Science.gov

Sample records for cultured hepg2 cells

  1. Culturing of HepG2 cells with human serum improve their functionality and suitability in studies of lipid metabolism.

    PubMed

    Pramfalk, Camilla; Larsson, Lilian; Härdfeldt, Jennifer; Eriksson, Mats; Parini, Paolo

    2016-01-01

    Primary human hepatocytes are considered to be the “gold standard” in studies of lipid metabolism despite a number of disadvantages like large inter-donor differences and inability to proliferate. Human hepatoma HepG2 cells retain many hepatocyte-specific functions but do also exhibit disadvantages like secretion of lipoproteins and bile acids that do not emulate human hepatocytes in vivo. The aim of this study was to investigate whether supplementation of the culturing media with human serum could improve the functionality of HepG2 cells and thereby make them more apposite in studies of lipid metabolism. The cells were cultured with human sera (2%) from three healthy individuals or with fetal bovine serum (10%). Lipoprotein, apolipoprotein, bile acid, albumin, and proprotein subtilisin/kexin type 9 (Pcsk9) concentrations in the cell media, as well as gene and protein expressions were then measured. We found apoB-containing LDL-sized but also apoA1-containing HDL-sized particles, increased bile acid and Pcsk9 concentrations in the cell media, as well as increased expression of genes involved in lipid metabolism and differentiation in HepG2 cells cultured with human sera. Thus, supplementation of the culturing media with human serum improves the functionality of HepG2 cells and makes them more apposite in studies of lipid metabolism. PMID:26515253

  2. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  3. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.

    PubMed

    Chiew, Geraldine Giap Ying; Fu, Afu; Low, Kar Perng; Luo, Kathy Qian

    2015-01-01

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy. PMID:26053957

  4. Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line

    PubMed Central

    Faedmaleki, Firouz; H Shirazi, Farshad; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2014-01-01

    Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming more and more widespread in medicine. In this study we investigated the cytotoxic effects of AgNPs on liver primary cells of mice, as well as the human liver HepG2 cell. Cell viability was examined with MTT assay after HepG2 cells exposure to AgNPs at 1, 2, 3, 4, 5, 7.5, 10 ppm compared to mice primary liver cells at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration-dependent decrease of cell viability in both cells. IC50 value of 2.764 ppm (µg/mL) was calculated in HepG2 cell line and IC50 value of 121.7 ppm (µg/mL) was calculated in primary liver cells of mice. The results of this experiment indicated that silver nanoparticles had cytotoxic effects on HepG2 cell line and primary liver cells of mice. The results illustrated that nano-silver had 44 times stronger inhibitory effect on the growth of cancerous cells (HepG2 cell line) compared to the normal cells (primary liver cells of mice). which might further justify AgNPs as a cytotoxic agents and a potential anticancer candidate which needs further studies in this regard. PMID:24734076

  5. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture.

    PubMed

    Huang, Fang; Cui, Long; Peng, Cheng-Hong; Wu, Xu-Bo; Han, Bao-San; Dong, Ya-Dong

    2014-04-14

    Chitosan-gelatin B microspheres with an open, interconnected, highly macroporous (100-200 µm) structure were prepared via a three-step protocol combining freeze-drying with an electrostatic and ionic cross-linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan-gelatin B microspheres, with N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide/N-hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan-gelatin B microspheres to attain improved biocompatibility. Water absorption of the three-dimensional macroporous chitosan-gelatin B microspheres (3D-P-CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D-P-CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D-P-CGMs was spherical, unlike that of cells cultured under traditional two-dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D-P-CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D-P-CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D-P-CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24729421

  6. Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge

    PubMed Central

    Bokhari, Maria; Carnachan, Ross J; Cameron, Neil R; Przyborski, Stefan A

    2007-01-01

    Cultured cells are dramatically affected by the micro-environment in which they are grown. In this study, we have investigated whether HepG2 liver cells grown in three dimensional (3-D) cultures cope more effectively with the known cytotoxic agent, methotrexate, than their counterparts grown on traditional two dimensional (2-D) flat plastic surfaces. To enable 3-D growth of HepG2 cells in vitro, we cultured cells on 3-D porous polystyrene scaffolds previously developed in our laboratories. HepG2 cells grown in 3-D displayed excellent morphological characteristics and formed numerous bile canaliculi that were seldom seen in cultures grown on 2-D surfaces. The function of liver cells grown on 3-D supports was significantly enhanced compared to activity of cells grown on 2-D standard plasticware. Unlike their 2-D counterparts, 3-D cultures were less susceptible to lower concentrations of methotrexate. Cells grown in 3-D maintained their structural integrity, possessed greater viability, were less susceptible to cell death at higher levels of the cytotoxin compared to 2-D cultures, and appeared to respond to the drug in a manner more comparable to its known activity in vivo. Our results suggest that hepatotoxicity testing using 3-D cultures might be more likely to reflect true physiological responses to cytotoxic compounds than existing models that rely on 2-D culture systems. This technology has potential applications for toxicity testing and drug screening. PMID:17711423

  7. Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge.

    PubMed

    Bokhari, Maria; Carnachan, Ross J; Cameron, Neil R; Przyborski, Stefan A

    2007-10-01

    Cultured cells are dramatically affected by the micro-environment in which they are grown. In this study, we have investigated whether HepG2 liver cells grown in three dimensional (3-D) cultures cope more effectively with the known cytotoxic agent, methotrexate, than their counterparts grown on traditional two dimensional (2-D) flat plastic surfaces. To enable 3-D growth of HepG2 cells in vitro, we cultured cells on 3-D porous polystyrene scaffolds previously developed in our laboratories. HepG2 cells grown in 3-D displayed excellent morphological characteristics and formed numerous bile canaliculi that were seldom seen in cultures grown on 2-D surfaces. The function of liver cells grown on 3-D supports was significantly enhanced compared to activity of cells grown on 2-D standard plasticware. Unlike their 2-D counterparts, 3-D cultures were less susceptible to lower concentrations of methotrexate. Cells grown in 3-D maintained their structural integrity, possessed greater viability, were less susceptible to cell death at higher levels of the cytotoxin compared to 2-D cultures, and appeared to respond to the drug in a manner more comparable to its known activity in vivo. Our results suggest that hepatotoxicity testing using 3-D cultures might be more likely to reflect true physiological responses to cytotoxic compounds than existing models that rely on 2-D culture systems. This technology has potential applications for toxicity testing and drug screening. PMID:17711423

  8. Determination of malondialdehyde by liquid chromatography as the 2,4-dinitrophenylhydrazone derivative: a marker for oxidative stress in cell cultures of human hepatoma HepG2.

    PubMed

    Mateos, Raquel; Goya, Luis; Bravo, Laura

    2004-06-01

    Malondialdehyde (MDA) is considered a presumptive biomarker for lipid peroxidation in live organisms and cultured cells. The present study adapts an accurate and reproducible method to measure MDA by high-performance liquid chromatography (HPLC) as its 2,4-dinitrophenylhydrazone derivative in human hepatoma HepG2 cells in culture. Since MDA is assumed to increase in conditions of cellular oxidative stress, two compounds that induce pharmacological oxidative stress in cell cultures, hydrogen peroxide (H(2)O(2)) and tert-butyl hydroperoxide (t-BOOH), have been used in HepG2 cells. The results report a significant increase in the content of MDA derivative after treatment with 200 and 500microM t-BOOH for 3h, while H(2)O(2) in doses up to 500microM failed to evoke a similar response, indicating a stronger lipid peroxidation of t-BOOH to HepG2 cells than H(2)O(2). Thus, MDA can be used as a reliable biomarker for cellular oxidative stress in human hepatoma HepG2. PMID:15113537

  9. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures

    PubMed Central

    Meissen, John K.; Hirahatake, Kristin M.; Adams, Sean H.; Fiehn, Oliver

    2014-01-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation. PMID:26190955

  10. Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study

    PubMed Central

    Moscato, Stefania; Ronca, Francesca; Campani, Daniela; Danti, Serena

    2015-01-01

    It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena. PMID:25590431

  11. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    SciTech Connect

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  12. Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture.

    PubMed

    Pemberton, R M; Xu, J; Pittson, R; Biddle, N; Drago, G A; Jackson, S K; Hart, J P

    2009-02-15

    Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 degrees C, at an operating potential of +0.4V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol(-1) was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n=4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R(2)=0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20mM, with those determined spectrophotometrically (R(2)=0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(10(6) cells min) based on a 24-h period in culture. PMID:19027709

  13. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    PubMed

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides. PMID:8517781

  14. Cytotoxicity of monensin, narasin and salinomycin and their interaction with silybin in HepG2, LMH and L6 cell cultures.

    PubMed

    Cybulski, Wojciech; Radko, Lidia; Rzeski, Wojciech

    2015-03-01

    The cytotoxic effect of monensin, narasin and salinomycin followed by their co-action with silybin in the cell line cultures of human hepatoma (HepG2), chicken hepatoma (LMH) or rat myoblasts (L6) have been investigated. The effective concentration of the studied ionophoric polyethers has been assessed within two biochemical endpoints: mitochondrial activity (MTT assay) and membrane integrity (LDH assay) after 24h incubation of each compound and farther, the cytotoxicity influenced in course of their interaction with silybin was determined. The most affected endpoints were found for inhibition of mitochondrial activity of the hepatoma cell lines and their viability depended on concentration of the ionophoric polyether, as well as on the cell line tested. The rat myoblasts were more sensitive target for cellular membrane damage when compared to inhibition of mitochondrial activity. An interaction between the ionophoric polyethers and silybin resulted a considerable cytotoxicity decrease within all studied cell lines; the combination index (CI) showed differences of interaction mode and dependence on cell culture, concentration of silybin, as well as the assay used. The obtained results are of interest in respect to recent findings on applicability of salinomycin and monensin for human therapy. PMID:25500126

  15. Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Ferruzza, Simonetta; Ranaldi, Giulia; Sambuy, Yula; Arnoldi, Anna

    2016-01-01

    Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. PMID:27455315

  16. Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Ferruzza, Simonetta; Ranaldi, Giulia; Sambuy, Yula; Arnoldi, Anna

    2016-01-01

    Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. PMID:27455315

  17. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells

    PubMed Central

    da Silva, Vanessa R.; Ralat, Maria A.; Quinlivan, Eoin P.; DeRatt, Barbara N.; Garrett, Timothy J.; Chi, Yueh-Yun; Frederik Nijhout, H.; Reed, Michael C.

    2014-01-01

    Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5′-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency. PMID:24824655

  18. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. PMID:23568058

  19. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells.

    PubMed

    Hashimoto, Naoto; Blumberg, Jeffrey B; Chen, C-Y Oliver

    2016-02-01

    A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells. HepG2 cells were grown for 3 days in Glu ranging from 5.5 to 50 mmol/L and/or cyanidin-3-glucoside (C3G) ranging from 0 to 25 μmol/L. Subsequently, the capacity of HepG2 cells to metabolize Q was assessed for up to 16 h. Q metabolites were analyzed by high-performance liquid chromatography. Four major Q metabolites were observed in the culture medium and inside the HepG2 cells. Three of these metabolites appear to be sulfated forms of Q or methylated Q, and one was a methylated Q. These metabolites and Q itself were reduced or tended to be reduced in cells grown in a high Glu compared to a normal Glu medium. Addition of C3G or superoxide dismutase plus catalase did not prevent or enhance reduction of Q metabolites. In vitro, a hyperglycemic milieu decreases the production of the principal Q metabolites in HepG2 cells, mediated through mechanisms independent of oxidative stress. PMID:26692239

  20. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells.

    PubMed

    Tang, Ying-Mei; Bao, Wei-Min; Yang, Jin-Hui; Ma, Lin-Kun; Yang, Jing; Xu, Ying; Yang, Li-Hong; Sha, Feng; Xu, Zhi-Yuan; Wu, Hua-Mei; Zhou, Wei; Li, Yan; Li, Yu-Hua

    2016-09-01

    Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future. PMID:27485485

  1. Characterization of secreted proteins in HepG2 and LO2 cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Ruan, Qiuyong; Liao, Fadian; Lin, Jinyong; Huang, Zufang; Liu, Nenrong; Chen, Rong

    2014-11-01

    Secreted proteins, the promising source of biomarkers for early detection and diagnosis of cancer, have received considerable attention. Raman spectroscopy and principal component analysis (PCA) were used to characterize the secreted proteins collected from the cell cultures of human hepatoma cell line HepG2 and normal human liver cell line LO2 in this paper. We found the major difference of secreted proteins Raman spectra between HepG2 and LO2 cells were in the range of 1200cm-1-1800cm-1. Compared with LO2 cells, some significant changes based on secondary structure of secreted proteins in HepG2 cells were observed, including the increase in the relative intensity of the band at 1004cm-1, 1445cm-1, 1674cm-1 and the decrease at 1074cm-1. These variations of Raman bands indicated that the species and conformation of secreted proteins in HepG2 cells changed. The measured Raman spectra of the two groups were separated into two distinct clusters with no overlap and high specificity and sensitivity by PCA. These results show that the combination of Raman spectroscopy and PCA analysis may be a powerful tool for distinguishing the secreted proteins between human hepatoma cells and normal human liver cells, provide a new thought to analyze the secreted proteins from cancer cells and find a novel cancer biomarker.

  2. Conjugated linoleic acid upregulates LDL receptor gene expression in HepG2 cells.

    PubMed

    Yu-Poth, Shaomei; Yin, Dezhong; Zhao, Guixiang; Kris-Etherton, Penny M; Etherton, Terry D

    2004-01-01

    Conjugated linoleic acid (CLA) exerts anticarcinogenic and antiatherosclerotic effects in animals. The present study was conducted to examine the effects of CLA on LDL receptor (LDLr) expression in HepG2 cells, and to evaluate whether the sterol response element binding protein 1 (SREBP-1) and acyl CoA:cholesterol acyltransferase (ACAT) were involved in the regulation of LDLr expression by CLA. When HepG2 cells were cultured with serum-free DMEM for 48 h, there was a three- to fivefold (P<0.05) increase in LDLr protein and mRNA levels. Incubation of HepG2 cells in serum-free medium supplemented with 25-hydroxycholesterol (25OH, 5 mg/L) for 24 h decreased LDLr protein and mRNA by 50-70% (P<0.05) and mature SREBP-1 by 20-40% (P<0.05). CLA, but not linoleic acid, antagonized the depressive effects of 25OH and increased both LDLr protein and mRNA abundance twofold (P<0.05). LDLr protein and mRNA abundance were not different when HepG2 cells were cultured with CLA (0.4 mmol/L) plus 25OH in the presence or absence of an ACAT inhibitor (58-035, 1 mg/L). Furthermore, CLA had no effect on SREBP-1 abundance. These results suggest that CLA upregulates LDLr expression via a mechanism that is independent of ACAT and SREBP-1. PMID:14704295

  3. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines

    PubMed Central

    Louisa, Melva; Suyatna, Frans D.; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Background: Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. Materials and Methods: This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Results: Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. Conclusion: This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters. PMID:27376043

  4. Piperlongumine as a potential activator of AMP-activated protein kinase in HepG2 cells.

    PubMed

    Ryu, Jahee; Kim, Myoung-Jin; Kim, Tae-Oh; Huh, Tae-Lin; Lee, Sung-Eun

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of fatty acid biosynthesis and fatty acid oxidation throughout the body. Piperlongumine (PL) isolated from Piper longum (L.) was shown to potently upregulate activation of AMPK via phosphorylation and inactivation of acetyl-CoA carboxylases in cultured HepG2 cells, presumably enhancing the transfer of fatty acids into mitochondrial cells by inhibiting malonyl-CoA production. PL showed cytotoxicity on HepG2 cell growth at the concentration of 5 μM of PL, while more than 80% of HepG2 cells were survived at the concentration of 2 μM of PL. Overall, the results of this study indicate that PL activates AMPK phosphorylation and possesses cytotoxicity in HepG2 cells. PMID:24853732

  5. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  6. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells

    PubMed Central

    ZHOU, JIN; LI, LU; FANG, LI; XIE, HUA; YAO, WENXIU; ZHOU, XIANG; XIONG, ZHUJUAN; WANG, LI; LI, ZHIXI; LUO, FENG

    2016-01-01

    Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo. PMID:27347174

  7. Mitogenic effects of coagulation factor XII and factor XIIa on HepG2 cells

    SciTech Connect

    Schmeidler-Sapiro, K.T.; Gordon, E.M. ); Ratnoff, O.D. )

    1991-05-15

    The structure of coagulation factor XII (Hageman factor), inferred from its DNA sequence, includes two epidermal growth factor (EGF)-homologous domains in its amino-terminal region. This suggests that factor XII may exhibit EGF-like activities. Reciprocal antigenic cross-reactivity between factor XII and EGF was shown by exposing purified human factor XII or mouse EGF to anti-mouse EGF or anti-human factor XII. Western blot analysis showed that anti-mouse EGF recognized intact factor XII at 80 kDa. Together, these results suggest that the EGF-homologous domains are accessible for anti-EGF binding in native factor XII. To determine whether factor XII has mitogenic activity, HepG2 or L cells (10{sup 4} cells per well) were grown in serum-free medium in the presence or absence of factor XII or kaolin-activated factor XII (factor XIIa). Both factors XII and XIIa (6.0 {mu}g/ml) enhanced cell proliferation. Various doses of factor XII enhanced cell proliferation, ({sup 3}H)thymidine incorporation, and ({sup 3}H)leucine incorporation in HepG2 cells cultured under the same conditions. These data indicate that factor XII, like EGF, is a mitogen for HepG2 cells and suggest a possible autocrine role in the liver.

  8. Upregulations of metallothionein gene expressions and tolerance to heavy metal toxicity by three dimensional cultivation of HepG2 cells on VECELL 3-D inserts.

    PubMed

    Kubo, Takashi; Kuroda, Yukie; Horiuchi, Shinichiro; Kim, Su-Ryang; Sekino, Yuko; Ishida, Seiichi

    2016-02-01

    The VECELL 3-D insert is a new culture scaffold consisting of collagen-coated ePTFE (expanded polytetrafluoroethylene) mesh. We analyzed the effects of VECELL 3-D inserts on the functionality of HepG2, a human hepatocellular carcinoma cell line. HepG2 cells cultured on VECELL 3-D inserts maintained a round shape, while those cultured on a standard culture plate or collagen-coated cell culture plate showed a flattened and cubic epithelial-like shape. HepG2 cells cultured on VECELL 3-D inserts had showed upregulated expression of metallothionein genes and in turn a higher tolerance to toxicity induced by heavy metals. These results suggest that HepG2 cell functions were changed by the cell morphology that is induced by culturing on a VECELL 3-D insert. PMID:26763402

  9. Selenoprotein Genes Exhibit Differential Expression Patterns Between Hepatoma HepG2 and Normal Hepatocytes LO2 Cell Lines.

    PubMed

    Zhao, Hua; Tang, Jiayong; Xu, Jingyang; Cao, Lei; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Wang, Kangning

    2015-10-01

    The purpose of this study was to compare messenger RNA (mRNA) expression of selenoprotein genes between hepatoma HepG2 and normal hepatocytes LO2 cell lines. Liver HepG2 and LO2 cells were cultured in 12-well plates under the same condition until cells grew to complete confluence, and then cells were harvested for total RNA and protein extraction. The qPCRs were performed to compare gene expression of 14 selenoprotein genes and 5 cancer signaling-related genes. Enzyme activities were also assayed. The results showed that human hepatoma HepG2 cells grew faster than normal hepatocytes LO2 cells. Among the genes investigated, 10 selenoprotein genes (Gpx1, Gpx3, Gpx4, Selx, Sepp, Sepw1, Sepn1, Selt, Seli, Selh) and 3 cancer signaling-related genes (Bcl-2A, caspase-3, and P38) were upregulated (P < 0.05), while Selo and Bcl-2B were downregulated (P < 0.05) in hepatoma HepG2 cells compared to LO2 cells. Significant correlations were found between selenoprotein genes and the cancer signaling-related genes Caspase3, P53, Bc1-2A, and Bc1-2B. Our results revealed that selenoprotein genes were aberrantly expressed in hepatoma HepG2 cells compared to normal liver LO2 cells, which indicated that those selenoprotein genes may play important roles in the occurrence and development of liver carcinogenesis. PMID:25846212

  10. Selectivity of biopolymer membranes using HepG2 cells

    PubMed Central

    Lü, Dongyuan; Gao, Yuxin; Luo, Chunhua; Lü, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-01-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor. PMID:26816630

  11. Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells*

    PubMed Central

    Yee, Jennifer K.; Mao, Catherine S.; Hummel, Heidi S.; Lim, Shu; Sugano, Sharon; Rehan, Virender K.; Xiao, Gary; Lee, Wai-Nang Paul

    2008-01-01

    Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the conversion of stearate (18:0) to oleate (18:1n-9) and of palmitate (16:0) to palmitoleate (16:1), which are key steps in triglyceride synthesis in the fatty acid metabolic network. This study investigated the role of SCD1 in fatty acid metabolism in HepG2 cells using SCD1 inhibitors and stable isotope tracers. HepG2 cells were cultured with [U-13C]stearate, [U-13C]palmitate, or [1,2-13C]acetate and (1) DMSO, (2) compound CGX0168 or CGX0290, or (3) trans-10,cis-12 conjugated linoleic acid (CLA). 13C incorporation into fatty acids was determined by GC-MS and desaturation indices calculated from the respective ion chromatograms. FAS, SCD1, peroxisome proliferator-activated receptor α, and peroxisome proliferator-activated receptor γ mRNA levels were assessed by semiquantitative RT-PCR. The addition of CGX0168 and CGX0290 decreased the stearate and palmitate desaturation indices in HepG2 cells. CLA led to a decrease in the desaturation of stearate only, but not palmitate. Comparison of desaturation indices based on isotope enrichment ratios differed, depending on the origin of saturated fatty acid. SCD1 gene expression was not affected in any group. In conclusion, the differential effects of SCD1 inhibitors and CLA on SCD1 activity combined with the dependence of desaturation indices on the source of saturated fatty acid strongly support the compartmentalization of desaturation systems. The effects of SCD1 inhibition on fatty acid composition in HepG2 cells occurred through changes in the dynamics of the fatty acid metabolic network and not through transcriptional regulatory mechanisms. PMID:18599738

  12. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    SciTech Connect

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S. . E-mail: bkaphali@utmb.edu

    2006-10-15

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs

  13. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).

    PubMed

    Brandt, Anna Paula; Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Martinez, Glaucia Regina; Dos Santos Canuto, André Vinícius; Echevarria, Aurea; Di Pietro, Attilio; Cadena, Sílvia Maria Suter Correia

    2016-08-25

    Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment. PMID:27417255

  14. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK-STAT signaling pathway.

    PubMed

    Zhu, X; Xie, C; Li, Y-M; Huang, Z-L; Zhao, Q-Y; Hu, Z-X; Wang, P-P; Gu, Y-R; Gao, Z-L; Peng, L

    2016-01-01

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK-STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK-STAT signaling pathway. PMID:27253403

  15. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  16. An in vitro model for essential fatty acid deficiency: HepG2 cells permanently maintained in lipid-free medium.

    PubMed

    Furth, E E; Sprecher, H; Fisher, E A; Fleishman, H D; Laposata, M

    1992-11-01

    A stable essential fatty acid-deficient cell type, known as HepG2-EFD, was derived from the lipoprotein-producing human hepatoma cell line HepG2. These cells are particularly useful for quantitative studies involving essential fatty acids (n-6 and n-3 fatty acids) in secreted lipoproteins. Radiolabeled essential fatty acids can be delivered to these cells without altering the specific activity of the fatty acids, since the deficient cells contain no endogenous essential fatty acids. Using these cells, radioactivity data (dpm) from metabolic studies can be converted directly to mass, and masses as low as a few pmoles can be accurately measured. HepG2-EFD cell cultures were established by growing HepG2 cells in medium containing delipidated serum. After 10 days of growth in delipidated medium, HepG2 cells were completely depleted of all essential fatty acids. Compensatory increases in nonessential fatty acids (n-9 and n-7 fatty acids) including 20:3n-9 (the Mead acid), which is the hallmark fatty acid of essential fatty acid deficiency, were also observed in HepG2-EFD cells. Despite the lack of exogenous fatty acids in the medium and the lack of essential fatty acids in the cells, export of very low density lipoprotein (VLDL)-associated apolipoprotein B by HepG2-EFD was the same as observed for parent HepG2 cells. However, the activity of beta-oxidation of fatty acids in HepG2-EFD cells was much lower than in the parent cell line.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1464755

  17. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    PubMed

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect. PMID:25746384

  18. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  19. Investigation of Testosterone, Androstenone, and Estradiol Metabolism in HepG2 Cells and Primary Culture Pig Hepatocytes and Their Effects on 17βHSD7 Gene Expression

    PubMed Central

    Chen, Gang; Li, Sicong; Dong, Xinxing; Bai, Ying; Chen, Ailiang; Yang, Shuming; Fang, Meiying; Zamaratskaia, Galia; Doran, Olena

    2012-01-01

    Steroid metabolism is important in various species. The accumulation of androgen metabolite, androstenone, in pig adipose tissue is negatively associated with pork flavor, odour and makes the meat unfit for human consumption. The 17β-hydroxysteroid dehydrogenase type 7 (17βHSD7) expressed abundantly in porcine liver, and it was previously suggested to be associated with androstenone levels. Understanding the enzymes and metabolic pathways responsible for androstenone as well as other steroids metabolism is important for improving the meat quality. At the same time, metabolism of steroids is known to be species- and tissue-specific. Therefore it is important to investigate between-species variations in the hepatic steroid metabolism and to elucidate the role of 17βHSD7 in this process. Here we used an effective methodological approach, liquid chromatography coupled with mass spectrometry, to investigate species-specific metabolism of androstenone, testosterone and beta-estradiol in HepG2 cell line, and pig cultured hepatocytes. Species- and concentration-depended effect of steroids on 17βHSD7 gene expression was also investigated. It was demonstrated that the investigated steroids can regulate the 17βHSD7 gene expression in HepG2 and primary cultured porcine hepatocytes in a concentration-dependent and species-dependent pattern. Investigation of steroid metabolites demonstrated that androstenone formed a 3′-hydroxy compound 3β-hydroxy-5α-androst-16-ene. Testosterone was metabolized to 4-androstene-3,17-dione. Estrone was found as the metabolite for β-estradiol. Inhibition study with 17βHSD inhibitor apigenin showed that apigenin didn’t affect androstenone metabolism. Apigenin at high concentration (50 µM) tends to inhibit testosterone metabolism but this inhibition effect was negligible. Beta-estradiol metabolism was notably inhibited with apigenin at high concentration. The study also established that the level of testosterone and

  20. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    SciTech Connect

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  1. Ginseng (Panax quinquefolius) and Licorice (Glycyrrhiza uralensis) Root Extract Combinations Increase Hepatocarcinoma Cell (Hep-G2) Viability

    PubMed Central

    Popovich, David G.; Yeo, Shi Yun; Zhang, Wei

    2011-01-01

    The combined cytoactive effects of American ginseng (Panax quinquefolius) and licorice (Glycyrrhiza uralensis) root extracts were investigated in a hepatocarcinoma cell line (Hep-G2). An isobolographic analysis was utilized to express the possibility of synergistic, additive or antagonistic interaction between the two extracts. Both ginseng and licorice roots are widely utilized in traditional Chinese medicine preparations to treat a variety of ailments. However, the effect of the herbs in combination is currently unknown in cultured Hep-G2 cells. Ginseng (GE) and licorice (LE) extracts were both able to reduce cell viability. The LC50 values, after 72 h, were found to be 0.64 ± 0.02 mg/mL (GE) and 0.53 ± 0.02 mg/mL (LE). An isobologram was plotted, which included five theoretical LC50s calculated, based on the fixed fraction method of combination ginseng to licorice extracts to establish a line of additivity. All combinations of GE to LE (1/5, 1/3, 1/2, 2/3, 4/5) produced an effect on Hep-G2 cell viability but they were all found to be antagonistic. The LC50 of fractions 1/3, 1/2, 2/3 were 23%, 21% and 18% above the theoretical LC50. Lactate dehydrogenase release indicated that as the proportion of GE to LE increased beyond 50%, the influence on membrane permeability increased. Cell-cycle analysis showed a slight but significant arrest at the G1 phase of cell cycle for LE. Both GE and LE reduced Hep-G2 viability independently; however, the combinations of both extracts were found to have an antagonistic effect on cell viability and increased cultured Hep-G2 survival. PMID:19617200

  2. Protein assay for heme oxygenase-1 (HO-1) induced by chemicals in HepG2 cells.

    PubMed

    Miyamoto, Yohei; Ohshida, Keiyu; Sasago, Kaori

    2009-12-01

    Levels of heme oxygenase-1 (HO-1), a stress response protein, were measured to examine oxidative stress induced by several chemicals in HepG2 cells with and without S9mix using an ELISA. CdCl(2), heme, and diclofenac sodium salt (diclofenac) were used as inducers of HO-1. Acetaminophen (AAP) and cyclophosphamide (CP) were used as oxidative stress inducers. Stannic mesoporphyrin (SnMP) was used as an inhibitor of HO activity. Cytotoxicity was determined, and HO-1 levels were measured in HepG2 cells exposed to chemicals other than CP with non-metabolic activation without S9mix, and to diclofenac, AAP and CP with metabolic activation with S9mix. HO-1 levels were increased by CdCl(2) (7.5 microM), heme (10, 100 microM), and stannic mesoporphyrin (SnMP) (10 microM), but were not changed by AAP, and were decreased by diclofenac. HO-1 levels were increased by diclofenac (300 microM), and CP (36 microM), but were unaffected by AAP because of low sensitivity in HepG2 cells. The induction of HO-1 expression was first observed in cultured HepG2 cells treated with CP under conditions involving metabolic activation. These results showed the measurement of HO-1 protein levels in this system is useful when assessing oxidative stress as a tool for detecting drug toxicity. PMID:19952508

  3. Chronic alcohol exposure alters gene expression in HepG2 cells

    PubMed Central

    Pochareddy, Sirisha; Edenberg, Howard J.

    2011-01-01

    Background Liver is the primary site of alcohol metabolism and is highly vulnerable to injuries due to chronic alcohol abuse. Several molecular mechanisms, including oxidative stress and altered cellular metabolism, have been implicated in the development and progression of alcoholic liver disease. We sought to gain further insight into the molecular pathogenesis by studying the effects of ethanol exposure on global gene expression in HepG2 cells. Methods HepG2 cells were cultured in the presence or absence of 75 mM ethanol for nine days, with fresh media daily. Global gene expression changes were studied using Affymetrix GeneChip® Human Exon 1.0 ST Arrays. Gene expression differences were validated for thirteen genes by quantitative real-time RT-PCR. To identify biological pathways affected by ethanol treatment, differentially expressed genes were analyzed by Ingenuity Pathway Analysis software. Results Long term ethanol exposure altered the expression of 1093 genes (FDR ≤ 3%); many of these changes were modest. Long term ethanol exposure affected several pathways, including acute phase response, amino acid metabolism, carbohydrate metabolism and lipid metabolism. Conclusions Global measurements of gene expression show that a large number of genes are affected by chronic ethanol, although most show modest effect. These data provide insight into the molecular pathology resulting from extended alcohol exposure. PMID:22150570

  4. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells

    PubMed Central

    2013-01-01

    Background (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, effectively reduces body weight and tissue and blood lipid accumulation. To explore the mechanism by which EGCG inhibits cellular lipid accumulation in free fatty acid (FFA) induced HepG2 cell culture, we investigated the proteome change of FFA-induced HepG2 cells exposed to EGCG using two-dimensional gel electrophoresis and mass spectrometry. Results In this study, 36 protein spots showed a significant change in intensity by more than 1.5-fold from the control group to the FFA group and from the FFA group to the FFA + EGCG group. Among them, 24 spots were excised from gels and identified by LC-MS/MS. In total, 18 proteins were successfully identified. All identified proteins were involved in lipid metabolism, glycometabolism, antioxidant defense, respiration, cytoskeleton organization, signal transduction, DNA repair, mRNA processing, iron storage, or were chaperone proteins. This indicated that these physiological processes may play roles in the mechanism of inhibition of lipid accumulation by EGCG in FFA-induced HepG2 cells. Western blotting analysis was used to verify the expression levels of differentially expressed proteins, which agree with the proteomic results. Conclusions From the proteomic analysis, we hypothesized that EGCG reduced cellular lipid accumulation in FFA-induced HepG2 cells through the activation of AMP-activated protein kinase (AMPK) resulting from the generation of reactive oxygen species (ROS). The induction of ROS may be a result of EGCG regulation of the antioxidant defense system. Activation of AMPK shifted some FFA toward oxidation, away from lipid and triglyceride storage, and suppressed hepatic gluconeogenesis. The findings of this study improve our understanding of the molecular mechanisms of inhibition of lipid accumulation by EGCG in HepG2 cells. PMID:23866759

  5. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells

    PubMed Central

    Jiang, Chun-Ping; Ding, Hui; Shi, Da-Hua; Wang, Yu-Rong; Li, Er-Guang; Wu, Jun-Hua

    2012-01-01

    AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit. RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i

  6. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Park, Cheon-Soo; Ahn, Yongchel; Lee, Dahae; Moon, Sung Won; Kim, Ki Hyun; Yamabe, Noriko; Hwang, Gwi Seo; Jang, Hyuk Jai; Lee, Heesu; Kang, Ki Sung; Lee, Jae Wook

    2015-12-15

    Eight chalcone analogues were prepared and evaluated for their cytotoxic effects in human hepatoma HepG2 cells. Compound 5 had a potent cytotoxic effect. The percentage of apoptotic cells was significantly higher in compound 5-treated cells than in control cells. Exposure to compound 5 for 24h induced cleavage of caspase-8 and -3, and poly (ADP-ribose) polymerase (PARP). Our findings suggest that compound 5 is the active chalcone analogue that contributes to cell death in HepG2 cells via the extrinsic apoptotic pathway. PMID:26564263

  7. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization.

    PubMed

    Chen, Yu-Fu; Wu, Hung-Wei; Hong, Yong-Han; Lee, Hsin-Ying

    2014-11-15

    This paper presents a 40-GHz RF biosensor that involves using a microwave coplanar waveguide (CPW) transmission line for the dielectric characterization of cancer cells (Hepatoma G2, HepG2). In the past, conventional resonator-based biosensors were designed to operate at a specific resonant peak; however, the dielectric sensitivity of the cells was restricted to a narrow bandwidth. To provide a very wide bandwidth (1-40 GHz), biosensors were based on a microwave CPW transmission line. The proposed biosensor can rapidly measure two frequency-dependent cell-based dielectric parameters of HepG2 cells, microwave attenuation (α(f)cell) and the dielectric constant (εr(f)cell), while removing the microwave parasitic effects (including the cultured medium and substrate materials). The proposed biosensor can be applied in postoperative cancer diagnosis. PMID:24934741

  8. Cytotoxic effect of Eucalyptus citriodora resin on human hepatoma HepG2 cells.

    PubMed

    Shen, Kun-Hung; Chen, Zong-Tsi; Duh, Pin-Der

    2012-01-01

    The aim of this study was to evaluate the antiproliferative effect of Eucalyptus citriodora resin (ECR) on human hepatoma HepG2 cells. The results from MTT assay and LDH leakage analysis showed that water extracts of ECR (WEECR) in the dose range of 0-500 μg/ml displayed stronger cytotoxic effects on HepG2 cells than other organic solvent extracts of ECR. By flow cytometry analysis, WEECR slowed down the cell cycle at the G0/G1 phase after 24 h of incubation. Moreover, WEECR treatment induced an apoptotic response in HepG2 cells. WEECR-induced apoptosis was in association with the attenuation of mitochondrial transmembrane potentials (ΔΨ(m)), increased Bax/Bcl-2 ratio and activation of caspase-3. In addition, WEECR contained high concentration of phenolics and flavonoids, which may be responsible for the potent cytotoxicity of WEECR on HepG2 cells. Taken together, WEECR may be a potent antihepatoma agent due to apoptosis in HepG2 cells. PMID:22419432

  9. Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin.

    PubMed

    Banjerdpongchai, Ratana; Wudtiwai, Benjawan; Khawon, Patompong

    2016-01-01

    Naringin, a bioflavonoid found in Citrus seeds, inhibits proliferation of cancer cells. The objectives of this study were to investigate the mode and mechanism(s) of hepatocellular carcinoma HepG2 cell death induced by naringin. The cytotoxicity of naringin towards HepG2 cells proved dosedependent, measured by MTT assay. Naringintreated HepG2 cells underwent apoptosis also in a concentration related manner, determined by annexin Vfluorescein isothiocyanate (FITC) and propidium iodide (PI) employing flow cytometry. Mitochondrial transmembrane potential (MTP) measured using 3,3'dihexyloxacarbocyanine iodide (DiOC6) and flow cytometer was reduced concentrationdependently, which indicated influence on the mitochondrial signaling pathway. Caspase3, 8 and 9 activities were enhanced as evidenced by colorimetric detection of paranitroaniline tagged with a substrate for each caspase. Thus, the extrinsic and intrinsic pathways were linked in human naringintreated HepG2 cell apoptosis. The expression levels of proapoptotic Bax and Bak proteins were increased whereas that of the antiapoptotic BclxL protein was decreased, confirming the involvement of the mitochondrial pathway by immunoblotting. There was an increased expression of truncated Bid (tBid), which indicated caspase8 proteolysis activity in Bid cleavage as its substrate in the extrinsic pathway. In conclusion, naringin induces human hepatocellular carcinoma HepG2 cell apoptosis via mitochondriamediated activation of caspase9 and caspase8mediated proteolysis of Bid. Naringin anticancer activity warrants further investigation for application in medical treatment. PMID:27509965

  10. Inhibitory effect of zinc on stimulated erythropoietin synthesis in HepG2 cells.

    PubMed Central

    Dittmer, J; Bauer, C

    1992-01-01

    The effect of zinc on erythropoietin (EPO) synthesis in HepG2 cells was investigated. The increase in EPO synthesis induced by Co2+ (50 microM), Ni2+ (300 microM) or oxygen (1% O2) was inhibited by the presence of ZnCl2 (50-150 microM) in the tissue-culture medium, whereas basal EPO synthesis was unaffected. The effect was reflected by corresponding changes in the EPO mRNA level. These effects of zinc on EPO synthesis could not be mimicked by CdCl2 (less than or equal to 2 microM). Addition of FeCl3 to the medium appeared to decrease the inhibitory effect of zinc on hypoxia-induced EPO synthesis, implying that zinc may interfere with an iron-dependent step in EPO regulation. Images Fig. 1. PMID:1322122

  11. Polysaccharide from Pleurotus nebrodensis induces apoptosis via a mitochondrial pathway in HepG2 cells.

    PubMed

    Cui, Haiyan; Wu, Shufen; Sun, Yanping; Wang, Tiantian; Li, Zhenjing; Chen, Mianhua; Wang, Changlu

    2016-01-01

    A novel alkali extractable polysaccharide (designated as PNA-2) was purified from Pleurotus nebrodensis and the effects of purified PNA-2 on the proliferation and apoptosis of human hepatic cancer cells (HepG2) were investigated in this study. The results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that PNA-2 inhibited the proliferation of HepG2 cells by apoptosis induction, which was also characterized using scanning electron microscopy (SEM). Moreover, the expression of apoptosis-associated mRNA, proteins and the cell-cycle arrest at the G0/G1 phase was determined using RT-qPCR, Western blot and flow cytometry, respectively. A notable inhibition of the migration rate of PNA-2-treated HepG2 cells was observed using a cell scratch assay. DNA damage was observed using a comet assay and AO/EB staining in HepG2 cells, which were exposed to PNA-2. Induction of the mitochondria-mediated intrinsic apoptotic pathway by PNA-2 was indicated by the loss of mitochondrial membrane potential (ΔΨm), Bcl-2 dysregulation and cytochrome c release. All the results suggested that the mitochondria-mediated intrinsic apoptotic pathway could be involved in PNA-2-mediated apoptosis of human liver carcinoma cells HepG2. Finally, the results indicated that PNA-2 significantly suppressed tumor growth in HepG2 tumor-bearing mice, indicating that PNA-2 may be developed as a candidate drug or functional food factor to prevent or treat liver cancer. PMID:26506946

  12. Proteomics Based Identification of Cell Migration Related Proteins in HBV Expressing HepG2 Cells

    PubMed Central

    Feng, Huixing; Li, Xi; Chan, Vincent; Chen, Wei Ning

    2014-01-01

    Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis. PMID:24763314

  13. Demonstration of the presence of the "deleted" MIR122 gene in HepG2 cells.

    PubMed

    Hamad, Ibrahim A Y; Fei, Yue; Kalea, Anastasia Z; Yin, Dan; Smith, Andrew J P; Palmen, Jutta; Humphries, Steve E; Talmud, Philippa J; Walker, Ann P

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells. PMID:25811611

  14. Peroxisomal and mitochondrial fatty acid oxidation in human hepatoma cells (HEP-G2)

    SciTech Connect

    Watkins, P.A.; Blake, D.C. Jr.; Pedersen, J.I.

    1987-05-01

    Hep-G2 cells oxidize (1-/sup 14/C)palmitic acid (C16) and (1-/sup 14/C) lignoceric acid (C24) via beta-oxidation to /sup 14/CO/sub 2/ and water-soluble (WS) products. After perchloric acid precipitation and chloroform-methanol extraction, the WS fraction contained labelled oxidation products as well as fatty acyl CoA's, thus, measurement of WS radioactivity is an overestimate of Hep-G2 beta-oxidation. Alkaline hydrolysis of fatty acyl CoA's prior to measurement of WS radioactivity permits more accurate assessment of beta-oxidation. Using this method, the optimal pH for oxidation of each fatty acid to WS products by Hep-G2 cells was 9.0, while /sup 14/CO/sub 2/ production was maximal at pH 7.0. To determine the subcellular location of beta-oxidation, mitochondria (M) were partially separated from peroxisomes (P) on linear Nycodenz gradients. In Hep-G2 cells, oxidation of both C16 and C24 was observed mainly in fractions enriched in succinate dehydrogenase, an M marker enzyme. In contrast, both P and M of rat liver oxidized these fatty acids. However, when Hep-G2 cells were fractionated on discontinuous sucrose gradients, C16 and C24 were oxidized by both P and M fractions. They conclude that beta-oxidation of both long (C16) and very long (C24) chain fatty acids occurs in P as well as in M of Hep-G2 cells, and the present method reflects a more accurate and sensitive measurement of oxidation rates.

  15. Nanoceria Attenuated High Glucose-Induced Oxidative Damage in HepG2 Cells

    PubMed Central

    Shokrzadeh, Mohammad; Abdi, Hakimeh; Asadollah-Pour, Azin; Shaki, Fatemeh

    2016-01-01

    Objective Hyperglycemia, a common metabolic disorder in diabetes, can lead to oxidative damage. The use of antioxidants can benefit the control and prevention of diabetes side effects. This study aims to evaluate the effect of nanoceria particles, as an antioxidant, on glucose induced cytotoxicity, reactive oxygen species (ROS), lipid peroxidation (LPO) and glutathione (GSH) content in a human hepatocellular liver carcinoma cell line (HepG2) cell line. Materials and Methods In this experimental study, we divided HepG2 cells into these groups: i. Cells treated with 5 mM D-glucose (control), ii. Cells treated with 45 mM D- mannitol+5 mM D-glucose (osmotic control), iii. Cells treated with 50 mM D-glucose (high glucose), and iv. Cells treated with 50 mM D-glucose+nanoceria. Cell viability, ROS formation, LPO and GSH were measured and analyzed statistically. Results High glucose (50 mM) treatment caused significant cell death and increased oxidative stress markers in HepG2 cells. Interestingly, nanoceria at a concentration of 50 mM significantly decreased the high glucose-induced cytotoxicity, ROS formation and LPO. This concentration of nanoceria increased the GSH content in HepG2 cells (P<0.05). Conclusion The antioxidant feature of nanoceria particles makes it an attractive candidate for attenuation of hyperglycemia oxidative damage in different organs. PMID:27054124

  16. Metabolism and cytotoxic effects of phosphatidylcholine hydroperoxide in human hepatoma HepG2 cells.

    PubMed

    Suzuki, Yuuri; Nakagawa, Kiyotaka; Kato, Shunji; Tatewaki, Naoto; Mizuochi, Shunsuke; Ito, Junya; Eitsuka, Takahiro; Nishida, Hiroshi; Miyazawa, Teruo

    2015-03-20

    In this study, we investigated cellular uptake and metabolism of phosphatidylcholine hydroperoxide (PCOOH) in human hepatoma HepG2 cells by high performance liquid chromatography-tandem mass spectrometry, and then evaluated whether PCOOH or its metabolites cause pathophysiological effects such as cytotoxicity and apoptosis. Although we found that most PCOOH was reduced to PC hydroxide in HepG2 cells, the remaining PCOOH caused cytotoxic effects that may be mediated through an unusual apoptosis pathway. These results will enhance our fundamental understanding of how PCOOH, which is present in oxidized low density lipoproteins, is involved in the development of atherosclerosis. PMID:25704087

  17. Hepatitis C Virus Genotype 4 Replication in the Hepatocellular Carcinoma Cell Line HepG2/C3A

    PubMed Central

    Shier, Medhat K.; El-Wetidy, Mohammad S.; Ali, Hebatallah H.; Al-Qattan, Mohammad M.

    2016-01-01

    Background/Aims: The lack of a reliable cell culture system allowing persistent in vitro hepatitis C virus (HCV) propagation is still restraining the search for novel antiviral strategies. HepG2 cells transfection with HCV allows for viral replication. However, the replication is weak presumably because of HepG2 lack of miRNA-122, which is essential for viral replication. Other agents such as polyethylene glycol (PEG) and dimethyl sulfoxide (DMSO) have been shown to increase the efficiency of infection with other viruses. This study included comparison of HCV genotype 4 5′UTR and core RNA levels and HCV core protein expression at different time intervals in the absence or presence of PEG and/or DMSO postinfection. Materials and Methods: We used serum with native HCV particles in infecting HepG2 cells in vitro. HCV replication was assessed by reverse transcriptase polymerase chain reaction for detection of HCV RNA and immunofluorescence and flow cytometry for detection of HCV core protein. Results: HCV 5′UTR and core RNA expression was evident at different time intervals after viral infection, especially after cells were treated with PEG. HCV core protein was also evident at different time intervals using both immunofluorescence and flow cytometry. PEG, not DMSO, has increased the HCV core protein expression in the treated cells, similar to its effect on viral RNA expression. Conclusions: These expression profiles suggest that the current model of cultured HepG2 cells allows the study of HCV genotype 4 replication and different stages of the viral life cycle. PMID:27184644

  18. [Inhibitory Effect of the Excretory/Scretory Proteins of Trichinella spiralis on Proliferation of Human Hepatocellular Carcinoma HepG2 Cell line].

    PubMed

    Liu, Ying-jie; Xu, Jing; Huang, Hong-ying; Xu, Guo-qiang

    2015-08-01

    Human hepatocellular carcinoma HepG2 Cell line were cultured with different concentrations of excretory/secretory proteins from Trichinella spiralis, and MTT assay was used to evaluate the cell inhibition rate. After co-cultured with 300 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were observed under a fluorescence microscope with AO and EB staining. When co-cultured with 75 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were quantified by flow cytometry using Annexin V-FITC/PI stain, and the expression of cleaved-caspase 9 was detected by immunofluorescence assay. The proliferation of HepG2 cells was inhibited significantly by excretory/secretory proteins in a dosage dependant manner. Under fluorescence microscope, some HepG2 cells presented typical apoptotic morphologic changes and the cleaved-caspase 9 protein expression was higher than that of the control. The early and late apoptotic cells and necrotic ones occupied 17.9%, 7.3%, and 6.6%, respectively. PMID:26672230

  19. Molecular cloning and expression of the gene for a major leucine-rich protein from human hepatoblastoma cells (HepG2).

    PubMed

    Hou, J; Wang, F; McKeehan, W L

    1994-02-01

    The human hepatoblastoma cell line, HepG2, exhibits an array of stable properties in culture that have made it a popular cell culture model for studies on regulation of liver-specific gene expression and properties of hepatoma cells. In contrast to other hepatoma cell lines, HepG2 cells overexpress a characteristic detergent-extractable, wheat germ lectin-binding protein with apparent molecular mass of 130 kDa. Using an antibody to screen a phage expression library of HepG2 complementary DNA (cDNA), we identified and cloned a 4734 base pair cDNA which codes for a 130-kDa leucine-rich protein (lrp 130) when expressed in transfected cells. The deduced sequence of lrp130 exhibits sequences weakly homologous to the consensus sequence for the ATP binding site in ATP-dependent kinases and the protein kinase C phosphorylation site of the epidermal growth factor receptor. Consistent with the higher levels of expression of lrp130 antigen, Northern hybridization analysis indicated that HepG2 cells express high levels of the major 4.8 kilobase lrp130 mRNA relative to other hepatoma cells. Although currently of unknown function, lrp130 may be of utility as a marker for liver cell lineages represented by the HepG2 cell line. PMID:8012652

  20. Detection of activity in the conditioned medium of ethanol-treated HepG2 cells which stimulates collagen synthesis in IMR-90 cells.

    PubMed

    Inui, N; Kato, J; Kohgo, Y; Katsuki, S; Niitsu, Y

    1996-02-01

    Hepatic fibrosis often occurs in alcoholic liver diseases without accompanying tissue necrosis or inflammation. However, the precise mechanism of this fibrosis has not been fully clarified. In the present study, using the hepatoblastoma cell line HepG2 as a model for hepatocytes, we identified a factor that stimulates collagen synthesis of fibroblasts in a conditioned medium of HepG2 cells after treatment with ethanol. Type 1 procollagen peptide (PIC) in a culture of human fibroblast IMR-90 markedly increased after incubation with the conditioned medium of ethanol-treated HepG2 cells. The stimulating activity on the production of PIC by IMR-90 remained after the dialysis and evaporation of the conditioned medium of HepG2 cells, indicating this factor was not as volatile from low molecular substances such as acetaldehyde, acetate, or lactate. The activity of this factor diminished with heat or trypsin treatment. A gel chromatographic analysis disclosed that the molecular weight of this factor was approximately 8000 Da. These results suggest that a polypeptide factor secreted from HepG2 cells by treatment with ethanol stimulates collagen synthesis of fibroblasts. PMID:8659693

  1. FTIR microspectroscopy defines early drug resistant human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Junhom, Cholpajsorn; Weerapreeyakul, Natthida; Tanthanuch, Waraporn; Thumanu, Kanjana

    2016-01-01

    Characterization and identification of cancer cell, chemotherapy, resistance is important for both routine cancer therapy and trouble-shooting the medication treatment regimen. Present techniques for characterizing cancer cell resistance require multiple methods and steps, which are time-consuming and expensive. We present a protocol for simple sample handling, rapid detection, and spectral characterization of early resistant hepatocellular carcinoma (HepG2) cells, using Fourier transform infrared microspectroscopy (FTIR). Studies on alteration of the biochemical properties in a resistant HepG2 cell were evaluated-viz., increase efflux proteins (MRP-1 and P-gp) activity, total GSH content, anti-apoptotic (Bcl2) expression, and reduction of pro-apoptotic (Bax) proteins. Principle component analysis (PCA) was used to discriminate resistant HepG2 cells from parental HepG2 cells. Three important FTIR spectral regions were evaluated for reproducibility and discrimination ability-viz., lipid (3,000-2,800 cm(-1)), protein (1,700-1,500 cm(-1)) and carbohydrate and nucleic acid (1,300-900 cm(-1)). These 3 spectral regions can be used as spectroscopic biomarkers for differentiation of early or low resistance. This work presents a novel concept for high-throughput, FTIR spectroscopic discrimination of early resistance; thus enabling identification and characterization of cancer cell resistance. PMID:26708618

  2. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways.

    PubMed

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-12-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis. PMID:27075340

  3. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  4. Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells.

    PubMed

    Sun, Bu Tong; Zheng, Li Hua; Bao, Yong Li; Yu, Chun Lei; Wu, Yin; Meng, Xiang Ying; Li, Yu Xin

    2011-03-01

    Multidrug resistance is a serious obstacle encountered in cancer treatment. Since drug resistance in human cancer is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1), the promoter of the human MDR1 gene may be a target for multidrug resistance reversion drug screening. In the present study, HEK293T cells were transfected with pGL3 reporter plasmids containing the 2kb of MDR1 promoter, and the transfected cells were used as models to screen for candidate multidrug resistance inhibitors from over 300 purified naturally occurring compounds extracted from plants and animals. Dioscin was found to have an inhibiting effect on MDR1 promoter activity. The resistant HepG2 cell line (HepG2/adriamycin) was used to validate the activity of multidrug resistance reversal by Dioscin. Results showed that Dioscin could decrease the resistance degree of HepG2/adriamycin cells, and significantly inhibit P-glycoprotein expression, as well as increase the accumulation of adriamycin in HepG2/adriamycin cells as measured by Flow Cytometric analysis. These results suggest that Dioscin is a potent multidrug resistance reversal agent and may be a potential adjunctive agent for tumor chemotherapy. PMID:21195709

  5. Hyperglycemia and anthocyanin inhibit quercetin metabolism in HepG2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells...

