentiating effect of UVA irradiation on anticancer activity of Carboplatin derivatives involving 7-azaindoles.

    PubMed

    Štarha, Pavel; Trávníček, Zdeněk; Dvořák, Zdeněk; Radošová-Muchová, Tereza; Prachařová, Jitka; Vančo, Ján; Kašpárková, Jana

    2015-01-01

    The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7-14.4 μM), prostate LNCaP (IC50 = 18.7-30.8 μM) and prostate PC-3 (IC50 = 17.6-42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1-6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4-6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark. PMID:25875850

  6. Topical pimecrolimus and tacrolimus do not accelerate photocarcinogenesis in hairless mice after UVA or simulated solar radiation.

    PubMed

    Lerche, Catharina M; Philipsen, Peter A; Poulsen, Thomas; Wulf, Hans Christian

    2009-03-01

    Pimecrolimus and tacrolimus are topical calcineurin inhibitors developed specifically for the treatment of atopic eczema. Experience with long-term use of topical calcineurin inhibitors is limited and the risk of rare but serious adverse events remains a concern. We have previously demonstrated the absence of carcinogenic effect of tacrolimus alone and in combination with simulated solar radiation (SSR) on hairless mice. The aim of this study is to determine whether pimecrolimus accelerates photocarcinogenesis in combination with SSR or pimecrolimus and tacrolimus accelerate photocarcinogenesis in combination with UVA. We used 11 groups of 25 hairless female C3.Cg/TifBomTac immunocompetent mice (n = 275). Pimecrolimus cream or tacrolimus ointment was applied on their dorsal skin three times weekly followed by SSR (2, 4, or 6 standard erythema doses, SED) or UVA (25 J/cm(2)) 3-4 h later. This was done up to 365 days in the SSR-treated groups and up to 500 days in the UVA-treated groups. Pimecrolimus did not accelerate the time for development of the first, second or third tumor in any of the groups. Median time to the first tumor was 240 days for the control-2SED group compared with pimecrolimus-2SED group (233 days), control-4SED group (156 days) compared with pimecrolimus-4SED group (163 days) and control-6SED group (162 days) compared with pimecrolimus-6SED group (170 days). Only one mouse in each of the three UVA groups developed a tumor. We conclude that pimecrolimus in combination with SSR and both pimecrolimus and tacrolimus in combination with UVA do not accelerate photocarcinogenesis in hairless mice. PMID:19183401

  7. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    PubMed

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. PMID:27427773

  8. UVA-UVB Photoprotective Activity of Topical Formulations Containing Morinda citrifolia Extract

    PubMed Central

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage. PMID:25133171

  9. Effects of topical petrolatum and salicylic acid upon skin photoreaction to UVA.

    PubMed

    Birgin, Bahar; Fetil, Emel; Ilknur, Turna; Tahsin Güneş, Ali; Ozkan, Sebnem

    2005-01-01

    Various agents which can be used in combination can also interfere with phototherapy. In this study, the effects of topical petrolatum and 20% salicylic acid in petrolatum upon skin photoreaction to UVA were investigated, in an in vivo test. Minimal phototoxic dose (MPD) test was performed on 31 volunteers and the test was repeated with thin (0.1 cc/25 cm(2)) petrolatum, thick (0.3 cc/25 cm(2)) petrolatum, thin 20% salicylic acid in petrolatum, thick 20% salicylic acid in petrolatum and sunscreen. The effect of each agent on MPD was investigated. MPD was increased with thin and thick applications of all agents. Also, MPD was increased with 20% salicylic acid in petrolatum when compared with pure petrolatum, in the same thickness. The application of petrolatum and salicylic acid in petrolatum just before PUVA therapy is not recommended because of their blocking effects. PMID:15908297

  10. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  11. UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract.

    PubMed

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; Cavalcanti de Albuquerque Junior, Ricardo Luiz; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage. PMID:25133171

  12. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edger A., Jr.

    1996-01-01

    This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.

  13. Inactivation of conidia of Paecilomyces fumosoroseus by near-ultraviolet (UVB and UVA) and visible radiation.

    PubMed

    Fargues, J; Rougier, M; Goujet, R; Smits, N; Coustere, C; Itier, B

    1997-01-01

    The detrimental effects of solar radiation, especially the ultraviolet waveband, on quiescent conidia of Paecilomyces fumosoroseus were investigated. Conidia were irradiated by a high-intensity source, which emitted a continuous spectrum from 270 to 1100 nm and which was equipped with long-pass filters to block short wavelengths below 280, 295, 320, or 400 nm. After irradiation, conidia were tested for germinability, survival, and infectivity toward Spodoptera frugiperda larvae. It was demonstrated that the detrimental effects of light depended on irradiance in the shortest wavelengths. The UVB (280-320 and 295-320 nm) appeared to be the most detrimental part of natural radiation, although UVA (320-400 nm) was also harmful. Visible and near infrared radiations were less harmful than UV. Our results demonstrate that the irradiance of the UVB waveband should be considered as the pertinent factor for the detrimental effects of sunlight on the persistence of conidia of entomopathogenic fungi in insolated environments. PMID:9028931

  14. Authenticity markers in Aglianico, Uva di Troia, Negroamaro and Primitivo grapes.

    PubMed

    Tamborra, Pasquale; Esti, Marco

    2010-02-15

    Aglianico, Negroamaro, Uva di Troia, and Primitivo, non-aromatic red grapes of southern Italy, were analyzed with respect to berry varietal markers, namely anthocyanins, flavonols, hydroxycinnamoyl tartaric acids (HPLC-DAD) and glycosidic aroma precursors (GC-MS) together with shikimic acid (HPLC-UV). In this study, we confirmed that the relative amount of grape glycosidic precursors from various terpene families was a helpful varietal discriminating factor. An additional decisive contribution to varietal differentiation was also provided by shikimic acid, acetylated forms of anthocyanins, cyanidin-3-O-glucoside, trans-caftaric and trans-coutaric acids. A three-dimensional model of principal component analysis was adopted to evidence the study results. PMID:20103166

  15. UVA mediated synthesis of gold nanoparticles in pharmaceutical-grade heparin sodium solutions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, M. Del P.; Diaz-Torres, L. A.; Olmos-López, M.; Salas, P.; Gutiérrez, Clara

    2013-09-01

    A photochemical-based method in which UVA light (λ=366 nm) is used for synthesizing gold nanoparticles is presented by irradiating gold (III) chloride hydrate (HAuCl4) in the presence of pharmaceutical-grade heparin sodium (PGHEP) as a reducing and stabilizing agent in aqueous solution. Different HAuCl4 to PGHEP concentration ratios were exposed to UVA for up to seven hours. The as-synthesized nanoparticles were characterized by UV-VIS and Raman spectroscopy, transmission electron microscopy (TEM), and pH measurements. The synthesized AuNPs present spherical as well as anisotropic shapes, such as oval, triangular, hexagonal sheets, rods, and some other faceted forms, with dimensions ranging from 20 nm to 300 nm. All obtained products show good temporal stability in solution. Surface plasmons differ when varying HAuCl4 to PGHEP concentration ratio. The obtained samples exhibit two absorption peaks, one in the region between 500-600 nm, and another one in the near-IR between 900-1200 nm; both peaks shift to longer wavelengths and increase their absorption intensity as the HAuCl4 to PGHEP concentration ratio increase. TEM images show the change in nanoparticles yield as well as the shape and sizes change depending on HAuCl4 to PGHEP concentration ratio variation. Ph measurements suggest that acidic media promote anisotropic nanoparticle formation. Raman spectroscopy was used to find out which heparin sodium main groups attached to the nanoparticles surface, and in what amount. In summary, it is found that when modifying the reactants concentrations and keeping the UV exposition time as the only fixed parameter, different nanoparticles with distinctive characteristics can be attained.

  16. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice.

    PubMed

    de Laat, A; van der Leun, J C; de Gruijl, F R

    1997-05-01

    Although ultraviolet B (UVB wavelengths 280-315 nm) dominates the carcinogenic effect of sunlight, ultraviolet A (UVA 315-400 nm) is estimated to contribute 10-20% to the carcinogenic dose; a substantial background that is not affected by a depletion of the ozone layer. Furthermore, certain high-power modern tanning lamps emit mainly long wave UVA (UVA1; 340-400 nm). For a proper risk estimate of UVA exposure its carcinogenicity relative to that of UVB exposure needs to be determined more accurately. To this end we determined the dose-time relationship for skin tumor induction in hairless mice that were irradiated daily with custom-made Philips 365-nm sources. Irradiation of the group exposed to the highest of the four daily doses (430, 240, 140 and 75 kJ/m2) had to be discontinued because severe scratching set in after 3 months (no tumors). In the lower dose-groups the prevalence curves for skin carcinomas (percentage of tumor-bearing mice versus logarithm of time) ran virtually parallel, and were similar to those found with daily UVB exposure. However, the relationship between the daily dose (D) and the median tumor induction time (t50) appeared to differ: with UVB we found that t50 D(r) = constant, with r = 0.6, whereas with UVA1 we found r approximately 0.4. This would imply that 365-nm carcinogenesis shows less of a dose-dependency than UVB carcinogenesis, and that 365-nm radiation becomes more carcinogenic, relative to UVB, as the daily doses are lowered. This relative shift at low doses complicates extrapolation of UVB to UVA risks in humans. Based on the t50 from the lowest dose-group we found that the carcinogenicity at 365 nm (per J/m2) is 0.9 x 10(-4) times that at 293 nm, the wavelength of maximum carcinogenicity in hairless mice. This result for 365-nm carcinogenicity falls well within the margins of error of the wavelength dependency that was estimated earlier from experiments with broadband UV sources. PMID:9163689

  17. The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation.

    PubMed

    Bernerd, Françoise; Vioux, Corinne; Lejeune, François; Asselineau, Daniel

    2003-01-01

    Wavelength specific biological damage has been previously identified in human skin reconstructed in vitro. Sunburn cell and pyrimidine dimers were found after UVB exposure, and alterations of dermal fibroblasts after UVA exposure. These damages permitted us to discriminate UVB and UVA single absorbers. The present study shows that these biological effects can be obtained simultaneously by a combined UVB + UVA exposure using ultraviolet solar simulated light (UV-SSR), which represents a relevant UV source. In addition, the protection afforded by two broad spectrum sunscreen complex formulations was assessed after topical application. These two formulations displayed the same sun protection factor but different UVA protection factors determined by the persistent pigment darkening (PPD) method. Dose response experiments of UVA or UV-SSR showed that the preparation with the highest PF-UVA provided a better protection with regard to dermal damage compared to the other formulation. Using an original UVB source to obtain the UVB portion of SSR spectrum, the preparations provided the same protection. This study strikingly illustrates the fact that the photoprotection afforded by two sunscreen formulations having similar SPF values is not equal with regard to dermal damage related to photoaging. PMID:12804982

  18. Effect of supplemental UV-B and UV-A on phenolic accumulation, growth and photosynthesis in barley and soybean seedlings

    SciTech Connect

    Liu, Lan; Gitz, D.C. III; Huerta, A.J.; McClure, J.W. )

    1990-05-01

    Barley (Atlas 68) and soybeans (Williams, Pella and Hobbit) were grown under 260 {mu}E m{sup {minus}2} s{sup {minus}1} cool-white fluorescent light plus: (1) no supplemental illumination, (2) UV-B from Phillips FS40 lamps to simulate 30% O{sub 3} depletion at 40{degree}N, or (3) UV-A from Mylar-filtered FS40 lamps. In barley primary leaves, neither UV-A nor UV-B had any effect on the accumulation of flavonoids or ferulic acid in the epidermis. In contrast, in barley mesophyll flavonoids were increased ca. 40% by UV-A and ca. 80% by UV-B and mesophyll ferulic acid increased ca. 10 fold under either UV-A or UV-B. In soybean primary leaves UV-A had no effect on flavonoid (all were epidermal) accumulation in any variety, but UV-B increased flavonoid accumulation ca. 20% in Williams, 100% in Pella and almost 10-fold in Hobbit. UV-A and UV-B effects on growth rates and selected photosynthetic parameters will be presented.