  6. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake. PMID:26672619

  7. Long-chain polyunsaturated fatty acids upregulate LDL receptor protein expression in fibroblasts and HepG2 cells.

    PubMed

    Yu-Poth, Shaomei; Yin, Dezhong; Kris-Etherton, Penny M; Zhao, Guixiang; Etherton, Terry D

    2005-11-01

    The objective of this study was to investigate the effect of individual PUFAs on LDL receptor (LDLr) expression in human fibroblasts and HepG2 cells, and to evaluate whether acyl CoA:cholesterol acyltransferase (ACAT) and sterol regulatory element-binding protein 1 (SREBP-1) were involved in the regulation of LDLr expression by fatty acids. When fibroblasts and HepG2 cells were cultured with serum-free defined medium for 48 h, there was a 3- to 5-fold (P < 0.05) increase in LDLr protein and mRNA levels. Incubation of fibroblasts and HepG2 cells in serum-free medium supplemented with 25-hydroxycholesterol (25OH-cholesterol, 5 mg/L) for 24 h decreased LDLr protein and mRNA levels by 50-90% (P < 0.05). Arachidonic acid [AA, 20:4(n-6)], EPA [20:5(n-3)], and DHA [22:6(n-3)] antagonized the depression of LDLr gene expression by 25OH-cholesterol and increased LDLr protein abundance 1- to 3-fold (P < 0.05), but had no significant effects on LDLr mRNA levels. Oleic (18:1), linoleic (18:2), and alpha-linolenic acids [18:3(n-3)] did not significantly affect LDLr expression. ACAT inhibitor (58-035, 1 mg/L) attenuated the regulatory effect of AA on LDLr protein abundance by approximately 40% (P < 0.05), but did not modify the regulatory effects of other unsaturated fatty acids in HepG2 cells. The present results suggest that AA, EPA, and DHA increase LDLr protein levels, and that ACAT plays a role in modulating the effects of AA on LDLr protein levels. Furthermore, the effects of the fatty acids appeared to be independent of any change in SREBP-1 protein. PMID:16251608

  8. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-07-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  9. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    PubMed Central

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-01-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  10. Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)

    SciTech Connect

    Ellsworth, J.L.; Brown, C.; Cooper, A.D.

    1988-05-01

    The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the apparent Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by (3H)thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; (14C)acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column.

  11. The algal metabolite yessotoxin affects heterogeneous nuclear ribonucleoproteins in HepG2 cells.

    PubMed

    Young, Clifford; Truman, Penelope; Boucher, Magalie; Keyzers, Robert A; Northcote, Peter; Jordan, T William

    2009-05-01

    The dinoflagellate metabolite yessotoxin (YTX) is produced by several species of algae and accumulates in marine food chains, leading to concerns about possible affects on aquaculture industries and human health. In mice used for toxicity testing, YTX is lethal by the intraperitoneal route, but is considerably less toxic when orally administered. The mode of action of YTX and its potential effect on humans is unclear and we therefore conducted the first proteomic analysis of the effects of this compound. We used 2-DE to examine protein changes in HepG2 cell cultures exposed to 1.4 microM YTX for 3, 12.5, 18 and 24 h. After selecting proteins that changed more than three-fold after YTX exposure, 55 spots were deemed significantly affected by the toxin (p<0.05). Major groups of affected proteins include members from the heterogeneous nuclear ribonucleoprotein (hnRNP), lamin, cathepsin and heat shock protein families that often are associated with apoptosis. We therefore confirmed apoptosis using Annexin-V-FLUOS staining of phosphatidylserine exposed at the surface of apoptotic cells. Ingenuity pathways analysis also indicated effects on pathways involved in protein processing, cell cycling and cell death. PMID:19343718

  12. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media.

    PubMed

    Xue, Yuying; Zhang, Ting; Zhang, Bangyong; Gong, Fan; Huang, Yanmei; Tang, Meng

    2016-03-01

    Silver nanoparticles (Ag NPs) have been widely used in medical and healthcare products owing to their unique antibacterial activities. However, their safety for humans and the environment has not yet been established. This study evaluated the cellular proliferation and apoptosis of Ag NPs suspended in different solvents using human liver HepG2 cells. The ionization of Ag NPs in different dispersion media [deionized water, phosphate-buffered saline (PBS), saline and cell culture] was measured using an Ag ion selective electrode. The MTT assay was used to examine the cell proliferation activities. The effects of Ag NPs on cell cycle, induction of apoptosis, production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. The degree of Ag NPs ionization differed with dispersion media, with the concentrations of silver ions in deionized water being the highest in all suspensions. Ag NPs could inhibit the viability of HepG2 cells in a time- and concentration-dependent manner. Ag NPs (40, 80 and 160 µg ml(-1)) exposure could cause cell-cycle arrest in the G2/M phase, significantly increasing the apoptosis rate and ROS generation, and decreasing the MMP in HepG2 cells more sensitive to deionized water than in cell culture. These results suggested that the cellular toxicological mechanism of Ag NPs might be related to the oxidative stress of cells by the generation of ROS, leading to mitochondria injury and induction of apoptosis. It also implies that it is important to assess the physicochemical properties of NPs in the media where the biological toxicity tests are performed. PMID:26198703

  13. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    PubMed

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  14. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  15. Platelet-activating factor (PAF) stimulates the production of PAF acetylhydrolase by the human hepatoma cell line, HepG2.

    PubMed

    Satoh, K; Imaizumi, T; Kawamura, Y; Yoshida, H; Hiramoto, M; Takamatsu, S; Takamatsu, M

    1991-02-01

    The human hepatoma cell line, HepG2, secreted an activity that degrades platelet-activating factor (PAF) by the hydrolysis of the sn-2 acetyl group. This activity was Ca++ independent, inhibited by diisopropylfluorophosphate but not by p-bromophenacyl bromide, and resistant to treatment with trypsin or pronase. Separation of HepG2-conditioned medium by gel filtration disclosed that the activity was associated with lipoproteins. An antiserum against PAF acetylhydrolase immunoprecipitated this activity. It was not recognized by an antibody against lecithin:cholesterol acyltransferase (LCAT), which also is secreted by HepG2 cells. Therefore the phospholipase A2 activity of LCAT was excluded as a source of the observed activity. PAF added to the culture medium stimulated the secretion of the PAF-degrading activity by HepG2 cells, while lyso-PAF was inactive. Maximal stimulation was observed with 5 ng/ml PAF, which induced a fivefold increase. The presence of 5 ng/ml PAF, enhanced the secretion of [35S]methionine-labeled PAF acetylhydrolase and cycloheximide inhibited both the basal and PAF-stimulated secretion of the labeled enzyme. We conclude that HepG2 cells produce PAF acetylhydrolase. The liver may be a major source of plasma PAF acetylhydrolase, and PAF may induce the production of its inactivating enzyme by the liver. PMID:1846878

  16. Dentatin from Clausena excavata Induces Apoptosis in HepG2 Cells via Mitochondrial Mediated Signaling.

    PubMed

    Andas, A Reenaa Joys; Abdul, Ahmad Bustamam; Rahman, Heshu Sulaiman; Sukari, Mohd Aspollah; Abdelwahab, Siddig Ibrahim; Samad, Nozlena Abdul; Anasamy, Theebaa; Arbab, Ismail Adam

    2015-01-01

    Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an IC50 value of 12.0 μg/mL, without affecting human normal liver cells, WRL-68 (IC50>50 μg/mL) causing G0/G1 cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of NF-κB that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC. PMID:26028091

  17. Proteomic analysis of anti-tumor effects by tetrandrine treatment in HepG2 cells.

    PubMed

    Cheng, Zhixiang; Wang, Keming; Wei, Jia; Lu, Xiang; Liu, Baorui

    2010-11-01

    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid isolated from the root of Hang-Fang-Chi (Stephenia tetrandra S Moore), exhibits broad pharmacological effects, including anti-tumor activity. Recently, the beneficial effects of TET on cytotoxicity towards tumor cells, radiosensitization, circumventing multidrug resistance, normal tissue radioprotection, and antiangiogenesis have been examined extensively. To explore the potential molecular mechanism of the anti-tumor effect of TET, we applied proteomic tools to profile the proteins in HepG2 cells subjected to TET treatment. The levels of 39 proteins in cells exposed to TET (IC₅₀=5±0.6 μg/ml) for 48 h were observed to undergo significant alterations. Six proteins were identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) using peptide fingerprinting from 10 protein spots (density difference >1.5-fold between the control and TET-treated group). Among them, 5 proteins were downregulated (proteasome activator complex subunit 3, 40S ribosomal protein S12, phosphoglycerate mutase 1, destrin, transaldolase) and 1 protein was upregulated (guanylate kinase 1) by TET treatment in HepG2 cells as determined by spot volume (P<0.05). Most of the identified proteins were associated with tumor growth, migration, and anti-tumor drug resistance. These data will be helpful in elucidating the molecular mechanism of TET's anti-tumor effect in HepG2 cells. PMID:20554191

  18. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  19. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  20. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    SciTech Connect

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L.; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C.; Yliperttula, Marjo

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.

  1. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    DOE PAGESBeta

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L.; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C.; Yliperttula, Marjo

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than thosemore » in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.« less

  2. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    PubMed Central

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L.; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C.; Yliperttula, Marjo

    2015-01-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures. PMID:26323570

  3. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins

    PubMed Central

    GAO, FENG; JIAN, LIUMENG; ZAFAR, MOHAMMAD ISHRAQ; DU, WEN; CAI, QIN; SHAFQAT, RAJA ADEEL; LU, FURONG

    2015-01-01

    Previous studies have indicated that 4-hydroxy-isoleucine (4-HIL) improves insulin resistance, however, the underlying mechanisms remain to be elucidated. In the present study, the molecular mechanisms underlying how 4-HIL improves insulin resistance in hepatocytes were examined. HepG2 cells were co-cultured with insulin and a high glucose concentration to obtain insulin-resistant (IR) HepG2 cells. Insulin sensitivity was determined by measuring the glucose uptake rate. The IR HepG2 cells were treated with different concentrations of 4-HIL to determine its effect on IR Hep2 cells. The levels of tumor necrosis factor-α (TNF-α) were measured by an enzyme-linked immunosorbent assay and protein levels of TNF-α converting enzyme (TACE)/tissue inhibitor of metalloproteinase 3 (TIMP3), insulin receptor substrate (IRS)-1, IRS-2, phosphorylated (p)-IRS-1 (Ser307) and glucose transporter type 4 (GLUT4) were measured by western blot analysis. The results of the present study demonstrated that insulin-induced glucose uptake was reduced in IR HepG2 cells; however, this reduction was reversed by 4-HIL in a dose-dependent manner. 4-HIL achieved this effect by downregulating the expression of TNF-α and TACE, and upregulating the expression of TIMP3 in IR HepG2 cells. In addition, 4-HIL increased the expression of the insulin transduction regulators IRS-1 and GLUT4, and decreased the expression of p-IRS-1 (Ser307), without affecting the expression of IRS-2. The present study suggests that 4-HIL improved insulin resistance in HepG2 cells by the following mechanisms: 4-HIL reduced TNF-α levels by affecting the protein expression of the TACE/TIMP3 system and 4-HIL stimulated the expression of IRS-1 and GLUT4, but inhibited the expression of p-IRS-1 (Ser307). PMID:26352439

  4. Effects of Acanthopanax senticosus polysaccharide on the proliferation, apoptosis and cell cycle in human HepG2 cells.

    PubMed

    Wang, Haotian; Sun, Bo; Zhang, Zheng; Chen, Jinglin; Hao, Qiang; Sun, Yuxin; Yang, Yue; Wang, Zeng; Pei, Jin

    2016-04-01

    One water-soluble polysaccharide (ASPS), with four molecular weight distributions of 74, 3.8, 4.5, 2.3 x 10(4) Da, was isolated from the root of Acanthopanax senticosus and the yield was 4.8% (w/w). ASPS was composed of arabinose (51.4%), glucose (24.5%), galactose (10.2%), xylose (5.7) and galacturonic acid (4.9%). Effects of ASPS on the proliferation, apoptosis and Wnt/β-catenin signaling pathway were investigated in human hepatocellular carcinoma cell line HepG2 cells. The study showed that ASPS could inhibit the proliferation, increase the apoptosis rate in HepG2 cells; meanwhile, ASPS could increase the proportion of cells in G0/G1 phase, decrease the proportion of cells in S phase and G2/M phase, and elevate the expression level of β-catenin, C-myc and Cyclin D1 proteins in HepG2 cells. These results indicate that ASPS has a certain inhibition on the proliferation, can induce the apoptosis and G0/G1 phase arrest in HepG2 cells, and the mechanism may be related to the inhibition of ASPS on the activation of Wnt/β-catenin pathway HepG2 cells. PMID:27209700

  5. Effects of green tea extracts on gene expression in HepG2 and Cal-27 cells.

    PubMed

    Yang, Shin-Pei; Wilson, Kimberly; Kawa, Abdul; Raner, Gregory M

    2006-07-01

    Green tea extract is known to contain compounds that are able to produce antioxidant effects in many types of living cells. Treatment of cultured human hepatoma (HepG2) cells with green tea extract resulted in dramatically increased expression of at least 15 genes that are present on a commercial human drug metabolism gene array. RT-PCR was used to confirm the microarray results, and analysis of the 5'-flanking region of each of these genes revealed potential electrophile/antioxidant response elements. Members of the acetyl transferase, epoxide hydrolase, sulfotransferase and glutathione transferase gene families were strongly induced. In addition, the human tongue carcinoma cell line Cal-27 did not respond to green tea extract in the same way, as none of the induced genes in the HepG2 cells were induced in the Cal-27 cells. The lack of induction of detoxification enzymes in the Cal-27 cell line may help to explain the previously observed increased cytotoxicity of green tea catechins on this cell line. PMID:16487642

  6. Investigation of quercetin-induced HepG2 cell apoptosis-associated cellular biophysical alterations by atomic force microscopy.

    PubMed

    Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye

    2016-03-01

    Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs. SCANNING 38:100-112, 2016. © 2015 Wiley Periodicals, Inc. PMID:26179807

  7. Hesperidin Induces Paraptosis Like Cell Death in Hepatoblatoma, HepG2 Cells: Involvement of ERK1/2 MAPK

    PubMed Central

    Yumnam, Silvia; Park, Hyeon Soo; Kim, Mun Ki; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Lee, Won Sup; Kim, Eun Hee; Cho, Jae Hyeon; Shin, Sung Chul; Kim, Gon Sup

    2014-01-01

    Hesperidin, a natural flavonoid abundantly present in Citrus is known for its anti-cancer, anti-oxidant and anti-inflammatory properties. In this study we examined the effect of hesperidin on HepG2 cells. HepG2 cells treated with various concentration of hesperidin undergo a distinct type of programed cell death. Cytoplasmic vacuolization, mitochondria and endoplasmic reticulum swelling and uncondensed chromatin were observed in hesperidin treated cells. DNA electrophoresis show lack of DNA fragmentation and western blot analysis demonstrates lack of caspase activation and PARP cleavage. It was observed that hesperidin induced cell death is nonautophagic and also activate mitogen activated protein kinase ERK1/2. Taken together, the data indicate that hesperidin induces paraptosis like cell death in HepG2 cells with the activation of ERK1/2. Thus our finding suggests that hesperidin inducing paraptosis may offer an alternative tool in human liver carcinoma therapy. PMID:24977707

  8. Proposing a Caco-2/HepG2 cell model for in vitro iron absorption studies.

    PubMed

    Scheers, Nathalie M; Almgren, Annette B; Sandberg, Ann-Sofie

    2014-07-01

    The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered. PMID:24746839

  9. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.

    PubMed

    Ji, Y B; Gao, S Y; Ji, C F; Zou, X

    2008-01-17

    The nightshade (Solanum nigrum Linn.) has been widely used in Chinese traditional medicine as a remedy for the treatment of digestive system cancer. The anti-tumor activity of solanine, a steroid alkaloid isolated from the nightshade has been demonstrated. To observe the effect of anti-tumor and mechanism of solanine. The MTT assay was used to evaluate the IC(50) on the three digestive system tumor cell lines. The effect on the morphology was observed with a laser confocal microscopy; the rate of apoptosis and the cell cycle were measured using flow cytometry (FCM); the expression of Bcl-2 protein was measured by Western blot. The results show that the IC(50) for HepG(2), SGC-7901, and LS-174 were 14.47, >50, and >50 microg/ml, respectively; the morphology of cells in the negative control was normal; for the treated groups, typical signs for apoptosis were found. The rate of apoptosis in HepG(2) cells induced by solanine was found to be 6.0, 14.4, 17.3, 18.9, and 32.2%, respectively. Observation of the cell cycle showed that cells in the G(2)/M phases disappeared while the number of cells in the S phase increased significantly for treated groups. Western blot showed that solanine decreased the expression of Bcl-2 protein. Therefore, the target of solanine in inducing apoptosis in HepG(2) cells seems to be mediated by the inhibition in the expression of Bcl-2 protein. PMID:18022776

  10. Cellular effects of metolachlor exposure on human liver (HepG2) cells.

    PubMed

    Hartnett, Sean; Musah, Sadiatu; Dhanwada, Kavita R

    2013-01-01

    Metolachlor is one of the most commonly used herbicides in the United States. Protein synthesis is inhibited when roots and shoots of susceptible plants absorb this synthetic herbicide. While quite effective in killing weeds, several studies have shown that exposure to metolachlor results in decreased cell proliferation, growth and reproductive ability of non-target organisms. However, the mode of metolachlor action in non-target organisms has not yet been elucidated. The current study assessed effects of metolachlor exposure on immortalized human liver (HepG2) cells. Results from cell proliferation assays showed that a 72-h exposure to 50 parts per billion (ppb) metolachlor significantly inhibited growth of these cells compared to untreated controls while a decrease in the cell division rate required exposure to 500 ppb metolachlor for 48 h. Flow cytometry analysis of cell cycle distribution revealed that 500 ppb metolachlor treatment resulted in fewer HepG2 cells in G2/M phase after 72 h. Real-time PCR analysis showed a significant decrease in the abundance of the cyclin A transcripts after 12h in cells exposed to 300 ppb metolachlor. These results suggest metolachlor may affect progression through the S phase of the cell cycle and entrance into the G2 phase. PMID:23084262

  11. Inhibition of apolipoprotein B and triglyceride secretion in human hepatoma cells (HepG2).

    PubMed

    Haghpassand, M; Wilder, D; Moberly, J B

    1996-07-01

    Apolipoprotein B (apoB), the major protein component of triglyceride-rich lipoproteins, is assembled into a lipoprotein particle via a complex, multistep process. Recent studies indicate that triglyceride-rich lipoprotein assembly requires the activity of the heterodimeric protein, microsomal triglyceride transfer protein (MTP). We identified a novel inhibitor of apolipoprotein B secretion using the human hepatoma cell line, HepG2. CP-10447, a derivative of the hypnotic drug methaqualone (Quaalude), inhibited apoB secretion from HepG2 cells with an IC50 of approximately 5 microM. CP-10447 also inhibited apoB secretion from Caco-2 cells, a model of intestinal lipoprotein production. In experiments using [3H]glycerol as a precursor for triglyceride synthesis, CP-10447 (20 microM) inhibited radiolabeled triglyceride secretion by approximately 83% (P < 0.0001) in HepG2 cells and 76% (P < 0.05) in Caco-2 cells with no effect on radiolabel incorporation into cellular triglyceride, indicating that CP-10447 inhibited triglyceride secretion without affecting triglyceride synthesis. RNA solution hybridization assay indicated that CP-10447 did not affect apoB or apoA-I mRNA levels. Pulse-chase experiments in HepG2 cells confirmed that CP-10447 inhibited the secretion of apoB (not its synthesis) without affecting secretion of total proteins or albumin and suggested that CP-10447 stimulates the early intracellular degradation of apoB in the endoplasmic reticulum (ER). Further studies demonstrated that CP-10447 is a potent inhibitor of human liver microsomal triglyceride transfer activity (IC50 approximately 1.7 microM) in an in vitro assay containing artificial liposomes and partially purified human MTP. These data suggest that CP-10447 may inhibit apoB and triglyceride secretion by inhibiting MTP activity and stimulating the early ER degradation of apoB. CP-10447 should provide a useful tool for further study of the mechanisms of apoB secretion and triglyceride

  12. A New HPLC-MS Method for Measuring Maslinic Acid and Oleanolic Acid in HT29 and HepG2 Human Cancer Cells

    PubMed Central

    Peragón, Juan; Rufino-Palomares, Eva E.; Muñoz-Espada, Irene; Reyes-Zurita, Fernando J.; Lupiáñez, José A.

    2015-01-01

    Maslinic acid (MA) and oleanolic acid (OA), the main triterpenic acids present in olive, have important properties for health and disease prevention. MA selectively inhibits cell proliferation of the HT29 human colon-cancer cell line by inducing selective apoptosis. For measuring the MA and OA concentration inside the cell and in the culture medium, a new HPLC-MS procedure has been developed. With this method, a determination of the amount of MA and OA incorporated into HT29 and HepG2 human cancer-cell lines incubated with different concentrations of MA corresponding to 50% growth inhibitory concentration (IC50), IC50/2, IC50/4, and IC50/8 has been made. The results demonstrate that this method is appropriate for determining the MA and OA concentration in different types of cultured cells and reveals the specific dynamics of entry of MA into HT29 and HepG2 cells. PMID:26370984

  13. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway. PMID:27084371

  14. Proteomic analysis of apoptosis induction by lariciresinol in human HepG2 cells.

    PubMed

    Ma, Zhan-Jun; Wang, Xue-Xi; Su, Gang; Yang, Jing-Jing; Zhu, Ya-Juan; Wu, You-Wei; Li, Jing; Lu, Li; Zeng, Long; Pei, Hai-Xia

    2016-08-25

    Lariciresinol (LA) is a traditional Chinese medicine possessing anticancer activity, but its mechanism of action remains unclear. The present study explored the effects of LA on human HepG2 cells and the underlying mechanism. Our data indicated that LA inhibited cell proliferation and induced cell cycle arrest in S phase, subsequently resulting in apoptosis in HepG2 cells. Using a proteomics approach, eight differentially expressed proteins were identified. Among them, three proteins, glyceraldehyde-3-phosphate, UDP-glucose 4-epimerase, and annexin A1, were upregulated, while the other five proteins, heat shock protein 27, haptoglobin, tropomodulin-2, tubulin alpha-1A chain, and brain acid soluble protein 1, were downregulated; all of these proteins are involved in cell proliferation, metabolism, cytoskeletal organization, and movement. Network analysis of these proteins suggested that the ubiquitin-conjugating enzyme (UBC) plays an important role in the mechanism of LA. Western blotting confirmed downregulation of heat shock protein 27 and upregulation of ubiquitin and UBC expression levels in LA-treated cells, consistent with the results of two-dimensional electrophoresis and a STRING software-based analysis. Overall, LA is a multi-target compound with anti-cancer effects potentially related to the ubiquitin-proteasome pathway. This study will increase our understanding of the anticancer mechanisms of LA. PMID:27417256

  15. Organophosphate pesticides increase the expression of alpha glutathione S-transferase in HepG2 cells.

    PubMed

    Medina-Díaz, I M; Rubio-Ortíz, M; Martínez-Guzmán, M C; Dávalos-Ibarra, R L; Rojas-García, A E; Robledo-Marenco, M L; Barrón-Vivanco, B S; Girón-Pérez, M I; Elizondo, G

    2011-12-01

    Chlorpyrifos and methyl parathion are among the most widely used insecticides in the world. Human populations are constantly exposed to low doses of both due to their extensive use and presence in food and drinking water. Glutathione S-transferase (GST) catalyzes the conjugation of glutathione on electrophilic substrates and is an important line of defense in the protection of cellular components from reactive species. GST alpha1 (GSTA1) is the predominant isoform of GST expressed in the human liver; thus, determining the effect of insecticides on GSTA1 transcription is very important. In the present study, we analyzed the effects of methyl parathion and chlorpyrifos on GSTA1 gene expression in HepG2 cells using real time PCR, and activity and immunoreactive protein assays. The results demonstrated that exposure to methyl parathion and chlorpyrifos increased the level of GSTA1 mRNA, GSTA1 immunoreactive protein and GST activity relative to a control. These results demonstrated that these insecticides can increase the expression of GSTA1. In conclusion, HepG2 cell cultures treated with methyl parathion and chlorpyrifos could be a useful model for studying the function of GSTA1 and its role in the metabolism of xenobiotics in the liver. PMID:21907274

  16. Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: mechanistic perspectives.

    PubMed

    ElKhoely, Abeer; Hafez, Hafez F; Ashmawy, Abeer M; Badary, Osama; Abdelaziz, Ahmed; Mostafa, Adel; Shouman, Samia A

    2015-07-01

    Liver cancer is the fifth commonest malignancy worldwide and the third leading cause of death. Identifying novel curative and preventive therapy may improve its prognosis. In this study, thymoquinone (TQ), the most active biological ingredient of Nigella sativa Linn, was investigated for its antitumor activity. Mechanistic perspectives underlying this antitumor activity were explored by testing its effect on cell cycle, apoptosis, and angiogenesis. In addition, the chemopreventive effect of TQ was carried out by measuring its effect on phase I CYP1A1 and phase II glutathione S-transferase (GST) drug-metabolizing enzymes. The results of the present study revealed the effectiveness of TQ as an antitumor agent against different types of cancer including brain, colon, cervix and liver at both a time- and concentration-dependent manner. In HepG2 cells, it induced G2/M phase cell cycle arrest and a concentration-dependent increase in the percentage of apoptotic cells with an increase in the ratio of Bax/BCL-2. Moreover, the expression of mRNA and protein level of vascular endothelial growth factor decreased as the concentration of TQ increased. Our data showed a significant inhibition of induced phase I CYP1A1 enzyme, and elevation in the content of glutathione and activity of phase II enzyme GST, in HepG2 cells. Our results provide support for the beneficial use of TQ as a therapeutic and chemopreventive agent against liver cancer. PMID:25796541

  17. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Ternon, Eva; Thomas, Olivier P.; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities. PMID:26225985

  18. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    PubMed Central

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-01-01

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells. PMID:26016500

  19. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells.

    PubMed

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  20. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells

    PubMed Central

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  1. Developmental Stage-Specific Hepatocytes Induce Maturation of HepG2 Cells by Rebuilding the Regulatory Circuit

    PubMed Central

    Li, Yanning; Liu, Demei; Zong, Yanhong; Qi, Jinsheng; Li, Bin; Liu, Kun; Xiao, Hui

    2015-01-01

    On the basis of their characteristics, we presume that developmental stage-specific hepatocytes should have the ability to induce maturation of hepatoma cells. A regulatory circuit formed by hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and the upstream stimulatory factor (USF-1) play a key role in the maturation of embryonic hepatocytes; however, it is unclear whether the regulatory circuit mediates the embryonic induction of hepatoma cell maturation. In this study, 12.5-d to 15.5-d mouse embryonic hepatocytes or their medium were used to coculture or treat HepG2 cells, and the induced maturation was evaluated in vitro and in vivo. In the induced HepG2 cells, the components of the regulatory circuit were detected, their cross-regulation was evaluated and HNF-4α RNA interference was performed. We found that 13.5-d to 14.5-d embryonic hepatocytes could induce HepG2 cell maturation, demonstrated by morphological changes, increased maturation markers and decreased c-Myc and α-fetoprotein (AFP) in vitro. The majority of HepG2 tumors were eliminated by 13.5-d embryonic induction in vivo. All components of the regulatory circuit were upregulated and the binding of HNF-4α, HNF-1α, HNF-6 and USF-1 to their target sites was promoted to rebuild the regulatory circuit in the induced HepG2 cells. Moreover, RNA interference targeting HNF-4α, which is the core of the regulatory circuit, attenuated the induced maturation of HepG2 cells with downregulation of the regulatory circuit. These results revealed that developmental stage-specific hepatocytes could induce the maturation of HepG2 cells by rebuilding the regulatory circuit. PMID:25879626

  2. Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells.

    PubMed

    Straser, Alja; Filipič, Metka; Zegura, Bojana

    2013-09-01

    The newly emerging cyanotoxin cylindrospermopsin (CYN) is showing genotoxic effects in a range of test systems. However, the knowledge on the mechanisms involved is limited. To get insight into the cellular responses to CYN a toxicogenomic analysis of selected genes commonly affected by genotoxic stress was performed on HepG2 cells exposed to a non-cytotoxic but genotoxic concentration of CYN (0.5 μg/ml for 12 and 24h). CYN increased expression of the immediate-early response genes from the FOS and JUN gene families and there was strong evidence for the involvement of P53 and NF-κB signaling. Strong up-regulation of the growth arrest and DNA damage inducible genes (GADD45A and GADD45B), cyclin-dependent kinase inhibitors (CDKN1A and CDKN2B), checkpoint kinase 1 (CHEK1), and genes involved in DNA damage repair (XPC, ERCC4 and others) indicated cell-cycle arrest and induction of nucleotide excision and double strand break repair. Up-regulation of metabolic enzyme genes provided evidence for the involvement of phase I (CYP1A1, CYP1B1, ALDH1A2 and CES2) and phase II (UGT1A6, UGT1A1, NAT1 and GSTM3) enzymes in the detoxification response and potential activation of CYN. The obtained transcriptional patterns after exposure of HepG2 cells to CYN provide valuable new information on the cellular response to CYN. PMID:23726867

  3. Zinc inhibits ethanol-induced HepG2 cell apoptosis

    SciTech Connect

    Szuster-Ciesielska, Agnieszka Plewka, Krzysztof; Daniluk, Jadwiga; Kandefer-Szerszen, Martyna

    2008-05-15

    Alcohol consumption produces a variety of metabolic alterations in liver cells, associated with ethanol oxidation and with nonoxidative metabolism of ethanol, among others apoptosis of hepatocytes. As zinc is known as a potent antioxidant and an inhibitor of cell apoptosis, the aim of this paper was to investigate whether zinc supplementation could inhibit ethanol-induced HepG2 apoptosis, and whether this inhibition was connected with attenuation of oxidative stress and modulation of FasR/FasL system expression. The results indicated that zinc supplementation significantly inhibited ethanol-induced HepG2 cell apoptosis (measured by cytochrome c release from mitochondria and caspase-3 activation) by attenuation of reactive oxygen species (ROS) production, increase in the cellular level of GSH, inhibition of ethanol-induced sFasR and FasL overexpression and caspase-8 activation. These results indicate that zinc can inhibit ethanol-induced hepatocyte apoptosis by several independent mechanisms, among others by an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-9 activation.

  4. Palmitate induces insulin resistance without significant intracellular triglyceride accumulation in HepG2 cells.

    PubMed

    Lee, Jin-young; Cho, Hyang-Ki; Kwon, Young Hye

    2010-07-01

    Previous studies showed that increased release of free fatty acids from adipocytes leads to insulin resistance and triglyceride (TG) accumulation in the liver, which may progress into hepatic steatohepatitis. We and other investigators have previously reported that palmitate induces endoplasmic reticulum stress-mediated toxicity in several tissues. This work investigated whether palmitate could induce insulin resistance and steatosis in HepG2 cells. We treated cells with either saturated fatty acid (palmitate) or unsaturated fatty acid (oleate), and observed that palmitate significantly activated c-jun N-terminal kinase and inactivated protein kinase B. Both 4-phenylbutyric acid and glycerol significantly activated protein kinase B, confirming the involvement of endoplasmic reticulum stress in palmitate-mediated insulin resistance. Oleate, but not palmitate, significantly induced intracellular TG deposition and activated sterol regulatory element binding protein-1. Instead, diacylglycerol level and protein kinase C epsilon activity were significantly increased by palmitate, suggesting the possible role of diacylglycerol in palmitate-mediated lipotoxicity. Therefore, the present study clearly showed that palmitate impairs insulin resistance, but does not induce significant TG accumulation in HepG2 cells. PMID:20006364

  5. Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2.

    PubMed

    Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Lee, Won-Sup; Kim, Eun-Hee; Kim, Gon Sup

    2016-06-01

    Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells. PMID:26492105

  6. Cytotoxicity of mequindox and its metabolites in HepG2 cells in vitro and murine hepatocytes in vivo.

    PubMed

    Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan

    2016-02-01

    Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100μg/ml) or its major metabolites (0, 40, 100, 250 or 500μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N→O groups could contribute to DNA damage in murine hepatocytes in vivo. PMID:26921019

  7. A polysaccharide from pumpkin induces apoptosis of HepG2 cells by activation of mitochondrial pathway.

    PubMed

    Shen, Weixi; Guan, Yuanyuan; Wang, Jingfang; Hu, Yu; Tan, Qian; Song, Xiaowei; Jin, Yinghua; Liu, Ying; Zhang, Yanqiao

    2016-04-01

    Purified white polysaccharide (PPW) is a homogenous polysaccharide isolated from pumpkin, with an average molecular weight of 34 kDa. In this study, we aimed at examining the anti-proliferative activity of PPW against hepatocellular carcinoma (HCC) HepG2 cells and the underlying mechanisms. We found that PPW-induced inhibition of cell proliferation in HepG2 cells was associated with the induction of apoptosis. Exposure of HepG2 cells to PPW (100, 200, and 400 μg/mL) resulted in a loss of mitochondrial membrane potential (Δψm) and the release of cytochrome c from the mitochondria to the cytosol. Also, Western blot analysis revealed dose-dependent increase of pro-apoptotic Bax protein and decrease of anti-apoptotic Bcl-2 protein in PPW-treated cells. Besides, caspase-9 and caspase-3 activities were also enhanced in HepG2 cells followed by PPW treatment. Additionally, the cleavage of poly (ADP-ribose) polymerase (PARP) was observed in PPW-treated HepG2 cells, which altogether account for apoptotic cell death. These results suggested that PPW-induced apoptosis involved a caspase-3-mediated mitochondrial pathway and may have potential as a cancer chemopreventive and therapeutic agent for the prevention and treatment of HCC. PMID:26555544

  8. Silencing clusterin gene transcription on effects of multidrug resistance reversing of human hepatoma HepG2/ADM cells.

    PubMed

    Zheng, Wenjie; Sai, Wenli; Yao, Min; Gu, Hongbin; Yao, Yao; Qian, Qi; Yao, Dengfu

    2015-05-01

    Abnormal clusterin (CLU) expression is associated with multidrug resistance (MDR) of hepatocellular carcinoma (HCC). In the present study, the CLU expression was analyzed in human hepatoma cells and chemoresistant counterpart HepG2/ADM cells. Compared with L02 cells, the overexpression of cellular CLU was identified in HepG2, HepG2/ADM, SMMC7721, Hep3B ,and PLC cells and relatively lower expression in Bel-7404, SNU-739, and MHCC97H cells. Specific short hairpin RNAs (shRNAs) to silence CLU gene transcription were designed, and the most effective sequences were screened. After the HepG2/ADM cells transfected with shRNA-1, the inhibition of CLU expression was 73.68 % at messenger RNA (mRNA) level by real-time quantitative RT-PCR with obvious enhancement in cell chemosensitivity, increasing apoptosis induced by doxorubicin using fluorescence kit, and Rh-123 retention qualified with flow cytometry. Knockdown CLU also significantly decreased the drug efflux pump activity through the depression of MDR1/P-glycoprotein (q = 11.739, P < 0.001). Moreover, silencing CLU led to downregulation of β-catenin (q = 13.544, P = 0.001), suggesting that downregulation of CLU might be a key point to reverse multidrug resistance of HepG2/ADM cells. PMID:25600802

  9. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Zheng, Jiwen; Ihrie, John

    2016-04-01

    Exposure to nanosilver found in food- and cosmetics-related consumer products is of public concern because of the lack of information about its safety. In this study, two widely used in vitro cell culture models, human liver HepG2 and colon Caco2 cells, and the flow cytometric micronucleus (FCMN) assay were evaluated as tools for rapid predictive screening of the potential genotoxicity of nanosilver. Recently, we reported the genotoxicity of 20 nm nanosilver using these systems. In the current study presented here, we tested the hypothesis that the nanoparticle size and cell types were critical determinants of its genotoxicity. To test this hypothesis, we used the FCMN assay to evaluate the genotoxic potential of 50 nm nanosilver of the same shape, composition, surface charge and obtained from the same commercial source using the same experimental conditions and in vitro models (HepG2 and Caco2) as previously tested for the 20 nm silver. Results of our study show that up to the concentrations tested in these cultured cell test systems, the smaller (20 nm) nanoparticle is genotoxic to both the cell types by inducing micronucleus (MN). However, the larger (50 nm) nanosilver induces MN only in HepG2 cells, but not in Caco2 cells. Also in this study, we evaluated the contribution of ionic silver to the genotoxic potential of nanosilver using silver acetate as the representative ionic silver. The MN frequencies in HepG2 and Caco2 cells exposed to the ionic silver in the concentration range tested are not statistically significant from the control values except at the top concentrations for both the cell types. Therefore, our results indicate that the ionic silver may not contribute to the MN-forming ability of nanosilver in HepG2 and Caco2 cells. Also our results suggest that the HepG2 and Caco2 cell cultures and the FCMN assay are useful tools for rapid predictive screening of a genotoxic potential of food- and cosmetics-related chemicals including nanosilver. PMID

  10. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2) Cells.

    PubMed

    Yarmush, Gabriel; Santos, Lucas; Yarmush, Joshua; Koundinyan, Srivathsan; Saleem, Mubasher; Nativ, Nir I; Schloss, Rene S; Yarmush, Martin L; Maguire, Timothy J; Berthiaume, Francois

    2016-01-01

    Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation. PMID:26742084

  11. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2) Cells

    PubMed Central

    Yarmush, Gabriel; Santos, Lucas; Yarmush, Joshua; Koundinyan, Srivathsan; Saleem, Mubasher; Nativ, Nir I.; Schloss, Rene S.; Yarmush, Martin L.; Maguire, Timothy J.; Berthiaume, Francois

    2016-01-01

    Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation. PMID:26742084

  12. MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.

    PubMed

    Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-06-01

    Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. PMID:27209165

  13. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    PubMed

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-01-01

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2. PMID:27420953

  14. [Increased apoptosis and down-regulation of RhoA in HepG2 cells infected by Listeria monocytogenes].

    PubMed

    Wu, Liang; Han, Xinye; Liu, Yuan; Su, Danhua; Fu, Tao; Jiang, Xugan; Chen, Shengxia; Xu, Huaxi

    2016-05-01

    Objective To explore the apoptosis of HepG2 cells infected by Listeria monocytogenes EGD strain (Lm-EGD) as well as Rho family small GTPases RhoA expression. Methods HepG2 cells were infected with Lm-EGD (MOI=10 and MOI=100) and collected 1 hour and 20 hours after infection. After harvesting, the apoptosis of HepG2 cells was determined by flow cytometry combined with annexin V-FITC/PI assay. RhoA and caspase 3 mRNAs were analyzed by reverse-transcription PCR. The caspase 3 activity was detected by colorimetric assay. And Western blotting was used to detect RhoA expression in HepG2 cells. Results Lm invasion promoted HepG2 cell apoptosis and down-regulated RhoA mRNA and protein expression. Additionally, caspase 3 expression was up-regulated following Lm infection. Conclusion Lm infection could promote host cell apoptosis and down-regulate RhoA expression. PMID:27126939

  15. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702

  16. Cytotoxicity of Subtoxic AgNP in Human Hepatoma Cell Line (HepG2) after Long-Term Exposure

    PubMed Central

    Nowrouzi, Azin; Meghrazi, Khadijeh; Golmohammadi, Taghi; Golestani, Abolfazl; Ahmadian, Shahin; Shafiezadeh, Mahshid; Shajary, Zahra; Khaghani, Shahnaz; Amiri, Azita

    2010-01-01

    Background: We aimed at evaluating the toxicity effects of low (subtoxic) concentrations of silver nanoparticles (AgNP, 5-10 nm) in human hepatoblastoma (HepG2) cell line after and during a period of about one month. Methods: XTT and MTT assays were used to draw a dose-response curve; IC50 (half maximal inhibitory concentration) value of the AgNP on HepG2 cells was calculated to be 2.75-3.0 mg/l. The cells were exposed to concentrations of 0% (control), 1%, 4% and 8% IC50 of AgNP (corresponding to 0.00, 0.03, 0.12 and 0.24 mg/l of AgNP, respectively) for four consecutive passages. The treated cells were compared to the control group with respect to morphology and proliferation at the end of the period. Results: The biochemical studies revealed significant increases of lactate dehydrogenase and alanine aminotransferase enzyme activity in the culture media of cells receiving 4% and 8% IC50; the increases in the aspartate aminotransferase enzyme activity and nitric oxide concentration became significant at 8% IC50. In the cell extracts, the average total protein and activity of glutathione peroxidase enzyme remained unchanged; the decrease in the average content of glutathione (GSH) and superoxide dismutase (SOD) activity became significant at 4% and 8% IC50. There were increases in lipid peroxidation (significant at 4% and 8% IC50) and cytochrome c content (significant at 8% IC50). The accumulations of the effects, during the experiment from one generation to the next, were not statistically remarkable except in cases of GSH and SOD. The results indicate clearly the involvement of oxidative changes in the cells after exposure to low doses of AgNP. Conclusion: The results might help specify a safer amount of AgNP for use in different applications. PMID:20683495

  17. Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells.

    PubMed

    Guerrero, Ligia; Margalef, Maria; Pons, Zara; Quiñones, Mar; Arola, Lluis; Arola-Arnal, Anna; Muguerza, Begoña

    2013-12-01

    The regular consumption of flavonoids has been associated with reduced mortality and a decreased risk of cardiovascular diseases. The proanthocyanidins found in plasma are very different from the original flavonoids in food sources. The use of physiologically appropriate conjugates of proanthocyanidins is essential for the in vitro analysis of flavonoid bioactivity. In this study, the effect of different proanthocyanidin-rich extracts, which were obtained from cocoa (CCX), French maritime pine bark (Pycnogenol extract, PYC) and grape seed (GSPE), on lipid homeostasis was evaluated. Hepatic human cells (HepG2 cells) were treated with 25 mg/L of CCX, PYC or GSPE. We also performed in vitro experiments to assess the effect on lipid synthesis that is induced by the bioactive GSPE proanthocyanidins using the physiological metabolites that are present in the serum of GSPE-administered rats. For this, Wistar rats were administered 1 g/kg of GSPE, and serum was collected after 2 h. The semipurified serum of GSPE-administered rats was fully characterized by liquid chromatography tandem triple quadrupole mass spectrometry (LC-QqQ/MS(2)). The lipids studied in the analyses were free cholesterol (FC), cholesterol ester (CE) and triglycerides (TG). All three proanthocyanidin-rich extracts induced a remarkable decrease in the de novo lipid synthesis in HepG2 cells. Moreover, GSPE rat serum metabolites reduced the total percentage of CE, FC and particularly TG; this reduction was significantly higher than that observed in the cells directly treated with GSPE. In conclusion, the bioactivity of the physiological metabolites that are present in the serum of rats after their ingestion of a proanthocyanidin-rich extract was demonstrated in Hep G2 cells. PMID:24231101

  18. Microarray analysis provides new insights into the function of apolipoprotein O in HepG2 cell line

    PubMed Central

    2013-01-01

    Background Apolipoprotein O (apoO) is a new member of the apolipoprotein family. However, data on its physiological functions are limited and inconsistent. Using a microarray expression analysis, this study explored the function of apoO in liver cells. Methods HepG2 cells were treated either with oleic acid or tumor necrosis factor-α for 24 h. mRNA and protein expression of apoO were assessed by quantitative real-time PCR (qRT-PCR) and Western blot respectively. An efficient lentiviral siRNA vector targeting the human apoO gene was designed and constructed. The gene expression profile of HepG2 human hepatocellular carcinoma cells transfected with the apoO silencing vector was investigated using a whole-genome oligonucleotide microarray. The expression levels of some altered genes were validated using qRT-PCR. Results ApoO expression in HepG2 cells was dramatically affected by lipid and inflammatory stimuli. A total of 282 differentially expressed genes in apoO-silenced HepG2 cells were identified by microarray analysis. These genes included those participating in fatty acid metabolism, such as ACSL4, RGS16, CROT and CYP4F11, and genes participating in the inflammatory response, such as NFKBIZ, TNFSF15, USP2, IL-17, CCL23, NOTCH2, APH-1B and N2N. The gene Uncoupling protein 2 (UCP2), which is involved in both these metabolic pathways, demonstrated significant changes in mRNA level after transfection. Conclusions It is likely that apoO participates in fatty acid metabolism and the inflammatory response in HepG2 cells, and UCP2 may act as a mediator between lipid metabolism and inflammation in apoO-silenced HepG2 cells. PMID:24341743

  19. Heterologous expression of human cytochrome P450 2E1 in HepG2 cell line

    PubMed Central

    Zhuge, Jian; Luo, Ye; Yu, Ying-Nian

    2003-01-01

    AIM: Human cytochrome P-450 2E1 (CYP2E1) takes part in the biotransformation of ethanol, acetone, many small-molecule substrates and volatile anesthetics. CYP2E1 is involved in chemical activation of many carcinogens, procarcinogens, and toxicants. To assess the metabolic and toxicological characteristics of CYP2E1, we cloned CYP2E1 cDNA and established a HepG2 cell line stably expressing recombinant CYP 2E1. METHODS: Human CYP2E1 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR) from total RNAs extracted from human liver and cloned into pGEM-T vector. The cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant plasmid of pREP9-CYP2E1 to HepG2 cells. The expression of CYP2E1 mRNA was validated by RT-PCR. The enzyme activity of CYP2E1 catalyzing oxidation of 4-nitrophenol in postmitochondrial supernate (S9) fraction of the cells was determined by spectrophotometry. The metabolic activation of HepG2-CYP2E1 cells was assayed by N-nitrosodiethylamine (NDEA) cytotoxicity and micronucleus test. RESULTS: The cloned CYP2E1 cDNA segment was identical to that reported by Umeno et al (GenBank access No. J02843). HepG2-CYP2E1 cells expressed CYP2E1 mRNA and had 4-nitrophenol hydroxylase activity (0.162 ± 0.025 nmol·min-1·mg-1 S9 protein), which were undetectable in parent HepG2 cells. HepG2-CYP2E1 cells increased the cytotoxicity and micronucleus rate of NDEA in comparison with those of HepG2 cells. CONCLUSION: The cDNA of human CYP2E1 can be successfully cloned, and a cell line, HepG2-CYP2E1, which can efficiently express mRNA and has CYP2E1 activity, is established. The cell line is useful for testing the cytotoxicity, mutagenicity and metabolism of xenobiotics, which may possibly be activated or metabolized by CYP2E1. PMID:14669323

  20. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes.

    PubMed

    Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min

    2015-05-01

    The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P<0.05), but not by hyperthermia plus 50 μg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro. PMID:25990057

  1. Demonstration of the Presence of the “Deleted” MIR122 Gene in HepG2 Cells

    PubMed Central

    Hamad, Ibrahim A. Y.; Fei, Yue; Kalea, Anastasia Z.; Yin, Dan; Smith, Andrew J. P.; Palmen, Jutta; Humphries, Steve E.; Talmud, Philippa J.; Walker, Ann P.

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells. PMID:25811611

  2. SiC nanoparticles cyto- and genotoxicity to Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Barillet, Sabrina; Jugan, Mary-Line; Simon-Deckers, Angélique; Leconte, Yann; Herlin-Boime, Nathalie; Mayne-l'Hermite, Martine; Reynaud, Cécile; Carrière, Marie

    2009-05-01

    While emerging nanotechnologies have seen significant development in recent years, knowledge on exposure levels as well as data on toxicity of nanoparticles are still quite limited. Indeed, there is a general agreement that development of nanotechnologies may lead to considerable dissemination of nanoparticles in the environment. Nevertheless, questions relative to toxicity versus innocuousness of such materials still remain. Our present study has thus been carried out with the purpose of assessing some aspects of toxicological capacities of three kinds of nano-sized particles: TiO2 and SiC nanoparticles, as well as multi-walled carbon nanotubes (CNT). In order to address the question of their potential toxicity toward living cells, we chose several cellular models. Assuming inhalation as the most probable exposure scenario, we used A549 alveolar epithelial cells as a model for mammalian primary target organ (lung). Furthermore, we considered that nanoparticles that would deposit into the pulmonary system may be translocated to the circulatory system. Thus, we decided to study the effect of nanoparticles on potentially secondary target organs: liver (WIF-B9, Can-10, HepG2) and kidneys (NRK-52E, LLC-PK1). Herein, we will focus our attention on results obtained on the HepG2 cell line exposed to SiC nanoparticles. Scarce literature exists on SiC nanotoxicology. According to the authors that have already carried out studies on this particular nanoparticle, it would seem that SiC nanoparticles do not induce cytotoxicity. That is one of the reasons of the potential use of these nanoparticles as biological labels [1]. We thus were interested in acquiring more data on biological effects induced by SiC nanoparticles. Furthermore, one of the particular aspects of the present study lies in the fact that we tried to specify the influence of physico-chemical characteristics of nanoparticles on toxicological endpoints (cytotoxicity and genotoxicity).

  3. Apoptosis induced by paclitaxel-loaded copolymer PLA–TPGS in Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Tran Thi, Hong Ha; Le Quang, Duong; Nguyen Thi, Toan; Tran Thi, Nhu Hang; Huong Le, Mai; Thu Ha, Phuong

    2012-12-01

    Paclitaxel is an important anticancer drug in clinical use for treatment of a variety of cancers. The clinical application of paclitaxel in cancer treatment is considerably limited due to its serious poor delivery characteristics. In this study paclitaxel-loaded copolymer poly(lactide)–d-α-tocopheryl polyethylene glycol 1000 succinate (PLA–TPGS) nanoparticles were prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles, such as surface morphology, size distribution, zeta potential, solubility and apoptosis were investigated in vitro. The obtained spherical nanoparticles were negatively charged with a zeta potential of about ‑18 mV with the size around 44 nm and a narrow size distribution. The ability of paclitaxel-loaded PLA–TPGS nanoparticles to induce apoptosis in human hepatocellular carcinoma cell line (Hep-G2) indicates the possibility of developing paclitaxel nanoparticles as a potential universal cancer chemotherapeutic agent.

  4. RNA-Sequencing Analysis of HepG2 Cells Treated with Atorvastatin

    PubMed Central

    Stormo, Camilla; Kringen, Marianne K.; Lyle, Robert; Olstad, Ole Kristoffer; Sachse, Daniel; Berg, Jens P.; Piehler, Armin P.

    2014-01-01

    The cholesterol-lowering drug atorvastatin is among the most prescribed drug in the world. Alternative splicing in a number of genes has been reported to be associated with variable statin response. RNA-seq has proven to be a powerful technique for genome-wide splice variant analysis. In the present study, we sought to investigate atorvastatin responsive splice variants in HepG2 cells using RNA-seq analysis to identify novel candidate genes implicated in cholesterol homeostasis and in the statin response. HepG2 cells were treated with 10 µM atorvastatin for 24 hours. RNA-seq and exon array analyses were performed. The validation of selected genes was performed using Taqman gene expression assays. RNA-seq analysis identified 121 genes and 98 specific splice variants, of which four were minor splice variants to be differentially expressed, 11 were genes with potential changes in their splicing patterns (SYCP3, ZNF195, ZNF674, MYD88, WHSC1, KIF16B, ZNF92, AGER, FCHO1, SLC6A12 and AKAP9), and one was a gene (RAP1GAP) with differential promoter usage. The IL21R transcript was detected to be differentially expressed via RNA-seq and RT-qPCR, but not in the exon array. In conclusion, several novel candidate genes that are affected by atorvastatin treatment were identified in this study. Further studies are needed to determine the biological significance of the atorvastatin responsive splice variants that have been uniquely identified using RNA-seq. PMID:25153832

  5. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells

    PubMed Central

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-01-01

    AIM: To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. METHODS: Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91phox, p67phox, p47phox, p40phox, and p22phox were evaluated by Western blot. RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0

  6. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins

    PubMed Central

    GAO, BIN; SHEN, LEI; HE, KE-WU; XIAO, WEI-HUA

    2015-01-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  7. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins.

    PubMed

    Gao, Feng; Jian, Liumeng; Zafar, Mohammad Ishraq; Du, Wen; Cai, Qin; Shafqat, Raja Adeel; Lu, Furong

    2015-11-01

    Previous studies have indicated that 4‑hydroxyisoleucine (4‑HIL) improves insulin resistance, however, the underlying mechanisms remain to be elucidated. In the present study, the molecular mechanisms underlying how 4‑HIL improves insulin resistance in hepatocytes were examined. HepG2 cells were co‑cultured with insulin and a high glucose concentration to obtain insulin‑resistant (IR) HepG2 cells. Insulin sensitivity was determined by measuring the glucose uptake rate. The IR HepG2 cells were treated with different concentrations of 4‑HIL to determine its effect on IR Hep2 cells. The levels of tumor necrosis factor‑α (TNF‑α) were measured by an enzyme‑linked immunosorbent assay and protein levels of TNF‑α converting enzyme (TACE)/tissue inhibitor of metalloproteinase 3 (TIMP3), insulin receptor substrate (IRS)‑1, IRS‑2, phosphorylated (p)‑IRS‑1 (Ser307) and glucose transporter type 4 (GLUT4) were measured by western blot analysis. The results of the present study demonstrated that insulin‑induced glucose uptake was reduced in IR HepG2 cells; however, this reduction was reversed by 4‑HIL in a dose‑dependent manner. 4‑HIL achieved this effect by downregulating the expression of TNF‑α and TACE, and upregulating the expression of TIMP3 in IR HepG2 cells. In addition, 4‑HIL increased the expression of the insulin transduction regulators IRS‑1 and GLUT4, and decreased the expression of p‑IRS‑1 (Ser307), without affecting the expression of IRS‑2. The present study suggests that 4‑HIL improved insulin resistance in HepG2 cells by the following mechanisms: 4‑HIL reduced TNF‑α levels by affecting the protein expression of the TACE/TIMP3 system and 4‑HIL stimulated the expression of IRS‑1 and GLUT4, but inhibited the expression of p‑IRS‑1 (Ser307). PMID:26352439

  8. GNRs@SiO₂-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins.

    PubMed

    Gao, Bin; Shen, Lei; He, Ke-Wu; Xiao, Wei-Hua

    2015-11-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  9. Flavonoids of Korean Citrus aurantium L. Induce Apoptosis via Intrinsic Pathway in Human Hepatoblastoma HepG2 Cells.

    PubMed

    Lee, Seung Hwan; Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won-Sup; Kim, Eun-Hee; Park, Hyeon Soo; Kim, Gon Sup

    2015-12-01

    Korean Citrus aurantium L. has long been used as a medicinal herb for its anti-inflammatory, antioxidant, and anticancer properties. The present study investigates the anticancer role of flavonoids extracted from C. aurantium on human hepatoblastoma cell, HepG2. The Citrus flavonoids inhibit the proliferation of HepG2 cells in a dose-dependent manner. This result was consistent with the in vivo xenograft results. Apoptosis was detected by cell morphology, cell cycle analysis, and immunoblot. Flavonoids decreased the level of pAkt and other downstream targets of phosphoinositide-3-kinase/Akt pathway - P-4EBP1 and P-p70S6K. The expressions of cleaved caspase 3, Bax, and Bak were increased, while those of Bcl-2 and Bcl-xL were decreased with an increase in the expression of Bax/Bcl-xL ratio in treated cells. Loss of mitochondrial membrane potential was also observed in flavonoid-treated HepG2 cells. It was also observed that the P-p38 protein level was increased both dose and time dependently in flavonoid-treated cells. Collectively, these results suggest that flavonoid extracted from Citrus inhibits HepG2 cell proliferation by inducing apoptosis via an intrinsic pathway. These findings suggest that flavonoids extracted from C. aurantium L. are potential chemotherapeutic agents against liver cancer. PMID:26439681

  10. Ultrasonication processed Panax ginseng berry extract induces apoptosis through an intrinsic apoptosis pathway in HepG2 cells.

    PubMed

    Jung, Hyunwoo; Bae, Jinhyung; Ko, Sung Kwon; Sohn, Uy Dong

    2016-06-01

    Ginseng's major active components, ginsenosides, have been known to show anti-cancer, neuroprotective, and anti-inflammatory activities. Ultrasonication processed Panax ginseng berry extract (UGB) contains various ginsenosides. The components are different from Panax ginseng berry extract (GBE). This study was aimed to investigate the cytotoxic mechanism of UGB in HepG2 cells, human hepatocellular carcinoma cell line. HepG2 cells were treated with UGB (0, 10, 20 μg/ml). Cell growth and cellular apoptosis were evaluated by MTT assay and Annexin V/Pi staining, respectively. Intracellular Reactive oxygen species (ROS) levels were also determined by 2', 7'-dichlorofluorescin diacetate (DCFDA) staining. The expressions of Bax, Bcl-2 and caspase-3, the apoptotic markers, were evaluated by Western Blot. UGB dose-dependently inhibited cell growth and induced apoptotic cell death. Intracellular ROS levels were increased. UGB increased the expression of the cleaved form of caspase-3. Furthermore, UGB induced apoptosis of HepG2 cells through Bax activation and Bcl-2 inhibition. In conclusion, UGB induced apoptosis through an intrinsic pathway in HepG2 cells suggesting that UGB might play a role as a novel substance for anti-cancer effect. PMID:27233905

  11. Liv.52 up-regulates cellular antioxidants and increase glucose uptake to circumvent oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sharath Kumar, L M; Barooah, Vandana; Sandeep Varma, R; Nandakumar, Krishna S; Patki, Pralhad Sadashiv

    2012-10-15

    HepG2 cells were rendered steatotic by supplementing 2.0mM oleic acid (OA) in the culture media for 24h. OA induced hepatic steatosis in HepG2 cells was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. It was also marked by increased inflammatory cytokines TNF-α and IL-8 with decreased enzymic and non-enzymic antioxidant molecules and decreased cell proliferation associated with insulin resistance and DNA fragmentation. Addition of Liv.52 hydro-alcoholic extract (LHAE) 50μg/mL to the steatotic cells was effective in increasing the insulin mediated glucose uptake by 3.13 folds and increased cell proliferation by 3.81 folds with decreased TAG content (55%) and cytokines. The intracellular glutathione content was increased by 8.9 folds without substantial increase in GSSG content. LHAE decreased TNF-α and IL-8 by 51% and 6.5% folds respectively, lipid peroxidation by 65% and inhibited DNA fragmentation by 69%. The superoxide dismutase, catalase and glutathione peroxidase activities were increased by 88%, 128% and 64% respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by LHAE. Hence, LHAE effectively attenuate molecular perturbations associated with non-alcoholic fatty liver disease (NAFLD) indications in HepG2 cells. PMID:22940028

  12. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells.

    PubMed

    Wang, Yonggang; Aker, Winfred G; Hwang, Huey-min; Yedjou, Clement G; Yu, Hongtao; Tchounwou, Paul B

    2011-10-15

    Nanoparticles (NPs), including nanometal oxides, are being used in diverse applications such as medicine, clothing, cosmetics and food. In order to promote the safe development of nanotechnology, it is essential to assess the potential adverse health consequences associated with human exposure. The liver is a target site for NP toxicity, due to NP accumulation within it after ingestion, inhalation or absorption. The toxicity of nano-ZnO, TiO(2), CuO and Co(3)O(4) was investigated using a primary culture of channel catfish hepatocytes and human HepG2 cells as in vitro model systems for assessing the impact of metal oxide NPs on human and environmental health. Some mechanisms of nanotoxicity were determined by using phase contrast inverted microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, reactive oxygen species (ROS) assays, and flow cytometric assays. Nano-CuO and ZnO showed significant toxicity in both HepG2 cells and catfish primary hepatocytes. The results demonstrate that HepG2 cells are more sensitive than catfish primary hepatocytes to the toxicity of metal oxide NPs. The overall ranking of the toxicity of metal oxides to the test cells is as follows: TiO(2)cell death, but also to damages to cell and mitochondrial membranes. PMID:21851965

  13. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells

    PubMed Central

    MENG, XUE-QIN; ZHANG, WEI; ZHANG, FENG; YIN, SHENG-YONG; XIE, HAI-YANG; ZHOU, LIN; ZHENG, SHU-SEN

    2016-01-01

    The aim of the present study was to investigate the effect of solanine on promoting human hepatocellular carcinoma HepG2 cells to produce reactive oxygen species (ROS), and the molecular mechanisms leading to tumor cell apoptosis. Solanine was administered to HepG2 cells in vitro. A selection of probes targeting various cellular localizations of ROS were used to detect ROS expression using flow cytometry. The expression levels of apoptosis-associated proteins, including apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin binding protein 2 (TBP-2), and proliferation-associated proteins, including histone deacetylase 1 (HDAC1), were detected using western blotting. The percentage of cells undergoing apoptosis was measured using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, and cell morphology was examined using Wright's stain followed by inverted microscopy analysis. ROS detection probes 2′,7′-dichlorofluorescin diacetate and dihydrorhodamine 123 identified that abundant ROS, including hydroxyl radical (OH−) and hydrogen peroxide (H2O2), were produced in the cytoplasm and mitochondria of the solanine-treated HepG2 cells compared with the control cells (P<0.05). Superoxide anion specific probes dihydroethidium and MitoSOX™ demonstrated that there were no significant alterations in the HepG2 cells following solanine treatment compared with the control cells (P>0.05). Western blotting results revealed that solanine upregulated the expression levels of ASK1 and TBP-2 and enhanced their kinase activities, whereas solanine decreased the expression level of the proliferation-associated protein, HDAC1. The cell apoptotic rate was significantly increased (P<0.0001) in the solanine-treated HepG2 cells compared with the control cells. (P<0.05). Overall, the study indicated that solanine induces HepG2 cells to produce ROS, mainly OH− and H2O2, in a mitochondria-dependent and -independent manner. In addition, solanine stimulates the expression

  14. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    PubMed Central

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  15. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line.

    PubMed

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as "mundu" belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  16. Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation

    SciTech Connect

    Osabe, Makoto; Sugatani, Junko Takemura, Akiko; Yamazaki, Yasuhiro; Ikari, Akira; Kitamura, Naomi; Negishi, Masahiko; Miwa, Masao

    2008-05-16

    Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2 cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation.

  17. Asparanin A induces G(2)/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Liu, Wei; Huang, Xue-Feng; Qi, Qi; Dai, Qin-Sheng; Yang, Li; Nie, Fei-Fei; Lu, Na; Gong, Dan-Dan; Kong, Ling-Yi; Guo, Qing-Long

    2009-04-17

    We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G(2)/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21(WAF1/Cip1) and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21(WAF1/Cip1) and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma. PMID:19254688

  18. The growth suppressing effects of girinimbine on HepG2 involve induction of apoptosis and cell cycle arrest.

    PubMed

    Syam, Suvitha; Abdul, Ahmad Bustamam; Sukari, Mohd Aspollah; Mohan, Syam; Abdelwahab, Siddig Ibrahim; Wah, Tang Sook

    2011-01-01

    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma. PMID:21862957

  19. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways

    PubMed Central

    Shao, Le-Wen; Huang, Li-Hua; Yan, Sheng; Jin, Jian-Di; Ren, Shao-Yan

    2016-01-01

    Cordycepin, also termed 3′-deoxyadenosine, is a nucleoside analogue from Cordyceps sinensis and has been reported to demonstrate numerous biological and pharmacological properties. Our previous study illustrated that the anti-tumor effect of cordycepin may be associated with apoptosis. In the present study, the apoptotic effect of cordycepin on HepG2 cells was investigated using 4′,6-diamidino-2-phenylindole, tetraethylbenzimidazolylcarbocyanine iodide and propidium iodide staining analysis and flow cytometry. The results showed that cordycepin exhibited the ability to inhibit HepG2 cells in a time- and dose-dependent manner when cells produced typical apoptotic morphological changes, including chromatin condensation, the accumulation of sub-G1 cells and change mitochondrial permeability. A potential mechanism for cordycepin-induced apoptosis of human liver cancer HepG2 cells may occur through the extrinsic signaling pathway mediated by the transmembrane Fas-associated with death domain protein. Apoptosis was also associated with Bcl-2 family protein regulation, leading to altered mitochondrial membrane permeability and resulting in the release of cytochrome c into the cytosol. The activation of the caspase cascade is responsible for the execution of apoptosis. In conclusion, cordycepin-induced apoptosis in HepG2 cells involved the extrinsic and intrinsic signaling pathway and was primarily regulated by the Bcl-2 family proteins. PMID:27446383

  20. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent. PMID:25169500

  1. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells

    PubMed Central

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-01-01

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases. PMID:26258792

  2. ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells

    PubMed Central

    Yu, Ge; Li, Huan; Yang, Shuanghui; Wen, Jianguo; Niu, Junqi; Zu, Youli

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5′-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells. PMID:26808385

  3. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  4. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    EPA Science Inventory

    To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of Ce02 (0.3, 3 and 30 µg/mL). The two Ce02 nanopartices had dry primary particle sizes of 8 nanometers {(M) ...

  5. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2.

    PubMed

    Souza, A O; Pereira, L C; Oliveira, D P; Dorta, D J

    2013-03-01

    Polybrominated Diphenyl Ethers (PBDEs) are an important class of flame retardants with a wide range of toxic effects on biotic and abiotic systems. The toxic mechanisms of PBDEs are still not completely understood because there are several different congeners with different chemical and biological characteristics. BDE-99 is one of these, widely found in the environment and biological samples, showing evidence of neurotoxic and endocrine disruption activities, but with little information about its action mechanism described in the current literature. This work investigated the effects of BDE-99 on the HepG2 cell line in order to clarify its toxic mechanism, using concentrations of 0.5-25 μM (24 and 48 h). Our results showed that BDE-99 could cause cell death in the higher concentrations, its activity being related to a decrease in mitochondrial membrane potential and an accumulation of ROS. It was also shown that BDE-99 induced the exposure of phosphatidylserine, caspases 3 and 9 activation and DNA fragmentation in HepG2 cells, without causing the release of LDH. Thus it was shown that BDE-99 could cause HepG2 cell death by apoptosis, suggesting its toxicity to the human liver. PMID:23124135

  6. Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway

    SciTech Connect

    Zhu, Binbin; Zhao, Li; Zhu, Litao; Wang, Hu; Sha, Yunying; Yao, Jing; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2012-03-15

    Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells. The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.

  7. Retinoic acid receptor-related orphan receptor (ROR) alpha4 is the predominant isoform of the nuclear receptor RORalpha in the liver and is up-regulated by hypoxia in HepG2 human hepatoma cells.

    PubMed Central

    Chauvet, Caroline; Bois-Joyeux, Brigitte; Danan, Jean-Louis

    2002-01-01

    The retinoic acid receptor-related orphan receptor alpha (RORalpha) is critically involved in many physiological functions in several organs. We find that the main RORalpha isoform in the mouse liver is the RORalpha4 isoform, in terms of both mRNA and protein levels, while the RORalpha1 isoform is less abundant. Because hypoxia is a major feature of liver physiology and pathology, we examined the effect of this stress on Rora gene expression and RORalpha transcriptional activity. HepG2 human hepatoma cells were cultured for 24 h under normoxia (20% O2) or hypoxia (10, 2, and 0.1% O2) and the abundance of the Rora transcripts measured by Northern blot and semi-quantitative RT-PCR. Hypoxic HepG2 cells contained more Rora mRNA than controls. This was also observed in rat hepatocytes in primary culture. Cobalt chloride and desferrioxamine also increased the amount of Rora mRNA in HepG2 cells. It is likely that these treatments increase the amount of the RORalpha4 protein in HepG2 cells as evidenced by Western blotting in the case of desferrioxamine. Transient transfection experiments indicated that hypoxia, cobalt chloride, and desferrioxamine all stimulate RORalpha transcriptional activity in HepG2 cells. Hence, we believe that RORalpha participates in the control of gene transcription in hepatic cells and modulates gene expression in response to hypoxic stress. PMID:12023888

  8. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  9. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    PubMed

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth. PMID:24958520

  10. Cadmium Impairs p53 Activity in HepG2 Cells.

    PubMed

    Urani, C; Melchioretto, P; Fabbri, M; Bowe, G; Maserati, E; Gribaldo, L

    2014-01-01

    Cadmium and cadmium compounds are contaminants of the environment, food, and drinking water and are important constituents of cigarette smoke. Cd exposure has also been associated with airborne particulate CdO and with Cd-containing quantum dots in medical therapy. Adverse cadmium effects reported in the literature have stimulated during recent years an ongoing discussion to better elucidate cadmium outcomes at cell and molecular level. The present work is designed to gain an insight into the mechanism of p53 impairment at gene and protein level to understand Cd-induced resistance to apoptosis. We used a hepatoma cell line (HepG2) derived from liver, known to be metal responsive. At genotoxic cadmium concentrations no cell cycle arrest was observed. The p53 at gene and protein level was not regulated. Fluorescence images showed that p53 was correctly translocated into the nucleus but that the p21(Cip1/WAF-1), a downstream protein of p53 network involved in cell cycle regulation, was not activated at the highest cadmium concentrations used. The miRNAs analysis revealed an upregulation of mir-372, an miRNA able to affect p21(Cip1/WAF-1) expression and promote cell cycle progression and proliferation. The role of metallothioneins and possible conformational changes of p53 are discussed. PMID:25101185

  11. High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells.

    PubMed

    Ju, Seon Min; Jang, Hyun-Jun; Kim, Kyu-Bong; Kim, Jeongyun

    2015-01-01

    A lab-on-a-chip (LOC) is a microfluidic device (MFD) that integrates several lab functions into a single chip of only millimeters in size. LOC provides several advantages, such as low fluidic volumes consumption, faster analysis, compactness, and massive parallelization. These properties enable a microfluidic-based high-throughput drug screening (HTDS) system to acquire cell-based abundant cytotoxicity results depending on linear gradient concentration of drug with only few hundreds of microliters of the drug. Therefore, a microfluidic device was developed containing an array of eight separate microchambers for cultivating HepG2 cells to be exposed to eight different concentrations of acetaminophen (APAP) through a diffusive-mixing-based concentration gradient generator. Every chamber array with eight different concentrations (0, 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, or 40 mM) APAP had four replicating cell culture chambers. Consequently, 32 experimental results were acquired with a single microfluidic device experiment. The microfluidic high-throughput cytotoxicity device (μHTCD) and 96-well culture system showed comparable cytotoxicity results with increasing APAP concentration of 0 to 40 mM. The HTDS system yields progressive concentration-dependent cytotoxicity results using minimal reagent and time. Data suggest that the HTDS system may be applicable as alternative method for cytotoxicity screening for new drugs in diverse cell types. PMID:26241707

  12. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  13. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells

    PubMed Central

    Melušová, Martina; Jantová, Soňa

    2014-01-01

    Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods – flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in

  14. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells.

    PubMed

    Melušová, Martina; Jantová, Soňa; Horváthová, Eva

    2014-12-01

    Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods - flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in cell

  15. Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells

    SciTech Connect

    Kuo, H.-C.; Lee, H.-J.; Hu, C.-C.; Shun, H.-I; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-01-15

    The potential use of low dose chemotherapy has been appealing since lower dosages are more attainable during cancer therapy and cause less toxicity in patients. Combination therapy of Taxol, a promising frontline chemotherapy agent, with natural anti-tumor agents that are considerably less toxic with a capability of activating additional apoptotic signals or inhibiting survival signals may provide a rational molecular basis for novel chemotherapeutic strategies. Esculetin, a well-known lipoxygenase inhibitor, showed an inhibitory effect on the cell cycle progression of HL-60 cells in our previous study. In this report, the effects of a concomitant administration of esculetin and Taxol were investigated in human hepatoma HepG2 cells. Firstly, esculetin alone could exert an antiproliferation effect together with an inhibitory effect on the activation of ERKs and p38 MAPK. As compared to the treatment with Taxol only, a co-administration with esculetin and Taxol could result in a further enhancement of apoptosis as revealed by DNA fragmentation assay and Annexin-V-based assay. Meanwhile, immunoblotting analysis also showed that the co-administration of esculetin and Taxol could increase the expression of Bax and the cytosolic release of cytochrome C and enhance the expression of Fas and Fas ligand while the activation of caspase-8 and caspase-3 was also increased. Finally, the ERK cascade was proven to be involved in the enhancement of esculetin on the Taxol-induced apoptosis.

  16. Effectiveness factor and diffusion limitations in collagen gel modules containing HepG2 cells

    PubMed Central

    Corstorphine, Lindsay; Sefton, Michael V.

    2010-01-01

    A major obstacle in tissue engineering is overcoming hypoxia in thick, three-dimensional engineered tissues, which is caused by the diffusional limitations of oxygen and lack of internal vasculature to facilitate mass transfer. Modular tissue engineering is a bio-mimetic strategy that forms scalable, vascularized and uniform three-dimensional constructs by assembling small (sub-mm), cell-containing modules. It was previously assumed that mass transfer resistance within the individual modules was negligible, due to their small size. In the present work, this assumption was tested using theoretical analysis of oxygen transport within the module (effectiveness factor) and experimental studies. Small (400μm diameter, post contraction) and large (700μm diameter, post-contraction) HepG2-collagen modules were made for a range of seeding densities (2 × 106 – 1 × 107 cells/ml collagen). Cell density, distribution and morphology within the modules showed that the small modules were capable of sustaining high cell densities (8.0 × 107 ± 4.4 × 107 cells/ cm3) with negligible mass transfer inhibition. Conversely, large modules developed a necrotic core and had significantly (p < 0.05) reduced cell densities (1.5 × 107 ± 9.2 × 106 cells/cm3). It was also observed that the embedded cells responded quickly to the oxygen availability, by proliferating or dying to reach a sustainable density of approximately 8000 cells/module. Furthermore, a simple effectiveness factor calculation was successful in estimating the maximum cell density per module. The results gathered in this study confirm the previous assumption that the small diameter modules avoid the internal mass transfer limitations that are often observed in larger constructs. PMID:20653045

  17. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells.

    PubMed

    Shan, Guoqiang; Ye, Minqiang; Zhu, Benzhan; Zhu, Lingyan

    2013-11-01

    Chlorinated phenols and perfluoroalkyl acids (PFAAs) are two kinds of pollutants which are widely present in the environment. Considering liver is the primary toxic target organ for these two groups of chemicals, it is interesting to evaluate the possible joint effects of them on liver. In this work, the combined toxicity of pentachlorophenol (PCP) and perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) were investigated using HepG2 cells. The results indicated that PFOS and PFOA could strengthen PCP's hepatotoxicity. Further studies showed that rather than intensify the oxidative stress or promote the biotransformation of PCP, PFOS (or PFOA) might lead to strengthening of the oxidative phosphorylation uncoupling of PCP. By measuring the intracellular PCP concentration and the cell membrane properties, it was suggested that PFOS and PFOA could disrupt the plasma membrane and increase the membrane permeability. Thus, more cellular accessibility of PCP was induced when they were co-exposed to PCP and PFOS (or PFOA), leading to increased cytotoxicity. Further research is warranted to better understand the combined toxicity of PFAAs and other environmental pollutants. PMID:23972907

  18. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  19. Wharton’s Jelly-derived Mesenchymal Stem Cells can Differentiate into Hepatocyte-like Cells by HepG2 Cell Line Extract

    PubMed Central

    Borhani-Haghighi, Maryam; Talaei-Khozani, Tahereh; Ayatollahi, Maryam; Vojdani, Zahra

    2015-01-01

    Background Wharton’s jelly is an unlimited source of stem cells that can be used in cell therapy and tissue engineering without any ethical concern. It has been revealed the cell-free extract could be effective to induce cell differentiation. The objective of this study was to induce Wharton’s jelly-derived mesenchymal stem cells (MSCs) into hepatocyte-like cells by premeabilization of the cells in the presence of HepG2 cell line extract. Methods MSCs were isolated from the umbilical cord, CD marker profile and their differentiation potential into adipogenic and osteogenic lineages were determined. The cells were then, permeabilized by streptolysin O in the presence of HepG cell extract. The treated cells were cultured for 17 days. The cell phenotype was evaluated and the hepatocyte specific markers were detected by immunofluorescence and immunocytochemistry. The Periodic Acid Schiff (PAS) reaction and the cellular uptake of indocyanine green were performed to evaluate the functional behavior of the differentiated cells. Results The phenotype of extract-treated MSCs changed into a round or polygonal cells with few short processes and they could express high level of albumin, cytokeratin 18 and 19. The MSCs also could store glycogen and uptake and release indocyanine green. Conclusion We demonstrated for the first time that Wharton’s jelly-derived MSCs could differentiate into hepatocyte-like cells by premeabilization of them in the presence of HepG2 cell extract. This study suggests a feasible method to differentiate MSCs into functional hepatocyte-like cells. PMID:25821294

  20. Geniposide Suppresses Hepatic Glucose Production via AMPK in HepG2 Cells.

    PubMed

    Guo, Lixia; Zheng, Xuxu; Liu, Jianhui; Yin, Zhongyi

    2016-01-01

    Geniposide is one of the main compounds in Gardenia jasminoides ELLIS and has many pharmacological activities, but its anti-hyperglycemic activity has not yet been fully explored. This study was designed to determine, for the first time, how geniposide from G. jasminoides regulates hepatic glucose production, and the underlying mechanisms. During in vitro study, we found the inhibitory effect of geniposide on the hepatic glucose production is partly through AMP-activated protein kinase (AMPK) activation in HepG2 cells. Geniposide significantly inhibited hepatic glucose production in a dose-dependent manner. AMPK, acetyl coenzyme A synthetase (ACC) and forkhead box class O1 (FoxO1) phosphorylation were stimulated by different concentrations of geniposide. In addition, the enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were all significantly suppressed. What is important is that these effects were partly reversed by (1) inhibition of AMPK activity by compound C, a selective AMPK inhibitor, and by (2) suppression of AMPKα expression by small interfering RNA (siRNA). In summary, geniposide potentially ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis by modulation of the AMPK-FoxO1 signaling pathway. Geniposide or geniposide-containing medicinal plants could represent a promising therapeutic agent to prevent type 2 diabetes on gluconeogenesis. PMID:26830672

  1. Human hepatitis B virus X protein induces apoptosis in HepG2 cells: Role of BH3 domain

    SciTech Connect

    Lu, Y.W.; Chen, W.N. . E-mail: WNChen@ntu.edu.sg

    2005-12-23

    The smallest protein of hepatitis B virus, HBX, has been implicated in the development of liver diseases by interfering with normal cellular processes. Its role in cell proliferation has been unclear as both pro-apoptotic and anti-apoptotic activities have been reported. We showed molecular evidence that HBX induced apoptosis in HepG2 cells. A Bcl-2 Homology Domain 3 was identified in HBX, which interacted with anti-apoptotic but not pro-apoptotic members of the Bcl-2 family of proteins. HBX induced apoptosis when transfected into HepG2 cells, as demonstrated by both flow cytometry and caspase-3 activity. However, HBX protein may not be stable in apoptotic cells triggered by its own expression as only its mRNA or the fusion protein with the glutathione-S-transferase was detected in transfected cells. Our results suggested that HBX behaved as a pro-apoptotic protein and was able to induce apoptosis.

  2. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells

    PubMed Central

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    Objective To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. Methods The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. Results miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (P<0.01). MTT assay showed that the growth of HepG2 cells in the miR-20a mimics group was significantly inhibited, and optical density values during the 36–96 hour time period were dramatically decreased compared to the blank group (P<0.01). Apoptosis rates of the miR-20a mimics group were higher than those of the blank and NC groups (both P<0.01). The number of HCC cells after transfection by miR-20a mimics in the G1 and S phases were 15.88% and 7.89%, respectively, which were lower than in the blank and NC groups (both P<0.05). Transwell assay showed that in the miR-20a mimics group the number of cell migration and invasion were 0.459 and 0.501 times that of the blank group (both P<0.01), and the migration and inhibition rates were 54.1% and 51.4%, respectively. After closing target gene CCND1 in HepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (P<0.05); and compared to the si-NC group, the migration and inhibition rates

  3. Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG-2 cells.

    PubMed

    Zhang, Xinxia; Wang, Li; Wang, Ren; Luo, Xiaohu; Li, Yanan; Chen, Zhengxing

    2016-03-01

    In this paper, the effects of rice dreg protein hydrolysates (RDPHs) obtained by various proteases on hydrogen peroxide-induced oxidative stress in HepG-2 cells were investigated. Cell cytotoxicity was evaluated through the aspects of cell viability, ROS level, antioxidant enzyme activity, and production of malondialdehyde (MDA). Cell apoptosis was assessed by flow cytometry. Molecular weight distribution was analyzed by gel permeation chromatography, and amino acid composition was measured using an automatic amino acid analyzer. The survival of cells and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were significantly increased through the pre-incubation of HepG-2 cells with RDPHs before H2O2 exposure. Additionally, these pretreatments also resulted in a reduction in ROS and MDA levels. As a result, apoptosis and loss of mitochondrial membrane potential of the HepG-2 cells were alleviated. Furthermore, the protective effects of protein hydrolysates obtained by various proteases were noticeably distinct, in which RDPHs prepared by alkaline protease showed higher antioxidant activities. The difference in the protective effects might be attributed to the specific peptide or amino acid composition. Therefore, enzymatic hydrolysis with different enzymes studied here could attenuate H2O2-induced cell damage, and the type of protease greatly influenced the anti-oxidative activity. Particularly, optimum use of Alcalase could produce peptides with higher antioxidant activity. PMID:26843356

  4. Silymarin prevents palmitate-induced lipotoxicity in HepG2 cells: involvement of maintenance of Akt kinase activation.

    PubMed

    Song, Zhenyuan; Song, Ming; Lee, David Y W; Liu, Yanze; Deaciuc, Ion V; McClain, Craig J

    2007-10-01

    Whereas adipocytes have a unique capacity to store excess free fatty acids in the form of triglyceride in lipid droplets, non-adipose tissues, such as liver, have a limited capacity for storage of lipids. Saturated long-chain fatty acids, such as palmitate, are the major contributors to lipotoxicity. Silymarin is a mixture of flavonolignans, extracted from the milk thistle (Silibum marianum). Its hepatoprotective properties have been studied both in vitro and in vivo; however, its effect on palmitate-induced lipotoxicity has not been investigated. The objective of this study was to investigate (i) whether silymarin could protect HepG2 cells from palmitate-induced cell death in an in vitro model, and (ii) possible mechanisms involved in this hepatoprotective role of silymarin. HepG2 cells were treated with palmitate in the absence or presence of silymarin and supernatants or cell lysates were collected at varying time-points. Cell death was assayed by measuring DNA fragmentation, caspase-3 activity and lactate dehydrogenase release. Lipid peroxidation was assessed by measuring malondialdehyde and 4-hydroxyalkenals. Akt kinase activity was also measured. Incubation with palmitate caused significant death in HepG2 cells. Palmitate incubation did not cause significant changes in reactive oxygen species production or intracellular glutathione content, but markedly inhibited Akt kinase activity. Pre-treatment of HepG2 cells with silymarin prevented palmitate-induced inhibition of Akt kinase activity and attenuated cell death. Our results suggest that silymarin may be an effective agent in protecting hepatocytes from saturated fatty acids-induced cell death. These data also provide a further rationale for exploration of the use of silymarin in the treatment of non-alcoholic steatohepatitis. PMID:17845508

  5. Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress

    PubMed Central

    QIN, YU; WANG, HUAN; LIU, ZHENG-YUN; LIU, JIE; WU, JIN-ZHU

    2015-01-01

    Realgar (As4S4) has been used in traditional Chinese medicines for treatment of malignancies. However, the poor water solubility of realgar limits its clinical application. To overcome this problem, realgar quantum dots (RQDs; 5.48±1.09 nm) were prepared by a photoluminescence method. The mean particle size was characterized by high-resolution transmission electron microscopy and scanning electron microscopy. Our recent studies revealed that the RQDs were effective against tumor growth in tumor-bearing mice without producing apparent toxicity. The present study investigated their anticancer effects and mechanisms in human hepatocellular carcinoma (HepG2) cells. The HepG2 cells and human normal liver (L02) cells were used to determine the cytotoxicity of RQDs. The portion of apoptotic and dead cells were measured by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Apoptosis-related proteins and genes were examined by western blot analysis and reverse transcription-quantitative polymerase chain reaction, and the mitochondrial membrane potential was assayed by confocal microscope with JC-1 as a probe. RQDs exhibited cytotoxicity in a concentration-dependent manner and HepG2 cells were more sensitive compared with normal L02 cells. At 15 µg/ml, 20% of the cells were apoptotic, while 60% of the cells were necrotic at 30 µg/ml. The anti-apoptosis protein Bcl-2 was dose-dependently decreased, while pro-apoptotic protein Bax was increased. There was a loss of mitochondrial membrane potential and expression of the stress genes C/EBP-homologous protein 10 and glucose-regulated protein 78 was increased by RQDs. RQDs were effective in the inhibition of HepG2 cell proliferation and this effect was due to induction of apoptosis and necrosis through endoplasmic reticulum stress. PMID:26405541

  6. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    PubMed Central

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment. PMID:22558435

  7. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    SciTech Connect

    Ahmad, Javed; Ahamed, Maqusood; Akhtar, Mohd Javed; Alrokayan, Salman A.; Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  8. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity

    SciTech Connect

    Hu Yang; Yang Yong; You Qidong . E-mail: qdyou@cpu.edu.cn; Liu Wei; Gu Hongyan; Zhao Li; Zhang Kun; Wang Wei; Wang Xiaotang; Guo Qinglong . E-mail: qinglongguo@hotmail.com

    2006-12-15

    We previously reported that wogonin, a flavonoid compound, was a potent apoptosis inducer of human hepatoma SMMC-7721 cells and murine sarcoma S180 cells. In the present study, the effect of oroxylin A, one wogonin structurally related flavonoid isolated from Scutellariae radix, on human hepatocellular carcinoma cell line HepG2 was examined and molecular mechanisms were also investigated. Oroxylin A inhibited HepG2 cell proliferation in a concentration- and time-dependent manner measured by MTT-assay. Treatment with an apoptosis-inducing concentration of oroxylin A caused typical morphological changes and apoptotic blebbing in HepG2 cells. DNA fragmentation assay was used to examine later apoptosis induced by oroxylin A. FACScan analysis revealed a dramatic increase in the number of apoptotic and G{sub 2}/M phase arrest cells after oroxylin A treatment. The pro-apoptotic activity of oroxylin A was attributed to its ability to modulate the concerted expression of Bcl-2, Bax, and pro-caspase-3 proteins. The expression of Bcl-2 protein and pro-caspase-3 protein was dramatically decreased after treatment with oroxylin A. These results demonstrated that oroxylin A could effectively induce programmed cell death and suggested that it could be a promising antitumor drug.

  9. Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells.

    PubMed

    Li, Chao; Huang, Qiang; Xiao, Jie; Fu, Xiong; You, Lijun; Liu, Rui Hai

    2016-10-01

    Prunella vulgaris polysaccharides have been reported to have antioxidant, antitumor and immunomodulatory activities. In this study, P. vulgaris polysaccharide (P1)-zinc complex (P1-Zn) was first prepared by a facile method and its antiproliferative effect on HepG2 human hepatocellular carcinoma cells was also investigated. Results showed that P1-Zn could effectively inhibit the proliferation (98.4% inhibition rate at 500μg/mL) of HepG2 cells through induction of apoptosis, evidenced by morphological changes, chromatin condensation and G0/G1 phase cell cycle arrest. The intracellular mechanism of P1-Zn induced apoptosis was found to be the involvement of the activation of caspase-3 and -9, reactive oxygen species (ROS) overproduction and mitochondrial dysfunction. Our findings suggest that P1-Zn may be a potent candidate for human hepatocellular carcinoma treatment and prevention in functional foods and pharmacological fields. PMID:27283235

  10. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells.

    PubMed

    Ren, Daoyuan; Wang, Ning; Guo, Jianjun; Yuan, Li; Yang, Xingbin

    2016-03-15

    This study was designed to investigate the chemical characterization and antitumor effects of Pleurotus eryngii polysaccharides (PEP). The crude PEP was fractionated into two fractions, namely PEP-1 and PEP-2. HPLC analysis showed that PEP-1 and PEP-2 were heteropolysaccharides mainly composed of glucose with the average molecular weights of 2.54×10(4)Da (PEP-1) and 4.63×10(5)Da (PEP-2), respectively. High molecular mass PEP-2 was shown to exhibit stronger growth inhibition against human hepatoblastoma HepG-2 cells in comparison with PEP-1. Flow cytometric analysis showed that PEP-2 exerted a stimulatory effect on apoptosis of HepG-2 cells, and induced the cell-cycle arrest at the S-phase, with the observation of intracellular ROS production. These findings suggest that the polysaccharides, especially PEP-2, are very important nutritional ingredients responsible for the anticancer health benefits of P. eryngii. PMID:26794745

  11. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells.

    PubMed

    Alur, İhsan; Dodurga, Yavuz; Seçme, Mücahit; Elmas, Levent; Bağcı, Gülseren; Gökşin, İbrahim; Avcı, Çığır Biray

    2016-07-10

    Recent researches have demonstrated improved survival in oncologic patients treated with low molecular weight heparins (LMWHs) which are anticoagulant drugs. We evaluated "second generation" LMWH bemiparin and its in vitro anti-tumor effects on HepG2 hepatocellular carcinoma and MIA PaCa-2 cancer cells. The aim of the study is to investigate anti-cancer mechanism of bemiparin in HepG2 and Mia-Paca-2 cancer cells. Cytotoxic effects of bemiparin were determined by XTT assay. IC50 dose of bemiparin was found to be 200IU/mL in the 48th hour in the MiaPaCa-2 cell line and 50IU/mL in the 48th hour in the HepG2 cell line. CCND1 (cyclin D1), CDK4, CDK6, p21, p16, p53, caspase-3, caspase-9, caspase-8, Bcl-2, BID, DR4, DR5, FADD, TRADD, Bax, gene mRNA expressions were evaluated by Real-time PCR. Real-time PCR analysis showed that CCND1 expression was reduced in HepG2 dose the group cells when compared with the control group cells and p53, caspase-3, caspase p21, caspase-8 and expressions were increased in the dose group cells when compared with the control group cells. CCND1, CDK4 and CDK6 expressions were reduced in MIA PaCa-2 dose group cells when compared with the control group cells and p53 expression was increased in the dose group cells when compared with the control group cells. Other expressions of genes were found statistically insignificant both of cell lines. It was found that bemiparin in HepG2 and MIA PaCa-2 cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, and colony formation assay, respectively. In conclusion, it is thought that bemiparin indicates anti-tumor activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on cancer cells. PMID:27048831

  12. Diosgenin Induces Apoptosis in HepG2 Cells through Generation of Reactive Oxygen Species and Mitochondrial Pathway

    PubMed Central

    Kim, Dae Sung; Jeon, Byoung Kook; Lee, Young Eun; Woo, Won Hong; Mun, Yeun Ja

    2012-01-01

    Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase (PARP) and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1, as well as generation of the ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream signals for JNK/p38 MAPK activation in HepG2 cancer cells. PMID:22719792

  13. Comparison of the metabolic activation of 7, 12-dimethylbenz(a)anthracene by a human hepatoma cell line (HepG2) and low passage hamster embryo cells

    SciTech Connect

    DiGiovanni, J.; Singer, J.M.; Diamond, L.

    1984-07-01

    Under similar conditions of cell-mediated mutagenesis, secondary hamster embryo (HE) cells were much more effective than were cells of the human hepatoma cell line, HepG2 , in activating 7, 12-dimethylbenz(a)anthracene (DMBA) to metabolites mutagenic for V79 Chinese hamster cells. At the same dose of DMBA (0.1 microgram/ml), mutation induction (6-thioguanine resistance) with HE cells as activators was about ten times greater than with HepG2 cells as activators. Both cell types rapidly metabolized DMBA. HepG2 cells converted DMBA primarily to water-soluble derivatives that were neither sulfates nor glucuronides, whereas HE cells converted DMBA to a variety of organic solvent-soluble and water-soluble metabolites. The major water-soluble metabolites produced by HE cells were phenol-glucuronides. In HepG2 cells, binding of DMBA to DNA reached a maximum value of 12.1 pmol/mg DNA at 12 hr, whereas in HE cells, binding reached a peak value of 180.7 pmol/mg DNA at 24 hr. Despite this difference in total binding between the two cell types, the pattern of DNA adducts formed was nearly identical. The results indicate that the marked difference in the ability of HepG2 and HE cells to activate DMBA in cell-mediated mutation assays is not due to a lower metabolizing capacity of HepG2 cells for DMBA. Rather, significant differences in the metabolic pathways used by the two cell types lead to a marked reduction in DNA-binding metabolites in one cell type (HepG2) compared to the other (HE).

  14. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  15. Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.

    PubMed

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-09-01

    Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas. PMID:26404340

  16. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells

    PubMed Central

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage. PMID:26839752

  17. Antitumor effect and mechanism of an ellagic acid derivative on the HepG2 human hepatocellular carcinoma cell line

    PubMed Central

    ZHANG, HUI; GUO, ZENG-JUN; XU, WEN-MING; YOU, XIAO-JUAN; HAN, LING; HAN, YAN-XIA; DAI, LIU-JIANG

    2014-01-01

    In the present study, to identify the effective components of Chinese traditional herbs, Euphorbia hylonoma Hand.-Mazz. (Euphorbiaceae), a folk herb that has been used among the Qinling mountain area for hundreds of years, was investigated. 3,3′-Di-O-methyl ellagic acid-4′-O-β-d-xylopyranoside (JNE2), an ellagic acid derivative, was isolated from the acetone extract of the herb and its antitumor activity against human hepatoma HepG2 cells was detected in vitro. The results showed that JNE2 inhibited the proliferation of HepG2 cells in a dose- and time-dependent manner and blocked the cell cycle at the G1/S phase. A high dosage of JNE2 induced apoptosis of the tumor cells, but no significant differences were identified between the treatment groups. The invasiveness of HepG2 cells was also inhibited by JNE2. The mechanism of the antitumor effect of JNE2 at the molecular level was presumed to be due to the upregulation of the protein expression of Bax and caspase-3, and the downregulation of the protein expression of Bcl-2 and CCND1. The results suggested that JNE2 is a potential antitumor agent that merits further investigation. PMID:24396481

  18. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells.

    PubMed

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin; Abdul Aziz, Azlina

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage. PMID:26839752

  19. Anticancer effect of the extracts from Polyalthia evecta against human hepatoma cell line (HepG2)

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat

    2012-01-01

    Objective To investigate the anticancer activity of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep against human hepatoma cell line (HepG2). Methods The anticancer activity was based on (a) the cytotoxicity against human hepatoma cells (HepG2) assessed using a neutral red assay and (b) apoptosis induction determined by evaluation of nuclei morphological changes after DAPI staining. Preliminary phytochemical analysis of the crude extract was assessed by HPLC analysis. Results The 50% ethanol-water crude leaf extract of P. evecta (EW-L) showed greater potential anticancer activity with high cytotoxicity [IC50 = (62.8 ± 7.3)µg/mL] and higher selectivity in HepG2 cells than normal Vero cells [selective index (SI) = 7.9]. The SI of EW-L was higher than the positive control, melphalan (SI = 1.6) and the apoptotic cells (46.4 ± 2.6) % induced by EW-L was higher than the melphalan (41.6 ± 2.1)% (P<0.05). The HPLC chromatogram of the EW-L revealed the presence of various kinds of polyphenolics and flavonoids in it. Conclusions P. evecta is a potential plant with anticancer activity. The isolation of pure compounds and determination of the bioactivity of individual compounds will be further performed. PMID:23569932

  20. Chenodeoxycholic acid increases the induction of CYP1A1 in HepG2 and H4IIE cells

    PubMed Central

    IBRAHIM, ZEIN SHABAN

    2015-01-01

    Bile acids are considered to promote carcinogenesis. Cytochrome P450 1A1 (CYP1A1) plays a critical role in the biotransformation of drugs and procarcinogens. This study aimed to investigate the ability of bile acids to modulate CYP1A1 expression. Treatment of HepG2 cells with chenodeoxycholic acid (CDCA) and Sudan III (S.III) upregulated CYP1A1 transcriptional activity in HepG2 cells and CYP1A1 mRNA expression in H4IIE cells. Pretreatment of the HepG2 and H4IIE cells with CDCA upregulated the S.III-induced CYP1A transcriptional activity and mRNA expression. The CDCA-induced enhancement of CYP1A1 was not abolished by the p38 inhibitor SB203580. However, exposure of the cells to the mitogen-activated protein kinase kinase (MEK)1/2 inhibitor PD98059 suppressed the CDCA-induced enhancement of CYP1A1. These results show the ability of CDCA to upregulate CYP1A1 transcription and expression, which may explain the hepatocarcinogenesis-inducing effect of cholestasis. The CDCA-induced upregulation of CYP1A1 most probably proceeded through MEK1/2 activation, indicating that this may be a therapeutic target to prevent the cancer-promoting effects of excessive amounts of bile acids. PMID:26640583

  1. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro.

    PubMed

    Zhang, Yan; Zhang, Yi; Chen, Min; Zhou, Yan; Lang, Meidong

    2014-08-01

    The lack of pendant functional groups on the PCL backbone has been a great challenge for surface bioactivation of poly(ε-caprolactone) (PCL). In the present study, covalently galactosylated PCL (GPCL) was developed through coupling between the amino-functionalized PCL (NPCL) and the lactobionic acid (LA) and its potential application in maintenance of physiological functions of HepG2 cells was further evaluated. The structure and properties of GPCL were explored by (1)H NMR, FT-IR, GPC and DSC. Moreover, the incorporation of galactose ligands onto GPCL membranes not only promoted higher wettability, but also radically changed surface morphology in comparison with PCL and NPCL according to the contact angle measurement and atomic force microscopy. When HepG2 cells were seeded onto these membranes, the cells on GPCL membranes showed more pronounced cell adhesion and tended to form aggregates during the initial adhesion stage and then progressively grew into multi-layer structures compared to those without galactose ligands by the observation with fluorescence microscope and scanning electron microscopy. Furthermore, live-dead assay and functional tests demonstrated that HepG2 cells on GPCL membranes had superior viability and maintained better liver-specific functions. Collectively, GPCL has great potential for hepatic tissue engineering scaffolds. PMID:24907736

  2. A polysaccharide from Andrographis paniculata induces mitochondrial-mediated apoptosis in human hepatoma cell line (HepG2).

    PubMed

    Zou, Yanmei; Xiong, Hua; Xiong, Huihua; Lu, Tao; Zhu, Feng; Luo, Zhiyong; Yuan, Xianglin; Wang, Yihua

    2015-07-01

    In the present study, we investigated the effects and action mechanisms of a purified polysaccharide (APWP) from Andrographis paniculata, on human hepatocellular carcinoma (HCC) HepG2 cells. The results showed that APWP was able to suppress the proliferation of HepG2 cells via inducing apoptosis. Western blot analysis revealed that dose-dependent increase in proapoptotic Bax protein and no change in antiapoptotic Bcl-2 protein in APWP-treated cells. Furthermore, exposure of tumor cells to APWP resulted in a loss of mitochondrial membrane potential (MMP) and the release of cytochrome c from the mitochondria to the cytosol. Besides, caspase-9 and caspase-3 were activated while caspase-8 was not affected in HepG2 cells followed by APWP treatment. All these results point clearly to the involvement of mitochondria-mediated signaling pathway in APWP-induced apoptosis and strongly suggest that APWP seems to be safe and effective in the prevention and treatment of HCC. PMID:25652470

  3. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line

    PubMed Central

    2011-01-01

    Background Six plants from Thailand were evaluated for their cytotoxicity and apoptosis induction in human hepatocarcinoma (HepG2) as compared to normal African green monkey kidney epithelial cell lines. Methods Ethanol-water crude extracts of the six plants were tested with neutral red assay for their cytotoxicity after 24 hours of exposure to the cells. Apoptotic induction was tested in the HepG2 cells with diamidino-2-phenylindole staining. DNA fragmentation, indicative of apoptosis, was analyzed with agarose gel electrophoresis. Alkylation, indicative of DNA damage, was also evaluated in vitro by 4-(4'-nitrobenzyl) pyridine assay. Results The extract of Pinus kesiya showed the highest selectivity (selectivity index = 9.6) and potent cytotoxicity in the HepG2 cell line, with an IC50 value of 52.0 ± 5.8 μg/ml (mean ± standard deviation). Extract of Catimbium speciosum exerted cytotoxicity with an IC50 value of 55.7 ± 8.1 μg/ml. Crude extracts from Glochidion daltonii, Cladogynos orientalis, Acorus tatarinowii and Amomum villosum exhibited cytotoxicity with IC50 values ranging 100-500 μg/ml. All crude extracts showed different alkylating abilities in vitro. Extracts of P. kesiya, C. speciosum and C. orientalis caused nuclei morphological changes and DNA laddering. Conclusion The extracts of C. speciosum, C. orientalis and P. kesiya induced apoptosis. Among the three plants, P. kesiya possessed the most robust anticancer activity, with specific selectivity against HepG2 cells. PMID:22041055

  4. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. PMID:27288117

  5. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells.

    PubMed

    Liu, Xin; Hao, Jie-Jie; Zhang, Li-Juan; Zhao, Xia; He, Xiao-Xi; Li, Miao-Miao; Zhao, Xiao-Liang; Wu, Jian-Dong; Qiu, Pei-Ju; Yu, Guang-Li

    2014-10-01

    Low molecular weight and sulfated low molecular weight guluronate (LMG and SLMG) were prepared and hypolipidemic effects were studied in a human hepatocellular carcinoma HepG2 cell line. Both compounds decreased total cholesterol (TC) and triglycerides (TG) and inhibited 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity in HepG2 cells. In general, SLMG had greater effects than LMG. Activation of sterol regulatory element-binding protein 2 (SREBP-2), low density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and AMPK's downstream targets were evidenced by increased phosphorylation of AMPK, HMGCR, and acetyl-CoA-carboxylase (ACC), which decreased HMGRC and ACC activity. We further demonstrated that activated AMPK was linked to down-regulated SREBP-1 and up-regulated cholesterol 7α-hydroxylase (CYP7A1). PMID:25089813

  6. Synthesis of Functionalized Fluorescent Silver Nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells.

    NASA Astrophysics Data System (ADS)

    Santos, Hugo; Oliveira, Elisabete; Garcia-Pardo, Javier; Diniz, Mário; Lorenzo, Julia; Rodriguez-González, Benito; Capelo, José Luis; Lodeiro, Carlos

    2013-12-01

    Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT) and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand.

  7. Synthesis of functionalized fluorescent silver nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells

    PubMed Central

    Oliveira, Elisabete; Santos, Hugo M.; Garcia-Pardo, Javier; Diniz, Mário; Lorenzo, Julia; Rodríguez-González, Benito; Capelo, José L.; Lodeiro, Carlos

    2013-01-01

    Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral, and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT), and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand. PMID:24790957

  8. Organic extracts of coke oven emissions can induce genetic damage in metabolically competent HepG2 cells.

    PubMed

    Xin, Lili; Wang, Jianshu; Guo, Sifan; Wu, Yanhu; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Xiao, Wei; Wu, Tangchun; Guo, Huan

    2014-05-01

    Coke oven emissions (COEs) containing various carcinogenic polycyclic aromatic hydrocarbons (PAHs) represent the coal-burning pollution in the air. Organic pollutants in the aerosol and particulate matter of COEs were collected from the bottom, side, and top of a coke oven. The Comet assay and cytokinesis-block micronucleus cytome assay were conducted to analyze the genetic damage of extractable organic matter (EOM) of COEs on HepG2 cells. All the three EOMs could induce significant dose-dependent increases in Olive tail moment, tail DNA, and tail length, micronuclei, nucleoplasmic bridges, and nuclear buds frequencies, which were mostly positively correlated with the total PAHs concentration in each EOM. In conclusion, EOMs of COEs in the three typical working places of coke oven can induce DNA strand breaks and genomic instability in the metabolically competent HepG2 cells. The PAHs in EOMs may be important causative agents for the genotoxic effects of COEs. PMID:24709322

  9. Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells.