  19. Control of skin infections by a combined action of ultraviolet A (from sun or UVA lamp) and hydrogen peroxide (HUVA therapy), with special emphasis on leprosy.

    PubMed

    Ahmad, S I

    2001-10-01

    Despite its abundance and certain therapeutic value, the importance of sunlight in the treatment of infectious skin diseases has not been fully exploited. One reason is that a sufficient amount of the damaging components of sunlight (UVC and most UVB) cannot reach us and the band of UV that can reach (UVA) is a poor inactivator of living cells. UVA, however, can be deleterious to cells in the presence of sensitizers and a number of biological and chemical sensitizers have been identified which can inactivate microbes in the presence of UVA. Of several known agents, I have selected hydrogen peroxide (H(2)O(2)) as a UVA sensitizer and propose that a combined action of H(2)O(2)and UVA (HUVA therapy) can be utilized in controlling skin infections of various types. Of particular interest is infection by Mycobacterium leprae, which is known to affect many millions of humans globally. H(2)O(2)being relatively cheap (and UVA from the sun being free) the cost of application, particularly in third-world countries where leprosy is more common, would be low and therefore the treatment can be employed on a wide scale. A further reason for proposing the use of H(2)O(2)is that, out of several agents we have tested, this was found to be the most potent; it is also easily able to reach target sites, very cheap, relatively safe and there is no known microbial resistance to HUVA. PMID:11601875

  20. A theoretical study of the UV absorption of 4-methylbenzylidene camphor: from the UVB to the UVA region.

    PubMed

    da Silva, Luís Pinto; Ferreira, Paulo J O; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2015-02-01

    In this study, a theoretical approach was used to study the UV absorption of the UVB filter, 4-methylbenzylidene camphor. The main objective of this work was to design new UVA filters based on this rather photo-stable compound, so that photo-degradation in this UV region can be avoided without the use of other molecules. This objective was achieved by the simultaneous addition of two appropriate substituents, which led to red-shifts of up to 0.69 eV while maintaining appreciable oscillator strength. Also, useful structure-energy relationships were derived, which allow for the development of more UVA filters based on 4-methylbenzylidene camphor. PMID:25521601

  1. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo.

    PubMed

    Choi, Sungjin; Youn, Jeungyeun; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; An, In-Sook; Kwon, Seungbin; Youn, Hae Jeong; Ahn, Kyu Joong; An, Sungkwan; Cha, Hwa Jun

    2016-08-01

    Apigenin (4',5,7-trihydroxyflavone) is a flavone that has been reported to have anti-inflammatory, antioxidant and anti-carcinogenic properties. In this study, we investigated the protective effects of apigenin on skin and found that, in experiments using cells, apigenin restored the viability of normal human dermal fibroblasts (nHDFs), which had been decreased by exposure to ultraviolet (UV) radiation in the UVA range. Using a senescence-associated (SA)-β-gal assay, we also demonstrate that apigenin protects against the UVA-induced senescence of nHDFs. Furthermore, we found that apigenin decreased the expression of the collagenase, matrix metalloproteinase (MMP)-1, in UVA-irradiated nHDFs. UVA, which has been previously identified as a photoaging-inducing factor, has been shown to induce MMP-1 expression. The elevated expression of MMP-1 impairs the collagen matrix, leading to the loss of elasticity and skin dryness. Therefore, we examined the clinical efficacy of apigenin on aged skin, using an apigenin‑containing cream for clinical application. Specifically, we measured dermal density, skin elasticity and the length of fine wrinkles in subjects treated with apigenin cream or the control cream without apigenin. Additionally, we investigated the effects of the apigenin-containing cream on skin texture, moisture and transepidermal water loss (TEWL). From these experiments, we found that the apigenin‑containing cream increased dermal density and elasticity, and reduced fine wrinkle length. It also improved skin evenness, moisture content and TEWL. These results clearly demonstrate the biological effects of apigenin, demonstrating both its cellular and clinical efficacy, and suggest that this compound holds promise as an anti-aging cosmetic ingredient. PMID:27279007

  2. A Class I UV-Blocking (senofilcon A) Soft Contact Lens Prevents UVA-induced Yellow Fluorescence and NADH loss in the Rabbit Lens Nucleus in vivo

    PubMed Central

    Giblin, Frank J.; Lin, Li-Ren; Simpanya, Mukoma F.; Leverenz, Victor R.; Fick, Catherine E.

    2012-01-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm2 on the cornea) for 1 hour using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 hour. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear

  3. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance

    PubMed Central

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-01-01

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba. PMID:27006098

  4. DOC and UVA attenuation with soil aquifer treatment in the saturated zone of an artificial coastal sandfill.

    PubMed

    Chua, Lloyd H C; Lo, Edmond Y M; Shuy, Eng Ban; Robertson, Alexander P; Lim, Teik Thye; Tan, Soon Keat

    2010-01-01

    Results from a direct recharge experiment conducted in the field to investigate DOC and UVA(254) attenuation rates during the direct injection of UF treated wastewater into a artificial coastal sandfill are presented in this paper. Approximately 500 m(3) of ultra-filtered wastewater was injected into the saturated zone, over a period of 9 days. The movement of the plume was tracked over 80 days, during which time samples were obtained from multilevel samplers installed in transects across the drift axis of the plume. An analysis of fluorescein in the samples obtained during the drift of the UF plume showed that DOC and UVA were attenuated beyond rates predicted by conservative mixing, by up to a maximum of 45%. A degradation coefficient of 0.0175 day(-1) was found to be applicable for DOC degradation. After a drift period of 80 days, DOC and UVA reduced to approximately 4.5 mg/l and 0.100 cm(-1), respectively, from initial values of 8.06 mg/l and 0.199 cm(-1). PMID:20705995

  5. Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation-flocculation.

    PubMed

    Rodríguez-Chueca, Jorge; Amor, Carlos; Fernandes, José R; Tavares, Pedro B; Lucas, Marco S; Peres, José A

    2016-02-01

    This work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time. Under the optimal conditions ([H2O2] = 5459 mg/L; [Fe(3+)] = 286 mg/L; time >180 min), a COD removal of 45, 64 and 74% was achieved after 360 min, using an irradiance of 23, 70 and 85 W/m(2) respectively. Then a combination of UV-A LED photo-Fenton with coagulation-flocculation-decantation attained a higher COD removal (80%), as well as almost total removal of turbidity (99%) and total suspended solids (95%). Subsequent biodegradability of treated effluents increased, allowing the application of a biological treatment step after the photochemical/CFD with 85 W/m(2). PMID:26692512

  6. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance.

    PubMed

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-01-01

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba. PMID:27006098

  7. Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light.

    PubMed

    Yáñez, Eliana; Santander, Paola; Contreras, David; Yáñez, Jorge; Cornejo, Lorena; Mansilla, Héctor D

    2016-01-01

    Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments. The oxidation of caffeic acid in water solution (0.01 g L(-1)) by heterogeneous photocatalysis and photo-Fenton reaction was studied using UVA. The optimal conditions for each treatment were performed by multivariate experimental design. The optimal conditions for heterogeneous photocatalysis were pH 5.3 and 0.9 g L(-1) TiO2. In the case of photo-Fenton treatment, optimized variable were 82.4 μmol L(-1) of Fe(2+) and 558.6 μmol L(-1) of H2O2. The degradation profiles of CA were monitored by UV-Vis, HPLC, TOC and COD. To reach 90% of CA removal, 40 and 2 min of reaction, respectively, were required by heterogeneous and photo-Fenton processes, respectively. For comparison purposes, the reactions were also performed under solar light. The use of solar light does not change the efficiency of the photo-Fenton reaction, yet the performance of the heterogeneous process was significantly improved, reaching 90% of degradation in 15 min. PMID:26548918

  8. Temporal variation of erythemally effective UVB/UVA ratio at Chilton, UK.

    PubMed

    Hooke, R J; Pearson, A J; O'Hagan, J B

    2012-04-01

    An analysis of the temporal variation in the erythemally weighted UVB/UVA irradiance ratio using spectral data collected from a monitoring site in Chilton, UK (51°N) for the 5-y period from 2004 to 2008 is presented. The variation in the diurnal ratio was found to be bell-shaped, with minima on average 1 h after sunrise and before sunset. The minima were found to be indicative of the point at which UVB becomes undetectable by the spectroradiometer and therefore the outer boundary of useful data. A potential flaw entailed in the erythemal weighting of low-level spectral UV data is described. The peak daily ratio value was found to have a bell-shaped distribution over the course of a year with a maximum in July rather than at the summer solstice-a result explained by the ozone cycle. The peak daily ratio was found to vary by a factor of 4 over the course of the year; this range of variation was also found to occur over a single day in the summer. PMID:21807665

  9. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts.

    PubMed

    Ryu, Jina; Park, Su-Jin; Kim, In-Hye; Choi, Youn Hee; Nam, Taek-Jeong

    2014-09-01

    The significant increase in life expectancy is closely related to the growing interest in the impact of aging on the function and appearance of the skin. Skin aging is influenced by several factors, and solar ultraviolet (UV) irradiation is considered one of the most important causes of skin photoaging. The aim of this study was to examine the anti-photoaging role of porphyra-334 from Porphyra (P.) yezoensis, a mycosporine-like amino acid (MAA), using high-performance liquid chromatography (HPLC), and electrospray ionization‑mass spectrometry (ESI-MS). In the present study, extracted UV‑absorbing compounds from P. yezoensis included palythine, asterina-330 and porphyra-334. Porphyra-334 was the most abundant MAA in P. yezoensis, and it was therefore used for conducting antiphotoaging experiments. The effect of porphyra-334 on the prevention of photoaging was investigated by measuring reactive oxygen species (ROS) production and matrix metalloproteinase (MMP) levels, as well as extracellular matrix (ECM) components and protein expression in UVA‑irradiated human skin fibroblasts. Porphyra-334 suppressed ROS production and the expression of MMPs following UVA irradiation, while increasing levels of ECM components, such as procollagen, type I collagen, elastin. These results suggest that porphyra-334 has various applications in cosmetics and toiletries because of its anti‑photoaging activities and may serve as a novel anti-aging agent. PMID:24946848

  10. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  11. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  12. Phenylmercury degradation by heterogeneous photocatalysis assisted by UV-A light.

    PubMed

    Miranda, Cristian; Yáñez, Jorge; Contreras, David; Zaror, Claudio; Mansilla, Héctor D

    2013-01-01

    Photocatalytic degradation of phenylmercury was studied using TiO2 in aqueous suspension assisted by UV-A irradiation. Reaction conditions, such as pH and amount of TiO2 were set using a factorial design of experiments resulting in a greater influence of pH on phenylmercury degradation. Hg (II) reduction and simultaneous oxidation of aromatic group was observed. Optimum reaction conditions were obtained under nitrogen atmosphere at pH 10 and 0.35 g/L(-1) TiO2. Under these conditions almost 100% reduction of mercury was reached after 30 min UV irradiation. Total mercury reduction was achieved after 40 min reaction under saturated oxygen. Furthermore, phenol and diphenylmercury were identified as intermediate products of oxidation. It was observed that a major fraction of the reduced mercury was removed as metallic vapor by gas stripping, whereas a minor fraction was adsorbed on the catalyst surface, probably as Hg(OH)2. Under optimal conditions obtained by multivariable analysis, total mineralization of organic matter was achieved after about 60-min irradiation. PMID:23947701

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  14. Genotoxicity of combined exposure to polycyclic aromatic hydrocarbons and UVA--a mechanistic study.