    PubMed

    Niu, Zhidan; Zhang, Wenya; Gu, Xueyan; Zhang, Xiaoning; Qi, Yongmei; Zhang, Yingmei

    2016-07-01

    Mitochondrial damage can trigger mitophagy and eventually suppress proliferation. However, the effect of mitophagy on proliferation remains unclear. In this study, HepG2 cells were used to assess mitophagy and proliferation arrest in response to As2O3 exposure. The stimulatory effect of As2O3 on mitophagy was investigated by assessing morphology (mitophagosome and mitolysosome) and relevant proteins (PINK1, LC3 II/I, and COX IV). Additionally, the relationship of mitophagy and proliferation was explored through the use of mitophagy inhibitors (CsA, Mdivi-1). Interestingly, the inhibition of mitophagy rescued proliferation arrest by restoring COX-2 protein level and countered the elimination of mitochondria-located COX-2 and up-regulated the COX-2 mRNA level. Taken together, our findings indicated that mitophagy can be induced and can inhibit proliferation by reducing COX-2 in HepG2 cells during As2O3 treatment. PMID:27318970

  10. A polysaccharide from Grifola frondosa relieves insulin resistance of HepG2 cell by Akt-GSK-3 pathway.

    PubMed

    Ma, Xiaolei; Zhou, Fuchuan; Chen, Yuanyuan; Zhang, Yuanyuan; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2014-07-01

    Grifola frondosa is an important fungal research resource. However, there was little report about hyperglycemic activity of Grifola frondosa polysaccharide on insulin resistance in vitro. In this study, the hypoglycemic activity of a polysaccharide obtained from Grifola frondosa (GFP) on HepG2 cell and hpyerglycemic mechanism were investigated. The purity of the isolated polysaccharides was examined by HPLC. In this research, it was found that GFP enhanced the absorption of glucose of HepG2 cells in a dose dependent manner at 24 h of 30 ugmL⁻¹. GC-MS and FT-IR spectroscopy analysis results showed that glucose and galactose were the dominant monosaccharides in GFP and the major component of GFP was β-pyranoside. Western-blotting results showed that the HepG2 cell model treated with GFP activated the insulin receptor protein (IRS) in the cell membrane and increased phosphorylated-AktSer473 expression, which had an inhibition of glycogen synthase kinase (GSK-3). The down-regulation of GSK-3 stimulated synthesis of intracellular glycogen. The results above suggested that the GFP increased the metabolism of glucose and stimulated synthesis of intracellular glycogen through the Akt/GSK-3 pathway. PMID:24908430

  11. Detoxifying effect of fermented black ginseng on H2O2-induced oxidative stress in HepG2 cells.

    PubMed

    Bak, Min-Ji; Jeong, Woo-Sik; Kim, Kyu-Bong

    2014-12-01

    Fermented black ginseng (FBG) is prepared by repeated steaming and drying processes with fresh ginseng followed by fermentation with Saccharomyces cerevisiae. It has recently been shown to have several bioactivities. FBG contains crude saponin (1,440 µg/ml), ginsenoside Rg2 (2.86 µg/ml), ginsenoside Rg3 (24.52 µg/ml), ginsenoside Rh1 (12.64 µg/ml), ginsenoside Rh2 (0.63 µg/ml) and ginsenoside Rf (1.32 µg/ml). The present study investigated the antioxidant defense properties of FBG against hydrogen peroxide (H2O2)-mediated oxidative stress in HepG2 human hepatocellular carcinoma cells. The increased production of reactive oxygen species (ROS) induced by H2O2 was attenuated in a dose-dependent manner when the cells were pre-treated with FBG (10-50 µg/ml). FBG induced both the expression and activity of antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidase in the H2O2-treated HepG2 cells. The inhibitory effects of FBG on the phosphorylation of upstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 were also observed. Overall, our results demonstrate that FBG protects HepG2 cells from oxidative stress through the induction of antioxidant enzyme activity and the inhibition of MAPK pathways. PMID:25319719

  12. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells.

    PubMed

    Amengual, Jaume; Petrov, Petar; Bonet, M Luisa; Ribot, Joan; Palou, Andreu

    2012-11-01

    The vitamin A derivative retinoic acid (RA) is an important regulator of mammalian adiposity and lipid metabolism, primarily acting at the gene expression level through nuclear receptors of the RA receptor (RAR) and retinoid X receptor (RXR) subfamilies. Here, we studied cell-autonomous effects of RA on fatty acid metabolism, particularly fatty acid oxidation, in human hepatoma HepG2 cells. Exposure to all-trans RA (ATRA) up-regulated the expression of carnitine palmitoyl transferase-1 (CPT1-L) in HepG2 cells in a dose- and time-dependent manner, and increased cellular oxidation rate of exogenously added radiolabeled palmitate. The effect of ATRA on gene expression of CPT1-L was: dependent on ongoing transcription, reproduced by both 9-cis RA and a pan-RXR agonist (but not a pan-RAR agonist) and abolished following RXRα partial siRNA-mediated silencing. CPT1-L gene expression was synergistically induced in HepG2 cells simultaneously exposed to ATRA and a selective peroxisome proliferator-activated receptor α agonist. We conclude that ATRA treatment enhances fatty acid catabolism in hepatocytes through RXR-mediated mechanisms that likely involve the transactivation of the PPARα:RXR heterodimer. Knowledge of agents and nutrient-derivatives capable of enhancing substrate oxidation systemically and specifically in liver, and their mechanisms of action, may contribute to new avenues of prevention and treatment of fatty liver, obesity and other metabolic syndrome-related disorders. PMID:22871568

  13. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    PubMed Central

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  14. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.

    PubMed

    Zhang, Jian; Meruvu, Sunitha; Bedi, Yudhishtar Singh; Chau, Jason; Arguelles, Andrix; Rucker, Robert; Choudhury, Mahua

    2015-09-01

    Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function. PMID:26275361

  15. Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells

    PubMed Central

    LIU, BIN; SHI, YUFENG; PENG, WENDING; ZHANG, QINGYU; LIU, JIE; CHEN, NIANPING; ZHU, RUNZHI

    2016-01-01

    Diosmetin (Dio) is a major active component of flavonoid compounds. A previous study demonstrated that Dio exhibited anticancer activity and induced apoptosis in HepG2 human hepatoma cells via cytochrome P450, family 1-catalyzed metabolism. The present study observed that cell proliferation of HepG2 cells was inhibited by Dio treatment and tumor protein p53 was significantly increased following Dio treatment. Following addition of recombinant transforming growth factor-β (TGF-β) protein to Dio-treated HepG2 cells, cell growth inhibition and cell apoptosis was partially reversed. These findings suggest a novel function for the TGF-β/TGF-β receptor signaling pathway and that it may be a key target of Dio-induced cell apoptosis in HepG2 cells. PMID:27176768

  16. Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells.

    PubMed

    Liu, Bin; Shi, Yufeng; Peng, Wending; Zhang, Qingyu; Liu, Jie; Chen, Nianping; Zhu, Runzhi

    2016-07-01

    Diosmetin (Dio) is a major active component of flavonoid compounds. A previous study demonstrated that Dio exhibited anticancer activity and induced apoptosis in HepG2 human hepatoma cells via cytochrome P450, family 1-catalyzed metabolism. The present study observed that cell proliferation of HepG2 cells was inhibited by Dio treatment and tumor protein p53 was significantly increased following Dio treatment. Following addition of recombinant transforming growth factor‑β (TGF‑β) protein to Dio‑treated HepG2 cells, cell growth inhibition and cell apoptosis was partially reversed. These findings suggest a novel function for the TGF‑β/TGF‑β receptor signaling pathway and that it may be a key target of Dio‑induced cell apoptosis in HepG2 cells. PMID:27176768

  17. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  18. eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells.

    PubMed

    Jun, Young-Jin; Lee, Minsup; Shin, Taisun; Yoon, Nayoung; Kim, Ji-Hoe; Kim, Hyeung-Rak

    2014-01-01

    Eckol isolated from Ecklonia stolonifera was previously reported to exhibit cytoprotective activity with its intrinsic antioxidant activity in in vitro studies. In this study, we characterized the mechanism underlying the eckol-mediated the expression of heme oxygenase-1 (HO-1). Eckol suppressed the production of intracellular reactive oxygen species and increased glutathione level in HepG2 cells. Eckol treatment enhanced the expression of HO-1 at the both level of protein and mRNA in HepG2 cells. Enhanced expression of HO-1 by eckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and increased transcriptional activity. c-Jun NH2-terminal kinases (JNKs) and PI3K/Akt contributed to Nrf2-mediated HO-1 expression. These results demonstrate that the eckol-mediated expression of HO-1 in HepG2 cells is regulated by Nrf2 activation via JNK and PI3K/Akt signaling pathways, suggesting that eckol may be used as a natural antioxidant and cytoprotective agent. PMID:25268719

  19. Hepatitis B virus induced coupling of deadhesion and migration of HepG2 cells on thermo-responsive polymer.

    PubMed

    Li, Xi; Feng, Huixing; Chen, Wei Ning; Chan, Vincent

    2010-03-01

    The unique physical property of thermo-responsive polymer (TRP) has recently prompted its increasing applications in tissue engineering. On the other hand, TRP has not been exploited for potential applications in quantitative cell screening against external stimulations. In this study, TRP is applied as a model system for elucidating the effect of HBV replication on the biophysical responses of HepG2 cells transfected by wild type HBV genome. Moreover, mutant HBV genome is designed to assess the specific activity of the SH3-binding domain of HBx during HBV replication. The adhesion contact recession and geometry transformation of HepG2 cells transfected with empty vector (pcDNA3.1 cells), wild type HBV (wtHBV cells) and mutant HBV genome (mHBV cells) are probed during the thermal transformation across lower solution critical temperature of TRP. In comparison with pcDNA3.1 cells and mHBV cells, the initial rate of reduction in degree of deformation and average adhesion energy for wtHBV cells is significantly increased. Interestingly, migration speed and persistence time of cells are found to be correlated with the cell deadhesion kinetics. Immuno-fluorescence microscopy demonstrates that HBV replication reduces the actin concentration and focal adhesions at cell periphery during the initial 30 min cell deadhesion. The results strongly suggested that HBV infection triggers the dynamic responses of HepG2 cells through the cytoskeleton remodeling and subsequent mechanochemical transduction. Overall, it is shown that TRP provides a convenient platform for quantifying biological stimulations on adherent cells. PMID:19944459

  20. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells.

    PubMed

    Yu, Shi-Min; Hu, Dong-Hui; Zhang, Jian-Jun

    2015-09-01

    Hepatocellular carcinoma (HCC) is a highly malignant tumor, associated with poor patient prognoses, and high rates of morbidity and mortality. To date, the therapeutic strategies available for the treatment of HCC remain limited. The present study aimed to elucidate the anticancer activity of umbelliferone, a naturally occurring coumarin derivative isolated from Ferula communis, against the HepG2 HCC cell line. A 3‑(4,5‑dimthylthaizol‑2‑yl)‑2,5, diphenyltetrazolium bromide assay was used to evaluate cell viability following umbelliferone treatment, and the effects of umbelliferone on cell cycle progression and apoptosis were evaluated using flow cytometry. The presence of morphological features characteristic of apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation, were evaluated in HepG2 cells following umbelliferone treatment. Cell cycle analysis conducted via propidium iodide (PI) staining indicated that umbelliferone treatment induced cell cycle arrest at S phase in HepG2 cells. Analysis with Annexin V and PI staining revealed that umbelliferone induced apoptotic events in HepG2 cells in a concentration‑dependant manner (0‑50 µM). Umbelliferone also induced dose‑dependant DNA fragmentation. In conclusion, umbelliferone was found to exhibit significant anticancer effects via the induction of apoptosis, cell cycle arrest and DNA fragmentation in HepG2 cancer cells. PMID:25997538

  1. The supercritical CO₂ extract from the skin of Bufo bufo gargarizans Cantor blocks hepatitis B virus antigen secretion in HepG2.2.15 cells.

    PubMed

    Cui, Xiaoyan; Inagaki, Yoshinori; Wang, Dongliang; Gao, Jianjun; Qi, Fanghua; Gao, Bo; Kokudo, Norihiro; Fang, Dingzhi; Tang, Wei

    2014-02-01

    The skin of Bufo bufo gargarizans Cantor has long been used for the treatment of hepatitis B in China and supercritical carbon dioxide extraction (SC-CO₂) is widely used in extracting active ingredients from natural products. The aim of present study was to assess the anti-hepatitis B virus (HBV) effect of the supercritical CO₂ extract from the skin of Bufo bufo gargarizans Cantor (SCE-BC). Cytotoxicity of SCE-BC was analyzed using an MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] assay in HepG2.2.15 cells. The hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core-related antigen (HBcrAg) concentrations in cell culture medium were determined by chemiluminescent enzyme immunoassay. HBV mRNA in cells was determined using real-time polymerase chain reaction. SCE-BC concentrations below 10(-2) μg/mL had no significant toxicity to HepG2.2.15 cells. SCE-BC at 10(-4) μg/mL effectively inhibited the secretion of HBeAg by 23.36% on day 6. It was more potent than the positive control lamivudine (100 μg/mL) in terms of the inhibition of HBeAg and HBcrAg secretion on day 6. Consistent with the HBV antigen reduction, HBV mRNA expression was markedly inhibited in comparison to the control when HepG2.2.15 cells were treated with SCE-BC. Moreover, SCE-BC had greater inhibitory activity with respect to HBeAg than to HBsAg. Since HBeAg promotes immune tolerance and persistent infection during HBV infection, the present results suggest that immune tolerance induced by HBeAg might be overcome by SCE-BC. Therefore, SCE-BC warrants further investigation. PMID:24647111

  2. Sp and GATA factors are critical for Apolipoprotein AI downstream enhancer activity in human HepG2 cells.

    PubMed

    Ivanov, Gleb S; Kater, Jessie M; Jha, Shivkumar H; Stutius, Erica A; Sabharwal, Ravleen; Tricarico, Marisa D; Ginsburg, Geoffrey S; Ozer, Josef S

    2003-12-24

    The factors that bind to the hepatic-specific human apolipoprotein AI (apoAI) 48-bp downstream enhancer (DSE) were identified and characterized by electrophoretic mobility shift assays. A significant homology was shown between the histone 4 (H4) promoters and the hepatic-specific human apoAI DSE at Sp1 and H4TF2 binding sites. Human HepG2 nuclear extracts were used to form four specific complexes with the DSE (referred to as apoAI DSE-1, -2, -3, and -4). The apoAI DSE-1 and -2 complexes showed similar binding specificity to the Sp/H4TF1 consensus site within the apoAI DSE. The apoAI DSE-1 complex was predominantly recognized by anti-Sp1 and Sp3 sera in gel shift assays, indicating that the DSE was recognized by multiple Sp family members. Nuclear extracts that were prepared from retinoic acid treated HepG2 cells showed increased levels of Sp factors in gel shift and Western blot assays. The apoAI DSE-2 complex was identified as H4TF1 and formed in the absence of magnesium chloride. The apoAI DSE-3 complex bound to a consensus GATA element within the DSE that was recognized by recombinant human GATA-6 as well. The apoAI DSE-3 complex was completely disrupted by a GATA-4 antibody in EMSA. GATA-4 and -6 were detected in nuclear extracts prepared from retinoic acid treated HepG2 cells using Western blot assays. The highest apoAI DSE-3 levels were observed with retinoic acid treated HepG2 cell nuclear extracts in EMSA. ApoAI DSE-4 is a multi-factor complex that includes an Sp/H4TF1 factor and either H4TF2 or apoAI DSE-3. Because apoAI DSE mutations revealed transcription defects in transient transfection assays, we conclude that the entire DSE sequence is required for full apoAI transcriptional activity in HepG2 cells. PMID:14659877

  3. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells.

    PubMed

    Md Zamri, Nur Diyana; Imam, Mustapha Umar; Abd Ghafar, Siti Aisyah; Ismail, Maznah

    2014-01-01

    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH(•)) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH(•) scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH(•). The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes. PMID:25431609

  4. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells

    PubMed Central

    Md Zamri, Nur Diyana; Imam, Mustapha Umar; Abd Ghafar, Siti Aisyah; Ismail, Maznah

    2014-01-01

    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH•) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH• scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH•. The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes. PMID:25431609

  5. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products.

    PubMed

    Juan-García, Ana; Juan, Cristina; Manyes, Lara; Ruiz, María-José

    2016-08-01

    Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied. PMID:27131905

  6. Antihyperglycemia and Antihyperlipidemia Effect of Protoberberine Alkaloids From Rhizoma Coptidis in HepG2 Cell and Diabetic KK-Ay Mice.

    PubMed

    Ma, Hang; Hu, Yinran; Zou, Zongyao; Feng, Min; Ye, Xiaoli; Li, Xuegang

    2016-06-01

    Preclinical Research Rhizoma Coptidis (RC), the root of Coptis chinensis Franch, a species in the genus Coptis (family Ranunculaceae), has been commonly prescribed for the treatment of diabetes in Chinese traditional herbal medicine applications. The present study is focused on the assessment of the antihyperglycemia and antidiabetic hyperlipidemia effect of five protoberberine alkaloids, berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI), and jatrorrhizine (JAT), separated from R. Coptidis in hepatocellular carcinoma HepG2 cells and diabetic KK-Ay mice. Protoberberine alkaloids are effective in modulating hyperglycemia and hyperlipidemia. After adding BBR and COP to culture medium, glucose consumption of HepG2 cells was increased. In KK-Ay mice assays, suppressed fasting blood glucose level and ameliorated glucose tolerance were observed after BBR/COP administration. After treated with berberine and coptisine, in the same dose of 5 µg/mL, the glucose consumption of HepG2 cells were promoted and, respectively, reached 96.1% and 17.6%. Body weight, food consumption, water intake, and urinary output of KK-Ay mice were reduced after treated with EPI. Serum total cholesterol and triglyceride of mice were decreased after treated with palmatine and jatrorrhizine. Serum high-density lipoprotein cholesterol of mice was increased after palmatine, jatrorrhizine, and berberine administrated. Moreover, hepatomegaly was attenuated in JTR-treated mice. Suggested that these protoberberine alkaloids from R. Coptidis have potential curative effect for diabetes. Drug Dev Res 77 : 163-170, 2016.   © 2016 Wiley Periodicals, Inc. PMID:27045983

  7. hesperidin induces paraptosis like cell death in hepatoblastoma, HepG2 Cells: involvement of ERK1/2 MAPK [corrected].

    PubMed

    Yumnam, Silvia; Park, Hyeon Soo; Kim, Mun Ki; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Lee, Won Sup; Kim, Eun Hee; Cho, Jae Hyeon; Shin, Sung Chul; Kim, Gon Sup

    2014-01-01

    Hesperidin, a natural flavonoid abundantly present in Citrus is known for its anti-cancer, anti-oxidant and anti-inflammatory properties. In this study we examined the effect of hesperidin on HepG2 cells. HepG2 cells treated with various concentration of hesperidin undergo a distinct type of programed cell death. Cytoplasmic vacuolization, mitochondria and endoplasmic reticulum swelling and uncondensed chromatin were observed in hesperidin treated cells. DNA electrophoresis show lack of DNA fragmentation and western blot analysis demonstrates lack of caspase activation and PARP cleavage. It was observed that hesperidin induced cell death is nonautophagic and also activate mitogen activated protein kinase ERK1/2. Taken together, the data indicate that hesperidin induces paraptosis like cell death in HepG2 cells with the activation of ERK1/2. Thus our finding suggests that hesperidin inducing paraptosis may offer an alternative tool in human liver carcinoma therapy. PMID:24977707

  8. Sex hormone modulation of both induction and inhibition of CYP1A by genistein in HepG2/C3A cells.

    PubMed

    Liu, Yitong; Santillo, Michael F; Flynn, Thomas J; Ferguson, Martine S

    2015-04-01

    Genistein is a widely consumed phytoestrogen in dietary supplements and has been reported to play roles in both cancer prevention and promotion. These conflicting effects may be complicated by sex differences. Cytochrome P450 1A (CYP1A) participates in carcinogen activation and detoxification, and the enzyme may interact with genistein. Therefore, modulation of CYP1A by a combination of genistein and sex hormones could be responsible for sex differences related to cancer prevention and promotion. In the current study, a human liver cell line, HepG2/C3A, cultured in sex hormone-supplemented media was used to investigate the modulatory effect of genistein on CYP1A gene expression and activity. Genistein exerted both long-term (72 h) induction and short-term (immediate) inhibition of CYP1A activity in HepG2/C3A cells. In the long-term study, CYP1A gene expression and enzyme activity were induced to a greater extent in male hormone-supplemented cells than female ones. In the short-term study, CYP1A activity was inhibited more strongly by genistein in the male hormone-supplemented cells than in the female hormone-supplemented cells. These significant differences suggest that male hormones can modulate the effects of genistein on CYP1A gene expression and activity. PMID:25479735

  9. Anticancer activity and radiosensitization effect of methyleneisoxazolidin-5-ones in hepatocellular carcinoma HepG2 cells.

    PubMed

    Gach, Katarzyna; Grądzka, Iwona; Wasyk, Iwona; Męczyńska-Wielgosz, Sylwia; Iwaneńko, Teresa; Szymański, Jacek; Koszuk, Jacek; Janecki, Tomasz; Kruszewski, Marcin; Janecka, Anna

    2016-03-25

    Parthenolide (PTL), a well-known sesquiterpene lactone of natural origin with α,β-unsaturated carbonyl structure, has proven to show promising anti-cancer properties. In this report, anti-proliferative potential of two synthetic methyleneisoxazolidin-5-ones, MZ-6 and MZ-14, with the same structural motif, has been investigated in human hepatoma HepG2 cells. The effects on apoptosis induction and DNA damage were evaluated. All compounds decreased the number of live cells and increased the number of late apoptotic cells. However, only MZ-14 was able to induce DNA damage. Both synthetic compounds increased intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential changes at the same level as PTL. Additionally, cell survival was analyzed after a combined treatment, in which HepG2 cells were preincubated for 24 h with MZ-6, MZ-14 or PTL and irradiated with different doses of X-rays. The inhibition of cell survival was assessed by the clonogenic assay. We have shown that the clone formation was strongly inhibited by the combined treatment. The synergistic effect was observed for all three compounds but MZ-6 was significantly more effective. It is interesting to note that in HepG2 cells MZ-6 was the least cytotoxic of the tested compounds, did not induce DNA damage and was less active than the others in the clonogenic cell survival assay. It seems advantages from the point of view of the further in vivo studies that the compound with the lowest cytotoxic activity showed the strongest sensitizing effect. PMID:26867810

  10. Effect of halofuginone on the inhibition of proliferation and invasion of hepatocellular carcinoma HepG2 cell line

    PubMed Central

    Huo, Sibo; Yu, Huiqiu; Li, Chusheng; Zhang, Jiayu; Liu, Tongjun

    2015-01-01

    Primary liver cancer is a common cancer and the mortality of liver cancer ranks the second of all malignancy-related deaths in China. The most common primary liver cancer is hepatocellular carcinoma, accounting for approximately 90% of the total. Because liver is the largest parenchymatous organ in the body undertaking all kinds of important metabolic functions, liver cancer inevitably causes greater harms and its treatment is extremely difficult. Currently, there are still no effective drugs for the treatment of patients with advanced inoperable liver cancer. We observed the strong inhibitory activity of halofuginone on HepG2 cell growth and the cell cycle and apoptosis assays showed that halofuginone arrested the cell cycle and inhibited the induction. And we found that halofuginone inhibits tumor cell cycle possibly by up-regulating p15 and p21 of expression. Then, we found that the proportion of cleaved PARP, caspase-3, 8 and 9 in HepG2 cells increased after halofuginone treatment. And the results showed that halofuginone down-regulated Mcl-1 and c-IAP1 expression. Finally, our results showed halofuginone regulated the activities of JNK and MEK/ERK signaling pathways in hepatocellular carcinoma cells. In summary, this study shows that halofuginone can inhibit the in vitro growth, arrest the cell cycle and induce the apoptosis of HepG2 cells. Its mechanisms of action may be related to the regulation of associated protein expression, up-regulation of JNK, and inhibition of MEK/ERK signaling pathway. PMID:26884857

  11. Mercury-induced externalization of phosphatidylserine and caspase 3 activation in human liver carcinoma (HepG2) cells.

    PubMed

    Sutton, Dwayne J; Tchounwou, Paul B

    2006-03-01

    Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2) cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 microg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 +/- 0.6 microg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 +/- 0.03%, 5.19 +/- 0.04%, 6.36 +/- 0.04%, and 8.84 +/- 0.02% for 0, 1, 2, and 3 microg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 +/- 0.03%, 17.06 +/- 0.05%, 23.32 +/- 0.03%, and 34.51 +/- 0.01% for 0, 1, 2, and 3 microg/mL of

  12. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells.

    PubMed

    An, Jing; Hu, Jingwen; Shang, Yu; Zhong, Yufang; Zhang, Xinyu; Yu, Zhiqiang

    2016-09-18

    In order to elucidate the cytotoxicity of organophosphate flame retardants (OPFRs), three human in vitro models, namely the HepG2 hepatoma cells, the A549 lung cancer cells and the Caco-2 colon cancer cells, were chosen to investigate the toxicity of triphenyl phosphate (TPP), tributylphosphate (TBP), tris(2-butoxyexthyl) phosphate (TBEP) and tris (2-chloroisopropyl) phosphate (TCPP). Cytotoxicity was assayed in terms of cell viability, DNA damage status, reactive oxygen species (ROS) level and lactate dehydrogenase (LDH) leakage. The results showed that all these four OPFRs could inhibit cell viability, overproduce ROS level, induce DNA lesions and increase the LDH leakage. In addition, the toxic effects of OPFRs in Caco-2 cells were relatively severer than those in HepG2 and A549 cells, which might result from some possible mechanisms apart from oxidative stress pathway. In conclusion, TBP, TPP, TBEP and TCPP could induce cell toxicity in various cell lines at relatively high concentrations as evidenced by suppression of cell viability, overproduction of ROS, induction of DNA lesions and increase of LDH leakage. Different cell types seemed to have different sensitivities and responses to OPFRs exposure, as well as the underlying potential molecular mechanisms. PMID:27336727

  13. Study of levan productivity from Bacillus subtilis Natto by surface response methodology and its antitumor activity against HepG2 cells using metabolomic approach.

    PubMed

    Cabral de Melo, Fernando Cesar Bazani; Borsato, Dionísio; de Macedo Júnior, Fernando César; Mantovani, Mario Sérgio; Luiz, Rodrigo Cabral; Colabone-Celligoi, Maria Antonia-Pedrine

    2015-11-01

    Levan productivity of Bacillus subtilis Natto was evaluated in submerged culture varying the pH, temperature and culture time, using factorial design and response surface methodology. The characterization of levan molecular weight was performed by HPSEC and its antitumor activity against HepG2 cells using metabolomic approach was also evaluated. At first, the variables investigated, as well as their interactions, demonstrated significant effect. Further, a second design using the same variables at different levels was developed. Thus, according to the model, an optimized value corresponding to 5.82 g.L⁻¹.h⁻¹ was achieved at pH 8, 39.5°C in 21 hours, the highest value reported so far. After analysis by HPSEC, two molecular weights were obtained corresponding to 72.37 and 4146 kDa. The levan promoted an increase of acetate, alanine, lactate and phosphocreatine in HepG2 cells suggesting an alteration in the bioenergetics pathways and cellular homeostasis by intracellular accumulation of lactate, justifying its antitumor activity. PMID:26639487

  14. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. PMID:23546397

  15. Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells.

    PubMed

    Rigalli, Juan Pablo; Ruiz, María Laura; Perdomo, Virginia Gabriela; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo; Catania, Viviana Alicia

    2011-07-11

    We evaluated the effect of spironolactone (SL), a well-known inducer of biotransformation and elimination pathways, on the expression and activity of P-glycoprotein (P-gp/ABCB1/MDR1), a major xenobiotic transporter, in HepG2 cells, as well as the potential mediation of pregnane X nuclear receptor (PXR). Cells were exposed to SL (1, 5, 10, 20 or 50 μM) for 48 h. Expression of P-gp and its mRNA levels were estimated by Western blotting and real time PCR, respectively. P-gp activity was inversely correlated with the ability of the cells to accumulate the model substrate rhodamine 123 (Rh123, 5 μM), in the presence or absence of verapamil (50 μM), a P-gp inhibitor. At the highest dose of SL tested, P-gp and MDR1 mRNA levels were significantly increased (73 and 108%) with respect to control cells. Rh123 accumulation was concomitantly reduced and verapamil was able to abolish this effect, confirming P-gp participation. Additionally, we tested the cytotoxicity of doxorubicin, a model substrate of P-gp, under inducing conditions. HepG2 cells treated with SL exhibited higher viability, i.e. less doxorubicin toxicity, than control cells, consistent with P-gp up-regulation. When HepG2 cells were treated with SL in the presence of ketoconazole (KTZ), a non-specific nuclear receptor inhibitor, the up-regulation of P-gp was suppressed. To further identify the nuclear receptor involved, cells were transfected with a siRNA directed against human PXR, leading to a 74% decrease in PXR protein levels, which totally abolished SL induction of P-gp. We conclude that SL up-regulates P-gp expression, likely at transcriptional level, and its efflux activity in HepG2 cells. This effect is mediated by PXR. Thus, ligands of PXR such as SL may alter the disposition and toxicity of other xenobiotics, including drugs of therapeutic use, that are P-gp substrates. PMID:21459122

  16. Silencing of Human CutC Gene (hCutC) Induces Apoptosis in HepG2 Cells.

    PubMed

    Kunjunni, Remesh; Sathianathan, Sandeep; Behari, Madhuri; Chattopadhyay, Parthaprasad; Subbiah, Vivekanandhan

    2016-07-01

    Copper is an essential microelement required for maintaining normal cell physiology. Copper transporter CutC is one of the six members of Cut family proteins, involved in prokaryotic copper homeostasis. Human homolog of CutC (hCutC) is an intracellular copper-binding protein with unknown physiological function. In the present study using HepG2 cells, we report the effects of hCutC knockdown on copper sensitivity and morphology of cells that ultimately leads to apoptosis. We silenced hCutC using specific small interfering RNA (siRNA), and its downregulation was confirmed by quantitative real-time PCR. Though there was no significant variation in total cellular copper as estimated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), knockdown of hCutC caused an increase in sensitivity of HepG2 cells to copper loads when compared to control cells (studied by MTT-based cell viability assay). Morphological analysis by transmission electron microscopy (TEM) indicated onset of apoptosis in hCutC-silenced cells which was exacerbated upon copper treatment. Mitochondrial transmembrane potential (ΔΨm) assay and DNA fragmentation assay further ensured apoptosis occurring in cells upon hCutC silencing. The present study reveals copper induced damage in cells upon hCutC silencing and provides evidence for the role of hCutC protein in intracellular copper homeostasis. PMID:26660891

  17. Galangin Induces Autophagy via Deacetylation of LC3 by SIRT1 in HepG2 Cells

    PubMed Central

    Li, Xv; Wang, Yajun; Xiong, Yuzhen; Wu, Jun; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Zhang, Haitao

    2016-01-01

    Galangin suppresses proliferation and induces apoptosis and autophagy in hepatocellular carcinoma (HCC) cells, but the precise mechanism is not clear. In this study, we demonstrated that galangin induced autophagy, enhanced the binding of SIRT1-LC3 and reduced the acetylation of endogenous LC3 in HepG2 cells. But this autophagy was inhibited by inactivation of SIRT1 meanwhile, galangin failed to reduce the acetylation of endogenous LC3 after SIRT1 was knocked-down. Collectively, these findings demonstrate a new mechanism by which galangin induces autophagy via the deacetylation of endogenous LC3 by SIRT1. PMID:27460655

  18. Antiproliferative Activity of the Chinese Medicinal Compound, Delisheng, Compared With Rg3 and Gemcitabine in HepG2 Cells.

    PubMed

    Wang, S H; Wang, Y C; Nie, Y L; Hai, Y N; Sun, H F; Yuan, Z L; Nan, K J

    2013-09-01

    Delisheng consists of radix ginseng, radix astragali, venenum bufonis and mylabris. It has been reported that delisheng inhibits the proliferation of adenocarcinoma cells and stimulates their apoptosis. Delisheng can also enhance the body's immunity and induce the redifferentiation of carcinoma cells. Delisheng inhibited the proliferation of HepG2 cells in MTT assay and promoted apoptosis more effectively in contrast to the active components of ginseng extract, Rg3 and gemcitabine. It is possible that Rg3 has an important role in delisheng because they all could regulate the cell cycle, apoptosis and expression of endostatin and VEGFR-2. Delisheng caused the cell cycle to arrest at the S phase, while gemcitabine blocked the cells at the G0/G1 phase in cell cycle analysis. Consequently, the apoptosis rate of the HepG2 cell line can be increased significantly by delisheng in combination with gemcitabine, compared with the single drug. The expression of the procaspase proteins, caspase protein, and dr5 detected by Western blot were increased while bcl-2 and survivin decreased in the delisheng group, compared with controls. The observations suggest that the delisheng induced apoptotic effect might be closely related to the mitochondrial apoptosis pathway, and the death receptor signaling pathway. PMID:24403659

  19. Antiproliferative Activity of the Chinese Medicinal Compound, Delisheng, Compared With Rg3 and Gemcitabine in HepG2 Cells

    PubMed Central

    Wang, S. H.; Wang, Y. C.; Nie, Y. L.; Hai, Y. N.; Sun, H. F.; Yuan, Z. L.; Nan, K. J.

    2013-01-01

    Delisheng consists of radix ginseng, radix astragali, venenum bufonis and mylabris. It has been reported that delisheng inhibits the proliferation of adenocarcinoma cells and stimulates their apoptosis. Delisheng can also enhance the body's immunity and induce the redifferentiation of carcinoma cells. Delisheng inhibited the proliferation of HepG2 cells in MTT assay and promoted apoptosis more effectively in contrast to the active components of ginseng extract, Rg3 and gemcitabine. It is possible that Rg3 has an important role in delisheng because they all could regulate the cell cycle, apoptosis and expression of endostatin and VEGFR-2. Delisheng caused the cell cycle to arrest at the S phase, while gemcitabine blocked the cells at the G0/G1 phase in cell cycle analysis. Consequently, the apoptosis rate of the HepG2 cell line can be increased significantly by delisheng in combination with gemcitabine, compared with the single drug. The expression of the procaspase proteins, caspase protein, and dr5 detected by Western blot were increased while bcl-2 and survivin decreased in the delisheng group, compared with controls. The observations suggest that the delisheng induced apoptotic effect might be closely related to the mitochondrial apoptosis pathway, and the death receptor signaling pathway. PMID:24403659

  20. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells

    PubMed Central

    Youn, Myung-Ja; Kim, Jin-Kyung; Park, Seong-Yeol; Kim, Yunha; Kim, Se-Jin; Lee, Jin Seok; Chai, Kyu Yun; Kim, Hye-Jung; Cui, Ming-Xun; So, Hong Seob; Kim, Ki-Young; Park, Raekil

    2008-01-01

    AIM: To investigate the anti-proliferative and apoptotic effects of Chaga mushroom (Inonotus obliquus) water extract on human hepatoma cell lines, HepG2 and Hep3B cells. METHODS: The cytotoxicity of Chaga extract was screened by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Morphological observation, flow cytometry analysis, Western blot were employed to elucidate the cytotoxic mechanism of Chaga extract. RESULTS: HepG2 cells were more sensitive to Chaga extract than Hep3B cells, as demonstrated by markedly reduced cell viability. Chaga extract inhibited the cell growth in a dose-dependent manner, which was accompanied with G0/G1-phase arrest and apoptotic cell death. In addition, G0/G1 arrest in the cell cycle was closely associated with down-regulation of p53, pRb, p27, cyclins D1, D2, E, cyclin-dependent kinase (Cdk) 2, Cdk4, and Cdk6 expression. CONCLUSION: Chaga mushroom may provide a new therapeutic option, as a potential anticancer agent, in the treatment of hepatoma. PMID:18203281

  1. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells.

    PubMed

    Lin, Hui-Mei; Tseng, Hsien-Chun; Wang, Chau-Jong; Chyau, Charng-Cherng; Liao, Ko-Kaung; Peng, Pei-Ling; Chou, Fen-Pi

    2007-05-01

    Solanum nigrum L. (SN) has been used in traditional folk medicine to treat different cancers. It is also used as a hepatoprotective and anti-inflammatory agent. In this study, we demonstrated that the extract of SN (SNE) induced a strong cytotoxic effect toward HepG2 cells but much less to Chang liver and WRL-68 cells. The mechanisms of the cytotoxic effect were concentration-dependent. High doses of SNE (2 and 5 mg/mL) induced apoptotic cell death in HepG2 cells, as evidenced by increases in the expressions of p-JNK and Bax, mitochodrial release of cytochrome c, and caspase activation. On the other hand, cells treated with low concentrations of SNE (50-1000 microg/mL) revealed morphological and ultrastructural changes of autophagocytic death under electron microscopic observation. Furthermore, these cells showed increased levels of autophagic vacuoles and LC3-I and LC3-II proteins, specific markers of autophagy. The levels of Bcl-2 and Akt that have been implicated in the down-regulation of autophagy were decreased upon SNE treatment. Taken together, these findings indicate that SNE induced cell death in hepatoma cells via two distinct antineoplastic activities of SNE, the ability to induce apoptosis and autophagocytosis, therefore suggesting that it may provide leverage to treat liver cancer. PMID:17419635

  2. Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt.

    PubMed

    Deng, Li-Juan; Hu, Li-Ping; Peng, Qun-Long; Yang, Xiao-Lin; Bai, Liang-Liang; Yiu, Anita; Li, Yong; Tian, Hai-Yan; Ye, Wen-Cai; Zhang, Dong-Mei

    2014-08-01

    Hellebrigenin, one of bufadienolides belonging to cardioactive steroids, was found in skin secretions of toads and plants of Helleborus and Kalanchoe genera. In searching for natural constituents with anti-hepatoma activities, we found that hellebrigenin, isolated from traditional Chinese medicine Venenum Bufonis, potently reduced the viability and colony formation of human hepatocellular carcinoma cells HepG2, and went on to explore the underlying molecular mechanisms. Our results demonstrated that hellebrigenin triggered DNA damage through DNA double-stranded breaks and subsequently induced cell cycle G2/M arrest associated with up-regulation of p-ATM (Ser(1981)), p-Chk2 (Tyr(68)), p-CDK1 (Tyr(15)) and Cyclin B1, and down-regulation of p-CDC25C (Ser(216)). It was also found that hellebrigenin induced mitochondrial apoptosis, characterized by Bax translocation to mitochondria, disruption of mitochondrial membrane potential, release of cytochrome c into cytosol and sequential activation of caspases and PARP. In addition, Akt expression and phosphorylation were inhibited by hellebrigenin, whereas Akt silencing with siRNA significantly blocked cell cycle arrest but enhanced apoptosis induced by hellebrigenin. Activation of Akt by human insulin-like growth factor I (hIGF-I) could obviously attenuate hellebrigenin-induced cell death. In summary, our study is the first to report the efficacy of hellebrigenin against HepG2 and elucidated its molecular mechanisms including DNA damage, mitochondria collapse, cell cycle arrest and apoptosis, which will contribute to the development of hellebrigenin into a chemotherapeutic agent in the treatment of liver cancer. PMID:24954031

  3. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway

    PubMed Central

    Guo, Chunmei; Liu, Shuqing; Dong, Panpan; Zhao, Dongting; Wang, Chengyi; Tao, Zhiwei; Sun, Ming-Zhong

    2015-01-01

    Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway. PMID:26655928

  4. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles.

    PubMed

    He, Jian; Zheng, Yi-Wen; Lin, Yi-Fan; Mi, Shu; Qin, Xiao-Wei; Weng, Shao-Ping; He, Jian-Guo; Guo, Chang-Jun

    2016-01-01

    Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions. PMID:26887868

  5. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles

    PubMed Central

    He, Jian; Zheng, Yi-Wen; Lin, Yi-Fan; Mi, Shu; Qin, Xiao-Wei; Weng, Shao-Ping; He, Jian-Guo; Guo, Chang-Jun

    2016-01-01

    Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions. PMID:26887868

  6. Screening of α-Tocopherol Transfer Protein Sensitive Genes in Human Hepatoma Cells (HepG2).

    PubMed

    Qu, Yang-Hua; Fu, Jun-Cai; Liu, Kun; Zuo, Zhao-Yun; Jia, Hui-Na; Ma, Yong; Luo, Hai-Ling

    2016-01-01

    α-Tocopherol transfer protein (α-TTP) is a ~32 kDa protein expressed mainly in hepatocytes. The major function of the protein is to bind specifically to α-tocopherol and, together, the complex transfers from late lysosomes to the cell membrane. A previous study indicated that some factors might be required in the transferring process. However, there is little information available about the potential transferring factors. In addition, there remains much to learn about other physiological processes which α-TTP might participate in. Thus, in this study a human α-TTP eukaryotic expression vector was successfully constructed and expressed in human hepatoma cells (HepG2). The sensitive genes related to α-TTP were then screened by microarray technology. Results showed that expression of the vector in HepG2 cells led to the identification of 323 genes showing differential expression. The differentially expressed transcripts were divided into four main categories, including (1) cell inflammation; (2) cell cycle and cell apoptosis; (3) cell signaling and gene regulation; and (4) cellular movement. A few cellular movement related transcripts were selected and verified by quantitative real-time PCR. Expressions of some were significantly increased in α-TTP-expressed group, which indicated that these factors were likely to play a role in the transferring process. PMID:27355945

  7. Screening of α-Tocopherol Transfer Protein Sensitive Genes in Human Hepatoma Cells (HepG2)

    PubMed Central

    Qu, Yang-Hua; Fu, Jun-Cai; Liu, Kun; Zuo, Zhao-Yun; Jia, Hui-Na; Ma, Yong; Luo, Hai-Ling

    2016-01-01

    α-Tocopherol transfer protein (α-TTP) is a ~32 kDa protein expressed mainly in hepatocytes. The major function of the protein is to bind specifically to α-tocopherol and, together, the complex transfers from late lysosomes to the cell membrane. A previous study indicated that some factors might be required in the transferring process. However, there is little information available about the potential transferring factors. In addition, there remains much to learn about other physiological processes which α-TTP might participate in. Thus, in this study a human α-TTP eukaryotic expression vector was successfully constructed and expressed in human hepatoma cells (HepG2). The sensitive genes related to α-TTP were then screened by microarray technology. Results showed that expression of the vector in HepG2 cells led to the identification of 323 genes showing differential expression. The differentially expressed transcripts were divided into four main categories, including (1) cell inflammation; (2) cell cycle and cell apoptosis; (3) cell signaling and gene regulation; and (4) cellular movement. A few cellular movement related transcripts were selected and verified by quantitative real-time PCR. Expressions of some were significantly increased in α-TTP-expressed group, which indicated that these factors were likely to play a role in the transferring process. PMID:27355945

  8. Expression and purification of human TAT-p53 fusion protein in Pichia pastoris and its influence on HepG2 cell apoptosis.

    PubMed

    Yan, Haowei; Liu, Nan; Zhao, Zhenghong; Zhang, Xinmin; Xu, Hao; Shao, Bing; Yan, Weiqun

    2012-07-01

    P53 is an attractive target in molecular cancer therapeutics because of its critical role in regulating cell cycle arrest and apoptosis. The limitations in the development of p53-based cancer therapeutic strategy include its inefficient transmission through cell membrane of tumor cells and low protein yields in the expression system. In the present study, p53 was fused with HIV TAT protein, which can cross cell membranes, and expressed by Pichia pastoris. Stable production of Tat-p53 was achieved. After being transduced with Tat-p53 protein, the growth of cancer cell line, HepG2, was inhibited by increased apoptosis in culture. This expression system could thus be utilized to produce human Tat-p53 fusion protein. PMID:22426841

  9. Low concentrations of primaquine inhibit degradation but not receptor-mediated endocytosis of asialoorosomucoid by HepG2 cells

    SciTech Connect

    Reif, J.S.; Schwartz, A.L.; Fallon, R.J. )

    1991-02-01

    Asialoorosomucoid (ASOR) is internalized and degraded by HepG2 cells after binding to the asialoglycoprotein (ASGP) receptor, internalization through the coated pit/coated vesicle pathway, and trafficking to lysosomes. Primaquine, an 8-aminoquinoline antimalarial compound, inhibits ASOR degradation at concentrations greater than 0.2 mM by neutralizing intracellular acid compartments. This leads to alterations in surface receptor number, receptor-ligand dissociation, and receptor recycling. We have investigated the effects of primaquine on 125I-ASOR uptake and degradation as a function of primaquine concentration and duration of exposure. Concentrations below those required for neutralization of acidic compartments block 125I-ASOR degradation in HepG2 cells and lead to intracellular ligand accumulation. This effect is maximal at 80 microM primaquine. The intracellular 125I-ASOR is undegraded, dissociated from the ASGP receptor, and contained within vesicular compartments distinct from lysosomes, plasma membrane, or endosomes. In addition, the effect of 80 microM primaquine on 125I-ASOR degradation is very slowly reversible (greater than 6 h), in contrast to primaquine's rapidly reversible effect on receptor recycling and ligand uptake (10 min). Furthermore, the effect is ligand-specific. 125I-asialofetuin, another ASGP receptor ligand, is internalized and degraded in lysosomes at normal rates in HepG2 cells exposed to 80 microM primaquine. These findings indicate that primaquine has multiple effects on the uptake and degradation of ligand occurring in the endosome-lysosome pathway. These effects of primaquine differ in their concentration-dependence, site of action, reversibility, and ligand selectivity.

  10. Telmisartan increases lipoprotein lipase expression via peroxisome proliferator-activated receptor-alpha in HepG2 cells.

    PubMed

    Yin, Shi Nan; Liu, Min; Jing, Dan Qing; Mu, Yi Ming; Lu, Ju Ming; Pan, Chang Yu

    2014-01-01

    In addition to their hypotensive properties, angiotensin receptor blockers (ARBs) have been shown to exert clinical antidyslipidemic effects. The mechanism underlying these ARB lipid metabolic effects remains unclear. Some ARBs, for example, telmisartan, activate peroxisome proliferator-activated activated receptor-gamma (PPAR-gamma). We hypothesized that PPAR-gamma-activating ARBs might exert antidyslipidemic effects via PPAR-alpha. In this study, we assessed the effect of telmisartan on the expression of PPAR-alpha and lipoprotein lipase (LPL). PPAR-alpha expression was detected by reverse-transcription polymerase chain reaction and Western blot in HepG2 hepatocytes as well as differentiated C2C12 myocytes treated with increasing concentrations of telmisartan (0.1-10 μmol/L) for 48 h. Results showed that 1 μmol/L and 10 μmol/L telmisartan significantly increased the expression of PPAR-alpha mRNA and protein in HepG2 cells (p < 0.01). No effect was shown in differentiated C2C12 cells. Similarly, 1 µmol/L and 10 μmol/L telmisartan significantly increased the expression of LPL mRNA and protein in HepG2 cells (p < 0.01), and this increase was significantly (p < 0.01) inhibited by the PPAR-alpha-specific antagonist MK886. These results indicate that certain of the antidyslipidemic effects of telmisartan might be mediated via increased PPAR-alpha-dependent induction of LPL expression. PMID:24067162

  11. Frequent sampling reveals dynamic responses by the transcriptome to routine media replacement in HepG2 cells.

    PubMed

    Morgan, Kevin T; Casey, Warren; Easton, Marilyn; Creech, Don; Ni, Hong; Yoon, Lawrence; Anderson, Steve; Qualls, Charles W; Crosby, Lynn M; MacPherson, Alistair; Bloomfield, Peter; Elston, Timothy C

    2003-01-01

    Cultured cell lines are employed extensively for biological research. Large-scale differential gene expression (LSDGE) is being used to study mechanisms of toxicity in such cultures. 'Normal' gene expression dynamics could have a major impact on the design and interpretation of these studies. In order to provide understanding of such dynamics, we investigated LSDGE responses to media replacement in human hepatoblastoma cells (HepG2) using 5-minute sampling frequencies for 6 hours post routine media replacement. Each mRNA transcript was found to exhibit a characteristic 'operating range' based on signal intensity. Following media replacement, which replenishes nutrients (eg, glucose and glutamate) and removes excretory products (eg, lactate), a complex set of gene expression changes was observed. Some transcripts appeared to switch on from a quiescent state to a very active one (eg, CYP1A1), others exhibited 'clocklike' oscillations (eg, asparagine synthetase), or a synchronous burst (chirp) of expression up regulation (eg, timeless). Mathematical analysis (Fourier Transform, Singular Value Decomposition, Wavelets, Phase Analysis) of oscillating expression patterns identified cycle lengths ranging from 11.8 to 210 minutes. There were prominent 36.5- and 17.4-minute cycles, for subsets of genes, and transcript-specific differences in phase angle with respect to these cycles. The functional consequences of these novel observations remain to be determined. It is clear that dense time-course studies provide a valuable approach to the investigation of physiological responses to nutrients, toxicants, and other environmental variables. This research also highlights the need for an understanding of biological dynamics when using cell culture systems. An Excel data file representing individual transcripts from the respective Clontech cDNA arrays referred to in this article is available at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. Rows

  12. Allyl-isatin suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in hepatocellular carcinoma HepG2 cells.

    PubMed

    Bian, Weihua; An, Yukuan; Qu, Huiqing; Yang, Yue; Yang, Junhou; Xu, Yanyan

    2016-06-01

    The anticancer effect of the newly synthesized isatin derivative, N-allyl-isatin (Allyl-I), was evaluated in vitro with human hepatocellular carcinoma HepG2 cells. Cell viability was detected by cell counting kit-8 (CCK8) assay. Acridine orange (AO)/ethidium bromide (EB) double staining was used to observe the cell morphology. Flow cytometry was used to assess the effects of Allyl-I on the cell cycle, apoptosis rate, and mitochondrial membrane potential (MMP). Western blot analysis was performed to detect the influence of Ally1-I on the expression of cytochrome c (cyt c), Bax, Bcl-2, and cleaved caspase-3. Allyl-I significantly inhibited HepG2 cell viability in a time- and dose-dependent manner. Allyl-I can induce cell cycle arrest in HepG2 cells at the G2/M phase. Apoptotic nuclear morphological changes were observed after AO/EB double staining. Fluorescein isothiocyanate-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI) double staining showed that the apoptotic rates significantly increased in the presence of Allyl-I. Rhodamine 123 staining indicated that Allyl-I can decrease the MMP. Allyl-I also altered the expression of mitochondrial apoptosis-related proteins. Protein levels of cyt c and cleaved caspase-3 were upregulated following Allyl-I treatment. By contrast, the Bcl-2/Bax ratio decreased. Results suggest that Allyl-I suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in HepG2 cells. Furthermore, the induction of apoptosis might be correlated with the mitochondrial pathway. PMID:26945926

  13. Dose-dependent cytotoxic effects of boldine in HepG-2 cells-telomerase inhibition and apoptosis induction.

    PubMed

    Noureini, Sakineh Kazemi; Wink, Michael

    2015-01-01

    Plant metabolites are valuable sources of novel therapeutic compounds. In an anti-telomerase screening study of plant secondary metabolites, the aporphine alkaloid boldine (1,10-dimethoxy-2,9-dihydroxyaporphine) exhibited a dose and time dependent cytotoxicity against hepatocarcinoma HepG-2 cells. Here we focus on the modes and mechanisms of the growth-limiting effects of this compound. Telomerase activity and expression level of some related genes were estimated by real-time PCR. Modes of cell death also were examined by microscopic inspection, staining methods and by evaluating the expression level of some critically relevant genes. The growth inhibition was correlated with down-regulation of the catalytic subunit of telomerase (hTERT) gene (p < 0.01) and the corresponding reduction of telomerase activity in sub-cytotoxic concentrations of boldine (p < 0.002). However, various modes of cell death were stimulated, depending on the concentration of boldine. Very low concentrations of boldine over a few passages resulted in an accumulation of senescent cells so that HepG-2 cells lost their immortality. Moreover, boldine induced apoptosis concomitantly with increasing the expression of bax/bcl2 (p < 0.02) and p21 (p < 0.01) genes. Boldine might thus be an interesting candidate as a potential natural compound that suppresses telomerase activity in non-toxic concentrations. PMID:25719742

  14. Effects of barley β-glucan on radiation damage in the human hepatoma cell line HepG2.

    PubMed

    Ghavami, Laleh; Goliaei, Bahram; Taghizadeh, Bita; Nikoofar, Alireza

    2014-12-01

    Damage to normal tissue is an obstacle to radiotherapy of cancer. We have tested whether barley β-glucan can enhance radioprotection in the human hepatoma cell line HepG2. The cytotoxicity of β-glucan was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. A clonogenic assay was used to study the sensitivity of cells to β-glucan, ionizing radiation (2-8Gy), and the combination of both treatments. Acridine Orange/ethidium bromide staining was used to examine induction of apoptosis by β-glucan, radiation (6Gy), and the combination. DNA strand breaks were assessed by the comet assay. The MTT assay showed that treatment with β-glucan was not cytotoxic. Indeed, a slight increase in cell viability was observed. Pre-treatment with β-glucan, 1μg/ml, for 72h protected HepG2 cells against radiation, as indicated by increased surviving fraction, reduced apoptosis, and fewer DNA strand breaks. These results show that barley β-glucan is a radioprotective agent. PMID:25435350

  15. N-Nitrosopiperidine and N-Nitrosodibutylamine induce apoptosis in HepG2 cells via the caspase dependent pathway.

    PubMed

    García, Almudena; Morales, Paloma; Rafter, Joseph; Haza, Ana I

    2009-12-01

    The human hepatoma cell line (HepG2) exhibited a dose and time-dependent apoptotic response following treatment with N-Nitrosopiperidine (NPIP) and N-Nitrosodibutylamine (NDBA), two recognized human carcinogens. Our results showed a significant apoptotic cell death (95%) after 24h treatment with NDBA (3.5 mM), whereas it was necessary to use high doses of NPIP (45 mM) to obtain a similar percentage of apoptotic cells (86%). In addition, both extrinsic (caspase-8) and intrinsic pathway (caspase-9) could be implicated in the N-Nitrosamines-induced apoptosis. This study also addresses the role of reactive oxygen species (ROS) as intermediates for apoptosis signaling. A significant increase in ROS levels was observed after NPIP treatment, whereas NDBA did not induce ROS. However, N-acetylcysteine (NAC) did not block NPIP-induced apoptosis. All these findings suggest that NPIP and NDBA induce apoptosis in HepG2 cells via a pathway that involves caspases but not ROS. PMID:19748591

  16. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells.

    PubMed

    Xiang, Qisen; Ma, Yunfang; Dong, Jilin; Shen, Ruiling

    2015-02-01

    Carnosic acid (CA), a phenolic diterpene isolated from rosemary, shows potential benefits in health promotion and disease prevention. In the present study, the cytotoxic and apoptotic-inducing effects of CA on human hepatocellular carcinoma HepG2 cells were investigated. The MTT assay results indicated that CA decreased cell viability in HepG2 cells in a dose-dependent manner. Treatment with CA caused a rapid Caspase-3 activation and subsequently proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), both of which were markers of cells undergoing apoptosis. CA also dissipated mitochondrial membrane potential and decreased the ratio of Bcl-2/Bax protein, which mediated cytosolic translocation of cytochrome c from the mitochondria. Furthermore, CA reduced the phosphorylation of Akt, which was partially inhibited by insulin, an activator of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. In conclusion, our data suggest that the mitochondrial dysfunction and deactivation of Akt may contribute to the apoptosis-inducing effects of CA. PMID:25265205

  17. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment.

    PubMed

    Tolosa, Laia; Donato, M Teresa; Pérez-Cataldo, Gabriela; Castell, José Vicente; Gómez-Lechón, M José

    2012-12-01

    In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing. PMID:22138474

  18. Alkaloids from beach spider lily (Hymenocallis littoralis) induce apoptosis of HepG-2 cells by the fas-signaling pathway.

    PubMed

    Ji, Yu-Bin; Chen, Ning; Zhu, Hong-Wei; Ling, Na; Li, Wen-Lan; Song, Dong-Xue; Gao, Shi-Yong; Zhang, Wang-Cheng; Ma, Nan-Nan

    2014-01-01

    Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose (0.8μg/ml) significantly inhibiting proliferation . The non- tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells. PMID:25422219

  19. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells.

    PubMed

    Yahya, Shaymaa M M; Hamed, Ahmed R; Emara, Mohamed; Soltan, Maha M; Abd-Ellatef, Gamal Eldein F; Abdelnasser, Salma M

    2016-05-01

    Multidrug resistance (MDR) in various kinds of cancers represents a true obstacle which hinders the successes of most of current available chemotherapies. ATP-binding cassette (ABC) trasporter proteins have been shown to contribute to the majority of MDR in various types of malignancies. c-myc has recently been reported to participate, at least partly, in MDR to some types of cancers. This study aimed to test whether c-myc could play a role, solely or with coordination with other ABCs, in the resistance of HepG2 cells to doxorubicin (Dox). MDR has been induced in wild-type HepG2 and has been verified both on gene and protein levels. Various assays including efflux assays as well as siRNA targeting ABCB1 and c-myc have been employed to explore the role of both candidate molecules in MDR in HepG2. Results obtained, with regard to ABCB1 silencing on HepG2/Dox cells, have shown that ABCB1-deficient cells exhibited a significant reduction in ABCC1 expression as compared to ABCB1-sufficient cells. However, these cells did not show a significant reduction in other tested ABCs (ABCC5 and ABCC10) while c-myc silencing had no significant effect on any of the studied ABCs. Moreover, silencing of ABCB1 on HepG2 significantly increased fluorescent calcein retention in HepG2 cells as compared to the control cells while downregulation of c-myc did not have any effect on fluorescent calcein retention. Altogether, this work clearly demonstrates that c-myc has no role in MDR of HepG2 to Dox which has been shown to be ABCB1-mediated in a mechanism which might involve ABCC1. PMID:26596829

  20. In vitro and QSAR studies of cucurbitacins on HepG2 and HSC-T6 liver cell lines.

    PubMed

    Bartalis, Judit; Halaweish, Fathi T

    2011-04-15

    The aim of this study was to evaluate cucurbitacins (Cucs) liver protective activity in vitro and conduct QSAR studies against lipophilicity and ab initio descriptors. Nine Cucs were isolated from Cucurbitaceae plants and eight prepared by C2-alkylation or C16-acylation. Ten Cucs demonstrated protective activity on human hepatocyte-derived HepG2 cells exposed to CCl(4) (EC(50)=2.4-45.3 μM) with good margin to toxicity (T/A). All Cucs exhibited anti-proliferative effect on serum-activated rat stellate cells, HSC-T6 (EC(50)=0.02-4.12 μM) with high T/A. While silybin is nontoxic, its protection is lower compared to Cuc D (3), iso-D (4), I (5), B (11), E (12), I-Me (6), L-Me (7), and E-Me (13) on both cell lines. Strong correlations were found for lipophilicity with both protection and toxicity on HepG2. Lipophilicity correlated only with toxicity on HSC-T6. Consequently, we suggest that Cucs are potential hepatoprotective agents against fibrosis that deserve further examination. PMID:21459003

  1. MAPK signaling triggers transcriptional induction of cFOS during amino acid limitation of HepG2 cells.

    PubMed

    Shan, Jixiu; Donelan, William; Hayner, Jaclyn N; Zhang, Fan; Dudenhausen, Elizabeth E; Kilberg, Michael S

    2015-03-01

    Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells. PMID:25523140

  2. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Quan, Hai Yan; Kim, Do Yeon; Chung, Sung Hyun

    2013-04-01

    The main purpose of this study is to examine the effect of caffeine on lipid accumulation in human hepatoma HepG2 cells. Significant decreases in the accumulation of hepatic lipids, such as triglyceride (TG), and cholesterol were observed when HepG2 cells were treated with caffeine as indicated. Caffeine decreased the mRNA level of lipogenesis-associated genes (SREBP1c, SREBP2, FAS, SCD1, HMGR and LDLR). In contrast, mRNA level of CD36, which is responsible for lipid uptake and catabolism, was increased. Next, the effect of caffeine on AMP-activated protein kinase (AMPK) signaling pathway was examined. Phosphorylation of AMPK and acetyl-CoA carboxylase were evidently increased when the cells were treated with caffeine as indicated for 24 h. These effects were all reversed in the presence of compound C, an AMPK inhibitor. In summary, these data indicate that caffeine effectively depleted TG and cholesterol levels by inhibition of lipogenesis and stimulation of lipolysis through modulating AMPK-SREBP signaling pathways. PMID:23615262

  3. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells.

    PubMed

    Long, Baisheng; Muhamad, Rodiallah; Yan, Guokai; Yu, Jie; Fan, Qiwen; Wang, Zhichang; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-05-01

    Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387. PMID:26837383

  4. Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2.

    PubMed

    Zha, Yong; Gan, Ping; Yao, Qian; Ran, Feng-Ming; Tan, Jing

    2014-04-01

    Recent studies have revealed that repressor/activator protein (Rap1) not only protects telomeres from sister chromatid exchange, but also functions in genomewide transcriptional regulation. Knockdown of Rap1 sensitizes breast cancer cells to adriamycin-induced apoptosis. However, little is known about the role of Rap1 in the progression of hepatocellular carcinoma (HCC). The present study aimed to investigate the functions of Rap1 in HCC progression and to determine whether targeting the Rap1 signaling pathway may be of therapeutic value against HCC. We found knockdown of Rap1 by microRNA (miRNA) interference enhanced significantly apoptosis and 5-fluorouracil (5-FU) chemosensitivity in HepG2 cell line. Rap1 miRNA downregulated nuclear factor-κB p65 (NF-κB p65) expression, and upregulated inhibitor of NF-κB (IκB) expression. In vivo, Rap1 miRNA combined with 5-FU treatment led to a significant reduction of tumor growth as compared with 5-FU alone. The results indicate that Rap1 miRNA can effectively enhance sensitivity of HepG2 cell line to 5-FU chemotherapy in vitro and in vivo. PMID:24549317

  5. Apoptotic and inhibitory effects on cell proliferation of hepatocellular carcinoma HepG2 cells by methanol leaf extract of Costus speciosus.

    PubMed

    Nair, Sandhya V G; Hettihewa, Menik; Rupasinghe, H P Vasantha

    2014-01-01

    Costus speciosus is a medicinal plant commonly known as wild ginger distributed in South and Southeast Asian countries. Leaves of this plant are used for ayurvedic treatment regimes in malignancies and mental illness. Rhizome extract from the plant is used to treat malignancies, pneumonia, urinary disorders, jaundice, rheumatism, and diabetes. The goal of this study was to investigate the effects of methanol extract of leaves of C. speciosus on the growth of human hepatocellular carcinoma (HepG2) cells and understand possible mechanisms of its action. Viability of HepG2 cells were measured by MTS assay after 24 h and 48 h treatment with extracts of 1, 10, 50, 100, and 200 μg/mL concentrations. Cell cycle analysis and apoptosis were evaluated by flow cytometry and caspase-3 induction. HepG2 cells treated with 100 μg/mL methanol leaf extract for 24 h displayed a significant reduction in cell viability (P ≤ 0.05). The methanol extract perturbed cell cycle progression, modulated cell cycle and regulated, signal molecules were involved in induction of apoptosis in HepG2 cells. Our findings indicate that phytochemicals of leaves of C. speciosus shows potential for natural therapeutic product development for hepatocellular carcinoma. This is the first report to demonstrate in vitro anticancer activity of leaf extract of C. speciosus in relation to liver cancer. PMID:24818148

  6. β-Elemene Inhibits Cell Proliferation by Regulating the Expression and Activity of Topoisomerases I and IIα in Human Hepatocarcinoma HepG-2 Cells

    PubMed Central

    Gong, Min; Liu, Ying; Zhang, Jian; Gao, Ya-jie; Zhai, Ping-ping; Su, Xi; Li, Xiang; Li, Yan; Hou, Li; Cui, Xiao-nan

    2015-01-01

    Objective. To investigate the effects of β-Elemene (β-ELE) on the proliferation, apoptosis, and topoisomerase I (TOPO I) and topoisomerase IIα (TOPO IIα) expression and activity of human hepatocarcinoma HepG-2 cells. Methods. After treatment with β-ELE, morphological alterations of HepG-2 cells were observed under an inverted microscope. Cell proliferation was assessed using an MTT assay, cell cycles were analyzed using flow cytometry, and apoptosis was detected by Annexin V/PI staining. The expression of TOPO I and TOPO IIα was analyzed by Western blot techniques, and their activity was measured using the TOPO I-mediated, supercoiled pBR322 DNA relaxation and TOPO IIα-mediated Kinetoplast DNA (kDNA) decatenation assays, respectively. Supercoiled pBR322 and kDNA were also used to determine the direct effect of β-ELE on DNA breaks. Results. β-ELE significantly inhibited HepG-2 cell proliferation in a dose- and time-dependent manner. β-ELE also induced tumor cell arrest at S phase, induced cell apoptosis, and downregulated the protein expression of TOPO I and TOPO IIα in a dose-dependent manner. β-ELE also inhibited TOPO I- and TOPO IIα-mediated DNA relaxation but did not directly induce DNA breakage at any concentration. Conclusion. β-ELE could inhibit the proliferation of HepG-2 cells and interfere with the expression and activity of TOPO I and TOPO IIα. PMID:26221582

  7. Sagunja-Tang Improves Lipid Related Disease in a Postmenopausal Rat Model and HepG2 Cells

    PubMed Central

    Go, Hiroe; Ryuk, Jin Ah; Lee, Hye Won; Park, In Sil; Kil, Ki-Jung; Park, Sunmin; Kim, Dong il; Ko, Byoung Seob

    2015-01-01

    The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. In in vivo study using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activity in vitro. These observations support the idea that Sagunja-tang is bioavailable both in vivo and in vitro and could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females. PMID:25977697

  8. Chemical constituents from aerial parts of Caryopteris incana and cytoprotective effects in human HepG2 cells.

    PubMed

    Park, Sunmi; Son, Min Jeong; Yook, Chang-Soo; Jin, Changbae; Lee, Yong Sup; Kim, Hyoung Ja

    2014-05-01

    An ethyl acetate fraction of the aerial parts of Caryopteris incana (Verbenaceae) showed potent cytoprotective effects against damage to HepG2 cells induced by tert-butylhydroperoxide (t-BHP). To search for hepatoprotective components of C. incana, various chromatographic separations of the ethyl acetate soluble fraction of C. incana led to isolation of three phenylpropanoid glycosides, 6‴-O-feruloylincanoside D, 6‴-O-sinapoylincanoside D and caryopteroside, and two iridoid glycosides, incanides A and B, together with 17 known compounds. Structures of these compounds were determined by spectroscopic analyses. The absolute stereochemistry of the caryopteroside was established with the help of circular dichroism data and in comparison with literature data. All isolated substances were determined for their cytoprotective effects against t-BHP-induced toxicity in HepG2 cells. Among the tested compounds, 6'-O-caffeoylacteoside exhibited the most potent cytoprotective activity with an IC50 value of 0.8±0.1 μM against t-BHP-induced toxicity. Structure-activity relationships of the assay results indicated an important role of the catechol moiety in phenylpropanoid, iridoid and flavonoid derivatives in eliciting cytoprotective effects. PMID:24582277

  9. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    PubMed

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  10. Rice bran protein hydrolysates prevented interleukin-6- and high glucose-induced insulin resistance in HepG2 cells.

    PubMed

    Boonloh, Kampeebhorn; Kukongviriyapan, Upa; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Senggunprai, Laddawan; Prawan, Auemduan; Thawornchinsombut, Supawan; Kukongviriyapan, Veerapol

    2015-02-01

    Rice bran, which is a byproduct of rice milling process, contains various nutrients and biologically active compounds. Rice bran protein hydrolysates have various pharmacological activities such as antidiabetic and antidyslipidemic effects. However, there are limited studies about the mechanisms of rice bran protein hydrolysates (RBP) on insulin resistance and lipid metabolism. RBP used in this study were prepared from Thai Jasmine rice. When HepG2 cells were treated with IL-6, the IRS-1 expression and Akt phosphorylation were suppressed. This effect of IL-6 was prevented by RBP in association with inhibition of STAT3 phosphorylation and SOCS3 expression. RBP could increase the phospho-AMPK levels and inhibit IL-6- or high glucose-induced suppression of AMPK and Akt activation. High glucose-induced dysregulation of the expression of lipogenic genes, including SREBP-1c, FASN and CPT-1, was normalized by RBP treatment. Moreover, impaired glucose utilization in insulin resistant HepG2 cells was significantly alleviated by concurrent treatment with RBP. Our results suggested that RBP suppresses inflammatory cytokine signaling and activates AMPK, and thereby these effects may underlie the insulin sensitizing effect. PMID:25518891

  11. Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells.

    PubMed

    Qin, Guiqi; Wu, Liping; Liu, Hongyu; Pang, Yilin; Zhao, Chubiao; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-15

    This study aims to explore the detail molecular mechanism by which artesunate (ARS), an artemisinin derivative, induces apoptosis in HepG2 cells. ARS induced a loss of mitochondrial transmemberane potential (ΔΨm), phosphatidylserine (PS) externalization, as well as activations of Bax/Bak and caspases indicative of apoptosis induction. Silencing Bax but not Bak significantly inhibited ARS-induced apoptosis, demonstrating the key role of the Bax-mediated intrinsic pathway. Although ARS increased intracellular reactive oxygen species (ROS), ARS-induced apoptosis was neither prevented by pretreatment with ROS scavengers nor potentiated by pretreatment with l-buthionine-sulfoximine (BSO) that enhanced the ARS-induced intracellular ROS generation, demonstrating that ROS was not involved in ARS-induced apoptosis. In addition, ARS did not induce Bid translocation to mitochondria, and the cytotoxicity of ARS was not prevented by silencing Bim, Puma or Mcl-1, but was significantly enhanced by HA14-1 pretreatment, demonstrating that Bcl-2/-xl instead of Bid and Bim as well as Puma may be the upstream factor to regulate the Bax-mediated intrinsic pathway. Collectively, our data demonstrate that ARS induces ROS-independent apoptosis via the Bax-mediated intrinsic pathway in HepG2 cells. PMID:26163896

  12. Synergistic anticancer effect of the extracts from Polyalthia evecta caused apoptosis in human hepatoma (HepG2) cells

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat; Thumanu, Kanjana; Tanthanuch, Waraporn

    2012-01-01

    Objective To evaluate the anticancer activity of the extract fraction of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep and the synergistic anticancer effect of the extracts from P. evecta by using the ATR/FT-IR spectroscopy. Methods The 50% ethanol-water crude leaf extract of P. evecta (EW-L) was prepared and was further fractionated to isolate various fractions. The anticancer activity was investigated from cytotoxicity against HepG2 using a neutral red assay and apoptosis induction by evaluation of nuclei morphological changes after DAPI staining. Synergistic anticancer effects of the extracts from P. evecta were performed using the ATR/FT-IR spectroscopy. Results The result showed that the EW-L showed higher cytotoxicity and apoptosis induction in HepG2 cells than its fractionated extracts. The hexane extract exhibited higher cytotoxicity and apoptosis induction than the water extracts, but less than the EW-L. The combined water and hexane extracts apparently increased cytotoxicity and apoptosis induction. The %apoptotic cells induced by the extract mixture were increased about 2-fold compared to the single hexane extract. Conclusions The polar extract fraction is necessary for the anticancer activity of the non-polar extract fraction. The ATR/FT-IR spectra illustrates the physical interaction among the constituents in the extract mixture and reveals the presence of polyphenolic constituents in the EW-L, which might play a role for the synergistic anticancer effect. PMID:23569977

  13. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways.

    PubMed

    Cang, Xiaomin; Wang, Xiaohua; Liu, Pingli; Wu, Xue; Yan, Jin; Chen, Jinfeng; Wu, Gang; Jin, Yan; Xu, Feng; Su, Jianbin; Wan, Chunhua; Wang, Xueqin

    2016-09-01

    Oxidative stress is an important pathogenesis of insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). Studies have shown that knockdown of PTEN-induced putative kinase 1 (PINK1) causes oxidative stress and mitophagy. In db/db mice, PINK1 protein level is down-regulated. However, little is known regarding the mechanism by which PINK1 modulates IR in response to reactive oxygen species (ROS) induced stress. In our study, PINK1 expression decreased during palmitate (PA) induced IR in HepG2 cells and the hepatic tissues of high fat diet (HFD) fed mice. Additionally, free fatty acids (FFAs) could increase ROS and suppress insulin signaling pathway, which was indicated by reduced phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β). In addition, insulin induced glucose uptake decreased and the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, was up-regulated after PA treatment. Intriguingly, PINK1 overexpression could lead to opposite results. Moreover, PA induced hepatic IR through C-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, which were rescued by PINK1 overexpression. In summary, our results demonstrate that PINK1 promoted hepatic IR via JNK and ERK pathway in PA treated HepG2 cells, implying a novel molecular target for the therapy of diabetes. PMID:27423393

  14. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism.

    PubMed

    Wang, Liulin; Zou, Wen; Zhong, Yufang; An, Jing; Zhang, Xinyu; Wu, Minghong; Yu, Zhiqiang

    2012-03-01

    Polybrominated diphenyl ethers (PBDEs) had been used extensively in electrical and electronic products as brominated flame retardants. PBDEs are widely distributed in environment media and wildlife since they are lipophilic and persistent, resulting in bioaccumulation and bioamplification through food chains. Accumulation of PBDEs in the environment and human tissues will consequently cause potential negative effects on the ecological environment and human health. To date, some in vitro and in vivo studies have reported that PBDEs possess neurotoxicity, hepatotoxicity, immunotoxicity, reproduction toxicity, endocrine disrupting activity and carcinogenicity. BDE-47 is one of the most predominant PBDE congeners detected in human tissues. The objective of this study is to investigate whether low concentration of BDE-47 could cause hormesis effect in the human hepatoma HepG(2) cells, and to explore the possible molecular mechanism. The results showed that low concentration of BDE-47 (10(-10), 10(-9) and 10(-8) M) could promote cell proliferation and cause no obvious change in DNA damage or cell apoptosis, while the high concentration significantly inhibit cell proliferation. Meanwhile, the reactive oxygen species (ROS) in low concentration BDE-47 (10(-10), 10(-9) and 10(-8) M) treated groups significantly elevated compared with the control group. After low concentration BDE-47 treatment, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylated protein kinase B (p-Akt) in the HepG(2) cells was markedly up-regulated. However, in DNA-PKcs inhibited cells, the promotion effect on cell proliferation was significantly suppressed. Cell cycle analysis showed a significant decrease in G1 phase after exposure to low concentration of BDE-47. Moreover, pre-exposure to low concentration BDE-47 seemed alleviate the negative effects of high concentration (50 μM) exposure to cause DNA damage

  15. A chemically sulfated polysaccharide from Grifola frondos induces HepG2 cell apoptosis by notch1-NF-κB pathway.

    PubMed

    Wang, Chun-ling; Meng, Meng; Liu, Sheng-bin; Wang, Li-rui; Hou, Li-hua; Cao, Xiao-hong

    2013-06-01

    Sulfated polysaccharides have been known to inhibit proliferation in tumor cells. However, the molecular mechanisms involved in sulfated polysaccharides-induced apoptosis are still uncharacterized. In this study, the effect of a chemically sulfated polysaccharide obtained from Grifola frondosa (S-GFB) on HepG2 cell proliferation and apoptosis-related mechanism were investigated. It was found that S-GFB inhibited proliferation of HepG2 cells in a dose-dependent manner with IC50 at 48 h of 61 μg ml(-1). The results of scanning electron micrographs indicated that S-GFB induced typical apoptotic morphological feature in HepG2 cells. Flow cytometric analysis demonstrated that S-GFB caused apoptosis of HepG2 cells through cells arrested at S phase. Western-blotting results showed that S-GFB inhibited notch1 expression, IκB-α degradation and NF-κB/p65 translocation from cytoplasm into nucleus. Simultaneously, the apoptotic mechanism of HepG2 cells induced by S-GFB was associated with down regulation of FLIP, and activation of caspase-3 and caspase-8. Taken together, these findings suggest that the S-GFB induces apoptosis through a notch1/NF-κB/p65-mediated caspase pathway. PMID:23618270

  16. Antihepatocellular Carcinoma Potential of Tetramethylpyrazine Induces Cell Cycle Modulation and Mitochondrial-Dependent Apoptosis: Regulation of p53 Signaling Pathway in HepG2 Cells In Vitro.

    PubMed

    Bi, Lei; Yan, Xiaojing; Chen, Weiping; Gao, Jing; Qian, Lei; Qiu, Shuang

    2016-06-01

    Tetramethylpyrazine (TMP) was originally isolated from a traditional Chinese herbal medicine, Ligusticum chuanxiong In the present study, TMP exhibits potent antitumor activities in vitro. However, the molecular mechanisms remain to be defined. Hence, this study aims to investigate the antiproliferative and apoptotic effects of TMP on HepG2 and elucidate the underlying mechanisms. Analyses using Cell Counting Kit-8 and real-time cell analyzer indicated that TMP significantly inhibited HepG2 cell proliferation. We also observed that TMP induced cell cycle arrest at the G0/G1 checkpoint and apoptosis, using flow cytometry and high-content screening. Furthermore, our results predicted that TMP could directly decrease mitochondrial membrane potential (Δψm), increase the release of cytochrome c, and increase caspase activation, indicating that mitochondrial pathway apoptosis could be the mechanism for TMP within HepG2 cells. Moreover, TMP altered expression of p53 and the Bcl-2/Bax protein ratio, which revealed that TMP induced cell cycle arrest and caspase-dependent mitochondrial apoptosis in HepG2 cells in vitro. These studies provided mechanistic insights into the antitumor properties of TMP, which may be explored as a potential option for treatment of hepatocellular carcinoma. PMID:27179035

  17. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee

    2013-03-01

    Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. PMID:23200672

  18. Trigonella foenum (Fenugreek) Induced Apoptosis in Hepatocellular Carcinoma Cell Line, HepG2, Mediated by Upregulation of p53 and Proliferating Cell Nuclear Antigen.

    PubMed

    Khalil, Mahmoud I M; Ibrahim, Mohamed M; El-Gaaly, Gehan A; Sultan, Ahmed S

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and most current therapies are of limited efficacy. Trigonella foenum (Fenugreek) is a traditional herbal plant with antitumor activity, although the mechanisms of its activity remain unclear. Herein, a crude methanol extract was prepared from Fenugreek seeds (FCE) and its anticancer mechanism was evaluated, using HepG2 cell line. Growth-inhibitory effect and apoptosis induction of HepG2 cells were evidenced by MTT assay, cell morphology alteration, apoptosis enzyme-linked immunosorbent assay, flow cytometric analysis, caspase-3 activity, and expression of p53, proapoptotic protein, Bax, and proliferating cell nuclear antigen (PCNA) after (100 ∼ 500 μg/mL) FCE treatment for 48 h. Furthermore, FCE was analyzed by Chromatography-Mass Spectrometry (GC/MS). Our results revealed that FCE treatment for 48 h showed a cytotoxic effect and apoptosis induction in a dose-dependent manner that was mediated by upregulation of p53, Bax, PCNA, and caspase-3 activation in HepG2 cells. GC-MS analysis of FCE showed the presence of fourteen bioactive compounds such as Terpenoids and Flavonoids, including two main constituents with anticancer activity, Squalene and Naringenin (27.71% and 24.05%), respectively. Our data introduced FCE as a promising nontoxic herbal with therapeutic potential to induce apoptosis in HepG2 cells through p53, Bax, and PCNA upregulation in caspase-3 dependent manner. PMID:26557712

  19. Trigonella foenum (Fenugreek) Induced Apoptosis in Hepatocellular Carcinoma Cell Line, HepG2, Mediated by Upregulation of p53 and Proliferating Cell Nuclear Antigen

    PubMed Central

    Khalil, Mahmoud I. M.; Ibrahim, Mohamed M.; El-Gaaly, Gehan A.; Sultan, Ahmed S.

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and most current therapies are of limited efficacy. Trigonella foenum (Fenugreek) is a traditional herbal plant with antitumor activity, although the mechanisms of its activity remain unclear. Herein, a crude methanol extract was prepared from Fenugreek seeds (FCE) and its anticancer mechanism was evaluated, using HepG2 cell line. Growth-inhibitory effect and apoptosis induction of HepG2 cells were evidenced by MTT assay, cell morphology alteration, apoptosis enzyme-linked immunosorbent assay, flow cytometric analysis, caspase-3 activity, and expression of p53, proapoptotic protein, Bax, and proliferating cell nuclear antigen (PCNA) after (100∼500 μg/mL) FCE treatment for 48 h. Furthermore, FCE was analyzed by Chromatography-Mass Spectrometry (GC/MS). Our results revealed that FCE treatment for 48 h showed a cytotoxic effect and apoptosis induction in a dose-dependent manner that was mediated by upregulation of p53, Bax, PCNA, and caspase-3 activation in HepG2 cells. GC-MS analysis of FCE showed the presence of fourteen bioactive compounds such as Terpenoids and Flavonoids, including two main constituents with anticancer activity, Squalene and Naringenin (27.71% and 24.05%), respectively. Our data introduced FCE as a promising nontoxic herbal with therapeutic potential to induce apoptosis in HepG2 cells through p53, Bax, and PCNA upregulation in caspase-3 dependent manner. PMID:26557712

  20. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  1. PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway.

    PubMed

    Ma, Junguo; Feng, Yiyi; Liu, Yang; Li, Xiaoyu

    2016-08-01

    The present study aimed to determine the cytotoxicity of microcystin-LR (MC-LR) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the mechanism of apoptosis induced by MC-LR. Morphological evaluation results showed that MC-LR induced time- and concentration-dependent apoptosis in HepG2 cells. The biochemical assays revealed that MC-LR-exposure caused overproduction of reactive oxygen species (ROS), cyclooxygenase-2 activity alteration, cytochrome c release, and remarkable activation of caspase-3 and caspase-9 in HepG2 cells, indicating that MC-LR-induced apoptosis is mediated by mitochondrial pathway. Moreover, we also found that p53 and Bax might play an important role in MC-LR-induced apoptosis in HepG2 cells in which PUMA and survivin were involved. However, further studies are necessary to elucidate the possible functions of PUMA and survivin in MC-LR-induced apoptosis in HepG2 cells. PMID:27235693

  2. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Gen; Shi, Lixin; Selke, Matthias; Wang, Xuemei

    2011-06-01

    Cadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  3. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle

    SciTech Connect

    Zhong, Wenbin; Zhou, You; Li, Jiwei; Mysore, Raghavendra; Luo, Wei; Li, Shiqian; Chang, Mau-Sun; Olkkonen, Vesa M.; Yan, Daoguang

    2014-04-01

    We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpression resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle. - Highlights: • The oxysterol-binding protein ORP8 was found to interact with the mitotic regulator SPAG5/Astrin. • Treatment of HepG2 cells with 25-hydroxycholesterol caused cell cycle retardation in G2/M. • ORP8 overexpression caused a similar G2/M accumulation, and ORP8 knock-down reversed the 25-hydroxycholesterol effect. • Reduction of cellular of SPAG5/Astrin reversed the cell cycle effects of both 25-hydroxycholesterol and ORP8 overexpression. • Our results suggest that ORP8 mediates via SPAG5/Astrin the oxysterol interference of HepG2 cell cycle.

  4. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms.

    PubMed

    Borradaile, Nica M; de Dreu, Linda E; Wilcox, Lisa J; Edwards, Jane Y; Huff, Murray W

    2002-09-01

    Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and

  5. Zinc inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in human hepatocytes (HepG2 cells).

    PubMed

    Yang, Xuan; Lv, Yangjun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-06-01

    Aflatoxin B1 (AFB1) has strong carcinogenicity. Consumption of AFB1-contaminated agricultural products and the occurrence of hepatocellular carcinoma have received widespread attention. The aim of this paper was to investigate whether zinc supplementation could inhibit AFB1-induced cytotoxicity and genotoxicity in HepG2 cells and the mechanism of this inhibition. Our data suggest that zinc sources can relieve a certain degree of AFB1-induced cytotoxicity and genotoxicity by protecting against apoptotic body formation and DNA strand breaks, affecting S phase cell cycle arrest, reducing 8-OHdG formation, inhibiting global DNA hypomethylation and regulating gene expression in antioxidation, zinc-association and apoptosis processes. Consequently, zinc stabilizes the integrity of DNA and improves cell survival. These data provides new insights into the protective role of zinc in alleviating AFB1-induced cytotoxicity and mediating epigenetic changes in hepatocytes, demonstrating that zinc sources have detoxification properties in mycotoxin-induced toxicity. PMID:27017951

  6. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells

    PubMed Central

    Kim, Young-Sang; Li, Xi-Feng; Kang, Kyong-Hwa; Ryu, BoMi; Kim, Se Kwon

    2014-01-01

    Plant sterols have shown potent anti-proliferative effects and apoptosis induction against breast and prostate cancers. However, the effect of sterols against hepatic cancer has not been investigated. In the present study, we assessed whether the stigmasterol isolated from Navicula incerta possesses apoptosis inductive effect in hepatocarcimona (HepG2) cells. According to the results, Stigmasterol has up-regulated the expression of pro-apoptotic gene expressions (Bax, p53) while down-regulating the anti-apoptotic genes (Bcl-2). Probably via mitochondrial apoptosis signaling pathway. With the induction of apoptosis caspase-8, 9 were activated. The DNA damage and increase in apoptotic cell numbers were observed through Hoechst staining, annexin V staining and cell cycle analysis. According to these results, we can suggest that the stigmasterol shows potent apoptosis inductive effects and has the potential to be tested as an anti-cancer therapeutic against liver cancer. [BMB Reports 2014; 47(8): 433-438] PMID:24286323

  7. Safrole-2',3'-oxide induces cytotoxic and genotoxic effects in HepG2 cells and in mice.

    PubMed

    Chiang, Su-yin; Lee, Pei-yi; Lai, Ming-tsung; Shen, Li-ching; Chung, Wen-sheng; Huang, Hui-fen; Wu, Kuen-yuh; Wu, Hsiu-ching

    2011-12-24

    Safrole-2',3'-oxide (SAFO) is a reactive electrophilic metabolite of the hepatocarcinogen safrole, the main component of sassafras oil. Safrole occurs naturally in a variety of spices and herbs, including the commonly used Chinese medicine Xi xin (Asari Radix et Rhizoma) and Dong quai (Angelica sinensis). SAFO is the most mutagenic metabolite of safrole tested in the Ames test. However, little or no data are available on the genotoxicity of SAFO in mammalian systems. In this study, we investigated the cytotoxicity and genotoxicity of SAFO in human HepG2 cells and male FVB mice. Using MTT assay, SAFO exhibited a dose- and time-dependent cytotoxic effect in HepG2 cells with TC(50) values of 361.9μM and 193.2μM after 24 and 48h exposure, respectively. In addition, treatment with SAFO at doses of 125μM and higher for 24h in HepG2 cells resulted in a 5.1-79.6-fold increase in mean Comet tail moment by the alkaline Comet assay and a 2.6-7.8-fold increase in the frequency of micronucleated binucleated cells by the cytokinesis-block micronucleus assay. Furthermore, repeated intraperitoneal administration of SAFO (15, 30, 45, and 60mg/kg) to mice every other day for a total of twelve doses caused a significant dose-dependent increase in mean Comet tail moment in peripheral blood leukocytes (13.3-43.4-fold) and in the frequency of micronucleated reticulocytes (1.5-5.8-fold). Repeated administration of SAFO (60mg/kg) to mice caused liver lesions manifested as a rim of ballooning degeneration of hepatocytes immediately surrounding the central vein. Our data clearly demonstrate that SAFO significantly induced cytotoxicity, DNA strand breaks, micronuclei formation both in human cells in vitro and in mice. More studies are needed to explore the role SAFO plays in safrole-induced genotoxicity. PMID:21986196

  8. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells.

    PubMed

    Pal, Sebely; Ho, Nerissa; Santos, Carlos; Dubois, Paul; Mamo, John; Croft, Kevin; Allister, Emma

    2003-03-01

    Epidemiologic studies suggest that the consumption of red wine may lower the risk of cardiovascular disease. The cardioprotective effect of red wine has been attributed to the polyphenols present in red wine, particularly resveratrol (a stilbene, with estrogen-like activity), and the flavonoids, catechin, epicatechin, quercetin and phenolic acids such as gallic acid. At present, very little is known about the mechanisms by which red wine phenolic compounds benefit the cardiovascular system. Therefore, the aim of this study was to elucidate whether red wine polyphenolics reduce lipoprotein production and clearance by the liver. Cultured HepG2 cells were incubated in the presence of dealcoholized red wine, alcohol-containing red wine and atorvastatin for 24 h. The apolipoprotien B100 (apoB100) protein (marker of hepatic lipoproteins) was quantified on Western blots with an anti-apoB100 antibody and the enhanced chemiluminescence detection system. Apolipoprotein B100 levels in the cells and that secreted into the media were significantly reduced by 50% in liver cells incubated with alcohol-stripped red wine compared with control cells. This effect of dealcoholized red wine on apoB100 production in HepG2 cells was similar to the effect of atorvastatin. Apo B100 production was significantly attenuated by 30% in cells incubated with alcoholized red wine, suggesting that the alcohol was masking the effect of red wine polyphenolics. Apo B100 production was significantly attenuated by 45% with the polyphenolic compounds resveratrol and quercertin. In addition, dealcoholized and alcoholized red wine and atorvastatin significantly increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA and LDL receptor binding activity relative to controls. Dealcoholized red wine also increased LDL receptor gene expression. Collectively, this study suggests that red wine polyphenolics regulate major pathways involved in lipoprotein metabolism. PMID:12612140

  9. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells

    NASA Astrophysics Data System (ADS)

    Feng Liang, Gao; Zhu, Yan Liang; Sun, Bo; Hu, Fei Hu; Tian, Tian; Li, Shu Chun; Xiao, Zhong Dang

    2011-07-01

    The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly( D, L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

  10. Low simvastatin concentrations reduce oleic acid-induced steatosis in HepG2 cells: An in vitro model of non-alcoholic fatty liver disease

    PubMed Central

    ALKHATATBEH, MOHAMMAD J.; LINCZ, LISA F.; THORNE, RICK F.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is an inflammatory condition caused by hepatic lipid accumulation that is associated with insulin resistance, diabetes and metabolic syndrome. Although statins should be used with caution in liver diseases, they are increasingly investigated as a possible treatment for NAFLD. The present study recreated an in vitro model of NAFLD using HepG2 cells exposed to oleic acid (OA), which was used to quantify OA-induced lipid accumulation in HepG2 cells treated with various concentrations of simvastatin. In addition, the effect of simvastatin on HepG2 cell morphology and microparticle generation as a marker of cell apoptosis was assessed. OA-induced lipid accumulation was quantified by Oil Red O staining and extraction for optical density determination. Stained lipid droplets were visualized using phase contrast microscopy. Furthermore, HepG2 cell-derived microparticles were counted by flow cytometry subsequent to staining for Annexin V. HepG2 cells treated with 0–1 mM OA showed dose-dependent lipid accumulation. Treatment of HepG2 cells with increasing concentrations of simvastatin followed by treatment with 1 mM OA showed that low simvastatin concentrations (4–10 µM) were able to reduce lipid accumulation by ~40%, whereas high simvastatin concentrations (20 and 30 µM) induced apoptotic changes in cell morphology and increased the production of Annexin V+ microparticles. This suggests that low simvastatin doses may have a role in preventing NAFLD. However, further investigations are required to confirm this action in vivo and to determine the underlying mechanism by which simvastatin reduces hepatic steatosis. PMID:27073470

  11. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    PubMed

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis. PMID:26585156

  12. Selective Cytotoxicity of 1,3,4-Thiadiazolium Mesoionic Derivatives on Hepatocarcinoma Cells (HepG2)

    PubMed Central

    Valdameri, Glaucio; Rocha, Maria Eliane Merlin; Martinez, Glaucia Regina; Noleto, Guilhermina Rodrigues; Acco, Alexandra; Alves de Souza, Carlos Eduardo; Echevarria, Aurea; Moretto dos Reis, Camilla; Di Pietro, Attilio; Suter Correia Cadena, Sílvia Maria

    2015-01-01

    In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 μM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 μM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma. PMID:26083249

  13. Selective Cytotoxicity of 1,3,4-Thiadiazolium Mesoionic Derivatives on Hepatocarcinoma Cells (HepG2).

    PubMed

    Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Valdameri, Glaucio; Rocha, Maria Eliane Merlin; Martinez, Glaucia Regina; Noleto, Guilhermina Rodrigues; Acco, Alexandra; Alves de Souza, Carlos Eduardo; Echevarria, Aurea; Moretto Dos Reis, Camilla; Di Pietro, Attilio; Suter Correia Cadena, Sílvia Maria

    2015-01-01

    In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 μM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 μM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma. PMID:26083249

  14. Evaluation of synthesized platinum nanoparticles on the MCF-7 and HepG-2 cancer cell lines

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hadi; Abedi, Anita; Akbarzadeh, Azim; Mokhtari, Mohammad Javad; Shahmabadi, Hasan Ebrahimi; Mehrabi, Mohamad Reza; Javadian, Saifuddin; Chiani, Mohsen

    2013-04-01

    Platinum nanoparticles (PNPs) were synthesized by chemical reduction of potassium hexachloroplatinate (IV) with trisodium citrate under vigorous stirring and addition of sodium dodecyl sulfate as stabilizer reagent. Reducing agent was chosen depending on the oxidation reactions and potential values of the chemical materials used in the experiment. The aim of this study is to investigate the effects of PNPs on the different cancer cell lines and cytotoxicity study of this nanomaterial. The morphology of PNPs was investigated by scanning electron microscope (XL30, Philips Electronics, Amsterdam, The Netherlands) with the ability to perform elemental analysis by EDX. Malvern Zetasizer 3000 HSA (Malvern Instruments, Worcestershire, UK) was used to determine the distribution of particle size and zeta potential of PNPs. The cytotoxicity property of the nanoparticles was evaluated by MTT assay on MCF-7 and HepG-2 cell lines, and the cytotoxic concentration 50% values were determined for 24 h.

  15. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways.

    PubMed

    Banjerdpongchai, Ratana; Wudtiwai, Benjawan; Khaw-On, Patompong; Rachakhom, Wasitta; Duangnil, Natthachai; Kongtawelert, Prachya

    2016-01-01

    Citrus seeds are full of phenolic compounds, such as flavonoids. The aims of this study were to identify the types of flavonoids in Citrus seed extracts, the cytotoxic effect, mode of cell death, and signaling pathway in human hepatic cancer HepG2 cells. The flavonoids contain anticancer, free radical scavenging, and antioxidant activities. Neohesperidin, hesperidin, and naringin, active flavanone glycosides, were identified in Citrus seed extract. The cytotoxic effect of three compounds was in a dose-dependent manner, and IC50 levels were determined. The sensitivity of human HepG2 cells was as follows: hesperidin > naringin > neohesperidin > naringenin. Hesperidin induced HepG2 cells to undergo apoptosis in a dose-dependent manner as evidenced by the externalization of phosphatidylserine and determined by annexin V-fluorescein isothiocyanate and propidium iodide staining using flow cytometry. Hesperidin did not induce the generation of reactive oxygen species, which was determined by using 2',7'-dichlorohydrofluorescein diacetate and flow cytometry method. The number of hesperidin-treated HepG2 cells with the loss of mitochondrial transmembrane potential increased concentration dependently, using 3,3'-dihexyloxacarbocyanine iodide employing flow cytometry. Caspase-9, -8, and -3 activities were activated and increased in hesperidin-treated HepG2 cells. Bcl-xL protein was downregulated whereas Bax, Bak, and tBid protein levels were upregulated after treatment with hesperidin in a dose-dependent manner. In conclusion, the bioflavanone from Citrus seeds, hesperidin, induced human HepG2 cell apoptosis via mitochondrial pathway and death receptor pathway. Citrus seed flavonoids are beneficial and can be developed as anticancer drug or food supplement, which still needs further in vivo investigation in animals and human beings. PMID:26194866

  16. Fucoxanthin Enhances Chain Elongation and Desaturation of Alpha-Linolenic Acid in HepG2 Cells.

    PubMed

    Wu, Meng-Ting; Su, Hui-Min; Cui, Yi; Windust, Anthony; Chou, Hong-Nong; Huang, Ching-Jang

    2015-10-01

    Dietary fucoxanthin (FX), a carotenoid compound from brown algae, was found to increase docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) in the liver of mice. DHA and ARA are known to be biosynthesized from the respective precursor α-linolenic acid (ALA, 18:3n-3) and linoleic acid (LNA, 18:2n-6), through desaturation and chain elongation. We examined the effect of FX on the fatty acid metabolism in HepG2 cells (Hepatocellular carcinoma, human). In the first experiment, cells were co-treated with ALA (100 μM) and FX (0-100 μM) or vehicle for 48 h. FX increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3), DHA at concentrations of ≥ 50 μM. To clarify the change in the metabolism of polyunsaturated fatty acid (PUFA), in the second experiment, cells were co-treated with universally-[(13)C]-labeled (U-[(13)C]-) ALA (100 μM) and FX (100 μM) for 0.5, 3, 6, 24 and 48 h. [(13)C] labeled-EPA, DPA and DHA content in HepG2 cells were all increased by FX after 48 h treatment. Furthermore, estimated delta-5 desaturase (D5D) but not delta-6 desaturase (D6D) activity index was increased at 48 h. These results suggested that FX may enhance the conversion of ALA to longer chain n-3 PUFA through increasing D5D activity in the liver. PMID:26271617

  17. Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells.

    PubMed

    Jia, Zicai; Song, Yu; Tao, Suyuan; Cong, Peixu; Wang, Xiaoxu; Xue, Changhu; Xu, Jie

    2016-03-01

    To investigate the relationship between structure and activity, three glucocerebroside series (CFC-1, CFC-2 and CFC-3), ceramides (CF-Cer) and long-chain bases (CF-LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC-1, CFC-2 and CFC-3 and CF-Cer were identified using reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry (RPLC-HESI-HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2-hydroxyl FA (2-HFA) (23:1 h and 24:1 h), the structure of long-chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF-Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF-Cer and CF-LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC-3 was most effective in three glucocerebrosides to HepG-2 cell viability. The inhibition effect of CF-LCB was the strongest, and the inhibition effect of CF-Cer was much stronger than glucocerebrosides. PMID:26861868

  18. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells. PMID:23348005

  19. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA

    PubMed Central

    Shi, Yun; Wang, Si-Ye; Yao, Min; Sai, Wen-Li; Wu, Wei; Yang, Jun-Ling; Cai, Yin; Zheng, Wen-Jie; Yao, Deng-Fu

    2015-01-01

    AIM: To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS: Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS: HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION: Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction. PMID:26668505

  20. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells.

    PubMed

    Wehmeier, Kent; Onstead-Haas, Luisa M; Wong, Norman C W; Mooradian, Arshag D; Haas, Michael J

    2016-08-01

    The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function. PMID:27234962

  1. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis.

    PubMed

    Zhu, Qun; Yang, Jianjun; Zhu, Rongping; Jiang, Xin; Li, Wanlian; He, Songqing; Jin, Junfei

    2016-09-01

    In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 → Ceramide → Caspase 9 → Caspase 3 signaling. PMID:27364952

  2. Stimulating effect of a new triterpene derived from Anoectochilus elwesii on glucose uptake in insulin-resistant human HepG2 cells.

    PubMed

    Cai, Jinyan; Zhao, Lin; Zhu, En; Guo, Jiao

    2014-01-01

    A new triterpene (1), 3-β-O-olean-11,13 (18)-diene-23,28-dioic acid, together with five known compounds (2-6), was isolated from Anoectochilus elwesii and their structures were elucidated by extensive spectroscopic methods and comparison with the literature data. Compound 1 was the first example of highly oxygenated triterpene obtained from Anoectochilus genus. The isolated compounds were evaluated on insulin-resistant human HepG2 cells for stimulating glucose uptake activity and the new compound displayed highly potent effect on the stimulation of glucose uptake in human HepG2 cells. PMID:24980865

  3. High-Throughput Tag-Sequencing Analysis of Early Events Induced by Ochratoxin A in HepG-2 Cells.

    PubMed

    Zhang, Yu; Qi, Xiaozhe; Zheng, Juanjuan; Luo, YunBo; Huang, Kunlun; Xu, Wentao

    2016-01-01

    Ochratoxin A (OTA) is produced by fungi of the species Aspergillus and Penicillium. OTA has displayed hepatotoxicity in mammals. Although recent studies have indicated that OTA influences liver function, little is known regarding its impact on differential early liver toxicity. In this study, we report high-throughput tag-sequencing (Tag-seq) analysis of the transcriptome using Solexa Analyzer platform after 4 h of OTA treatment on HepG-2 cells. The analyses of differentially expressed genes revealed the substantial changes. A total of 21,449 genes were identified and quantified, with 2726 displaying significantly altered expression levels. Expression level data were then integrated with a network of gene-gene interactions, and biological pathways to obtain a systems-level view of changes in the transcriptome that occur with OTA resistance. Our data suggest that OTA exposure leads to an imbalance in zinc finger expression and shed light on splicing factor and mitochondrial-based mechanisms. PMID:26377828

  4. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell.

    PubMed

    Han, Lingyu; Wang, Hongjie; Si, Nan; Ren, Wei; Gao, Bo; Li, Yan; Yang, Jian; Xu, Miao; Zhao, Haiyu; Bian, Baolin

    2016-04-01

    Bufadienolides, a class of polyhydroxy steroids, exhibit significant antitumor activity. In this study, a total of 39 metabolites from 10 bufadienolides were detected and identified by ultrahigh-performance liquid chromatography (UHPLC) coupled with an LTQ Orbitrap mass spectrometer. The results showed that hydroxylation and dehydrogenation were the major metabolic pathways of bufadienolides in human liver microsomes (HLMs). CYP3A4 was found to be the major metabolic enzyme and CYP2D6 only mediated the dehydrogenation reaction. A systematic validated cytotoxicity evaluation method for bufadienolide metabolites at equal equivalents was established. Hellebrigenin (1), hellebrigenol (2), arenobufagin (3), bufotalin (5), and bufalin (6) were selected to determine their cytotoxicity against HepG2 cells before and after incubation in HLMs. All the test samples were enriched by a validated solid-phase extraction (SPE) method. Although the cytotoxicities of metabolites were weaker than those of the parent compounds to different degrees, their effects were still strong. PMID:26869342

  5. Kanglaite stimulates anticancer immune responses and inhibits HepG2 cell transplantation‑induced tumor growth.

    PubMed

    Huang, Xinli; Qin, Jianjie; Lu, Sen

    2014-10-01

    Previous studies revealed that Kanglaite (KLT) exhibits antitumor and immunomodulatory activities. In the present study, we show that KLT treatment stimulated the immune response by increasing the number of T cells and natural killer (NK) cells in the blood of hepatocellular carcinoma (HCC) patients. Experiments in tumor-bearing mice were further designed in order to explore the effects of KLT on the immune system and the underlying molecular mechanisms. The results showed that KLT improves the tumor cell transplantation-induced reduction in the serum level of the cytokines IFN‑γ and IL‑2, and rescues the levels of CD4+ T cells in host mice. These events enhanced the cytotoxic activities of natural killer and CD8+ T cells against the hepatic HepG2 cancer cells. KLT administration further increased the mRNA level of certain nuclear factor κB (NF‑κB)‑responsive genes in CD4+ cells. The chromatin immunoprecipitation assay showed that KLT increases the association of the NF-κB p65 subunit to the promoter regions of interleukin (IL)-2- and B-cell lymphoma (Bcl)-2-encoding genes in CD4+ T cells. Our study demonstrated that KLT is the main active ingredient of coix seed exhibiting anticancer and immunomodulatory properties. Induction of NF-κB‑mediated gene transcription in CD4+ T cells is involved in the immunomodulatory activity of KLT. PMID:25119060

  6. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine‑123 DNA‑binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose‑dependent, as well as time‑dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub‑G1 (apoptotic) phase of the cell cycle, in a dose‑dependent manner. Staining with Annexin V‑fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose‑dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose‑dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  7. Cytotoxic and apoptosis-inducing activity of triterpene glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 cells.

    PubMed

    Wang, Juanjuan; Han, Hua; Chen, Xiangfeng; Yi, Yanghua; Sun, Hongxiang

    2014-08-01

    The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs. PMID:25062508

  8. Cytotoxic and Apoptosis-Inducing Activity of Triterpene Glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 Cells

    PubMed Central

    Wang, Juanjuan; Han, Hua; Chen, Xiangfeng; Yi, Yanghua; Sun, Hongxiang

    2014-01-01

    The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs. PMID:25062508

  9. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells

    PubMed Central

    Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Xia, Huimin; Wang, Hanzhong; Zhu, Bing

    2016-01-01

    Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se) is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI)-modified Se nanoparticles (Se@PEI@siRNA) have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP)-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more sensitive to Se@PEI@siRNA. Moreover, Se@PEI@siRNA exhibited enhanced cytotoxic effects on cancer cells and triggered intracellular reactive oxygen species, and the signaling pathways of p53 and AKT were activated to advance cell apoptosis. Taken together, this study provides a strategy for the design of an anticancer nanosystem as a carrier of HSP70 siRNA to achieve synergistic cancer therapy

  10. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells

    PubMed Central

    LIU, WEIWEI; XU, CHUANMING; WAN, HUIFANG; LIU, CHUNJU; WEN, CAN; LU, HONGFEI; WAN, FUSHENG

    2014-01-01

    MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor. PMID:24919811

  11. Flavonoid-enriched apple fraction AF4 induces cell cycle arrest, DNA topoisomerase II inhibition, and apoptosis in human liver cancer HepG2 cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, H P Vasantha

    2014-01-01

    Apples are a major source of dietary phytochemicals such as flavonoids in the Western diet. Here we report anticancer properties and possible mechanism of action of apple flavonoid-enriched fraction (AF4) isolated from the peels of Northern Spy apples in human hepatocellular carcinoma cells, HepG2. Treatment with AF4 induced cell growth inhibition in HepG2 cells in time- and dose-dependent manner. Concentration of 50 μg/ml (50 μg total monomeric polyphenols/ml) AF4 was sufficient to induce a significant reduction in cell viability within 6 h of treatment (92%, P < 0.05) but had very low toxicity (minimum 4% to maximum 16%) on primary liver and lung cells, which was significantly lower than currently prescribed chemotherapy drug Sorafenib (minimum 29% to maximum 49%, P < 0.05). AF4 induced apoptosis in HepG2 cells within 6 h of treatment via activation of caspase-3. Cell cycle analysis via flow-cytometer showed that AF4 induced G2/M phase arrest. Further, results showed that AF4 acts as a strong DNA topoisomerase II catalytic inhibitor, which may be a plausible reason to drive the cells to apoptosis. Overall, our data suggests that AF4 possesses a significantly stronger antiproliferative and specific action than Sorafenib in vitro and is a potential natural chemotherapy agent for treatment of liver cancer. PMID:25256427

  12. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells

    PubMed Central

    SONG, JINGJING; WANG, YINGWU; TENG, MEIYU; ZHANG, SHIQIANG; YIN, MENGYA; LU, JIAHUI; LIU, YAN; LEE, ROBERT J; WANG, DI; TENG, LESHENG

    2016-01-01

    Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti-hepatocellular carcinoma (HCC) and anti-breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF-7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase-3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF-7 and HepG2 cells, enhanced levels of B cell-associated X protein and cleaved caspase-8 were observed in the CM-treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF-7- and HepG2-xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase-dependent mitochondrial pathway. PMID:27109250

  13. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide

    PubMed Central

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP—induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems. PMID:26714183

  14. Cordyceps militaris induces tumor cell death via the caspase‑dependent mitochondrial pathway in HepG2 and MCF‑7 cells.