    PubMed

    Douki, Thierry; Ksoury, Zakaria; Marie, Caroline; Favier, Alain; Ravanat, Jean-Luc; Maitre, Anne

    2008-01-01

    Solar UV radiation and benzo[a]pyrene (BaP) are two carcinogenic agents. When combined, their deleterious properties are synergistic. In order to get insights into the underlying processes, we carried out a mechanistic study within isolated DNA photosensitized to UVA radiation by either BaP, its diol epoxide metabolite (BPDE) or the tetraol arising from the hydrolysis of this last molecule. Measurement of the level of the oxidized base 8-oxo-7,8-dihydroguanine revealed that BaP is a poor sensitizer while BPDE and tetraol are more potent ones. None of these compounds was found to photosensitize formation of cyclobutane pyrimidine dimers through triplet energy transfer. On the basis of the distribution of oxidized DNA bases, we could show that photosensitization of DNA by BPDE involves electron abstraction (Type I) while tetraol acts mainly through singlet oxygen production (Type II). Under our experimental conditions, Type I was the major photosensitization process, which shows the lack of involvement of tetraol in the observed photo-oxidation reaction. Finally, we could show that the adducts, resulting from the alkylation of DNA by BPDE, are very potent sensitizers. Indeed, they are located in the close vicinity of the double helix and thus perfectly placed to induce oxidation reactions. PMID:18466204

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  16. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  17. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  18. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  19. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  20. Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation.

    PubMed

    Zhang, Jack; Tsaprailis, George; Bowden, G Tim

    2008-02-15

    Our laboratory has previously reported that UVA irradiation can increase the expression of Bcl-X(L), an antiapoptotic molecule, by stabilizing its mRNA in cultured immortalized human keratinocytes. To understand the mechanism by which the Bcl-X(L) message is stabilized, we used a synthetic Bcl-X(L) 3'-untranslated region (UTR) to capture RNA-binding proteins. Nucleolin was identified as one of the binding proteins as determined by tandem mass spectrometry coupled to liquid chromatography analysis. Further study showed that nucleolin specifically recognized the AU-rich elements (AUUUA) in the 3'-UTR of the Bcl-X(L) mRNA and could stabilize the mRNA in vitro. Furthermore, overexpression of nucleolin stabilizes the Bcl-X(L) mRNA in HeLa cells, whereas reducing nucleolin by small interfering RNA shortens the Bcl-X(L) mRNA half-life. Interestingly, nucleolin physically interacted with polyadenylate [poly(A)]-binding protein through it RGG motifs. Its stabilizing effect on the Bcl-X(L) mRNA was dependent upon the presence of poly(A) tail. Based on these data, we propose a model in which nucleolin protects the Bcl-X(L) mRNA from nuclease degradation by enhancing the stability of the ribonucleoprotein loop structure. PMID:18281479

  1. Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation.

    PubMed

    Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng

    2016-01-01

    Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface. PMID:26194238

  2. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation.

    PubMed

    Osipov, Andreyan N; Smetanina, Nadezhda M; Pustovalova, Margarita V; Arkhangelskaya, Ekaterina; Klokov, Dmitry

    2014-08-01

    The potency of UVA radiation, representing 90% of solar UV light reaching the earth's surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1J/cm(2) was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5M Na(+), implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures. PMID:24816295

  3. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants.

    PubMed

    Dáder, Beatriz; Gwynn-Jones, Dylan; Moreno, Aránzazu; Winters, Ana; Fereres, Alberto

    2014-09-01

    Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire

  4. Photo-irradiation of Aloe vera by UVA--formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation.

    PubMed

    Xia, Qingsu; Yin, Jun Jie; Fu, Peter P; Boudreau, Mary D

    2007-01-30

    Aloe vera whole leaf extracts are incorporated into a wide variety of topically applied commercial products. Aloe vera whole leaf extracts may contain anthraquinones, which have been shown to generate reactive oxygen species in the presence of ultraviolet A (UVA) light. Exposure to UVA light alone can also generate reactive oxygen species and is associated with photo-damaged and photo-aged skin in humans. This paper examines the photochemical properties of two Aloe vera whole leaf extracts that differed in their anthraquinone content. In the presence of methyl linoleate, the UVA irradiation of Aloe vera leaf extracts induced lipid peroxidation. The amounts of lipid peroxides formed were higher in the Aloe vera leaf extract that contained lower amounts of anthraquinones. Superoxide dismutase and sodium azide inhibited and deuterium oxide enhanced the formation of lipid peroxides, suggesting that singlet oxygen and superoxide were involved in the mechanism. Spin trapping electron spin resonance (ESR) spectroscopy was used to investigate the generation of free radicals by the UVA photo-irradiated Aloe vera plant extracts. ESR measurements indicated that the UVA photo-irradiation of Aloe vera plant extracts produced carbon-centered free radicals. These results suggest that humans exposed to products that contain Aloe vera whole leaf extracts may have enhanced sensitivity to ultraviolet light. PMID:17197137

  5. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells.

    PubMed

    Rogers, Christian S; Chan, Lai-Man; Sims, Yolanda S; Byrd, Krashod D; Hinton, Danielle L; Twining, Sally S

    2004-05-01

    The purpose of this work was to establish whether exposing cultured rabbit corneal and lens epithelial cells to ultraviolet radiation equivalent to several hours under the sun would damage the cells. Confluent rabbit corneal epithelial cells were irradiated with broadband UV-A or UV-B, and confluent lens epithelial cells were irradiated with broadband UV-A. The maximum dose of UV-A was 6.3 J cm(-2) and that of UV-B was 0.60 J cm(-2). Damage to corneal epithelial cell was studied using the terminal deoxynucleotidyl transferase mediated dUTP-X nick end labeling (TUNEL) assay and damage to lens epithelial cell was studied using the single cell gel electrophoresis (comet) assay and trypan blue exclusion assay. Lipid peroxidation was assayed using the thiobarbituric acid reaction. Both UV-B and UV-A induced cell death in corneal epithelial cells with different latent periods. UV-A damage included cell death, decreased viability and increased lipid peroxidation of lens epithelial cell. In addition, UV irradiation of the corneal and lens epithelial cells decreased the activity of catalase to thirty to fifty percent of its original value, while the activities of glutathione peroxidase and superoxide dismutase did not decrease within experimental error. Thus, even sub-solar UV radiation can cause irreversible damage to corneal and lens epithelial cells. PMID:15051481

  6. Effect of UVC, UVB, UVA and a solar simulator on the survival of mouse melanoma cell lines differing in melanin content

    SciTech Connect

    Hill, H.Z.; Hill, G.J.; Cieszka, K.; Azure, M.

    1994-12-31

    These studies were designed to determine the survival of cells that vary in constitutive pigment levels after exposure to different UV wave lengths. The lamps employed emitted UVC (near monochromatic 254 nm), UVB (Philips TL01-88.7% of UV output is UVB), UVA (Philips HPW125-89% of output is at 365 nm) and Westinghouse FS20 (broad band UVB and UVA). Dish lids were used to cut off UVC in the UVB and FS20 experiments and 0.25 inch plate glass was used to cut off UVB in the UVA experiments. UVC photons interact with putative intracellular photosensitizers which in turn convert O{sub 2} to active oxygen species which damage DNA to produce strand breaks, cross links and base damage. UVB acts by both mechanisms. The two cell lines studied were Cloudman S91/I3 (3.6 pg melanin/cell) and the closely related S91/amel (1.2 pg melanin/cell). Attached cells were covered with Ca{sup ++} and Mg{sup ++} free PBS and irradiated in the cold. Colonies were scored after 2 weeks. The two cell lines exhibit similar survival kinetics after UVC. S91/IE is more sensitive to killing by either UVB (TL01) or UVA. However, S91/amel cells are more sensitive to killing by UVB plus UVA (FS20). It is clear that UV of different qualities can interact to produce effects that would not be predicted based on responses to monochromatic wave lengths.

  7. Non-monotonic concentration-response relationship of TiO(2) nanoparticles in freshwater cladocerans under environmentally relevant UV-A light.

    PubMed

    Kim, Jungkon; Lee, Sangwoo; Kim, Chul-min; Seo, Jihyun; Park, Yena; Kwon, Dongwook; Lee, Song-Hee; Yoon, Tae-Hyun; Choi, Kyungho

    2014-03-01

    The effects of UV-A on the toxicity of TiO2 nano-particles (NPs) were evaluated using Moina macrocopa and Daphnia magna under environmentally relevant level of UV-A. The waterfleas were exposed to TiO2 NPs with different sizes of ~298nm, ~132nm, or ~72nm for up to 48h, with or without UV-A light. Whole body reactive oxygen species and transcription of antioxidant enzyme genes were measured, as well as the survival of the waterflea. In the presence of UV-A, the survival rates of M. macrocopa significantly decreased in concentration dependent way until ~1mg/L TiO2 NPs, but the survivals were reversed at greater concentrations. This peculiar non-monotonic trend of concentration-response relationship might be explained by changes of particle size under different light conditions. TiO2 NPs within a certain size range could be trapped in the filter apparatus and exert toxicity, and the NPs of greater size were subject to either precipitation or ingestion leading to no or little toxicity. Observed TiO2 toxicity was associated with oxidative stress in the filter apparatus. The results of this study showed that the size change due to UV-A irradiation should be considered in evaluation of ecological risks of TiO2 NP. PMID:24507152

  8. Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells).

    PubMed

    Calò, Rossella; Marabini, Laura

    2014-03-01

    Recently, the field of skin protection have shown a considerable interest in the use of botanicals. Vaccinium myrtillus contains several polyphenols and anthocyanins with multiple pharmacological properties. The purpose of our study was to examine whether a water-soluble V. myrtillus extract (dry matter 12.4%; total polyphenols 339.3mg/100 g fw; total anthocyanins 297.4 mg/100 g fw) was able to reduce UVA- and UVB-induced damage using a human keratinocyte cell line (HaCaT). HaCaT cells were pretreated for 1h with extract in a serum-free medium and then irradiated with UVA (8-40 J/cm(2)) and UVB (0.008-0.72 J/cm(2)) rays. All experiments were performed 24h after the end of irradiation, except for oxidative stress tests. The extract was able to reduce the UVB-induced cytotoxicity and genotoxicity (studied by comet and micronucleous assays) at lower doses. V. myrtillus extract reduced lipid peroxidation UVB-induced, but had no effect against the ROS UVB-produced. With UVA-induced damage V. myrtillus reduced genotoxicity as well as the unbalance of redox intracellular status. Moreover our extract reduced the UVA-induced apoptosis, but had no effect against the UVB one. V. myrtillus extract showed its free radical scavenging properties reducing oxidative stress and apoptotic markers, especially in UVA-irradiated cells. PMID:24577051

  9. The role and fate of inorganic nitrogen species during UVA/TiO₂ disinfection.

    PubMed

    Zuo, XiaoJun; Hu, Jiangyong; Chen, MinDong

    2015-09-01

    Inorganic nitrogen species have three states including ammonia nitrogen (NH4(+)/NH3), nitrite (NO2(-)) and nitrate (NO3(-)) and are often found in the disinfection system. However, no available literature could be found on their role and fate in photocatalytic disinfection systems. In this study, batch experiments were conducted to investigate bacteria inactivation, H2O2 generated and inorganic nitrogen variation to understand the role and fate of inorganic nitrogen species during UVA/TiO2 disinfection and evaluate effects of initial pH and bacteria levels on the role and fate. NH4(+)/NH3 and NO2(-) inhibited the photocatalytic disinfection process obviously. It could be confirmed through that H2O2 yield used for pathogen inactivation was dependent on NH4(+)/NH3 and NO2(-) levels. The NH4(+)/NH3 remaining, NH4(+) remaining and NO3(-) yields in only NH4(+)/NH3 photocatalytic oxidation experiments were obviously different from the corresponding values in the photocatalytic disinfection experiments with NH4(+)/NH3, which confirmed that photocatalytic disinfection had an obvious effect on the fate of NH4(+)/NH3. However, photocatalytic disinfection had slight effects on the fate of NO2(-) and NO3(-). Escherischia coli inactivation rate was the highest in neutral solutions (Initial pH 7) while the lowest in alkaline solutions (Initial pH 8.5). The decrease of NH4(+)/NH3 in alkaline solutions was the most significant. In turn, the photocatalysis of NO2(-) was more evident in acidic solutions. E. coli inactivation was reduced with the increase of initial E. coli concentrations. The initial bacteria concentrations significantly influenced the increase of NH4(+)/NH3, NH4(+) and NO3(-), but slightly impacted the decrease of NO2(-). PMID:25989592

  10. Antimicrobial photodisinfection with Zn(II) phthalocyanine adsorbed on TiO2 upon UVA and red irradiation

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Eneva, Ivelina; Kussovski, Vesselin; Borisova, Ekaterina; Angelov, Ivan

    2015-01-01

    The light exposure on a daily basis has been well accepted as a competitive method for decontamination of wastewater. The catalytic properties of TiO2 offer a great potential to reduce the transmission of pathogens in the environment. Although the titanium dioxide shows high activity against pathogens, its general usage in water cleaning is limited due to the insufficient excitation natural light (about 3% of the solar spectrum). A hydrophobic dodecylpyridyloxy Zn(II)-phthalocyanine with four peripheral hydrocarbon chains of C12 (ZnPcDo) was immobilized on a photocatalyst TiO2 anatase (P25). The resulted greenish colored nanoparticles of phthalocyanine were characterized by the means of absorption, fluorescence and infrared spectroscopy. The laser scanning confocal fluorescence microscopy was used to visualize the phthalocyanine dye by the red fluorescence emission (650 - 740 nm). The intensive Q-band in the far red visible spectral region (~ 690 nm) suggested a monomeric state of phthalocyanine on TiO2 nanoparticles. Two pathogenic bacterial strains (methicillin-resistant Staphylococcus aureus - MRSA and Salmonella enteritidis) associated with wastewater were photoinactivated with the suspension of the particles. The effective photoinactivation was observed with 1 g.L-1 TiO2 anatase at irradiation with UVA 364 nm as with UVA 364 nm and LED 643 nm. The gram-negative Salmonella enteritidis was fully photoinactivated with ZnPcDo-TiO2 and TiO2 alone at UVA 346 nm and at irradiation with two light sources (364 nm + 643 nm). The proposed conjugate appears as an useful composite material for antibacterial disinfection.

  11. Removal of penicillin G from aqueous phase by Fe+3-TiO2/UV-A process

    PubMed Central

    2014-01-01

    Background Anomalous use of antibiotics and their entrance into the environment have increased concerns around the world. These compounds enter the environment through an incomplete metabolism and a considerable amount of them cannot be removed using conventional wastewater treatment. Therefore, the main objectives of this research are evaluation of the feasibility of using ultraviolet radiation (UV-A) and fortified nanoparticles of titanium dioxide (TiO2) doped with Fe+3 to remove penicillin G (PENG) from aqueous phase and determining the optimum conditions for maximum removal efficiency. Results The results showed that the maximum removal rate of penicillin G occurred in acidic pH (pH = 3) in the presence of 90 mg/L Fe+3-TiO2 catalyst. In addition, an increase in pH caused a decrease in penicillin G removal rate. As the initial concentration of penicillin G increased, the removal rate of antibiotic decreased. Moreover, due to the effect of UV on catalyst activation in Fe+3-TiO2/UV-A process, a significant increase was observed in the rate of antibiotic removal. All of the variables in the process had a statistically significant effect (p < 0.001). Conclusion The findings demonstrated that the antibiotic removal rate increased by decreasing pH and increasing the amount of catalyst and contact time. In conclusion, Fe+3-TiO2/UV-A process is an appropriate method for reducing penicillin G in polluted water resources. PMID:24598354

  12. Synthesis and spectroscopic examination of various substituted 1,3-dibenzoylmethane, active agents for UVA/UVB photoprotection.

    PubMed

    Hubaud, Jean-Claude; Bombarda, Isabelle; Decome, Laetitia; Wallet, Jean-Claude; Gaydou, Emile M

    2008-08-21

    We describe the synthesis of eighteen variously substituted 1,3- dibenzoylmethane (1,3-DBM) and their change in absorption spectra depending of the nature of donor or acceptor substituents on one or the two aromatic moieties. These compounds were prepared in two steps starting from the corresponding acetophenones, phenol and benzoyl chlorides. The phenyl benzoate was obtained by condensation of benzoyl chloride with phenol in a classical way. Stirring of the phenyl benzoate and acetophenone in DMSO with powdered sodium hydroxide for a few minutes gave the dibenzoylmethane in yields depending on substituents on the phenyl rings. Changes in absorption of UVA/UVB sunlight of these molecules were observed according to the nature and the position of substituents on the phenyl rings. Molecules 2b (1-phenyl-3-(3,4,5-trimethoxyphenyl)-1,3-propanedione), 2d (1-(3,4-dimethoxyphenyl)-3-phenyl-l,3-propanedione), 2e (1-(2,3-dimethoxyphenyl)-3-phenyl-l,3-propanedione) and 2f (1-(2,3,4-trimethoxyphenyl)-3-phenyl-l,3-propanedione) were the most interesting for cosmetic applications because even after irradiation, they preserve their absorptive in UVA range and also in UVB range The other compounds are too photounstable and so can lose their protective effects. These results showed the lack of phototoxicity of these compounds and the possibility to use them as solar filters. Therefore, variously di- or tri methoxy 1,3-DBM are interesting molecules in term of photoprotection and open new prospects for UVA photostable filters. PMID:18565756

  13. Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma.

    PubMed

    Godar, Dianne E; Landry, Robert J; Lucas, Anne D

    2009-04-01

    Cutaneous malignant melanoma (CMM) has been increasing at a steady exponential rate in fair-skinned, indoor workers since before 1940. A paradox exists between indoor and outdoor workers because indoor workers get three to nine times less solar UV (290-400 nm) exposure than outdoor workers get, yet only indoor workers have an increasing incidence of CMM. Thus, another "factor(s)" is/are involved that increases the CMM risk for indoor workers. We hypothesize that one factor involves indoor exposures to UVA (321-400 nm) passing through windows, which can cause mutations and can break down vitamin D(3) formed after outdoor UVB (290-320 nm) exposure, and the other factor involves low levels of cutaneous vitamin D(3). After vitamin D(3) forms, melanoma cells can convert it to the hormone, 1,25-dihydroxyvitamin D(3), or calcitriol, which causes growth inhibition and apoptotic cell death in vitro and in vivo. We measured the outdoor and indoor solar irradiances and found indoor solar UVA irradiances represent about 25% (or 5-10 W/m(2)) of the outdoor irradiances and are about 60 times greater than fluorescent light irradiances. We calculated the outdoor and indoor UV contributions toward different biological endpoints by weighting the emission spectra by the action spectra: erythema, squamous cell carcinoma, melanoma (fish), and previtamin D(3). Furthermore, we found production of previtamin D(3) only occurs outside where there is enough UVB. We agree that intense, intermittent outdoor UV overexposures and sunburns initiate CMM; we now propose that increased UVA exposures and inadequately maintained cutaneous levels of vitamin D(3) promotes CMM. PMID:19155143

  14. [Inhibiting effect of the aqueous extract of Arctostaphylos uva-ursi on myrosinase activity from Brassica napus seeds].

    PubMed

    Mykytyn, M S; Dem'ianchuk

    1998-01-01

    The search of inhibitors of the myrosinase enzyme and also enzymes able to transform the glucosinolates into non-toxic combinations has been carried out among the water extracts of the plants row. The inhibitor activity of the water extract of Arctostaphylos uva-ursi and its foresee acting outset-hydroquinone have been discovered. The direct dependence of the glucosinolates decompose degree from concentration of hydroquinone and quinone has been determined. The cultivation of Brassica napus cut seeds by quinone in correlation 1:100 (m:m) stopped the glucosinolates decomposition by endogenous myrosinase for 50%. PMID:9848213

  15. Efficacy of topical vitamin C derivative (VC-PMG) and topical vitamin E in prevention and treatment of UVA suntan skin.

    PubMed

    Puvabanditsin, Porntip; Vongtongsri, Rujirat

    2006-09-01

    Exposure to ultraviolet radiation is known to cause many adverse side effects by inducing the tissue to produce reactive oxygen species. By inhibiting these mediators, administration ofantioxidants might be the strategy to reduce UVA-induced skin reaction such as tissue damage and inflammation. However the present study showed that administration of topical 10% vitamin C derivative (VC-PMG) and topical 5% vitamin E has no effect in terms ofprevention or treatment of UVA suntan skin in 20 volunteers. Prior to 30 Joules UVA exposures, they were asked to apply both agents twice daily for 3 days. Then, the melanin index was measured immediately after irradiation by using the Maxemeter which was insignificant at the 95% level of confidence compared with the placebo. After continuing the cream application for 12 weeks, there were also no bleaching effects observed after 2, 4, 6, 8, 10 and 12 weeks compared to the placebo. PMID:17722304

  16. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin.

    PubMed

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  17. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    PubMed Central

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  18. A Questao da Moral na Cultura Contemporanea (The Moral Question in Contemporary Culture).

    ERIC Educational Resources Information Center

    Barcellos, Carine

    2000-01-01

    Extends the debate concerning the discussion about the possibility of ethics on the present configuration of a social ethos based on the reflection of the circumscription of morality within contemporary culture. Turns to the internal debate in psychology, for clarification. (BT)

  19. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress.

    PubMed

    Harwansh, Ranjit K; Mukherjee, Pulok K; Kar, Amit; Bahadur, Shiv; Al-Dhabi, Naif Abdullah; Duraipandiyan, V

    2016-07-01

    The present study was aimed to develop a catechin (CA) loaded nanoemulsion based nano-gel for the protection of skin against ultraviolet radiation (UV) induced photo-damage and to ensure its enhanced skin permeability as well as bioavailability through transdermal route. The optimized nanoemulsion (CA-NE4) was prepared by spontaneous nano-emulsification method. It was composed of oil (ethyl oleate), Smix [surfactant (span 80) and co-surfactant (transcutol CG)] and aqueous system in an appropriate ratio of 15:62:23% w/w respectively. The CA-NE4 was characterized through assessment of droplet size, zeta potential, refractive index, transmission electron microscopy (TEM), UV, high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) analysis. The average droplet size and zeta potential of CA-NE4 were found to be 98.6±1.01nm and -27.3±0.20mV respectively. The enhanced skin permeability was better with CA-NE4 based nano-gel (CA-NG4) [96.62%] compared to conventional gel (CA-CG) [53.01%] for a period of 24h. The enhanced % relative bioavailability (F) of CA (894.73), Cmax (93.79±6.19ngmL(-1)), AUC0-t∞ (2653.99±515.02nghmL(-1)) and Tmax (12.05±0.02h) was significantly obtained with CA-NG4 as compared to oral suspension for extended periods (72h). CA-NG4 could improve the level of cutaneous antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) and reduce the level of thiobarbituric acid reactive substances (TBRAS) against oxidative stress induced by UVA. Nano-gel formulation of CA showed sustained release profile and enhanced photoprotection potential due to its improved permeability as well as bioavailability (P<0.05) compared to the conventional gel. Therefore, transdermal administration of nano-gel (CA-NG4) of CA offers a better way to develop the endogenous cutaneous protection system and thus could be an effective strategy for decreasing UV-induced oxidative damage in the

  20. Detection of UVA/UVC-induced damage of p53 fragment by rolling circle amplification with AIEgens.

    PubMed

    Ou, Xiaowen; Wei, Benmei; Zhang, Zhenyu; Zhang, Mengshi; Zhuang, Yuan; Gao, Pengcheng; Lou, Xiaoding; Xia, Fan; Tang, Ben Zhong

    2016-07-21

    Absorption of ultraviolet (UV) light by nucleic acid could lead to mutations and skin cancers. Traditional damage detection methods based on fluorescence not only need dye/quencher groups but also display relatively high background interference, causing difficulty in synthesis and purification and thus low specificity of detection. Here, by combining rolling circle amplification (RCA) and aggregation-induced emission molecules (AIE), we made up for the defects of traditional methods to some extent and could also differentiate damaged and undamaged DNA. We also studied radiation damage of the p53 gene fragment both from UVA and UVC, although the mechanism of UVA in mutagenesis remains controversial. To amplify the signal-to-background ratio, we ligated the linear p53 (L p53) gene fragment to be a circular p53 (C p53) gene fragment, which is a key component for RCA. The combination of RCA products and positive TPE-Z (quaternized tetraphenylethene salt) molecules induced the aggregation of AIE molecules, and subsequently resulted in significant fluorescence enhancement (the signal for the undamaged DNA is 598% higher than that of the damaged). Compared with the traditional aggregation-caused quenching (ACQ) based fluorescent method, our assay was more sensitive and more specific. PMID:27194085

  1. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.