    PubMed

    Song, Jingjing; Wang, Yingwu; Teng, Meiyu; Zhang, Shiqiang; Yin, Mengya; Lu, Jiahui; Liu, Yan; Lee, Robert J; Wang, Di; Teng, Lesheng

    2016-06-01

    Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti‑hepatocellular carcinoma (HCC) and anti‑breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF‑7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase‑3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF‑7 and HepG2 cells, enhanced levels of B cell‑associated X protein and cleaved caspase‑8 were observed in the CM‑treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF‑7‑ and HepG2‑xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase‑dependent mitochondrial pathway. PMID:27109250

  15. Effects of thonningianin A in natural foods on apoptosis and cell cycle arrest of HepG-2 human hepatocellular carcinoma cells.

    PubMed

    Zhang, Tian-Tian; Yang, Li; Jiang, Jian-Guo

    2015-08-01

    The anti-cancer activities of Thonningianin A on the HepG-2 human hepatocellular carcinoma cell line were evaluated by MTT assay, flow cytometry, quantitative real-time PCR and western blotting. Results showed that Thonningianin A effectively inhibited the proliferation of HepG-2 cells by inducing apoptosis, as evidenced by increase in the sub-G1 cell population, DNA fragmentation, and increase in the content of reactive oxygen species. Activation of caspase-9 and the subsequent activation of caspase-3 indicated that Thonningianin A-induced apoptosis is caspase-dependent. Thonningianin A also disrupted the mitochondrial membrane potential (Δψm) and down-regulated the Bcl-xL mRNA expression in HepG-2 cells. Thonningianin A induced cell cycle arrest by changing the cyclin D1 and CDK4 mRNA expression levels. Moreover, western blotting showed that Thonningianin A significantly down-regulated the NF-kappa-B cell survival pathway, along with up-regulation of the expression level of phosphorylated P38 and down-regulation of the expression level of phosphorylated ERK. The anti-cancer activity of Thonningianin A was confirmed by the characteristic patterns of DNA fragmentation and cell cycle arrest, suggesting that Th A is an effective antitumor ingredient in natural plant foods, and is worthy of further study. PMID:26119846

  16. Pinus densiflora Sieb. et Zucc. Alleviates Lipogenesis and Oxidative Stress during Oleic Acid-Induced Steatosis in HepG2 Cells

    PubMed Central

    Hwang, Yu-Jin; Wi, Hae-Ri; Kim, Haeng-Ran; Park, Kye Won; Hwang, Kyung-A

    2014-01-01

    Excess accumulation of lipids and oxidative stress in the liver contribute to nonalcoholic fatty liver disease (NAFLD). We hypothesized that Pinus densiflora Sieb. et Zucc. (PSZ) can protect against NAFLD by regulating lipid accumulation and oxidative stress in the liver. To investigate the effect of PSZ upon NAFLD, we used an established cellular model: HepG2 cells treated with oleic acid. Then, the extent of hepatic steatosis and oxidative stress was assessed and levels of inflammatory markers measured. Oleic acid-treated HepG2 cells, compared with controls, had greater lipid accumulation. PSZ decreased lipid accumulation by 63% in oleic acid-treated HepG2 cells. Additionally, PSZ decreased the target gene expression of lipogenesis such as sterol regulatory element binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, diacylglycerol O-acyltransferase-1, and acetyl-CoA carboxylase-1 by 1.75, 6.0, 2.32, 1.93 and 1.81 fold, respectively. In addition, Oleic acid-treated HepG2 cells elicited extensive accumulation of tumor necrosis factor-α (TNFα) by 4.53 fold, whereas PSZ-treated cells decreased the expression of TNFα mRNA by 1.76 fold. PSZ significantly inhibited oxidative stress induced by reactive oxygen species. These results suggest that PSZ has effects on steatosis in vitro and further studies are needed in vivo to verify the current observations. PMID:25057104

  17. Existence of B/E and E receptors on Hep-G2 cells: a study using colloidal gold- and /sup 125/I-labeled lipoproteins

    SciTech Connect

    Hesz, A.; Ingolic, E.; Krempler, F.; Kostner, G.M.

    1987-06-01

    The presence of specific receptors for apolipoprotein B (low-density lipoproteins) and apolipoprotein E (HDL-E) on Hep-G2 cells and human skin fibroblasts was studied by chemical methods and by electron microscopy using a differential gold labeling technique. Fibroblasts bound both types of lipoproteins to one and the same receptor (B/E receptor) as deduced from competition experiments with HDL-E and LDL. Labeled HDL-E, on the other hand, was only partially displaced by cold LDL but was completely displaced by unlabeled HDL-E. Scatchard analysis of lipoprotein binding to Hep-G2 cells revealed an approx 10 times higher binding affinity of apoE-containing lipoproteins as compared to apoB-containing ones. No differences between apoE- or apoB-containing lipoproteins with respect to the morphology of cell binding and intracellular processing were observed. The results are compatible with the concept that Hep-G2 cells possess two kinds of receptors, one specific for apoB- and apoE-containing lipoproteins (B/E receptor) and another specific for apoE only. From these studies we conclude that Hep-G2 cells may serve as a suitable model for studying the lipoprotein metabolism in the liver.

  18. Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells

    PubMed Central

    Li, Ming; Han, Zongyu; Bei, Weijian; Rong, Xianglu; Guo, Jiao; Hu, Xuguang

    2015-01-01

    The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin receptor substrate 1(IRS1), and glucose transporter 4 (GLUT4) in cells treated with OA were measured by Western blot analysis. Additionally, IRS1 protein expression exposed to OA was detected after using pyrrolidine dithiocarbamate (PDTC).Our results revealed that OA decreased the glucose content in HepG2 cells in vitro. Moreover, OA reduced the levels of TNF-α and IL-6 and upregulated IRS1 and GLUT4 protein expression. Furthermore, OA also reduced NF-κB protein expression in insulin-resistant HepG2 cells. After blocking NF-κB, the expression of IRS1 protein had no obvious changes when treated with OA. OA attenuated insulin resistance and decreased the levels of TNF-α and IL-6. Meanwhile, OA decreased NF-κB protein expression and upregulated IRS1 and GLUT4 protein expression. Therefore, regulating the IRS1-GLUT4 pathway via NF-κB was the underlying mechanism of OA on insulin resistance. PMID:26843885

  19. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells

    SciTech Connect

    An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; Kang, Eun-Jin; Choi, Kyung-Hee

    2011-08-19

    Highlights: {yields} The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. {yields} GSN interacts with transactivation- and DNA binding domains of p53. {yields} GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. {yields} GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.

  20. Impaired mitochondrial function in HepG2 cells treated with hydroxy-cobalamin[c-lactam]: A cell model for idiosyncratic toxicity.

    PubMed

    Haegler, Patrizia; Grünig, David; Berger, Benjamin; Krähenbühl, Stephan; Bouitbir, Jamal

    2015-10-01

    The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs mitochondrial protein synthesis and the function of the electron transport chain. Our goal was to establish an in vitro model for mitochondrial dysfunction in human hepatoma cells (HepG2), which can be used to investigate hepatotoxicity of idiosyncratic mitochondrial toxicants. For that, HepG2 cells were treated with HCCL, which inhibits the function of methylmalonyl-CoA mutase and impairs mitochondrial protein synthesis. Secondary, cells were incubated with propionate that served as source of propionyl-CoA, a percursor of methylmalonyl-CoA. Dose-finding experiments were conducted to evaluate the optimal dose and treatment time of HCCL and propionate for experiments on mitochondrial function. 50 μM HCCL was cytotoxic after exposure of HepG2 cells for 2d and 10 and 50 μM HCCL enhanced the cytotoxicity of 100 or 1000 μM propionate. Co-treatment with HCCL (10 μM) and propionate (1000 μM) dissipated the mitochondrial membrane potential and impaired the activity of enzyme complex IV of the electron transport chain. Treatment with HCCL decreased the mRNA content of mitochondrially encoded proteins, whereas the mtDNA content remained unchanged. We observed mitochondrial ROS accumulation and decreased mitochondrial SOD2 expression. Moreover, electron microscopy showed mitochondrial swelling. Finally, HepG2 cells pretreated with a non-cytotoxic combination of HCCL (10 μM) and propionate (100 μM) were more sensitive to the mitochondrial toxicants dronedarone, benzbromarone, and ketoconazole than untreated cells. In conclusion, we established and characterized a cell model, which could be used for testing drugs with idiosyncratic mitochondrial toxicity. PMID:26219506

  1. Differential genomic effects on canonical signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    EPA Science Inventory

    Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells. Sheau-Fung Thai1, Kathleen A. Wallace1, Carlton P. Jones1, Hongzu Ren2, Benjamin T. Castellon1, James Crooks2, Kirk T. Kitchin1. 1Integrated Systems Toxicology Divison, 2Resea...

  2. Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cells

    EPA Science Inventory

    Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cellsBecause of their growing number of uses, nanoparticles composed of CeO2 (cosmetics, polishing materials and automotive fuel additives) and TiO2 (pigments, sunscreens and photocatalysts) are of particular to...

  3. Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2-MAPK signalling pathway in HepG2 cells.

    PubMed

    Lee, Min-Sup; Lee, Bonggi; Park, Kyoung-Eun; Utsuki, Tadanobu; Shin, Taisun; Oh, Chul Woong; Kim, Hyeung-Rak

    2015-05-01

    Dieckol was previously reported to exhibit antioxidant and anticancer activities in vitro studies. In this study, we characterised the mechanism underlying the dieckol-mediated expression of antioxidant and detoxifying enzymes. Dieckol suppressed the production of intracellular reactive oxygen species in the presence or absence of H2O2 and increased glutathione level in HepG2 cells. Dieckol enhanced the activities of antioxidant enzymes, and the expression of detoxifying enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1), and glutathione S-transferase (GST) in HepG2 cells. Enhanced expression of antioxidant and detoxifying enzymes by dieckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and transcriptional activity via activation of mitogen-activated protein kinases in HepG2 cells. Furthermore, we demonstrated dieckol induced the expression of HO-1 in mouse liver. These results demonstrate that the dieckol-mediated cytoprotection in HepG2 cells is mediated through a ROS-independent up-regulation of antioxidant and detoxifying enzymes via Nrf2 activation as well as its intrinsic antioxidant activity, suggesting that dieckol may be used as a natural cytoprotective agent. PMID:25529716

  4. Metabolomic effects in HepG2 cells exposed to four TiO2 amd two CeO2 naomaterials

    EPA Science Inventory

    Abstract It is difficult to evaluate nanomaterials potential toxicity and to make science-based societal choices. To better assess potential hepatotoxicity issues, human liver HepG2 cells were exposed to four Ti02 and two Ce02 nanomaterials at 30 ug m1-1 for t...

  5. Apoptosis Induction by the Total Flavonoids from Arachniodes exilis in HepG2 Cells through Reactive Oxygen Species-Mediated Mitochondrial Dysfunction Involving MAPK Activation

    PubMed Central

    Chen, Jing; Xiong, Chaomei; Wei, Han; Yin, Changchang; Ruan, Jinlan

    2014-01-01

    Arachniodes exilis is used as a folk medicine in China and proved to have antibacterial, anti-inflammatory, and sedative activities. In the present study, the antitumor effect of the total flavonoids of A. exilis (TFAE) against HepG2 cells was evaluated. The results showed that TFAE inhibited the growth of HepG2 cells in a dosage- and time-dependent manner. Flow cytometry and Hoechst 33342 fluorescence staining results showed that TFAE could significantly increase the apoptosis ratio of HepG2 cells, which is accompanied with increased intracellular reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (ΔΨm). Western blotting indicated that TFAE downregulated the ratio of Bcl-2/Bax, increased cytochrome c release, and activated the caspases-3 and -9. Further analysis showed that TFAE stimulated the mitogen-activated protein kinase (MAPK). However, treatment with NAC (reactive oxygen species scavenger) and MAPK-specific inhibitors (SP600125 and SB203580) could reverse the changes of these apoptotic-related proteins. These results suggested that TFAE possessed potential anticancer activity in HepG2 cells through ROS-mediated mitochondrial dysfunction involving MAPK pathway. PMID:24976852

  6. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  7. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    PubMed Central

    Balakrishna, Acharya; Kumar, M. Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  8. Statins Prevent Dextrose-Induced Endoplasmic Reticulum Stress and Oxidative Stress in Endothelial and HepG2 Cells.

    PubMed

    Kojanian, Hagop; Szafran-Swietlik, Anna; Onstead-Haas, Luisa M; Haas, Michael J; Mooradian, Arshag D

    2014-05-01

    Statins have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. However, antioxidant vitamins, unlike statins, are not as cardioprotective, and this paradox has been explained by failure of vitamin antioxidants to ameliorate endoplasmic reticulum (ER) stress. To determine whether statins prevent dextrose-induced ER stress in addition to their antioxidative effects, human umbilical vein endothelial cells and HepG2 hepatocytes were treated with 27.5 mM dextrose in the presence of simvastatin (lipophilic statin that is a prodrug) and pravastatin (water-soluble active drug), and oxidative stress, ER stress, and cell death were measured. Superoxide generation was measured using 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride. ER stress was measured using the placental alkaline phosphatase assay and Western blot of glucose-regulated protein 75, c-jun-N-terminal kinase, phospho-JNK, eukaryotic initiating factor 2α and phospho-eIF2α, and X-box binding protein 1 mRNA splicing. Cell viability was measured by propidium iodide staining. Superoxide anion production, ER stress, and cell death induced by 27.5 mM dextrose were inhibited by therapeutic concentrations of simvastatin and pravastatin. The salutary effects of statins on endothelial cells in reducing both ER stress and oxidative stress observed with pravastatin and the prodrug simvastatin suggest that the effects may be independent of cholesterol-lowering activity. PMID:24800792

  9. Melittin Restores PTEN Expression by Down-Regulating HDAC2 in Human Hepatocelluar Carcinoma HepG2 Cells

    PubMed Central

    Huang, Cheng; Meng, Xiao-Ming; Bian, Er-Bao; Li, Jun

    2014-01-01

    Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2) expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways. PMID:24788349

  10. Effects of Tamarindus indica fruit pulp extract on abundance of HepG2 cell lysate proteins and their possible consequential impact on metabolism and inflammation.

    PubMed

    Chong, Ursula R W; Abdul-Rahman, Puteri S; Abdul-Aziz, Azlina; Hashim, Onn H; Mat-Junit, Sarni

    2013-01-01

    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism. PMID:24455694

  11. Effects of Tamarindus indica Fruit Pulp Extract on Abundance of HepG2 Cell Lysate Proteins and Their Possible Consequential Impact on Metabolism and Inflammation

    PubMed Central

    Chong, Ursula R. W.; Abdul-Rahman, Puteri S.; Abdul-Aziz, Azlina; Hashim, Onn H.; Mat-Junit, Sarni

    2013-01-01

    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism. PMID:24455694

  12. Development of stable HSPA1A promoter-driven luciferase reporter HepG2 cells for assessing the toxicity of organic pollutants present in air.

    PubMed

    Xin, Lili; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Dai, Xiayun; Huang, Suli; Wang, Feng; He, Meian; Currie, R William; Wu, Tangchun

    2012-09-01

    HSPA1A (HSP70-1) is a highly inducible heat shock gene up-regulated in response to environmental stresses and pollutants. The aim of our study was to evaluate the sensitivity of the stable metabolically competent HepG2 cells containing a human HSPA1A promoter-driven luciferase reporter (HepG2-luciferase cells) for assessing the toxicity of organic pollutants present in air. The HepG2-luciferase cells were validated by heat shock treatment and testing three organic compounds (pyrene, benzo[a]pyrene, and formaldehyde) that are ubiquitous in the air. The maximal level of HSPA1A (HSP70-1) and relative luciferase activity induced by heat shock were over three and nine times the control level, respectively. Pyrene, benzo[a]pyrene, and formaldehyde all induced significantly elevated levels of relative luciferase activity in a dose-dependent manner. Extractable organic matter (EOM) from urban traffic and coke oven emissions in ambient air were tested on the HepG2-luciferase cells. The traffic EOM induced significant increase in relative luciferase activity at concentrations of picogram per liter. The coke oven EOM produced a strong dose-dependent induction of relative luciferase activity up to six times the control value. Significant increases in relative luciferase activity were observed at concentrations that were as low, or lower than the concentrations that the tested organic pollutants decreased cell viability, and increased malondialdehyde concentration, Olive tail moment, and micronuclei frequency. Therefore, we conclude that the HepG2-luciferase cells are a valuable tool for rapid screening of the overall toxicity of organic pollutants present in air. PMID:22367790

  13. Inhibitory Effects of PEI-RGD/125I-(αV) ASODN on Growth and Invasion of HepG2 Cells

    PubMed Central

    Cai, Haidong; Qiao, Yu; Sun, Ming; Yuan, Xueyu; Luo, Qiong; Yang, Yuehua; Yuan, Shidong; Lv, Zhongwei

    2015-01-01

    Background To investigate the in vitro inhibitory effects of PEI-RGD/125I-(αV)ASODN (PEI, polyethylenimine; RGD, Arg-Gly-Asp; ASODN, antisense oligodeoxynucleotide) on the growth and invasion of HepG2 cells. Material/Methods ASODN of the integrin αV-subunit was marked with 125I and underwent complexation with PEI-RGD, a PEI derivative. Next, PEI-RGD/125I-(αV) ASODN was introduced into HepG2 cells via receptor-mediated transfection, and its inhibition rate on HepG2 cell growth was tested using the methyl thiazolyl tetrazolium (MTT) method. The effects of PEI-RGD/125I-(αV) ASODN on HepG2 cell invasion ability were evaluated using the Boyden chamber assay. Results 1) The 125I marking rate of (αV) ASODN was 73.78±4.09%, and the radiochemical purity was 96.68±1.38% (greater than 90% even after a 48-h incubation period at 37°C), indicating high stability. 2) The cytotoxicity assays showed that the cell inhibition rates did not differ significantly between the PEI-RGD/125I-(αV)ASODN group and the PEI-RGD/(αV) ASODN group, but they were both significantly higher than in the other groups and were positively correlated (r=0.879) with the dosage within a certain range. 3) The invasion assays showed that the inhibition rate was significantly greater in the PEI-RGD/125I-(αV) ASODN group compared to the other groups. Conclusions PEI-RGD/125I-(αV) ASODN can efficiently inhibit the growth and proliferation of HepG2 cells and can also weaken their invasive ability. PMID:26258995

  14. Copper induced apoptosis in Caco-2 and Hep-G2 cells: Expression of caspases 3, 8 and 9, AIF and p53.

    PubMed

    Santos, Stefanie; Silva, Amélia M; Matos, Manuela; Monteiro, Sandra M; Álvaro, Ana R

    2016-01-01

    Copper (Cu) is an essential trace metal needed to ensure cell function. However, when present at high concentrations it becomes toxic to organisms. Cell death, induced by toxic levels of copper, was previously observed in in vitro studies. However, there is no consensus about the cell death pathway induced by Cu and it is still not known whether this occurs as a result of the direct action of the metal or by indirect effects. In the present work, we intend to identify the influence of different Cu concentrations in the induction of apoptosis and to explore the potential signaling pathways, using two different in vitro cell culture models (Caco-2 and Hep-G2). Cells were exposed, during 6, 12, 24 and 48h, to Cu concentrations corresponding to IC50 and 1/8 of IC50, according to the viability assays. Then, considering the different apoptosis pathways, the expression of caspases 3, 8 and 9, apoptosis inducing factor (AIF) and p53 genes was analyzed by quantitative real time PCR. The results suggested that different Cu concentrations could trigger different apoptotic pathways, at different times of exposure. In both cell lines, apoptosis seems to be initiated by caspase independent pathway and intrinsic pathway, followed by extrinsic pathway. In conclusion, this study demonstrates that Cu induces the activation of apoptosis through caspase dependent and independent pathways, also suggesting that apoptosis activation mechanism is dependent on the concentration, time of exposure to Cu and cell type. PMID:27046389

  15. Water extract of Hedyotis Diffusa Willd suppresses proliferation of human HepG2 cells and potentiates the anticancer efficacy of low-dose 5-fluorouracil by inhibiting the CDK2-E2F1 pathway.

    PubMed

    Chen, Xu-Zheng; Cao, Zhi-Yun; Chen, Tuan-Sheng; Zhang, You-Quan; Liu, Zhi-Zhen; Su, Yin-Tao; Liao, Lian-Ming; Du, Jian

    2012-08-01

    Hedyotis Diffusa Willd (HDW), a Chinese herbal medicine, has been widely used as an adjuvant therapy against various cancers, including hepatocellular carcinoma (HCC). However, the underlying anticancer mechanisms are yet to be elucidated. In the present study, the anticancer effects of HDW were evaluated and the efficacy and safety of HDW combined with low-dose 5-fluorouracil (5-FU) were investigated. HepG2 cells were cultured in vitro and nude mouse xenografts were established in vivo. The proliferation of HepG2 cells was measured using the MTT method and flow cytometry. The mRNA and protein expression levels of cyclin-dependent kinase 2 (CDK2), cyclin E and E2F1 were examined using relative quantitative real-time PCR and western blot analysis, respectively. The results showed that water extract of HDW remarkably inhibited HepG2 cell proliferation in a dose-dependent manner via arrest of HepG2 cells at the G0/G1 phase and induction of S phase delay. This suppression was accompanied by a great decrease of E2F1 and CDK2 mRNA expression. In addition, HDW remarkably potentiated the anticancer effect of low-dose 5-FU in the absence of overt toxicity by downregulating the mRNA and protein levels of CDK2, cyclin E and E2F1. Our findings support the use of HDW as adjuvant therapy of chemotherapy and suggest that HDW may potentiate the efficiency of low-dose 5-FU in treating HCC. PMID:22641337

  16. Determination of glutathione in single HepG2 cells by capillary electrophoresis with reduced graphene oxide modified microelectrode.

    PubMed

    Wang, Xiaolei; Wang, Jun; Fu, Hongyan; Liu, Dongju; Chen, Zhenzhen

    2014-12-01

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode (ER-GOME) was used as a detector of CZE-electrochemical detection and developed to detect glutathione (GSH). The electrocatalytic activity of the modified microelectrode was characterized by cyclic voltammetry. Under optimized experimental conditions, the concentration linear range of GSH was from 1 to 60 μM. When the S/N ratio was 3, the concentration detection limit was 1 μM. Compared with the unmodified carbon fiber microdisk electrode, the sensitivity was enhanced more than five times. With the use of this method, the average contents of GSH in single HepG2 cells were found to be 7.13 ± 1.11 fmol (n = 10). Compared with gold/mercury amalgam microelectrode, which was usually used in determining GSH, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode was friendly to environment for free mercury. Furthermore, there were several merits of the novel electrochemical detector coupled with CE, such as comparative repeatability, easy fabrication, and high sensitivity, hold great potential for the single-cell assay. PMID:25220105

  17. Atrazine represses S100A4 gene expression and TPA-induced motility in HepG2 cells.

    PubMed

    Peyre, Ludovic; Zucchini-Pascal, Nathalie; Rahmani, Roger

    2014-03-01

    Atrazine (ATZ) is probably the most widely used herbicide in the world. However there are still many controversies regarding its impacts on human health. Our investigations on the role of pesticides in liver dysfunctions have led us to detect an inhibition of FSP1 expression of 70% at 50μm and around 95% at 500μM of ATZ (p<0.01). This gene encodes the protein S100a4 and is a clinical biomarker of epithelial-mesenchymal transition (EMT), a key step in the metastatic process. Here we investigated the possible effect of ATZ on cell migration and noticed that it prevents the EMT and motility of the HepG2 cells induced by the phorbol ester TPA. ATZ decreases Fak pathway activation but has no effect on the Erk1/2 pathway known to be involved in metastasis in this cell line. These results suggest that ATZ could be involved in cell homeostasis perturbation, potentially through a S100a4-dependant mechanism. PMID:24211529

  18. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    SciTech Connect

    Hwang, Yong Pil; Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young; Nam, Myoung Soo; Lee, Hyun-Sun; Chung, Young Chul; Lee, Young Chun; Jeong, Hye Gwang

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.

  19. Cholesterol lowering effects of mono-lactose-appended β-cyclodextrin in Niemann–Pick type C disease-like HepG2 cells

    PubMed Central

    Motoyama, Keiichi; Hirai, Yumi; Nishiyama, Rena; Maeda, Yuki; Higashi, Taishi; Ishitsuka, Yoichi; Kondo, Yuki; Irie, Tetsumi; Era, Takumi

    2015-01-01

    Summary The Niemann–Pick type C disease (NPC) is one of inherited lysosomal storage disorders, emerges the accumulation of unesterified cholesterol in endolysosomes. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) has been applied for the treatment of NPC. HP-β-CyD improved hepatosplenomegaly in NPC patients, however, a high dose of HP-β-CyD was necessary. Therefore, the decrease in dose by actively targeted-β-CyD to hepatocytes is expected. In the present study, to deliver β-CyD selectively to hepatocytes, we newly fabricated mono-lactose-appended β-CyD (Lac-β-CyD) and evaluated its cholesterol lowering effects in NPC-like HepG2 cells, cholesterol accumulated HepG2 cells induced by treatment with U18666A. Lac-β-CyD (degree of substitution of lactose (DSL) 1) significantly decreased the intracellular cholesterol content in a concentration-dependent manner. TRITC-Lac-β-CyD was associated with NPC-like HepG2 cells higher than TRITC-β-CyD. In addition, TRITC-Lac-β-CyD was partially localized with endolysosomes after endocytosis. Thus, Lac-β-CyD entered NPC-like HepG2 cells via asialoglycoprotein receptor (ASGPR)-mediated endocytosis and decreased the accumulation of intracellular cholesterol in NPC-like HepG2 cells. These results suggest that Lac-β-CyD may have the potential as a drug for the treatment of hepatosplenomegaly in NPC disease. PMID:26664628

  20. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells.

    PubMed

    Burczynski, M E; McMillian, M; Ciervo, J; Li, L; Parker, J B; Dunn, R T; Hicken, S; Farr, S; Johnson, M D

    2000-12-01

    The rapid discovery of sequence information from the Human Genome Project has exponentially increased the amount of data that can be retrieved from biomedical experiments. Gene expression profiling, through the use of microarray technology, is rapidly contributing to an improved understanding of global, coordinated cellular events in a variety of paradigms. In the field of toxicology, the potential application of toxicogenomics to indicate the toxicity of unknown compounds has been suggested but remains largely unsubstantiated to date. A major supposition of toxicogenomics is that global changes in the expression of individual mRNAs (i.e., the transcriptional responses of cells to toxicants) will be sufficiently distinct, robust, and reproducible to allow discrimination of toxicants from different classes. Definitive demonstration is still lacking for such specific "genetic fingerprints," as opposed to nonspecific general stress responses that may be indistinguishable between compounds and therefore not suitable as probes of toxic mechanisms. The present studies demonstrate a general application of toxicogenomics that distinguishes two mechanistically unrelated classes of toxicants (cytotoxic anti-inflammatory drugs and DNA-damaging agents) based solely upon a cluster-type analysis of genes differentially induced or repressed in cultured cells during exposure to these compounds. Initial comparisons of the expression patterns for 100 toxic compounds, using all approximately 250 genes on a DNA microarray ( approximately 2.5 million data points), failed to discriminate between toxicant classes. A major obstacle encountered in these studies was the lack of reproducible gene responses, presumably due to biological variability and technological limitations. Thus multiple replicate observations for the prototypical DNA damaging agent, cisplatin, and the non-steroidal anti-inflammatory drugs (NSAIDs) diflunisal and flufenamic acid were made, and a subset of genes yielding

  1. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  2. Hypoxia protects HepG2 cells against etoposide-induced apoptosis VIA a HIF-1-independent pathway

    SciTech Connect

    Piret, Jean-Pascal; Cosse, Jean-Philippe; Ninane, Noelle; Raes, Martine; Michiels, Carine . E-mail: carine.michiels@fundp.ac.be

    2006-09-10

    Tumor hypoxia has been described to increase the resistance of cancer cells to radiation therapy and chemotherapy. It also supports the invasiveness and metastatic potential of the tumor. However, few data are available on the transduction pathway set up under hypoxia and leading to this resistance against anti-cancer therapies. HIF-1, the main transcription factor activated by hypoxia, has been recently shown to participate to this process although its role as an anti- or a pro-apoptotic protein is still controversy. In this study, we showed that hypoxia protected HepG2 cells against etoposide-induced apoptosis. The effect of hypoxia on cell death was assayed by measuring different parameters of the apoptotic pathway, like DNA fragmentation, caspase activity and PARP-1 cleavage. The possible implication of HIF-1 in the anti-apoptotic role of hypoxia was investigated using HIF-1{alpha} siRNA. Our results indicated that HIF-1 is not involved in the hypoxia-induced anti-apoptotic pathway. Another transcription factor, AP-1, was studied for its potential role in the hypoxia-induced protection against apoptosis. Specific inhibition of AP-1 decreased the protection effect of hypoxia against etoposide-induced apoptosis. Together, all these data underline that hypoxia could mediate its anti-apoptotic role via different transcription factors depending on the cellular context and pro-apoptotic stimuli.

  3. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    SciTech Connect

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  4. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  5. Clusianone, a naturally occurring nemorosone regioisomer, uncouples rat liver mitochondria and induces HepG2 cell death.

    PubMed

    Reis, Felippe H Z; Pardo-Andreu, Gilberto L; Nuñez-Figueredo, Yanier; Cuesta-Rubio, Osmany; Marín-Prida, Javier; Uyemura, Sérgio A; Curti, Carlos; Alberici, Luciane C

    2014-04-01

    Clusianone is a member of the polycyclic polyprenylated acylphloroglucinol family of natural products; its cytotoxic mechanism is unknown. Clusianone is a structural isomer of nemorosone, which is a mitochondrial uncoupler and a well-known cytotoxic anti-cancer agent; thus, we addressed clusianone action at the mitochondria and its potential cytotoxic effects on cancer cells. In the HepG2 hepatocarcinoma cell line, clusianone induced mitochondrial membrane potential dissipation, ATP depletion and phosphatidyl serine externalization; this later event is indicative of apoptosis induction. In isolated mitochondria from rat liver, clusianone promoted protonophoric mitochondrial uncoupling. This was evidenced by the dissipation of mitochondrial membrane potential, an increase in resting respiration, an inhibition of Ca(2+) influx, stimulation of Ca(2+) efflux in Ca(2+)-loaded mitochondria, a decrease in ATP and NAD(P)H levels, generation of ROS, and swelling of valinomycin-treated organelles in hyposmotic potassium acetate media. The cytotoxic and uncoupling actions of clusianone were appreciably less than those of nemorosone, likely due to the presence of an intra-molecular hydrogen bond with the juxtaposed carbonyl group at the C15 position. Therefore, clusianone is capable of pharmacologically increasing the leakage of protons from the mitochondria and with favorable cytotoxicity in relation to nemorosone. PMID:24491676

  6. Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition

    PubMed Central

    Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei

    2013-01-01

    We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183

  7. Transportation of Berberine into HepG2, HeLa and SY5Y Cells: A Correlation to Its Anti-Cancer Effect

    PubMed Central

    Pang, Yu-Nong; Liang, Yin-Wen; Feng, Tian-Shi; Zhao, Shuang; Wu, Hao; Chai, Yu-Shuang; Lei, Fan; Ding, Yi; Xing, Dong-Ming; Du, Li-Jun

    2014-01-01

    The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development. PMID:25402492

  8. Induction of micronuclei and alteration of gene expression by an organomodified clay in HepG2 cells.

    PubMed

    Maisanaba, Sara; Hercog, Klara; Ortuño, Natalia; Jos, Ángeles; Žegura, Bojana

    2016-07-01

    Clay2 is an organomodified montmorillonite developed by the Technological Institute of Packaging, Transport and Logistic (ITENE) in order to improve polymeric materials used in food packaging. There is not much known on Clay2 toxic potential, particularly at DNA level, therefore it is mandatory to assess its toxicity prior to its commercialization. In the present study the human hepatoma cell line (HepG2) was exposed to non-cytotoxic concentrations of Clay2 and the genomic stability was studied with the Cytokinesis block micronucleus cytome assay, by determining the formation of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs). Moreover, the expression of various genes involved in the mechanisms of its action using the real-time quantitative PCR was studied. The results obtained provide the evidence that Clay2 is potentially genotoxic as it increased the frequency of micronuclei. In addition it deregulated genes involved in the metabolism, immediate-early response/signaling, DNA damage and oxidative stress showing new valuable information on the cellular response to Clay2. Nonetheless, further studies are highly needed to elucidate the molecular mechanisms of clays toxicity. PMID:27058916

  9. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells.

    PubMed

    Fic, Anja; Žegura, Bojana; Sollner Dolenc, Marija; Filipič, Metka; Peterlin Mašič, Lucija

    2013-06-01

    Environmental oestrogen bisphenol A (BPA) and its analogues are widespread in our living environment. Because their production and use are increasing, exposure of humans to bisphenols is becoming a significant issue. We evaluated the mutagenic and genotoxic potential of eight BPA structural analogues (BPF, BPAF, BPZ, BPS, DMBPA, DMBPS, BP-1, and BP-2) using the Ames and comet assay, respectively. None of the tested bisphenols showed a mutagenic effect in Salmonella typhimurium strains TA98 and TA100 in either the presence or absence of external S9-mediated metabolic activation (Aroclor 1254-induced male rat liver). Potential genotoxicity of bisphenols was determined in the human hepatoma cell line (HepG2) at non-cytotoxic concentrations (0.1 μmol L(-1) to 10 μmol L(-1)) after 4-hour and 24-hour exposure. In the comet assay, BPA and its analogue BPS induced significant DNA damage only after the 24-hour exposure, while analogues DMBPS, BP-1, and BP-2 induced a transient increase in DNA strand breaks. PMID:23819927

  10. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp.

    PubMed

    Razali, Nurhanani; Aziz, Azlina A; Junit, Sarni M

    2010-12-01

    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT-PCR and real-time RT-PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp. PMID:21189869

  11. The effect of hemin-induced oxidative stress on erythropoietin production in HepG2 cells.

    PubMed

    Nishimura, Kazuhiko; Tokida, Masahiro; Katsuyama, Hideaki; Nakagawa, Hiroshi; Matsuo, Saburo

    2014-11-01

    Erythropoietin (EPO) and iron are both indispensable hematopoietic factors and are often studied in humans and rodents. Iron activates prolyl hydroxylases (PHDs) and promotes the degradation of the α-subunit of hypoxia inducible factor (HIF), which regulates EPO production. Iron also causes oxidative stress. Oxidative stress leads to alterations in the levels of multiple factors that regulate HIF and EPO production. It is thought that iron influences EPO production by altering two pathways, namely PHDs activity and oxidative stress. We studied the differential effect of varying concentrations of hemin, an iron-containing porphyrin, on EPO production in HepG2 cells. Hemin at 100 µM reduced EPO mRNA expression. The hemin-induced reduction of EPO mRNA levels was attenuated at concentrations greater than 200 µM and EPO production increased in the presence of 500 µM hemin. In comparison, protoporphyrin IX, iron-free hemin did not influence EPO mRNA expression. Additionally, malondialdehyde (MDA) concentrations and superoxide dismutase (SOD) activity significantly increased with 300 µM hemin. Importantly, the antioxidant tempol inhibited the hemin-induced (500 µM) increase in EPO mRNA levels. In conclusion, these results suggest that restraint of EPO production by hemin was offset by the promotion of EPO production by hemin-induced oxidative stress at hemin concentrations greater than 300 µM. PMID:24962609

  12. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium.

    PubMed

    Fabbri, Marco; Urani, Chiara; Sacco, Maria Grazia; Procaccianti, Claudio; Gribaldo, Laura

    2012-01-01

    Cadmium (Cd) is a metal known to be toxic and carcinogenic, but its mechanism of action remains to be fully elucidated. We investigated the gene expression modulation in the human hepatoma cell line HepG2 after exposure to 2 μM and 10 μM Cd using an Agilent microarray. Furthermore, we evaluated the microRNA modulation after exposure to 10 μM Cd with a Low Density Array. At the low concentration only eleven genes belonging to the metallothionein familiy were regulated. At the higher concentration the pathway enrichment analysis for the 536 up-regulated genes showed a large number of pathways related to cancer, whereas the 424 down-regulated genes were enriched on pathways correlated to liver function. A large percentage of modified microRNAs belonged to the let-7 family, which is considered to have oncosuppressor functions. Several pathways connected to cancer were regulated at the transcription level, and miRNAs had a potential impact on the modulation of this regulation. PMID:22562489

  13. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp

    PubMed Central

    Razali, Nurhanani; Aziz, Azlina A.

    2010-01-01

    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT–PCR and real-time RT–PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp. PMID:21189869

  14. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium.

    PubMed

    Bianchi, Jaqueline; Cabral-de-Mello, Diogo Cavalcanti; Marin-Morales, Maria Aparecida

    2015-10-01

    The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in

  15. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines.

    PubMed

    Grider, Arthur; Lewis, Richard D; Laing, Emma M; Bakre, Abhijeet A; Tripp, Ralph A

    2015-12-01

    MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression. PMID:26409456

  16. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression

    PubMed Central

    Yan, Hong; Ma, Yan-ling; Gui, Yu-zhou; Wang, Shu-mei; Wang, Xin-bo; Gao, Fei; Wang, Yi-ping

    2014-01-01

    Aim: Expression of liver low-density lipoprotein receptor (LDLR), a determinant regulator in cholesterol homeostasis, is tightly controlled at multiple levels. The aim of this study was to examine whether proteasome inhibition could affect LDLR expression and LDL uptake in liver cells in vitro. Methods: HepG2 cells were examined. Real-time PCR and Western blot analysis were used to determine the mRNA and protein levels, respectively. DiI-LDL uptake assay was used to quantify the LDLR function. Luciferase assay system was used to detect the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9, a major protein mediating LDLR degradation) promoter. Specific siRNAs were used to verify the involvement of PCSK9. Results: Treatment of HepG2 cells with the specific proteasome inhibitor MG132 (0.03–3 μmol/L) dose-dependently increased LDLR mRNA and protein levels, as well as LDL uptake. Short-term treatment with MG132 (0.3 μmol/L, up to 8 h) significantly increased both LDLR mRNA and protein levels in HepG2 cells, which was blocked by the specific PKC inhibitors GF 109203X, Gö 6983 or staurosporine. In contrast, a longer treatment with MG132 (0.3 μmol/L, 24 h) did not change LDLR mRNA, but markedly increased LDLR protein by reducing PCSK9-mediated lysosome LDLR degradation. Furthermore, MG132 time-dependently suppressed PCSK9 expression in the HepG2 cells through a SREBP-1c related pathway. Combined treatment with MG132 (0.3 μmol/L) and pravastatin (5 μmol/L) strongly promoted LDLR expression and LDL uptake in HepG2 cells, and blocked the upregulation of PCSK9 caused by pravastatin alone. Conclusion: Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis. PMID:25042549

  17. Inhibition of Grb2-mediated activation of MAPK signal transduction suppresses NOR1/CB1954-induced cytotoxicity in the HepG2 cell line.

    PubMed

    Gui, Rong; Li, Dengqing; Qi, Guannan; Suhad, Ali; Nie, Xinmin

    2012-09-01

    The nitroreductase oxidored-nitro domain containing protein 1 (NOR1) gene may be involved in the chemical carcinogenesis of hepatic cancer and nasopharyngeal carcinoma (NPC). We have previously demonstrated that NOR1 overexpression is capable of converting the monofunctional alkylating agent 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) into a toxic form by reducing the 4-nitro group of CB1954. Toxic CB1954 is able to enhance cell killing in the NPC cell line CNE1; however, the underlying mechanisms remain unknown. Using cDNA microarrays and quantitative real-time PCR, we previously discovered that NOR1 increases the expression of growth factor receptor-bound protein 2 (Grb2) mRNA by 4.8-fold in the human hepatocellular carcinoma cell line HepG2. In the present study, we revealed that NOR1 increased Grb2 protein expression by 3-fold in HepG2 cells. Additionally, we demonstrated that NOR1 enhanced CB1954-induced cell killing in HepG2 cells, and cell cytotoxicity was inhibited with the tyrosine kinase inhibitor genistein, or by stable transfection of Grb2 small hairpin RNA (shRNA) pU6(+27)-shGrb2 to silence the expression of Grb2. Western blot analysis revealed that Grb2 downregulation may reduce the activity of the mitogen-activated protein kinase (MAPK). Inhibiting the activation of MAPK using the methyl ethyl ketone (MEK) inhibtor PD98059 suppressed CB1954-induced cell killing. These results suggested that the NOR1 gene enhances CB1954-mediated cell cytotoxicity through the upregulation of Grb2 expression and the activation of MAPK signal transduction in the HepG2 cell line. PMID:23741254

  18. Chylomicron remnant-vitamin A metabolism by the human hepatoma cell line HepG2

    SciTech Connect

    Lenich, C.M.

    1985-01-01

    The binding and metabolism of (/sup 3/H) vitamin A-containing chylomicron remnants (CMR) by the human hepatoma cell line Hep G2 was studied. Mesenteric lymph chylomicrons (CM) were collected from (/sup 3/H) retinol-fed rats and incubated with lipoprotein-lipase to obtain CMR. At 4/sup 0/C, specific CMR binding was inhibited by excess unlabeled CMR. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 ..mu..g triglyceride/ml). CMR uptake at 37/sup 0/C was greater than that of CM and at least 100 times more efficient than the fluid-phase pinocytosis of sucrose. CMR binding increased as the extent of lipolysis obtained by incubation with lipoprotein-lipase increased. Addition of human apolipoprotein E enhanced both CMR and CM binding. After internalization, Hep G2 cells hydrolyzed CMR-(/sup 3/H)retinyl esters and radiolabeled metabolites accumulated as a function of time and temperature. As a function of the concentration of (/sup 3/H) VA initially cell-bound, retinol and retinyl esters accumulated as the major cell-associated metabolites. By contrast, retinol was the major metabolite in the medium only at low VA concentrations as other more polar metabolites accumulated at higher concentrations (> 110 pmol VA/mg cell protein). The accumulation of CMR-VA metabolites in the medium was reduced when cells were preincubated in retinol-supplemented media. Also, the specific activity of retinol in the medium closely resembled that in the cell indicating that CMR-VA mixed with the cellular store prior to its secretion.

  19. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    SciTech Connect

    Tavintharan, S. Ong, C.N.; Jeyaseelan, K.; Sivakumar, M.; Lim, S.C.; Sum, C.F.

    2007-09-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ{sub 10}). In HepG2 cells, simvastatin decreased mitochondrial CoQ{sub 10} levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ{sub 10}, reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ{sub 10} deficiency plays an important role in statin-induced hepatopathy, and that CoQ{sub 10} supplementation protects HepG2 cells from this complication.

  20. Internalisation and multiple phosphorylation of γ-Conglutin, the lupin seed glycaemia-lowering protein, in HepG2 cells

    SciTech Connect

    Capraro, Jessica; Magni, Chiara; Faoro, Franco; Maffi, Dario; Scarafoni, Alessio; Tedeschi, Gabriella; Maffioli, Elisa; Parolari, Anna; Manzoni, Cristina; Lovati, Maria Rosa; Duranti, Marcello

    2013-08-09

    Highlights: •A glycaemia-reducing lupin seed protein is internalized by HepG2 cells. •The protein accumulates in the cytosol in an intact form. •The internalized protein is multiply phosphorylated. -- Abstract: Lupin seed γ-Conglutin is a protein capable of reducing glycaemia in mammalians and increasing glucose uptake by model cells. This work investigated whether γ-Conglutin is internalised into the target cells and undergoes any covalent change during the process, as a first step to understanding its mechanism of action. To this purpose, γ-Conglutin-treated and untreated HepG2 cells were submitted to confocal and transmission electron microscopy. Immune-revelation of γ-Conglutin at various intervals revealed its accumulation inside the cytosol. In parallel, 2D-electrophoresis of the cell lysates and antibody reaction of the blotted maps showed the presence of the protein intact subunits inside the treated cells, whilest no trace of the protein was found in the control cells. However, γ-Conglutin-related spots with an unexpectedly low pI were also observed in the maps. These spots were excised, trypsin-treated and submitted to MS/MS spectrometric analysis. The presence of phosphorylated amino acids was detected. These findings, by showing that γ-Conglutin is internalised by HepG2 cells in an intact form and is modified by multiple phosphorylation, open the way to the understanding of the lupin γ-Conglutin insulin-mimetic activity.

  1. SHRNA SILENCING OF AS3MT EXPRESSION MINIMIZES ARSENIC METHYLATION CAPACITY OF HEPG2 CELLS

    EPA Science Inventory

    Several methyltransferases have been shown to catalyze the oxidative methylation of inorganic arsenic (iAs) in mammalian species. However, the relative contributions of these enzymes to the overall capacity of cells to methylate iAs have not been characterized. Arsenic (+3 oxidat...

  2. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro

    PubMed Central

    2013-01-01

    Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function. PMID:23870484

  3. Juglanthraquinone C, a novel natural compound derived from Juglans mandshurica Maxim, induces S phase arrest and apoptosis in HepG2 cells.

    PubMed

    Yao, Yao; Zhang, Yu-Wei; Sun, Lu-Guo; Liu, Biao; Bao, Yong-Li; Lin, Hua; Zhang, Yu; Zheng, Li-Hua; Sun, Ying; Yu, Chun-Lei; Wu, Yin; Wang, Guan-Nan; Li, Yu-Xin

    2012-08-01

    Juglanthraquinone C (1,5-dihydroxy-9,10-anthraquinone-3-carboxylic acid, JC), a naturally occurring anthraquinone isolated from the stem bark of Juglans mandshurica, shows strong cytotoxicity in various human cancer cells in vitro. Here, we first performed a structure-activity relationship study of six anthraquinone compounds (JC, rhein, emodin, aloe-emodin, physcion and chrysophanol) to exploit the relationship between their structural features and activity. The results showed that JC exhibited the strongest cytotoxicity of all compounds evaluated. Next, we used JC to treat several human cancer cell lines and found that JC showed an inhibitory effect on cell viability in dose-dependent (2.5-10 μg/ml JC) and time-dependent (24-48 h) manners. Importantly, the inhibitory effect of JC on HepG2 (human hepatocellular carcinoma) cells was more significant as shown by an IC(50) value of 9 ± 1.4 μg/ml, and 36 ± 1.2 μg/ml in L02 (human normal liver) cells. Further study suggested that JC-induced inhibition HepG2 cell proliferation was associated with S phase arrest, decreased protein expression of proliferation marker Ki67, cyclin A and cyclin-dependent kinase (CDK) 2, and increased expression of cyclin E and CDK inhibitory protein Cip1/p21. In addition, JC significantly triggered apoptosis in HepG2 cells, which was characterized by increased chromatin condensation and DNA fragmentation, activation of caspase-9 and -3, and induction of a higher Bax/Bcl2 ratio. Collectively, our study demonstrated that JC can efficiently inhibit proliferation and induce apoptosis in HepG2 cells. PMID:22484481

  4. The effects of acute-phase inducers and dimethyl sulphoxide on delta-aminolaevulinate synthase activity in human HepG2 hepatoma cells.

    PubMed Central

    Iwasa, F; Sassa, S; Kappas, A

    1989-01-01

    The effects of acute-phase inducers and dimethyl sulphoxide (Me2SO) on delta-aminolaevulinate (ALA) synthase in HepG2 cells were examined. Treatment of cells with Me2SO resulted in a significant increase in ALA synthase activity. Interleukin-6 increased ALA synthase activity only slightly, but it substantially potentiated the induction of ALA synthase by Me2SO. These data suggest that ALA synthase activity in liver is altered during acute-phase reactions. PMID:2541694

  5. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    PubMed Central

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B.; Valentão, Patrícia; Diop, Moussoukhoye Sissokho

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245

  6. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2.

    PubMed

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B; Valentão, Patrícia; Diop, Moussoukhoye Sissokho; Milella, Luigi

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245

  7. Involvement of Ca2+ influx in the mechanism of tamoxifen-induced apoptosis in HepG2 human hepatoblastoma cells.

    PubMed

    Kim, J A; Kang, Y S; Jung, M W; Lee, S H; Lee, Y S

    1999-12-01

    The signaling mechanism of tamoxifen (TAM)-induced apoptosis was investigated in HepG2 human hepatoblastoma cells which do not express the estrogen receptor (ER). TAM induced cytotoxicity and DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TAM increased the intracellular concentration of Ca2+. This effect was completely inhibited by the extracellular Ca2+ chelation with EGTA. TAM also induced a Mn2+ influx, indicating that TAM activated Ca2+ influx pathways. This action of TAM was significantly inhibited by flufenamic acid (FA), a known non-selective cation channel blocker. Quantitative analysis of apoptosis by flow cytometry revealed that treatment with either FA or BAPTA, an intracellular Ca2+ chelator, significantly inhibited TAM-induced apoptosis. These results suggest that intracellular Ca2+ signals may play a central role in the mechanism of the TAM-induced apoptotic cell death in ER-negative HepG2 cells. PMID:10660097

  8. Daintain/AIF-1 accelerates the activation of insulin-like growth factor-1 receptor signaling pathway in HepG2 cells.

    PubMed

    Jia, Shaohui; Du, Zhongxia; Jiang, Hua; Huang, Xingyuan; Chen, Zhengwang; Chen, Ning

    2015-07-01

    Daintain/allograft inflammatory factor-1 (AIF-1), as a novel inflammatory factor, has been reported to accelerate the proliferation and migration of breast cancer cells. However, the effect of daintain/AIF-1 on hepatocarcinogenesis remains unclear. In order to explore the effect of daintain/AIF-1 on the progression of hepatocellular carcinoma (HCC), enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) were performed to examine the secretion and gene expression of (IGF)-1, IGF-2 and IGFBP-3. The expression of IGF-1R and its downstream targets was evaluated by western blotting. In addition, the proliferation and cell-cycle progression of HepG2 cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT) and flow cytometric analysis. The results showed that HepG2 cells subjected to daintain/AIF-1 treatment revealed an obvious increase in the secretion of IGF-1 and IGF-2, and a reduction in the secretion of IGFBP-3. Moreover, daintain/AIF-1 accelerated the activation of IGF-1-induced IGF-1R and its downstream AKT signaling pathway, and subsequently promoted the activation of cyclin D1 pathway, thus accelerating the progression of the cell cycle and eventually promoting the proliferation of HepG2 cells. In conclusion, daintain/AIF-1 promoted the proliferation of HepG2 cells by accelerating the activation of IGF-1R and its downstream signaling pathway, which confirms that daintain/AIF-1 plays a crucial role in the development of HCC. PMID:25998745

  9. RY10-4 Inhibits the Proliferation of Human Hepatocellular Cancer HepG2 Cells by Inducing Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhang, Xuenong; Wang, Yanyan; Han, Shishi; Xiang, Huiyao; Peng, Yan; Wu, Yinghua; Pan, Songwei; Zhang, Ye; Ruan, Jinlan

    2016-01-01

    This study aimed to investigate the anti-tumor activity of RY10-4, a small molecular that was designed and synthesized based on the structure of protoapigenone. A previous screening study showed that RY10-4 possessed anti-proliferative effects against HepG2 human hepatocellular carcinoma cells. However, the full range of RY10-4 anti-cancer effects on liver tumors and the underlying mechanisms have not been identified. Herein, employing flow cytometry, and Western blot analysis, we demonstrate that RY10-4 can induce cell cycle arrest, intracellular reactive oxygen species (ROS) production and apoptosis in HepG2 cells. In HepG2 cell xenograft tumor model, RY10-4 significantly inhibited the growth of tumors and induced apoptosis in tumor cells, with little side effects. Moreover, RY10-4 caused the suppression of STAT3 activation, which may be involved the apoptosis induction. In addition, RY10-4 inhibited the proliferation of Hep3B and HuH-7 human hepatocellular carcinoma cells in a concentration-dependent manner. Taken together, our results suggest that RY10-4 has a great potential to develop as chemotherapeutic agent for liver cancer. PMID:26974964

  10. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    PubMed Central

    Korashy, Hesham M.; Maayah, Zaid H.; Abd-Allah, Adel R.; El-Kadi, Ayman O. S.; Alhaider, Abdulqader A.