    PubMed

    Xiong, Pei; Hu, Jiangyong

    2013-09-01

    In this study, an effective photocatalytic disinfection system was established using the newly emerged high power UVA/LED lamp. Crystallizing dish coated with TiO2 was prepared by 32-times impregnation-drying processes, and served as the supporting container for water samples. This study focused on the application of this UVA/LED system for the photocatalytic disinfection of selected antibiotic-resistant bacteria, Escherichia coli ATCC 700891. The disinfection performances were studied under various light intensities and illumination modes. Results show that higher light intensity could reach more significant inactivation of E. coli ATCC 700891. With the same UV dose, log-removal of antibiotic-resistant bacteria decreased with circle time in the studied range, while increased with duty circle. A "residual disinfecting effect" was found in the following dark period for bacteria collected at different phases of photocatalytic process. Residual disinfecting effect was found not significant for bacteria with 30 min periodic illumination. While residual disinfecting effect could kill almost all bacteria after 90 min UV periodic illumination within the following 240 min dark period. PMID:23764604

  2. Synthesis, characterization and photocatalytic properties of SnO2-ZnO composite under UV-A light

    NASA Astrophysics Data System (ADS)

    Kuzhalosai, V.; Subash, B.; Senthilraja, A.; Dhatshanamurthi, P.; Shanthi, M.

    2013-11-01

    The SnO2 loaded ZnO (SnO2-ZnO) was successfully synthesized by precipitation-decomposition method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM) images, energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. The photocatalytic activity of SnO2-ZnO was investigated for the degradation of Acid Orange 10 (AO 10) in aqueous solution using UV-A light. SnO2-ZnO is found to be more efficient than commercial ZnO, bare ZnO, TiO2-P25 and TiO2 (Merck) at pH 12 for the mineralization of AO 10 dye. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization of AO 10 dye have been analyzed. The mineralization of AO 10 has been confirmed by chemical oxygen demand (COD) measurements. A degradation mechanism is proposed for the degradation of AO 10 with SnO2-ZnO under UV-A light. This catalyst is found to be reusable.

  3. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    PubMed

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-01

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy. PMID:26029748

  4. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. PMID:25040832

  5. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence. PMID:26920809

  6. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    PubMed

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. PMID:24893751

  7. ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study.

    PubMed

    Qi, Hang; Dong, Xiu-fang; Zhao, Ya-ping; Li, Nan; Fu, Hui; Feng, Ding-ding; Liu, Li; Yu, Chen-xu

    2016-02-01

    Sea cucumber Stichopus japonicus (S. japonicus) shows a strong ability of autolysis, which leads to severe deterioration in sea cucumber quality during processing and storage. In this study, to further characterize the mechanism of sea cucumber autolysis, hydroxyl radical production induced by ultraviolet A (UVA) irradiation was investigated. Homogenate from the body wall of S. japonicas was prepared and subjected to UVA irradiation at room temperature. Electron Spin Resonance (ESR) spectra of the treated samples were subsequently recorded. The results showed that hydroxyl radicals (OH) became more abundant while the time of UVA treatment and the homogenate concentration were increased. Addition of superoxide dismutase (SOD), catalase, EDTA, desferal, NaN3 and D2O to the homogenate samples led to different degrees of inhibition on OH production. Metal cations and pH also showed different effects on OH production. These results indicated that OH was produced in the homogenate with a possible pathway as follows: O2(-) → H2O2 → OH, suggesting that OH might be a critical factor in UVA-induced S. japonicus autolysis. PMID:26304359

  8. 1H NMR characterization of the intermediate formed upon UV-A excitation of biopterin, neopterin and 6-hydroxymethylpterin in O 2-free aqueous solutions

    NASA Astrophysics Data System (ADS)

    Vignoni, Mariana; Salum, M. Laura; Erra-Balsells, Rosa; Thomas, Andres H.; Cabrerizo, Franco M.

    2010-01-01

    Pterins belong to a family of heterocyclic compounds present in a wide range of living systems and participate in relevant biological functions. Under anaerobic conditions, the unstable red intermediate generated by UV-A irradiation of biopterin, neopterin and 6-hydroxymethylpterin was identified by 1H NMR analysis, in alkaline D 2O solutions, as 5,8-dihydro-6-formylpterin.

  9. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes.

    PubMed

    Aguilera, Ximena; Lazzaro, Xavier; Coronel, Jorge S

    2013-09-01

    Tropical high-altitude Andean lakes are physically harsh ecosystems. Located above the treeline (≥4000 m a.s.l.), they share common features with temperate alpine lakes, which impose extreme conditions on their aquatic organisms: e.g., strong winds, broad diel variations in water temperature, and intense solar ultraviolet radiation (UVR). However, because of their latitude, they differ in two major ecological characteristics: they lack ice cover during the winter and they do not present summer water column stratification. We sampled 26 tropical high-altitude Andean lakes from three regions of the Bolivian Eastern Andes Cordillera during the wet period (austral summer). We performed an ordination to better describe the typology of Andean lakes in relation to the environmental variables, and we assessed the relationships among them, focussing on the UV-A transparency (360 nm) throughout the water column. We found a positive correlation between UV-A transparency calculated as Z(1%) (the depth which reaches 1% of the surface UV-A), the lake maximum depth and Secchi transparency (r = 0.61). Z(1%) of UV-A was smaller in shallow lakes than in deep lakes, indicating that shallow lakes are less transparent to UV-A than deep lakes. We hypothesize that, compared to shallow lakes, deep lakes (maximum depth > 10 m) may have lower dissolved organic carbon (DOC) concentrations (that absorb UV radiation) due to lower temperature and reduced macrophyte cover. Based on our data, tropical high-altitude Andean lakes are less transparent to UV-A (K(d) range = 1.4-11.0 m(-1); Z(1%) depth range = 0.4-3.2 m) than typical temperate alpine lakes (1-6 m(-1), 3-45 m, respectively). Moreover, they differ in vertical profiles of UV-A, chlorophyll-a, and temperature, suggesting that they may have a distinct ecological functioning. Such peculiarities justify treating tropical high-altitude Andean lakes as a separate category of alpine lakes. Tropical high-altitude Andean lakes have been poorly

  10. Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes.

    PubMed

    Hseu, You-Cheng; Lo, Heng-Wei; Korivi, Mallikarjuna; Tsai, Yu-Cheng; Tang, Meng-Ju; Yang, Hsin-Ling

    2015-09-01

    UVA irradiation-induced skin damage and redox imbalance have been shown to be ameliorated by ergothioneine (EGT), a naturally occurring sulfur-containing amino acid. However, the responsible molecular mechanism with nanomolar concentrations of EGT remains unclear. We investigated the dermato protective efficacies of EGT (125-500nM) against UVA irradiation (15J/cm(2)), and elucidated the underlying molecular mechanism in human keratinocyte-derived HaCaT cells. We found that EGT treatment prior to UVA exposure significantly increased the cell viability and prevented lactate dehydrogenase release into the medium. UVA-induced ROS and comet-like DNA formation were remarkably suppressed by EGT with a parallel inhibition of apoptosis, as evidenced by reduced DNA fragmentation (TUNEL), caspase-9/-3 activation, and Bcl-2/Bax dysregulation. Furthermore, EGT alleviated UVA-induced mitochondrial dysfunction. Dose-dependent increases of antioxidant genes, HO-1, NQO-1, and γ-GCLC and glutathione by EGT were associated with upregulated Nrf2 and downregulated Keap-1 expressions. This was confirmed by increased nuclear accumulation of Nrf2 and inhibition of Nrf2 degradation. Notably, augmented luciferase activity of ARE may explain Nrf2/ARE-mediated signaling pathways behind EGT dermato-protective properties. We further demonstrated that Nrf2 translocation was mediated by PI3K/AKT, PKC, or ROS signaling cascades. This phenomenon was confirmed with suppressed nuclear Nrf2 activation, and consequently diminished antioxidant genes in cells treated with respective pharmacological inhibitors (LY294002, GF109203X, and N-acetylcysteine). Besides, increased basal ROS by EGT appears to be crucial for triggering the Nrf2/ARE signaling pathways. Silencing of Nrf2 or OCTN1 (EGT carrier protein) signaling with siRNA showed no such protective effects of EGT against UVA-induced cell death, ROS, and apoptosis, which is evidence of the vitality of Nrf2 translocation and protective efficacy of EGT

  11. Pre-exposure with low-dose UVA suppresses lesion development and enhances Th1 response in BALB/c mice infected with Leishmania (Leishmania) amazonensis.

    PubMed

    Khaskhely, N M; Maruno, M; Takamiyagi, A; Uezato, H; Kasem, K M; Hosokawa, A; Kariya, K; Hashiguchi, Y; Landires, E A; Nonaka, S

    2001-07-01

    This study was conducted to determine whether exposing mice to ultraviolet (UV) radiation would alter the pathogenesis of infection with Leishmania (Leishmania) amazonensis (L. amazonensis) which causes progressive cutaneous disease in susceptible mouse strains. BALB/c mice were irradiated with 10 and 30 J/cm(2) UVA on shaved skin of the back from Dermaray (M-DMR-100) for 4 consecutive days before infection with Leishmania promastigotes. The course of disease was recorded by measuring the size of lesions at various times after infection. Mice groups irradiated with UVA 10 and 30 J/cm(2) showed significantly suppressed lesion development compared with the non-irradiated mice. Light and electron microscopy revealed a few parasites at the site of inoculation in UVA-irradiated subjects. Sandwich enzyme-linked-immunosorbent-assay (ELISA) examination of sera showed dose dependently upregulated interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-12, and downregulated interleukin (IL)-4 and interleukin (IL)-10 levels in UVA-irradiated as compared with the non-irradiated mice. Positive signals for IFN-gamma mRNA in irradiated mice were obtained by RT-PCR, while non-irradiated mice showed negative results. None of the examined samples showed signal for IL-4 mRNA. The present study disclosed that exposure of mice to different low-doses of UVA irradiation prior to infection may interfere with immunity to L. amazonensis in the murine model. This indicates that the cell-mediated response switch from Th2 to Th1 pattern suppressed the cutaneous lesions of L. amazonensis. PMID:11390207

  12. Protection of photosystem II against UV-A and UV-B radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and growth irradiance.

    PubMed

    Ivanov, A G; Miskiewicz, E; Clarke, A K; Greenberg, B M; Huner, N P

    2000-12-01

    Plectonema boryanum UTEX 485 cells were grown at 29 degrees C and 150 mumol m-2 s-1 photosynthetically active radiation (PAR) and exposed to PAR combined with ultraviolet-A radiation (UV-A) at 15 degrees C. This induced a time-dependent inhibition of photosystem II (PSII) photochemistry measured as a decrease of the chlorophyll a fluorescence ratio, Fv/Fm, to 50% after 2 h of UV-A treatment compared to nontreated control cells. Exposure of the same cells to PAR combined with UV-A + ultraviolet-B radiation (UV-B) caused only a 30% inhibition of PSII photochemistry relative to nontreated cells. In contrast, UV-A and UV-A + UV-B irradiation of cells cultured at 15 degrees C and 150 mumol m-2 s-1 had minimal effects on the Fv/Fm values. However, cells grown at 15 degrees C and lower PAR irradiance (6 mumol m-2 s-1) exhibited similar inhibition patterns of PSII photochemistry as control cells. The decreased sensitivity of PSII photochemistry of P. boryanum grown at 15 degrees C and 150 mumol m-2 s-1 to subsequent exposure to UV radiation relative to either control cells or cells grown at low temperature but low irradiance was correlated with the following: (1) a reduced efficiency of energy transfer to PSII reaction centers; (2) higher levels of a carotenoid tentatively identified as myxoxanthophyll; (3) the accumulation of scytonemin and mycosporine amino acids; and (4) the accumulation of ATP-dependent caseinolytic proteases. Thus, acclimation of P. boryanum at low temperature and moderate irradiance appears to confer significant resistance to UV-induced photoinhibition of PSII. The role of excitation pressure in the induction of this resistance to UV radiation is discussed. PMID:11140265

  13. The Effect of Riboflavin/UVA Collagen Cross-linking Therapy on the Structure and Hydrodynamic Behaviour of the Ungulate and Rabbit Corneal Stroma

    PubMed Central

    Hayes, Sally; Kamma-Lorger, Christina S.; Boote, Craig; Young, Robert D.; Quantock, Andrew J.; Rost, Anika; Khatib, Yasmeen; Harris, Jonathan; Yagi, Naoto; Terrill, Nicholas; Meek, Keith M.

    2013-01-01

    Purpose To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. Methods One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. Results Corneal thickness decreased significantly following riboflavin application (p<0.01) and also to a lesser extent after UVA exposure (p<0.05). With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01), all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion. Conclusions It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen. PMID:23349690

  14. Protective effect of AVS073, a polyherbal formula, against UVA-induced melanogenesis through a redox mechanism involving glutathione-related antioxidant defense

    PubMed Central

    2013-01-01

    Background Ayurved Siriraj Brand Wattana formula (AVS073), a Thai herbal formula, has traditionally been used for health promotion and prevention of age-related problems. Ultraviolet A (UVA) is recognized to play a vital role in stimulation of melanin synthesis responsible for abnormal skin pigmentation possibly mediated by photooxidative stress. We thus aimed to study the inhibitory effect of AVS073 extracts on UVA-induced melanogenesis via a redox mechanism involving glutathione (GSH) synthesis and glutathione S-transferase (GST) using human melanoma (G361) cell culture. Methods The standardization of AVS073 extracts was carried out by TLC and UHPLC to obtain fingerprinting profiles of the formula, which identified several phenolic compounds including gallic acid (GA) in the formula. Antimelanogenic actions of AVS073 (up to 60 μg/ml) and GA (up to 10 μg/ml) were investigated by measuring tyrosinase activity and mRNA as well as melanin level in G361 cells irradiated with UVA. Moreover, antioxidant actions of the herbal formula and GA were determined by evaluating oxidant formation and modulation of GSH-related antioxidant defenses including GSH content, GST activity and mRNA level of γ-glutamate cysteine ligase catalytic (γ-GCLC) and modifier (γ-GCLM) subunit and GST. Results AVS073 extracts and GA, used as a reference compound, suppressed UVA-augmented tyrosinase activity and mRNA and melanin formation. In addition, pretreatment with AVS073 and GA was able to inhibit cellular oxidative stress, GSH depletion, GST inactivation and downregulation of γ-GCLC, γ-GCLM and GST mRNA in G361 cells exposed to UVA radiation. Conclusions AVS073 formula exerted antimelanogenic effects possibly through improving the redox state by upregulation of GSH and GST. Moreover, pharmacological activity of the polyherbal formula would be attributed to combined action of different phenolic compounds present in the formula. PMID:23826868

  15. A mechanism for nano-titanium dioxide-induced cytotoxicity in HaCaT cells under UVA irradiation.

    PubMed

    Xue, Chengbin; Luo, Wen; Yang, Xiang Liang

    2015-01-01

    Nano-TiO2 has been reported to be an efficient photocatalyst, which is able to produce reactive oxygen species (ROS) under UVA irradiation. In this study, we investigated the effects of nano-TiO2 on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in HaCaT cells. We show that nano-TiO2 is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and activating Caspase-3 from HaCaT cells. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in nano-TiO2-treated cells were blocked by the MPT pore-blocker cyclosporin A. Taken together, our data indicate that nano-TiO2 induces the ROS-mediated MPT and resultant Caspase-3 activation. PMID:25822594

  16. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  17. Quality control on mononuclear cells collected for extracorporeal photochemotherapy: comparison between two UV-A irradiation devices.

    PubMed

    Cervio, M; Scudeller, L; Viarengo, G; Del Fante, C; Perotti, C

    2015-11-01

    Recently, MacoPharma released a new UV-A cell irradiator device (Macogenic G2) for extracorporeal photopheresis (ECP), smaller and lighter than the Macogenic G1 but with no integrated cooling system. We compared the two devices at different working temperatures (G1 at standard irradiation temperature - 21°C - and G2 set by purpose at 34°C) in patients affected with chronic graft-versus-host disease and chronic lung allograft dysfunction treated by ECP. We demonstrate that both G1 and G2 devices are efficient in inducing the inhibition of lymphocytic proliferation and mononuclear cells apoptosis after 48 h even when G2 is set at higher-than-standard temperature. PMID:25975883

  18. Kinetics of (/sup 14/C-5) 8-methoxypsoralen uptake by UVA irradiated and non-irradiated rabbit eye tissues

    SciTech Connect

    Malinin, G.I.; Glew, W.B.; Roberts, W.P.; Nigra, T.P.

    1981-05-01

    Total 8-methoxypsoralen (8-MOP) in intact and UVA irradiated rabbit eye tissues and its unaltered fraction in aqueous and eye lenses were determined over the 24 hours after i.v. injection of (/sup 14/C-5) and carrier 8-MOP at the concentration of 50 microCi and 5 mg/kg. No 8-MOP was detected at the end of 24 hours in intact and irradiated aqueous, vitreous and retina in contrast to one hour when the respective levels were congruent to 220, greater than 0 and congruent to 160 ng/g. Eye-plasma drug concentration ratios were less than 0.5 initially, but increased thereafter. While the average lens 8-MOP levels of congruent to 140 ng/g remained unchanged for 24 hours, no unaltered drug was detected beyond eight hours. Measurable amounts of label at the end of 24 hours also persisted in the cornea, iris, sclera and conjunctiva.

  19. Heber D. Curtis: The Re-entry Graduate Student at UVa Who Became an Outstanding Dynamical Astronomer

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1998-09-01

    Heber D. Curtis, the great pioneer of nebular and galactic research, later observatory director at Allegheny and then at the University of Michigan, was a dynamical astronomer in the earliest days of photographic radial-velocity measurements. He did his undergraduate work in classical languages at Michigan, where as a student he showed no apparent interest in astronomy. Curtis's first jobs were teaching Latin and Greek at Napa College, then at the College of the Pacific. Both had small Clark refractors and he began observing, then measuring, visual double stars. He decided to become an astronomer, and spent the summers of 1897 and 1898 as a special student at Lick Observatory, and of 1899 at Ann Arbor. In 1900, at the age of 28, married and with two small children, Curtis entered the University of Virginia as a full-time graduate student. Both Yerkes and Lick Observatories had declined to accept him. At Charlottesville Curtis did his Ph.D. thesis on the orbit of Comet 1898 I, received his degree in 1902, and immediately joined the Lick staff. His work on spectroscopic binaries and high-velocity stars at Mount Hamilton and at the Lick Southern Hemisphere Observatory, will be described in this paper. W. W. Campbell and Curtis published the First Catalogue of Spectroscopic Binaries in 1905; it listed all 140 of these objects then known. In 1909, Curtis was recalled to Lick to take over the Crossley reflector and thus left the field of dynamical astronomy. At Santiago, his assistant was George F. Paddock, a UVa M.A. in astronomy who based his Ph.D. thesis on Chile observational data. When Ormond Stone, UVa professor of astronomy and Leander McCormick Observatory director, retired in 1912, Curtis was the first choice to succeed him, but declined the post to remain at Lick.

  20. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    NASA Astrophysics Data System (ADS)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  1. An adduct of Cl-substituted benzotriazole and hydroxy benzophenone as a novel UVA/UVB absorber: Theory-guided design, synthesis, and calculations

    NASA Astrophysics Data System (ADS)

    Pei, Kemei; Cui, Zhihua; Chen, Weiguo

    2013-01-01

    A novel UVA/UVB absorber UV-D, a combination of Cl-substituted benzotriazole (ClBTZ) and hydroxybenzophenone (HBP) anti-UV functional groups in one molecule, which absorbs UVA and UVB radiation with high efficiency, was synthesized based on the first principle theory-guided design. The synthesized UV absorber was characterized by 1H NMR, FT-IR and UV spectroscopy in detail. Systematic quantum chemistry calculations were performed to investigate the stable structure and UV electronic absorption bands of UV-D. Structure parameters, atoms in molecule (AIM) and natural bond orbital (NBO) analysis show that the intramolecular hydrogen bond (IMHB) in HBP part is stronger than that in ClBTZ part. This work shows that the combination of the first principle theory-guided design and organic synthesis can be used to develop highly efficiency UV absorbers effectively.

  2. Topical AC-11 abates actinic keratoses and early squamous cell cancers in hairless mice exposed to Ultraviolet A (UVA) radiation.

    PubMed

    Mentor, Julian M; Etemadi, Amir; Patta, Abrienne M; Scheinfeld, Noah

    2015-04-01

    AC-11 is an aqueous extract of the botanical, Uncaria tomentosa, which has a variety of effects that enhance DNA repair and down regulate inflammation. AC-11 is essentially free of oxindole alkaloids (< 0.05%, w/w) but contains more than 8% carboxy alkyl esters (CAEs) as their active ingredients. Three groups of 10 outbred SK-1 hairless or SK-II hairless strains of mice each were treated with AC-11 at 0.5%, 1.5%, and 3.0% in a non-irritating, dye-free, perfume-free, and fragrance-free vanishing cream vehicle. Ten mice used vehicle only and 10 were untreated. Each concentration of AC-11 and was applied daily to the backs of the mice prior to exposure to a 1,600-watt solar simulator used in this work (Solar Light Co. Philadelphia, PA) emitting (mainly Ultraviolet A (UVA) and B (UVB) radiation) duration of the experimental period with UVB wavelengths was filtered out with a 1.0 cm Schott WG 345 filter. AC-11 with a peak absorption at 200nm does act as a sun block. We tested for and focused on clinical appearance of mice and histological appearance of tumors in mice rather than metrics of radiation generated inflammation. Tumor progression scores were assigned as follows: 4+ = extensive tumor development; 3+ = early malignancies (raised palpable plaques)(early squamous cell cancers) 2+ = firm scaling, palpable keratosis (actinic keratoses); 1+ = light scaling with erythema. Following a total cumulative dose of 738 J/cm2, 85.7% all of the irradiated control animals, which did not receive AC-11 had precancerous actinic keratosis (AK)-type lesions (2+) (64.3% versus 42.9%) or early squamous cell carcinoma (SCC) (3+) (21.4% vs. 4.8%), in comparison with 47.7 % of AC-11-treated animals. There were no significant differences between the AC-11 groups. Three months after cessation of exposure to UVA radiation, the lesions in all but three of the 14 animals which were treated with AC-11 that were still evaluable irradiated with UVA radiation progressed to papillomas and frank

  3. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts.

    PubMed

    Panusa, Alessia; Petrucci, Rita; Marrosu, Giancarlo; Multari, Giuseppina; Gallo, Francesca Romana

    2015-07-01

    The aim of this study was to get a rapid metabolic fingerprinting and to gain insight into the metabolic profiling of Arctostaphylos pungens H. B. K., a plant morphologically similar to Arctostaphylos uva-ursi (L.) Spreng. (bearberry) but with a lower arbutin (Arb) content. According to the European Pharmacopoeia the Arb content in the dried leaf of A. uva-ursi (L.) Spreng. must be at least 7% (wt/wt) but other species, like A. pungens, are unintentionally or fraudulently marketed instead of it. Therefore, methanolic leaf extracts of nine A. uva-ursi and six A. pungens samples labeled and marketed as "bearberry leaf" have been analyzed. A five-minute gradient with a UHPLC-PDA-ESI-TOF/MS on an Acquity BEH C18 (50×2.1 mm i.d.) 1.7 μm analytical column has been used for the purpose. A comprehensive assignment of secondary metabolites has been carried out in a comparative study of the two species. Among twenty-nine standards of natural compounds analyzed, fourteen have been identified, while other fifty-five metabolites have been tentatively assigned. Moreover, differences in both metabolic fingerprinting and profiling have been evidenced by statistical multivariate analysis. Specifically, main variations have been observed in the relative content for Arb, as expected, and for some galloyl derivative like tetra- and pentagalloylglucose more abundant in A. uva-ursi than in A. pungens. Furthermore, differences in flavonols profile, especially in myricetin and quercetin glycosilated derivatives, were observed. Based on principal component analysis myricetrin, together with a galloyl arbutin isomer and a disaccharide are herein proposed as distinctive metabolites for A. pungens. PMID:25702282

  4. UVA photoirradiation of benzo[a]pyrene metabolites: induction of cytotoxicity, reactive oxygen species, and lipid peroxidation.