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways. PMID:22654482

  11. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    PubMed

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  12. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    PubMed Central

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  13. Entry of Tiger Frog Virus (an Iridovirus) into HepG2 Cells via a pH-Dependent, Atypical, Caveola-Mediated Endocytosis Pathway▿

    PubMed Central

    Guo, Chang-Jun; Liu, Dong; Wu, Yan-Yan; Yang, Xiao-Bo; Yang, Li-Shi; Mi, Shu; Huang, Yu-Xin; Luo, Yong-Wen; Jia, Kun-Tong; Liu, Zhao-Yu; Chen, Wei-Jian; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2011-01-01

    Tiger frog virus (TFV), in the genus Ranavirus of the family Iridoviridae, causes high mortality of cultured tiger frog tadpoles in China. To explore the cellular entry mechanism of TFV, HepG2 cells were treated with drugs that inhibit the main endocytic pathways. We observed that TFV entry was inhibited by NH4Cl, chloroquine, and bafilomycin, which can all elevate the pH of acidic organelles. In contrast, TFV entry was not influenced by chlorpromazine or overexpression of a dominant-negative form of Esp15, which inhibit the assembly of clathrin-coated pits. These results suggested that TFV entry was not associated with clathrin-mediated endocytosis, but was related to the pH of acidic organelles. Subsequently, we found that endocytosis of TFV was dependent on membrane cholesterol and was inhibited by the caveolin-1 scaffolding domain peptide. Dynamin and actin were also required for TFV entry. In addition, TFV virions colocalized with the cholera toxin subunit B, indicating that TFV enters as caveola-internalized cargo into the Golgi complex. Taken together, our results demonstrated that TFV entry occurs by caveola-mediated endocytosis with a pH-dependent step. This atypical caveola-mediated endocytosis is different from the clathrin-mediated endocytosis of frog virus 3 (FV3) by BHK cells, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection in lower vertebrates. PMID:21543502

  14. PPARγ Represses Apolipoprotein A-I Gene but Impedes TNFα-Mediated ApoA-I Downregulation in HepG2 Cells.

    PubMed

    Shavva, Vladimir S; Mogilenko, Denis A; Bogomolova, Alexandra M; Nikitin, Artemy A; Dizhe, Ella B; Efremov, Alexander M; Oleinikova, Galina N; Perevozchikov, Andrej P; Orlov, Sergey V

    2016-09-01

    Apolipoprotein A-I (ApoA-I) is the main anti-atherogenic component of human high-density lipoproteins (HDL). ApoA-I gene expression is regulated by several nuclear receptors, which are the sensors for metabolic changes during development of cardiovascular diseases. Activation of nuclear receptor PPARγ has been shown to impact lipid metabolism as well as inflammation. Here, we have shown that synthetic PPARγ agonist GW1929 decreases both ApoA-I mRNA and protein levels in HepG2 cells and the effect of GW1929 on apoA-I gene transcription depends on PPARγ. PPARγ binds to the sites A and C within the hepatic enhancer of apoA-I gene and the negative regulation of apoA-I gene transcription by PPARγ appears to be realized via the site C (-134 to -119). Ligand activation of PPARγ leads to an increase of LXRβ and a decrease of PPARα binding to the apoA-I gene hepatic enhancer in HepG2 cells. GW1929 abolishes the TNFα-mediated decrease of ApoA-I mRNA expression in both HepG2 and Caco-2 cells but does not block TNFα-mediated inhibition of ApoA-I protein secretion by HepG2 cells. These data demonstrate that complex of PPARγ with GW1929 is a negative regulator involved in the control of ApoA-I expression and secretion in human hepatocyte- and enterocyte-like cells. J. Cell. Biochem. 117: 2010-2022, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813964

  15. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    PubMed

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity. PMID:25504014

  16. Involvement of Oxidative Stress in Methyl Parathion and Parathion-Induced Toxicity and Genotoxicity to Human Liver Carcinoma (HepG2) Cells

    PubMed Central

    Edwards, Falicia L.; Yedjou, Clement G.; Tchounwou, Paul B.

    2013-01-01

    Methyl parathion (C8H10NO5PS) and parathion (C10H14NO5PS) are both organophosphate insecticides (OPI) widely used for household and agricultural applications. They are known for their ability to irreversibly inhibit acetylcholinesterase which often leads to a profound effect on the nervous system of exposed organisms. Many recently published studies have indicated that human exposure to OPI may be associated with neurologic, hematopoietic, cardiovascular, and reproductive adverse effects. Studies have also linked OPI exposure to a number of degenerative diseases including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis. Also, oxidative stress (OS) has been reported as a possible mechanism of OPI toxicity in humans. Hence, the aim of the present investigation was to use human liver carcinoma (HepG2) cells as a test model to evaluate the role of OS in methyl parathion- and parathion-induced toxicity. To achieve this goal, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay for cell viability, lipid peroxidation assay for malondialdehyde (MDA) production, and Comet assay for DNA damage, respectively. Results from MTT assay indicated that methyl parathion and parathion gradually reduce the viability of HepG2 cells in a dose-dependent manner, showing 48 h-LD50 values of 26.20 mM and 23.58 mM, respectively. Lipid peroxidation assay resulted in a significant increase (p<0.05) of MDA level in methyl parathion- and parathion-treated HepG2 cells compared to controls, suggesting that OS plays a key role in OPI-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of OPI exposure. Overall, we found that methyl-parathion is slightly less toxic than parathion to HepG2 cells. The cytotoxic effect of these OPI was found to be associated, at least in part, with oxidative cell/tissue damage. PMID:21544925

  17. The induction of apoptosis in HepG-2 cells by ruthenium(II) complexes through an intrinsic ROS-mediated mitochondrial dysfunction pathway.

    PubMed

    Zeng, Chuan-Chuan; Lai, Shang-Hai; Yao, Jun-Hua; Zhang, Cheng; Yin, Hui; Li, Wei; Han, Bing-Jie; Liu, Yun-Jun

    2016-10-21

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(dhbn)](ClO4)2 (N-N = dmb: 4,4'-dimethyl-2,2'-bipyridine 1; bpy = 2,2'-bipyridine 2; phen = 1,10-phenanthroline 3; dmp = 2,9-dimethyl-1,10-phenanthroline 4) were synthesized and characterized. The cytotoxicity in vitro of the ligand and complexes toward HepG-2, HeLa, MG-63 and A549 were assayed by MTT method. The IC50 values of the complexes against the above cells range from 17.7 ± 1.1 to 45.1 ± 2.8 μM. The cytotoxic activity of the complexes against HepG-2 cells follows the order of 4 > 2 > 3 > 1. Ligand shows no cytotoxic activity against the selected cell lines. Cellular uptake, apoptosis, comet assay, reactive oxygen species, mitochondrial membrane potential, cell cycle arrest, and the expression of proteins involved in apoptosis pathway induced by the complexes were investigated. The results indicate that complexes 1-4 induce apoptosis in HepG-2 cells through an intrinsic ROS-mediated mitochondrial dysfunction pathway. PMID:27344489

  18. Induction of apoptosis by pistachio (Pistacia vera L.) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2.

    PubMed

    Fathalizadeh, J; Bagheri, V; Khorramdelazad, H; Kazemi Arababadi, M; Jafarzadeh, A; Mirzaei, M R; Shamsizadeh, A; Hajizadeh, M R

    2015-01-01

    Several important Pistacia species such as P. vera have been traditionally used for treating a wide range of diseases (for instance, liver-related disorders). There is a relative lack of research into pharmacological aspects of pistachio hull. Hence, this study was aimed at investigating whether pistachio rosy hull (PRH) extract exerts apoptotic impacts on HepG2 liver cancer cell line. In order to evaluate cell viability and apoptosis in response to treatment with the extract, MTT assay and Annexin-V-fluorescein/propidium iodide (PI) double staining were performed, respectively. Moreover, molecular mechanism of apoptosis induced by the extract was determined using human apoptosis PCR array. Our findings showed that PRH extract treatment reduced cell viability (IC50 ~ 0.3 mg/ml) in a dose-dependent manner. Flow cytometric analysis revealed that the extract significantly induced apoptosis in HepG2 cells. In addition, quantitative PCR array results demonstrated the regulation of a considerable number of apoptosis-related genes belonging to the TNF, BCL2, IAP, TRAF, and caspase families. We observed altered expression of both pro-apoptotic and anti-apoptotic genes associated with the extrinsic and intrinsic apoptosis signaling pathways. These results suggest that the aqueous extract of PRH possesses apoptotic activity through cytotoxic and apoptosis-inducing effects on HepG2 cells. PMID:26638894

  19. Betalain and betaine composition of greenhouse- or field-produced beetroot ( Beta vulgaris L.) and inhibition of HepG2 cell proliferation.

    PubMed

    Lee, Eun Jin; An, Dami; Nguyen, Chau T T; Patil, Bhimanagouda S; Kim, Jeongyun; Yoo, Kil Sun

    2014-02-12

    The composition of betalain, red or yellow pigments, and betaine (trimethylglycine or glycinebetaine) of nine beetroot ( Beta vulgaris L.) cultivars produced in the greenhouse or field was studied. Inhibition of HepG2 cell proliferation by betanin and betaine was also tested. Four predominant betalains, two betacyanins (betanin and isobetanin) and two betaxanthins (vulgaxanthin I and miraxanthin V), were isolated and quantified. Betanin and vulgaxanthin I were the major compounds in red and yellow beetroot extracts, respectively, and they comprised >90% of the betalain content in the tested cultivars. The total betalain content of beetroots produced from the field was between 650 and 800 μg/g fresh weight, approximately 25% higher than those from the greenhouse. The betaine content of the beetroot grown in the field was between 3.0 and 4.8 mg/g fresh weight, approximately 20% higher than in plants from the greenhouse. There was great variation among the cultivars with respect to their contents of betalains and betaine. In vitro cancer cell cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay on HepG2 cells after exposure to betanin and betaine at concentrations ranging from 0 to 400 μg/mL and from 0 to 800 μg/mL for 48 h, respectively. Betanin resulted in a 49% inhibition of HepG2 cell proliferation at 200 μg/mL, and betaine yielded a 25% inhibition at 800 μg/mL, implying a higher cytotoxicity of betanin compared with betaine. The results indicated that the contents of health-beneficial compounds in beetroots, betalains and betaine, could be increased by modifying the growing conditions and that betanin and betaine extracted from beetroots had some anticancer effects against HepG2 cells. PMID:24467616

  20. A new flavonol triglycoside derived from Anoectochilus elwesii on stimulating glucose uptake in insulin-induced human HepG2 cells.

    PubMed

    Cai, Jinyan; Zhao, Lin; Zhu, En

    2015-01-01

    A novel flavonol triglycoside (4), isorhamnetin-3-O-β-D-glucopyranosyl (1→2)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside, named elwesoside A, together with six known flavonols (1-3, 5-7) was isolated from Anoectochilus elwesii (Clarke ex Hook. f.) King et Pantl. and its structure was elucidated by extensive spectroscopic methods and comparison with the literature data. All compounds were first reported in this plant and two of them (4 and 5) were the first examples of flavonol triglycosides isolated from Anoectochilus genus. The effects of 1-7 were evaluated on insulin-treated human HepG2 cells under high glucose conditions for stimulating glucose uptake activities. The novel compound (4) displayed highly potent dose-dependent effect on the stimulation of glucose uptake in insulin-resistant human HepG2 cells. PMID:25610945

  1. Oleanolic Acid A-lactams Inhibit the Growth of HeLa, KB, MCF-7 and Hep-G2 Cancer Cell Lines at Micromolar Concentrations.

    PubMed

    Bednarczyk-Cwynar, Barbara; Ruszkowski, Piotr; Bobkiewicz-Kozlowska, Teresa; Zaprutko, Lucjusz

    2016-01-01

    Oleanolic acid ketones, oximes, lactams and nitriles were obtained. Complete spectral characterizations (IR, (1)H NMR, (13)C NMR, DEPT and MS) of the synthesized compounds are presented. The derivatives had oxo, hydroxyimino, lactam or nitrile functions at the C-3 position, an esterified or unmodified carboxyl group at the C- 17 location and, in some cases, an additional oxo function at the C-11 position. The new compounds were tested for cytotoxic activity on the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines with the application of MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. Among the tested compounds, some oximes and all lactams proved to be the most active cytotoxic agents. These triterpenes significantly inhibited the growth of the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines at micromolar concentrations. PMID:26343139

  2. Effects of cordycepin on HepG2 and EA.hy926 cells: Potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma

    PubMed Central

    LU, HAISHENG; LI, XITING; ZHANG, JIANYING; SHI, HUI; ZHU, XIAOFENG; HE, XIAOSHUN

    2014-01-01

    Hepatocellular carcinoma (HCC) is a hypervascular tumor and accumulating evidence suggests that angiogenesis plays an important role in HCC development. Cordycepin, also known as 3′-deoxyadenosine, is a derivative of adenosine, and numerous cellular enzymes cannot differentiate the two. The aim of the present study was to determine whether cordycepin regulates proliferation, migration and angiogenesis in a human umbilical vein endothelial cell line (EA.hy926) and in a hepatocellular carcinoma cell line (HepG2). MTT was used to assess cell proliferation. Apoptosis was analyzed by flow cytometry (propidium iodide staining). Transwell and wound healing assays were used to analyze the migration and invasion of HepG2 and EA.hy926 cells. Angiogenesis in EA.hy926 cells was assessed using a tube formation assay. Cordycepin strongly suppressed HepG2 and EA.hy926 cell proliferation in a dose- and time-dependent manner. Cordycepin induced EA.hy926 cell apoptosis in a dose-dependent manner (2,000 μg/ml: 50.20±1.55% vs. 0 μg/ml: 2.62±0.19%; P<0.01). Cordycepin inhibited EA.hy926 cell migration (percentage of wound healing area, 2,000 μg/ml: 3.45±0.29% vs. 0 μg/ml: 85.48±0.84%; P<0.05), as well as tube formation (total length of tubular structure, 1,000 μg/ml: 107±39 μm vs. 0 μg/ml: 936±56 μm; P<0.05). Cordycepin also efficiently inhibited HepG2 cell invasion and migration. High-performance liquid chromatography analysis of the cytosol from EA.hy926 cells showed that cordycepin was stable for 3 h. In conclusion, cordycepin not only inhibited human HepG2 cell proliferation and invasion, but also induced apoptosis and inhibited migration and angiogenesis in vascular endothelial cells, suggesting that cordycepin may be used as a novel anti-angiogenic therapy in HCC. PMID:24765175

  3. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells.

    PubMed

    Xie, Qiong-Hui; He, Xing-Xing; Chang, Ying; Sun, Shu-zhen; Jiang, Xiang; Li, Pei-Yuan; Lin, Ju-Sheng

    2011-07-01

    Deficient DNA repair capacity is associated with genetic lesions accumulation and susceptibility to carcinogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate various cellular pathways including DNA repair. Here we hypothesized that the existence of HBV products may interfere with cellular nucleotide excision repair (NER) through microRNA-mediated gene regulation. We found that NER was impaired in HepG2.2.15 cells, a stable HBV-expressing cell line, compared with its parental cell line HepG2. Altered miRNA expression profile, in particular the significant upregulation of miR-192, was observed in HepG2.2.15 cells. Additionally, ERCC3 and ERCC4, two key factors implicated in NER, were identified as targets of miR-192 and over-expressing miR-192 significantly inhibited cellular NER. These results indicated that persistent HBV infection might trigger NER impairment in part through upregulation of miR-192, which suppressed the levels of ERCC3 and ERCC4. It provides new insight into the effect of chronic HBV infection on NER and genetic instability in cancer. PMID:21672525

  4. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells.

    PubMed

    Dechtawewat, Thanyaporn; Paemanee, Atchara; Roytrakul, Sittiruk; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai; Saitornuang, Sawanan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Noisakran, Sansanee

    2016-09-01

    Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection. PMID:27108190

  5. TNF-α produced by SEC2 mutant (SAM-3)-activated human T cells induces apoptosis of HepG2 cells.

    PubMed

    Zhang, Guojun; Xu, Mingkai; Song, Yubo; Su, Zhencheng; Zhang, Huiwen; Zhang, Chenggang

    2016-03-01

    Staphylococcal enterotoxins C2 (SEC2) is a classical model of superantigens (SAg), which has the powerful ability to activate T cells as well as induce massive cytokine production. This property makes SEC2 and its mutants well concerned as a potential new immune-regulatory agent for cancer therapy. We previously constructed a SEC2 mutant named SAM-3, which had prominently antitumor activity in BALB/c mice model. But, the underlying molecular mechanism for stimulation of human peripheral blood mononuclear cells (PBMCs) and antitumor effect on human tumor cells induced by SAM-3 is not clear. Here, we showed that SAM-3 could activate human TCR Vβ 12, 13A, 14, 15, 17, and 20 CD8(+) subgroup T cells, which secreted the cytokines IL-2, IFN-γ, and TNF-α, and exhibit stimulation activity in a dose-dependent manner. TNF-α secreted from activated T cells could induce apoptosis and G1-phase arrest and lead to the antitumor effect in HepG2 cells. Meanwhile, SAM-3 upregulated the expression of tumor necrosis factor receptor 1 (TNFR1) mRNA and activity of caspase-3 and caspase-8. We also found that the antitumor activity and activity of caspase-3 and caspase-8 were decreased when the neutralizing TNF-α monoclonal antibody presented. These data suggest that TNF-α secreted by SAM-3-activated T cells is an important factor in inducing apoptosis in HepG2 cells. PMID:26536876

  6. Dengue 2 infection of HepG2 liver cells results in endoplasmic reticulum stress and induction of multiple pathways of cell death

    PubMed Central

    2013-01-01

    Background A number of studies have implicated the direct involvement of the liver in dengue virus (DENV) infection, and it has been widely shown that liver cells subsequently undergo apoptosis. The mechanism by which liver cells undergo apoptosis in response to DENV infection remains unclear. To provide further information on the mechanism of apoptosis in DENV infected liver cells, HepG2 cells were infected with DENV 2 and analyzed for the induction of ER stress, apoptosis and autophagy. Results In response to DENV infection, HepG2 cells showed the induction of both the ER resident unfolded protein response as well as the Noxa/PUMA stress response pathways. Proteolytic activation of caspases 4, 7, 8 and 9 was observed as well as changes in mitochondrial transmembrane potential. Increased monodansylcadaverine staining was observed in DENV infected cells, consistent with the previously reported induction of autophagy. Conclusions These results are consistent with a model in which the induction of multiple ER stress pathways is coupled with the induction of multiple cell death pathways as a mechanism to ensure the removal of infected liver cells from the system. PMID:24034452

  7. Metabolomic effects in HepG2 cells exposed to CeO2, SiO2 and CuO nanomaterials.

    EPA Science Inventory

    To better assess potential hepatotoxicity of nanomaterials, human liver HepG2 cells were exposed for three days to 5 different CeO2 (either 30 or 100 ug/ml), 3 SiO2 based (30 ug/ml) or 1 CuO (3 ug/ml) nanomaterials with dry primary particle sizes ranging from 15 to 213 nm. Metab...

  8. Procyanidins, from Castanea mollissima Bl. shell, induces autophagy following apoptosis associated with PI3K/AKT/mTOR inhibition in HepG2 cells.

    PubMed

    Zhang, Haihui; Luo, Xiaoping; Ke, Jiajia; Duan, Yuqing; He, Yuanqing; Zhang, Di; Cai, Meihong; Sun, Guibo; Sun, Xiaobo

    2016-07-01

    Procyanidins from Castanea mollissima Bl. shell (CSPCs) induced autophagy and apoptosis in HepG2 cells and its mechanism remains to be examined. In this paper, autophagy was measured by the lipid modification of light chain-3 (LC3) and the formation of autophagosomes. Hoechst 33258 staining and flow cytometer analysis were used to measure apoptosis. The western blot analysis was used to examine the effects of CSPCs on the expression of LC3, PI3K, phosphorylation of AKT, mTOR, Bcl-2, Bad, Bax, BID and cleaved caspase 3 in HepG2 cells. The results showed that 3-methyladenine (3-MA) and apoptosis inhibitor (Z-VAD) could inhibited the death of HepG2 induced by CSPCs for 48h (150μg/mL). CSPCs induced the accumulation of autophagosomes and microtubule-associated proteins light chain 3-II (LC3-II, a marker of autophagy). P-AKT, PI3K and mTOR were significantly decreased on CSPCs exposure. However, these phenomena were not observed in the group pretreated with the autophagy inhibitor 3-MA and Z-VAD. CSPCs also induced the expression of Bad, Bax and Beclin-1 proteins and decreased the expression of Bcl-2, which was inhibited by 3-MA and Z-VAD. Moreover the apoptotic cell death could be inhibited by 3-MA. In addition, inhibition of LC3-II by siRNA-dependent knockdown attenuated the cleavage of caspase 3. These results suggested CSPCs could trigger autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhanced apoptosis in HepG2 cells which may be associated with the mitochondria-dependent signaling way. PMID:27261572

  9. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    SciTech Connect

    Yuan, Li; Wang, Jing; Xiao, Haifang; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2012-11-15

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer. Highlights:

  10. Apolipoprotein M regulates the orphan nuclear receptor LRH-1 gene expression through binding to its promoter region in HepG2 cells

    PubMed Central

    Pan, Yi; Zhou, Hou-gang; Zhou, Hui; Hu, Min; Tang, Li-jun

    2015-01-01

    Apolipoprotein M (ApoM) is predominantly located in the high-density lipoprotein in human plasma. It has been demonstrated that ApoM expression could be regulated by several crucial nuclear receptors that are involved in the bile acid metabolism. In the present study, by combining gene-silencing experiments, overexpression studies, and chromatin immunoprecipitation assays, we showed that ApoM positively regulated liver receptor homolog-1 (LRH-1) gene expression via direct binding to an LRH-1 promoter region (nucleotides −406/ −197). In addition, we investigated the effects of farnesoid X receptor agonist GW4064 on hepatic ApoM expression in vitro. In HepG2 cell cultures, both mRNA and protein levels of ApoM and LRH-1 were decreased in a time-dependent manner in the presence of 1 μM GW4064, and the inhibition effect was gradually attenuated after 24 hours. In conclusion, our findings present supportive evidence that ApoM is a regulator of human LRH-1 transcription, and further reveal the importance of ApoM as a critical regulator of bile acids metabolism. PMID:25987835

  11. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    USGS Publications Warehouse

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  12. The Antioxidant Properties and Inhibitory Effects on HepG2 Cells of Chicory Cultivated Using Three Different Kinds of Fertilizers in the Absence and Presence of Pesticides.

    PubMed

    Yook, Jin-Seon; Kim, Mina; Pichiah, Pichiah BalasubramanianTirupathi; Jung, Su-Jin; Chae, Soo-Wan; Cha, Youn-Soo

    2015-01-01

    The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using the MTT assay. The antioxidant properties of chicory were found to increase when cultivated with chemical fertilizer in the absence of pesticides. On the other hand, antioxidant capacity was higher in chicory cultivated with eco-developed fertilizer even in the presence of pesticides. Chicory grown using eco-developed or organic fertilizer was more effective in suppressing the proliferation of HepG2 cells when compared to chicory grown with chemical fertilizer. This effect was time dependent, regardless of treatment with or without pesticides. In conclusion, the antioxidant activity of chicory were affected by the presence or absence of pesticides. However, developed and organic fertilizers showed a strong anti-proliferative effect against HepG2 cells, regardless of the presence or absence of pesticides. PMID:26140439

  13. Two Trichothecene Mycotoxins from Myrothecium roridum Induce Apoptosis of HepG-2 Cells via Caspase Activation and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Ye, Wei; Chen, Yuchan; Li, Haohua; Zhang, Weimin; Liu, Hongxin; Sun, Zhanghua; Liu, Taomei; Li, Saini

    2016-01-01

    Trichothecene mycotoxins are a type of sesquiterpenoid produced by various kinds of plantpathogenic fungi. In this study, two trichothecene toxins, namely, a novel cytotoxic epiroridin acid and a known trichothecene, mytoxin B, were isolated from the endophytic fungus Myrothecium roridum derived from the medicinal plant Pogostemon cablin. The two trichothecene mytoxins were confirmed to induce the apoptosis of HepG-2 cells by cytomorphology inspection, DNA fragmentation detection, and flow cytometry assay. The cytotoxic mechanisms of the two mycotoxins were investigated by quantitative real time polymerase chain reaction, western blot, and detection of mitochondrial membrane potential. The results showed that the two trichothecene mycotoxins induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-3, up-regulation of bax gene expression, down-regulation of bcl-2 gene expression, and disruption of the mitochondrial membrane potential of the HepG-2 cell. This study is the first to report on the cytotoxic mechanism of trichothecene mycotoxins from M. roridum. This study provides new clues for the development of attenuated trichothecene toxins in future treatment of liver cancer. PMID:27322225

  14. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells.

    PubMed

    Hwang, Yong Pil; Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young; Nam, Myoung Soo; Lee, Hyun-Sun; Chung, Young Chul; Lee, Young Chun; Jeong, Hye Gwang

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. PMID:23319015

  15. Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study

    PubMed Central

    Piludu, Marco; Piras, Monica; Pichiri, Giuseppina; Coni, Pierpaolo; Orrù, Germano; Cabras, Tiziana; Messana, Irene; Faa, Gavino; Castagnola, Massimo

    2015-01-01

    Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases. PMID:25835495

  16. Dehydroepiandrosterone triggers autophagic cell death in human hepatoma cell line HepG2 via JNK-mediated p62/SQSTM1 expression.

    PubMed

    Vegliante, Rolando; Desideri, Enrico; Di Leo, Luca; Ciriolo, Maria Rosa

    2016-03-01

    Autophagy is a catabolic process that cancer cells usually exploit during stress conditions to provide energy by recycling organelles and proteins. Beyond its prosurvival role, it is well accepted that occurrence of autophagy is often associated with a particular type of programmed cell death known as autophagic cell death (ACD). Dehydroepiandrosterone (DHEA) is an endogenous hormone showing anticancer properties even if the underlying mechanisms are not fully clear yet. Here, we provide evidence that DHEA induces ACD in human hepatoma cell line, HepG2. Indeed, autophagy inhibitors (i.e. 3-methyladenine or Atg5 siRNA) significantly reduced the percentage of dead cells. DHEA induces p62-dependent autophagy, which turns detrimental and brings about death. DHEA stimulates reactive oxygen species-independent jun N-terminal kinase (JNK) phosphoactivation and the treatment with JNK inhibitor reduces p62 mRNA levels, as well as DHEA-induced ACD. The transcription factor nuclear factor (erythroid-derived-2)-like-2 (Nrf2) constitutes the link between JNK and p62 since its migration to the nucleus is suppressed by JNK inhibitor and its inhibition through a dominant negative Nrf2 plasmid transfection decreases p62 protein levels. Overall, our data indicate that DHEA induces ACD in HepG2 via a JNK-Nrf2-p62 axis. Thus, DHEA could represent a new appealing drug for eliminating tumor cells through autophagy particularly in apoptosis-resistant cases. PMID:26762228

  17. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins

    PubMed Central

    Klasić, Marija; Krištić, Jasminka; Korać, Petra; Horvat, Tomislav; Markulin, Dora; Vojta, Aleksandar; Reiding, Karli R.; Wuhrer, Manfred; Lauc, Gordan; Zoldoš, Vlatka

    2016-01-01

    Changes in N-glycosylation of plasma proteins are observed in many types of cancer, nevertheless, few studies suggest the exact mechanism involved in aberrant protein glycosylation. Here we studied the impact of DNA methylation on the N-glycome in the secretome of the HepG2 cell line derived from hepatocellular carcinoma (HCC). Since the majority of plasma glycoproteins originate from the liver, the HepG2 cells represent a good model for glycosylation changes in HCC that are detectable in blood, which is an easily accessible analytic material in a clinical setting. Two different concentrations of 5-aza-2′-deoxycytidine (5-aza-2dC) differentially affected global genome methylation and induced different glycan changes. Around twenty percent of 84 glyco-genes analysed changed expression level after the 5-aza-2dC treatment as a result of global genome hypomethylation. A correlation study between the changes in glyco-gene expression and the HepG2 glycosylation profile suggests that the MGAT3 gene might be responsible for the glycan changes consistently induced by both doses of 5-aza-2dC. Core-fucosylated tetra-antennary structures were decreased in quantity likely as a result of hypomethylated MGAT3 gene promoter followed by increased expression of this gene. PMID:27073020

  18. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins.

    PubMed

    Klasić, Marija; Krištić, Jasminka; Korać, Petra; Horvat, Tomislav; Markulin, Dora; Vojta, Aleksandar; Reiding, Karli R; Wuhrer, Manfred; Lauc, Gordan; Zoldoš, Vlatka

    2016-01-01

    Changes in N-glycosylation of plasma proteins are observed in many types of cancer, nevertheless, few studies suggest the exact mechanism involved in aberrant protein glycosylation. Here we studied the impact of DNA methylation on the N-glycome in the secretome of the HepG2 cell line derived from hepatocellular carcinoma (HCC). Since the majority of plasma glycoproteins originate from the liver, the HepG2 cells represent a good model for glycosylation changes in HCC that are detectable in blood, which is an easily accessible analytic material in a clinical setting. Two different concentrations of 5-aza-2'-deoxycytidine (5-aza-2dC) differentially affected global genome methylation and induced different glycan changes. Around twenty percent of 84 glyco-genes analysed changed expression level after the 5-aza-2dC treatment as a result of global genome hypomethylation. A correlation study between the changes in glyco-gene expression and the HepG2 glycosylation profile suggests that the MGAT3 gene might be responsible for the glycan changes consistently induced by both doses of 5-aza-2dC. Core-fucosylated tetra-antennary structures were decreased in quantity likely as a result of hypomethylated MGAT3 gene promoter followed by increased expression of this gene. PMID:27073020

  19. Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies.

    PubMed

    Estevez, Hector; Garcia-Lidon, J Carlos; Luque-Garcia, Jose L; Camara, Carmen

    2014-10-01

    Selenium is an essential element that plays an important role in many biological functions. Many studies have reported the potential beneficial effects of Se intake for cancer therapy and prevention, which are not only dose-dependent but also closely related to the properties of specific selenospecies. Selenium nanoparticles are considered a novel selenium compound with excellent antioxidant properties; however, little is known about the properties of selenium nanoparticles in comparison to other well-studied selenospecies. Here, we combined different independent bioanalytical approaches to carry out a comparison between the effects of selenium nanoparticles and other selenocompounds (inorganic and organic selenospecies) using an in-vitro model. The bioanalytical characterization of different parameters such as cell proliferation, apoptosis and cell cycle pattern on HepG2 cells has shown the unique properties of this relatively novel compound that support and complete prior evidences for future applications as chemotherapeutic agent. PMID:25038448

  20. Protective Effect of Tyrosol and S-Adenosylmethionine against Ethanol-Induced Oxidative Stress of Hepg2 Cells Involves Sirtuin 1, P53 and Erk1/2 Signaling.

    PubMed

    Stiuso, Paola; Bagarolo, Maria Libera; Ilisso, Concetta Paola; Vanacore, Daniela; Martino, Elisa; Caraglia, Michele; Porcelli, Marina; Cacciapuoti, Giovanna

    2016-01-01

    Oxidative stress plays a major role in ethanol-induced liver damage, and agents with antioxidant properties are promising as therapeutic opportunities in alcoholic liver disease. In the present work, we investigated the effect of S-adenosylmethionine (AdoMet), Tyrosol (Tyr), and their combination on HepG2 cells exposed to ethanol exploring the potential molecular mechanisms. We exposed HepG2 cells to 1 M ethanol for 4 and 48 h; thereafter, we recorded a decreased cell viability, increase of intracellular reactive oxygen species (ROS) and lipid accumulation, and the release into culture medium of markers of liver disease such as triacylglycerol, cholesterol, transaminases, albumin, ferritin, and homocysteine. On the other hand, AdoMet and Tyrosol were able to attenuate or antagonize these adverse changes induced by acute exposure to ethanol. The protective effects were paralleled by increased Sirtuin 1 protein expression and nuclear translocation and increased ERK1/2 phosphorylation that were both responsible for the protection of cells from apoptosis. Moreover, AdoMet increased p53 and p21 expression, while Tyrosol reduced p21 expression and enhanced the expression of uncleaved caspase 3 and 9, suggesting that its protective effect may be related to the inhibition of the apoptotic machinery. Altogether, our data show that AdoMet and Tyrosol exert beneficial effects in ethanol-induced oxidative stress in HepG2 cells and provide a rationale for their potential use in combination in the prevention of ethanol-induced liver damage. PMID:27128904

  1. Protective Effect of Tyrosol and S-Adenosylmethionine against Ethanol-Induced Oxidative Stress of Hepg2 Cells Involves Sirtuin 1, P53 and Erk1/2 Signaling

    PubMed Central

    Stiuso, Paola; Bagarolo, Maria Libera; Ilisso, Concetta Paola; Vanacore, Daniela; Martino, Elisa; Caraglia, Michele; Porcelli, Marina; Cacciapuoti, Giovanna

    2016-01-01

    Oxidative stress plays a major role in ethanol-induced liver damage, and agents with antioxidant properties are promising as therapeutic opportunities in alcoholic liver disease. In the present work, we investigated the effect of S-adenosylmethionine (AdoMet), Tyrosol (Tyr), and their combination on HepG2 cells exposed to ethanol exploring the potential molecular mechanisms. We exposed HepG2 cells to 1 M ethanol for 4 and 48 h; thereafter, we recorded a decreased cell viability, increase of intracellular reactive oxygen species (ROS) and lipid accumulation, and the release into culture medium of markers of liver disease such as triacylglycerol, cholesterol, transaminases, albumin, ferritin, and homocysteine. On the other hand, AdoMet and Tyrosol were able to attenuate or antagonize these adverse changes induced by acute exposure to ethanol. The protective effects were paralleled by increased Sirtuin 1 protein expression and nuclear translocation and increased ERK1/2 phosphorylation that were both responsible for the protection of cells from apoptosis. Moreover, AdoMet increased p53 and p21 expression, while Tyrosol reduced p21 expression and enhanced the expression of uncleaved caspase 3 and 9, suggesting that its protective effect may be related to the inhibition of the apoptotic machinery. Altogether, our data show that AdoMet and Tyrosol exert beneficial effects in ethanol-induced oxidative stress in HepG2 cells and provide a rationale for their potential use in combination in the prevention of ethanol-induced liver damage. PMID:27128904

  2. Construction of Expression Vector for Anti-Alpha-Fetoprotein Gene and Its Inhibition Effects on Alpha-Fetoprotein Positive Hepg2 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Zhang, Hui

    As research previously demonstrated, suppression of AFP expression or its biological activities might inhibit the proliferation of AFP positive human hepatocellular carcinoma cells. In this study, we constructed an anti-AFP gene vector and transfected it to HepG2 cells. RT-PCR showed AFP gene expression in the transfected cells was reduced. MTT assay suggested the proliferation of the transfected cells was also inhibited comparing with the untransfected cells. This result provides a new insight into AFP as the target for preventing and treating hepatocellular carcinoma.

  3. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent. PMID:24871657

  4. Platycodin D, a triterpenoid saponin from Platycodon grandiflorum, induces G2/M arrest and apoptosis in human hepatoma HepG2 cells by modulating the PI3K/Akt pathway.

    PubMed

    Qin, Hua; Du, Xiaoyan; Zhang, Yan; Wang, Ru

    2014-02-01

    Platycodin D (PD) is one of triterpenoid saponins isolated from the roots of Platycodon grandiflorum. In the present study, we aimed at examining the antitumor activity of PD against human hepatoma HepG2 cancer cells and investigated the underlying molecular mechanisms of PD-induced apoptosis in HepG2 cells. PD significantly inhibited the proliferation of HepG2 cells in a concentration- and time-dependent manner as assessed by MTT assay. Besides, flow cytometry revealed that PD treatment obviously induced G2/M arrest and apoptosis in HepG2 cells. Moreover, Western blot analysis demonstrated that PD induced downregulation of protein expression of PI3K, P-Akt, and Bcl-2, whereas cleaved products of caspase-3 and -9 and PARP were upregulated by PD treatment. Furthermore, the protein level of P-p38, p-38, and Bax in PD-treated HepG2 cells was kept unchanged. In addition, the inhibitors of z-DEVD-fmk (a specific caspase-3 inhibitor) and z-LEHD-fmk (a specific caspase-9 inhibitor), but not z-IETD-fmk (a specific caspase-8 inhibitor), could significantly block PD-triggered apoptosis, whereas LY294002 (Akt inhibitor) could significantly enhance PD-induced apoptosis in HepG2 cells. Thus, the increasing ratio of Bax to Bcl-2, activation of caspase-3 and -9 and PARP, and inactivation of the PI3K/Akt signaling pathway significantly enhanced PD-induced apoptosis in HepG2 cells. Our results suggest that PD induced cell cycle G2/M arrest and apoptosis in HepG2 cells by decreasing PI3K/Akt pathway. Therefore, we propose that PD has potential as a liver cancer chemotherapeutic agent. PMID:24048756

  5. Suppressor of Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in Hepatic HepG2 Cell Line.

    PubMed

    Ruscica, Massimiliano; Ricci, Chiara; Macchi, Chiara; Magni, Paolo; Cristofani, Riccardo; Liu, Jingwen; Corsini, Alberto; Ferri, Nicola

    2016-02-12

    The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2(SOCS3)) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2(SOCS3) express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fatty-acid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2(SOCS3) show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr(896) and Akt Ser(473) in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner. PMID:26668321

  6. Metabolism of an Alkylated Polycyclic Aromatic Hydrocarbon 5-Methylchrysene in Human Hepatoma (HepG2) Cells.

    PubMed

    Huang, Meng; Zhang, Li; Mesaros, Clementina; Hackfeld, Linda C; Hodge, Richard P; Blair, Ian A; Penning, Trevor M

    2015-10-19

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. C1-chrysenes are representative PAHs present in the crude oil and have been detected in contaminated sea food in amounts that exceed their permissible safety thresholds. We describe the metabolism of the most carcinogenic C1-chrysene regioisomer, 5-methylchrysene (5-MC), in human HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. 5-MC-tetraol, a signature metabolite of the diol-epoxide pathway, was identified as reported previously. Novel O-monosulfonated-5-MC-catechol isomers and O-monomethyl-O-monosulfonated-5-MC-catechol were discovered, and evidence for their precursor ortho-quinones was obtained. The identities of O-monosulfonated-5-MC-1,2-catechol, O-monomethyl-O-monosulfonated-5-MC-1,2-catechol, and 5-MC-1,2-dione were validated by comparison to authentic synthesized standards. Dual metabolic activation of 5-MC involving the formation of bis-electrophiles, i.e., a mono-diol-epoxide and a mono-ortho-quinone within the same structure, bis-diol-epoxides, and bis-ortho-quinones is reported for the first time. Evidence was also obtained for minor metabolic conversion of 5-MC to form monohydroxylated-quinones and bis-phenols. The identification of 5-MC-tetraol, O-monosulfonated-5-MC-1,2-catechol, O-monomethyl-O-monosulfonated-5-MC-1,2-catechol, and 5-MC-1,2-dione supports metabolic activation of 5-MC by P450 and AKR isozymes followed by metabolic detoxification of the ortho-quinone through interception of redox cycling by COMT and SULT isozymes. The major metabolites, O-monosulfonated-catechols and tetraols, could be used as biomarkers of human exposure to 5-MC resulting from oil spills. PMID:26395544

  7. Dual regulation of glycogen metabolism by insulin and insulin-like growth factors in human hepatoma cells (HEP-G2). Analysis with an anti-receptor monoclonal antibody.

    PubMed Central

    Verspohl, E J; Roth, R A; Vigneri, R; Goldfine, I D

    1984-01-01

    Insulin and the insulinlike growth factors (IGF-I and IGF-II) are members of a family of hormones that regulate the metabolism and growth of many tissues. Cultured HEP-G2 cells (a minimal deviation human hepatoma) have insulin receptors and respond to insulin by increasing their glycogen metabolism. In the present study with HEP-G2 cells, we used 125I-labeled insulin, IGF-I, and IGF-II to identify distinct receptors for each hormone by competition-inhibition studies. Unlabeled insulin was able to inhibit 125I-IGF-I binding but not 125I-IGF-II binding. A mouse monoclonal antibody to the human insulin receptor that inhibits insulin binding and blocks insulin action inhibited 75% of 125I-insulin binding, but inhibited neither 125I-IGF-I nor 125I-IGF-II binding. When glycogen metabolism was studied, insulin stimulated [3H]glucose incorporation into glycogen in a biphasic manner; one phase that was 20-30% of the maximal response occurred over 1-100 pM, and the other phase occurred over 100 pM-100 nM. The anti-receptor monoclonal antibody inhibited the first phase of insulin stimulation but not the second. Both IGF-I and IGF-II stimulated [3H]glucose incorporation over the range of 10 pM-10 nM; IGF-I was three to fivefold more potent. The monoclonal antibody, however, was without effect on IGF regulation of glycogen metabolism. Therefore, these studies indicate that insulin as well as the IGFs at physiological concentrations regulate glycogen metabolism in HEP-G2 cells. Moreover, this regulation of glycogen metabolism is mediated by both the insulin receptor and the IGF receptors. PMID:6090502

  8. Insulin decreases the secretion of apoB-100 from hepatic HepG2 cells but does not decrease the secretion of apoB-48 from intestinal CaCo-2 cells.

    PubMed

    Allister, Emma M; Pal, Sebely; Thomson, Andrew M; Helmerhorst, Erik; Mamo, John C L

    2004-01-01

    We compared the acute effect of insulin on the human colonic intestinal epithelial cell line CaCo-2 and the transformed human hepatic cell line HepG2. Over 24 h, 100 nM and 10 microM insulin significantly inhibited the secretion of apolipoprotein (apo) B-100 from HepG2 cells to 63 and 49% of control, respectively. Insulin had no effect on the secretion of apoB-48 from CaCo-2 cells. There was no effect of insulin on the cholesterol ester or free cholesterol concentrations in HepG2 or CaCo-2 cells. HepG2 and CaCo-2 cells bound insulin with high affinity, leading to similar stimulation of insulin receptor protein tyrosine kinase activation. Protein kinase C or mitogen-activated protein kinase activity in the presence or absence of insulin was not correlated with apoB-48 production in CaCo-2 cells. Therefore, insulin acutely decreases the secretion of apoB-100 in hepatic HepG2 cells, but does not acutely modulate the production or secretion of apoB-48 from CaCo-2 intestinal cells. PMID:15591776

  9. Alcohol depletes coenzyme-Q(10) associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Nandakumar, Krishna S; Patki, Pralhad S

    2012-12-01

    Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP(450) 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP(450) 2E1. The results showed that ethanol at 100mM concentration caused 40% cytotoxicity at 72h as determined by MTT assay. The incorporation of labeled [2-(14)C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24h incubation, whereas incorporation of labeled [2-(14)C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q(10) which is detrimental for cell viability. But vitamin E (10mM) could partially restore coenzyme-Q(10) and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained intact. Alanine amino transferase activity was increased by 4.85 folds in cells treated with ethanol confirming hepatocyte damage. Hence, it is inferred that ethanol induced cytotoxicity in HepG2 cells due to coenzyme-Q(10) depletion and increased TNF-alpha secretion. PMID:22841563

  10. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity.

    PubMed

    Xuan, Jiekun; Chen, Si; Ning, Baitang; Tolleson, William H; Guo, Lei

    2016-08-01

    The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity. PMID:26477383

  11. A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Wang, Lei; Ma, Shenghua; Jiang, Zhaohua; Yang, Bin; Han, Xiaojun; Liu, Shaoqin

    2015-02-01

    In this work, the highly oriented CdS-coated-ZnO nanorod arrays have been fabricated. The CdS-coated-ZnO nanorod arrays show high electrochemiluminescence intensity, fast response and good stability. All of the desirable properties spur the development of an ECL immunosensor for the detection of the liver cancer cell line (HepG2 cells). Two successive modification steps of 3-aminopropyltriethoxysilane and gold nanoparticles onto the CdS-coated-ZnO nanorod arrays not only offer the substrates for conjugation of antibody, but also effectively enhance the ECL signal, resulting in production of the high performance ECL immunosensor. The ECL immunosensor exhibits a sensitive response to HepG2 cells in a linear range of 300-10 000 cells mL-1 with a detection limit of 256 cells mL-1. The proposed sensor characteristics of high specificity, good reproducibility and remarkable stability will provide a sensitive, selective, and convenient approach for the clinical detection of cancer cells.In this work, the highly oriented CdS-coated-ZnO nanorod arrays have been fabricated. The CdS-coated-ZnO nanorod arrays show high electrochemiluminescence intensity, fast response and good stability. All of the desirable properties spur the development of an ECL immunosensor for the detection of the liver cancer cell line (HepG2 cells). Two successive modification steps of 3-aminopropyltriethoxysilane and gold nanoparticles onto the CdS-coated-ZnO nanorod arrays not only offer the substrates for conjugation of antibody, but also effectively enhance the ECL signal, resulting in production of the high performance ECL immunosensor. The ECL immunosensor exhibits a sensitive response to HepG2 cells in a linear range of 300-10 000 cells mL-1 with a detection limit of 256 cells mL-1. The proposed sensor characteristics of high specificity, good reproducibility and remarkable stability will provide a sensitive, selective, and convenient approach for the clinical detection of cancer cells

  12. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    PubMed Central

    Xiang, Guang-Hua; Hong, Guo-Bin; Wang, Yong; Cheng, Du; Zhou, Jing-Xing; Shuai, Xin-Tao

    2013-01-01

    Objective To evaluate the cytotoxicity of poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PDLLA) nanovesicles loaded with doxorubicin (DOX) and the photosensitizer hematoporphyrin monomethyl ether (HMME) on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms. Methods PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME), and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX), HMME (PEG-PDLLA-HMME), or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined. Results Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA) were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with PEG-PDLLA-DOX-HMME, PEG-PDLLA-HMME, PEG-PDLLA-DOX, and PEG-PDLLA, respectively. The apoptotic rate was significantly higher in PEG-PDLLA-DOX-HMME-treated cells compared with PEG-PDLLA-DOX- and PEG-PDLLA-HMME-treated cells. Conclusion The PEG-PDLLA nanovesicle, a drug delivery carrier, can be simultaneously loaded with two anticancer drugs (hydrophilic DOX and hydrophobic HMME). PEG-PDLLA-DOX-HMME cytotoxicity to HepG2 cells is significantly higher than the PEG-PDLLA nanovesicle loaded with DOX or HMME alone, and DOX and HMME have a

  13. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.

    PubMed

    Dai, Qinsheng; Yin, Qian; Wei, Libin; Zhou, Yuxin; Qiao, Chen; Guo, Yongjian; Wang, Xiaotang; Ma, Shiping; Lu, Na

    2016-08-01

    Metabolic alteration in cancer cells is one of the most conspicuous characteristics that distinguish cancer cells from normal cells. In this study, we investigated the influence and signaling ways of oroxylin A affecting cancer cell energy metabolism under hypoxia. The data showed that oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells. Moreover, oroxylin A inhibited HIF-1α expression and its stability. The downstream targets (PDK1, LDHA, and HK II), as well as their mRNA levels were also suppressed by oroxylin A under hypoxia. The silencing or the overexpression of HIF-1α assays suggested that HIF-1α is required for metabolic effect of oroxylin A in HepG2 cells during hypoxia. Furthermore, oroxylin A could reduce the expression of complex III in mitochondrial respiratory chain, and then decrease the accumulation of ROS at moderate concentrations (0-50 µM) under hypoxia, which was benefit for its inhibition on glycolytic activity by decreasing ROS-mediated HIF-1 expression. Besides, oroxylin A didn't cause the loss of MMP under hypoxia and had no obvious effects on the expression of OXPHOS complexes, suggesting that oroxylin A did not affect mitochondrial mass at the moderate stress of oroxylin A. The suppressive effect of oroxylin A on glycolysis led to a significantly repress of ATP generation, for ATP generation mostly depends on glycolysis in HepG2 cells. This study revealed a new aspect of glucose metabolism regulation of oroxylin A under hypoxia, which may contribute to its new anticancer mechanism. © 2015 Wiley Periodicals, Inc. PMID:26259145

  14. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    SciTech Connect

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester; Marinelli, Raúl Alberto

    2012-10-15

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessed by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS. ► Aquaporin

  15. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells.

    PubMed

    Joseph, Stesha C; Blackman, Brittany A; Kelly, Megan L; Phillips, Mariana; Beaury, Michael W; Martinez, Ivonne; Parronchi, Christopher J; Bitsaktsis, Constantine; Blake, Allan D; Sabatino, David

    2014-09-01

    The solid-phase synthesis, structural characterization, and biological evaluation of a small library of cancer-targeting peptides have been determined in HepG2 hepatoblastoma cells. These peptides are based on the highly specific Pep42 motif, which has been shown to target the glucose-regulated protein 78 receptors overexpressed and exclusively localized on the cell surface of tumors. In this study, Pep42 was designed to contain varying lengths (3-12) of poly(arginine) sequences to assess their influence on peptide structure and biology. Peptides were effectively synthesized by 9-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis, in which the use of a poly(ethylene glycol) resin provided good yields (14-46%) and crude purities >95% as analyzed by liquid chromatography-mass spectrometry. Peptide structure and biophysical properties were investigated using circular dichroism spectroscopy. Interestingly, peptides displayed secondary structures that were contingent on solvent and length of the poly(arginine) sequences. Peptides exhibited helical and turn conformations, while retaining significant thermal stability. Structure-activity relationship studies conducted by flow cytometry and confocal microscopy revealed that the poly(arginine) derived Pep42 sequences maintained glucose-regulated protein 78 binding on HepG2 cells while exhibiting cell translocation activity that was contingent on the length of the poly(arginine) strand. In single dose (0.15 mM) and dose-response (0-1.5 mM) cell viability assays, peptides were found to be nontoxic in human HepG2 liver cancer cells, illustrating their potential as safe cancer-targeting delivery agents. PMID:24931620

  16. Hydrophobicity of Antifungal β-Peptides Is Associated with Their Cytotoxic Effect on In Vitro Human Colon Caco-2 and Liver HepG2 Cells

    PubMed Central

    Mora-Navarro, Camilo; Méndez-Vega, Janet; Caraballo-León, Jean; Lee, Myung-ryul; Palecek, Sean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2016-01-01

    The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial β-peptides are peptidomimetics of natural antimicrobial peptides (AMPs), which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the β-peptide’s effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various β-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the β-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic β-peptide was 2–3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC). The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied β-peptide against C. albicans. PMID:26992117

  17. Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2

    PubMed Central

    Wen, Xinyu; Wang, Ling; Gao, Jing; Wang, Zi; Zhang, Chunyan; Zhang, Pengjun; Lu, Chengrong

    2016-01-01

    Although both oxidative stress and microRNAs (miRNAs) play vital roles in physiological and pathological processes, little is known about the interactions between them. In this study, we first described the regulation of H2O2 in cell viability, proliferation, cycle, and apoptosis of human hepatocellular carcinoma cell line HepG2. Then, miRNAs expression was profiled after H2O2 treatment. The results showed that high concentration of H2O2 (600 μM) could decrease cell viability, inhibit cell proliferation, induce cell cycle arrest, and finally promote cell apoptosis. Conversely, no significant effects could be found under treatment with low concentration (30 μM). miRNAs array analysis identified 131 differentially expressed miRNAs (125 were upregulated and 6 were downregulated) and predicted 13504 putative target genes of the deregulated miRNAs. Gene ontology (GO) analysis revealed that the putative target genes were associated with H2O2-induced cell growth arrest and apoptosis. The subsequent bioinformatics analysis indicated that H2O2-response pathways, including MAPK signaling pathway, apoptosis, and pathways in cancer and cell cycle, were significantly affected. Overall, these results provided comprehensive information on the biological function of H2O2 treatment in HepG2 cells. The identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer. PMID:27597883

  18. Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2.