    PubMed

    Xia, Qingsu; Chiang, Hsiu-Mei; Yin, Jun-Jie; Chen, Shoujun; Cai, Lining; Yu, Hongtao; Fu, Peter P

    2015-10-01

    Benzo[a]pyrene (BaP) is a prototype for studying carcinogenesis of polycyclic aromatic hydrocarbons (PAHs). We have long been interested in studying the phototoxicity of PAHs. In this study, we determined that metabolism of BaP by human skin HaCaT keratinocytes resulted in six identified phase I metabolites, for example, BaP trans-7,8-dihydrodiol (BaP t-7,8-diol), BaP t-4,5-diol, BaP t-9,10-diol, 3-hydroxybenzo[a]pyrene (3-OH-BaP), BaP (7,10/8,9)tetrol, and BaP (7/8,9,10)tetrol. The photocytotoxicity of BaP, 3-OH-BaP, BaP t-7,8-diol, BaP trans-7,8-diol-anti-9,10-epoxide (BPDE), and BaP (7,10/8,9)tetrol in the HaCaT keratinocytes was examined. When irradiated with 1.0 J/cm(2) UVA light, these compounds when tested at doses of 0.1, 0.2, and 0.5 μM, all induced photocytotoxicity in a dose-dependent manner. When photoirradiation was conducted in the presence of a lipid (methyl linoleate), BaP metabolites, BPDE, and three related PAHs, pyrene, 7,8,9,10-tetrahydro-BaP trans-7,8-diol, and 7,8,9,10-tetrahydro-BaP trans-9,10-diol, all induced lipid peroxidation. The formation of lipid peroxides by BaP t-7,8-diol was inhibited by NaN3 and enhanced by deuterated methanol, which suggests that singlet oxygen may be involved in the generation of lipid peroxides. The formation of lipid hydroperoxides was partially inhibited by superoxide dismutase (SOD). Electron spin resonance spin trapping experiments indicated that both singlet oxygen and superoxide radical anion were generated from UVA photoirradiation of BPDE in a light dose responding manner. PMID:23552265

  5. Effect of Ultraviolet-A (UV-A) and Ultraviolet-C (UV-C) Light on Mechanical Properties of Oyster Mushrooms during Growth

    PubMed Central

    Edward, Tindibale L.; Kirui, M. S. K.; Omolo, Josiah O.; Ngumbu, Richard G.; Odhiambo, Peter M.

    2014-01-01

    This study investigated the effects of ultraviolet-A (UV-A) and ultraviolet-C (UV-C) light on the mechanical properties in oyster mushrooms during the growth. Experiments were carried out with irradiation of the mushrooms with UV-A (365 nm) and UV-C (254 nm) light during growth. The exposure time ranged from 10 minutes to 60 minutes at intervals of 10 minutes and irradiation was done for three days. The samples for experimental studies were cut into cylindrical shapes of diameter 12.50 mm and thickness 3.00 mm. The storage modulus, loss modulus, and loss factor of the irradiated samples and control samples were determined for both UV bands and there was a significant difference between the storage modulus, loss modulus, and loss factor of the irradiated samples by both UV bands with reference to the control sample, P < 0.05. UV-C light irradiated samples had higher loss modulus and loss factor but low storage modulus as temperature increased from 35 to 100°C with respect to the control sample while UV-A light irradiated samples had lower loss modulus, low loss factor, and higher storage modulus than UV-C irradiated samples. PMID:25580117

  6. Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products.

    PubMed

    Fotiou, Theodora; Triantis, Theodoros; Kaloudis, Triantafyllos; Hiskia, Anastasia

    2015-01-01

    Cyanobacteria (blue-green algae) are considered an important water quality problem, since several genera can produce toxins, called cyanotoxins that are harmful to human health. Cylindrospermopsin (CYN) is an alkaloid-like potent cyanotoxin that has been reported in water reservoirs and lakes worldwide. In this paper the removal of CYN from water by UV-A, solar and visible light photocatalysis was investigated. Two different commercially available TiO2 photocatalysts were used, i.e., Degussa P25 and Kronos-vlp7000. Complete degradation of CYN was achieved with both photocatalysts in 15 and 40 min under UV-A and 40 and 120 min under solar light irradiation, for Degussa P25 and Kronos vlp-7000 respectively. Experiments in the absence of photocatalysts showed that direct photolysis was negligible. Under visible light irradiation only the Kronos vlp-7000 which is a visible light activated catalyst was able to degrade CYN. A number of intermediates were identified and a complete degradation pathway is proposed, leading to the conclusion that hydroxyl radical attack is the main mechanism followed. TOC and inorganic ions (NO2-, NO3-, SO4(2-) and NH4+) determinations suggested that complete mineralization of CYN was achieved under UV-A in the presence of Degussa P25. PMID:24846598

  7. Mutation, DNA strand cleavage and nitric oxide formation caused by N-nitrosoproline with sunlight: a possible mechanism of UVA carcinogenicity.

    PubMed

    Arimoto-Kobayashi, Sakae; Ando, Yoshiko; Horai, Yumi; Okamoto, Keinosuke; Hayatsu, Hikoya; Lowe, Jillian E; Green, Michael H L

    2002-09-01

    N-Nitrosoproline (NPRO) is endogenously formed from proline and nitrite. NPRO has been reported to be nonmutagenic and noncarcinogenic. In this study, we have detected the direct mutagenicity of NPRO plus natural sunlight towards Salmonella typhimurium. Furthermore, formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a mutagenic lesion, was observed in calf thymus DNA treated with NPRO plus simulated sunlight. The treatment with NPRO and sunlight induced single strand breaks in the superhelical replicative form of phage M13mp2 DNA. Single-strand DNA breaks also occurred in the human fibroblast cells on treatment with NPRO plus UVA, as detected by the comet assay. An analysis using scavengers suggested that both reactive oxygen species and NO radical mediate the strand breaks. The formation of nitric oxide was observed in NPRO solution irradiated with UVA. We analyzed the photodynamic spectrum of mutation induction and DNA breakage using monochromatic radiation at a series of wavelengths between 300 and 400 nm. Both mutation frequencies and DNA breakage were highest at the absorption maximum of NPRO, 340 nm. The co-mutagenic and co-toxic actions of NPRO and sunlight merit attention as possible mechanisms increasing the carcinogenic risk from UVA irradiation. PMID:12189198

  8. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  9. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species.

    PubMed

    Passaglia Schuch, André; Dos Santos, Mauricio Beux; Mendes Lipinski, Victor; Vaz Peres, Lucas; Dos Santos, Caroline Peripolli; Zanini Cechin, Sonia; Jorge Schuch, Nelson; Kirsh Pinheiro, Damaris; da Silva Loreto, Elgion Lúcio

    2015-08-01

    The increased incidence of solar ultraviolet radiation (UV) due to ozone depletion has been affecting both terrestrial and aquatic ecosystems and it may help to explain the enigmatic decline of amphibian populations in specific localities. In this work, influential events concerning the Antarctic ozone hole were identified in a dataset containing 35 years of ozone measurements over southern Brazil. The effects of environmental doses of UVB and UVA radiation were addressed on the morphology and development of Hypsiboas pulchellus tadpole (Anura: Hylidae), as well as on the induction of malformation after the conclusion of metamorphosis. These analyzes were complemented by the detection of micronucleus formation in blood cells. 72 ozone depletion events were identified from 1979 to 2013. Surprisingly, their yearly frequency increased three-fold during the last 17 years. The results clearly show that H. pulchellus tadpole are much more sensitive to UVB than UVA light, which reduces their survival and developmental rates. Additionally, the rates of micronucleus formation by UVB were considerably higher compared to UVA even after the activation of photolyases enzymes by a further photoreactivation treatment. Consequently, a higher occurrence of malformation was observed in UVB-irradiated individuals. These results demonstrate the severe genotoxic impact of UVB radiation on this treefrog species and its importance for further studies aimed to assess the impact of the increased levels of solar UVB radiation on declining species of the Hylidae family. PMID:25957080

  10. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Progress report, 1 January-30 June 1993

    SciTech Connect

    Gangloff, R.P.; Scully, J.R.; Stoner, G.E.; Thornton, E.A.; Wawner, F.E. Jr.; Wert, J.A.

    1993-07-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  11. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Progress report, 1 January-30 June 1994

    SciTech Connect

    Gangloff, R.P.

    1994-07-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, the authors report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. The authors generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  12. NASA-UVA light aerospace alloy and structures technology program (LA2ST). Progress report, 1 July-31 December 1993

    SciTech Connect

    Gangloff, R.P.; Scully, J.R.; Starke, E.A. Jr.; Stoner, G.E.; Thornton, E.A.; Wawner, F.E. Jr.; Wert, J.A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, the authors report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. Projects generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  13. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  14. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides †

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  15. Effects of 8-methoxypsoralen plus 365 nm UVA light on Candida albicans cells. An electron microscopic study.

    PubMed

    Scherwitz, C; Rassner, G; Martin, R

    1978-09-28

    Candida (C) albicans cells were exposed to 8-Methoxypsoralen (8-MOP) concentrations of 1.0 microgram/ml and 10.0 microgram/ml medium and irradiated with 365 nm light. The amount of energy emitted was 4.8 J/cm2. Two divergent types of cell damage occured concerning yeast cell cytoplasm and cell wall. Two hours after exposure cytoplasmic changes involving mitochondria, which showed irregularities in shape, blurred appearance or loss of mitochondrial cristae and outer membrane were seen. The number of vacuoles was increased. The cytoplasm showed large electron transparent areas, the cytoplasmic membrane disappeared in some areas completely. Nucleus and nuclear envelope usually remained intact in early stages. 24h after exposure conspicuous cell wall alterations were observed in addition to cytoplasmic changes. Newly produced cell wall material formed ball-like protrusions or was adherent sickle-shaped to the cell wall. The investigations strongly suggest that the results found after 8-MOP-UVA treatment of C. albicans cells can not be interpreted in the sense of a general cytotoxic effect. Apparently it takes the form of a combination of events involving regressive and progressive alterations. PMID:363068

  16. Effects of 8-methoxypsoralen plus 365 nm UVA light on Candida albicans cells. An electron microscopic study.

    PubMed

    Scherwitz, C; Rassner, G; Martin, R

    1978-01-01

    Candida (C.) albicans cells were exposed to 8-Methoxypsoralen (8-MOP) concentrations of 1.0 microgram/ml and 10.0 micrograms/ml medium and irradiated with 365 nm light. The amount of energy emitted was 4.8 J/cm2. Two divergent types of cell damage occured concerning yeast cell cytoplasm and cell wall. Two hours after exposure cytoplasmic changes involving mitochondria, which showed irregularities in shape, blurred appearance or loss of mitochondrial cristae and outer membrane were seen. The number of vacuoles was increased. The cytoplasm showed large electron transparent areas, the cytoplasmic membrane disappeared in some areas completely. Nucleus and nuclear envelope usually remained intact in early stages. 24 h after exposure conspicuous cell wall alterations were observed in addition to cytoplasmic changes. Newly produced cell wall material formed ball-like protrusions or was adherent sickle-shaped to the cell wall. The investigations strongly suggest that the results found after 8-MOP-UVA treatment of C. albicans cells can not be interpreted in the sense of a general cytotoxic effect. Apparently it takes the form of a combination of events involving regressive and progressive alterations. PMID:394689

  17. Protection by zinc against UVA- and UVB-induced cellular and genomic damage in vivo and in vitro.

    PubMed

    Record, I R; Jannes, M; Dreosti, I E

    1996-01-01

    For many years, zinc salts have been used both topically and orally to treat minor burns and abrasions as well as to enhance wound repair in man and animals. In this study we describe the protective effects of zinc against UV-induced genotoxicity in vitro and against sunburn cell formation in mouse skin in vivo. Cultured skin cells from neonatal mice showed a dramatic increase in the number of micronuclei as a result of UVA and UVB irradiation. Inclusion of zinc at 5 micrograms/mL in the medium significantly reduced the frequency of micronuclei and of micronucleated cells. In hairless mice, topical application of zinc chloride for 5 consecutive days or a single application 2 h prior to UV exposure reduced the number of sunburn cells in the epidermis as did application of zinc 1 h after exposure. Application 2 h after irradiation also tended to have a protective effect, although there was a large variation between animals. It is proposed that an influx of zinc can protect epidermal cells against some of the more delayed effects of UV-induced damage. PMID:8862734

  18. UVA-activated 8-methoxypsoralen (PUVA) causes G2/M cell cycle arrest in Karpas 299 T-lymphoma cells.

    PubMed

    Bartosová, Jitka; Kuzelová, Katerina; Pluskalová, Michaela; Marinov, Iuri; Halada, Petr; Gasová, Zdenka

    2006-10-01

    We investigated the effect of UVA-activated 8-methoxypsoralen (PUVA) on the cell line Karpas 299 derived from anaplastic large-cell lymphoma (ALCL) expressing chimeric fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM/ALK). NPM/ALK activates phosphatidylinositol 3 kinase (PI3K)/Akt pathway responsible for the cell protection from apoptosis. We found that PUVA treatment first induced G2/M cell cycle arrest resulting in a decrease in the cell proliferation rate. The mitochondrial apoptosis was triggered immediately following PUVA treatment, as we judged from the unmasking of mitochondrial membrane antigen 7A6. However, the mitochondrial membrane depolarization was not observed and caspase-3 was only slightly activated. The late apoptotic events were lacking: neither translocation of phosphatidylserine to the outer side of plasma membrane nor DNA fragmentation occurred. We revealed that PUVA enhanced the expression of peroxiredoxin, stress protein endoplasmin and galectin-3. Galectin-3 has been shown to protect mitochondrial membrane integrity and prevent cytochrome c release thereby blocking the effector stage of apoptosis. We suggest that the elevated level of this protein following PUVA treatment acts in synergy with the constitutively expressed chimeric kinase NPM/ALK to block the apoptosis. PMID:16735125

  19. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. PMID:24329403

  20. Treatment of moderate and severe adult chronic atopic dermatitis with narrow-band UVB and the combination of narrow-band UVB/UVA phototherapy.

    PubMed

    Fernández-Guarino, Montserrat; Aboin-Gonzalez, Sonsoles; Barchino, Lucia; Velazquez, Diana; Arsuaga, Carmen; Lázaro, Pablo

    2016-01-01

    The phototherapy is a safe and effective technique for the treatment of adult patients with atopic dermatitis (AD). The treatment of chronic forms of the disease is most often done with narrow-band UVB (NB-UVB). There also exist effective phototherapy options against the AD. The aim of this study was to asses if the combination of NB-UVB with UVA was more effective than the treatment with only NB-UVB against adult chronic AD. We carried out a prospective and observational study. Adult patients with chronic AD with more than 50% of the total body surface area affected (TBSA) were included. The affected TBSA was calculated using the so-called "rule of nines." Patients with a clearance rate >75% of the initial affected TBSA or complete clearance rate were considered as complete response (CR). An analogue scale from 0 to 10 was used to measure the improvement grade of the pruritus. The treatments were repeated three times a week. The initial doses of NB-UVB and UVA were determined by patient's phototype. The treatments were performed using a phototherapy booth (UV7002, Walmann, Villingen-Schwenningen, Germany(®) ) with TL01 and UVA fluorescent lamps. Statistical analysis was performed with SPSS(®) (IBM, New York, NY) for Windows 21.0. A total of 26 patients with adult chronic AD were included in the study, 16 patients were treated with UVB-BE and 10 patients with the combined treatment option NB-UVB/UVA. The mean value of cumulative doses and the mean number of performed treatments were similar between both groups of patients (p > 0.05). The mean value of duration of response was significantly higher in the patients treated only with NB-UVB, 101 versus 6.8 months (p ≥ 0.05). No differences were observed for the patients that showed complete response (p = 0.42) and in the analogue scale of pruritus (p > 0.005). In our study, the patients treated with the combination of NB-UVB and UVA were similar to the patient that were only treated with NB-UVB e

  1. Experiences of Serveis de Cultura Popular in the Field of Co-Production and Exchange.

    ERIC Educational Resources Information Center

    Tuni, Lluis

    1992-01-01

    Describes efforts of Serveis de Cultura Popular, a nonprofit foundation in Barcelona (Spain), in the coproduction of educational videos. Highlights include contests that awarded prizes for completed videos, video scripts, or ideas for videos; coproduction with educational television; coproduction of an interactive videodisc; and international…

  2. Content Analysis Schedule for Bilingual Education Programs: BICEP Intercambio de la Cultura.

    ERIC Educational Resources Information Center

    Shore, Marietta Saravia; Nafus, Charles

    This content analysis schedule for BICEP Intercambio de la Cultura (San Bernardino, California), presents information on the history, funding, and scope of the project. Included are sociolinguistic process variables such as the native and dominant languages of students and their interaction. Information is provided on staff selection and the…

  3. Giving a Virtual Voice to the Silent Language of Culture: The "Cultura" Project.

    ERIC Educational Resources Information Center

    Furstenberg, Gilberte; Levet, Sabine; English, Kathryn; Maillet, Katherine

    2001-01-01

    Presents a Web-based, cross-cultural, curricular initiative entitled, "Cultura," designed to develop foreign language students' understanding of foreign cultural attitudes, concepts, beliefs, and ways of interacting and looking at the world. Focuses on the pedagogy of electronic media, with particular emphasis on the ways the Web can be used to…

  4. Colour Changes on the Surface of the Rock Materials Due to UV-A and UV-B Rays

    NASA Astrophysics Data System (ADS)

    Binal, Adil; Ayderman, Aykut; Sel, Aylin

    2015-04-01

    The colour of the rocks used in the current buildings, and historical monuments is an important parameter in architecture and engineering. In addition, engineering geologists use the colour in order to identify the weathering class of rock material. The main colour of the stone, especially, are affected by the mineral size, the colour of the primary minerals and matrix material, as well as the colour of the accessory minerals. Due to atmospheric effects, changes in the outer surface colour of the rocks used as siding materials occur with over time. Factors causing the colour change are carbon dioxide (CO2), ozone (O3), sulphate (SO2, SO3) and nitrate (NOx) from the atmosphere with aerosols as well as UV rays from the sun. There is no more work in the literature on colour changes caused by UV-A and UV-B rays. In this study, the effects of ultraviolet in the colour of the surfaces of basalt, limestone, ignimbrite, travertine and sandstone have been simulated with a new experimental device in the laboratory medium. Lutron colour analyser (RGB-1002) was used for the measurements of RGB colours. Colour differences between the beginning and end of tests were determined with the standard practice for calculation of colour tolerances and colour differences from instrumentally measured colour coordinates (ASTM D2244). As a result of the experiments performed, lighten that seem on dark-grey micritic limestone (colour change ratio, CCR: 17.06) and basalt samples (CCR: 8.24) become even visually noticeable. Black and red ignimbrite samples having high porosity were presented the lower rate of colour changes. Finally, colour darkening has been observed in the light-coloured travertine (CCR: 13.8) and sandstone samples (CCR: 20.99).

  5. Bacteriophage inactivation by UV-A illuminated fullerenes: role of nanoparticle-virus association and biological targets.

    PubMed

    Badireddy, Appala Raju; Budarz, Jeffrey Farner; Chellam, Shankararaman; Wiesner, Mark R

    2012-06-01

    Inactivation rates of the MS2 bacteriophage and (1)O(2) generation rates by four different photosensitized aqueous fullerene suspensions were in the same order: aqu-nC(60) < C(60)(OH)(6) ≈ C(60)(OH)(24) < C(60)(NH(2))(6). Alterations to capsid protein secondary structures and protein oxidation were inferred by detecting changes in infrared vibrational frequencies and carbonyl groups respectively. MS2 inactivation appears to be the result of loss of capsid structural integrity (localized deformation) and the reduced ability to eject genomic RNA into its bacterial host. Evidence is also presented for possible capsid rupture in MS2 exposed to UV-A illuminated C(60)(NH(2))(6) through TEM imagery and detection of RNA infrared fingerprints in ATR-FTIR spectra. Fullerene-virus mixtures were also directly visualized in the aqueous phase using a novel enhanced darkfield transmission optical microscope fitted with a hyperspectral imaging (HSI) spectrometer. Perturbations in intermolecular extended chains, HSI, and electrostatic interactions suggest that inactivation is a function of the relative proximity between nanoparticles and viruses and (1)O(2) generation rate. MS2 log survival ratios were linearly related to CT (product of (1)O(2) concentration C and exposure time T) demonstrating the applicability of classical Chick-Watson kinetics for all fullerenes employed in this study. Results suggest that antiviral properties of fullerenes can be increased by adjusting the type of surface functionalization and extent of cage derivatization thereby increasing the (1)O(2) generation rate and facilitating closer association with biological targets. PMID:22545948

  6. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2.

    PubMed

    Triantis, T M; Fotiou, T; Kaloudis, T; Kontos, A G; Falaras, P; Dionysiou, D D; Pelaez, M; Hiskia, A

    2012-04-15

    In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO(2) (N-TiO(2)) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO(2), Kronos and reference TiO(2) nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO(2) followed by N-TiO(2) with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO(2) nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO(2) for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO(2) displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO(2)(-), NO(3)(-) and NH(4)(+)) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light. PMID:22169146

  7. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts.

    PubMed

    Gruber, Florian; Ornelas, Cayo Mecking; Karner, Susanne; Narzt, Marie-Sophie; Nagelreiter, Ionela Mariana; Gschwandtner, Maria; Bochkov, Valery; Tschachler, Erwin

    2015-11-01

    Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected

  8. A dinaphtho[8,1,2-cde:2',1',8'-uva]pentacene derivative and analogues: synthesis, structures, photophysical and electrochemical properties.

    PubMed

    Li, Xiao-Jun; Li, Meng; Lu, Hai-Yan; Chen, Chuan-Feng

    2015-07-28

    Dinaphtho[8,1,2-cde:2',1',8'-uva]pentacene and analogues as a new type of acene derivatives with scorpion-shaped structures were conveniently synthesized. Their structures, photophysical and electrochemical properties were experimentally and theoretically investigated. It was found that the pentacene derivative has a twisted configuration, but shows marked intermolecular π-π interactions, strong electronic delocalization, and a small HOMO-LUMO bandgap, which are different from those of pentacene and pentatwistacene derivatives with similar structures. PMID:26104736

  9. Photoallergic contact dermatitis due to combined UVB (4-methylbenzylidene camphor/octyl methoxycinnamate) and UVA (benzophenone-3/butyl methoxydibenzoylmethane) absorber sensitization.

    PubMed

    Schmidt, T; Ring, J; Abeck, D

    1998-01-01

    In a 71-year-old male Caucasian patient with persistent eczema on light-exposed skin, photocontact allergy was demonstrated to the UV filter substances 4-methylbenzylidene camphor (UVB), octyl methoxycinnamate (UVB), benzophenone-3 (UVA) and butyl methoxydibenzoylmethane (UVA) present in sunscreen products used by the patient over several years. A significantly reduced UVB sensitivity of 25 mJ/cm2 in this patient (normal minimal erythema dose in our laboratory = 70-130 mJ/cm2) was considered an early indication of a persistent light reaction. Topical anti-inflammatory treatment over 2 weeks together with consequent application of a sunscreen containing Mexoryl SX/titanium dioxide led to complete remission. Taking into account the widespread use of the above UV filter substances not only in sun protection products, but also in cosmetics such as antiaging lotions and day care products, the possible risk of allergy to these chemicals has to be taken seriously. The substitution of known photocontact sensitizers in UV filters by photostable compounds and detailed product information are the basis of preventive strategies. PMID:9621150

  10. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    PubMed

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. PMID:23357865