    PubMed

    Luo, Yuan; Wen, Xinyu; Wang, Ling; Gao, Jing; Wang, Zi; Zhang, Chunyan; Zhang, Pengjun; Lu, Chengrong; Duan, Lianning; Tian, Yaping

    2016-01-01

    Although both oxidative stress and microRNAs (miRNAs) play vital roles in physiological and pathological processes, little is known about the interactions between them. In this study, we first described the regulation of H2O2 in cell viability, proliferation, cycle, and apoptosis of human hepatocellular carcinoma cell line HepG2. Then, miRNAs expression was profiled after H2O2 treatment. The results showed that high concentration of H2O2 (600 μM) could decrease cell viability, inhibit cell proliferation, induce cell cycle arrest, and finally promote cell apoptosis. Conversely, no significant effects could be found under treatment with low concentration (30 μM). miRNAs array analysis identified 131 differentially expressed miRNAs (125 were upregulated and 6 were downregulated) and predicted 13504 putative target genes of the deregulated miRNAs. Gene ontology (GO) analysis revealed that the putative target genes were associated with H2O2-induced cell growth arrest and apoptosis. The subsequent bioinformatics analysis indicated that H2O2-response pathways, including MAPK signaling pathway, apoptosis, and pathways in cancer and cell cycle, were significantly affected. Overall, these results provided comprehensive information on the biological function of H2O2 treatment in HepG2 cells. The identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer. PMID:27597883

  19. Safflower yellow B suppresses HepG2 cell injury induced by oxidative stress through the AKT/Nrf2 pathway.

    PubMed

    Ma, Zhongying; Li, Caixia; Qiao, Yi; Lu, Chengtao; Li, Jiankang; Song, Wei; Sun, Jin; Zhai, Xiaohu; Niu, Jing; Ren, Qian; Wen, Aidong

    2016-03-01

    Oxidative stress plays an important role in the pathogenesis of various liver diseases. Safflower yellow B (SYB) has been reported to protect the brain against damage induced by oxidative stress; however, whether SYB can also protect hepatocytes from oxidative stress remains unknown. In the present study, to determine whether pre-treatment with SYB reduces hydrogen peroxide (H2O2)‑induced oxidative stress in HepG2 cells, we investigated H2O2-induced oxidative damage to HepG2 cells treated with or without SYB. Cell viability was measured by MTT assay and cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay. The activities of the antioxidant enzymes, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were determined using respective kits. Intracellular reactive oxygen species (ROS) accumulation in the HepG2 cells was monitored using the fluorescent marker, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). Cell apoptosis was evaluated by determining the activity of caspase-3 and by Annexin V/propidium iodide (PI) double staining. Protein expression levels were measured by western blot analysis, and the levels of related cellular kinases were also determined. H2O2 induced pronounced injury to the HepG2 cells, as evidenced by increased levels of malondialdehyde (MDA) and ROS, the decreased activity of SOD and GSH-Px, the increased activitation of caspase-3 and cell apoptosis, and the loss of mitochondrial membrane potential. SYB significantly inhibited the damaging effects of H2O2, indicating that it protected the cells against H2O2-induced oxidative damage. Moreover, pre-treatment with SYB increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1) which are peroxiredoxins. SYB also significantly increased the phosphorylation of AKT. However, this inductive effect was blunted in the presence of the AKT inhibitor, LY294002. The findings of our study

  20. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    SciTech Connect

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  1. Safflower yellow B suppresses HepG2 cell injury induced by oxidative stress through the AKT/Nrf2 pathway

    PubMed Central

    MA, ZHONGYING; LI, CAIXIA; QIAO, YI; LU, CHENGTAO; LI, JIANKANG; SONG, WEI; SUN, JIN; ZHAI, XIAOHU; NIU, JING; REN, QIAN; WEN, AIDONG

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of various liver diseases. Safflower yellow B (SYB) has been reported to protect the brain against damage induced by oxidative stress; however, whether SYB can also protect hepatocytes from oxidative stress remains unknown. In the present study, to determine whether pre-treatment with SYB reduces hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells, we investigated H2O2-induced oxidative damage to HepG2 cells treated with or without SYB. Cell viability was measured by MTT assay and cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay. The activities of the antioxidant enzymes, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were determined using respective kits. Intracellular reactive oxygen species (ROS) accumulation in the HepG2 cells was monitored using the fluorescent marker, 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA). Cell apoptosis was evaluated by determining the activity of caspase-3 and by Annexin V/propidium iodide (PI) double staining. Protein expression levels were measured by western blot analysis, and the levels of related cellular kinases were also determined. H2O2 induced pronounced injury to the HepG2 cells, as evidenced by increased levels of malondialdehyde (MDA) and ROS, the decreased activity of SOD and GSH-Px, the increased activitation of caspase-3 and cell apoptosis, and the loss of mitochondrial membrane potential. SYB significantly inhibited the damaging effects of H2O2, indicating that it protected the cells against H2O2-induced oxidative damage. Moreover, pre-treatment with SYB increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1) which are peroxiredoxins. SYB also significantly increased the phosphorylation of AKT. However, this inductive effect was blunted in the presence of the AKT inhibitor, LY294002. The findings of our study

  2. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    SciTech Connect

    Feng Gong; Li Ying; Bai Yansheng

    2011-03-15

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularin induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.

  3. Identification of toxicological biomarkers of di(2-ethylhexyl) phthalate in proteins secreted by HepG2 cells using proteomic analysis.

    PubMed

    Choi, Seonyoung; Park, So-Young; Jeong, Ji; Cho, Eunkyung; Phark, Sohee; Lee, Min; Kwak, Dongsub; Lim, Ji-Youn; Jung, Woon-Won; Sul, Donggeun

    2010-05-01

    The effects of di(2-ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 microM) for 24 or 48 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 microM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose- and time-dependent fashion. Proteomic analysis using two different pI ranges (4-7 and 6-9) and large size 2-DE revealed the presence of 2776 protein spots. A total of 35 (19 up- and 16 down-regulated) proteins were identified as biomarkers of DEHP by ESI-MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up- or down-regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin-1, and haptoglobin-related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP. PMID:20198640

  4. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: in vitro evaluation, cell cycle analysis and QSAR studies.

    PubMed

    Abreu, Rui M V; Ferreira, Isabel C F R; Calhelha, Ricardo C; Lima, Raquel T; Vasconcelos, M Helena; Adega, Filomena; Chaves, Raquel; Queiroz, Maria-João R P

    2011-12-01

    Hepatocellular carcinoma (HCC) is a highly complex cancer, resistant to commonly used treatments and new therapeutic agents are urgently needed. A total of thirty-two thieno[3,2-b]pyridine derivatives of two series: methyl 3-amino-6-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates (1a-1t) and methyl 3-amino-6-[(hetero)arylethynyl]thieno[3,2-b]pyridine-2-carboxylates (2a-2n), previously prepared by some of us, were evaluated as new potential anti-HCC agents by studying their in vitro cell growth inhibition on human HepG2 cells and hepatotoxicity using a porcine liver primary cell culture (PLP1). The presence of amino groups linked to a benzene moiety emerges as the key element for the anti-HCC activity. The methyl 3-amino-6-[(3-aminophenyl)ethynyl]thieno[3,2-b]pyridine-2-carboxylate (2f) is the most potent compound presenting GI(50) values on HepG2 cells of 1.2 μM compared to 2.9 μM of the positive control ellipticine, with no observed hepatotoxicity (PLP1 GI(50) > 125 μM against 3.3 μM of ellipticine). Moreover this compound changes the cell cycle profile of the HepG2 cells, causing a decrease in the % of cells in the S phase and a cell cycle arrest in the G2/M phase. QSAR studies were also performed and the correlations obtained using molecular and 1D descriptors revealed the importance of the presence of amino groups and hydrogen bond donors for anti-HCC activity, and hydrogen bond acceptors for hepatotoxicity. The best correlations were obtained with 3D descriptors belonging to different subcategories for anti-HCC activity and hepatotoxicity, respectively. These results point to different molecular mechanisms of action of the compounds in anti-HCC activity and hepatotoxicity. This work presents some promising thieno[3,2-b]pyridine derivatives for potential use in the therapy of HCC. These compounds can also be used as scaffolds for further synthesis of more potent analogs. PMID:22014996

  5. Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Al-Fatlawi, Atheer Abbas; Al-Fatlawi, Anees Abbas; Irshad, Md; Zafaryab, Md; Rizvi, M Moshahid Alam; Ahmad, Ayaz

    2014-01-01

    Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48 h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay (p ≤ 0.03). PA inhibited the growth of HepG2 cells in a concentration dependent manner (p ≤ 0.04). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down- regulation of Bcl-2 gene (p ≤ 0.01). At the IC50 (2.49 mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up- regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes. PMID:24870784

  6. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    SciTech Connect

    Dykens, James A. Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  7. Up-Regulation of CYP2C19 Expression by BuChang NaoXinTong via PXR Activation in HepG2 Cells

    PubMed Central

    Wu, Xiao-Ying; Wang, Huan; Qu, Qiang; Tan, Shen-Lan; Ruan, Jun-Shan; Qu, Jian; Chen, Hui

    2016-01-01

    Background Cytochrome P450 2C19 (CYP2C19) is an important drug-metabolizing enzyme (DME), which is responsible for the biotransformation of several kinds of drugs such as proton pump inhibitors, platelet aggregation inhibitors and antidepressants. Previous studies showed that Buchang NaoXinTong capsules (NXT) increased the CYP2C19 metabolic activity in vitro and enhanced the antiplatelet effect of clopidogrel in vivo. However, the underlying molecular mechanism remained unclear. In the present study, we examined whether Pregnane X receptor (PXR) plays a role in NXT-mediated regulation of CYP2C19 expression. Methods We applied luciferase assays, real-time quantitative PCR (qPCR), Western blotting and cell-based analysis of metabolic activity experiments to investigate the NXT regulatory effects on the CYP2C19 promoter activity, the mRNA/ protein expression and the metabolic activity. Results Our results demonstrated that NXT significantly increased the CYP2C19 promoter activity when co-transfected with PXR in HepG2 cells. Mutations in PXR responsive element abolished the NXT inductive effects on the CYP2C19 promoter transcription. Additionally, NXT incubation (150 and 250μg/mL) also markedly up-regulated endogenous CYP2C19 mRNA and protein levels in PXR-transfected HepG2 cells. Correspondingly, NXT leaded to a significant enhancement of the CYP2C19 catalytic activity in PXR-transfected HepG2 cells. Conclusion In summary, this is the first study to suggest that NXT could induce CYP2C19 expression via PXR activation. PMID:27467078

  8. Enhanced Cytotoxicity of Biomolecules Loaded Metallic Silver Nanoparticles Against Human Liver (HepG2) and Prostate (PC3) Cancer Cell Lines.

    PubMed

    Prasannaraj, Govindaraj; Sahi, Shivendra Vikram; Ravikumar, Samandham; Venkatachalam, Perumal

    2016-05-01

    Green nanoparticle synthesis was achieved using environmentally acceptable plant extracts reducing and capping agents. The present study was based on assessments to the anticancer activities to determine the effect of synthesized silver nanoparticles (AgNPs) from three medicinal plants on human liver (HepG2) and prostate (PC3) cancer cell lines. The synthesis of AgNPs using Plumbago zeylanica (Pz), Semecarpus anacardium (Sa) and Terminalia arjuna (Ta) plant extracts in the reaction mixture was monitored by UV-visible spectroscopy. FTIR results clearly illustrated that the plant extracts containing prominent peaks of functional groups and biomolecules viz., tannins, phenols, flavonoids and triterpenoids those act as capping agents and involved in the stabilization of the synthesised silver nanoparticles. Synthesized AgNPs were spherical and cuboid in shape which is determined by SEM. Average size of the AgNPs were between 80-98, 60-95 and 34-70 nm for PzAgNPs, SaAgNPs and TaAgNPs, respectively. Further, the synthesized AgNPs were characterized by XRD, EDX, DLS and Zeta potential analysis. Moreover, the synthesized AgNPs exhibited a dose-dependent cytotoxicity against human liver and prostate cancer cell lines. The inhibitory concentration (IC50) values of HepG2, PC3 and Vero cells were found to be 70.97, 58.61, 96.41; 10.04, 42.77, 83.86; and 28.42, 41.78, 69.48 μg/ml for PzAgNPs, SaAgNPs and TaAgNPs at 48 h incubation. An induction of apoptosis was confirmed by DNA fragmentation, Hoechst, Rhodamine and AO/EtBr staining. The present results strongly suggested that the AgNPs synthesized using P. zeylanica, S. anacardium and T. arjuna extracts showed potential anticancer activity of HepG2 and PC3 cell lines. PMID:27483851

  9. Involvement of endoplasmic reticulum stress and p53 in lncRNA MEG3-induced human hepatoma HepG2 cell apoptosis.

    PubMed

    Chen, Rui-Pei; Huang, Zhen-Lun; Liu, Li-Xuan; Xiang, Meng-Qi; Li, Guo-Ping; Feng, Jia-Lin; Liu, Bin; Wu, Ling-Fei

    2016-09-01

    Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. Although downregulation of lncRNA maternally expressed gene 3 (MEG3) has been identified in several types of cancers, little is known concerning its biological role and regulatory mechanism in hepatoma. Our previous studies demonstrated that MEG3 induces apoptosis in a p53-dependent manner. The aim of the present study was to determine whether endoplasmic reticulum (ER) stress is involved in MEG3‑induced apoptosis. Recombinant lentiviral vectors containing MEG3 (Lv‑MEG3) were constructed and transfected into HepG2 cells. A 3‑(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, RT‑PCR, flow cytometry, western blot analysis, immunofluorescence and immunohistochemistry were applied. Transfected HepG2 cells were also transplanted into nude mice, and the tumor growth curves were determined. The results showed that the recombinant lentivirus of MEG3 was transfected successfully into the HepG2 cells and the expression level of MEG3 was significantly increased. Ectopic expression of MEG3 inhibited HepG2 cell proliferation in vitro and in vivo, and also induced apoptosis. Ectopic expression of MEG3 increased ER stress‑related proteins 78‑kDa glucose‑regulated protein (GRP78), inositol‑requiring enzyme 1 (IRE1), RNA‑dependent protein kinase‑like ER kinase (PERK), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), caspase‑3, as well as p53 and NF‑κB expression accompanied by NF‑κB translocation from the cytoplasm to the nucleus. Furthermore, inhibition of NF‑κB with Bay11‑7082 decreased p53 expression in the MEG3‑transfected cells. These results indicate that MEG3 inhibits cell proliferation and induces apoptosis, partially via the activation of the ER stress and p53 pathway, in which NF‑κB signaling is required for p53 activation in ER stress. PMID:27432655

  10. Analgesic-antitumor peptide inhibits the migration and invasion of HepG2 cells by an upregulated VGSC β1 subunit.

    PubMed

    Guo, Guili; Cui, Yong; Chen, Hong; Zhang, Lili; Zhao, Mingyi; Chen, Bin; Zhang, Jinghai; Liu, Yanfeng

    2016-03-01

    Analgesic-antitumor peptide (AGAP), one of the scorpion toxin polypeptides, has been shown to have an antitumor activity. Recombinant AGAP (rAGAP) was shown to affect the migration and invasion of HepG2 cells via a voltage-gated sodium channel (VGSC) β1 subunit. The VGSC β1 subunit was validated as a cell adhesion molecule (CAM) in human hepatocellular carcinoma (HCC) cell lines. rAGAP suppresses the migration and invasion of HepG2 cells but has no significant effect of human liver HL7702 cells without β1 subunit expression. rAGAP inhibits the migration and invasion of the cells when the VGSC β1 subunit is overexpressed in HL7702 cells. To explain these findings, VGSC β1 subunit messenger RNA (mRNA) and protein levels were measured. The β1 subunit protein level was upregulated in a dose-dependent manner following treatment with rAGAP while there was no significant change in the mRNA level, so rAGAP might be an active component of the VGSC β1 subunit. PMID:26419595

  11. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis.

    PubMed

    Li, Yun-Lan; Zhang, Jiali; Min, Dong; Hongyan, Zhou; Lin, Niu; Li, Qing-Shan

    2016-01-01

    Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V--fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction on

  12. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis

    PubMed Central

    Li, Yun-lan; Zhang, Jiali; Min, Dong; Hongyan, Zhou; Lin, Niu; Li, Qing-shan

    2016-01-01

    Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V—fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction

  13. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    SciTech Connect

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  14. Constitutive Effects of Lead on Aryl Hydrocarbon Receptor Gene Battery and Protection by β-carotene and Ascorbic Acid in Human HepG2 Cells.

    PubMed

    Darwish, Wageh S; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Ishizuka, Mayumi

    2016-01-01

    Lead (Pb) is an environmental pollutant that can get entry into human body through contaminated foods, drinks, and inhaled air leading to severe biological consequences, and has been responsible for many deaths worldwide. The objectives of this study were 1st to investigate the modulatory effects of environmentally relevant concentrations of Pb on AhR gene battery, which is controlling xenobiotics metabolism. 2nd, trials to reduce Pb-induced adverse effects were done using some phytochemicals like β-carotene or ascorbic acid. Human hepatoma (HepG2) cell lines were exposed to a wide range of Pb concentrations varying from physiological to toxic levels (0 to 10 mg/L) for 24 h. High Pb concentrations (1 to 10 mg/L) significantly reduced phase I (CYP1A1 and 1A2) and phase II (UGT1A6 and NQO1) xenobiotic metabolizing enzyme mRNA expression in a mechanistic manner through the AhR regulation pathway. Additionally, these Pb concentrations induced oxidative stress in HepG2 cells in terms of production of reactive oxygen species (ROS) and induced heme oxygenase-1 mRNA expression in a concentration-dependent phenomenon. Coexposure of HepG2 cells to physiological concentrations of some micronutrients, like β-carotene (10 μM) or ascorbic acid (0.1 mM), along with Pb (1 mg/L) for 24 h significantly reduced the levels of ROS production and recovered AhR mRNA expression into the normal levels. Thus, consumption of foods rich in these micronutrients may help to reduce the adverse effects of lead in areas with high levels of pollution. PMID:26630500

  15. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells

    PubMed Central

    WEI, JINGCHEN; LIN, LIANKU; SU, XIAOJIAN; QIN, SHAOYAN; XU, QING; TANG, ZUNIAN; DENG, YAN; ZHOU, YUEHAN; HE, SONGQING

    2014-01-01

    Boehmeria nivea (Linn.) Gaudich of the Urticaceae family is a perennial ratoon herbal plant, the root of which is used in traditional Chinese medicine and possesses a variety of pharmacological properties. The 20% ethanol Boehmeria nivea root extract was shown to exert an anti-hepatitis B virus (HBV) effect in vitro and in vivo; however, whether the Boehmeria nivea leaf (BNL) extract possesses similar properties has not been determined. In this study, we aimed to investigate the anti-HBV effects of the BNL extract in HepG2.2.15 cells transfected with human HBV DNA. Our results demonstrated that the secretion of HBsAg and HBeAg was reduced in HepG2.2.15 cells treated with the BNL extract, without any recorded cytotoxic effects. In addition, the chloroform fraction (CF) and ethyl acetate fraction (EAF) of BNL were shown to be more potent compared to the other fractions: CF (100 mg/l) inhibited the secretion of HBsAg by 94.00±1.78% [inhibitory concentration 50 (IC50) = 20.92 mg/l] and that of HBeAg by 100.19±0.35% (IC50=19.67 mg/l) after 9 days of treatment. Similarly, EAF (200 mg/l) inhibited the secretion of HBsAg by 89.95±2.26% (IC50=39.90 mg/l) and that of HBeAg by 98.90±1.42% (IC50=36.45 mg/l). Furthermore, we observed that the content of HBV DNA in the medium secreted by the HepG2.2.15 cells was significantly decreased under CF (100 mg/l) or EAF (200 mg/l) treatment. Thus, we concluded that the BNL extracts exhibited anti-HBV activity, with CF and EAF being the most potent among the fractions. PMID:24649087

  16. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  17. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379.

    PubMed

    Haenisch, Sierk; Laechelt, Sandra; Bruckmueller, Henrike; Werk, Anneke; Noack, Andreas; Bruhn, Oliver; Remmler, Cornelia; Cascorbi, Ingolf

    2011-08-01

    microRNAs (miRNAs), which contribute to the post-transcriptional processing through 3'-untranslated region-interference, have been shown to be involved in the regulation of ATP-binding cassette (ABC) membrane transporters. The aim of this study was to investigate whether ABCC2, an important efflux transporter for various endogenous and exogenous compounds at several compartment barriers, is subject to miRNA-mediated post-transcriptional gene regulation. We screened the expression of 377 human miRNAs in HepG2 cells after 48 h of treatment with 5 μM rifampicin [a pregnane X receptor (PXR) ligand] or vehicle using reverse transcription-polymerase chain reaction-based low-density arrays. Specific miRNA, ABCC2 mRNA, and protein expression were monitored in HepG2 cells undergoing rifampicin treatment for 72 h. Loss- and gain-of-function experiments and reporter gene assays were performed for further confirmation. Highly deregulated miRNAs compared with in silico data revealed miRNA (miR) 379 as candidate miRNA targeting ABCC2 mRNA. Under rifampicin treatment, ABCC2 mRNA increased significantly, with a maximal fold change of 1.56 ± 0.43 after 24 h. In addition, miR-379 increased (maximally 4.10 ± 1.33-fold after 48 h), whereas ABCC2 protein decreased with a maximal fold change of 0.47 ± 0.08 after 72 h. In contrast, transfection of miR-379 inhibitor led to an elevation of ABCC2 protein expression after rifampicin incubation for 48 h. We identify a miRNA negatively regulating ABCC2 on the post-transcriptional level and provide evidence that this miRNA impedes overexpression of ABCC2 protein after a PXR-mediated external transcriptional stimulus in HepG2 cells. PMID:21540293

  18. Phospholipase D activation mediates cobalamin-induced downregulation of Multidrug Resistance-1 gene and increase in sensitivity to vinblastine in HepG2 cells.

    PubMed

    Marguerite, Véronique; Gkikopoulou, Effrosyni; Alberto, Jean-Marc; Guéant, Jean-Louis; Merten, Marc

    2013-02-01

    Failure of cancer chemotherapy due to multidrug resistance is often associated with altered Multidrug Resistance-1 gene expression. Cobalamin is the cofactor of methionine synthase, a key enzyme of the methionine cycle which synthesizes methionine, the precursor of cell S-adenosyl-methionine synthesis. We previously showed that cobalamin was able to down-regulate Multidrug Resistance-1 gene expression. Herein we report that this effect occurs through cobalamin-activation of phospholipase D activity in HepG2 cells. Cobalamin-induced down-regulation of Multidrug Resistance-1 gene expression was similar to that induced by the phospholipase D activator oleic acid and was negatively modulated by the phospholipase D inhibitor n-butanol. Cobalamin increased cell S-adenosyl-methionine content, which is the substrate for phosphatidylethanolamine-methyltransferase-dependent phosphatidylcholine production. We showed that cobalamin-induced increase in cell phosphatidylcholine production was phosphatidylethanolamine-methyltransferase-dependent. Oleic acid-dependent activation of phospholipase D was accompanied by an increased sensitivity to vinblastine of HepG2 cells while n-butanol enhanced the resistance of the cells to vinblastine. These data indicate that cobalamin mediates down-regulation of Multidrug Resistance-1 gene expression through increased S-adenosyl-methionine and phosphatidylcholine productions and phospholipase D activation. This points out phospholipase D as a potential target to down-regulate Multidrug Resistance-1 gene expression for improving chemotherapy efficacy. PMID:23032700

  19. Assessment of oxidative stress responses and the cytotoxic and genotoxic potential of the herbicide tembotrione in HepG2 cells.

    PubMed

    Žunec, Suzana; Kašuba, Vilena; Pavičić, Ivan; Marjanović, Ana Marija; Tariba, Blanka; Milić, Mirta; Kopjar, Nevenka; Pizent, Alica; Vrdoljak, Ana Lucić; Rozgaj, Ružica; Želježić, Davor

    2016-08-01

    Tembotrione is a triketone herbicide, usually used for post-emergence weed control in corn. Currently, there is little or no published data on its genotoxicity to human cells either in vitro or in vivo. This study evaluated the impact of acute (4 and 24 h) exposure to low concentrations of tembotrione [corresponding to the acceptable daily intake (0.17 μg/mL), residential exposure level (0.002 μg/mL) and acceptable operator exposure level (0.0012 μg/mL)] on human hepatocellular carcinoma cell line HepG2, using biomarkers of oxidative stress, CCK-8 colorimetric assay for cell viability, alkaline comet assay, and cytokinesis-block micronucleus "cytome" assay. Tembotrione applied at concentrations likely to be encountered in occupational and residential exposures induced cytogenetic outcomes in non-target cells despite non-significant changes in the values of oxidative stress biomarkers. We assume that the observed effects were mainly the consequence of impaired metabolic pathways in HepG2 cells due to the inhibition of the enzyme 4-hydroxyphenyl-pyruvate-dioxygenase by tembotrione, which possibly caused a depletion of folate levels leading to excess formation of nuclear buds in the affected cells. Regardless of the fact that tembotrione was previously reported negative for mutations and chromosome aberrations in vitro, our findings call for more precaution in its use. PMID:27255802

  20. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    PubMed Central

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  1. Effects of Cationic Microbubble Carrying CD/TK Double Suicide Gene and αVβ3 Integrin Antibody in Human Hepatocellular Carcinoma HepG2 Cells

    PubMed Central

    Li, Jiale; Zhou, Ping; Li, Lan; Zhang, Yan; Shao, Yang; Tang, Li; Tian, Shuangming

    2016-01-01

    Objective Hepatocellular carcinoma (HCC), mostly derived from hepatitis or cirrhosisis, is one of the most common types of liver cancer. T-cell mediated immune response elicited by CD/TK double suicide gene has shown a substantial antitumor effect in HCC. Integrin αVβ3 over expresssion has been suggested to regulate the biology behavior of HCC. In this study, we investigated the strategy of incorporating CD/TK double suicide gene and anti-αVβ3 integrin monoclonal antibodies into cationic microbubbles (CMBsαvβ3), and evaluated its killing effect in HCC cells. Methods To improve the transfection efficiency of targeted CD/TK double suicide gene, we adopted cationic microbubbles (CMBs), a cationic delivery agent with enhanced DNA-carrying capacity. The ultrasound and high speed shearing method was used to prepare the non-targeting cationic microbubbles (CMBs). Using the biotin-avidin bridge method, αVβ3 integrin antibody was conjugated to CMBs, and CMBsαvβ3 was generated to specifically target to HepG2 cells. The morphology and physicochemical properties of the CMBsαvβ3 was detected by optical microscope and zeta detector. The conjugation of plasmid and the antibody in CMBsαvβ3 were examined by immunofluorescent microscopy and flow cytometry. The binding capacities of CMBsαvβ3 and CMBs to HCC HepG2 and normal L-02 cells were compared using rosette formation assay. To detect EGFP fluorescence and examine the transfection efficiencies of CMBsαvβ3 and CMBs in HCC cells, fluorescence microscope and contrast-enhanced sonography were adopted. mRNA and protein level of CD/TK gene were detected by RT-PCR and Western blot, respectively. To evaluate the anti-tumor effect of CMBsαvβ3, HCC cells with CMBsαvβ3 were exposed to 5-flurocytosine / ganciclovir (5-FC/GCV). Then, cell cycle distribution after treatment were detected by PI staining and flow cytometry. Apoptotic cells death were detected by optical microscope and assessed by MTT assay and TUNEL

  2. Protective effects of N-acetylcysteine on cisplatin-induced oxidative stress and DNA damage in HepG2 cells

    PubMed Central

    WANG, FUGEN; LIU, SHOURONG; SHEN, YIQIN; ZHUANG, RANGXIAO; XI, JIANJUN; FANG, HONGYING; PAN, XUWAN; SUN, JINGJING; CAI, ZHAOBIN

    2014-01-01

    Hepatocyte injury is a common pathological effect of cisplatin (CDDP) in various solid tumor therapies. Thus, strategies for minimizing CDDP toxicity are of great clinical interest. N-acetylcysteine (NAC), a known antioxidant, is often used as an antidote for acetaminophen overdose in the clinic due to its ability to increase the levels of glutathione (GSH). In the present study, the aim was to investigate the protective effects of NAC against CDDP-induced apoptosis in human-derived HepG2 cells. The results showed that upon exposure of the cells to CDDP, oxidative stress was significantly induced. DNA damage caused by CDDP was associated with cell apoptosis. NAC pre-treatment significantly reduced the malondialdehyde (MDA) levels and ameliorated the GSH modulation induced by CDDP. NAC also protected against DNA damage and cell apoptosis. These data suggest the protective role of NAC against hepatocyte apoptosis induced by CDDP was achieved through the inhibition of DNA damage and alterations of the redox status in human derived HepG2 cells. These results indicate that NAC administration may protect against CDDP-induced damage. PMID:25371760

  3. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, Hp Vasantha

    2015-11-01

    Despite their strong role in human health, poor bioavailability of flavonoids limits their biological effects in vivo. Enzymatically catalyzed acylation of fatty acids to flavonoids is one of the approaches of increasing cellular permeability and hence, biological activities. In this study, six long chain fatty acid esters of quercetin-3-O-glucoside (Q3G) acylated enzymatically and were used for determining their antiproliferative action in hepatocellular carcinoma cells (HepG2) in comparison to precursor compounds and two chemotherapy drugs (Sorafenib and Cisplatin). Fatty acid esters of Q3G showed significant inhibition of HepG2 cell proliferation by 85 to 90% after 6 h and 24 h of treatment, respectively. The cell death due to these novel compounds was associated with cell-cycle arrest in S-phase and apoptosis observed by DNA fragmentation, fluorescent microscopy and elevated caspase-3 activity and strong DNA topoisomerase II inhibition. Interestingly, Q3G esters showed significantly low toxicity to normal liver cells than Sorafenib (P < 0.05), a chemotherapy drug for hepatocellular carcinoma. Among all, oleic acid ester of Q3G displayed the greatest antiproliferation action and a high potential as an anti-cancer therapeutic. Overall, the results of the study suggest strong antiproliferative action of these novel food-derived compounds in treatment of cancer. PMID:25681471

  4. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2

    SciTech Connect

    Rudzok, S.; Schlink, U.; Herbarth, O.; Bauer, M.

    2010-05-01

    The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-like enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.

  5. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. PMID:27377964

  6. Atmospheric Pressure Room Temperature Plasma Jets Facilitate Oxidative and Nitrative Stress and Lead to Endoplasmic Reticulum Stress Dependent Apoptosis in HepG2 Cells

    PubMed Central

    Meng, Dandan; Lei, Qian; Li, Yin; Deng, Pengyi; Chen, Mingjie; Tu, Min; Lu, Xinpei; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Atmospheric pressure room temperature plasma jets (APRTP-Js) that can emit a mixture of different active species have recently found entry in various medical applications. Apoptosis is a key event in APRTP-Js-induced cellular toxicity, but the exact biological mechanisms underlying remain elusive. Here, we explored the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in APRTP-Js-induced apoptosis using in vitro model of HepG2 cells. We found that APRTP-Js facilitated the accumulation of ROS and RNS in cells, which resulted in the compromised cellular antioxidant defense system, as evidenced by the inactivation of cellular antioxidants including glutathione (GSH), superoxide dismutase (SOD) and catalase. Nitrotyrosine and protein carbonyl content analysis indicated that APRTP-Js treatment caused nitrative and oxidative injury of cells. Meanwhile, intracellular calcium homeostasis was disturbed along with the alteration in the expressions of GRP78, CHOP and pro-caspase12. These effects accumulated and eventually culminated into the cellular dysfunction and endoplasmic reticulum stress (ER stress)-mediated apoptosis. The apoptosis could be markedly attenuated by N-acetylcysteine (NAC, a free radical scavenger), which confirmed the involvement of oxidative and nitrative stress in the process leading to HepG2 cell apoptosis by APRTP-Js treatment. PMID:24013954

  7. Metabolic stability and inhibitory effect of O-methylated theaflavins on H2O2-induced oxidative damage in human HepG2 cells.

    PubMed

    Tanaka, Yoshihisa; Kirita, Masanobu; Abe, Yuko; Miyata, Satoshi; Tagashira, Motoyuki; Kanda, Tomomasa; Maeda-Yamamoto, Mari

    2014-01-01

    Seven new O-methylated theaflavins (TFs) were synthesized by using O-methyltransferase from an edible mushroom. Using TFs and O-methylated TFs, metabolic stability in pooled human liver S9 fractions and inhibitory effect on H(2)O(2)-induced oxidative damage in human HepG2 cells were investigated. In O-methylation of theaflavin 3'-O-gallate (TF3'G), metabolic stability was potentiated by an increase in the number of introduced methyl groups. O-methylation of TF3,3'G did not affect metabolic stability, which was likely because of a remaining 3-O-galloyl group. The inhibitory effect on oxidative damage was assessed by measuring the viability of H(2)O(2)-damaged HepG2 cells treated with TFs and O-methylated TFs. TF3,3'G and O-methylated TFs increased cell viabilities significantly compared with DMSO, which was the compound vehicle (p < 0.05), and improved to approximately 100%. Only TF3'G did not significantly increase cell viability. It was suggested that the inhibitory effect on H(2)O(2)-induced oxidative damage was potentiated by O-methylation or O-galloylation of TFs. PMID:25229848

  8. Wild Edible Mushrooms from Turkey as Possible Anticancer Agents on HepG2 Cells Together with Their Antioxidant and Antimicrobial Properties.

    PubMed

    Sadi, Gokhan; Kaya, Abdullah; Yalcin, Hicret Asli; Emsen, Bugrahan; Kocabas, Aytac; Kartal, Deniz Irtem; Altay, Ahmet

    2016-01-01

    This study was designed to reveal cell growth inhibitory potential of six different edible mushrooms: Ramaria flava, Agrocybe molesta, Volvopluteus gloiocephalus, Lactarius deliciosus, Bovista plumbea, and Tricholoma terreum on HepG2 cells together with their antioxidant and antibacterial power. Methanolic extracts of V gloiocephalus and aqueous extracts of R. flava had the most potential cytotoxic effects over HepG2 cells. The best results for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities were obtained from both aqueous and methanolic extracts of R. flava. Methanolic extracts of T. terreum (IC50 = 1.62 mg/mL) and aqueous extracts of B. plumbea (IC50 = 0.49 mg/mL) showed maximum metal chelating activity. The highest reducing capacities were observed among the methanolic extracts of R. flava (EC50 = 1.65 mg/mL) and aqueous extracts of B. plumbea (EC50 = 1.71 mg/ mL). High-performance liquid chromatography analysis revealed the presence of many phenolic compounds in macrofungi; gallic acid and p-coumaric acid were the two main phenolics identified in all extracts. Antibacterial studies indicated that all six tested mushrooms showed antibacterial activity on at least three microorganisms. These results indicate that different extracts of the investigated mushrooms have considerable cytotoxic, antioxidant, and antibacterial properties and may be utilized as a promising source of therapeutics. PMID:27279448

  9. Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes.

    PubMed

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-03-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  10. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells.

    PubMed

    Rong Guo, Xing; Li Wang, Xiao; Chen, Yun; Hong Yuan, Ya; Mei Chen, Yong; Ding, Yan; Fang, Juan; Jiao Bian, Liu; Sheng Li, Dong

    2016-07-15

    Angiopoietin-like protein 8 (ANGPTL8)/betatrophin, a newly identified protein, is primarily expressed in the liver and regulates the glucose metabolic transition during fasting and re-feeding in mice with or without insulin resistance. These findings strongly suggest that ANGPTL8/betatrophin could be a novel glucose-lowering candidate medicine for type 2 diabetes. However, the molecular mechanisms by which ANGPTL8/betatrophin regulates glucose metabolism are poorly understood in human. Two sub-clones of HepG2 cells, ANGPTL8/betatrophin knockouts and ANGPTL8/betatrophin over-expressors, were established using TALENs (transcription activator-like effector nucleases) and through stable transfection, respectively. Over-expression of ANGPTL8/betatrophin enhanced the insulin-stimulated activation of the Akt-GSK3β or Akt-FoxO1 pathway, no matter whether the cells were present with insulin resistance or not. In contrast, knockout of ANGPTL8/betatrophin did not affect the Akt-GSK3β or Akt-FoxO1 pathway unless the HepG2 cells were preset with insulin resistance. Our results suggest that ANGPTL8/betatrophin might play an important role in glucose metabolism in the context of insulin resistance. PMID:26387753

  11. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells

    PubMed Central

    Kim, Jin-Kyoung; Jang, Hae-Dong

    2014-01-01

    The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK. PMID:25007817

  12. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2).

    PubMed

    Roopan, Selvaraj Mohana; Kumar, Subramanian Hari Subbish; Madhumitha, Gunabalan; Suthindhiran, Krishnamurthy

    2015-02-01

    In this paper, we have established for the first time, the terrific efficiency of aqueous extract of agricultural waste dried peel of sugar apple (Annona squamosa) in the rapid synthesis of stable SnO2 nanoparticles. In topical years, the deployment of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of various nanoparticles. In this paper, we have studied the potential of SnO2 nanoparticles assembly using agricultural waste source for the first time. The synthesized nanoparticles were characterized and confirmed as SnO2 nanoparticles by using UV-visible spectroscopy, XRD, and TEM analysis. The motivation of this study was to examine cytotoxicity study of SnO2 nanoparticles against hepatocellular carcinoma cell line (HepG2). SnO2 nanoparticles inhibited the cell proliferation in a dose- and time-dependent manner with an IC50 value of 148 μg/mL. The treated cells showed an altered morphology with increasing concentrations of SnO2 nanoparticles. Our result shows that the SnO2 nanoparticles exhibit moderate cytotoxicity towards the hepatocellular carcinoma (HepG2) at tested concentrations. PMID:25410804

  13. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  14. Green Tea (−)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-01-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The −970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  15. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation.

    PubMed

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  16. Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2).

    PubMed

    Hasan, Syed Kazim; Siddiqi, Aisha; Nafees, Sana; Ali, Nemat; Rashid, Summya; Ali, Rashid; Shahid, Ayaz; Sultana, Sarwat

    2016-05-01

    Hepatocellular carcinoma is one of the most common lethal diseases worldwide and there is no effective treatment till date. Natural products derived from the plants play an important role in chemoprevention and act as therapeutic antitumor agents. Licorice is a plant that has been used in food and medicine for the treatment of various diseases. 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid obtained from the roots of licorice plant, is reported to possess various pharmacological properties such as antitumor and antiinflammatory activities. The present study was designed to elucidate the chemopreventive effect of 18β-GA through antiinflammation, antiproliferation, and induction of apoptosis in human hepatoma cell line HepG2. 18β-GA significantly inhibits the proliferation of HepG2 cell without affecting the normal liver cell line (Chang's). In the present study, 18β-GA increased the formation of reactive oxygen species, nitric oxide production, and loss of mitochondrial membrane potential, suggesting the involvement of 18β-GA in apoptosis which was also confirmed by assessing the markers involved in apoptosis like caspase-3, caspase-9, Bax:Bcl-2 ratio, and cleaved PARP. 18β-GA also downregulated the expression of inflammatory proteins such as NF-κB, iNOS, and COX-2. Keeping these data into consideration, our results suggest that 18β-GA may be used as a chemopreventive agent in liver cancer. PMID:27116616

  17. Intrinsic apoptosis and NF-κB signaling are potential molecular targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo.

    PubMed

    Murugan, R Senthil; Priyadarsini, R Vidya; Ramalingam, K; Hara, Y; Karunagaran, D; Nagini, S

    2010-11-01

    Antiproliferative and apoptosis inducing effects of black tea polyphenols (Polyphenon-B) on HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo were investigated. Viability of HepG2 cells was evaluated by the MTT assay, and apoptosis by AO-EB and DAPI staining, cell cycle analysis, and annexin V-PI assay. For the in vivo study, male Sprague-Dawley rats treated with dimethylaminoazobenzene (DAB) (0.06%) were used. The expression of Bcl-2 and NF-κB family members were analyzed by immunoblotting. Administration of Polyphenon-B induced dose-dependent inhibition of growth of HepG2 cells and reduced tumor incidence in DAB administered animals. HepG2 cells also exhibited morphological features characteristic of apoptotic cell death. In addition, administration of Polyphenon-B increased the expression of Bax, tBid, Smac/Diablo, cytochrome C, Apaf-1, caspases, and IκB with PARP cleavage, and decreased the expression of Bcl-2, Bcl-xL, pBad, NF-κB, p-IκB-α, IKKβ and Ub in both HepG2 cells and in DAB-treated animals. These results provide evidence that Polyphenon-B effectively inhibits proliferation and induces apoptosis both in vitro and in vivo by inhibiting NF-κB, and inducing intrinsic apoptosis by modulating the expression of a network of interrelated molecules eventually culminating in caspase-mediated cell death. PMID:20828598

  18. Effect of sex hormones on n-3 polyunsaturated fatty acid biosynthesis in HepG2 cells and in human primary hepatocytes.

    PubMed

    Sibbons, Charlene M; Brenna, J Thomas; Lawrence, Peter; Hoile, Samuel P; Clarke-Harris, Rebecca; Lillycrop, Karen A; Burdge, Graham C

    2014-01-01

    Female humans and rodents have been shown to have higher 22:6n-3 status and synthesis than males. It is unclear which sex hormone is involved. We investigated the specificity of the effects of physiological concentrations of sex hormones in vitro on the mRNA expression of genes involved in polyunsaturated fatty acid (PUFA) biosynthesis and on the conversion of [d5]-18:3n-3 to longer chain fatty acids. Progesterone, but not 17α-ethynylestradiol or testosterone, increased FADS2, FADS1, ELOVl 5 and ELOVl 2 mRNA expression in HepG2 cells, but only FADS2 in primary human hepatocytes. In HepG2 cells, these changes were accompanied by hypomethylation of specific CpG loci in the FADS2 promoter. Progesterone, not 17α-ethynylestradiol or testosterone, increased conversion of [d5]-18:3n-3 to 20:5n-3, 22:5n-3 and 22:6n-3. These findings show that progesterone increases n-3 PUFA biosynthesis by up-regulating the mRNA expression of genes involved in this pathway, possibly via changes in the epigenetic regulation of FADS2. PMID:24411721

  19. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells.

    PubMed

    Lim, Jung Dae; Lee, Sung Ryul; Kim, Taeseong; Jang, Seon-A; Kang, Se Chan; Koo, Hyun Jung; Sohn, Eunsoo; Bak, Jong Phil; Namkoong, Seung; Kim, Hyoung Kyu; Song, In Sung; Kim, Nari; Sohn, Eun-Hwa; Han, Jin

    2015-02-01

    Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions. PMID:25690093

  20. Hypolipidemic activity of Taraxacum mongolicum associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Liu, Yan-Jin; Shieh, Po-Chuen; Lee, Jang-Chang; Chen, Fu-An; Lee, Chih-Hung; Kuo, Sheng-Chu; Ho, Chi-Tang; Kuo, Daih-Huang; Huang, Li-Jiau; Way, Tzong-Der

    2014-08-01

    This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects. PMID:24903219

  1. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells.

    PubMed

    Yan, Fujie; Zhang, Ji; Zhang, Lingxia; Zheng, Xiaodong

    2016-01-01

    Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis. PMID:26467565

  2. Suppression of USP18 Potentiates the Anti-HBV Activity of Interferon Alpha in HepG2.2.15 Cells via JAK/STAT Signaling

    PubMed Central

    Li, Lin; Lei, Qing-song; Zhang, Shu-Jun; Kong, Ling-na; Qin, Bo

    2016-01-01

    Ubiquitin-specific protease 18 (USP18, also known as UBP43) has both interferon stimulated gene 15 (ISG15) dependent and ISG15-independent functions. By silencing the expression of USP18 in HepG2.2.15 cells, we studied the effect of USP18 on the anti-HBV activity of IFN-α and demonstrated that knockdown of USP18 significantly Inhibited the HBV expression and increased the expression of ISGs. Levels of hepatitis B virus surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), HBV DNA and intracellular hepatitis B virus core antigen (HBcAg) were dramatically decreased with or without treatment of indicated dose of IFN-α. Suppression of USP18 activated the JAK/STAT signaling pathway as shown by the increased and prolonged expression of phosphorylated signal transducer and activator of transcription 1 (p-STAT1) in combination with enhanced expression of several interferon stimulated genes (ISGs). Our results indicated that USP18 modulates the anti-HBV activity of IFN-α via activation of the JAK/STAT signaling pathway in Hepg2.2.15 cells. PMID:27227879

  3. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  4. Nimbolide, a neem limonoid abrogates canonical NF-κB and Wnt signaling to induce caspase-dependent apoptosis in human hepatocarcinoma (HepG2) cells.

    PubMed

    Kavitha, Krishnamurthy; Vidya Priyadarsini, Ramamurthi; Anitha, Prabukumar; Ramalingam, Krishnan; Sakthivel, Ramasamy; Purushothaman, Gempuraj; Singh, Abhishek Kumar; Karunagaran, Devarajan; Nagini, Siddavaram

    2012-04-15

    Nuclear factor kappa B (NF-κB), an oncogenic signaling factor plays a critical role in the development and progression of various cancers. The objective of this study was to investigate the effect of nimbolide, a neem derived tetranortriterpenoid on NF-κB signaling and its downstream events - Wnt/β-catenin activation and apoptosis evasion in human hepatocarcinoma (HepG2) cells by evaluating NF-κB family members (NF-κB-p50, p65, IκB-α, p-IκB-α, and IKKβ), members of Wnt signaling (GSK-3β and β-catenin), and intrinsic apoptosis (Bcl-2, Bax, cytochrome c, Smac/DIABLO, caspase-3, and caspase-9). Our results demonstrate that nimbolide concurrently abrogates canonical NF-κB and Wnt signaling and induces intrinsic apoptosis in HepG2 cells. These data suggest that phytochemicals such as nimbolide that can target multiple steps along the NF-κB signaling circuit are promising candidates for future phytochemical-based mechanistic pathway targeted anticancer regimens. PMID:22327045

  5. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells.

    PubMed

    Shang, Wei; Liu, Jie; Chen, Ruini; Ning, Rui; Xiong, Jing; Liu, Wei; Mao, Zhao; Hu, Gang; Yang, Jian

    2016-05-01

    1. This study investigated the mechanisms of the decreases of carboxylesterases (CES) and cytochrome P4503A4 (CYP3A4) and the enzymatic activities induced by fluoxetine (FLX) in HepG2 cells. We found that FLX decreased the carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) expression and the hydrolytic activity. 2. FLX decreased the pregnane X receptor (PXR) expression which regulated the target genes such as CYP3A4, whereas increased the differentiated embryonic chondrocyte-expressed gene 1 (DEC1) expression. 3. FLX repressed the PXR at transcriptional level. 4. Overexpression of PXR alone increased the expression of CES1, CES2, and CYP3A4 and attenuated the decreases of CES1, CES2, and CYP3A4 induced by FLX. On the contrary, knockdown of PXR alone decreased the expression of CES1, CES2, and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 5. Knockdown of DEC1 alone increased the expression of PXR and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 6. Taken together, the decreases of CES and CYP3A4 expression and enzymatic activities induced by FLX are through decreasing PXR and increasing DEC1 in HepG2 cells. PMID:26340669

  6. The Protective Effects of Isoliquiritigenin and Glycyrrhetinic Acid against Triptolide-Induced Oxidative Stress in HepG2 Cells Involve Nrf2 Activation

    PubMed Central

    Cao, Ling-Juan; Li, Huan-De; Yan, Miao; Li, Zhi-Hua; Gong, Hui; Jiang, Pei; Deng, Yang; Fang, Ping-Fei; Zhang, Bi-Kui

    2016-01-01

    Triptolide (TP), an active ingredient of Tripterygium wilfordii Hook f., possesses a wide range of biological activities. Oxidative stress likely plays a role in TP-induced hepatotoxicity. Isoliquiritigenin (ISL) and glycyrrhetinic acid (GA) are potent hepatoprotection agents. The aim of the present study was to investigate whether Nrf2 pathway is associated with the protective effects of ISL and GA against TP-induced oxidative stress or not. HepG2 cells were treated with TP (50 nM) for 24 h after pretreatment with ISL and GA (5, 10, and 20 μM) for 12 h and 24 h, respectively. The results demonstrated that TP treatment significantly increased ROS levels and decreased GSH levels. Both ISL and GA pretreatment decreased ROS and meanwhile enhanced intracellular GSH content. Additionally, TP treatment obviously decreased the protein expression of Nrf2 and its target genes including HO-1 and MRP2 except NQO1. Moreover, both ISL and GA displayed activities as inducers of Nrf2 and increased the expression of HO-1, NQO1, and MRP2. Taken together the current data confirmed that ISL and GA could activate the Nrf2 antioxidant response in HepG2 cells, increasing the expression of its target genes which may be partly associated with their protective effects in TP-induced oxidative stress. PMID:26904149

  7. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells

    PubMed Central

    Kim, Ok-Kyung; Jun, Woojin; Lee, Jeongmin

    2016-01-01

    In this study, we quantitated kaempferol in water extract from Cudrania tricuspidata leaves (CTL) and investigated its effects on endoplasmic reticulum (ER) stress-induced inflammation and insulin resistance in HepG2 cells. The concentration of kaempferol in the CTL was 5.07 ± 0.08 mg/g. The HepG2 cells were treated with 300 µg/mL of CTL, 500 µg/mL of CTL, 1.5 µg/mL of kaempferol or 2.5 µg/mL of kaempferol, followed immediately by stimulation with 100 nM of thapsigargin for ER stress induction for 24 h. There was a marked increase in the activation of the ER stress and inflammation response in the thapsigargin-stimulated control group. The CTL treatment interrupted the ER stress response and ER stress-induced inflammation. Kaempferol partially inhibited the ER stress response and inflammation. There was a significant increase in serine phosphorylation of insulin receptor substrate (IRS)-1 and the expression of C/EBPα and gluconeogenic genes in the thapsigargin-stimulated control group compared to the normal control. Both CTL and kaempferol suppressed serine phosphorylation of IRS-1, and the treatments did not interrupt the C/EBPα/gluconeogenic gene pathway. These results suggest that kaempferol might be the active compound of CTL and that it might protect against ER stress-induced inflammation and hyperglycemia. PMID:26805878

  8. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK

    SciTech Connect

    Lee, H.-J.; Wang, C.-J.; Kuo, H.-C.; Chou, F.-P.; Jean, L.-F.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2005-03-01

    Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) was unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH{sub 2}-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK.

  9. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells

    PubMed Central

    Garg, Munish; Lata, Kusum; Satija, Saurabh

    2016-01-01

    Objective: To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Materials and Methods: Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Results: Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Conclusion: Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids. PMID:26997725

  10. β-D-Glucosyl-(1-4)-α-L-thevetosides of 17β-digitoxigenin from seeds of Cerbera manghas L. induces apoptosis in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Feng, Bo; Guo, Yue-Wei; Huang, Cai-Guo; Li, Liang; Jiao, Bing-Hua

    2012-07-01

    β-D-Glucosyl-(1-4)-α-L-thevetosides of 17β-digitoxigenin (GHSC-73) is a cardiac glycoside isolated from the seeds of Cerbera manghas L. GHSC-73 reduced viability of HepG2 cells in a time- and dose-dependent manner without decreasing the viability of Chang human liver cells and Swiss albino 3T3 fibroblasts, induced efficiently stimulated apoptosis in HepG2 cells as evidenced by DNA fragmentation, annexin V/PI binding assay and DAPI staining. This apoptotic process was accompanied by the activation of the effector caspase-3, the loss of mitochondrial membrane potential (ΔΨ(m)) and translocation of AIF from the mitochondrion to the nucleus in HepG2 cells. In addition, a broad-spectrum caspase inhibitor (z-VAD-fmk) tested in this experiment partially prevent HepG2 cells from GHSC-73-induced cell death, but did not affect translocation of AIF from the mitochondrion to the nucleus after GHSC-73 treatment. Our results firstly show that GHSC-73 inhibits the growth of HepG2 cells through caspase-dependent and -independent apoptosis pathways. PMID:21036567

  11. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    SciTech Connect

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  12. Lower concentrations of blueberry polyphenolic-rich extract differentially alter HepG2 cell proliferation and expression of genes related to cell-cycle, oxidation and epigenetic machinery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro cancer models have been used to study the effect of relatively high concentrations (>200 ug/ml) of phenolic plant extracts upon cell proliferation. In this study we report that the treatment of human hepatocarcinoma HepG2 cells with lower concentrations of blueberry phenolic extract (6.5-10...

  13. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    PubMed

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace e