Science.gov

Sample records for cultured rat retinal

  1. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases

    PubMed Central

    Heller, Janosch P.; Kwok, Jessica C. F.; Vecino, Elena; Martin, Keith R.; Fawcett, James W.

    2015-01-01

    Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases. PMID:26635529

  2. Nicotinic Antagonists Enhance Process Outgrowth by Rat Retinal Ganglion Cells in Culture

    NASA Astrophysics Data System (ADS)

    Lipton, Stuart A.; Frosch, Matthew P.; Phillips, Micheal D.; Tauck, David L.; Aizenman, Elias

    1988-03-01

    Functional nicotinic cholinergic receptors are found on mammalian retinal ganglion cell neurons in culture. The neurotransmitter acetylcholine (ACh) can be detected in the medium of many of these retinal cultures, after release presumably from the choline acetyltransferase-positive amacrine cells. The postsynaptic effect of endogenous or applied ACh on the ganglion cells can be blocked with specific nicotinic antagonists. Here it is shown that within 24 hours of producing such a pharmacologic blockade, the retinal ganglion cells begin to sprout or regenerate neuronal processes. Thus, the growth-enhancing effect of nicotinic antagonists may be due to the removal of inhibition to growth by tonic levels of ACh present in the culture medium. Since there is a spontaneous leak of ACh in the intact retina, the effects of nicotinic cholinergic drugs on process outgrowth in culture may reflect a normal control mechanism for growth or regeneration of retinal ganglion cell processes that is exerted by ACh in vivo.

  3. Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells

    PubMed Central

    Ryan, Jennifer S; Baldridge, William H; Kelly, Melanie E M

    1999-01-01

    We used whole-cell patch clamp and fluorescent calcium imaging techniques to investigate the effects of adenosine 5′-triphosphate (ATP) on membrane currents and intracellular calcium concentration ([Ca2+]i)in rat retinal pigment epithelial (RPE) cells. In 62 % of RPE cells, application of 100 μM ATP elicited a fast inward current at negative membrane potentials. In 38 % of RPE cells recorded, a biphasic response to ATP was observed in which activation of the fast inward current was followed by activation of a delayed outward current. The ATP-activated inward current was a non-selective cation (NSC) current that showed inward rectification, reversed at −1.5 ± 1 mV and was permeable to monovalent cations. The NSC current was insensitive to the P2 purinoceptor antagonists, suramin or PPADS but was activated by the purinoceptor agonists UTP, ADP and 2MeSATP. The outward current activated by ATP reversed at −68 ± 3 mV (equilibrium potential for potassium (EK) = −84 mV) and was blocked by Ba2+ ions, consistent with the activation of a K+ conductance. The outward K+ conductance was also reduced by the maxi-KCa channel blocker iberiotoxin (IbTX; 10 nM), suggesting that ATP activated an outward Ca2+-activated K+ channel in rat RPE cells. The Ca2+-activated K+ current (IK(Ca)) was also activated by the purinoceptor agonists UTP, ADP and 2MeSATP. In fluo-3 or fluo-4 loaded RPE cells, ATP and the pyrimidine agonist UTP elevated [Ca2+]i. The increase in Ca2+ was not dependent on extracellular Ca2+ influx, but was sensitive to the Ca2+-ATPase inhibitor thapsigargin, confirming the involvement of intracellular Ca2+ stores release. These results suggest that rat RPE cells express both P2X purinoceptors that gate activation of a non-selective cation conductance and G protein-coupled P2Y purinoceptors that mediate Ca2+ release from intracellular stores and activation of a calcium-activated K+ current. PMID:10545141

  4. Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells.

    PubMed

    Ryan, J S; Baldridge, W H; Kelly, M E

    1999-11-01

    1. We used whole-cell patch clamp and fluorescent calcium imaging techniques to investigate the effects of adenosine 5'-triphosphate (ATP) on membrane currents and intracellular calcium concentration ([Ca2+]i)in rat retinal pigment epithelial (RPE) cells. In 62 % of RPE cells, application of 100 microM ATP elicited a fast inward current at negative membrane potentials. In 38 % of RPE cells recorded, a biphasic response to ATP was observed in which activation of the fast inward current was followed by activation of a delayed outward current. 2. The ATP-activated inward current was a non-selective cation (NSC) current that showed inward rectification, reversed at -1.5 +/- 1 mV and was permeable to monovalent cations. The NSC current was insensitive to the P2 purinoceptor antagonists, suramin or PPADS but was activated by the purinoceptor agonists UTP, ADP and 2MeSATP. 3. The outward current activated by ATP reversed at -68 +/- 3 mV (equilibrium potential for potassium (EK) = -84 mV) and was blocked by Ba2+ ions, consistent with the activation of a K+ conductance. The outward K+ conductance was also reduced by the maxi-KCa channel blocker iberiotoxin (IbTX; 10 nM), suggesting that ATP activated an outward Ca2+-activated K+ channel in rat RPE cells. The Ca2+-activated K+ current (IK(Ca)) was also activated by the purinoceptor agonists UTP, ADP and 2MeSATP. 4. In fluo-3 or fluo-4 loaded RPE cells, ATP and the pyrimidine agonist UTP elevated [Ca2+]i. The increase in Ca2+ was not dependent on extracellular Ca2+ influx, but was sensitive to the Ca2+-ATPase inhibitor thapsigargin, confirming the involvement of intracellular Ca2+ stores release. 5. These results suggest that rat RPE cells express both P2X purinoceptors that gate activation of a non-selective cation conductance and G protein-coupled P2Y purinoceptors that mediate Ca2+ release from intracellular stores and activation of a calcium-activated K+ current. PMID:10545141

  5. Müller glia activation by VEGF-antagonizing drugs: An in vitro study on rat primary retinal cultures.

    PubMed

    Gaddini, Lucia; Varano, Monica; Matteucci, Andrea; Mallozzi, Cinzia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella

    2016-04-01

    The effects of the anti-Vascular Endothelial Growth Factor (VEGF) drugs ranibizumab and aflibercept were studied in Müller glia in primary mixed cultures from rat neonatal retina. Treatment with both agents induced activation of Müller glia, demonstrated by increased levels of Glial Fibrillary Acidic Protein. In addition, phosphorylated Extracellular-Regulated Kinase 1/2 (ERK 1/2) showed enhanced immunoreactivity in activated Müller glia. Treatment with aflibercept induced an increase in K(+) channel (Kir) 4.1 levels and both drugs upregulated Aquaporin 4 (AQP4) in activated Müller glia. The results show that VEGF-antagonizing drugs influence the homeostasis of Müller cells in primary retinal cultures, inducing an activated phenotype. Upregulation of Kir4.1 and AQP4 suggests that Müller glia activation following anti-VEGF drugs may not depict a detrimental gliotic reaction. Indeed, it could represent one of the mechanisms able to contribute to the therapeutic effects of these drugs, particularly in the presence of macular edema. PMID:26607807

  6. Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    PubMed Central

    Clermont, Allen; Chilcote, Tamie J.; Kita, Takeshi; Liu, Jia; Riva, Priscilla; Sinha, Sukanto; Feener, Edward P.

    2011-01-01

    OBJECTIVE Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. RESEARCH DESIGN AND METHODS We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. RESULTS Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ± 10 μm to 223 ± 13 μm) compared with nondiabetic rats (from 182 ± 8 μm to 193 ± 9 μm). CONCLUSIONS These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening. PMID:21444925

  7. A new CRB1 rat mutation links Müller glial cells to retinal telangiectasia.

    PubMed

    Zhao, Min; Andrieu-Soler, Charlotte; Kowalczuk, Laura; Paz Cortés, María; Berdugo, Marianne; Dernigoghossian, Marilyn; Halili, Francisco; Jeanny, Jean-Claude; Goldenberg, Brigitte; Savoldelli, Michèle; El Sanharawi, Mohamed; Naud, Marie-Christine; van Ijcken, Wilfred; Pescini-Gobert, Rosanna; Martinet, Danielle; Maass, Alejandro; Wijnholds, Jan; Crisanti, Patricia; Rivolta, Carlo; Behar-Cohen, Francine

    2015-04-15

    We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-β and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia. PMID:25878282

  8. A New CRB1 Rat Mutation Links Müller Glial Cells to Retinal Telangiectasia

    PubMed Central

    Zhao, Min; Andrieu-Soler, Charlotte; Kowalczuk, Laura; Paz Cortés, María; Berdugo, Marianne; Dernigoghossian, Marilyn; Halili, Francisco; Jeanny, Jean-Claude; Goldenberg, Brigitte; Savoldelli, Michèle; El Sanharawi, Mohamed; Naud, Marie-Christine; van Ijcken, Wilfred; Pescini-Gobert, Rosanna; Martinet, Danielle; Maass, Alejandro; Wijnholds, Jan; Crisanti, Patricia; Rivolta, Carlo

    2015-01-01

    We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-β and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia. PMID:25878282

  9. Frequency Responses of Rat Retinal Ganglion Cells

    PubMed Central

    Cloherty, Shaun L.; Hung, Yu-Shan; Kameneva, Tatiana; Ibbotson, Michael R.

    2016-01-01

    There are 15–20 different types of retinal ganglion cells (RGC) in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell’s intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type) and their stratification (inner (i), outer (o) or bistratified) in the inner plexiform layer (IPL). Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15–30 Hz and low-pass cutoffs above 56 Hz (A2 cells) and ~42 Hz (C1 and C4o cells). A1 and C2i/o cells were low-pass with peaks of 10–15 Hz (cutoffs 19–25 Hz). Bistratified D1 and D2 cells were also low-pass with peaks of 5–10 Hz (cutoffs ~16 Hz). The least responsive cells were the B2 and C3 types (peaks: 2–5 Hz, cutoffs: 8–11 Hz). We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells) or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag) had little impact on frequency response at low frequencies, but account for 30–40% of response variability at frequencies >30 Hz. PMID:27341669

  10. Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

    PubMed Central

    Park, Un Chul; Cho, Myung Soo; Park, Jung Hyun; Kim, Sang Jin; Ku, Seung-Yup; Choi, Young Min; Moon, Shin Yong

    2011-01-01

    Objective To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells (105 cells/5 µL) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease. PMID:22384445

  11. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  12. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  13. Inner Retinal Oxygen Delivery and Metabolism in Streptozotocin Diabetic Rats

    PubMed Central

    Wanek, Justin; Teng, Pang-yu; Blair, Norman P.; Shahidi, Mahnaz

    2014-01-01

    Purpose. The purpose of the study is to report global measurements of inner retinal oxygen delivery (DO2_IR) and oxygen metabolism (MO2_IR) in streptozotocin (STZ) diabetic rats. Methods. Phosphorescence lifetime and blood flow imaging were performed in rats 4 (STZ/4wk; n = 10) and 6 (STZ/6wk; n = 10) weeks following injection of STZ to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). DO2_IR and MO2_IR were calculated from measurements of F and O2A and of F and the arteriovenous oxygen content difference, respectively. Data in STZ rats were compared to those in healthy control rats (n = 10). Results. Measurements of O2A and O2V were not significantly different among STZ/4wk, STZ/6wk, and control rats (P ≥ 0.28). Likewise, F was similar among all groups of rats (P = 0.81). DO2_IR measurements were 941 ± 231, 956 ± 232, and 973 ± 243 nL O2/min in control, STZ/4wk, and STZ/6wk rats, respectively (P = 0.95). MO2_IR measurements were 516 ± 175, 444 ± 103, and 496 ± 84 nL O2/min in control, STZ/4wk, and STZ/6wk rats, respectively (P = 0.37). Conclusions. Global inner retinal oxygen delivery and metabolism were not significantly impaired in STZ rats in early diabetes. PMID:24550355

  14. Breakdown of blood. Retinal barrier in RCS rats with inherited retinal degeneration.

    PubMed

    Essner, E; Pino, R M; Griewski, R A

    1980-11-01

    A breakdown in the blood-retinal barrier to certain proteins is described in mutant RCS rats with inherited retinal degeneration. Intravenously injected microperoxidase and horseradish peroxidase are extravasated from the outer (but not inner) retinal capillaries of these rats, at approximately 11 weeks of age and older. The number of affected capillaries increases with the age of the animals and progression of the retinal dystrophy until virtually all capillaries in the outer retina become permeable to these tracers. In such capillaries, enzyme reaction product is demonstrable in a greater proportion of luminal vesicles and in the majority of abluminal vesicles. Reaction product is also localized in cytoplasmic vacuoles, the basal laminae of endothelial cells and pericytes, and the perivascular spaces. The increased permeability of outer retinal capillaries in RCS rats appears to be due to an increase in transendothelial vesicular transport of the probe molecules. There was no evidence that either tracer permeated the interendothelial junctions or entered the basal laminae by reflux from the perivascular spaces. It is suggested that factors originating from the degenerated photoreceptor cells may play a role in stimulating the vesicular transport observed in permeable capillaries. In contrast to these findings, the outer retinal capillaries of RCS rats were not permeable to hemoglobin, catalase, or ferritin, regardless of the age of the animal or the degree of retinal degeneration. Since the vesicles that form at the luminal front are covered by a diaphragm, it is possible that this structure prevents entry of these larger proteins into the endothelial vesicle, even in capillaries that are demonstrably permeable to the smaller tracers. PMID:7421123

  15. Vasodilator effect of nicorandil on retinal blood vessels in rats.

    PubMed

    Ogawa, Naoto; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-07-01

    We examined the effect of nicorandil on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anaesthetised with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. Diameters of retinal blood vessels were measured with a personal computer. Nicorandil (1-300 microg kg(-1) min(-1), intravenous [i.v.]) increased diameters of retinal blood vessels and decreased systemic blood pressure in a dose-dependent manner. Both responses to nicorandil were attenuated by glibenclamide (20 mg/kg, i.v.), an adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channel blocker. On the other hand, indomethacin (5 mg/kg, i.v.), a cyclooxygenase inhibitor, attenuated the vasodilation of retinal blood vessels, but not depressor response, to nicorandil and sodium nitroprusside. Pinacidil (1-300 microg kg(-1) min(-1), i.v.), a K(ATP) channel opener, also dilated retinal blood vessels and decreased systemic blood pressure. The responses to pinacidil were prevented by glibenclamide, but not by indomethacin. The vasodilation of retinal arteriole, but not depressor response, to sodium nitroprusside (1-30 microg kg(-1) min(-1), i.v.), a nitric oxide donor, was attenuated by indomethacin. These results suggest that nicorandil dilates retinal blood vessels through opening of K(ATP) channels and production of prostaglandins that are probably generated by nitric oxide. PMID:17525845

  16. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  17. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation.

    PubMed

    Shiba, T; Inoguchi, T; Sportsman, J R; Heath, W F; Bursell, S; King, G L

    1993-11-01

    The increases in diacylglycerol (DAG) level and protein kinase C (PKC) activity have been characterized biochemically and functionally in the retina and the brain of diabetic rats as well as in cultured vascular cells. PKC specific activities were increased in the membraneous fraction of retina from streptozotocin (STZ)-induced diabetic rats and the genetically determined diabetic BB rats, respectively, after 1 or 2 wk of diabetes, compared with control. The ratio of total PKC activities from membraneous and cytosol fractions was also increased in the retina of diabetic rats. With diabetes, all the isoenzymes and the total DAG level were increased in the rat retina, whereas no changes were found in the rat brain. Insulin treatment normalized plasma glucose levels and partially prevented the increases in the membraneous PKC activity and all the isoenzymes in the retina. In the retinal endothelial cells, the total DAG level and PKC specific activities are increased by 36 and 22%, respectively, in the membraneous pool when the glucose levels are changed from 5.5 to 22 mM. Activation of PKC activity and isoform beta II by the vitreal injection of phorbol dibutyrate mimicked the abnormal retinal blood circulation observed in diabetic rats (2.22 +/- 0.24 vs. 1.83 +/- 0.40 s). Thus diabetes and elevated glucose levels will increase DAG level and PKC activities and its isoenzyme specifically in vascular cells and may affect retinal hemodynamics. PMID:8238505

  18. AAV Mediated GDNF Secretion From Retinal Glia Slows Down Retinal Degeneration in a Rat Model of Retinitis Pigmentosa

    PubMed Central

    Dalkara, Deniz; Kolstad, Kathleen D; Guerin, Karen I; Hoffmann, Natalie V; Visel, Meike; Klimczak, Ryan R; Schaffer, David V; Flannery, John G

    2011-01-01

    Mutations in over 80 identified genes can induce apoptosis in photoreceptors, resulting in blindness with a prevalence of 1 in 3,000 individuals. This broad genetic heterogeneity of disease impacting a wide range of photoreceptor functions renders the design of gene-specific therapies for photoreceptor degeneration impractical and necessitates the development of mutation-independent treatments to slow photoreceptor cell death. One promising strategy for photoreceptor neuroprotection is neurotrophin secretion from Müller cells, the primary retinal glia. Müller glia are excellent targets for secreting neurotrophins as they span the entire tissue, ensheath all neuronal populations, are numerous, and persist through retinal degeneration. We previously engineered an adeno-associated virus (AAV) variant (ShH10) capable of efficient and selective glial cell transduction through intravitreal injection. ShH10-mediated glial-derived neurotrophic factor (GDNF) secretion from glia, generates high GDNF levels in treated retinas, leading to sustained functional rescue for over 5 months. This GDNF secretion from glia following intravitreal vector administration is a safe and effective means to slow the progression of retinal degeneration in a rat model of retinitis pigmentosa (RP) and shows significant promise as a gene therapy to treat human retinal degenerations. These findings also demonstrate for the first time that glia-mediated secretion of neurotrophins is a promising treatment that may be applicable to other neurodegenerative conditions. PMID:21522134

  19. Isolation and Transfection of Primary Culture Bovine Retinal Pericytes.

    PubMed

    Primo, Vincent A; Arboleda-Velasquez, Joseph F

    2016-01-01

    This protocol describes an enzymatic approach for isolating homogeneous cultures of pericytes from retinas of bovine source. In summary, retinas are dissected, washed, digested, filtered, cultured in specific media to select for pericytes, and finally expanded for a low passage culture of about 14 million bovine retinal pericytes (BRP) within 4-6 weeks. This protocol also describes a liposomal-based technique for transfection of BRPs. PMID:27172949

  20. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  1. Dissection, Culture, and Analysis of Xenopus laevis Embryonic Retinal Tissue

    PubMed Central

    Ng-Sui-Hing, Ng-Kwet-Leok A.; Rabe, Brian A.; Lewis, Brittany B.; Saha, Margaret S.

    2012-01-01

    The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation1-16. The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates 12,14-18. While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells 7,19-23. For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues 8,19-22,24-33. Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level 5,8,21,24,27-30,33-39. Xenopus laevis, a classic model system for the study of early neural development 19,27,29,31-32,40-42, serves as a particularly suitable system for retinal primary cell culture 10,38,43-45. Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction 25,38,43. In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of

  2. Dissection, culture, and analysis of Xenopus laevis embryonic retinal tissue.

    PubMed

    McDonough, Molly J; Allen, Chelsea E; Ng-Sui-Hing, Ng-Kwet-Leok A; Rabe, Brian A; Lewis, Brittany B; Saha, Margaret S

    2012-01-01

    The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation(1-16). The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates (12,14-18). While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells (7,19-23). For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues (8,19-22,24-33). Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level (5,8,21,24,27-30,33-39). Xenopus laevis, a classic model system for the study of early neural development (19,27,29,31-32,40-42), serves as a particularly suitable system for retinal primary cell culture (10,38,43-45). Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction (25,38,43). In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding

  3. Involvement of prostaglandin I(2) in nitric oxide-induced vasodilation of retinal arterioles in rats.

    PubMed

    Mori, Asami; Namekawa, Ryo; Hasebe, Masami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2015-10-01

    The soluble guanylyl cyclase/cGMP system plays an important role in the vasodilator response to nitric oxide (NO) in various vascular beds. However, in rat retinal arterioles, the cyclooxygenase-1/cAMP-mediated pathway contributes to the vasodilator effects of NO, although the specific prostanoid involved remains to be elucidated. In the present study, we investigated the role of prostaglandin I2 and its receptor (prostanoid IP receptor) system in NO-induced vasodilation of rat retinal arterioles in vivo. Fundus images were captured using a digital camera that was equipped with a special objective lens. Changes in diameter of retinal arterioles were assessed. The NO donor (±)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR3) increased the diameter of retinal arterioles but decreased systemic blood pressure in a dose-dependent manner. Treatment of rats with indomethacin, a non-selective cyclooxygenase inhibitor, markedly attenuated the retinal vasodilator, but not depressor responses to NOR3. The prostanoid IP receptor antagonist 4,5-dihydro-N-[4-[[4-(1-methylethoxy)phenyl]methyl]phenyl]-1H-imadazol-2-amine (CAY10441), and the prostaglandin I2 synthase inhibitor 9α,11α-azoprosta-5Z,13E-dien-1-oic acid (U-51605), both showed similar preventive effects against the NOR3-induced retinal vasodilator response. Neither CAY10441 nor U-51605 showed any significant effects on the depressor response to NOR3. NOR3 enhanced the release of prostaglandin I2 from cultured human retinal microvascular endothelial cells and the NOR3-induced prostaglandin I2 release was almost completely abolished by the cyclooxygenase-1 inhibitor SC-560, but not by the cyclooxygenase-2 inhibitor NS-398. However, NOR3 did not increase the release of prostaglandin I2 from human intestinal microvascular endothelial cells. These results suggest that NO exerts its dilatory effect via cyclooxygenase-1/prostaglandin I2/prostanoid IP receptor signaling mechanisms in the retinal vasculature. PMID

  4. Visual cortex controls retinal output in the rat.

    PubMed

    Molotchnikoff, S; Tremblay, F

    1986-07-01

    The first objective of the present investigation was to shed more light on corticofugal influences on the retina by providing an analysis of the type and proportion of retinal ganglion cells that are affected by cooling the visual cortex in rats. The second question was to determine if the pretectum participates in functional cortico-retinal relationships. In urethane-anesthetized and paralyzed hooded rats, axonal activity of retinal ganglion cells was recorded with glass micropipettes at optic chiasm level. Units were classified as ON, OFF, suppressed-by-light and concentric. The visual cortex was inactivated by cooling its surface with a 4 mm2 steel probe using the Peltier effect. The pretectum was blocked with microinjections of 50 to 100 nanoliters of cobalt ions, lidocaine hydrochloride or KCl. The inactivations and recoveries at both sites were monitored by simultaneously recording evoked field potentials. Interrupting corticofugal impulses caused modifications of the evoked discharge pattern in all types of cells. The concentric type was the group least affected by cortical cooling. A common trend emerged suggesting that cooling of the visual cortex led to an enhancement of the initial evoked excitation. This was often followed by an enhanced post-excitatory inhibition. The Pearson coefficient allowed us to measure the degree of similarity between two histograms. When all data were pooled, a weak correlation between control and test histograms (r = 0.29, N = 56) was found, while the control and recovery patterns averaged a correlation of more than twice that size (r = 0.68). In a second series of experiments, the pretectum and visual cortex (VC) were simultaneously inactivated. It is shown that both sites summed their influence and acted synergistically upon the pattern of ganglion cell responses. The results strongly suggest that the visual cortex exerts a major control over the response pattern of thirty percent of retinal ganglion cells, and that the

  5. Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat

    PubMed Central

    Wanek, Justin; Teng, Pang-yu; Albers, John; Blair, Norman P.; Shahidi, Mahnaz

    2011-01-01

    Abstract The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology. PMID:21991548

  6. Expression of Aquaporin-6 in Rat Retinal Ganglion Cells.

    PubMed

    Jang, Sun Young; Lee, Eung Suk; Ohn, Young-Hoon; Park, Tae Kwann

    2016-08-01

    Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells. PMID:26526333

  7. Colocalization of HCN Channel Subunits in Rat Retinal Ganglion Cells

    PubMed Central

    Stradleigh, Tyler W.; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Greenberg, Kenneth P.; Krempely, Kalen S.; Ishida, Andrew T.

    2011-01-01

    The current-passing pore of mammalian hyperpolarization-activated, cyclic nucleotide-gated ("HCN") channels is formed by subunit isoforms denoted HCN1-4. In various brain areas, antibodies directed against multiple isoforms bind to single neurons and the current ("Ih") passed during hyperpolarizations differs from that of heterologously expressed homomeric channels. By contrast, retinal rod, cone, and bipolar cells appear to use homomeric HCN channels. Here, we assess the generality of this pattern by examining HCN1 and HCN4 immunoreactivity in rat retinal ganglion cells, measuring Ih in dissociated cells, and testing whether HCN1 and HCN4 protein coimmunoprecipitate. Nearly half of the ganglion cells in whole-mounted retinae bound antibodies against both isoforms. Consistent with colocalization and physical association, 8-bromo-cAMP shifted the voltage-sensitivity of Ih less than that of HCN4 channels and more than that of HCN1 channels, and HCN1 coimmunoprecipitated with HCN4 from membrane fraction proteins. Lastly, the immunopositive somata ranged in diameter from the smallest to the largest in rat retina, the dendrites of immunopositive cells arborized at various levels of the inner plexiform layer and over fields of different diameters, and Ih activated with similar kinetics and proportions of fast and slow components in small, medium, and large somata. These results show that different HCN subunits colocalize in single retinal ganglion cells, identify a subunit that can reconcile native Ih properties with the previously reported presence of HCN4 in these cells, and indicate that Ih is biophysically similar in morphologically diverse retinal ganglion cells and differs from Ih in rods, cones, and bipolar cells. PMID:21456027

  8. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells

    PubMed Central

    Yuan, Jing; Yu, Jian-xiong

    2016-01-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells. PMID:27335573

  9. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    PubMed

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells. PMID:27335573

  10. Stimulation of prostanoid IP and EP(2) receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats.

    PubMed

    Mori, Asami; Saito, Maki; Sakamoto, Kenji; Narita, Masami; Nakahara, Tsutomu; Ishii, Kunio

    2007-09-10

    We examined the effects of vasodilatory prostaglandins (prostacyclin and prostaglandin E(2)) and selective agonists for prostanoid EP(2) and EP(4) receptor on the diameters of retinal blood vessels and fundus (retinal/choroidal) blood flow in rats. Male Wistar rats (8- to 10-week-old) were treated with tetrodotoxin (50 microg/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye and infused with a mixture solution of norepinephrine and epinephrine (1:9) to maintain adequate systemic circulation under artificial ventilation. Fundus images were captured with a digital camera that was equipped with the special objective lens for small animals, and the diameters of retinal arterioles and venules were measured on a personal computer. Fundus blood flow was estimated using a laser Doppler flowmetry. Intravenous infusions of prostacyclin and prostaglandin E(2) dilated retinal blood vessels, increased fundus blood flow and decreased systemic blood pressure in a dose-dependent manner. The effects of vasodilatory prostaglandins on retinal arterioles were greater than those on retinal venules. Similarly, a prostanoid EP(2) receptor agonist (ONO-AE1-259-01) dilated retinal blood vessels, and increased fundus blood flow and decreased systemic blood pressure. However, a prostanoid EP(4) receptor agonist (ONO-AE1-329) failed to increase fundus blood flow, despite its comparable depressor response with those to vasodilatory prostaglandins and the prostanoid EP(2) receptor agonist. The responses to forskolin, an activator of adenylyl cyclase, were very similar to those to prostacyclin and the prostanoid EP(2) receptor agonist. These results suggest that prostacyclin and prostaglandin E(2) act as vasodilators in retinal and choroidal circulation, and prostanoid IP and EP(2) receptors play an important role in the regulation of ocular hemodynamics in rats. PMID:17628525

  11. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells

    SciTech Connect

    Chung, Hyewon; Yoon, Young Hee; Hwang, Jung Jin; Cho, Kyung Sook; Koh, Jae Young; Kim, June-Gone

    2009-03-01

    Ethambutol, an efficacious antituberculosis agent, can cause irreversible visual loss in a small but significant fraction of patients. However, the mechanism of ocular toxicity remains to be established. We previously reported that ethambutol caused severe vacuole formation in cultured retinal cells, and that the addition of zinc along with ethambutol aggravated vacuole formation whereas addition of the cell-permeable zinc chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), reduced vacuole formation. To investigate the origin of vacuoles and to obtain an understanding of drug toxicity, we used cultured primary retinal cells from newborn Sprague-Dawley rats and imaged ethambutol-treated cells stained with FluoZin-3, zinc-specific fluorescent dye, under a confocal microscope. Almost all ethambutol-induced vacuoles contained high levels of labile zinc. Double staining with LysoTracker or MitoTracker revealed that almost all zinc-containing vacuoles were lysosomes and not mitochondria. Intracellular zinc chelation with TPEN markedly blocked both vacuole formation and zinc accumulation in the vacuole. Immunocytochemistry with antibodies to lysosomal-associated membrane protein-2 (LAMP-2) and cathepsin D, an acid lysosomal hydrolase, disclosed lysosomal activation after exposure to ethambutol. Immunoblotting after 12 h exposure to ethambutol showed that cathepsin D was released into the cytosol. In addition, cathepsin inhibitors attenuated retinal cell toxicity induced by ethambutol. This is consistent with characteristics of lysosomal membrane permeabilization (LMP). TPEN also inhibited both lysosomal activation and LMP. Thus, accumulation of zinc in lysosomes, and eventual LMP, may be a key mechanism of ethambutol-induced retinal cell death.

  12. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    PubMed Central

    Fronk, Aaron H; Vargis, Elizabeth

    2016-01-01

    The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included. PMID:27493715

  13. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations.

    PubMed

    Fronk, Aaron H; Vargis, Elizabeth

    2016-01-01

    The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included. PMID:27493715

  14. Vasodilator Effects of Elcatonin, a Synthetic Eel Calcitonin, on Retinal Blood Vessels in Rats.

    PubMed

    Mori, Asami; Suzawa, Hironori; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2015-01-01

    The aim of this study was to examine the effects of elcatonin, a synthetic derivative of eel calcitonin, on rat retinal blood vessels, and to determine how diabetes affects the retinal vascular responses. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo. The retinal vascular responses were evaluated by measuring the diameter of retinal blood vessels contained in the digital images. Both systemic blood pressure and heart rate were continuously recorded. Elcatonin increased the diameter of retinal blood vessels but decreased mean blood pressure in a dose-dependent manner, whereas it had no significant effect on heart rate. A diminished retinal vasodilator response and significant pressor response to elcatonin were observed in rats injected intravenously with N(G)-nitro-L-arginine methyl ester, a nitric oxide (NO) synthase inhibitor. Intravitreal injection of indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ22536, an adenylyl cyclase inhibitor, markedly attenuated the vasodilator effects of elcatonin on retinal blood vessels. The retinal vasodilator responses to elcatonin were unaffected 2 weeks after the induction of diabetes by a combination of streptozotocin treatment and D-glucose feeding. These results suggest that elcatonin dilates rat retinal blood vessels via NO- and COX-dependent mechanisms and that the adenylyl cyclase-adenosine 3',5'-cyclic monophosphate system plays a major role in the vasodilator mechanisms. The retinal vasodilatory effects of elcatonin seem to be preserved at early stages of diabetes. PMID:26424018

  15. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  16. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion

    PubMed Central

    Liu, Li; Jiang, Youde

    2016-01-01

    We have recently reported that Compound 49b, a novel β-adrenergic receptor agonist, can significantly reduce VEGF levels in retinal endothelial cells (REC) grown in diabetic-like conditions. In this study, we investigated whether Compound 49b could protect the retina under hypoxic conditions using the ischemia-reperfusion (I/R)-induced model in rats, as well REC cultured in hypoxic conditions. Some rats received 1mM topical Compound 49b for the 2 (5 rats each group) or 10 (4 rats in each group) days post-I/R. Analyses for retinal thickness and cell loss in the ganglion cell layer was done at 2 days post-I/R, while numbers of degenerate capillaries and pericyte ghosts were measured at 10 days post-I/R. Additionally, REC were cultured in normal oxygen or hypoxia (5% O2) only or treated with 50 nM Compound 49b for 12 hours. Twelve hours after Compound 49b exposure, cells were collected and analyzed for protein levels of insulin-like growth factor binding protein 3 (IGFBP-3), vascular endothelial cell growth factor (VEGF) and its receptor (KDR), angiopoietin 1 and its receptor Tie2 for Western blotting. Data indicate that exposure to I/R significantly decreased retinal thickness, with increasing numbers of degenerate capillaries and pericyte ghosts. Compound 49b treatment inhibited these retinal changes. In REC cultured in hypoxia, levels of IGFBP-3 were reduced, which were significantly increased by Compound 49b. Hypoxia significantly increased protein levels of VEGF, KDR, Angiopoiein 1, and Tie2, which were reduced following Compound 49b treatment. These data strongly suggested that Compound 49b protected the retina against I/R-induced injury. This provides additional support for a role of β-adrenergic receptor actions in the retina. PMID:27439004

  17. In vivo response of the rat's retinal pigment epithelium to azide at advanced stages of hereditary retinal dystrophy.

    PubMed

    Ando, H; Noell, W K

    1993-01-01

    Electrophysiological properties of the retinal pigment epithelium (RPE) were studied in the rat with hereditary retinal dystrophy (rdy). Transocular potential changes evoked by intravenous bolus injections of azide and thiocyanate (SCN-) are the only available indication of RPE state when degeneration of rods is in progress. Also determined were age-dependent decrease in retinal DNA content and in counts of cones that survive after degeneration of rods. The azide response in the pigmented and albino rdy rat was already reduced at the earliest age tested (60 d) and continued to decrease till the age of 2 years. The SCN-response was similarly affected but seemed to decline faster than the azide response. The azide/SCN- response ratio was significantly increased in albino mutants, especially around the age of 400 d. At the age of 10 months and later, the azide and SCN- responses became slower than those of normals. A prolonged exposure of 1,200 1x light to dystrophic rats older than 110 did not affect the azide and SCN- responses whereas the same exposure abolishes the responses of normal rats and of the dystrophic rats at early stages. In rdy rats, the electrophysiological changes were considered to correlate with structural changes of the junctional RPE complex and with abnormal membrane enzyme distribution discovered by others. These RPE changes may contribute to the decreasing cone cell number after rod cell disappearance. PMID:8230852

  18. Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms.

    PubMed

    Ogawa, Naoto; Mori, Asami; Hasebe, Masami; Hoshino, Maya; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-10-01

    It has been suggested that nitric oxide (NO) stimulates the cyclooxygenase (COX)-dependent mechanisms in the ocular vasculature; however, the importance of the pathway in regulating retinal circulation in vivo remains to be elucidated. Therefore, we investigated the role of COX-dependent mechanisms in NO-induced vasodilation of retinal blood vessels in thiobutabarbital-anesthetized rats with and without neuronal blockade (tetrodotoxin treatment). Fundus images were captured with a digital camera that was equipped with a special objective lens. The retinal vascular response was assessed by measuring changes in diameter of the retinal blood vessel. The localization of COX and soluble guanylyl cyclase in rat retina was examined using immunohistochemistry. The NO donors (sodium nitroprusside and NOR3) increased the diameter of the retinal blood vessels but decreased systemic blood pressure in a dose-dependent manner. Treatment of rats with indomethacin, a nonselective COX inhibitor, or SC-560, a selective COX-1 inhibitor, markedly attenuated the vasodilation of retinal arterioles, but not the depressor response, to the NO donors. However, both the vascular responses to NO donors were unaffected by the selective COX-2 inhibitors NS-398 and nimesulide. Indomethacin did not change the retinal vascular and depressor responses to hydralazine, 8-(4-chlorophenylthio)-guanosine-3', 5'-cyclic monophosphate (a membrane-permeable cGMP analog) and 8-(4-chlorophenylthio)-adenosine-3', 5'-cyclic monophosphate (a membrane-permeable cAMP analog). Treatment with SQ 22536, an adenylyl cyclase inhibitor, but not ODQ, a soluble guanylyl cyclase inhibitor, significantly attenuated the NOR3-induced vasodilation of retinal arterioles. The COX-1 immunoreactivity was found in retinal blood vessels. The retinal blood vessel was faintly stained for soluble guanylyl cyclase, although the apparent immunoreactivities on mesenteric and choroidal blood vessels were observed. These results suggest

  19. Vision maintenance and retinal apoptosis reduction in RCS rats with Okayama University-type retinal prosthesis (OUReP™) implantation.

    PubMed

    Alamusi; Matsuo, Toshihiko; Hosoya, Osamu; Tsutsui, Kimiko M; Uchida, Tetsuya

    2015-09-01

    Photoelectric dye-coupled polyethylene film, designated Okayama University-type retinal prosthesis or OUReP™, generates light-evoked surface electric potentials and stimulates neurons. In this study, the vision was assessed by behavior tests in aged hereditary retinal dystrophic RCS rats with OUReP™, retinal apoptosis and electroretinographic responses were measured in dystrophic eyes with OUReP™. The dye-coupled films, or plain films as a control, were implanted in subretinal space of RCS rats. On behavior tests, RCS rats with dye-coupled films, implanted at the old age of 14 weeks, showed the larger number of head-turning, consistent with clockwise and anticlockwise rotation of a surrounding black-and-white-striped drum, compared with rats with plain films, under the dim (50 lux) and bright (150 lux) conditions in the observation period until the age of 22 weeks (n = 5, P < 0.05, repeated-measure ANOVA). The number of apoptotic cells in retinal sections at the site of dye-coupled film implantation was significantly smaller, compared with the other retinal sites, neighboring the film, or opposite to the film, 5 months after film implantation at the age of 6 weeks (P = 0.0021, Friedman test). The dystrophic eyes of RCS rats with dye-coupled films showed positive responses to maximal light stimulus at a significantly higher rate, compared with the eyes with no treatment (P < 0.05, Chi-square test). Electroretinograms in normal eyes of Wistar rats with dye-coupled or plain films showed significantly decreased amplitudes (n = 14, P < 0.05, repeated-measure ANOVA). In conclusions, vision was maintained in RCS rats with dye-coupled films implanted at the old age. The dystrophic eyes with dye-coupled films showed electroretinographic responses. Five-month film implantation caused no additional retinal changes. PMID:25732059

  20. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    PubMed

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage. PMID:26119305

  1. Primary Retinal Cultures as a Tool for Modeling Diabetic Retinopathy: An Overview

    PubMed Central

    Varano, Monica; Mallozzi, Cinzia; Gaddini, Lucia; Formisano, Giuseppe; Pricci, Flavia

    2015-01-01

    Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight. PMID:25688355

  2. Recognition of mannose 6-phosphate ligands by dystrophic rat retinal pigment epithelium

    SciTech Connect

    Tarnowski, B.; Shepherd, V.; McLaughlin, B.

    1986-05-01

    Retinal pigment epithelium (RPE) phagocytize discarded rod outer segments (ROS) during normal eye function. In the dystrophic rat, an animal model for retinitis pigmentosa in humans, ROS phagocytosis is defective. Dystrophic RPE can phagocytize particles other than ROS, suggesting that the defect may be in the RPE phagocytic recognition. They are currently investigating the recognition markers on RPE in dystrophic rats. In studies using ligand-coated latex beads, no uptake of mannose-coated beads was found in dystrophic rat RPE. They found that dystrophic RPE could specifically phagocytize phosphomannan-coated beads. Studies were begun to examine the presence and function of a phosphomannan receptor (PMR) on dystrophic RPE. ..cap alpha..-Mannosidase, isolated from D. discoideum has been shown to be an efficient ligand for the PMR in fibroblasts and macrophages. It is also recognized by the macrophage mannose receptor. Dystrophic rat RPE and retina explants were placed in culture dishes (5-7/well). /sup 125/I-Labelled ..cap alpha..-mannosidase was added to each well in the presence or absence of 10 mM mannose 6-phosphate (M6P) or yeast mannan (lmg/ml). Explants were incubated at 37/sup 0/ for 2 hr., washed and bound /sup 125/I-mannosidase quantitated. Approximately 2-3% of total counts added were bound to the RPE via a M6P-inhibitable recognition process. The binding to RPE was not blocked by mannan. No mannan or M6P-specific binding was found in retina explants. These results support the findings of specific uptake of phosphomannan-coated beads and demonstrate the presence of a specific PMR on dystrophic RPE phagocytic membranes.

  3. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    PubMed

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction. PMID:17178414

  4. Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats.

    PubMed

    Mori, Asami; Suzuki, Sachi; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2011-11-01

    The large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels modulate the retinal vascular tone, but question of whether the impairment of the channel function contributes to abnormalities of retinal circulation has not yet been completely elucidated. The purpose of this study was to examine effects of diabetes on the vasodilation induced by activation of BK(Ca) channels. Male Wistar rats were treated with streptozotocin and experiments were performed 2 weeks later. The streptozotocin-treated animals were given drinking water containing 5% d-glucose to shorten the term in the development of retinal vascular dysfunction. The retinal vascular responses were assessed by measuring diameter of retinal arterioles in the fundus images that were captured with an original fundus camera system. In non-diabetic rats, vasodilator effects of acetylcholine on retinal arterioles were significantly reduced by iberiotoxin, an inhibitor of BK(Ca) channels. However, the inhibitory effect of iberiotoxin was not observed in diabetic rats, and the responses to the BK(Ca) channel opener BMS-191011 were almost completely abolished. The retinal vasodilator response to acetylcholine, possibly an endothelium-derived hyperpolarizing factor-mediated response, observed after treatment with N(G)-nitro-l-arginine methyl ester and indomethacin was markedly reduced in diabetic rats. The responses to pinacidil, an opener of ATP-sensitive K(+) channels, were unchanged. These results suggest that the retinal vasodilator response mediated through mechanisms involving activation of BK(Ca) channels is diminished at the early stage of diabetes in rats. The impairment of BK(Ca) channel function may contribute to abnormal retinal hemodynamics in diabetes and consequently play an important role in the pathogenesis of diabetic retinopathy. PMID:21871885

  5. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy

    PubMed Central

    Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases. PMID:27009841

  6. Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Sato, Ayumi; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-01-01

    We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration. PMID:18585480

  7. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes.

    PubMed

    Wisniewska-Kruk, Joanna; Hoeben, Kees A; Vogels, Ilse M C; Gaillard, Pieter J; Van Noorden, Cornelis J F; Schlingemann, Reinier O; Klaassen, Ingeborg

    2012-03-01

    Loss of blood-retinal barrier (BRB) properties is an important feature in the pathology of diabetic macular edema (DME), but cellular mechanisms underlying BRB dysfunction are poorly understood. Therefore, we developed and characterized a novel in vitro BRB model, based on primary bovine retinal endothelial cells (BRECs). These cells were shown to maintain specific in vivo BRB properties by expressing high levels of the endothelial junction proteins occludin, claudin-5, VE-cadherin and ZO-1 at cell borders, and the specific pumps glucose transporter-1 (GLUT1) and efflux transporter P-glycoprotein (MDR1). To investigate the influence of pericytes and astrocytes on BRB maintenance in vitro, we compared five different co-culture BRB models, based on BRECs, bovine retinal pericytes (BRPCs) and rat glial cells. Co-cultures of BRECs with BRPCs and glial cells showed the highest trans-endothelial resistance (TEER) as well as decreased permeability of tracers after vascular endothelial growth factor (VEGF) stimulation, suggesting a major role for these cell types in maintaining barrier properties. To mimic the in vivo situation of DME, we stimulated BRECs with VEGF, which downregulated MDR1 and GLUT1 mRNA levels, transiently reduced expression levels of endothelial junctional proteins and altered their organization, increased the number of intercellular gaps in BRECs monolayers and influence the permeability of the model to differently-sized molecular tracers. Moreover, as has been shown in vivo, expression of plasmalemma vesicle-associated protein (PLVAP) was increased in endothelial cells in the presence of VEGF. This in vitro model is the first co-culture model of the BRB that mimicks in vivo VEGF-dependent changes occurring in DME. PMID:22200486

  8. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    PubMed Central

    Chen, Li; Tao, Yong; Feng, Jing; Jiang, Yan Rong

    2015-01-01

    Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases. PMID:26491547

  9. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2015-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis.

  10. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2016-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis. PMID:26844699

  11. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats

    PubMed Central

    Vessey, Kirstan A; Greferath, Ursula; Aplin, Felix P; Jobling, Andrew I; Phipps, Joanna A; Ho, Tracy; De Iongh, Robbert U; Fletcher, Erica L

    2014-01-01

    Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five-week-old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age-related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2-year-old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP-induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision. J. Comp. Neurol. 522:2928–2950, 2014. © 2014 Wiley Periodicals, Inc. PMID:24639102

  12. [Therapeutical effect of growth-associated protein 43 (GAP43) gene-modified bone marrow mesenchymal stem cell transplantation on rat retinal degenerative diseases].

    PubMed

    Yang, Juan; Xie, Maosong; Zheng, Weidong; Hu, Jianzhang; Qu, Qiang

    2016-08-01

    Objective To investigate the potential of the treatment of growth-associated protein 43 (GAP43) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) for retinitis pigmentosa (RP). Methods BMSCs were isolated and cultured by adherence method. By transfecting GAP43 gene into BMSCs via a lentivirus vector, we got GAP43 gene-modified BMSCs. Sixty-three Royal College of Surgeons (RCS) rats were randomly divided into three groups: experimental group, negative control group and blank control group. The experimental rats received subretinal injection of GAP43 gene-modified BMSCs. The negative control rats received subretinal injection of BMSCs. The control rats received subretinal injection of PBS. Thirty days after transplanting, the retinal thickness was detected by optical coherence tomography (OCT), and the expression of rhodopsin in RCS rat retinas was examined by Western blotting. Results Compared with the blank control group and the negative control group, 30 days after GAP43 gene-modified BMSC transplantation, the retinal thickness of the experimental group remarkably increased and the expression of rhodopsin significantly rose. Conclusion GAP43 gene-modified BMSC transplantation can increase survival photoreceptor cells and delay retinal degeneration. PMID:27412933

  13. Vasodilator effects of ibudilast on retinal blood vessels in anesthetized rats.

    PubMed

    Noguchi, Masahiro; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-11-01

    Ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-alpha]pyridine) is clinically used as a cerebral vasodilator in Japan. However, the effects of ibudilast on retinal blood vessels have not been fully examined. The aim of this study, therefore, was to examine the effects of ibudilast on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anesthetized with thiobutabarbital (120 mg/kg, intraperitoneally (i.p.)). Retinal vascular images were captured with a fundus camera system for small animals, and the diameter of retinal blood vessels was measured. Ibudilast (0.1 and 1 mg/kg, intravenously (i.v.)) elicited a sustained increase in the diameter of retinal blood vessels and heart rate without altering systemic blood pressure. The effects of ibudilast were significantly reduced by treatment with the nonselective cyclooxygenase inhibitor indomethacin (5 mg/kg, i.p.). These results suggest that ibudilast dilates retinal blood vessels through cyclooxygenase-dependent mechanisms in rats in vivo. PMID:19881310

  14. Vasodilator effects of flunarizine on retinal blood vessels in anesthetized rats.

    PubMed

    Noguchi, Masahiro; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-12-01

    The aim of this study was to investigate the effects of intravenous administration of flunarizine on the diameter of retinal blood vessels and blood pressure in anesthetized rats and to compare the effects of this antagonist with those of nicardipine and nifedipine. Retinal vascular images were captured with a fundus camera system for small animals and the diameter of retinal blood vessels contained in the images was measured using image-processing softwares on a personal computer. Blood pressure was continuously measured. Flunarizine [1-30 microg/kg, intravenously (i.v.)] dose-dependently increased the diameter of retinal blood vessels without significantly changing systemic blood pressure. Nicardipine (1-30 microg/kg, i.v.) increased the retinal blood vessel diameter but decreased blood pressure in a dose-dependent manner. Nifedipine (10-100 microg/kg, i.v.) failed to dilate the retinal blood vessels, although it produced comparable depressor responses as those to nicardipine. These results suggest that flunarizine selectively acts on the retinal blood vessels rather than on the peripheral resistance vessels. Flunarizine could therefore be considered as a candidate for therapeutic drugs to treat diseases associated with disorders of retinal circulation without severe cardiovascular side-effects. PMID:19952431

  15. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration.

    PubMed

    Stiles, Megan; Qi, Hui; Sun, Eleanor; Tan, Jeremy; Porter, Hunter; Allegood, Jeremy; Chalfant, Charles E; Yasumura, Douglas; Matthes, Michael T; LaVail, Matthew M; Mandal, Nawajes A

    2016-05-01

    Retinal degeneration (RD) affects millions of people and is a major cause of ocular impairment and blindness. With a wide range of mutations and conditions leading to degeneration, targeting downstream processes is necessary for developing effective treatments. Ceramide and sphingosine-1-phosphate, a pair of bioactive sphingolipids, are involved in apoptosis and its prevention, respectively. Apoptotic cell death is a potential driver of RD, and in order to understand the mechanism of degeneration and potential treatments, we studied rhodopsin mutant RD model, P23H-1 rats. Investigating this genetic model of human RD allows us to investigate the association of sphingolipid metabolites with the degeneration of the retina in P23H-1 rats and the effects of a specific modulator of sphingolipid metabolism, FTY720. We found that P23H-1 rat retinas had altered sphingolipid profiles that, when treated with FTY720, were rebalanced closer to normal levels. FTY720-treated rats also showed protection from RD compared with their vehicle-treated littermates. Based on these data, we conclude that sphingolipid dysregulation plays a secondary role in retinal cell death, which may be common to many forms of RDs, and that the U.S. Food and Drug Administration-approved drug FTY720 or related compounds that modulate sphingolipid metabolism could potentially delay the cell death. PMID:26947037

  16. Three-Dimensional Neuroepithelial Culture from Human Embryonic Stem Cells and Its Use for Quantitative Conversion to Retinal Pigment Epithelium

    PubMed Central

    Zhu, Yu; Carido, Madalena; Meinhardt, Andrea; Kurth, Thomas; Karl, Mike O.; Ader, Marius; Tanaka, Elly M.

    2013-01-01

    A goal in human embryonic stem cell (hESC) research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE) cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia. PMID:23358448

  17. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    NASA Astrophysics Data System (ADS)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (P<0.01). The shorter HBO treatment was less effective, showing an increase only in nuclei density at the central area of lesion (P< 0.01). Hyperbaric oxygen seems to exert a neuroprotective effect on laser-induced retinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  18. Intravenously administered phosphodiesterase 4 inhibitors dilate retinal blood vessels in rats.

    PubMed

    Miwa, Tomoyo; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2009-01-01

    In the present study, we examined effects of intravenously administered inhibitors of phosphodiesterase 4 (rolipram and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro-20-1724)) and non-selective inhibitor of phosphodiesterases (theophylline) on diameter of retinal blood vessel and fundus (retinal/choroidal) blood flow in rats. Male Wistar rats (8- to 10-week-old) were treated with tetrodotoxin (50 microg/kg, i.v.) to eliminate any nerve activity and prevent the eye movement under artificial ventilation. Methoxamine was used to maintain adequate systemic circulation. Ocular fundus images were captured with an original high-resolution digital fundus camera for small animals. Diameters of retinal blood vessels contained in the digital images were measured using image-processing softwares on a personal computer. Fundus blood flow was measured using a laser Doppler flow meter. Both rolipram (0.01-10 microg/kg/min, i.v.) and Ro-20-1724 (0.01-10 microg/kg/min, i.v.) increased diameters of retinal blood vessels in a dose-dependent manner without significant effect on systemic blood pressure, heart rate and fundus blood flow. The effects of phosphodiesterase 4 inhibitors on retinal arterioles were greater than those on retinal venules. Similarly, theophylline (0.1-10 mg/kg/min, i.v.) dilated retinal blood vessels, whereas it decreased blood pressure and increased heart rate markedly. These results suggest that phosphodiesterase 4 contributes to maintenance of retinal vascular tone. Inhibitors of phosphodiesterase 4 could be considered as a candidate for therapeutic drugs to treat diseases associated with disorders of retinal circulation without severe cardiovascular side-effects. PMID:19027003

  19. Displaced retinal ganglion cells in albino and pigmented rats

    PubMed Central

    Nadal-Nicolás, Francisco M.; Salinas-Navarro, Manuel; Jiménez-López, Manuel; Sobrado-Calvo, Paloma; Villegas-Pérez, María P.; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2014-01-01

    We have studied in parallel the population of displaced retinal ganglion cells (dRGCs) and normally placed (orthotopic RGCs, oRGCs) in albino and pigmented rats. Using retrograde tracing from the optic nerve, from both superior colliculi (SC) or from the ipsilateral SC in conjunction with Brn3 and melanopsin immunodetection, we report for the first time their total number and topography as well as the number and distribution of those dRGCs and oRGCs that project ipsi- or contralaterally and/or that express any of the three Brn3 isoforms or melanopsin. The total number of RGCs (oRGCs+dRGCs) is 84,706 ± 1249 in albino and 90,440 ± 2236 in pigmented, out of which 2383 and 2428 are melanopsin positive (m-RGCs), respectively. Regarding dRGCs: i/ albino rats have a significantly lower number of dRGCs than pigmented animals (0.5% of the total number of RGCs vs. 2.5%, respectively), ii/ dRGCs project massively to the contralateral SC, iii/ the percentage of ipsilaterality is higher for dRGCs than for oRGCs, iv/ a higher proportion of ipsilateral dRGCs is observed in albino than pigmented animals, v/ dRGC topography is very specific, they predominate in the equatorial temporal retina, being densest where the oRGCs are densest, vi/ Brn3a detects all dRGCs except half of the ipsilateral ones and those that express melanopsin, vii/ the proportion of dRGCs that express Brn3b or Brn3c is slightly lower than in the oRGC population, viii/ a higher percentage of dRGCs (13% albino, 9% pigmented) than oRGCs (2.6%) express melanopsin, ix/ few m-RGCs (displaced and orthotopic) project to the ipsilateral SC, x/ the topography of m-dRGCs does not resemble the general distribution of dRGCs, xi/ The soma size in m-oRGCs ranges from 10 to 21 μm and in m-dRGCs from 8 to 15 μm, xii/ oRGCs and dRGCs have the same susceptibility to axonal injury and ocular hypertension. Although the role of mammalian dRGCs remains to be determined, our data suggest that they are not misplaced by an

  20. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion.

    PubMed

    Sun, Chuan; Li, Xiao-Xin; He, Xiang-Jun; Zhang, Qi; Tao, Yong

    2013-08-01

    Branch retinal vein occlusion (BRVO) is the second most frequent retinal vascular disorder. Currently the first-line therapies for BRVO include anti-VEGF and dexamethasone implant treatment, however, with direct or indirect damage on retinal neurons, it has limited effect in improving patients visual acuity. Therefore, novel treatments with neuroprotective effect for BRVO retina were expected. Minocycline is a semisynthetic, broad spectrum tetracycline antibiotic with high penetration through the blood brain barrier. The neuroprotective effects of minocycline have been shown in various central nervous system (CNS) disease. Since both CNS and retina were composed of neurons and glials, it is reasonable to expect a neuroprotective effect by minocycline for BRVO retina. Therefore, the aim of the present study was to study whether minocycline has neuroprotective effect in branch retinal vein occlusion (BRVO) and the possible underlying molecular basis. We created BRVO in rats using laser photocoagulation. The animals were then randomly divided into 4 groups to evaluate the effect of minocycline: group A: minocycline 45 mg/kg intraperitoneal injection (i.p.), group B: minocycline 90 mg/kg i.p., group C: normal saline i.p., group D: sham injection. Fundus photography and fluorescein angiography (FA) were conducted. The changes in thickness of retinal layers were measured with optical coherence tomography (OCT) in vivo. We found that retinal edema occurred predominantly in the inner retinal layers. Intraperitoneal administration of minocycline significantly ameliorated retinal edema in the early stage of BRVO. We performed Full field Electroretinography (ffERG) to evaluate retinal function and found that the reduction of b wave amplitude decreased in the combined maximal response. The expressional levels of apoptosis related genes (Bax, Bcl-2) and inflammation related genes (IL-1 β, TNF α, MCP-1 and CCR2) were measured by real-time PCR, the results showed that

  1. Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats.

    PubMed

    Bursell, S E; Clermont, A C; Shiba, T; King, G L

    1992-04-01

    Video fluorescein angiography has been used to evaluate retinal circulatory parameters in diabetic and non-diabetic Sprague-Dawley rats. Video fluorescein angiograms were recorded from the retina using a modified retinal fundus camera following a 5 ul bolus injection of sodium fluorescein dye into the jugular vein. Retinal circulatory parameters were measured using computer assisted image analysis. These analyses were performed on 25 diabetic rats with 1 week duration of diabetes and 26 matched, non-diabetic, rats. There was a significant (p = .0001) increase in retinal Mean Circulation Time (MCT) in the diabetic group (1.83 +/- 0.40 s) compared to the control group (1.09 +/- 0.27 s). There were no significant differences in arterial or venous diameters comparing diabetic and control groups. In a separate paired experiment, measurements were made from the same animals both before and after one week duration of diabetes. A paired t-test analysis demonstrated significantly increased MCT times in the 6 diabetic animals (p = .001) while there was no significant differences detected in the 4 corresponding control animals. These results indicate that significant increases in retinal circulation times can be measured as early as 1 week after streptozotocin induced diabetes in this animal model. PMID:1388117

  2. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  3. Light adaptation does not prevent early retinal abnormalities in diabetic rats

    PubMed Central

    Kur, Joanna; Burian, Michael A.; Newman, Eric A.

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark. PMID:26852722

  4. Effects of intravitreal injection of netrin-1 in retinal neovascularization of streptozotocin-induced diabetic rats

    PubMed Central

    Yu, Yao; Zou, Jing; Han, Yun; Quyang, Luowa; He, Hui; Hu, Peihong; Shao, Yi; Tu, Ping

    2015-01-01

    Background In a previous study, we confirmed that netrin-1 acts as an antiangiogenic factor by inhibiting alkali burn-induced corneal neovascularization in rats. Here, we continue working on the role of netrin-1 in retinal neovascularization. Methods Using an in vitro angiogenesis assay, we detected the effects of netrin-1 on human umbilical vein endothelial cell tube formation, viability and proliferation, migration, and invasion at concentrations of 0.1 μg/mL or 5 μg/mL. We intravitreally injected 0.1 μg/mL or 5 μg/mL netrin-1 into streptozotocin-induced rats to assess retinal neovascularization using retinal electrophysiology and electroretinography, enzyme-linked immunosorbent assay, fundus fluoresce in angiography, measurement of inner blood retinal barrier, retinal hematoxylin-eosin staining, and retinal flat-mount fluorescence assays. Results Human umbilical vein endothelial cell tube formation, viability and proliferation, migration, and invasion were upregulated by netrin-1 at a concentration of 0.1 μg/mL (P<0.05), while 5 μg/mL netrin-1 had an opposite effect (P<0.05) in our in vitro angiogenesis assay. Retinal electrophysiology testing revealed that intravitreal injection of netrin-1 affected the amplitude of a- and b-waves (a-wave: 0.1 μg/mL netrin-1 =17.67±3.39 μm, 5 μg/mL netrin-1 =28.50±1.31 μm, phosphate-buffered saline [PBS]-treated =17.67±3.39 μm; b-wave: 0.1 μg/mL netrin-1 =44.67±4.80 μm, 5 μg/mL netrin-1 =97.17±9.63 μm, PBS-treated =44.67±4.80 μm) and the expression of VEGF-A (no-treatment rats, 9.29±0.80 pg/mL; PBS-treated rats, 19.64±3.77 pg/mL; 0.1 μg/mL netrin-1 treated rats, 21.37±3.64 pg/mL; 5 μg/mL netrin-1 treated rats, 9.85±0.54 pg/mL, at 6 weeks after induction). By comparing fluoresce in angiography, level of inner blood retinal barrier breakdown (% of control), retinal hematoxylin-eosin staining, and collagen-IV fluorescence assays in the retinas of PBS-treated rats, netrin-1 was found to suppress and

  5. In vitro formation of retinoic acid from retinal in rat liver.

    PubMed

    Hupert, J; Mobarhan, S; Layden, T J; Papa, V M; Lucchesi, D J

    1991-08-01

    Enzymatic conversion of retinal to retinoic acid in rat liver cytosol was detected using a rapid and sensitive assay based on high pressure liquid chromatography (HPLC). This retinal oxidase assay system did not require extraction steps or any other manipulation of the sample mixture once the sample vial was sealed for incubation. The product (retinoic acid) and the reactant (retinal) were separated by HPLC in 14.0 min with a sensitivity of 15 and 40 pmol per injection for retinoic acid and retinal, respectively. Enzymatic activity was observed to be linear with protein concentration (0-2.4 mg/mL) and time (0-30 min) and displayed a broad pH maximum of 7.7-9.7. The enzyme exhibited Michaelis-Menten single-substrate kinetics with an apparent Km of 0.25 mM. The average specific activity in nine normal rats was 35.6 +/- 3.3 nmol retinoic acid formed/h per mg protein. Incubation of the enzyme with zinc did not affect the rate of retinoic acid synthesis. Dithiothreitol inhibited the reaction. Both NAD and NADH stimulated retinoic acid formation. Formation of retinol was also observed when these pyridine nucleotides were added to the reaction mixture, indicating the presence of retinal reductase activity. The results of kinetic studies suggest that NADH may act indirectly to stimulate retinoic acid formation. PMID:1760155

  6. Role of β3-adrenoceptors in regulation of retinal vascular tone in rats.

    PubMed

    Mori, Asami; Nakahara, Tsutomu; Sakamoto, Kenji; Ishii, Kunio

    2011-12-01

    The aim of this study was to determine the role of β(3)-adrenoceptors in the action of endogenous catecholamines (adrenaline and noradrenaline) on rat retinal arterioles in vivo. Using an original high-resolution digital fundus camera, the rat ocular fundus images were captured. The diameter of retinal arterioles contained in the images was measured. Both systemic blood pressure and heart rate were recorded continuously. Adrenaline (0.3-5.0 μg/kg/min, i.v.) increased the diameter of retinal arterioles, mean blood pressure and heart rate in a dose-dependent manner. Under blockade of β(1)/β(2)-adrenoceptors with propranolol (2 mg/kg, i.v. bolus followed by 100 μg/kg/min infusion), adrenaline decreased the diameter of retinal arterioles. Similar observation was made under treatment with the β(3)-adrenoceptor antagonist L-748337 (50 μg/kg, i.v.). The pressor response to adrenaline was enhanced by propranolol, but not by L-748337. The positive chronotropic action of adrenaline was markedly prevented by propranolol, whereas it was unaffected by L-748337. Noradrenaline (0.03-1.0 μg/kg/min, i.v.) decreased the diameter of retinal arterioles but increased the mean blood pressure and heart rate. The effects of noradrenaline on retinal arteriolar diameter and blood pressure were unaffected by propranolol or L-748337. The positive chronotropic action of noradrenaline was almost completely abolished by propranolol. These results suggest that β(3)-adrenoceptors play crucial roles in vasodilator responses to adrenaline of retinal arterioles but have minor or no effect on noradrenaline-induced responses. The results also indicate that the functional role of β(3)-adrenoceptors may be more important than that in peripheral resistance vessels. PMID:21901314

  7. Review: R28 retinal precursor cells: The first 20 years

    PubMed Central

    2014-01-01

    The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes. PMID:24644404

  8. Correlation in the Discharges of Neighboring Rat Retinal Ganglion Cells During Prenatal Life

    NASA Astrophysics Data System (ADS)

    Maffei, Lamberto; Galli-Resta, Lucia

    1990-04-01

    The spontaneous discharges of neighboring retinal ganglion cells were recorded simultaneously in anesthetized prenatal rats between embryonic days 18 and 21. We report here that in the majority of cases the firings of neighboring retinal ganglion cells are strongly correlated during prenatal life. Correlation in the discharges of neighboring cells during development has long been suggested as a way to consolidate synaptic connections with a target cell onto which they converge, a model first proposed by Hebb. Correlation in the activities of neighboring neurons in the retina could be the basis of developmental processes such as refinement of retinotopic maps in the brain and segregation of the inputs from the two eyes.

  9. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    SciTech Connect

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  10. Herbal compound Naoshuantong capsule attenuates retinal injury in ischemia/reperfusion rat model by inhibiting apoptosis

    PubMed Central

    Huang, Chuangxin; Gao, Yang; Yu, Qiang; Feng, Liangqi

    2015-01-01

    Objectives: Ischemic ophthalmopathy threatens people’s lives and health. The herbal compound medication, Naoshuantong capsule, plays a critical role in the treatment of cardiac-cerebral vascular diseases; however, the roles and mechanisms of action of Naoshuantong capsule in ischemic ophthalmopathy is unknown. The objective of the present study was to determine the effect and mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy in rats. Methods: In this study a rat model of ischemic ophthalmopathy was constructed using a high intra-ocular pressure-induced ischemia/reperfusion model. The effects of Naoshuantong capsule on ischemic ophthalmopathy were detected using electroretinography, and changes in retinal ultrastructure were examined by HE staining and electron microscopy. The mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy was explored by immunofluorescence and real-time PCR. Results: Rat models of ischemic ophthalmopathy were successfully constructed by intra-ocular hypertension, which presented decreased amplitudes of the electroretinogram (ERG-b) wave and total retinal thickness, intracellular damage, increased expression of Bax and caspase 3, and decreased expression of Bcl-2. Treatment with Naoshuantong capsule attenuated the changes and damage to the ischemic retina in the rat model, inhibited the over-expression of Bax and caspase 3, and increased the expression of Bcl-2. Conclusion: Our study indicated that Naoshuantong capsule attenuates retinal damage in rat models of ischemic ophthalmopathy, possibly by inhibiting apoptosis. PMID:26550135

  11. Transplantation of cultured rabbit retinal epithelium to rabbit retina using a closed-eye method.

    PubMed

    Lopez, R; Gouras, P; Brittis, M; Kjeldbye, H

    1987-07-01

    We have developed a closed-eye technique for transplanting cultured rabbit retinal epithelial cells to Bruch's membrane of the rabbit. A glass micropipette containing a suspension of 3H-thymidine-labeled, cultured retinal pigment epithelial (RPE) cells is inserted through a pars plana incision and positioned adjacent to the neural retina. A jet stream from the pipette is used to make a small retinal hole and bleb detachment. Patches of host retinal epithelium lift off with the neural retina, creating areas of bare Bruch's membrane. The cell suspension is injected into the subretinal space, and labeled cells can be seen attached to Bruch's membrane as early as 1 hr later. The neural retina spontaneously reattaches within 24 to 48 hr, bringing photoreceptor outer segments in direct contact with the transplanted cells. Phagocytosis of outer segment material by transplanted cells can be seen as early as 24 hr after surgery. This closed-eye technique offers an advantage over the open-sky method used previously in that it allows for reattachment of the neural retina and at least a partial return of function in the transplanted retinal epithelium. PMID:3596991

  12. Pharmacological evidence for the presence of functional beta(3)-adrenoceptors in rat retinal blood vessels.

    PubMed

    Mori, Asami; Miwa, Tomoyo; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2010-08-01

    The aim of this study was to examine whether stimulation of beta(3)-adrenoceptors dilates rat retinal blood vessels and how diabetes affects the vasodilator responses. Images of ocular fundus were captured with an original high-resolution digital fundus camera in vivo. The retinal vascular responses were evaluated by measuring diameter of retinal blood vessels contained in the digital images. Both systemic blood pressure and heart rate (HR) were continuously recorded. The beta(3)-adrenoceptor agonist CL316243 (0.3-10 microg/kg/min, i.v.) increased diameter of retinal arterioles (at 10 microg/kg/min, a 31% increase) and decreased mean blood pressure (at 10 microg/kg/min, a 21% decrease) in a dose-dependent manner. CL316243 produced a small but significant increase in HR (at 10 microg/kg/min, a 9% increase). Both SR59230A (1 mg/kg, i.v.) and L-748337 (50 microg/kg, i.v.), beta(3)-adrenoceptor antagonists, significantly prevented CL316243-induced retinal vasodilator responses. Similar observations were made with another beta(3)-adrenoceptor agonist, BRL37344. The beta(2)-adrenoceptor agonist salbutamol also increased diameter of retinal arterioles (at 10 microg/kg/min, a 43% increase), whereas the drug produced greater decrease in blood pressure (at 10 microg/kg/min, a 46% decrease) and increase in HR (at 10 microg/kg/min, a 16% increase), compared with beta(3)-adrenoceptor agonists. The retinal vasodilator responses to CL316243 and BRL37344 observed under blockade of beta(1)/beta(2)-adrenoceptors with propranolol (2 mg/kg, i.v. bolus followed by 100 microg/kg/min infusion) were unaffected 2 weeks after induction of diabetes by the combination of streptozotocin treatment and D: -glucose feeding. On the other hand, the vasodilator responses to salbutamol of retinal arterioles were significantly reduced in diabetic rats. These results suggest that stimulation of beta(3)-adrenoceptors causes the vasodilation of retinal arterioles in vivo and the vasodilator responses are

  13. VSX2 and ASCL1 Are Indicators of Neurogenic Competence in Human Retinal Progenitor Cultures.

    PubMed

    Wright, Lynda S; Pinilla, Isabel; Saha, Jishnu; Clermont, Joshua M; Lien, Jessica S; Borys, Katarzyna D; Capowski, Elizabeth E; Phillips, M Joseph; Gamm, David M

    2015-01-01

    Three dimensional (3D) culture techniques are frequently used for CNS tissue modeling and organoid production, including generation of retina-like tissues. A proposed advantage of these 3D systems is their potential to more closely approximate in vivo cellular microenvironments, which could translate into improved manufacture and/or maintenance of neuronal populations. Visual System Homeobox 2 (VSX2) labels all multipotent retinal progenitor cells (RPCs) and is known to play important roles in retinal development. In contrast, the proneural transcription factor Acheate scute-like 1 (ASCL1) is expressed transiently in a subset of RPCs, but is required for the production of most retinal neurons. Therefore, we asked whether the presence of VSX2 and ASCL1 could gauge neurogenic potential in 3D retinal cultures derived from human prenatal tissue or ES cells (hESCs). Short term prenatal 3D retinal cultures displayed multiple characteristics of human RPCs (hRPCs) found in situ, including robust expression of VSX2. Upon initiation of hRPC differentiation, there was a small increase in co-labeling of VSX2+ cells with ASCL1, along with a modest increase in the number of PKCα+ neurons. However, 3D prenatal retinal cultures lost expression of VSX2 and ASCL1 over time while concurrently becoming refractory to neuronal differentiation. Conversely, 3D optic vesicles derived from hESCs (hESC-OVs) maintained a robust VSX2+ hRPC population that could spontaneously co-express ASCL1 and generate photoreceptors and other retinal neurons for an extended period of time. These results show that VSX2 and ASCL1 can serve as markers for neurogenic potential in cultured hRPCs. Furthermore, unlike hESC-OVs, maintenance of 3D structure does not independently convey an advantage in the culture of prenatal hRPCs, further illustrating differences in the survival and differentiation requirements of hRPCs extracted from native tissue vs. those generated entirely in vitro. PMID:26292211

  14. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration.

    PubMed

    Osborne, Andrew; Hopes, Marina; Wright, Phillip; Broadway, David C; Sanderson, Julie

    2016-02-01

    There is a growing need for models of human diseases that utilise native, donated human tissue in order to model disease processes and develop novel therapeutic strategies. In this paper we assessed the suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC) degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, βIII Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential expression patterns across, as well as throughout, the macular and para-macular regions of the retina. Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly affected the initial expression levels of RGC markers. In addition, the feasibility of using human post mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive, apoptotic labelling of NeuN(+) cells. Differences in RGC apoptosis might have been influenced by medium compositions indicating that media constituents could play a role in supporting axotomised RGCs. We propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of neuroprotective strategies. PMID:26432917

  15. Chemical Exacerbation of Light-induced Retinal Degeneration in F344/N Rats in National Toxicology Program Rodent Bioassays.

    PubMed

    Yamashita, Haruhiro; Hoenerhoff, Mark J; Peddada, Shyamal D; Sills, Robert C; Pandiri, Arun R

    2016-08-01

    Retinal degeneration due to chronic ambient light exposure is a common spontaneous age-related finding in albino rats, but it can also be related to exposures associated with environmental chemicals and drugs. Typically, light-induced retinal degeneration has a central/hemispherical localization whereas chemical-induced retinal degeneration has a diffuse localization. This study was conducted to identify and characterize treatment-related retinal degeneration in National Toxicology Program rodent bioassays. A total of 3 chronic bioassays in F344/N rats (but not in B6C3F1/N mice) were identified that had treatment-related increases in retinal degeneration (kava kava extract, acrylamide, and leucomalachite green). A retrospective light microscopic evaluation of the retinas from rats in these 3 studies showed a dose-related increase in the frequencies of retinal degeneration, beginning with the loss of photoreceptor cells, followed by the inner nuclear layer cells. These dose-related increased frequencies of degenerative retinal lesions localized within the central/hemispherical region are suggestive of exacerbation of light-induced retinal degeneration. PMID:27230502

  16. Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease

    PubMed Central

    Gamm, David M.; Wang, Shaomei; Lu, Bin; Girman, Sergei; Holmes, Toby; Bischoff, Nicholas; Shearer, Rebecca L.; Sauvé, Yves; Capowski, Elizabeth; Svendsen, Clive N.; Lund, Raymond D.

    2007-01-01

    Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest

  17. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  18. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging.

    PubMed

    Werkmeister, René M; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-01-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats. PMID:25321400

  19. Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats.

    PubMed

    Nakazawa, Taisuke; Kaneko, Yoshiko; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2007-03-01

    Diabetes alters retinal hemodynamics, but little is known about the impact of diabetes on the role of endothelium-derived hyperpolarizing factor (EDHF) in the regulation of retinal circulation. Therefore, we examined how diabetes affects the nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine. Male Wistar rats were treated with streptozotocin (80 mg/kg, i.p.) and experiments were performed 6-8 weeks later. Under artificial ventilation, rats were treated with tetrodotoxin (100 microg/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye. Methoxamine was used to maintain adequate systemic circulation. Fundus images were captured by a digital camera that was equipped with a special objective lens. The vasodilator responses of retinal arterioles were assessed by measuring changes in diameters of the vessels. In streptozotocin-induced diabetic rats and the age-matched controls, acetylcholine increased diameters of retinal arterioles in a dose-dependent manner. The vasodilator responses to acetylcholine in diabetic rats were smaller than those in control rats. The nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles observed under treatment with combination of N(G)-nitro-l-arginine methyl ester (30 mg/kg, i.v.) and indomethacin (5 mg/kg, i.v.) were also attenuated by diabetes. Diabetes did not alter the dilator responses of retinal arterioles to sodium nitroprusside and forskolin. These results suggest that diabetes impairs EDHF-mediated vasodilation of retinal arterioles induced by acetylcholine. The impaired EDHF-mediated vasodilation may contribute to alteration of retinal hemodynamics in diabetes. PMID:17079193

  20. Octreotide, a Somatostatin Analogue, Fails to Inhibit Hypoxia-induced Retinal Neovascularization in the Neonatal Rat

    PubMed Central

    Averbukh, Edward; Halpert, Michael; Yanko, Ravit; Yanko, Lutza; Peèr, Jacob; Levinger, Samuel; Flyvbjerg, Allan

    2000-01-01

    Objective: Octreotide, a somatostatin analogue, has been shown to prevent angiogenesis in diverse in vitro models. We evaluated its effect on retinal neovascularization in vivo, using a neonatal rat retinopathy model. Methods: We used, on alternating days, hypoxia (10% O2) and hyperoxia (50% O2) during the first 14 days of neonatal rats, to induce retinal neovascularization. Half of the rats were injected subcutaneously with octreotide 0.7 μg/g BW twice daily. At day 18 the eyes were evaluated for the presence of epiretinal and vitreal hemorrhage, neovascularization and epiretinal proliferation. Octreotide pharmacokinetics and its effect on serum growth hormone (GH) and insulin-like growth factor I (IGF-I) were examined in 28 rats. Results: Serum octreotide levels were 667 μg/1 two hours after injection, 26.4 μg/1 after nine hours and 3.2 μg/1 after 14 hours. GH levels were decreased by 40% (p = 0.002) two hours after injection but thereafter returned to baseline. IGF-I levels were unchanged two hours after injection and were elevated by 26% 14 hours after injection (p = 0.02). Epiretinal membranes were highly associated with epiretinal hemorrhages (p < 0.001), while retinal neovascularization was notably associated with vitreal hemorrhages (p < 0.001). Conclusions: Twice-daily injections of octreotide failed to produce sustained decrease in serum GH, but produced rebound elevation of serum IGF-I. Accordingly, no statistically significant effect of injections on retinal pathology was noted. This finding, however, does not contradict our assumption that GH suppression may decrease the severity of retinopathy. PMID:11469389

  1. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats

    PubMed Central

    Chen, Ke; Wang, Yi; Liang, Xiaohua; Zhang, Yihuai; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-01-01

    The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration. PMID:27225415

  2. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats.

    PubMed

    Chen, Ke; Wang, Yi; Liang, Xiaohua; Zhang, Yihuai; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-01-01

    The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration. PMID:27225415

  3. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy.

    PubMed

    Lassiale, S; Valamanesh, F; Klein, C; Hicks, D; Abitbol, M; Versaux-Botteri, C

    2016-07-01

    Muller glial cells (MGC) are essential for normal functioning of retina. They are especially involved in potassium (K+) and water homeostasis, via inwardly rectifying K+ (Kir 4.1) and aquaporin-4 (AQP4) channels respectively. Because MGC appear morphologically and functionally altered in most retinal pathologies, we studied the expression of AQP 4 and Kir 4.1 during the time course of progressive retinal degeneration in Royal College of Surgeons (RCS) rats, an animal model for the hereditary human retinal degenerative disease Retinitis pigmentosa. Simultaneous detection of AQP4 and Kir 4.1 was performed by quantitative real-time polymerase chain reaction (QRT-PCR), Western blot and immunohistochemistry at birth and during progression of the pathology. Although small quantities of AQP4 and Kir 4.1 mRNA were detected at birth (postnatal day (PNd) 0) in both control and dystrophic rat retinas, proteins could not be detected at this age. Detectable proteins appeared in the second week of postnatal life. From PNd15 onwards, the time course in the expression of both AQP4 and Kir 4.1 mRNAs and protein was similar in dystrophic and control rats, with a progressive increase peaking at PNd60 and a subsequent decrease by one year. AQP4 protein and mRNA content were significantly lowered in dystrophic compared to control rats. Kir 4.1 protein levels were also lower in dystrophic retinas, while mRNA concentrations were unchanged and/or slightly higher in dystrophic rats. The discrepancies between Kir4.1 mRNA and protein suggest perturbation in protein translation due to the pathology. AQP4 and Kir 4.1/vimentin co-immunolabeling showed that: 1) apical radial processes of some MGC invaded the subretinal zone, and 2) MGC morphology was distorted in advanced pathology. MGC became hypertrophic both during the pathology and also with age in control rats. In conclusion, our results confirm that this inherited photoreceptor degeneration also leads to progressive alterations in

  4. Photovoltaic restoration of sight with high visual acuity in rats with retinal degeneration

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Goetz, G.; Lorach, H.; Mandel, Y.; Smith, R.; Boinagrov, D.; Lei, X.; Kamins, T.; Harris, J.; Mathieson, K.; Sher, A.

    2015-03-01

    Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of the surviving retinal neurons provides an alternative route for delivery of visual information. Subretinal photovoltaic arrays with 70μm pixels were used to convert pulsed near-IR light (880-915nm) into pulsed current to stimulate the nearby inner retinal neurons. Network-mediated responses of the retinal ganglion cells (RGCs) could be modulated by pulse width (1-20ms) and peak irradiance (0.5-10 mW/mm2). Similarly to normal vision, retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images, and non-linear spatial summation. Spatial resolution was assessed in-vitro and in-vivo using alternating gratings with variable stripe width, projected with rapidly pulsed illumination (20-40Hz). In-vitro, average size of the electrical receptive fields in normal retina was 248+/-59μm - similar to their visible light RF size: 249+/-44μm. RGCs responded to grating stripes down to 67μm using photovoltaic stimulation in degenerate rat retina, and 28μm with visible light in normal retina. In-vivo, visual acuity in normally-sighted controls was 29+/-5μm/stripe, vs. 63+/-4μm/stripe in rats with subretinal photovoltaic arrays, corresponding to 20/250 acuity in human eye. With the enhanced acuity provided by eye movements and perceptual learning in human patients, visual acuity might exceed the 20/200 threshold of legal blindness. Ease of implantation and tiling of these wireless arrays to cover a large visual field, combined with their high resolution opens the door to highly functional restoration of sight.

  5. UV-induced retinal proteome changes in the rat model of age-related macular degeneration.

    PubMed

    Kraljević Pavelić, Sandra; Klobučar, Marko; Sedić, Mirela; Micek, Vedran; Gehrig, Peter; Grossman, Jonas; Pavelić, Krešimir; Vojniković, Božidar

    2015-09-01

    Age-related macular degeneration (AMD) is characterized by irreversible damage of photoreceptors in the central posterior part of the retina, called the macula and is the most common cause of vision loss in those aged over 50. A growing body of evidence shows that cumulative long-term exposure to UV radiation may be harmful to the retina and possibly leads to AMD irrespective of age. In spite of many research efforts, cellular and molecular mechanisms leading to UV-induced retinal damage and possibly retinal diseases such as AMD are not completely understood. In the present study we explored damage mechanisms accounting for UV-induced retinal phototoxicity in the rats exposed to UVA and UVB irradiation using a proteomics approach. Our study showed that UV irradiation induces profound changes in the retinal proteomes of the rats associated with the disruption of energy homeostasis, oxidative stress, DNA damage response and structural and functional impairments of the interphotoreceptor matrix components and their cell surface receptors such as galectins. Two small leucine-rich proteoglycans, biglycan and lumican, were identified as phototoxicity biomarkers associated with UV-induced disruption of interphotoreceptor matrix (IPM). In addition, UVB induced activation of Src kinase, which could account for cytoskeletal rearrangements in the retina was observed at the proteomics level. Pharmacological intervention either to target Src kinase with the aim of preventing cytoskeletal rearrangements in the retinal pigment epithelium (RPE) and neuronal retina or to help rebuild damaged IPM may provide fresh avenues of treatment for patients suffering from AMD. PMID:26071645

  6. Insulin treatment normalizes retinal neuroinflammation but not markers of synapse loss in diabetic rats

    PubMed Central

    Masser, Dustin R.; VanGuilder Starkey, Heather D.; Bixler, Georgina V.; Dunton, Wendy; Bronson, Sarah K.; Freeman, Willard M.

    2014-01-01

    Diabetic retinopathy is one of the leading causes of blindness in developed countries, and a majority of patients with type I and type II diabetes will develop some degree of vision loss despite blood glucose control regimens. The effects of different insulin therapy regimens on early metabolic, inflammatory and neuronal retinal disease processes such as retinal neuroinflammation and synapse loss have not been extensively investigated. This study compared 3 months non-diabetic and streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Diabetic rats received either no insulin treatment, systemic insulin treatment beginning after 1 week uncontrolled diabetes (early intervention, 11 weeks on insulin), or after 1.5 months uncontrolled diabetes (late intervention, 6 weeks on insulin). Changes in both whole animal metabolic and retinal inflammatory markers were prevented by early initiation of insulin treatment. These metabolic and inflammatory changes were also normalized by the later insulin intervention. Insulin treatment begun 1 week after diabetes induction ameliorated loss of retinal synapse markers. Synapse markers and presumably synapse numbers were equivalent in uncontrolled diabetes and when insulin treatment began at 1.5 months of diabetes. These findings are in agreement with previous demonstrations that retinal synapses are lost within 1 month of uncontrolled diabetes and suggest that synapses are not regained with glycemic control and restoration of insulin signaling. However, increased expression of metabolic and inflammatory markers associated with diabetes was reversed in both groups of insulin treatment. This study also emphasizes the need for insulin treatment groups in diabetic retinopathy studies to provide a more faithful modeling of the human condition. PMID:24931083

  7. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis

    NASA Astrophysics Data System (ADS)

    Inayat, Samsoon; Rountree, Corey M.; Troy, John B.; Saggere, Laxman

    2015-02-01

    Objective. No cure currently exists for photoreceptor degenerative diseases, which cause partial or total blindness in millions of people worldwide. Electrical retinal prostheses have been developed by several groups with the goal of restoring vision lost to these diseases, but electrical stimulation has limitations. It excites both somas and axons, activating retinal pathways nonphysiologically, and limits spatial resolution because of current spread. Chemical stimulation of retinal ganglion cells (RGCs) using the neurotransmitter glutamate has been suggested as an alternative to electrical stimulation with some significant advantages. However, sufficient scientific data to support developing a chemical-based retinal prosthesis is lacking. The goal of this study was to investigate the feasibility of a neurotransmitter-based retinal prosthesis and determine therapeutic stimulation parameters. Approach. We injected controlled amounts of glutamate into rat retinas from the epiretinal side ex vivo via micropipettes using a pressure injection system and recorded RGC responses with a multielectrode array. Responsive units were identified using a spike rate threshold of 3 Hz. Main results. We recorded both somal and axonal units and demonstrated successful glutamatergic stimulation across different RGC subtypes. Analyses show that exogenous glutamate acts on RGC synapses similar to endogenous glutamate and, unlike electrical prostheses, stimulates only RGC somata. The spatial spread of glutamate stimulation was ˜ 290 μm from the injection site, comparable to current electrical prostheses. Further, the glutamate injections produced spatially differential responses in OFF, ON, and ON-OFF RGC subtypes, suggesting that differential stimulation of the OFF and ON systems may be possible. A temporal resolution of 3.2 Hz was obtained, which is a rate suitable for spatial vision. Significance. We provide strong support for the feasibility of an epiretinal neurotransmitter

  8. Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography

    PubMed Central

    Leahy, Conor; Radhakrishnan, Harsha; Weiner, Geoffrey; Goldberg, Jeffrey L.; Srinivasan, Vivek J.

    2015-01-01

    Purpose The purpose of this study is to demonstrate three-dimensional (3D) graphing based on optical coherence tomography (OCT) angiography for characterization of the inner retinal vascular architecture and determination of its topologic principles. Methods Rat eyes (N = 3) were imaged with a 1300-nm spectral/Fourier domain OCT microscope. A topologic model of the inner retinal vascular network was obtained from OCT angiography data using a combination of automated and manually-guided image processing techniques. Using a resistive network model, with experimentally-quantified flow in major retinal vessels near the optic nerve head as boundary conditions, theoretical changes in the distribution of flow induced by vessel dilations were inferred. Results A topologically-representative 3D vectorized graph of the inner retinal vasculature, derived from OCT angiography data, is presented. The laminar and compartmental connectivity of the vasculature are characterized. In contrast to sparse connectivity between the superficial vitreal vasculature and capillary plexuses of the inner retina, connectivity between the two capillary plexus layers is dense. Simulated dilation of single arterioles is shown to produce both localized and lamina-specific changes in blood flow, while dilation of capillaries in a given retinal vascular layer is shown to lead to increased total flow in that layer. Conclusions Our graphing and modeling data suggest that vascular architecture enables both local and lamina-specific control of blood flow in the inner retina. The imaging, graph analysis, and modeling approach presented here will help provide a detailed characterization of vascular changes in a variety of retinal diseases, both in experimental preclinical models and human subjects. PMID:26325417

  9. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Yeh, Po-Ting; Huang, Hsin-Wei; Yang, Chung-May; Yang, Wei-Shiung; Yang, Chang-Hao

    2016-01-01

    Purpose We evaluated whether orally administered astaxanthin (AST) protects against oxidative damage in the ocular tissues of streptozotocin (STZ)-induced diabetic rats. Methods and Results Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 40) or to remain uninduced (n = 10). The diabetic rats were randomly selected into four groups and they were separately administered normal saline, 0.6 mg/kg AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group were evaluated by electroretinography. The expression of oxidative stress and inflammatory mediators in the ocular tissues was then assessed by immunohistochemistry, western blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA). Retinal functions were preserved by AST and lutein in different levels. Ocular tissues from AST- and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein) and inflammatory mediators (intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine), increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin), and reduced activity of the transcription factor nuclear factor-kappaB (NF-κB). Conclusion The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by downregulation of NF-κB activity. PMID:26765843

  10. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-03-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function. PMID:26666451

  11. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-01-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (RhoS334) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of RhoS334, which prevented retinal degeneration and improved visual function. PMID:26666451

  12. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  13. Differentiation of cones in cultured rabbit retina: effects of retinal pigment epithelial cell-conditioned medium.

    PubMed

    Mack, Andreas F; Uhlmann, Daniela; Germer, Angela; Szél, Agoston; Enzmann, Volker; Reichenbach, Andreas

    2003-04-24

    This study was aimed at investigating the postnatal differentiation of cone photoreceptors in the rabbit retina in an organotypic explant culture system. Both short wavelength (S) and middle wavelength (M) cone opsins were expressed in culture but M cones appeared only in retinal explants from the dorsal half of the eye. Stimulating the explants with retinal pigment epithelial cell (RPE) conditioned medium resulted in a suppression of opsin expression despite of an increase of the number of presumptive peanut agglutinin-labeled cones. These results suggest that at birth the immature cones are largely undetermined in terms of their final cone identity although some positional information ('dorsal' vs. 'ventral' retina) is present. Furthermore, factors from RPE may inhibit as well as stimulate different steps of cone cell differentiation. PMID:12676342

  14. Vasodilation of retinal arteriole mediated by corticotropin-releasing factor receptor is impaired in streptozotocin-induced diabetic rats.

    PubMed

    Kaneko, Yoshiko; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-05-01

    We investigated the vasodilator responses of retinal arterioles induced by stimulating corticotropin-releasing factor receptors in non-diabetic and diabetic rats. Male Wistar rats were treated with streptozotocin (65 mg/kg, i.v.) and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 mug/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye and infused with a mixture of norepinephrine and epinephrine to maintain adequate systemic circulation under artificial ventilation. Fundus images were captured with an original high-resolution digital fundus camera system. The vasodilator responses of retinal arterioles were assessed by measuring changes in diameters of retinal arterioles in response to urocortin and urocortin 2. Both urocortin (0.03-1.0 micromol/kg, i.v.) and urocortin 2 (0.1-3.0 micromol/kg, i.v.) increased diameters of retinal arterioles and decreased systemic blood pressure in a dose-dependent manner. The responses to urocortins were reduced in diabetic rats. These results suggest that urocortin and urocortin 2 play as vasodilators in retinal and peripheral resistance arterioles. The impairment of vasodilation mediated by the corticotropin-releasing factor receptors may contribute to the alteration of retinal and systemic circulation in the diabetic state. PMID:17473448

  15. Down-regulation of semaphorin 3F in rat retinal ganglion cells in response to optic nerve crush.

    PubMed

    Ko, Ji-Ae; Minamoto, Akira; Sugimoto, Yosuke; Kiuchi, Yoshiaki

    2016-07-01

    Glaucoma is characterized by degeneration of optic nerve axons and death of retinal ganglion cells (RGCs). Nerve crush and axotomy of the optic nerve are studied as models of RGC death in glaucoma and of axon regeneration. The mechanisms underlying the response of RGCs to axonal injury remain unclear, however. We have now examined the effects of optic nerve crush on the expression of members of the semaphorin family of neuronal guidance proteins in the rat retina. The expression of semaphorin 3F (Sema3F) in the retina was down-regulated at both the mRNA and protein levels at 7 days after optic nerve injury, whereas that of Sema3A, Sema3B or Sema3C remained unaffected. Immunohistofluorescence analysis and laser capture microdissection followed by reverse transcription-polymerase chain reaction analysis revealed that this loss of Sema3F expression occurred in the RGC layer of the retina. Furthermore, antibody-mediated neutralization of secreted Sema3F in retinal organ culture resulted in down-regulation of neuron-specific βIII-tubulin (Tuj-1 antigen), a marker of RGCs. Our results suggest that Sema3F may contribute to the regulation of RGC function or survival and therefore warrants further investigation as a potential mediator of neuroprotection. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27309587

  16. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet.

    PubMed

    Fiuza, Felipe P; Silva, Kayo D A; Pessoa, Renata A; Pontes, André L B; Cavalcanti, Rodolfo L P; Pires, Raquel S; Soares, Joacil G; Nascimento Júnior, Expedito S; Costa, Miriam S M O; Engelberth, Rovena C G J; Cavalcante, Jeferson S

    2016-02-01

    Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock. PMID:26718202

  17. Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats

    PubMed Central

    Bolz, Sylvia; Eslava-Schmalbach, Javier; Willmann, Gabriel; Zhour, Ahmad; Zrenner, Eberhart; Fischer, M. Dominik; Gekeler, Florian

    2012-01-01

    Objectives To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. Methods Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. Results Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p<0.01) and significant reduction one week (p<0.01) after light damage. In contrast, ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point (p>0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals. Conclusions Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage

  18. Differences in Retinal Structure and Function between Aging Male and Female Sprague-Dawley Rats are Strongly Influenced by the Estrus Cycle

    PubMed Central

    Chaychi, Samaneh; Polosa, Anna; Lachapelle, Pierre

    2015-01-01

    Purpose Biological sex and age are considered as two important factors that may influence the function and structure of the retina, an effect that might be governed by sexual hormones such as estrogen. The purpose of this study was to delineate the influence that biological sex and age exert on the retinal function and structure of rodents and also clarify the effect that the estrus cycle might exert on the retinal function of female rats. Method The retinal function of 50 normal male and female albino Sprague-Dawley (SD) rats was investigated with the electroretinogram (ERG) at postnatal day (P) 30, 60, 100, 200, and 300 (n = 5–6 male and female rats/age). Following the ERG recording sessions, retinal histology was performed in both sexes. In parallel, the retinal function of premenopausal and menopausal female rats aged P540 were also compared. Results Sex and age-related changes in retinal structure and function were observed in our animal model. However, irrespective of age, no significant difference was observed in ERG and retinal histology obtained from male and female rats. Notwithstanding the above we did however notice that between P60 and P200 there was a gradual increase in ERG amplitudes of female rats compared to males. Furthermore, the ERG of premenopausal female rats aged 18 months old (P540) was larger compared to age-matched menopausal female rats as well as that of male rats. Conclusion Our results showed that biological sex and age can influence the retinal function and structure of albino SD rats. Furthermore, we showed that cycled female rats have better retinal function compared to the menopausal female rats suggesting a beneficial effect of the estrus cycle on the retinal function. PMID:26317201

  19. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats

    PubMed Central

    Imai, Hisanori; Misra, Gauri P.; Wu, Linfeng; Janagam, Dileep R.; Gardner, Thomas W.; Lowe, Tao L.

    2015-01-01

    Purpose Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. Methods The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. Results The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. Conclusions The developed hydrogels have great potential to sustain release of insulin to the

  20. Retinal changes in rats flown on Cosmos 936 - A cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; Mcgourty, J.; Lee, R.; Harrison, G.; Savik, L.

    1980-01-01

    Ten rats, five centrifuged during flight to simulate gravity and five stationary in flight and experiencing hypogravity, orbited the Earth. No differences were noted between flight-stationary and flight-centrifuged animals, but changes were seen between these two groups and ground controls. Morphological alterations were observed comparable to those in the experiment flown on Cosmos 782 and to the retinal cells exposed to high-energy particles at Berkeley. Affected cells in the outer nuclear layer showed swelling, clearing of cytoplasm, and disruption of the membranes. Tissue channels were again found, similar to those seen on 782. After space flight, preliminary data indicated an increase in cell size in montages of the nuclear layer of both groups of flight animals. This experiment shows that weightlessness and environmental conditions other than cosmic radiation do not contribute to the observed damage of retinal cells.

  1. Effects of 3,4-methylenedioxymethamphetamine administration on retinal physiology in the rat.

    PubMed

    Martins, João; Castelo-Branco, Miguel; Batista, Ana; Oliveiros, Bárbara; Santiago, Ana Raquel; Galvão, Joana; Fernandes, Eduarda; Carvalho, Félix; Cavadas, Cláudia; Ambrósio, António F

    2011-01-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG). Wistar rats were administered MDMA (15 mg/kg) or saline and ERGs were recorded before (Baseline ERG), and 3 h, 24 h, and 7 days after treatment. A high temperature (HT) saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h) retinal physiology at the outer retinal (photoreceptor/bipolar) layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave), though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans. PMID:22216322

  2. Microarray reveals complement components are regulated in the serum-deprived rat retinal ganglion cell line

    PubMed Central

    Khalyfa, Abdelnaby; Chlon, Timothy; Qiang, He; Agarwal, Neeraj

    2007-01-01

    Purpose Glaucoma is a progressive eye disease that leads to blindness due to loss of retinal ganglion cells (RGCs). There are difficulties in using primary cultures of purified RGC to study this pathophysiology. RGC-5, a transformed not RGC line, expresses several markers characteristic of the RGCs. The aim of this study was to generate a genome-wide gene expression of RGC-5 following serum deprivation and to identify candidate genes that may be involved in the signal transduction pathways. Methods Apoptosis in the transformed rat RGC-5 was induced by serum deprivation for 0, 8, 24, 48, and 96 h. Briefly, 400 ng of RNA from each sample was reverse transcribed and labeled with Cy3 dye. Fragmented fluorescent cRNA was mixed with hybridization buffer and incubated at 60 °C for 16 h. Labeled cRNA was hybridized to Rat Genome Oligonucleotide Arrays. These arrays contain 22,775 transcripts with one oligonucleotide per transcript (60-mer). Gene expression from scanned images was quantified and analyzed using ArrayVision software. Reproducibility among triplicate arrays was determined by ANOVA statistical analysis. Significant differences in gene expression between apoptotic and nonapoptotic cells were determined based on p-values. Results Of the 22,775 transcripts present on the arrays (Agilent rat genome, 60-mer), 713 (8 h), 1,967 (24 h), 1,011 (48 h), and 1,161 (96 h) were differentially expressed relative to the 0 h time point (p-values <0.05). Twenty-three transcripts were common to 8, 24, 48, and 96 h and 130 transcripts were common to the 24, 48, and 96 h time points. The two most highly upregulated genes were Fdft1 and Lgals3 (8 h), C3 and Fcgrt (24 h), C and Lcn2 (48 h), and Mgp and C3 (96 h). A subset of the differentially expressed genes identified in microarray data (Ftl1, C3, C1s, Neu1, Polr2g, Acadm, Nupr1, Gch, Dia1, DNase1, Tgfb2, and Cyr61) were validated using quantitative real time polymerase chain reaction (QRT-PCR). Here we show that complement factor

  3. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.

    PubMed

    Mori, Asami; Suzuki, Sachi; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2011-01-01

    The vascular endothelium plays an important role in regulating retinal blood flow via actions of several vasodilators, including nitric oxide (NO), prostaglandin I₂, and an endothelium-derived hyperpolarizing factor (EDHF). Our previous in vivo studies demonstrated that acetylcholine (ACh) dilates the rat retinal arteriole partly through NO- and prostaglandin-independent pathway, possibly the EDHF-mediated pathway, but the underlying mechanism(s) remains to be elucidated. It has been suggested that activation of Ca²+-activated K+ (K(Ca)) channels contributes to the EDHF-mediated responses; therefore, the roles of K(Ca) channels in ACh-induced vasodilation of retinal arterioles were examined in rats. The retinal vascular responses were assessed by determining changes in diameters of retinal arterioles in ocular fundus images that were captured with an original fundus camera system. Intravitreal injection of charybdotoxin, an inhibitor of intermediate- and large-conductance K(Ca) (I/BK(Ca)) channels, or iberiotoxin, an inhibitor of large-conductance K(Ca) (BK(Ca)) channels, significantly reduced the ACh-induced vasodilation of retinal arterioles, whereas neither apamin, an inhibitor of small-conductance K(Ca) (SK(Ca)) channels, nor TRAM-34, an inhibitor of intermediate-conductance K(Ca) (IK(Ca)) channels, altered the response. The vasodilator response to ACh observed under the combined blockade of NO synthase and cyclooxygenase with N(G)-nitro-L-arginine methyl ester plus indomethacin was also diminished by iberiotoxin. Iberiotoxin did not affect the NO donor NOR3-induced vasodilation of retinal arterioles, whereas it significantly reduced the BK(Ca) channel opener BMS-191011-induced responses. These results suggest that activation of BK(Ca) channels is involved in the EDHF-mediated component of the vasodilator response to ACh in the rat retinal arterioles in vivo. PMID:20978884

  4. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    SciTech Connect

    Padilla, S.S.; Lyerly, D.P. )

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  5. In vivo response of the rat's retinal pigment epithelium to azide: changes induced by light damage.

    PubMed

    Ando, H; Noell, W K

    1993-01-01

    Functional changes in retinal pigment epithelium (RPE) associated with light-induced retinal damage were studied by measuring transocular potential changes evoked by injections of azide and thiocyanate (SCN-). The retinal damage by light in the rat is classified into two types: Type 1, rod cell death associated with RPE deterioration; Type 2, the loss of rod cells without RPE deterioration. To study the type 1 damage, littermate pairs of long-term dark-adapted adult albino rats were tested at 1 h and 10 d after the exposure to green light of 1,200 lx for 1/2 to 24 h. Time course of the damage progress was also followed for 12 h. We found that 1) RPE was affected rapidly by the damaging light, 2) the exposure length determined the ultimate degree of RPE damage, 3) damaging effects on RPE proceeded slower and weaker after exposure than during continuous light, 4) progress of the damage in RPE was two-phasic; during the first phase, the SCN- response was enhanced and the azide response was reduced; both responses were decreased rapidly in the second phase. The first phase was assumed to indicate a depolarization of the basolateral membrane of RPE, and the second phase to manifest the structural deterioration of RPE. The type 2 damage was studied in young rats with exposure to weak light for 28 d. At 30 d after the exposure, a-wave of the ERG and number of rod cells were substantially reduced but azide and SCN- responses were affected slightly. PMID:8230851

  6. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    PubMed Central

    Yang, Fan; Wang, Dongmei; Wu, Lingling; Li, Ying

    2015-01-01

    Purpose To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs) in a rat model of chronic glaucoma. Methods Eighty Wistar rats were randomly divided into triptolide group (n=40) and normal saline (NS) group (n=40). Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP), anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF)-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed. Results Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05), with no statistical difference between the two groups (P>0.05). RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05). Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90) than the NS group (35.06±7.59) (P<0.05). TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01). The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia. Conclusion Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. PMID:26604697

  7. Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae.

    PubMed

    Felmy, F; Pannicke, T; Richt, J A; Reichenbach, A; Guenther, E

    2001-05-01

    Retinal glial Müller cells are characterized by dominant K(+) conductances. The cells may undergo changes of their membrane currents during ontogeny and gliosis as described in rabbit and man. Although the rat retina is often used in physiological experiments, the electrophysiology of rat Müller cells is less well studied. The aim of the present study was to characterize their membrane currents in postnatal development and in two models of retinal degeneration. Freshly isolated cells were subjected to whole-cell patch clamp recordings. During the first 4 weeks after birth of rats, their Müller cells displayed an increase in all membrane currents, particularly in the inward currents elicited at hyperpolarizing potentials. The decrease of the membrane resistance from more than 760 MOmega to less than 50 MOmega was accompanied by a shift of the zero current potential from about -20 mV to -80 mV, similar as earlier observed in developing rabbit Müller cells. These developmental changes were found in pigmented Brown Norway rats as well as in rats with inherited retinal dystrophy (RCS rats). Moreover, an infection of Lewis rats with the Borna disease virus caused substantial neuroretinal degeneration but did not result in a strong reduction of inward currents and of the zero current potential of the Müller cells. Thus, rat Müller cells fail to change their basic membrane properties in two different models of retinal pathology. This is in contrast to human and rabbit Müller cells, which have been shown to undergo dramatic changes of their membrane physiology in response to retinal diseases and injuries. PMID:11329181

  8. RNA sequencing reveals retinal transcriptome changes in STZ-induced diabetic rats

    PubMed Central

    LIU, YUAN-JIE; LIAN, ZHI-YUN; LIU, GENG; ZHOU, HONG-YING; YANG, HUI-JUN

    2016-01-01

    The present study aimed to investigate changes in retinal gene expression in streptozotocin (STZ)-induced diabetic rats using next-generation sequencing, utilize transcriptome signatures to investigate the molecular mechanisms of diabetic retinopathy (DR), and identify novel strategies for the treatment of DR. Diabetes was chemically induced in 10-week-old male Sprague-Dawley rats using STZ. Flash-electroretinography (F-ERG) was performed to evaluate the visual function of the rats. The retinas of the rats were removed to perform high throughput RNA sequence (RNA-seq) analysis. The a-wave, b-wave, oscillatory potential 1 (OP1), OP2 and ∑OP amplitudes were significantly reduced in the diabetic group, compared with those of the control group (P<0.05). Furthermore, the implicit b-wave duration 16 weeks post-STZ induction were significantly longer in the diabetic rats, compared with the control rats (P<0.001). A total of 868 genes were identified, of which 565 were upregulated and 303 were downregulated. Among the differentially expressed genes (DEGs), 94 apoptotic genes and apoptosis regulatory genes, and 19 inflammatory genes were detected. The results of the KEGG pathway significant enrichment analysis revealed enrichment in cell adhesion molecules, complement and coagulation cascades, and antigen processing and presentation. Diabetes alters several transcripts in the retina, and RNA-seq provides novel insights into the molecular mechanisms underlying DR. PMID:26781437

  9. RNA sequencing reveals retinal transcriptome changes in STZ‑induced diabetic rats.

    PubMed

    Liu, Yuan-Jie; Lian, Zhi-Yun; Liu, Geng; Zhou, Hong-Ying; Yang, Hui-Jun

    2016-03-01

    The present study aimed to investigate changes in retinal gene expression in streptozotocin (STZ)‑induced diabetic rats using next‑generation sequencing, utilize transcriptome signatures to investigate the molecular mechanisms of diabetic retinopathy (DR), and identify novel strategies for the treatment of DR. Diabetes was chemically induced in 10‑week‑old male Sprague‑Dawley rats using STZ. Flash‑electroretinography (F‑ERG) was performed to evaluate the visual function of the rats. The retinas of the rats were removed to perform high throughput RNA sequence (RNA‑seq) analysis. The a‑wave, b‑wave, oscillatory potential 1 (OP1), OP2 and ∑OP amplitudes were significantly reduced in the diabetic group, compared with those of the control group (P<0.05). Furthermore, the implicit b‑wave duration 16 weeks post‑STZ induction were significantly longer in the diabetic rats, compared with the control rats (P<0.001). A total of 868 genes were identified, of which 565 were upregulated and 303 were downregulated. Among the differentially expressed genes (DEGs), 94 apoptotic genes and apoptosis regulatory genes, and 19 inflammatory genes were detected. The results of the KEGG pathway significant enrichment analysis revealed enrichment in cell adhesion molecules, complement and coagulation cascades, and antigen processing and presentation. Diabetes alters several transcripts in the retina, and RNA‑seq provides novel insights into the molecular mechanisms underlying DR. PMID:26781437

  10. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity.

    PubMed

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress. PMID:25951172

  11. Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis

    PubMed Central

    Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U.; Riemer, Thomas; Reitsamer, Herbert A.; Haueisen, Jens; Vilser, Walthard

    2011-01-01

    We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270

  12. Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis.

    PubMed

    Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U; Riemer, Thomas; Reitsamer, Herbert A; Haueisen, Jens; Vilser, Walthard

    2011-11-01

    We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270

  13. Activation of Autophagy in a Rat Model of Retinal Ischemia following High Intraocular Pressure

    PubMed Central

    Piras, Antonio; Gianetto, Daniele; Conte, Daniele; Bosone, Alex; Vercelli, Alessandro

    2011-01-01

    Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP) or fluorescent dextran into ganglion cell layer (GCL) neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP) histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm); this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm), which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia. PMID:21799881

  14. Measurement of Retinal Blood Flow Rate in Diabetic Rats: Disparity Between Techniques Due to Redistribution of Flow

    PubMed Central

    Leskova, Wendy; Watts, Megan N.; Carter, Patsy R.; Eshaq, Randa S.; Harris, Norman R.

    2013-01-01

    Purpose. Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. Methods. Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. Results. Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P < 0.001) as assessed by the microsphere technique. However, in striking contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. Conclusions. We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules. PMID:23572104

  15. Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules.

    PubMed

    Adler, R; Jerdan, J; Hewitt, A T

    1985-11-01

    The responses of cultured chick embryo retinal neurons to several extracellular matrix molecules are described. Retinal cell suspensions in serum-free medium containing the "N1" supplement (J. E. Bottenstein, S. D. Skaper, S. Varon, and J. Sato, 1980, Exp. Cell Res. 125, 183-190) were seeded on tissue culture plastic surfaces pretreated with polyornithine (PORN) and with one of the factors to be tested. Substantial cell survival could be observed after 72 hr in vitro on PORN pretreated with serum or laminin, whereas most cells appeared to be degenerating on untreated PORN, PORN-fibronectin, and PORN-chondronectin. Cell attachment, although quantitatively similar for all these substrata, was temperature-dependent on serum and laminin but not on fibronectin or untreated PORN. In a short-term bioassay, neurite development was abundant on laminin, scarce on serum and fibronectin, and absent on PORN. No positive correlation between cell spreading and neurite production could be seen: cell spreading was more extensive on PORN and fibronectin than on laminin or serum, while on laminin-treated dishes, spreading was similar for neurite-bearing and non-neurite-bearing cells. Laminin effects on retinal neurons were clearly substratum dependent. When bound to tissue culture plastic, laminin showed a dose-dependent inhibitory effect on cell attachment and did not stimulate neurite development. PORN-bound laminin, on the other hand, did not affect cell attachment but caused marked stimulation of neurite development, suggesting that laminin conformation and/or the spatial distribution of active sites play an important role in the neurite-promoting function of this extracellular matrix molecule. Investigation of the embryonic retina with ELISA and immunocytochemical methods showed that laminin is present in this organ during development. Therefore, in vivo and in vitro observations are consistent with the possibility that laminin might influence neuronal development in the retina

  16. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells.

    PubMed Central

    Henry, D N; Del Monte, M; Greene, D A; Killen, P D

    1993-01-01

    Aldose reductase (AR2), a putative "hypertonicity stress protein" whose gene is induced by hyperosmolarity, protects renal medullary cells against the interstitial hyperosmolarity of antidiuresis by catalyzing the synthesis of millimolar concentrations of intracellular sorbitol from glucose. Although AR2 gene induction has been noted in a variety of renal and nonrenal cells subjected to hypertonic stress in vitro, the functional significance of AR2 gene expression in cells not normally exposed to a hyperosmolar milieu is not fully understood. The physiological impact of basal AR2 expression in such cells may be limited to hyperglycemic states in which AR2 promotes pathological polyol accumulation, a mechanism invoked in the pathogenesis of diabetic complications. Since AR2 overexpression in the retinal pigment epithelium has been associated with diabetic retinopathy, the regulation of AR2 gene expression and associated changes in sorbitol and myo-inositol were studied in human retinal pigment epithelial cells in culture. The relative abundance of aldehyde reductase (AR1) and AR2 mRNA was quantitated by filter hybridization of RNA from several human retinal pigment epithelial cell lines exposed to hyperglycemic and hyperosmolar conditions in vitro. AR2 but not AR1 mRNA was significantly increased some 11- to 18-fold by hyperosmolarity in several retinal pigment epithelial cell lines. A single cell line with a 15-fold higher basal level of AR2 mRNA than other cell lines tested demonstrated no significant increase in AR2 mRNA in response to hypertonic stress. This cell line demonstrated accelerated and exaggerated production of sorbitol and depletion of myo-inositol upon exposure to 20 mM glucose. Therefore, abnormal AR2 expression may enhance the sensitivity of cells to the biochemical consequences of hyperglycemia potentiating the development of diabetic complications. Images PMID:8349800

  17. Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats

    PubMed Central

    Markovets, Anton M.; Saprunova, Valeriya B.; Zhdankina, Anna A.; Fursova, Anzhella Zh.; Bakeeva, Lora E.; Kolosova, Natalia G.

    2011-01-01

    Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression. Clinical signs of retinopathy OXYS rats manifest by the age 3 months against the background of significantly reduced expression level of VEGF and PEDF genes due to the decline of the amount of retinal pigment epithelium (RPE) cells and alteration of choroidal microcirculation. The disruption in OXYS rats' retina starts at the age of 20 days and appears as reduce the area of RPE cells but does not affect their ultrastructure. Ultrastructural pathological alterations of RPE as well as develop forms of retinopathy are observed in OXYS rats from age 12 months and manifested as excessive accumulation of lipofuscin in RPE regions adjacent to the rod cells, whirling extentions of the basement membrane into the cytoplasm. These data suggest that primary cellular degenerative alterations in the RPE cells secondarily lead to choriocapillaris atrophy and results in complete loss of photoreceptor cells in the OXYS rats' retina by the age of 24 months. PMID:21191149

  18. Zinc Deficiency Leads to Lipofuscin Accumulation in the Retinal Pigment Epithelium of Pigmented Rats

    PubMed Central

    Kokkinou, Despina; Eibl, Oliver; Schraermeyer, Ulrich

    2011-01-01

    Background Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. Methodology/Principal Findings Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. Conclusions/Significance In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane. PMID:22216222

  19. Noradrenaline contracts rat retinal arterioles via stimulation of α(1A)- and α(1D)-adrenoceptors.

    PubMed

    Mori, Asami; Hanada, Masayuki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2011-12-30

    The aim of this study was to characterize the α₁-adrenoceptor subtype(s) involved in the noradrenaline-induced contraction of retinal arterioles in rats. In vivo ocular fundus images were captured with a digital camera equipped with a special objective lens. By measuring changes in diameter of retinal arterioles in the fundus images, retinal vascular response was assessed. The systemic blood pressure and heart rate in the animals were also continuously recorded. Following blockade of β₁/β₂-adrenoceptors with propranolol, noradrenaline (0.03-3 μg/kg/min, i.v.) decreased the diameter of retinal arterioles and increased the mean blood pressure in a dose-dependent manner. The highest dose (3 μg/kg/min, i.v.) of noradrenaline caused a small increase in heart rate. The α(1A)-adrenoceptor antagonist RS100329 (0.1 mg/kg, i.v.) and the α(1D)-adrenoceptor antagonist BMY 7378 (1 mg/kg, i.v.) significantly prevented noradrenaline-induced contraction of retinal arterioles and pressor responses whereas the α(1B)-adrenoceptor antagonist L-765314 (1 mg/kg, i.v.) did not. The α(1A)-adrenoceptor agonist, A 61603 (0.03-0.3 μg/kg/min, i.v.), also caused contractile responses of retinal arterioles and pressor responses. These responses were almost completely prevented by RS100329 (0.1 mg/kg, i.v.), but not by BMY 7378 (1 mg/kg, i.v.). These results suggest that the contractile effects of noradrenaline on retinal arterioles and peripheral resistance vessels are, at least in part, mediated by stimulation of α(1A)- and α(1D)-adrenoceptors. Furthermore, it is likely that the α₁-adrenoceptor subtype(s) involved in rat vascular responses are similar in both retinal and peripheral circulation. PMID:22040923

  20. Vasodilation of rat retinal microvessels induced by monobutyrin. Dysregulation in diabetes.

    PubMed Central

    Halvorsen, Y D; Bursell, S E; Wilkison, W O; Clermont, A C; Brittis, M; McGovern, T J; Spiegelman, B M

    1993-01-01

    1-Butyryl-glycerol (monobutyrin) is a simple lipid product of adipocytes with angiogenic activity. Recent studies have shown that the biosynthesis of this compound is tightly linked to lipolysis, a process associated with changes in blood flow. We now present data indicating that monobutyrin is an effective vasodilator of rodent blood vessels using a fluorescent retinal angiogram assay. The vasodilatory activity of monobutyrin is potent (ED50 = 3.3 x 10(-7) M), dose dependent, and stereospecific. Because diabetes represents a catabolic, lipolytic state with numerous vascular complications, we examined the action and regulation of monobutyrin in insulin-deficient diabetic rats. Serum levels of monobutyrin in streptozotocin-induced diabetic rats were greatly elevated compared to normal animals. At the same time, the retinal vessels of the diabetic animals develop a resistance to the vasodilatory activity of monobutyrin. These results demonstrate a role for monobutyrin in the control of vascular tone and suggest a possible involvement in the pathology of diabetes. PMID:8254042

  1. Comparative analysis of three purification protocols for retinal ganglion cells from rat

    PubMed Central

    Gao, Fengjuan; Li, Tingting; Hu, Jianyan; Zhou, Xujiao; Wu, Jihong

    2016-01-01

    Purpose To make comparative analyses of the common three purification protocols for retinal ganglion cells (RGCs), providing a solid practical basis for selecting the method for purifying RGCs for use in subsequent experiments. Methods Rat RGCs were isolated and purified using three methods, including two-step immunopanning (TIP) separation, two-step immunopanning-magnetic (TIPM) separation, and flow cytometric (FC) separation. Immunocytochemical staining, quantitative real-time PCR, flow cytometry, electrophysiology, and Cell Counting Kit-8 (CCK-8) analyses were performed to compare the purity, yield, and viability of the RGCs. Results The RGC yields from the TIP, TIPM, and FC methods were 24.60±15.98 × 104, 5.28±4.42 × 104, and 5.4±2.7 × 103 per retina, respectively. We easily controlled the relative purity of the RGCs with the FC method and even reached 100% of the maximum expected purity. However, the RGC purity was only 80.97±5.45% and 95.41±3.23% using the TIP and TIPM methods, respectively. The contaminant cells were mainly large, star-shaped, glial fibrillary acidic protein (GFAP)-positive astrocytes and small, round, syntaxin 1-positive amacrine cells with multiple short neurites. The RGCs purified with FC could not be cultured successively in our study; however, the TIP-RGCs survived more than 20 days with good viability, while the TIPM-RGCs survived less than 9 days. Conclusions The three protocols for purifying the RGCs each had its own pros and cons. The RGCs isolated by the TIP method exhibited the highest viability and yield but had low purity. The purity of the RGCs isolated with the FC method could reach approximately 100% but had a low yield and cell viability. The TIPM method was reliable and produced RGCs with considerable purity, yield, and viability. This study provides a solid practical basis for selecting the method for purifying RGCs for use in subsequent experiments. PMID:27122968

  2. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  3. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions.

    PubMed

    Foresti, Roberta; Bucolo, Claudio; Platania, Chiara Maria Bianca; Drago, Filippo; Dubois-Randé, Jean-Luc; Motterlini, Roberto

    2015-09-01

    Retinal pigment epithelial cells exert an important supporting role in the eye and develop adaptive responses to oxidative stress or high glucose levels, as observed during diabetes. Endogenous antioxidant defences are mainly regulated by Nrf2, a transcription factor that is activated by naturally-derived and electrophilic compounds. Here we investigated the effect of the Nrf2 activators dimethylfumarate (DMF) and carnosol on antioxidant pathways, oxygen consumption rate and wound healing in human retinal pigment epithelial cells (ARPE-19) cultured in medium containing normal (NG, 5mM) or high (HG, 25 mM) glucose levels. We also assessed wound healing using an in vivo corneal epithelial injury model. We found that Nrf2 nuclear translocation and heme oxygenase activity increased in ARPE cells treated with 10 μM DMF or carnosol irrespective of glucose culture conditions. However, HG rendered retinal cells more sensitive to regulators of glutathione synthesis or inhibition and caused a decrease of both cellular and mitochondrial reactive oxygen species. Culture in HG also reduced ATP production and mitochondrial function as measured with the Seahorse XF analyzer and electron microscopy analysis revealed morphologically damaged mitochondria. Acute treatment with DMF or carnosol did not restore mitochondrial function in HG cells; conversely, the compounds reduced cellular maximal respiratory and reserve capacity, which were completely prevented by N-acetylcysteine thus suggesting the involvement of thiols in this effect. Interestingly, the scratch assay showed that wound closure was faster in cells cultured in HG than NG and was accelerated by carnosol. This effect was reversed by an inhibitor of heme oxygenase activity. Moreover, topical application of carnosol to the cornea of diabetic rats significantly accelerated wound healing. In summary, these data indicate that culture of retinal epithelial cells in HG does not affect the activation of the Nrf2/heme oxygenase

  4. L-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways in vivo.

    PubMed

    Mori, Asami; Morita, Masahiko; Morishita, Koji; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2015-04-01

    L-Citrulline is an effective precursor of L-arginine produced by the L-citrulline/L-arginine cycle, and it exerts beneficial effects on the cardiovascular system by supporting enhanced nitric oxide (NO) production. NO dilates retinal blood vessels via the cyclooxygenase-mediated pathway. The purpose of this study was to examine the effects of L-citrulline on retinal circulation and to investigate the potential involvement of NO and prostaglandins in L-citrulline-induced responses in rats. L-Citrulline (10-300 μg kg(-1) min(-1), i.v.) increased the diameter of retinal arterioles without significantly changing mean blood pressure, heart rate, and fundus blood flow. The vasodilator response of retinal arterioles to l-citrulline was significantly diminished following treatment with N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.), an NO synthase inhibitor, or indomethacin (5 mg/kg, i.v.), a cyclooxygenase inhibitor. In addition, α-methyl-dl-aspartic acid (147 mg/kg, i.v.), an inhibitor of argininosuccinate synthase, the rate-limiting enzyme for the recycling of l-citrulline to l-arginine, diminished the L-citrulline-induced retinal vasodilation. These results suggest that both NO- and prostaglandin-dependent pathways contribute to the L-citrulline-induced vasodilation of rat retinal arterioles. The L-citrulline/L-arginine recycling pathway may have more importance in regulating vascular tone in retinal blood vessels than in peripheral resistance vessels. PMID:25953269

  5. The effect of intraocular and intracranial pressure on retinal structure and function in rats

    PubMed Central

    Zhao, Da; He, Zheng; Vingrys, Algis J; Bui, Bang V; Nguyen, Christine T O

    2015-01-01

    An increasing number of studies indicate that the optic nerve head of the eye is sensitive not only to changes in intraocular pressure (IOP), but also to intracranial pressure (ICP). This study examines changes to optic nerve and retinal structure in a rat model in response to a range of IOP and ICP levels using optical coherence tomography. Furthermore, we examine the functional sequelae of these structural changes by quantifying the effect of pressure changes on the electroretinogram. IOP elevation (10–90 mmHg) induces progressive deformation of the optic nerve head and retinal surface (P < 0.05), compression of the retina (P < 0.05) and bipolar cell (b-wave), and retinal ganglion cell (scotopic threshold response) dysfunction (P < 0.05). Simultaneously altering ICP (−5 to 30 mmHg) modifies these IOP-induced responses, with lower ICP (−5 mmHg) exacerbating and higher ICP (15–30 mmHg) ameliorating structural and functional deficits. Thus, the balance between IOP and ICP (optic nerve pressure gradient, ONPG = IOP − ICP) plays an important role in optic nerve integrity. Structural and functional parameters exhibit a two-phase relationship to ONPG, with structural changes being more sensitive to ONPG modification (threshold = −0.6 to 11.3 mmHg) compared with functional changes (threshold = 49.7–54.6 mmHg). These findings have implications for diseases including glaucoma, intracranial hypertension, and long-term exposure to microgravity. PMID:26290528

  6. Effect of Storage Temperature on Key Functions of Cultured Retinal Pigment Epithelial Cells

    PubMed Central

    Pasovic, Lara; Eidet, Jon Roger; Brusletto, Berit S.; Lyberg, Torstein; Utheim, Tor P.

    2015-01-01

    Purpose. Replacement of the diseased retinal pigment epithelium (RPE) with cells capable of performing the specialized functions of the RPE is the aim of cell replacement therapy for treatment of macular degenerative diseases. A storage method for RPE is likely to become a prerequisite for the establishment of such treatment. Herein, we analyze the effect of storage temperature on key functions of cultured RPE cells. Methods. Cultured ARPE-19 cells were stored in Minimum Essential Medium at 4°C, 16°C, and 37°C for seven days. Total RNA was isolated and the gene expression profile was determined using DNA microarrays. Comparison of the microarray expression values with qRT-PCR analysis of selected genes validated the results. Results. Expression levels of several key genes involved in phagocytosis, pigment synthesis, the visual cycle, adherens, and tight junctions, and glucose and ion transport were maintained close to control levels in cultures stored at 4°C and 16°C. Cultures stored at 37°C displayed regulational changes in a larger subset of genes related to phagocytosis, adherens, and tight junctions. Conclusion. RPE cultures stored at 4°C and 16°C for one week are capable of maintaining the expression levels of genes important for key RPE functions close to control levels. PMID:26448872

  7. Spontaneous neural activity in the primary visual cortex of retinal degenerated rats.

    PubMed

    Wang, Yi; Chen, Ke; Xu, Ping; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-06-01

    Retinal degeneration (RD) models have been widely used to study retinal degenerative diseases for a long time. The biological and electrophysiological presentations of changes in the retina during degeneration progress have been well investigated; thus, the present study is aimed at investigating the electrophysiological effects of RD in the primary visual cortex. We extracellularly recorded the spontaneous neural activities in the primary visual cortex of RD rats. The firing rate, interspike interval (ISI) and Lempel-Ziv (LZ) complexity of spontaneous neural activities were subsequently analyzed. When compared to the control group, it was found that the neurons in primary visual cortex of the RD model fired more frequently. In addition, there was a decrease in LZ complexity of spontaneous neural firing in the RD model. These results suggest that the progress of RD may not only affect the retina itself but also the primary visual cortex, which may result in an unbalanced inhibition-excitation system as well as the decreased arising rate of new patterns of spontaneous activities. PMID:27132087

  8. Distribution of melanosomes across the retinal pigment epithelium of a hooded rat: implications for light damage

    SciTech Connect

    Howell, W.L.; Rapp, L.M.; Williams, T.P.

    1982-02-01

    Distribution of melanosomes across the retinal pigment epithelium of hooded rats (Long-Evans) is studied at the light microscopic and electron microscopic levels. This distribution is shown to be nonuniform: more melanosomes exist in the periphery than elsewhere and, importantly, there are very few melanosomes in a restricted area of the central portion of the superior hemisphere compared with the corresponding part of the inferior hemisphere. The region with fewest melanosomes is precisely the one that is highly susceptible to light damage. Because this region is the same in both pigmented and albino eyes, the paucity of melanin in this region is not the cause of its great sensitivity to light damage. Nor does light cause the nonuniform distribution of melanin. A possible explanation, involving a proposed vestigial tapetum, is given in order to explain the correlation of melanosome counts and sensitivity to light damage.

  9. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  10. Delayed Administration of Bone Marrow Mesenchymal Stem Cell Conditioned Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven

    2014-01-01

    Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381

  11. Regression of retinal capillaries following N-methyl-D-aspartate-induced neurotoxicity in the neonatal rat retina.

    PubMed

    Asano, Daiki; Nakahara, Tsutomu; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio

    2015-02-01

    Degeneration of retinal capillaries occurs following N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity, and the degree of capillary degeneration decreases in an age-dependent manner. To determine the role of vascular endothelial growth factor (VEGF) in the high susceptibility of capillaries to neuronal damage during the early postnatal stage, this study compares the vascular regression patterns between NMDA-treated retinas and retinas treated with N-[2-chloro-4-{(6,7-dimethoxy-4-quinazolinyl)oxy}phenyl]-N'-propylurea (KRN633), a VEGF receptor tyrosine kinase inhibitor, in neonatal rats. Two days after a single intravitreal injection of NMDA (200 nmol/eye) on postnatal day (P) 7, substantial retinal neuron loss and delayed expansion of the retinal vascular bed were observed. The reduction in the capillary density in the central retina reached statistical significance 4 days after NMDA treatment. In retinas of rats injected subcutaneously with KRN633 (10 mg/kg) on P7 and P8, simplified vasculature attributable to capillary regression and prevention of endothelial cell growth were seen on P9, whereas no visible changes in the morphology of the retinal layers were observed. The degree of capillary degeneration in NMDA-treated retinas was less than that in KRN633-treated retinas. No apparent changes in immunoreactivities for VEGF were found 2 days after NMDA treatment. These results indicate that neuronal cell loss in the retina precedes retinal capillary degeneration following NMDA treatment, and VEGF-dependent immature capillaries might be more susceptible to NMDA-induced neuronal damage. PMID:25284371

  12. 9-cis-retinoic acid in combination with retinal pigment epithelium induces apoptosis in cultured retinal explants only during early postnatal development.

    PubMed

    Söderpalm, A K; Karlsson, J; Caffé, A R; vanVeen, T

    1999-12-10

    Retinoic acid is one of the active metabolites of vitamin A and has profound effects on the development of the CNS including retina. Previously, we have shown that rod-specific apoptosis is induced in retinal explants from neonatal mice by exposure to 9-cis-retinoic acid (9CRA) when the retinal pigment epithelium (RPE) is present. In explants lacking RPE, it instead has a differentiation-promoting effect seen as an accelerated opsin expression on postnatal day 3. To investigate the long-term effect of 9CRA exposure, we have explanted retinas from neonatal C3H mice with or without RPE attached and placed in organ culture. After 19 or 48 h in culture or 7, 8 or 13 days in culture, the explants were either fixed for histochemical examination or frozen for assay of DEVDase activity. We found that long-term exposure to 9CRA caused a decrease in the number of cell layers in the outer nuclear layer (ONL) only in explants with the RPE attached. When explants with RPE attached were exposed to 9CRA only during the second postnatal week, neither an increase in DEVDase activity, TUNEL-positive cells, nor a decrease in cell layers of the ONL could be demonstrated, indicating that the retina was insensitive to the apoptosis-inducing effect of 9CRA after the first postnatal week. The absence of RPE in control explants resulted in a higher number of rosettes and the extrusion of cells into the subretinal space. PMID:10611516

  13. Iron and other elements (Cu, Zn, Ca) contents in retina of rats during development and hereditary retinal degeneration

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Llabador, Y.; Devès, G.; Vesvres, M. H.; Simonoff, M.; Yefimova, M.; Courtois, Y.; Jeanny, J. C.

    2001-07-01

    The retina as well as other tissues needs iron to survive, but modifications in iron metabolism have also been suggested to contribute to cerebral neurodegenerative diseases. Our study was intended to investigate iron distribution in the retina of normal rats and Royal College of Surgeons (RCS) rats affected by hereditary degeneration of the photoreceptors at different developmental stages (35, 45 and 55 days after birth). Iron (Fe) distribution was determined by proton induced X-ray emission (PIXE) microanalysis on retinal sections and compared to other tissues (cornea, liver, spleen) and to other elements (Cu, Zn, Ca). Elemental concentrations were determined in different retinal layers especially the photoreceptors, which are progressively altered and disappear in the RCS rats. Iron is unevenly distributed throughout the rat retina. The highest concentration is observed in the choroid and the retinal pigmented epithelium and in the inner segments of photoreceptors. Iron content is lower in the outer segments but still significant. It increases during both the development and the disease at the level of the segments. This last localised iron increase can result in an overproduction of free radicals and be correlated with the photoreceptor cell loss. The distributions of other elements (Cu, Zn, Ca) revealed interesting temporal progressions.

  14. Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina

    PubMed Central

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Background Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A2A receptor (A2AR) regulates retinal waves and whether A2AR regulation of retinal waves acts via presynaptic SACs. Methodology/Principal Findings We showed that A2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A2AR decreased the frequency of spontaneous Ca2+ transients, suggesting that endogenous A2AR may up-regulate wave frequency. To investigate whether A2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca2+ transient frequency was increased by expressing wild-type A2AR (A2AR-WT) in SACs, suggesting that A2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A2AR mutant (A2AR-ΔC) in SACs, the wave frequency was reduced compared to the A2AR-WT, but was similar to the control, suggesting that the full-length A2AR in SACs is required for A2AR up-regulation of retinal waves. Conclusions/Significance A2AR up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full

  15. Effects of Low-dose Triamcinolone Acetonide on Rat Retinal Progenitor Cells under Hypoxia Condition

    PubMed Central

    Xing, Yao; Cui, Li-Jun; Kang, Qian-Yan

    2016-01-01

    Background: Retinal degenerative diseases are the leading causes of blindness in developed world. Retinal progenitor cells (RPCs) play a key role in retina restoration. Triamcinolone acetonide (TA) is widely used for the treatment of retinal degenerative diseases. In this study, we investigated the role of TA on RPCs in hypoxia condition. Methods: RPCs were primary cultured and identified by immunofluorescence staining. Cells were cultured under normoxia, hypoxia 6 h, and hypoxia 6 h with TA treatment conditions. For the TA treatment groups, after being cultured under hypoxia condition for 6 h, RPCs were treated with different concentrations of TA for 48–72 h. Cell viability was measured by cell counting kit-8 (CCK-8) assay. Cell cycle was detected by flow cytometry. Western blotting was employed to examine the expression of cyclin D1, Akt, p-Akt, nuclear factor (NF)-κB p65, and caspase-3. Results: CCK-8 assays indicated that the viability of RPCs treated with 0.01 mg/ml TA in hypoxia group was improved after 48 h, comparing with control group (P < 0.05). After 72 h, the cell viability was enhanced in both 0.01 mg/ml and 0.02 mg/ml TA groups compared with control group (all P < 0.05). Flow cytometry revealed that there were more cells in S-phase in hypoxia 6 h group than in normoxia control group (P < 0.05). RPCs in S and G2/M phases decreased in groups given TA, comparing with other groups (all P < 0.05). There was no significant difference in the total Akt protein expression among different groups, whereas upregulation of p-Akt and NF-κB p65 protein expression and downregulation of caspase-3 and cyclin D1 protein expression were observed in 0.01 mg/ml TA group, comparing with hypoxia 6 h group and control group (all P < 0.05). Conclusion: Low-dose TA has anti-apoptosis effect on RPCs while it has no stimulatory effect on cell proliferation. PMID:27364798

  16. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  17. Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats

    PubMed Central

    Yang, Yaping; Qin, Yong Jie; Yip, Yolanda W. Y.; Chan, Kwok Ping; Chu, Kai On; Chu, Wai Kit; Ng, Tsz Kin; Pang, Chi Pui; Chan, Sun On

    2016-01-01

    Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (−)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent. PMID:27383468

  18. Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats.

    PubMed

    Yang, Yaping; Qin, Yong Jie; Yip, Yolanda W Y; Chan, Kwok Ping; Chu, Kai On; Chu, Wai Kit; Ng, Tsz Kin; Pang, Chi Pui; Chan, Sun On

    2016-01-01

    Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (-)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent. PMID:27383468

  19. Mead acid supplementation does not rescue rats from cataract and retinal degeneration induced by N-methyl-N-nitrosourea.

    PubMed

    Emoto, Yuko; Yoshizawa, Katsuhiko; Hamazaki, Kei; Kinoshita, Yuichi; Yuki, Michiko; Yuri, Takashi; Kawashima, Hiroshi; Tsubura, Airo

    2015-01-01

    Fatty acids and their derivatives play a role in the response to ocular disease. Our current study investigated the effects of dietary mead acid (MA, 5,8,11-eicosatrienoic acid) supplementation on N-methyl-N-nitrosourea (MNU)-induced cataract and retinal degeneration in Sprague-Dawley rats. Experiment 1 was designed to inhibit cataract formation, with the dams fed a 2.4% MA or basal (<0.01% MA) diet during lactational periods. On postnatal day 7, male pups received a single intraperitoneal (ip) injection of 50 mg/kg MNU or vehicle. Lens opacity and morphology were examined 7 and 14 days after the MNU injection. Experiment 2 was designed to inhibit retinal degeneration and was performed with female postweaning rats. In this experiment, dams were fed the 2.4% MA or basal diet during the lactational periods. Thereafter, the female pups were continuously fed the same diets during their postweaning periods. On postnatal day 21 (at weaning), pups received a single ip injection of 50 mg/kg MNU. Retinal morphology was examined 7 days after the MNU injection. In experiment 3, six-week-old female rats were fed the 2.4% MA or basal diet starting at one week before the MNU injection and were then continuously fed the same diets until sacrifice. Rats at 7 weeks of age were given a single ip injection of 40 mg/kg MNU, and the retina was then examined morphologically one week after the MNU injection. In experiment 1, mature cataract was found in all of the MNU-treated groups, with or without MA supplementation. In experiments 2 and 3, atrophy of both the peripheral and central outer retina occurred in all rats exposed to MNU, with or without MA supplementation, respectively. The severities of the cataracts and retinal atrophy in the rats were similar regardless of MA supplementation. Dietary mead acid, which is used as a substitute in essential fatty acid deficiency in the body, does not modify MNU-induced cataract and retinal degeneration in rat models. PMID:26023256

  20. Mead acid supplementation does not rescue rats from cataract and retinal degeneration induced by N-methyl-N-nitrosourea

    PubMed Central

    Emoto, Yuko; Yoshizawa, Katsuhiko; Hamazaki, Kei; Kinoshita, Yuichi; Yuki, Michiko; Yuri, Takashi; Kawashima, Hiroshi; Tsubura, Airo

    2014-01-01

    Fatty acids and their derivatives play a role in the response to ocular disease. Our current study investigated the effects of dietary mead acid (MA, 5,8,11-eicosatrienoic acid) supplementation on N-methyl-N-nitrosourea (MNU)-induced cataract and retinal degeneration in Sprague-Dawley rats. Experiment 1 was designed to inhibit cataract formation, with the dams fed a 2.4% MA or basal (<0.01% MA) diet during lactational periods. On postnatal day 7, male pups received a single intraperitoneal (ip) injection of 50 mg/kg MNU or vehicle. Lens opacity and morphology were examined 7 and 14 days after the MNU injection. Experiment 2 was designed to inhibit retinal degeneration and was performed with female postweaning rats. In this experiment, dams were fed the 2.4% MA or basal diet during the lactational periods. Thereafter, the female pups were continuously fed the same diets during their postweaning periods. On postnatal day 21 (at weaning), pups received a single ip injection of 50 mg/kg MNU. Retinal morphology was examined 7 days after the MNU injection. In experiment 3, six-week-old female rats were fed the 2.4% MA or basal diet starting at one week before the MNU injection and were then continuously fed the same diets until sacrifice. Rats at 7 weeks of age were given a single ip injection of 40 mg/kg MNU, and the retina was then examined morphologically one week after the MNU injection. In experiment 1, mature cataract was found in all of the MNU-treated groups, with or without MA supplementation. In experiments 2 and 3, atrophy of both the peripheral and central outer retina occurred in all rats exposed to MNU, with or without MA supplementation, respectively. The severities of the cataracts and retinal atrophy in the rats were similar regardless of MA supplementation. Dietary mead acid, which is used as a substitute in essential fatty acid deficiency in the body, does not modify MNU-induced cataract and retinal degeneration in rat models. PMID:26023256

  1. Electrical responses of the rat's retinal pigment epithelium to azide and thiocyanate.

    PubMed

    Ando, H; Noell, W K

    1993-01-01

    In the rat under urethane anesthesia, a fast intravenous injection of a bolus of sodium azide elicited a transient cornea-positive change in transocular potential (azide response). A bolus injection of sodium thiocyanate (NaSCN) produced a cornea-negative response (SCN- response) with a similar rising phase as the azide response, but with a faster return from the peak. The peak amplitude depended on bolus volume, concentration, animal strain, and age. For more than 24 h, the azide and SCN- responses could be recorded repeatedly from a single rat with little variation in peak amplitudes. Following an administration of iodate, known to degenerate the retinal pigment epithelium (RPE), the transocular d.c. potential decreased; the azide response became smaller and then was inverted in polarity, whereas the SCN- response became larger. Azide and SCN- are assumed to depolarize and hyperpolarize the basal membrane of RPE, respectively. The equilibrium potential of ions passing through the putative azide-sensitive channels is assumed less negative than resting potential of RPE cells. The SCN- response probably represents a diffusion potential of SCN- permeating through anionic channels at a higher rate than Cl-. Results demonstrate the feasibility of in vivo electrophysiological measurement of the functional state and the structural integrity of RPE under pathological conditions. PMID:8230850

  2. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells

    PubMed Central

    Zhang, Ping-Ping; Zhang, Gong; Zhou, Wei; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-01-01

    ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca2+]i through the IP3-sensitive pathway and was blocked by intracellular Ca2+-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca2+/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs. PMID:27357477

  3. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells.

    PubMed

    Zhang, Ping-Ping; Zhang, Gong; Zhou, Wei; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-01-01

    ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca(2+)]i through the IP3-sensitive pathway and was blocked by intracellular Ca(2+)-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca(2+)/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs. PMID:27357477

  4. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats

    PubMed Central

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What’s more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  5. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats.

    PubMed

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What's more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  6. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    PubMed

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. PMID:26969240

  7. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model

    PubMed Central

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling

    2013-01-01

    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357

  8. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats

    PubMed Central

    WEI, TING; KANG, QIANYAN; MA, BO; GAO, SHAN; LI, XUEYING; LIU, YONG

    2015-01-01

    Glaucoma is a neurodegenerative disease characterized by elevated intraocular pressure (IOP), which causes retinal ischemia and progressive neuronal death. Retinal ischemia/reperfusion (RIR) injury is a common clinical condition representing the main cause of irreversible visual field defects in humans. The aim of this study was to investigate whether non-apoptotic forms of programmed cell death (PCD) have an effect on RIR injury in an experimental model that replicates features of acute hypertensive glaucoma and to explore the possible underlying mechanisms. The activation of autophagy was investigated in retinal ganglion cells (RGCs) following RIR in comparison with a control group, using immunofluorescence against microtubule-associated protein 1 light chain 3 (LC3). RIR injury increased LC3 expression in the cytoplasm of RGCs in the ganglion cell layer (GCL) 6 h after the insult, and the increased expression was sustained throughout the experimental period. Following RIR insult, the number of neurons in the GCL significantly decreased. Ultra-structural analyses showed that double- or multiple-membrane autophagosomes were markedly accumulated in the cytoplasm of RGCs following IOP elevation. Since there are no known markers for paraptosis, its identification was based on morphological criteria. Electron microscopy (EM) analysis revealed severe structural alterations associated with cytoplasmatic vacuolization within the 6 h after RIR injury and RGC death. EM also revealed that vacuoles were derived predominantly from the progressive swelling of the endoplasmic reticulum (ER) and/or mitochondria in RGCs after RIR injury. The results provide novel evidence implicating an important role of autophagy and paraptosis in the pathogenesis of RIR injury. Autophagy and paraptosis take place during developmental cell death in the nervous system as well as in certain cases of neurodegeneration. Therefore, targeting autophagy and paraptosis could have therapeutic potential

  9. The effect of intravitreal vascular endothelial growth factor on inner retinal oxygen delivery and metabolism in rats.

    PubMed

    Blair, Norman P; Wanek, Justin; Teng, Pang-yu; Shahidi, Mahnaz

    2016-02-01

    Vascular endothelial growth factor (VEGF) is stimulated by hypoxia and plays an important role in pathologic vascular leakage and neovascularization. Increased VEGF may affect inner retinal oxygen delivery (DO2) and oxygen metabolism (MO2), however, quantitative information is lacking. We tested the hypotheses that VEGF increases DO2, but does not alter MO2. In 10 rats, VEGF was injected intravitreally into one eye, whereas balanced salt solution (BSS) was injected into the fellow eye, 24 h prior to imaging. Vessel diameters and blood velocities were determined by red-free and fluorescent microsphere imaging, respectively. Vascular PO2 values were derived by phosphorescence lifetime imaging of an intravascular oxyphor. Retinal blood flow, vascular oxygen content, DO2 and MO2 were calculated. Retinal arterial and venous diameters were larger in VEGF-injected eyes compared to control eyes (P < 0.03), however no significant difference was observed in blood velocity (P = 0.21). Thus, retinal blood flow was greater in VEGF-injected eyes (P = 0.007). Retinal vascular PO2 and oxygen content were similar between control and VEGF-injected eyes (P > 0.11), while the arteriovenous oxygen content difference was marginally lower in VEGF-injected eyes (P = 0.05). DO2 was 950 ± 340 and 1380 ± 650 nL O2/min in control and VEGF-injected eyes, respectively (P = 0.005). MO2 was 440 ± 150 and 490 ± 190 nL O2/min in control and VEGF-injected eyes, respectively (P = 0.31). Intravitreally administered VEGF did not alter MO2 but increased DO2, suggesting VEGF may play an offsetting role in conditions characterized by retinal hypoxia. PMID:26518179

  10. Synergistic protective effects of escin and low‑dose glucocorticoids on blood‑retinal barrier breakdown in a rat model of retinal ischemia.

    PubMed

    Zhang, Fenglan; Li, Yuanbin; Zhang, Leiming; Mu, Guoying

    2013-05-01

    Escin, a natural mixture of triterpenoid saponins isolated from the seed of the horse chestnut (Aesculus hippocastanum), has been demonstrated to possess glucocorticoid (GC)‑like anti‑edematous and anti‑inflammatory effects. The aim of the present study was to investigate whether escin exhibits synergistic protective effects on blood‑retinal barrier (BRB) breakdown when combined with GCs in a rat model of retinal ischemia. Low concentrations of escin and triamcinolone acetonide (TA) alone did not affect BRB permeability. However, when administered together, low‑dose escin and TA significantly reduced BRB permeability following ischemia. Furthermore, low‑dose escin and TA alone did not affect the expression of occludin in the ischemic retina; however, when administered together, they significantly increased occludin expression in the ganglion cell layer of the ischemic retina. This indicates that escin and GCs have synergistic protective effects on BRB breakdown and the molecular mechanisms may be correlated with the upregulation of occludin. Therefore, the administration of escin may allow a reduction in the dose of GCs for the treatment of macular edema. The combination of escin with GCs is potentially a beneficial treatment method for BRB breakdown and warrants further investigation. PMID:23525122

  11. Human retinal development in an in situ whole eye culture system.

    PubMed

    Engelsberg, Karl; Ghosh, Fredrik

    2011-01-01

    Phenotypic characterization of human retinogenesis may be facilitated by use of the tissue culture system paradigm. Traditionally, most culture protocols involve isolation of retinal tissue and/or cells, imposing various degrees of trauma, which in many cases leads to abnormal development. In this paper, we present a novel culture technique using whole embryonic eyes to investigate whether the retina in situ can develop normally in vitro. All procedures were carried out in accordance with the Declaration of Helsinki. Human embryos were obtained from elective abortions with the informed consent of the women seeking abortion. A total of 19 eyes were enucleated. The ages of the embryonic retinas were 6-7.5 weeks. Eyecups from 2 eyes were fixed immediately, to be used as controls. The remaining 17 eyes were placed on culture plates and divided into 3 groups kept for 7 (n = 4), 14 (n = 7) and 28 (n = 6) days in vitro (DIV). After fixation, the specimens were processed for hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Antibodies against recoverin (rods and cones), protein kinase C (PKC; rod bipolar cells) and vimentin (Müller cells) were used. TUNEL was used to detect apoptotic cells. In hematoxylin- and eosin-stained sections, the control retinas displayed a neuroblast cell layer (NBL) and an inner marginal zone. Specimens kept 7-14 DIV had a similar appearance, while 28-day specimens consisted of an NBL with almost no marginal zone. Thirteen of the 17 cultured retinas displayed completely normal lamination without rosettes or double folds. Pyknotic cells were found at the inner margin of the retinas, and the proportion of these cells increased with time in vitro. TUNEL staining revealed a few scattered cells in 7-DIV specimens, and the amount of stained cells in the inner part of the retinas progressively increased in 14- and 28-DIV specimens. Vimentin labeling showed cells

  12. Enhanced Endothelin-1 Mediated Vasoconstriction of the Ophthalmic Artery May Exacerbate Retinal Damage after Transient Global Cerebral Ischemia in Rat

    PubMed Central

    Blixt, Frank W.; Johansson, Sara Ellinor; Johnson, Leif; Haanes, Kristian Agmund; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cerebral vasculature is often the target of stroke studies. However, the vasculature supplying the eye might also be affected by ischemia. The aim of the present study was to investigate if the transient global cerebral ischemia (GCI) enhances vascular effect of endothelin-1 (ET-1) and 5-hydroxytryptamine/serotonin (5-HT) on the ophthalmic artery in rats, leading to delayed retinal damage. This was preformed using myography on the ophthalmic artery, coupled with immunohistochemistry and electroretinogram (ERG) to assess the ischemic consequences on the retina. Results showed a significant increase of ET-1 mediated vasoconstriction at 48 hours post ischemia. The retina did not exhibit any morphological changes throughout the study. However, we found an increase of GFAP and vimentin expression at 72 hours and 7 days after ischemia, indicating Müller cell mediated gliosis. ERG revealed significantly decreased function at 72 hours, but recovered almost completely after 7 days. In conclusion, we propose that the increased contractile response via ET-1 receptors in the ophthalmic artery after 48 hours may elicit negative retinal consequences due to a second ischemic period. This may exacerbate retinal damage after ischemia as illustrated by the decreased retinal function and Müller cell activation. The ophthalmic artery and ET-1 mediated vasoconstriction may be a valid and novel therapeutic target after longer periods of ischemic insults. PMID:27322388

  13. Regulation of tyrosinase expression and activity in cultured human retinal pigment epithelial cells.

    PubMed

    Abul-Hassan, K; Walmsley, R; Tombran-Tink, J; Boulton, M

    2000-12-01

    The purpose of this study was to investigate the regulation of tyrosinase gene expression and activity in cultured human retinal pigment epithelial (RPE) cells. The tyrosinase promoter (Ty.prom) region (400 bp) was PCR amplified and cloned into a modified mammalian expression vector (pcDNA3.1) upstream of a firefly luciferase (Luc) cDNA and was designated 'pcDNA3.1-Ty.prom.Luc'. The plasmid was co-transfected into RPE cells with a second mammalian expression plasmid (pRL-TK) containing a herpes simplex virus thymidine kinase promoter region upstream of Renilla Luc in a protocol designated the 'dual luciferase assay' (DLA). After co-transfection, cells were treated with a range of potential melanogenic agents; basic fibroblast growth factor (bFGF), methyl methane sulphonate, alpha-melanocyte stimulating hormone, verapamil, phorbol myristate acetate, cholera toxin (CT), pigment epithelium derived factor (PEDF), and L-tyrosine. The expression of tyrosinase promoter and enzymatic activities were determined 48 hr post-transfection using the DLA and DOPA oxidase assays, respectively. Tyrosinase activity could not be detected in RPE cells with any of the treatments. Tyrosinase promoter activity was significantly up-regulated in RPE cells treated with bFGF, PEDF, verapamil, CT and tyrosine compared with control cells. In conclusion, the tyrosinase gene is not only expressed but can be regulated in response to different chemicals in cultured human RPE cells. However, it appears that RPE cells in culture lack a post-transcriptional and/or translational modification point(s), which are necessary for tyrosinase enzymic activity. PMID:11153695

  14. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  15. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... available? Are there any related diseases? What is retinitis pigmentosa? Retinitis pigmentosa (RP) refers to a group of ...

  16. A platform for controlled dual-drug delivery to the retina: protective effects against light-induced retinal damage in rats.

    PubMed

    Nagai, Nobuhiro; Kaji, Hirokazu; Onami, Hideyuki; Katsukura, Yuki; Ishikawa, Yumi; Nezhad, Zhaleh Kashkouli; Sampei, Kaori; Iwata, Satoru; Ito, Shuntaro; Nishizawa, Matsuhiko; Nakazawa, Toru; Osumi, Noriko; Mashima, Yukihiko; Abe, Toshiaki

    2014-10-01

    Controlled transscleral co-delivery of two drugs, edaravone (EDV) and unoprostone (UNO), using a platform that comprises a microfabricated reservoir, controlled-release cover, and drug formulations, which are made of photopolymerized poly(ethyleneglycol) dimethacrylates, shows synergistic retinal neuroprotection against light injury in rats when compared with single-drug-loaded devices. The device would offer a safer therapeutic method than intravitreal injections for retinal disease treatments. PMID:24753450

  17. Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion.

    PubMed

    Hu, Tu; You, Qiuting; Chen, Dan; Tong, Jianbin; Shang, Lei; Luo, Jia; Qiu, Yi; Yu, Huimin; Zeng, Leping; Huang, Jufang

    2016-05-01

    It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion. PMID:26830289

  18. Partial Rescue of Retinal Function and Sterol Steady-State in a Rat Model of Smith-Lemli-Opitz Syndrome

    PubMed Central

    FLIESLER, STEVEN J.; VAUGHAN, DANA K.; JENEWEIN, ERIN C.; RICHARDS, MICHAEL J.; NAGEL, BARBARA A.; PEACHEY, NEAL S.

    2007-01-01

    The Smith-Lemli-Opitz syndrome (SLOS) is the first-described in a growing family of hereditary defects in cholesterol biosynthesis, and presents with a spectrum of serious abnormalities, including multiple dysmorphologies, failure to thrive, cognitive and behavioral impairments, and retinopathy. Using a pharmacologically induced rat model of SLOS that exhibits key hallmarks of the disease, including progressive retinal degeneration and dysfunction, we show that a high-cholesterol diet can substantially correct abnormalities in retinal sterol composition, with concomitant improvement of visual function, particularly within the cone pathway. Although histologic degeneration still occurred, a high-cholesterol diet reduced the number of pyknotic photoreceptor nuclei, relative to animals on a cholesterol-free diet. These findings demonstrate that cholesterol readily crosses the blood-retina barrier (unlike the blood-brain barrier) and suggest that cholesterol supplementation may be efficacious in treating SLOS-associated retinopathy. PMID:17314682

  19. Editor's Highlight: Plasma miR-183/96/182 Cluster and miR-124 are Promising Biomarkers of Rat Retinal Toxicity.

    PubMed

    Peng, Qinghai; Collette, Walter; Giddabasappa, Anand; David, John; Twamley, Michelle; Kalabat, Dalia; Aguirre, Shirley A; Huang, Wenhu

    2016-08-01

    Retinal toxicity is one of the leading causes of attrition in drug development, and drug-induced retinal toxicity remains an issue in both drug discovery and postmarketed drugs. Derisking strategies to help with early identification of retinal injury utilizing a predictive retinal miRNA biomarker would greatly benefit decision-making in drug discovery programs, ultimately reducing attrition due to retinal toxicity. Our previous work demonstrated elevation of circulating retina-enriched miRNAs in a retinal toxicity model. To further validate our previous observation, 2 additional rat retinal injury models were utilized in this study: NaIO3-induced retinal injury and laser-induced choroidal neovascularization (CNV) injury model. Following induction of retina tissue injuries, circulating miR-183/96/182 cluster (miR-183 cluster), and miR-124 was investigated, as well as evaluations using an electroretinogram (ERG) and histopathology analysis. Data revealed that circulating miR-183/96/182 cluster was significantly increased (2- to 15-fold) compared with baseline/control in both laser-induced CNV and NaIO3-induced retinal injury models. Moreover, the severity of the retinal injury evaluated by ERG and histopathology correlated highly with elevation of these retina-enriched miRNAs in plasma. MiR-124 was also significantly increased in comparison with baseline/control by ∼25-fold postrepeat-doses of 30 mg/kg NaIO3 treatment. Increased level of these plasma miRNA biomarkers appeared to be dose- and time-dependent upon NaIO3 or laser treatment. The results suggest that the retina-enriched miRNAs (miR-183/96/182 cluster and miR-124) could serve as convenient and predictive biomarkers of retinal toxicity in drug development. PMID:27208084

  20. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    PubMed

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  1. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    PubMed Central

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  2. Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat

    PubMed Central

    Choe, Tiffany E.; Abbott, Carla J.; Piper, Chelsea; Wang, Lin; Fortune, Brad

    2014-01-01

    Purpose To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT). Methods Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae. Results RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes. Conclusions In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis. PMID:25393294

  3. Effects of curcumin on interleukin-23 and interleukin-17 expression in rat retina after retinal ischemia-reperfusion injury

    PubMed Central

    Zhang, Hai-Jiang; Xing, Yi-Qiao; Jin, Wei; Li, Dai; Wu, Kaili; Lu, Yi

    2015-01-01

    Objective: This study aimed to investigate the effect of curcumin on the retinal structure and the expressions of interleukin-23 (IL-23) and IL-17 in the rat retina after retinal ischemia-reperfusion injury (RIRI). Methods: 150 Sprague-Dawley rats were randomly divided into RIRI group (MG), low-dose curcumin group (LDCG) and high-dose curcumin group (HDCG), (n = 50 per group). RIRI was generated by anterior chamber perfusion of normal saline to the right eye. The left eye served as a normal control group (NCG). Rats in LDCG and HDCG received an intraperitoneal injection of 20 mg/kg/d and 100 mg/kg/d curcumin respectively, at 30 min before RIRI and once daily after RIRI. Results: The morphological changes in HDCG group were improved as compared to MG and LDCG groups. Immunohistochemistry showed that IL-23 and IL-17 were mainly expressed in the ganglion cell layer and the inner nuclear layer of the retina. Low IL-23 and IL-17 expressions were observed in NCG, but increased significantly in MG and LDCG groups. Western blot assay and ELISA also showed that IL-23 and IL-17 expressions increased significantly after RIRI (vs. NCG, P<0.01). Moreover, the IL-23 expression reached a peak at 24 h, whereas IL-17 expression peaked at 72 h after RIRI. Curcumin reduced IL-23 and IL-17 expressions significantly in a dose-dependent manner (vs. MG, P<0.01). Conclusion: The IL-23 and IL-17 expressions increase after RIRI and curcumin significantly reduces retinal IL-23 and IL-17 expressions in a dose-dependent manner and is able to prevent the RIRI induced damage to the retina. PMID:26464670

  4. Novel Transgenic Mouse Models Develop Retinal Changes Associated with Early Diabetic Retinopathy Similar to Those Observed in Rats with Diabetes Mellitus

    PubMed Central

    Guo, Changmei; Zhang, Zifeng; Zhang, Peng; Makita, Jun; Kawada, Hiroyoshi; Blessing, Karen; Kador, Peter F.

    2014-01-01

    Retinal capillary pericyte degeneration has been linked to aldose reductase (AR) activity in diabetic retinopathy (DR). Since the development of DR in mice and rats has been reported to differ and that this may be linked to differences in retinal sorbitol levels, we have established new murine models of early onset diabetes mellitus as tools for investigating the role of AR in DR. Transgenic diabetic mouse models were developed by crossbreeding diabetic C57BL/6-Ins2Akita/J (AK) with transgenic C57BL mice expressing green fluorescent protein (GFP), human aldose reductase (hAR) or both in vascular tissues containing smooth muscle actin-α (SMAA). Changes in retinal sorbitol levels were determined by HPLC while changes of growth factors and signaling were investigated by Western Blots. Retinal vascular changes were quantitatively analyzed on elastase-digestion flat mounts. Results show that sorbitol levels were higher in neural retinas of diabetic AK-SMAA-GFP-hAR compared to AK-SMAA-GFP mice. AK-SMAA-GFP-hAR mice showed induction of the retinal growth factors VEGF, IGF-1, bFGF and TGFβ, as well as signaling changes in P-Akt, P-SAPK/JNK, and P-44/42 MAPK. Increased loss of nuclei per capillary length and a significant increase in the percentage of acellular capillaries presented in 18 week old AK-SMAA-GFP-hAR mice. These changes are similar to those observed in streptozotocin-induced diabetic rats. Retinal changes in both mice and rats were prevented by inhibition of AR. These studies confirm that the increased expression of AR in mice results in the development of retinal changes associated with the early stages of DR that are similar to those observed in rats. PMID:24370601

  5. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography

    PubMed Central

    Chen, Siyu; Yi, Ji; Zhang, Hao F.

    2015-01-01

    Visible light optical coherence tomography (vis-OCT) has demonstrated its capability of measuring vascular oxygen saturation (sO2) in vivo. Enhanced by OCT angiography, the signal from microvasculature can be further isolated and directly used for sO2 extraction. In this work, we extended the theoretical formulation for OCT angiography-based oximetry by incorporating the contribution from motion contrast enhancement. We presented a new method to eliminate the associated confounding variables due to blood flow. First, we performed in vitro experiments to verify our theory, showing a stable spectral derivative within the selected wavelength bands for sO2 extraction. Then, we tested our method in vivo to measure retinal sO2 in rats inhaling different gas mixtures: normal air, 5% CO2, pure O2, and 10% O2. Absolute sO2 values in major arterioles and venules in the retinal circulation can be accurately measured. In addition, we demonstrated the relative changes of sO2 can be measured non-invasively from choriocapillaris immediately underneath the retinal pigmented epithelium (RPE) in rodents. PMID:26309748

  6. Co-Expression of Two Subtypes of Melatonin Receptor on Rat M1-Type Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Sheng, Wen-Long; Chen, Wei-Yi; Yang, Xiong-Li; Zhong, Yong-Mei; Weng, Shi-Jun

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions. PMID:25714375

  7. Culture Model of Rat Portal Myofibroblasts.

    PubMed

    El Mourabit, Haquima; Loeuillard, Emilien; Lemoinne, Sara; Cadoret, Axelle; Housset, Chantal

    2016-01-01

    Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4-5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in

  8. Culture Model of Rat Portal Myofibroblasts

    PubMed Central

    El Mourabit, Haquima; Loeuillard, Emilien; Lemoinne, Sara; Cadoret, Axelle; Housset, Chantal

    2016-01-01

    Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in

  9. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats

    PubMed Central

    KIM, CHAN-SIK; KIM, JUNGHYUN; JO, KYUHYUNG; LEE, YUN MI; SOHN, EUNJIN; YOO, NAM HEE; KIM, JIN SOOK

    2015-01-01

    In the pathophysiology of diabetic retinopathy (DR), advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF) are thought to have important roles. It is known that VEGF causes a breakdown of the blood-retinal barrier (BRB) and retinal neovascularization; however, how AGEs affect the retina has largely remained elusive. OSSC1E-K19 is a novel phytochemical component of Osteomeles schwerinae. The objective of the present study was to evaluate the protective effects of OSSC1E-K19 on retinal vascular injury in AGE-modified rat serum albumin (AGE-RSA)-induced retinopathy. AGE-RSA-injected rat eyes were used investigate the protective effects of OSSC1E-K19 on BRB breakdown. Intravitreal injection of OSSC1E-K19 prevented AGE-RSA-induced BRB breakdown and decreased retinal VEGF expression in retinal vessels. In addition, OSSC1E-K19 inhibited the loss of occludin, a significant tight junction protein. These results supported the potential therapeutic utility of OSSC1E-K19 for retinal vascular permeability diseases. PMID:26460071

  10. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  11. Role of retinal input on the development of striate-extrastriate patterns of connections in the rat.

    PubMed

    Laing, R J; Bock, A S; Lasiene, J; Olavarria, J F

    2012-10-01

    Previous studies have shown that retinal input plays an important role in the development of interhemispheric callosal connections, but little is known about the role retinal input plays on the development of ipsilateral striate-extrastriate connections and the interplay that might exist between developing ipsilateral and callosal pathways. We analyzed the effects of bilateral enucleation performed at different ages on both the distribution of extrastriate projections originating from restricted loci in medial, acallosal striate cortex, and the overall pattern of callosal connections revealed following multiple tracer injections. As in normal rats, striate-extrastriate projections in rats enucleated at birth consisted of multiple, well-defined fields that were largely confined to acallosal regions throughout extrastriate cortex. However, these projections were highly irregular and variable, and they tended to occupy correspondingly anomalous and variable acallosal regions. Moreover, area 17, but not area 18a, was smaller in enucleates compared to controls, resulting in an increase in the divergence of striate projections. Anomalies in patterns of striate-extrastriate projections were not observed in rats enucleated at postnatal day (P)6, although the size of area 17 was still reduced in these rats. These results indicate that the critical period during which the eyes influence the development of striate-extrastriate, but not the size of striate cortex, ends by P6. Finally, enucleation did not change the time course and definition of the initial invasion of axons into gray matter, suggesting that highly variable striate projections patterns do not result from anomalous pruning of exuberant distributions of 17-18a fibers in gray matter. PMID:22430936

  12. The Effect of TIMP-1 on the Cone Mosaic in the Retina of the Rat Model of Retinitis Pigmentosa

    PubMed Central

    Ji, Yerina; Yu, Wan-Qing; Eom, Yun Sung; Bruce, Farouk; Craft, Cheryl Mae; Grzywacz, Norberto M.; Lee, Eun-Jin

    2015-01-01

    Purpose. The array of photoreceptors found in normal retinas provides uniform and regular sampling of the visual space. In contrast, cones in retinas of the S334ter-line-3 rat model for RP migrate to form a mosaic of rings, leaving large holes with few or no photoreceptors. Similar mosaics appear in human patients with other forms of retinal dystrophy. In the current study, we aimed to investigate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the mosaic of cones in S334ter-line-3 rat retinas. We focused on TIMP-1 because it is one of the regulators of the extracellular matrix important for cellular migration. Methods. Immunohistochemistry was performed to reveal M-opsin cone cells (M-cone) and the results were quantified to test statistically whether or not TIMP-1 restores the mosaics to normal. In particular, the tests focused on the Voronoi and nearest-neighbor distance analyses. Results. Our tests indicated that TIMP-1 led to significant disruption of the M-opsin cone rings in S334ter-line-3 rat retinas and resulted in almost complete homogeneous mosaics. In addition, TIMP-1 induced the M-cone spatial distribution to become closer to random with decreased regularity in S334ter-line-3 rat retinas. Conclusions. These findings confirm that TIMP-1 induced M-cone mosaics in S334ter-line-3 to gain homogeneity without reaching the degree of regularity seen in normal retinal mosaics. Even if TIMP-1 fails to promote regularity, the effects of this drug on homogeneity appear to be so dramatic that TIMP-1 may be a potential therapeutic agent. TIMP-1 improves sampling of the visual field simply by causing homogeneity. PMID:25515575

  13. LIVER REGENERATION STUDIES WITH RAT HEPATOCYTES IN PRIMARY CULTURE

    EPA Science Inventory

    Adult rat parenchymal hepatocytes in primary culture can be induced to enter into DNA synthesis and mitosis. The optimal conditions for hepatocyte replication are low plating density (less than 10,000 cells/sq cm) and 50% serum from two-thirds partially hepatectomized rats (48 hr...

  14. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  15. Alpha-Mangostin Attenuation of Hyperglycemia-Induced Ocular Hypoperfusion and Blood Retinal Barrier Leakage in the Early Stage of Type 2 Diabetes Rats

    PubMed Central

    Jariyapongskul, Amporn; Areebambud, Chonticha; Suksamrarn, Sunit; Mekseepralard, Chantana

    2015-01-01

    The present study examined effects of alpha-mangostin (α-MG) supplementation on the retinal microvasculature, including ocular blood flow (OBF) and blood-retinal barrier (BRB) permeability in a type 2 diabetic animal model. Male Sprague-Dawley rats were divided into four groups: normal control and diabetes with or without α-MG supplementation. Alpha-mangostin (200 mg/Kg/day) was administered by gavage feeding for 8 weeks. The effects of α-MG on biochemical and physiological parameters including mean arterial pressure (MAP), OBF, and BRB leakage were investigated. Additionally, levels of retinal malondialdehyde (MDA), advance glycation end products (AGEs), receptor of advance glycation end products (RAGE), tumour necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF) were evaluated. The elevated blood glucose, HbA1c, cholesterol, triglyceride, serum insulin, and HOMA-IR were observed in DM2 rats. Moreover, DM2 rats had significantly decreased OBF but statistically increased MAP and leakage of the BRB. The α-MG-treated DM2 rats showed significantly lower levels of retinal MDA, AGEs, RAGE, TNF-α, and VEGF than the untreated group. Interestingly, α-MG supplementation significantly increased OBF while it decreased MAP and leakage of BRB. In conclusion, α-MG supplementation could restore OBF and improve the BRB integrity, indicating its properties closely associated with antihyperglycemic, antioxidant, anti-inflammatory, and antiglycation activities. PMID:25950001

  16. 7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz Syndrome

    PubMed Central

    Xu, Libin; Sheflin, Lowell G.; Porter, Ned A.; Fliesler, Steven J.

    2012-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a recessive disease characterized by markedly elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in tissues and fluids of affected individuals, due to defective 3β-hydroxysterol-Δ7-reductase (Dhcr7). Treatment of Sprague-Dawley rats with AY9944 (an inhibitor of Dhcr7) leads to similar biochemical features as observed in SLOS. Eighteen oxysterols previously have been identified as oxidation products of 7-DHC (most of them distinct from cholesterol (Chol)-derived oxysterols) in solution, in cells, and in brains obtained from Dhcr7-KO mice and AY9944-treated rats, formed either via free radical oxidation (peroxidation) or P450-catalyzed enzymatic oxidation. We report here the identification of five 7-DHC-derived oxysterols, including 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), 4α- and 4β-hydroxy-7-DHC, 24-hydroxy-7-DHC and 7-ketocholesterol (7-kChol, an oxysterol that is normally derived from Chol), in the retinas of AY9944-treated rats by comparing the retention times and mass spectrometric characteristics with corresponding synthetic standards in HPLC-MS analysis. Levels of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol were quantified using d7-DHCEO as an internal standard. Among the five oxysterols identified, only 7-kChol was observed in retinas of control rats, but the levels of 7-kChol in retinas of AY9944-rats were >30-fold higher. Intravitreal injection of 7-kChol (0.25 µmol) into a normal rat eye induced panretinal degeneration within one week; by comparison, contralateral (control) eyes injected with vehicle alone exhibited normal histology. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the retinal degeneration associated with the SLOS rat model and in SLOS patients. PMID:22425966

  17. Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture.

    PubMed Central

    Rothermel, A; Willbold, E; Degrip, W J; Layer, P G

    1997-01-01

    Reaggregation of dispersed retinal cells of the chick embryo leads to histotypic retinospheroids in which the laminar organization remains incomplete: photoreceptors form rosettes which are surrounded by constituents of the other retinal layers. Here, for the first time, a complete arrangement of layers is achieved in cellular spheres (stratoids), provided that fully dispersed retinal cells are younger than embryonic day E6, and are reaggregated in the presence of a monolayer of retinal pigmented epithelium (RPE). A remarkable mechanism of stratoid formation from 1 to 15 days in vitro is revealed by the establishment of a radial Müller glia scaffold and of photoreceptors. During the first two days of reaggregation on RPE, rosettes are still observed. At this stage immunostaining with vimentin and F11 antibodies for radial Müller glia reveal a disorganized pattern. Subsequently, radial glia processes organize into long parallel fibre bundles which are arranged like spokes to stabilize the surface and centre of the stratoid. The opsin-specific antibody CERN 901 detects photoreceptors as they gradually build up an outer nuclear layer at the surface. These findings assign to the RPE a decisive role for the genesis and regeneration of a vertebrate retina. PMID:9332014

  18. Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo.

    PubMed

    Voisin, Pierre; Bernard, Marianne

    2009-07-01

    The present study describes a robust 50-fold increase in rhodopsin gene transcription by cAMP in cultured retinal precursor cells of chicken embryo. Retinal cells isolated at embryonic day 8 (E8) and cultured for 3 days in serum-supplemented medium differentiated mostly into red-sensitive cones and to a lesser degree into green-sensitive cones, as indicated by real-time RT-PCR quantification of each specific opsin mRNA. In contrast, both rhodopsin mRNA concentration and rhodopsin gene promoter activity required the presence of cAMP-increasing agents [forskolin and 3-isobutyl-1-methylxanthine (IBMX)] to reach significant levels. This response was rod-specific and was sufficient to activate rhodopsin gene transcription in serum-free medium. The increase in rhodopsin mRNA levels evoked by a series of cAMP analogs suggested the response was mediated by protein kinase A, not by EPAC. Membrane depolarization by high KCl concentration also increased rhodopsin mRNA levels and this response was strongly potentiated by IBMX. The rhodopsin gene response to cAMP-increasing agents was developmentally gated between E6 and E7. Rod-specific transducin alpha subunit mRNA levels also increased up to 50-fold in response to forskolin and IBMX, while rod-specific phosphodiesterase-VI and rod arrestin transcripts increased 3- to 10-fold. These results suggest a cAMP-mediated signaling pathway may play a role in rod differentiation. PMID:19457115

  19. The effects of concentration-dependent morphology of self-assembling RADA16 nanoscaffolds on mixed retinal cultures

    NASA Astrophysics Data System (ADS)

    Ho, Dominic; Fitzgerald, Melinda; Bartlett, Carole A.; Zdyrko, Bogdan; Luzinov, Igor A.; Dunlop, Sarah A.; Swaminathan Iyer, K.

    2011-03-01

    RADA16 self-assembling peptide nanofiber scaffolds (SAPNSs) have been shown to have positive effects on neural regeneration following injury to the central nervous system in vivo, but mechanisms are unclear. Here we show that RADA16 SAPNSs form scaffolds of increasing fiber density with increasing peptide concentration which in turn has a concentration-dependent effect on neurons and astrocytes in mixed retinal cultures. Importantly, we report that the final nanoscale fiber architecture is an important factor to consider in designing scaffolds to promote regeneration in the central nervous system.RADA16 self-assembling peptide nanofiber scaffolds (SAPNSs) have been shown to have positive effects on neural regeneration following injury to the central nervous system in vivo, but mechanisms are unclear. Here we show that RADA16 SAPNSs form scaffolds of increasing fiber density with increasing peptide concentration which in turn has a concentration-dependent effect on neurons and astrocytes in mixed retinal cultures. Importantly, we report that the final nanoscale fiber architecture is an important factor to consider in designing scaffolds to promote regeneration in the central nervous system. Electronic supplementary information (ESI) available: Detailed experimental procedures, additional SEM data and AFM analysis. See DOI: 10.1039/c0nr00666a

  20. Preparation of Rat Serum Suitable for Mammalian Whole Embryo Culture

    PubMed Central

    Takahashi, Masanori; Makino, Sayaka; Kikkawa, Takako; Osumi, Noriko

    2014-01-01

    Mammalian whole embryo culture (WEC) is a widely used technique for examining pharmacological toxicity in developing mouse and rat embryos and for investigating the mechanisms of developmental processes. Immediately centrifuged (IC) rat serum is commonly used for WEC and is essential for the growth and development of cultured mouse and rat embryos ex vivo. For the culture of midgestation embryos (i.e., E8.0-12.5 for the mouse, and E10.0-14.5 for the rat), 100% rat serum is the best media for supporting the growth of the embryo ex vivo. To prepare rat serum suitable for WEC, the collected blood should be centrifuged immediately to separate the blood cells from the plasma fraction. After centrifugation, the fibrin clot forms in the upper layer; this clot should be squeezed gently using a pair of sterile forceps and subsequently centrifuged to completely separate the blood cells from the serum. In this video article, we demonstrate our standard protocol for the preparation of optimal IC rat serum, including blood collection from the abdominal aorta of male rats and extraction of the serum by centrifugation. PMID:25145996

  1. Hydrogen-Rich Saline Promotes Survival of Retinal Ganglion Cells in a Rat Model of Optic Nerve Crush

    PubMed Central

    Zuo, Qiao; Wang, Ruo-bing; Qi, Ai-qing; Cao, Wen-luo; Sun, Ai-jun; Sun, Xue-jun; Xu, Jiajun

    2014-01-01

    Objective To investigate the effect of molecular hydrogen (H2) in a rat model subjected to optic nerve crush (ONC). Methods We tested the hypothesis that after optic nerve crush (ONC), retinal ganglion cell (RGC) could be protected by H2. Rats in different groups received saline or hydrogen-rich saline every day for 14 days after ONC. Retinas from animals in each group underwent measurements of hematoxylin and eosin (H&E) staining, cholera toxin beta (CTB) tracing, gamma synuclein staining, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining 2 weeks post operation. Flash visual evoked potentials (FVEP) and pupillary light reflex (PLR) were then tested to evaluate the function of optic nerve. The malondialdehyde (MDA) level in retina was evaluated. Results H&E, gamma synuclein staining and CTB tracing showed that the survival rate of RGCs in hydrogen saline-treated group was significantly higher than that in saline-treated group. Apoptosis of RGCs assessed by TUNEL staining were less observed in hydrogen saline-treated group. The MDA level in retina of H2 group was much lower than that in placebo group. Furthermore, animals treated with hydrogen saline showed better function of optic nerve in assessments of FVEP and PLR. Conclusion These results demonstrated that H2 protects RGCs and helps preserve the visual function after ONC and had a neuroprotective effect in a rat model subjected to ONC. PMID:24915536

  2. In vivo gene transfer as a means to study the physiology and morphogenesis of the retinal pigment epithelium in the rat.

    PubMed

    Marmorstein, Alan D; Peachey, Neal S; Csaky, Karl G

    2003-07-01

    Our understanding of the morphogenesis of epithelial phenotypes has been greatly advanced by the use of in vitro cell culture systems. However, cell cultures often do not faithfully reconstitute many of the differentiated properties of the cell from which they are derived and cannot be used to examine complex physiologic interactions between adjacent tissues. This is particularly true of the retinal pigment epithelium (RPE). Many plasma membrane proteins, in vivo, exhibit a reversed polarity with respect to other epithelia, and RPE-derived cell lines seldom exhibit these same polarity properties. Furthermore, the interaction between the RPE cell and the neuorsensory retina, or the underlying blood supply, the choroid, is absent in cell culture. Most epithelia are difficult to isolate and study in vivo. The RPE is an exception to this. We have explored several aspects of RPE protein transport properties, vision-related physiology, and disease-related pathophysiology in the eye using in vivo gene transfer and electrophysiologic techniques. By injecting replication-defective adenoviruses into the subretinal space of rat eyes, we have been able to easily direct the expression of a test protein and follow its sorting and physiologic effects on RPE cells and adjacent tissues. Due to binding and internalization of adenoviral vectors to integrins found on the RPE apical plasma membrane, expression in a healthy eye is essentially confined to the RPE cell, even under control of a cytomegalovirus promotor. The use of varying amounts of adenoviral vector allows for determination of dose-responsive effects and the comparison of multiple mutants of a protein. In addition, there are substantial savings with respect to time and money in comparison to standard transgenic approaches. PMID:12798142

  3. Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model.

    PubMed

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi

    2011-08-01

    PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659

  4. Argon Inhalation Attenuates Retinal Apoptosis after Ischemia/Reperfusion Injury in a Time- and Dose-Dependent Manner in Rats

    PubMed Central

    Ulbrich, Felix; Schallner, Nils; Coburn, Mark; Loop, Torsten; Lagrèze, Wolf Alexander; Biermann, Julia; Goebel, Ulrich

    2014-01-01

    Purpose Retinal ischemia and reperfusion injuries (IRI) permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC) of the rat's eye. Methods IRI was performed on the left eyes of rats (n = 8) with or without inhaled Argon postconditioning (25, 50 and 75 Vol%) for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours). Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA. Results IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001). Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01), as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001). Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%. Conclusion Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option. PMID

  5. Effects of ethanol on biotransformation of all-trans-retinol and all-trans-retinal to all-trans-retinoic acid in rat conceptal cytosol.

    PubMed

    Chen, H; Namkung, M J; Juchau, M R

    1996-08-01

    Enzymatic catalysis of the oxidations of ethanol, all-trans-retinol (tretinol) and all-trans-retinal (t-retinal) were demonstrated in the cytosolic fractions of rat conceptal homogenates at day 12 of gestation. Products of the retinoid oxidation reactions were identified with HPLC by comparing elution times with those of authentic standard retinoids. NAD-dependent oxidations of each of the three substrates were demonstrable with assay conditions used; t-retinol and t-retinal each were converted to readily detectable quantities of all-trans-retinoic acid (t-RA). At 1.0 mM or higher concentrations, ethanol effectively inhibited the synthesis of t-RA from both t-retinol and t-retinal when adult hepatic cytosol was used as enzyme source. Approximately 70% and 40% inhibitions, respectively, were observed at 10 mM ethanol concentrations. By contrast, for the reactions catalyzed by rat conceptal cytosol (RCC) under the same experimental conditions, ethanol falled to inhibit significantly the conversion of either t-retinol or t-retinal to t-RA at concentrations up to 1,000 mM. For the RCC-catalyzed conversion of t-retinal to t-RA, increasing concentrations of ethanol (0 to 1.0 M) resulted in linear increases rather than decreases in quantities of t-RA generated. At a 2.0 M concentration of ethanol, the quantity of t-RA increased by > 50%. Significant inhibition of t-RA generation from t-retinal occurred only at extremely high (> 4.0 M) concentrations. The results indicated that ethanol was a very ineffective inhibitor of RCC-catalyzed synthesis of t-RA from either t-retinol or t-retinal. This contrasted strongly with effective inhibitory effects with adult hepatic cytosol as enzyme source. The results supported the concept that competitive inhibition of conversion of t-retinol to t-RA in conceptal tissues is not a significant factor in ethanol-elicited embryotoxicity and dysmorphogenesis, at least in rodents. Mechanisms for the ethanol-induced increases in conversion of t-retinal

  6. Cytomegalovirus retinitis

    MedlinePlus

    ... to prevent its return. Alternative Names Cytomegalovirus retinitis Images Eye CMV retinitis CMV (cytomegalovirus) References Crumpacker CS. ... 5. Read More Antibody HIV/AIDS Immune response Retinal detachment Systemic WBC count Update Date 12/10/ ...

  7. The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells1,2,3

    PubMed Central

    Moses, Colette; Wheeler, Lachlan P.G.; LeVaillant, Chrisna J.; Kramer, Anne; Ryan, Marisa; Cozens, Greg S.; Sharma, Anil; Pollett, Margaret A.; Rodger, Jennifer

    2015-01-01

    Abstract Similar to neurons in the peripheral nervous system, immature CNS-derived RGCs become dependent on target-derived neurotrophic support as their axons reach termination sites in the brain. To study the factors that influence this developmental transition we took advantage of the fact that rat RGCs are born, and target innervation occurs, over a protracted period of time. Early-born RGCs have axons in the SC by birth (P0), whereas axons from late-born RGCs do not innervate the SC until P4-P5. Birth dating RGCs using EdU allowed us to identify RGCs (1) with axons still growing toward targets, (2) transitioning to target dependence, and (3) entirely dependent on target-derived support. Using laser-capture microdissection we isolated ∼34,000 EdU+ RGCs and analyzed transcript expression by custom qPCR array. Statistical analyses revealed a difference in gene expression profiles in actively growing RGCs compared with target-dependent RGCs, as well as in transitional versus target-dependent RGCs. Prior to innervation RGCs expressed high levels of BDNF and CNTFR α but lower levels of neurexin 1 mRNA. Analysis also revealed greater expression of transcripts for signaling molecules such as MAPK, Akt, CREB, and STAT. In a supporting in vitro study, purified birth-dated P1 RGCs were cultured for 24-48 h with or without BDNF; lack of BDNF resulted in significant loss of early-born but not late-born RGCs. In summary, we identified several important changes in RGC signaling that may form the basis for the switch from target independence to dependence. PMID:26464991

  8. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat

    PubMed Central

    Cho, Eun Seong; Lee, So Yeong; Park, Jae-Yong; Hong, Seong-Geun

    2007-01-01

    Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro. PMID:17322769

  9. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures.

    PubMed

    Singh, Ratnesh K; Mallela, Ramya K; Cornuet, Pamela K; Reifler, Aaron N; Chervenak, Andrew P; West, Michael D; Wong, Kwoon Y; Nasonkin, Igor O

    2015-12-01

    Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue

  10. Rat embryonic palatal shelves respond to TCDD in organ culture

    SciTech Connect

    Abbott, B.D.; Birnbaum, L.S. )

    1990-05-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specific TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in (3H)TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves.

  11. PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation.

    PubMed

    Kondo, Tetsu; Hosoya, Ken-Ichi; Hori, Satoko; Tomi, Masatoshi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2005-05-01

    Little is known about the regulation mechanism of endothelial cell proliferation by retinal pericytes. The purpose of this study was to elucidate the suppression mechanism of retinal capillary endothelial cell growth by soluble factors derived from retinal pericytes. Conditioned medium of retinal pericytes (rPCT1-CM) suppressed ischemia-induced retinal neovascularization. The growth and DNA synthesis of TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line, were suppressed in a concentration-dependent manner by concentrated rPCT1-CM. The number of human cultured endothelial cells was also reduced by rPCT1-CM. These results provide the first evidence that CM from the cultivation of pericytes alone can inhibit retinal neovascularization in vivo and in vitro. Although the growth reduction of TR-iBRB2 cells was only partly reversed by treatment of rPCT1-CM with antibodies to transforming growth factor-beta1, it was completely lost by heat-treatment of rPCT1-CM, suggesting that anti-angiogenic factors are soluble proteins. The levels of expression of G1/S-phase-related proteins, such as cyclin D1, cyclin-dependent kinase (cdk)4, cdk6, and proliferating cell nuclear antigen, were reduced and a cdk inhibitor, p21(Cip1), was induced in rPCT1-CM-treated TR-iBRB2 cells. Moreover, phosphorylated p44/42 mitogen-activated protein kinase (p44/42 MAPK) in TR-iBRB2 cells was reduced by rPCT1-CM treatment and phosphorylated protein kinase C (PKC)alpha/betaII, which is upstream of p44/42 MAPK, was also suppressed. In conclusion, CM from retinal pericytes suppresses PKC-p44/42 MAPK signaling, inhibits endothelial cell growth, and prevents retinal neovascularization. Anti-angiogenic factors derived from retinal pericytes are likely to play a critical role in the regulation of retinal endothelial cell growth. PMID:15499572

  12. Involvement of microRNA-181a and Bim in a rat model of retinal ischemia-reperfusion injury

    PubMed Central

    He, Yu; Liu, Jin-Nan; Zhang, Jun-Jun; Fan, Wei

    2016-01-01

    AIM To investigate the changes in the expression of microRNA-181a (miR-181a) and Bim in a rat model of retinal ischemia-reperfusion (RIR), to explore their target relationship in RIR and their involvement in regulating apoptosis of retinal ganglion cells (RGCs). METHODS Target gene prediction for miR-181a was performed with the aid of bioinformatics and Bim was identified as a potential target gene of miR-181a. A rat model of RIR was created by increasing the intraocular pressure. RGCs in the flatmounted retinas were labeled with Brn3, a marker for alive RGCs, by immunofluorescent staining. The changes in the number of RGCs after RIR were recorded. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression level of miR-181a in the retina. Bim/Brn3 double immunofluorescence was used to detect the localization of Bim. The expression of Bim in the retina was determined with the aids of Western blot and qRT-PCR. RESULTS Compared with the negative control group, the density of RGCs was significantly lower in the ischemia/reperfusion (I/R)-24h and I/R-72h groups (P<0.001). The expression level of miR-181a started to decrease at 0h after RIR, and further decreased at 24h and 72h compared with the negative control group (P<0.001). Bim was significantly upregulated at 12h after RIR (P<0.05) and reached peak at 24, 72h compared with the negative control group (P<0.01). Pearson correlation analysis showed that the expression level of Bim was negatively correlated with the expression level of miR-181a and the density of RGCs. CONCLUSION Bim may be a potential target gene of miR-181a. Both miR-181a and Bim are involved in RGCs death in RIR. RIR may promote RGCs apoptosis in the retina via downregulation of miR-181a and its inhibition on Bim expression. PMID:26949607

  13. Retinal transplants can drive a pupillary reflex in host rat brains.

    PubMed Central

    Klassen, H; Lund, R D

    1987-01-01

    Retinae taken from embryonic rats were transplanted over the midbrain of neonatal rats, from whom one eye had been removed. After 5 months, the optic nerve of the remaining eye was cut, and the transplant was exposed. Illumination of the transplant caused pupilloconstriction of the host eye, a response abolished by damaging the transplant. Thus neural transplants are capable of driving specific reflexes in response to natural stimuli. Images PMID:3477821

  14. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  15. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  16. Light responses and light adaptation in rat retinal rods at different temperatures

    PubMed Central

    Nymark, S; Heikkinen, H; Haldin, C; Donner, K; Koskelainen, A

    2005-01-01

    Rod responses to brief pulses of light were recorded as electroretinogram (ERG) mass potentials across isolated, aspartate-superfused rat retinas at different temperatures and intensities of steady background light. The objective was to clarify to what extent differences in sensitivity, response kinetics and light adaptation between mammalian and amphibian rods can be explained by temperature and outer-segment size without assuming functional differences in the phototransduction molecules. Corresponding information for amphibian rods from the literature was supplemented by new recordings from toad retina. All light intensities were expressed as photoisomerizations per rod (Rh*). In the rat retina, an estimated 34% of incident photons at the wavelength of peak sensitivity caused isomerizations in rods, as the (hexagonally packed) outer segments measured 1.7 μm × 22 μm and had specific absorbance of 0.016 μm−1 on average. Fractional sensitivity (S) in darkness increased with cooling in a similar manner in rat and toad rods, but the rat function as a whole was displaced to a ca 0.7 log unit higher sensitivity level. This difference can be fully explained by the smaller dimensions of rat rod outer segments, since the same rate of phosphodiesterase (PDE) activation by activated rhodopsin will produce a faster drop in cGMP concentration, hence a larger response in rat than in toad. In the range 15–25°C, the waveform and absolute time scale of dark-adapted dim-flash photoresponses at any given temperature were similar in rat and toad, although the overall temperature dependence of the time to peak (tp) was somewhat steeper in rat (Q10≈ 4 versus 2–3). Light adaptation was similar in rat and amphibian rods when measured at the same temperature. The mean background intensity that depressed S by 1 log unit at 12°C was in the range 20–50 Rh* s−1 in both, compared with ca 4500 Rh* s−1 in rat rods at 36°C. We conclude that it is not necessary to assume major

  17. Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells

    PubMed Central

    Billups, Daniela; Attwell, David

    2002-01-01

    GABAergic modulation of retinal bipolar cells plays a crucial role in early visual processing. It helps to form centre-surround receptive fields which filter the visual signal spatially at the bipolar cell dendrites in the outer retina, and it produces temporal filtering at the bipolar cell synaptic terminals in the inner retina. The observed chloride transporter distribution in ON bipolar cells has been predicted to produce an intracellular chloride concentration, [Cl−]i, that is significantly higher in the dendrites than in the synaptic terminals. This would allow dendritic GABA-gated Cl− channels to generate the depolarization needed for forming the lateral inhibitory surround of the cell's receptive field, while synaptic terminal GABA-gated Cl− channels generate the hyperpolarization needed for temporal shaping of the light response. In contrast to this idea, we show here that in ON bipolar cells [Cl−]i is only slightly higher in the dendrites than in the synaptic terminals, and that GABA-gated channels in the dendrites may generate a hyperpolarization rather than a depolarization. We also show that [Cl−]i is controlled by movement of Cl− through ion channels in addition to transporters, that changes of [K+]o alter [Cl−]i and that voltage-dependent equilibration of [Cl−]i in bipolar cells will produce a time-dependent adaptation of GABAergic modulation with a time constant of 8 s after illumination-evoked changes of membrane potential. Time-dependent adaptation of [Cl−]i to voltage changes in retinal bipolar cells may add a previously unsuspected layer of temporal processing to signals as they pass through the retina. PMID:12433959

  18. Low Power Laser Irradiation Stimulates the Proliferation of Adult Human Retinal Pigment Epithelial Cells in Culture

    PubMed Central

    Song, Qing; Uygun, Basak; Banerjee, Ipsita; Nahmias, Yaakov; Zhang, Quan; Berthiaume, François; Latina, Mark; Yarmush, Martin L.

    2015-01-01

    We investigated the effects of low power laser irradiation on the proliferation of retinal pigment epithelial (RPE) cells. Adult human RPE cells were artificially pigmented by preincubation with sepia melanin, and exposed to a single sublethal laser pulse (590 nm, 1 µs, <200 mJ/cm2). DNA synthesis, cell number, and growth factor activity in irradiated RPE cells were subsequently monitored. The effect of sublethal laser irradiation on the “wound” healing response of an RPE monolayer in an in vitro scratch assay was also investigated. Single pulsed laser irradiation increased DNA synthesis in pigmented RPE cells measured 6 h post-treatment. In the scratch assay, laser irradiation increased the rates of cell proliferation and wound closure. Conditioned medium, collected 48 h following laser treatment, increased cell proliferation of unirradiated cells. Irradiation increased RPE cell secretion of platelet-derived growth factor (PDGF)-B chain, and increased mRNA levels of several growth factors and their receptors, including PDGF, transforming growth factor-β1, basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor, as well as heat shock proteins. This demonstrates, for the first time, that low power single pulsed laser irradiation stimulates the proliferation of RPE cells, and upregulates growth factors that are mitogenic for RPE cells. PMID:26740823

  19. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    NASA Technical Reports Server (NTRS)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (P<0.01) after 28 Gy given in single and split doses and after 20 Gy given as a split dose (P<0.05). Total vessel length in microvessel was significantly shortened at 20 and 28 Gy compared to that of controls (P<0.05). No evident dose recovery was observed in the endothelial populations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  20. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors.

    PubMed

    Vogler, Stefanie; Winters, Helge; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-01-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells. PMID:26499958

  1. Neuroprotective effects of citicoline in in vitro models of retinal neurodegeneration.

    PubMed

    Matteucci, Andrea; Varano, Monica; Gaddini, Lucia; Mallozzi, Cinzia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella

    2014-01-01

    In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms. PMID:24736780

  2. Formation of lipofuscin in cultured retinal pigment epithelial cells exposed to pre-oxidized photoreceptor outer segments.

    PubMed

    Wihlmark, U; Wrigstad, A; Roberg, K; Brunk, U T; Nilsson, S E

    1996-04-01

    Accumulation of lipofuscin in the retinal pigment epithelium (RPE) with increasing age may affect essential supportive functions for the photoreceptors. Earlier, we described a model system for the study of lipofuscinogenesis in RPE cell cultures and showed that mild oxidative stress enhances lipofuscin formation from phagocytized photoreceptor outer segments (POS). In the present study, bovine POS were photo-oxidized, and turned into a lipofuscin-like material, by irradiation with UV light. Transmission electron microscopy of irradiated POS showed loss of the normal stacks of the disk membranes with conversion into an amorphous osmiophilic electron-dense mass. The formation of thiobarbituric acid reactive substances (TBARS), estimated during the irradiation process, indicated lipid peroxidation. Irradiated POS also showed a strong granular yellow autofluorescence. RPE cell cultures, kept at 21% ambient oxygen, were fed daily for 3, 5 or 7 days with either (i) UV-peroxidized POS, (ii) native POS or (iii) culture medium only. RPE cells fed irradiated POS showed significantly higher levels of lipofuscin-specific autofluorescence compared to cells exposed to native POS after 3 days (p = 0.0056), 5 days (p = 0.0037) and 7 days (p = 0.0020), and to the non-exposed control cells (3 days: p = 0.005, 5 days: p = 0.0037, 7 days: p = 0.0094). The lipofuscin content of cells exposed to irradiated POS increased significantly between days 3 and 7 (p = 0.0335). Ultrastructural studies showed much more numerous and larger lipofuscin-like inclusions in RPE cells fed irradiated POS compared to cells exposed to native POS. In the control cells, lipofuscin-like granules were small and sparse. It appears that exposing RPE cells to previously peroxidized POS, thus artificially converted to lipofuscin and obviously not digestible by the lysosomal enzymes, accelerates the formation of severely lipofuscin-loaded cells. The results will be useful for further studies of possible harmful

  3. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells.

    PubMed

    Fan, Yue; Qiao, Yuan; Huang, Jianmei; Tang, Minke

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2 (-)), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  4. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells

    PubMed Central

    Fan, Yue; Qiao, Yuan; Huang, Jianmei

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2−), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  5. THE ORGANOPHOSPHOROUS INSECTICIDE FENTHION DOES NOT AFFECT PHAGOCYTOSIS OF ROD OUTER SEGMENTS BY RETINAL PIGMENT EPITHELIUM CELLS IN CULTURE.

    EPA Science Inventory

    :
    Exposure to the organophosphorous insecticide fenthion has been associated with retinal degeneration in occupational studies. It has also been associated with pigmentary changes of the retina. Because retinal degeneration and pigmentary changes may be due to dysfunction of t...

  6. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery.

    PubMed

    Weber, Michel; Rabinowitz, Joseph; Provost, Nathalie; Conrath, Hervé; Folliot, Sébastien; Briot, Delphine; Chérel, Yan; Chenuaud, Pierre; Samulski, Jude; Moullier, Philippe; Rolling, Fabienne

    2003-06-01

    We previously described chimeric recombinant adeno-associated virus (rAAV) vectors 2/4 and 2/5 as the most efficient vectors in rat retina. We now characterize these two vectors carrying the CMV.gfp genome following subretinal injection in the Wistar rat, beagle dog, and cynomolgus macaque. Both serotypes displayed stable GFP expression for the duration of the experiment (6 months) in all three animal models. Similar to the AAV-2 serotype, AAV-2/5 transduced both RPE and photoreceptor cells, with higher level of transduction in photoreceptors, whereas rAAV-2/4 transduction was unambiguously restricted to RPE cells. This unique specificity found conserved among all three species makes AAV-2/4-derived vectors attractive for retinal diseases originating in RPE such as Leber congenital amaurosis (RPE65) or retinitis pigmentosa due to a mutated mertk gene. To provide further important preclinical data, vector shedding was monitored by PCR in various biological fluids for 2 months post-rAAV administration. Following rAAV-2/4 and -5 subretinal delivery in dogs (n = 6) and in nonhuman primates (n = 2), vector genome was found in lacrymal and nasal fluids for up to 3-4 days and in the serum for up to 15-20 days. Overall, these findings will have a practical impact on the development of future gene therapy trials of retinal diseases. PMID:12788651

  7. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Stevenson, J.H.; Couto, R.; Caprio, F.J. )

    1990-02-26

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of ({sup 3}H) D- and L-3-hydroxybutyrate and 3-hydroxy-(3-{sup 14}C) butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells.

  8. Diversity of Retinal Ganglion Cells Identified by Transient GFP Transfection in Organotypic Tissue Culture of Adult Marmoset Monkey Retina

    PubMed Central

    Moritoh, Satoru; Komatsu, Yusuke; Yamamori, Tetsuo; Koizumi, Amane

    2013-01-01

    The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a “super-model” of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina. PMID:23336011

  9. Intravitreal injection of erythropoietin protects against retinal vascular regression at the early stage of diabetic retinopathy in streptozotocin-induced diabetic rats.

    PubMed

    Mitsuhashi, Junko; Morikawa, Shunichi; Shimizu, Kazuhiko; Ezaki, Taichi; Yasuda, Yoshiko; Hori, Sadao

    2013-01-01

    A single intravitreal injection of erythropoietin (EPO) (50 ng/eye) or phosphate-buffered saline was administered to 5-week-old Sprague-Dawley rats at the onset of diabetes mellitus (DM) to determine and evaluate the protective effect of EPO on retinal microvessels. DM was induced by an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight). Morphological changes in microvessels in flat retinal preparations were evaluated during the subsequent 4 weeks by three-dimensional imaging of all blood vessels stained with fluorescein isothiocyanate-conjugated tomato lectin, following immunofluorescence techniques. No marked differences were observed in the shape or density of retinal vessels and the number of retinal capillary branches of the four groups [control, EPO, DM, and DM/EPO] up to 4 weeks after STZ administration. We also observed unique type IV collagen-positive filamentous structures that lacked both cellular elements and blood circulation (lectin-/type IV+ acellular strands), suggesting regressed vessel remnants. The lectin-/type IV+ acellular strands were detected soon after the onset of DM in the diabetic rats, and the number of these structures increased in the DM group (P < 0.01). A single intravitreal injection of EPO caused a significant reduction in the number of lectin-/type IV+ acellular strands to levels observed in the control group. However, the lectin-/type IV+ acellular strands were observed in the central area of the retina near the optic disc in all four groups. Intravitreal injection of EPO resulted in downregulation of the EPO receptor, vascular endothelial growth factor (VEGF), and VEGF receptor at 4 weeks. We conclude that EPO may play a primary role against the progression of diabetic retinopathy by reducing blood vessel degeneration at a very early disease stage. PMID:23178551

  10. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  11. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells

    PubMed Central

    Warren, Erin J.; Allen, Charles N.; Brown, R. Lane; Robinson, David W.

    2008-01-01

    In mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed intrinsically photosensitive. In SCN-projecting RGCs, light activates a nonselective cationic current that displays inward and outward rectification. The goal of the present study was to investigate the identity of the light-activated ion channel and the intracellular signaling pathway leading to its activation. We considered two candidate channels, cyclic nucleotide-gated (CNG) channels and transient receptor potential (TRP) channels, which mediate vertebrate and invertebrate phototransduction, respectively. We report that the intrinsic light response relies upon a G-protein-dependent process. Although our data indicate that cyclic nucleotides modulate the signaling pathway, CNG channels do not appear to conduct the light-activated current because (i) cyclic nucleotides in the pipette solution do not activate a conductance or completely block the light response, (ii) CNG channel blockers fail to inhibit the light response, (iii) the effects of internal and external divalent cations are inconsistent with their effects on CNG channels, and (iv) immunohistochemistry reveals no CNG channels in SCN-projecting RGCs. Finally, we show that the pharmacology of the light-activated channel resembles that of some TRPC channel family members; the response is blocked by lanthanides and ruthenium red and SK&F 96365, and is enhanced by flufenamic acid and 1-oleoyl-2-acetyl-sn-glycerol. Furthermore, immunohistochemical experiments reveal that TRPC6 is expressed in many RGCs, including those that express melanopsin. PMID:16706854

  12. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  13. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  14. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    PubMed

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(P<0.01). Immunofluorescence staining showed that the SCs purity was (95.73±1.51)% in the improved method group,(84.66±2.68)% in the hemi-explants-culture method group,and (74.50±4.23)% in the explants-culture method group(P<0.01). Conclusion The improved enzyme digestion combined with explants-culture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration. PMID:27594149

  15. Culture of ciliated and nonciliated cells from rat ductuli efferentes

    SciTech Connect

    Byers, S.W.; Musto, N.A.; Dym, M.

    1985-09-01

    The isolation and culture of ciliated and nonciliated cells from rat ductuli efferentes is described. Fragments of epithelium obtained after two collagenase digestions attached to plastic and to extracellular matrix and could be maintained in culture for at least 2 weeks. Ciliary beating in cells grown on epididymal extracellular matrix-coated plastic could be observed for up to 7 days in culture. Although cells maintained on this substrate retained organelles characteristic of cells in vivo, they assumed a flattened, squamous appearance. In contrast, cells growing on the surface of permeable supports impregnated with extracellular matrix were polarized and exhibited a cuboidal/columnar appearance. Androgen binding protein conjugated to colloidal gold was taken up by these cells via coated pits and was found sequentially in uncoated endosomes, multivesicular bodies and lysosomes.

  16. Loofa sponge as a scaffold for culture of rat hepatocytes.

    PubMed

    Chen, Jyh-Ping; Lin, Tsung-Cheng

    2005-01-01

    The dried fruit from Luffa cylindrica (loofa sponge, LS), which represents a new chitinous source material, was used as a 3-D scaffold for the culture of rat hepatocytes. With the macroporous structure and large pore size (ca. 800 microm) of LS, cell loading to the scaffold should be carried out by dynamic seeding with continuous shaking throughout the seeding period. Hepatocytes attach well to the surface of loofa fibers after seeding and maintain their round shapes. The initial ammonia removal and urea-N synthesis rates of hepatocytes immobilized within LS slightly decreased with increasing cell densities, but their metabolic activities were comparable to or better than those in monolayer culture on tissue culture polystyrene control surfaces. Both urea-N synthesis and albumin secretion rates could be maintained up to 7 days for cells immobilized within LS and spheroid-like cell aggregates could be found after the second day. PMID:15903271

  17. Functional changes in Tg P23H-1 rat retinal responses: differences between ON and OFF pathway transmission to the superior colliculus.

    PubMed

    Fransen, James W; Pangeni, Gobinda; Pyle, Ian S; McCall, Maureen A

    2015-10-01

    The morphological consequences of retinal photoreceptor degeneration are well documented. Much less is known about changes in visual function during degeneration and whether central visual structures directly reflect changes in retinal ganglion cell (RGC) function. To address this, we compared changes in visual function of RGCs and cells in the superior colliculus (SC) in transgenic (Tg) P23H-1 rats, a model of retinitis pigmentosa (RP), and wild-type (WT) rats at postnatal days 35-50 (P35-50) and P300. RGCs were classified on the basis of their responses to light: onset (ON), offset (OFF), or both (ON-OFF). The distribution of ON, OFF, and ON-OFF RGCs is similar between WT and P35 Tg P23H-1 rats. By P300, many Tg P23H-1 RGCs are nonresponsive (NR). At this age, there is a sharp decline in ON and ON-OFF RGCs, and the majority that remain are OFF RGCs. Spontaneous rhythmic activity was observed in many RGCs at P300, but only in OFF or NR RGCs. In the SC, WT and P50 Tg P23H-1 responses are similar. At P300, Tg P23H-1 ON SC responses declined but OFF responses increased. We examined postsynaptic glutamate receptor expression located on the bipolar cells (BC), where the ON and OFF pathways arise. At P150, metabotropic glutamate receptor 6 (mGluR6) expression is lower than in WT, consistent with a decrease in ON RGC responses. GluR4 expression, an ionotropic glutamate receptor associated with OFF BCs, appears similar to that in WT. The loss of ON responses in Tg P23H-1 RGCs and in the SC is conserved and related to reduced mGluR6 signaling. PMID:26245318

  18. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  19. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  20. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats.

    PubMed Central

    Stitt, A. W.; Li, Y. M.; Gardiner, T. A.; Bucala, R.; Archer, D. B.; Vlassara, H.

    1997-01-01

    Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance. Images Figure 1 Figure 2 Figure 3 PMID

  1. Whole-cell K+ currents in fresh and cultured cells of the human and monkey retinal pigment epithelium.

    PubMed Central

    Wen, R; Lui, G M; Steinberg, R H

    1993-01-01

    1. Whole-cell potassium currents of freshly isolated human (adult and fetal) and monkey (adult) retinal pigment epithelial (RPE) cells, as well as cultured human and monkey RPE cells were studied using the patch-clamp technique. 2. In freshly isolated adult cells of both species, two currents were observed in the voltage range from -150 to +50 mV: an outwardly rectifying current and an inwardly rectifying current. These currents were also found in cultured cells of both species. 3. The outwardly rectifying current in freshly isolated adult human and monkey cells and some cultured cells was evoked by depolarizing voltage pulses more positive that -30 mV. The current activated with a sigmoidal time course after a brief delay, and was virtually non-inactivating. The conductance associated with the current was half-maximal at -16.4 mV for fresh human cells and -13.5 mV for fresh monkey cells, but was shifted 16.0 and 17.7 mV in the positive direction in cultured human and monkey cells, respectively. The reversal potential of the current in both human and monkey cells matched the potassium equilibrium potential (EK) over a wide range of external potassium concentrations. This current was blocked by 20 mM tetraethylammonium. 4. A membrane current that exhibited inward rectification was observed with hyperpolarizing voltage pulses. The zero-current potential of this current was close to EK. This current was blocked by 2 mM Ba2+ and 2 mM Cs+. In cultured human and monkey cells, but not in fresh cells, this current exhibited an inactivation when voltage pulses were more negative than -120 mV. External Na+ was responsible for the inactivation, as the inactivation was removed in a Na(+)-free solution. 5. Membrane currents in freshly isolated fetal human RPE cells were remarkably different from those in adult cells. A transient outward current resembling the A-type potassium current was observed as the dominant membrane current in freshly isolated fetal human cells. This

  2. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model.

    PubMed

    Omri, Samy; Behar-Cohen, Francine; de Kozak, Yvonne; Sennlaub, Florian; Verissimo, Lourena Mafra; Jonet, Laurent; Savoldelli, Michèle; Omri, Boubaker; Crisanti, Patricia

    2011-08-01

    Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages. PMID:21712024

  3. TIMP-1 affects the spatial distribution of dendritic processes of second-order neurons in a rat model of Retinitis Pigmentosa.

    PubMed

    Shin, Jung-A; Eom, Yun Sung; Yu, Wan-Qing; Grzywacz, Norberto M; Craft, Cheryl Mae; Lee, Eun-Jin

    2015-11-01

    Retinitis Pigmentosa (RP) is an inherited disorder that may lead to blindness. In the rhodopsin S334ter-line-3 rat model of RP, the death of rods induces spatial rearrangement of cones into regular ring mosaics. Using this model, we discovered that the ring mosaics are restored to a homogeneous distribution upon application of tissue inhibitor of metalloproteinase-1 (TIMP-1). In this study, we further investigated the cone migration and spatial distribution of second-order neurons and their connections to cones in the presence or absence of TIMP-1 using immunohistochemistry to identify retinal neurons and their connections with cones. M-opsin cell bodies and their outer segments were evaluated to determine whether TIMP-1 delays the degeneration of outer segments of cones. We observed that during cone rearrangement into ring mosaics in RP retina, dendritic processes of second-order neurons undergo remodeling to maintain their synaptic connections with the cones in the rings. TIMP-1 treatment induced the cones to rearrange and dendritic processes of second-order neurons to return to a more homogeneous spatial distribution. In addition, TIMP-1 treatment protected the outer segments of cones at later stages of retinal degeneration. Our findings clearly demonstrate that despite their dramatic spatial rearrangement, cones and second-order neuron processes maintain their synaptic connections before and after TIMP-1 treatment. PMID:26277580

  4. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  5. Rabies virus infection of cultured rat sensory neurons.

    PubMed Central

    Lycke, E; Tsiang, H

    1987-01-01

    The axonal transport of rabies virus (challenge virus strain of fixed virus) was studied in differentiated rat embryonic dorsal root ganglion cells. In addition, we observed the attachment of rabies virus to neuronal extensions and virus production by infected neurons. A compartmentalized cell culture system was used, allowing infection and manipulation of neuronal extensions without exposing the neural soma to the virus. The cultures consisted of 60% large neuronal cells whose extensions exhibited neurofilament structures. Rabies virus demonstrated high binding affinity to unmyelinated neurites, as suggested by assays of virus adsorption and immunofluorescence studies. The rate of axoplasmic transport of virus was 12 to 24 mm/day, including the time required for internalization of the virus into neurites. The virus transport could be blocked by cytochalasin B, vinblastine, and colchicine, none of which negatively affected the production of virus in cells once the infection was established. It was concluded that, for the retrograde transfer of rabies virus by neurites from the periphery to the neuronal soma, the integrity of tubulin- and actin-containing structures is essential. The rat sensory neurons were characterized as permissive, moderately susceptible, but low producers of rabies virus. These neurons were capable of harboring rabies virus for long periods of time and able to release virus into the culture medium without showing any morphological alterations. The involvement of sensory neurons in rabies virus pathogenesis, both in viral transport and as a site for persistent viral infection, is discussed. Images PMID:2441076

  6. Culture and characterization of rat hair follicle stem cells.

    PubMed

    Quan, Renfu; Zheng, Xuan; Ni, Yueming; Xie, Shangju; Li, Changming

    2016-08-01

    The purpose of this study was to establish methods for isolation, culture, expansion, and characterization of rat hair follicle stem cells (rHFSCs). Hair follicles were harvested from 1-week-old Sprague-Dawley rats and digested with dispase and collagenase IV. The bulge of the hair follicle was dissected under a microscope and cultured in Dulbecco's modified Eagle's medium/F12 supplemented with KnockOut™ Serum Replacement serum substitute, penicillin-streptomycin, L-glutamine, non-essential amino acids, epidermal growth factor, basic fibroblast growth factor, polyhydric alcohol, and hydrocortisone. The rHFSCs were purified using adhesion to collagen IV. Cells were characterized by detecting marker genes with immunofluorescent staining and real-time polymerase chain reaction (PCR). The proliferation and vitality of rHFSCs at different passages were evaluated. The cultured rHFSCs showed typical cobblestone morphology with good adhesion and colony-forming ability. Expression of keratin 15, integrin α6, and integrin β1 were shown by immunocytochemistry staining. On day 1-2, the cells were in the latent phase. On day 5-6, the cells were in the logarithmic phase. Cell vitality gradually decreased from the 7th passage. Real-time PCR showed that the purified rHFSCs had good vitality and proliferative capacity and contained no keratinocytes. Highly purified rHFSCs can be obtained using tissue culture and adhesion to collagen IV. The cultured cells had good proliferative capacity and could therefore be a useful cell source for tissue-engineered hair follicles, vessels, and skin. PMID:25407732

  7. Activation of rhodopsin gene transcription in cultured retinal precursors of chicken embryo: role of Ca(2+) signaling and hyperpolarization-activated cation channels.

    PubMed

    Bernard, Marianne; Dejos, Camille; Bergès, Thierry; Régnacq, Matthieu; Voisin, Pierre

    2014-04-01

    This study reports that the spontaneous 50-fold activation of rhodopsin gene transcription, observed in cultured retinal precursors from 13-day chicken embryo, relies on a Ca(2+)-dependent mechanism. Activation of a transiently transfected rhodopsin promoter (luciferase reporter) in these cells was inhibited (60%) by cotransfection of a dominant-negative form of the cAMP-responsive element-binding protein. Both rhodopsin promoter activity and rhodopsin mRNA accumulation were blocked by Ca(2+)/calmodulin-dependent kinase II inhibitors, but not by protein kinase A inhibitors, suggesting a role of Ca(2+) rather than cAMP. This was confirmed by the inhibitory effect of general and T-type selective Ca(2+) channel blockers. Oscillations in Ca(2+) fluorescence (Fluo8) could be observed in 1/10 cells that activated the rhodopsin promoter (DsRed reporter). A robust and reversible inhibition of rhodopsin gene transcription by ZD7288 indicated a role of hyperpolarization-activated channels (HCN). Cellular localization and developmental expression of HCN1 were compatible with a role in the onset of rhodopsin gene transcription. Together, the data suggest that the spontaneous activation of rhodopsin gene transcription in cultured retinal precursors results from a signaling cascade that involves the pacemaker activity of HCN channels, the opening of voltage-gated Ca(2+)-channels, activation of Ca(2+)/calmodulin-dependent kinase II and phosphorylation of cAMP-responsive element-binding protein. Rhodopsin gene expression in cultured retinal precursors from chicken embryo relies on a Ca2+-dependent mechanism whereby hyperpolarization-activated cyclic nucleotide-gated channels (HCN) activate T-type voltage-dependent Ca2+ channels (VDCC) through membrane depolarization, causing calmodulin-dependent kinase II (CaMKII) to phosphorylate the cAMP-responsive element-binding protein (CREB) and leading to activation of rhodopsin gene transcription. Photoreceptor localization and development

  8. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  9. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  10. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    PubMed

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-09-22

    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways. PMID:27373906

  11. Endogenous arginine vasopressin–positive retinal cells in arginine vasopressin–eGFP transgenic rats identified by immunohistochemistry and reverse transcriptase–polymerase chain reaction

    PubMed Central

    Moritoh, Satoru; Sato, Kaori; Okada, Yasunobu

    2011-01-01

    Purpose Recently, arginine vasopressin (AVP) has been revealed to have diverse functional roles in nervous tissues beyond that of a vasoconstrictor. Several previous studies have indicated the existence of AVP in the retina, but the source of AVP has not been determined. The objective of the present study was to address the question of whether retinal cells have the ability to synthesize endogenous AVP to act in a paracrine or autocrine manner. Methods We used AVP-eGFP transgenic rats to find endogenous AVP-positive cells in the retina by immunohistochemistry with an AVP antibody and a GFP antibody. We also examined AVP mRNA and AVP receptor genes by reverse transcriptase (RT)–PCR of dissociated GFP-positive cells and whole retinas. Results Endogenous AVP-positive cells were found in the ganglion cell layer and inner nuclear layer of the retina of AVP-eGFP transgenic rats by immunohistochemistry. As indicated by the results of RT–PCR of dissociated GFP-positive cells, these cells have the ability to synthesize endogenous AVP, as well as transgenic AVP-eGFP. In addition, the V1a and V1b AVP receptors were found in the wild-type rat retina by whole retina RT–PCR, but the V2 receptor was not detectable. In dissociated AVP-eGFP-positive cells, no AVP receptor was detected by RT–PCR. Moreover, AVP secretion was not detected by stimulation with a high potassium (50 mM) solution. Conclusions In the rat retina, we found retinal cells that have the ability to synthesize endogenous AVP, and that the retina possesses V1a and V1b AVP receptors. Taken together, these results suggest that the retina has an intrinsic AVP-synthesizing and -receiving mechanism that can operate in a paracrine manner via V1a and V1b receptors. PMID:22194651

  12. The Neuroprotective Effect of Maltol against Oxidative Stress on Rat Retinal Neuronal Cells

    PubMed Central

    Song, Yookyung; Hong, Samin; Iizuka, Yoko; Kim, Chan Yun

    2015-01-01

    Purpose Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. Methods R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis. Results R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK. Conclusions Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act

  13. Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat.

    PubMed Central

    Aizenman, E; Frosch, M P; Lipton, S A

    1988-01-01

    1. The pharmacological properties of excitatory amino acid responses on ganglion cells dissociated from the rat retina were examined with the use of the whole-cell voltage-clamp technique. 2. L-Glutamate at a concentration of 50 microM produced inward non-desensitizing currents at negative holding potentials in nearly every cell tested (83%, n = 18) In physiological solutions, L-glutamate responses reversed at approximately -9 mV, and higher concentrations of this agonist introduced a desensitizing component to the response. 3. At negative holding potentials, kainate (25-125 microM) produced inward currents in all of the cells tested (n = 37). These currents never desensitized, even at high agonist concentrations, and reversed near -6 mV. Currents induced by 50 microM-kainate were reversibly antagonized by kynurenate (100-300 microM) but not by 100 microM-2-amino-5-phosphonovalerate (APV). 4. Quisqualate generated smaller, non-desensitizing currents in only 50% of the cells tested (n = 38). Quisqualate responses reversed in polarity near -4 mV and were maximal at an agonist dose of 25 microM, with higher concentrations introducing a rapidly desensitizing component without a detectable increase in amplitude. Currents produced by quisqualate at a concentration of 50 microM were not antagonized by either 750 microM-kynurenate or 100 microM-APV. 5. N-Methyl-D-aspartate (NMDA) produced inward currents at negative holding potentials in 68% of the cells tested (n = 31), but only when magnesium was excluded from the extracellular medium. NMDA currents were non-desensitizing at agonist concentrations of up to 200 microM, with higher concentrations introducing a rapidly desensitizing component. NMDA (200 microM) responses were blocked by APV (100 microM) and kynurenate (300 microM) and reversed near -1 mV. 6. Responses generated by kainate (50-125 microM) were antagonized by quisqualate (30-250 microM). This antagonism occurred even in cells having no measurable response to

  14. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  15. A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro.

    PubMed

    Laughter, Melissa R; Ammar, David A; Bardill, James R; Pena, Brisa; Kahook, Malik Y; Lee, David J; Park, Daewon

    2016-08-17

    Sensory-somatic nervous system neurons, such as retinal ganglion cells (RGCs), are typically thought to be incapable of regenerating. However, it is now known that these cells may be stimulated to regenerate by providing them with a growth permissive environment. We have engineered an injectable microenvironment designed to provide growth-stimulating cues for RGC culture. Upon gelation, this injectable material not only self-assembles into laminar sheets, similar to retinal organization, but also possesses a storage modulus comparable to that of retinal tissue. Primary rat RGCs were grown, stained, and imaged in this three-dimensional scaffold. We were able to show that RGCs grown in this retina-like structure exhibited characteristic long, prominent axons. In addition, RGCs showed a consistent increase in average axon length and neurite-bearing ratio over the 7 day culture period, indicating this scaffold is capable of supporting substantial RGC axon extension. PMID:27434231

  16. Inhibition of Nuclear Translocation of Apoptosis-Inducing Factor Is an Essential Mechanism of the Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal Degeneration

    PubMed Central

    Murakami, Yusuke; Ikeda, Yasuhiro; Yonemitsu, Yoshikazu; Onimaru, Mitsuho; Nakagawa, Kazunori; Kohno, Ri-ichiro; Miyazaki, Masanori; Hisatomi, Toshio; Nakamura, Makoto; Yabe, Takeshi; Hasegawa, Mamoru; Ishibashi, Tatsuro; Sueishi, Katsuo

    2008-01-01

    Photoreceptor apoptosis is a critical process of retinal degeneration in retinitis pigmentosa (RP), a group of retinal degenerative diseases that result from rod and cone photoreceptor cell death and represent a major cause of adult blindness. We previously demonstrated the efficient prevention of photoreceptor apoptosis by intraocular gene transfer of pigment epithelium-derived factor (PEDF) in animal models of RP; however, the underlying mechanism of the neuroprotective activity of PEDF remains elusive. In this study, we show that an apoptosis-inducing factor (AIF)-related pathway is an essential target of PEDF-mediated neuroprotection. PEDF rescued serum starvation-induced apoptosis, which is mediated by AIF but not by caspases, of R28 cells derived from the rat retina by preventing translocation of AIF into the nucleus. Nuclear translocation of AIF was also observed in the apoptotic photoreceptors of Royal College of Surgeons rats, a well-known animal model of RP that carries a mutation of the Mertk gene. Lentivirus-mediated retinal gene transfer of PEDF prevented the nuclear translocation of AIF in vivo, resulting in the inhibition of the apoptotic loss of their photoreceptors in association with up-regulated Bcl-2 expression, which mediates the mitochondrial release of AIF. These findings clearly demonstrate that AIF is an essential executioner of photoreceptor apoptosis in inherited retinal degeneration and provide a therapeutic rationale for PEDF-mediated neuroprotective gene therapy for individuals with RP. PMID:18845835

  17. Metabolism of ochratoxin A by primary cultures of rat hepatocytes.

    PubMed Central

    Hansen, C E; Dueland, S; Drevon, C A; Størmer, F C

    1982-01-01

    Association of ochratoxin A with cultured rat hepatocytes occurs at 4 degrees C, and the saturation level in the medium is 0.3 mM ochratoxin A, with maximal binding after 60 min. At 37 degrees C the level of cell-associated ochratoxin A increased up to 6 h and remained at 2 nmol of toxin per mg of cell protein for 30 h. With increasing concentrations of ochratoxin A, increasing amounts of the toxin accumulated in the cells; saturation occurred at a concentration of 0.3 mM. Ochratoxin A was metabolized by hepatocytes at 37 degrees. (4R)-4-Hydroxyochratoxin A appeared in the medium at a maximal level (about 30 nmol/mg of cell protein) at an ochratoxin A concentration of 0.25 mM after 48 h of incubation. Small amounts of (4S)-4-hydroxyochratoxin A were detected only after incubation for 22 h or longer. PMID:7103484

  18. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    SciTech Connect

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  19. Effects of Bisphosphonates on Glucose Transport in a Conditionally Immortalized Rat Retinal Capillary Endothelial Cell Line (TR-iBRB Cells)

    PubMed Central

    Lee, Na-Young; Park, Hyun-Joo; Kang, Young-Sook

    2016-01-01

    The objective of the present study was to elucidate the effect of bisphosphonates, anti-osteoporosis agents, on glucose uptake in retinal capillary endothelial cells under normal and high glucose conditions. The change of glucose uptake by pre-treatment of bisphosphonates at the inner blood-retinal barrier (iBRB) was determined by measuring cellular uptake of [3H]3-O-methyl glucose (3-OMG) using a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB cells) under normal and high glucose conditions. [3H]3-OMG uptake was inhibited by simultaneous treatment of unlabeled D-glucose and 3-OMG as well as glucose transport inhibitor, cytochalasin B. On the other hand, simultaneous treatment of alendronate or pamidronate had no significant inhibitory effect on [3H]3-OMG uptake by TR-iBRB cells. Under high glucose condition of TR-iBRB cells, [3H]3-OMG uptake was increased at 48 h. However, [3H]3-OMG uptake was decreased significantly by pre-treatment of alendronate or pamidronate compared with the values for normal and high glucose conditions. Moreover, geranylgeraniol (GGOH), a mevalonate pathway intermediate, increased the uptake of [3H]3-OMG reduced by bisphosphonates pre-treatment. But, pre-treatment of histamine did not show significant inhibition of [3H]3-OMG uptake. The glucose uptake may be down regulated by inhibiting the mevalonate pathway with pre-treatment of bisphosphonates in TR-iBRB cells at high glucose condition. PMID:26759707

  20. Cell culture models using rat primary alveolar type I cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  1. Cell culture models using rat primary alveolar type I cells

    PubMed Central

    Downs, Charles A.; Montgomery, David W.; Merkle, Carrie J.

    2011-01-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ±2.7%) and MVECL (97.9 ±1.1 %) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin coated 24 well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 micron pores. Additionally AT I cells were grown in a thick layer of Matrigel® to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cell cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  2. Biosynthesis, assembly and secretion of fibrinogen in cultured rat hepatocytes.

    PubMed Central

    Hirose, S; Oda, K; Ikehara, Y

    1988-01-01

    The biosynthesis, assembly and secretion of fibrinogen were investigated in cultured rat hepatocytes which were incubated with [35S]methionine. When initial rates of the synthesis of three fibrinogen subunits were compared, the A alpha-subunit was found to be synthesized significantly slower than the B beta- and gamma-subunits. Pulse-chase experiments revealed that the secreted fibrinogen contained different proportions of the newly synthesized subunits, depending upon the chase times. Radioactivity in the A alpha subunit, which initially had the highest level of the three, was rapidly decreased in parallel with the chase time. The gamma-subunit had an increasing amount of the radioactivity in the secreted molecule during the chase periods, whereas that in the B beta-subunit was gradually decreased at the later stages of chase. Analysis of intracellular components of fibrinogen confirmed that the nascent A alpha-subunit was most rapidly exhausted, and the gamma-subunit occupied the largest proportion among the non-assembled subunits at later stages of chase. Taken together, these results suggest that the synthesis of A alpha-subunit, which has the lowest rate, could be the rate-limiting step in the production and secretion of fibrinogen in cultured rat hepatocytes, in contrast with what has been proposed for human and rabbit fibrinogen, namely that the synthesis of B beta-subunit is the rate-limiting step. The results also indicate that there is a large intracellular pool of gamma-subunit. Images Fig. 2. Fig. 3. PMID:3401211

  3. Reshaping the Cone-Mosaic in a Rat Model of Retinitis Pigmentosa: Modulatory Role of ZO-1 Expression in DL-Alpha-Aminoadipic Acid Reshaping

    PubMed Central

    Shin, Jung-A; Nair, Divya; Grzywacz, Sara X. Z.; Grzywacz, Norberto M.; Craft, Cheryl Mae; Lee, Eun-Jin

    2016-01-01

    In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rearrangement of cones into mosaics of rings while the fibrotic processes of Müller cells remodel to fill the center of the rings. In contrast, previous work established that DL-alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabolism, abolishes these highly structured cone rings. Simultaneously, adherens-junction associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA treatment alters the cone mosaic rings by disrupting the distal sealing formed by these fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1. Therefore, we examined these processes and ZO-1 expression at the outer retina after intravitreal injection of AAA and observed that AAA treatment transiently disrupts the distal glial sealing in RP retina, plus induces cones in rings to become more homogeneous. Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which coincided with cone ring disruption. Similar modifications of glial sealing and cone distribution were observed after injection of siRNA to inhibit ZO-1 expression. These findings support our hypothesis and provide additional information about the critical role played by ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent important advancements in the understanding of retinal degeneration’s etiology and pathophysiology. PMID:26977812

  4. Effects of methyl isocyanate on rat muscle cells in culture.

    PubMed

    Anderson, D; Goyle, S; Phillips, B J; Tee, A; Beech, L; Butler, W H

    1988-04-01

    Since the Bhopal disaster, in which the causal agent was methyl isocyanate (MIC), exposed people have complained of various disorders including neuromuscular dysfunction. In an attempt to gain some information about the response of muscle tissue to MIC its effects were investigated in cells in culture isolated from muscle of 2 day old rats. After treatment with a range of MIC concentrations (0.025-0.5 microliter/5 ml culture) the total number of nuclei of the two main cell types (fibroblasts and myoblasts) and the number of nuclei in muscle fibres (myotubes) were recorded. At lower doses which had little effect on the total number of nuclei, the formation of muscle fibres--that is, fusion of muscle cells--was prevented as the proportion of nuclei in myotubes was decreased. At higher doses both cell types were killed. This would suggest either an effect on muscle differentiation or a selective toxicity towards myoblasts. The observations were supported by light and electron microscopy. PMID:3378004

  5. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  6. Foveomacular retinitis.

    PubMed Central

    Kuming, B S

    1986-01-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy. Images PMID:3790482

  7. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus

    PubMed Central

    Rotem, Assaf; Moses, Elisha; Neef, Andreas

    2015-01-01

    Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD) curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields. PMID:26186201

  8. Comparison of Retinal Nerve Fiber Layer Thickness In Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young versus Older Rats

    PubMed Central

    Abbott, Carla J.; Choe, Tiffany E.; Burgoyne, Claude F.; Cull, Grant; Wang, Lin; Fortune, Brad

    2014-01-01

    Purpose To compare in young and old rats longitudinal measurements of retinal nerve fiber layer thickness (RNFLT) and axonal transport 3-weeks after chronic IOP elevation. Method IOP was elevated unilaterally in 2- and 9.5-month-old Brown-Norway rats by intracameral injections of magnetic microbeads. RNFLT was measured by spectral domain optical coherence tomography. Anterograde axonal transport was assessed from confocal scanning laser ophthalmolscopy of superior colliculi (SC) after bilateral intravitreal injections of cholera toxin-B-488. Optic nerve sections were graded for damage. Results Mean IOP was elevated in both groups (young 37, old 38 mmHg, p = 0.95). RNFL in young rats exhibited 10% thickening at 1-week (50.9±8.1 µm, p<0.05) vs. baseline (46.4±2.4 µm), then 7% thinning at 2-weeks (43.0±7.2 µm, p>0.05) and 3-weeks (43.5±4.4 µm, p>0.05), representing 20% loss of dynamic range. RNFLT in old rats showed no significant change at 1-week (44.9±4.1 µm) vs. baseline (49.2±5.3 µm), but progression to 22% thinning at 2-weeks (38.0±3.7 µm, p<0.01) and 3-weeks (40.0±6.6 µm, p<0.05), representing 59% loss of dynamic range. Relative SC fluorescence intensity was reduced in both groups (p<0.001), representing 77–80% loss of dynamic range and a severe transport deficit. Optic nerves showed 75–95% damage (p<0.001). There was greater RNFL thinning in old rats (p<0.05), despite equivalent IOP insult, transport deficit and nerve damage between age groups (all p>0.05). Conclusion Chronic IOP elevation resulted in severely disrupted axonal transport and optic nerve axon damage in all rats, associated with mild RNFL loss in young rats but a moderate RNFL loss in old rats despite the similar IOP insult. Hence, the glaucomatous injury response within the RNFL depends on age. PMID:25501362

  9. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  10. Retinal Detachment

    MedlinePlus

    ... immediately. Treatment How is retinal detachment treated? Small holes and tears are treated with laser surgery or ... laser surgery tiny burns are made around the hole to “weld” the retina back into place. Cryopexy ...

  11. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    SciTech Connect

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-11-15

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  12. CELL DEATH IN RAT AND MOUSE EMBRYOS EXPOSED TO METHANOL IN WHOLEEMBRYO CULTURE

    EPA Science Inventory

    Methanol induces developmental toxicity in rats and mice producing exencephaly, cleft palate, cervical ribs, sternebral defects, reduced body weight, and increased embryo/fetal death. xposure to methanol in whole embryo culture also induces developmental retardation, dysmorphogen...

  13. Glycogen metabolism in rat heart muscle cultures after hypoxia.

    PubMed

    Vigoda, Ayelet; Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-12-01

    Elevated glycogen levels in heart have been shown to have cardioprotective effects against ischemic injury. We have therefore established a model for elevating glycogen content in primary rat cardiac cells grown in culture and examined potential mechanisms for the elevation (glycogen supercompensation). Glycogen was depleted by exposing the cells to hypoxia for 2 h in the absence of glucose in the medium. This was followed by incubating the cells with 28 mM glucose in normoxia for up to 120 h. Hypoxia decreased glycogen content to about 15% of control, oxygenated cells. This was followed by a continuous increase in glycogen in the hypoxia treated cells during the 120 h recovery period in normoxia. By 48 h after termination of hypoxia, the glycogen content had returned to baseline levels and by 120 h glycogen was about 150% of control. The increase in glycogen at 120 h was associated with comparable relative increases in glucose uptake (approximately 180% of control) and the protein level of the glut-1 transporter (approximately 170% of control), whereas the protein level of the glut-4 transporter was decreased to < 10% of control. By 120 h, the hypoxia-treated cells also exhibited marked increases in the total (approximately 170% of control) and fractional activity of glycogen synthase (control, approximately 15%; hypoxia-treated, approximately 30%). Concomitantly, the hypoxia-treated cells also exhibited marked decreases in the total (approximately 50% of control) and fractional activity of glycogen phosphorylase (control, approximately 50%; hypoxia-treated, approximately 25%). Thus, we have established a model of glycogen supercompensation in cultures of cardiac cells that is explained by concerted increases in glucose uptake and glycogen synthase activity and decreases in phosphorylase activity. This model should prove useful in studying the cardioprotective effects of glycogen. PMID:14674711

  14. CO-CULTURE OF RAT EMBRYOS AND HEPATOCYTES: 'IN VITRO' DETECTION OF A PROTERATOGEN

    EPA Science Inventory

    Rat embryos removed from the dam on day 10 of pregnancy were successfully co-cultivated in vitro with primary cultures of rat, rabbit, or hamster hepatocytes. Embryos co-cultivated with hepatocytes developed normally, as did embryos exposed to a test chemical, cyclophosphamide. I...

  15. Effect of bevacizumab (Avastin™) on mitochondrial function of in vitro retinal pigment epithelial, neurosensory retinal and microvascular endothelial cells

    PubMed Central

    Luthra, Saurabh; Sharma, Ashish; Dong, Joyce; Neekhra, Aneesh; Gramajo, Ana L; Seigel, Gail M; Kenney, M Cristina; Kuppermann, Baruch D

    2013-01-01

    Purpose: To evaluate the effect of bevacizumab on the mitochondrial function of human retinal pigment epithelial (ARPE-19), rat neurosensory retinal (R28) and human microvascular endothelial (HMVEC) cells in culture. Materials and Methods: ARPE-19 and R28 cells were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab. The HMVEC cultures were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab or 1 mg/ml of immunoglobulin G (control). Mitochondrial function assessed by mitochondrial dehydrogenase activity (MDA) was determined using the WST-1 assay. Results: Bevacizumab doses of 0.125 to 1 mg/ml for 5 days did not significantly affect the MDA of ARPE-19 cells. Bevacizumab treatment at 0.125 and 0.25 mg/ml (clinical dose) did not significantly affect the MDA of R28 cells; however, 0.50 and 1 mg/ml doses significantly reduced the R28 cell mitochondrial function. All doses of bevacizumab significantly reduced the MDA of proliferating and non-proliferating HMVEC. Conclusion: Bevacizumab exposure for 5 days was safe at clinical doses in both ARPE-19 and R28 retinal neurosensory cells in culture. By contrast, bevacizumab exposure at all doses show a significant dose-dependent decrease in mitochondrial activity in both the proliferating and non-proliferating HMVEC in vitro. This suggests a selective action of bevacizumab on endothelial cells at clinical doses. PMID:24413824

  16. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  17. The mechanism of zinc uptake by cultured rat liver cells.

    PubMed Central

    Taylor, J A; Simons, T J

    1994-01-01

    1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898

  18. Mechanism of glycogen supercompensation in rat skeletal muscle cultures.

    PubMed

    Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-08-01

    A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4-2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level. PMID:12962138

  19. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation.

    PubMed

    Cia, David; Cubizolle, Aurélie; Crauste, Céline; Jacquemot, Nathalie; Guillou, Laurent; Vigor, Claire; Angebault, Claire; Hamel, Christian P; Vercauteren, Joseph; Brabet, Philippe

    2016-09-01

    Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases. PMID:27072643

  20. Transplantation of human retinal pigment epithelial cells in the nucleus accumbens of cocaine self-administering rats provides protection from seeking.

    PubMed

    Venkiteswaran, Kala; Alexander, Danielle N; Puhl, Matthew D; Rao, Anand; Piquet, Amanda L; Nyland, Jennifer E; Subramanian, Megha P; Iyer, Puja; Boisvert, Matthew M; Handly, Erin; Subramanian, Thyagarajan; Grigson, Patricia Sue

    2016-05-01

    Chronic exposure to drugs and alcohol leads to damage to dopaminergic neurons and their projections in the 'reward pathway' that originate in the ventral tegmental area (VTA) and terminate in the nucleus accumbens (NAc). This damage is thought to contribute to the signature symptom of addiction: chronic relapse. In this study we show that bilateral transplants of human retinal pigment epithelial cells (RPECs), a cell mediated dopaminergic and trophic neuromodulator, into the medial shell of the NAc, rescue rats with a history of high rates of cocaine self-administration from drug-seeking when returned, after 2 weeks of abstinence, to the drug-associated chamber under extinction conditions (i.e., with no drug available). Excellent survival was noted for the transplant of RPECs in the shell and/or the core of the NAc bilaterally in all rats that showed behavioral recovery from cocaine seeking. Design based unbiased stereology of tyrosine hydroxylase (TH) positive cell bodies in the VTA showed better preservation (p<0.035) in transplanted animals compared to control animals. This experiment shows that the RPEC graft provides beneficial effects to prevent drug seeking in drug addiction via its effects directly on the NAc and its neural network with the VTA. PMID:26562520

  1. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    PubMed Central

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R.; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P. D.; Picaud, Serge; Santiago, Ana R.

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases. PMID:26311075

  2. Complimentary action: C1q increases ganglion cell survival in an in vitro model of retinal degeneration.

    PubMed

    Taylor, Linnéa; Arnér, Karin; Blom, Anna M; Ghosh, Fredrik

    2016-09-15

    Using a previously described retinal explant culture system as an acute injury model, we here explore the role of C1q, the initiator of the classical complement pathway, in neuronal cell survival and retinal homeostasis. Full-thickness adult rat retinal explants were divided into four groups, receiving the following supplementation: C1q (50nM), C1-inhibitor (C1-inh; Berinert; 500mg/l), C1q+C1-inh, and no supplementation (culture controls). Explants were kept for 12h or 2days after which they were examined morphologically and with a panel of immunohistochemical markers. C1q supplementation protects ganglion cells from degeneration within the explant in vitro system. This effect is correlated to an attenuated endogenous production of C1q, and a quiesced gliotic response. PMID:27609284

  3. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies. PMID:25593208

  4. Activation of type 5 metabotropic glutamate receptor promotes the proliferation of rat retinal progenitor cell via activation of the PI-3-K and MAPK signaling pathways.

    PubMed

    Zhang, Z; Hu, F; Liu, Y; Ma, B; Chen, X; Zhu, K; Shi, Y; Wei, T; Xing, Y; Gao, Y; Lu, H; Liu, Y; Kang, Q

    2016-05-13

    The metabotropic glutamate receptor 5 (mGluR5) regulates neurogenesis in the brain, but the effect of mGluR5 on retinal progenitor cells (RPCs) remains unknown. In this study, we found that mGluR5 promoted the proliferation of rat RPCs with activation of the phosphatidylinositol-3-kinase (PI-3-K) and mitogen-activated protein kinase (MAPK) signaling pathways in vitro. The mGluR5 agonist (S)-3,5-dihydroxyphenylglycine hydrate (DHPG) increased the cellular viability in a concentration- and time-dependent manner, whereas the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine hydrochloride (MTEP) had the opposite effect, as shown by 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTT) assay. Treatment with DHPG (100μM) also promoted the proliferation of RPCs, as indicated by 5-Bromo-2-deoxyUridine (BrdU) staining and flow cytometry, and likewise, MTEP (100μM) and mGluR5 knockdown abolished the action of mGluR5 activity. Western blot demonstrated that the activation of mGluR5 enhanced the expression of Cyclin D1 and the phosphorylation level of PKC however, MTEP or mGluR5 knockdown also abrogated the effect of DHPG on RPCs. Furthermore, we found that activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) signaling pathways was involved in the proliferation of RPC. After DHPG treatment, the levels of both p-ERK1/2 and p-AKT increased in a time-dependent manner. Then we used MTEP, mGluR5 knockdown, the ERK1/2 inhibitor U0126 and the AKT inhibitor LY294002 to pretreat the cells, and all of them clearly eliminated the influence of DHPG. These results demonstrated that mGluR5 regulates neurogenesis in RPCs through the MAPK and PI-3-K signaling pathways, and these findings may motivate a pharmacological study investigating a potential mechanism for the treatment of retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). PMID:26902516

  5. Novel Compstatin Family Peptides Inhibit Complement Activation by Drusen-Like Deposits in Human Retinal Pigmented Epithelial Cell Cultures

    PubMed Central

    Gorham, Ronald D.; Forest, David L.; Tamamis, Phanourios; de Victoria, Aliana López; Kraszni, Márta; Kieslich, Chris A.; Banna, Christopher D.; Bellows-Peterson, Meghan L.; Larive, Cynthia K.; Floudas, Christodoulos A.; Archontis, Georgios; Johnson, Lincoln V.; Morikis, Dimitrios

    2013-01-01

    We have used a novel human retinal pigmented epithelial (RPE) cell-based model that mimics drusen biogenesis and the pathobiology of age-related macular degeneration to evaluate the efficacy of newly designed peptide inhibitors of the complement system. The peptides belong to the compstatin family and, compared to existing compstatin analogs, have been optimized to promote binding to their target, complement protein C3, and to enhance solubility by improving their polarity/hydrophobicity ratios. Based on analysis of molecular dynamics simulation data of peptide-C3 complexes, novel binding features were designed by introducing intermolecular salt bridge-forming arginines at the N-terminus and at position -1 of N-terminal dipeptide extensions. Our study demonstrates that the RPE cell assay has discriminatory capability for measuring the efficacy and potency of inhibitory peptides in a macular disease environment. PMID:23954241

  6. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    PubMed Central

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  7. Enhancement of proliferation in a rat hepatocyte co-culture model after mitogenic stimulation.

    EPA Science Inventory

    Primary mouse and rat hepatocyte cultures have long been the gold standard for assessment of cellular changes following chemical exposure. While helpful for assessing proliferative and responses in vitro, these cultures are limited to 1 or 2 days of incubation. Our motivation was...

  8. RAT TRACHEAL CELL CULTURE TRANSFORMATION SYSTEM FOR ASSESSMENT OF ENVIRONMENTAL AGENTS AS CARCINOGENS AND PROMOTERS

    EPA Science Inventory

    A tracheal cell culture system which can be used for detection of hazardous environmental agents is described. The culture system makes use of primary tracheal cells that are isolated from rats by protease digestion of the tracheal epithelium. The epithelial cells are plated on a...

  9. EFFECT OF NONGENOTOXIC ENVIRONMENTAL CONTAMINATION ON CHOLESTEROL AND DNA SYNTHESIS IN CULTURED PRIMARY RAT HEPATOCYTES

    EPA Science Inventory

    The effect of certain reputedly non genotoxic agents on cholesterol and DNA synthesis was investigated in cultured rat primary hepatocytes and liver slices. epatocytes in culture were incubated for 48, 60, and 72 hrs with one of the following chemicals; namely, chloroform (CHCl3)...

  10. Ototoxicity of paclitaxel in rat cochlear organotypic cultures

    SciTech Connect

    Dong, Yang; Ding, Dalian; Jiang, Haiyan; Shi, Jian-rong; Salvi, Richard; Roth, Jerome A.

    2014-11-01

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1 to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.

  11. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes.

    PubMed

    Li, Na; Bi, Yi-An; Duignan, David B; Lai, Yurong

    2009-01-01

    As sandwich cultured (SC) hepatocytes can repolarize to form bile canalicular networks, allowing active excretion of compounds in a vectorial manner, the model has been widely used for assessing the transporter related complexity of ADME/tox issues. A lack of quantitative information on transporter expression during cell culture has made in vitro to in vivo extrapolation of hepatobiliary transport difficult. In the present study, using our newly developed LC-MS/MS absolute quantitative methods, we determined the quantitative expression profile of three biliary transporters in SC rat and human hepatocytes. A significant shift of hepatobiliary transporter proteins was observed both in human and rat sandwich cultures. A decrease of BSEP/Bsep protein and an increase of BCRP/Bcrp protein were detected in both rat and human hepatocytes over time in culture. Interestingly, Mrp2 in rat hepatocytes was significantly diminished, while MRP2 constantly increased in human hepatocytes during the cell culture. Consequently, the interspecies difference between rat and human in absolute amount of MRP2/Mrp2 was minimized over time in culture. Following the sandwich culture, the species difference of hepatobiliary transporter protein between human and rat at day 5 post SC was diminished (MRP2/Mrp2), identical (BSEP/Bsep) or reversed (BCRP/Bcrp), compared to the in vivo situation. In addition, the absolute protein amount of BCRP/Bcrp or MRP2/Mrp2 was proportionally correlated with the intrinsic biliary clearance estimated in various lots of SC rat and human hepatocytes. The results revealed that absolute protein amount is a key determinant for hepatobiliary clearance and could provide fundamental support on extrapolation of biliary secretion from in vitro to in vivo. PMID:19545175

  12. Oligochitosan polyplexes as carriers for retinal gene delivery.

    PubMed

    Puras, G; Zarate, J; Díaz-Tahoces, A; Avilés-Trigueros, Marcelino; Fernández, E; Pedraz, J L

    2013-01-23

    Non-viral gene therapy represents a promising approach for the treatment of retinal diseases. However, the lack of an efficient carrier hampers the implementation of this therapy. In this study, we evaluated low molecular weight ultrapure oligochitosans for the delivery of the pCMS-EGFP plasmid into the rat retina cells after subretinal and intravitreal administrations. Polyplexes were technologically characterized. Resulting polyplexes based on ultrapure oligochitosans were slightly spherical, protected the plasmid against enzymatic digestion, and their charge and size values ranged from 8 to 14 millivolts and from 150 to 69 nm respectively depending on the N/P ratio. In HEK-293 cultured cells, transfection efficiency significantly increased from 12% to 30% when pH decreased from 7.4 to 7.1 (data normalized to Lipofectamine™ 2000). However, no significant transfection was detected in ARPE-19 cultured cells. Subretinal administrations transfected mainly the pigmented cells of the retinal pigment epithelium and the light sensitive photoreceptor cells, whereas intravitreal injections transfected cells in the ganglion cell layer, blood vessels in the inner layers of the retina and photoreceptors. These results support the potential use of oligochitosans for delivering genetic material into retinal cells in vivo. PMID:23201002

  13. Retinal detachment

    MedlinePlus

    ... of the first symptoms of new flashes of light and floaters. ... diabetes. See your eye care specialist once a year. You may need more frequent visits if you have risk factors for retinal detachment. Be alert to symptoms of new flashes of light and floaters.

  14. Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures

    NASA Astrophysics Data System (ADS)

    Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.

    1983-07-01

    Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.

  15. Some Rat Sensory Neurons in Culture Express Characteristics of Differentiated Pain Sensory Cells

    NASA Astrophysics Data System (ADS)

    Baccaglini, Paola I.; Hogan, Patrick G.

    1983-01-01

    Sensory neurons were dissociated from trigeminal ganglia or from dorsal root ganglia of rats, grown in culture, and examined for expression of properties of pain sensory cells. Many sensory neurons in culture are excited by low concentrations of capsaicin, reportedly a selective stimulus for pain sensory neurons. Many are excited by bradykinin, sensitized by prostaglandin E2, or specifically stained by an antiserum against substance P. These experiments provide a basis for the study of pain mechanisms in cell culture.

  16. Rhythm generation in organotypic medullary cultures of newborn rats.

    PubMed

    Baker, R E; Ballantyne, D; Bingmann, D; Jones, D; Widman, G

    1995-12-01

    Organotypic transverse medullary slices (obex level) from six-day-old rats, cultured for two to four weeks in chemically defined medium contained rhythmically discharging neurones which were activated by CO2 and H+. The mechanisms underlying this rhythmicity and the spread of excitation and synaptic transmission within this organotypic tissue were examined by modifying the composition of the external solution. Our findings showed that (1) Exposure to tetrodotoxin (0.2 microM) or to high magnesium (6 mM) and low calcium (0.2 mM) concentrations abolished periodic activity. (2) Neither the blockade of GABAergic potentials with bicuculline methiodide (200 microM) and/or hydroxysaclofen (200 microM) nor the blockade of glycinergic potentials with strychnine hydrochloride (100 microM) abolished rhythmicity. (3) While atropine sulphate (5 microM) was ineffective in modulating periodic discharges nicotine (100 microM) - like CO2-shortened the intervals between the periodic events; hexamethonium (50-100 microM) reduced both periodic and aperiodic activity. (4) Exposure to the NMDA antagonist 2-aminophosphonovaleric acid (50 microM) suppressed periodic events only transiently. In the presence of 2-aminophosphonovaleric acid rhythmicity recovered. However, the AMPA-antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10-50 microM), abolished periodic activity reversibly within less than 5 min. When 6-cyano-7-nitroquinoxaline-2,3-dione and nicotine were administered simultaneously periodic events persisted for up to 10 min. These findings indicate that synaptic excitatory drive is a prerequisite for the generation of rhythmic discharges of medullary neurones in this preparation. This drive may activate voltage-dependent channels or it may facilitate endogenous cellular mechanisms which initiate oscillations of intracellular calcium concentration. To test the latter possibility (5) calcium antagonists were added to the bath saline. The organic calcium antagonists verapamil and

  17. Synthesis and migration of /sup 3/H-fucose-labeled glycoproteins in the retinal pigment epithelium of albino rats, as visualized by radioautography

    SciTech Connect

    Haddad, A.; Bennett, G.

    1987-03-01

    /sup 3/H-fucose was injected into the vitreous body of the eye(s) of 250-gm rats, which were then killed by means of an intracardiac perfusion with glutaraldehyde after intervals of 10 min, 1 and 4 hr, and 1 and 7 days. The eyes were removed and further fixed, and pieces of retina were processed for light and electron microscope radioautography. Light microscope radioautography showed that the pigment epithelial cells actively incorporated /sup 3/H-fucose label. The intensity of reaction peaked at 4 hr after injection of the label and then slowly declined. Quantitative electron microscope radioautography revealed that, at 10 min after /sup 3/H-fucose injection, over 70% of the label was localized to the Golgi apparatus, indicating that fucose residues are added to newly synthesized glycoproteins principally at this site. With time the proportion of label associated with the Golgi apparatus decreased, but that assigned to the infolded basal plasma membrane, the apical microvilli, and various apical lysosomes increased. These results indicate that in retinal pigment epithelial cells newly synthesized glycoproteins continuously migrate from the Golgi apparatus to lysosomes and to various regions of the plasma membrane. In this case, the membrane glycoproteins may play specific roles in receptor functions of the basal plasma membrane or phagocytic activities at the apical surface. Very little label migrated to Bruch's membrane, indicating either a very slow turnover or a paucity of fucose-containing glycoproteins at this site.

  18. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey.

    PubMed

    Hare, W; WoldeMussie, E; Lai, R; Ton, H; Ruiz, G; Feldmann, B; Wijono, M; Chun, T; Wheeler, L

    2001-05-01

    Glutamatergic excitotoxicity has been implicated as a mechanism for injury in a variety of central nervous system pathologies, including glaucoma. Memantine, an NMDA-type glutamatergic open-channel blocker, has pharmacologic properties that make its efficacy greater under excitotoxic conditions, but lesser under normal conditions. Daily oral dosing for approximately 15 months with 4.0 mg/kg memantine in monkeys yielded plasma concentrations similar to those found in patients who received memantine treatment for Parkinson's disease. This same dose of memantine was not associated with any evidence of an effect on the normal function of the retina and central visual pathways, as indicated by measures of the electroretinogram (ERG) and visually-evoked cortical potential (VECP). Amplitude of the VECP response was reduced in eyes with experimentally induced glaucoma. When compared to vehicle-treated control animals, memantine-treated glaucoma eyes suffered significantly less reduction of VECP amplitude. Preliminary results in a rat model for experimental glaucoma also show that, when compared to control animals, systemic treatment with memantine (10 mg/kg/day) was associated with a significant reduction in glaucoma-induced loss of retinal ganglion cells. PMID:11377450

  19. Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets.

    PubMed

    Kapphahn, Rebecca J; Giwa, Babatomiwa M; Berg, Kristin M; Roehrich, Heidi; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2006-07-01

    The reactive aldehyde, 4-hydroxynonenal (HNE), is a product of lipid peroxidation that can covalently modify and inactivate proteins. Previously, we reported increased HNE modification of select retinal proteins resolved by one-dimensional gel electrophoresis in aged Fisher 344 x Brown Norway rats (Louie, J.L., Kapphahn, R.J., Ferrington, D.A., 2002. Proteasome function and protein oxidation in the aged retina. Exp. Eye Res. 75, 271-284). In the current study, quantitative assessment of HNE molar content using slot blot immunoassays showed HNE content is increased 30% in aged rat retina. In contrast, there was no age-related difference in HNE content in individual spots resolved by 2D gel electrophoresis suggesting the increased modification is likely on membrane proteins that are missing on 2D gels. The HNE-immunoreactive proteins resolved by 2D gel electrophoresis were identified by MALDI-TOF mass spectrometry. These proteins are involved in metabolism, chaperone function, and fatty acid transport. Proteins that were frequently modified and had the highest molar content of HNE included triosephosphate isomerase, alpha enolase, heat shock cognate 70 and betaB2 crystallin. Immunochemical detection of HNE adducts on retinal sections showed greater immune reaction in ganglion cells, photoreceptor inner segment, and the inner plexiform layer. Identification of HNE modified proteins in two alternative model systems, human retinal pigment epithelial cells in culture (ARPE19) and human donor eyes, indicated that triosephosphate isomerase and alpha enolase are generally modified. These results identify a common subset of proteins that contain HNE adducts and suggest that select retinal proteins are molecular targets for HNE modification. PMID:16530755

  20. Culture of hormone-dependent functional epithelial cells from rat thyroids.

    PubMed Central

    Ambesi-Impiombato, F S; Parks, L A; Coon, H G

    1980-01-01

    Primary cultures of rat thyroid cells were made in medium supplemented with 0.1--0.5% calf serum and containing six hormones or growth factors: insulin, thyrotropin, transferrin, hydrocortisone, somatostatin, and glycyl-L-histidyl-L-lysine acetate. The FRTL strain was purified by successive colonial isolations and was found to maintain highly differentiated features (secretion into the culture medium of physiological amounts of thyroglobulin and concentration of iodide by 100-fold). The FRTL strain has been observed for more than 3 years in continuous culture. It has maintained the same biochemical and morphological characteristics that typified the primary cultures of thyroid follicular cells immediately after their enzymatic release from the rat thyroid. Thyroid epithelial cells that were grown under more conventional cell culture conditions failed to retain these specialized characteristics. We show that maintenance in vitro of these specialized functions of rat thyroid follicular cells is dependent on low serum concentrations and supplementation with hormones in the primary cultures. Our observations indicate that this culture strategem may be aplicable to the general problem of maintenance of differentiated characteristics in cultures of other epithelial cells. Images PMID:6106191

  1. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  2. Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential

    PubMed Central

    Fernández, Juan M.; Di Giusto, Gisela; Kalstein, Maia; Melamud, Luciana; Rivarola, Valeria; Ford, Paula; Capurro, Claudia

    2013-01-01

    Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K+ and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (Vm), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in Vm. Cell volume and Vm changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by Vm depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K+ or Cl− channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations –all leading to changes in Vm– define the success of RVD. PMID:23451196

  3. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media.

    PubMed Central

    Gabbiani, G; Kocher, O; Bloom, W S; Vandekerckhove, J; Weber, K

    1984-01-01

    Actin of smooth muscle cells of rat and human aortic media shows a predominance of the alpha-isoform. In experimental rat aortic intimal thickening, in human atheromatous plaque, and in cultured aortic smooth muscle cells, there is a typical switch in actin expression with a predominance of the beta-form and a noticeable amount of gamma-form. This pattern of actin expression represents a new reliable protein-chemical marker of experimental and human atheromatous smooth muscle cells. Images PMID:6690475

  4. Promotion on the differentiation of retinal Müller cells into retinal ganglion cells by Brn-3b

    PubMed Central

    Wu, Zhen-Kai; Cao, Lan; Zhang, Xue-Yong; Song, Wei-Tao; Xia, Xiao-Bo

    2016-01-01

    AIM To investigate the role of Brn-3b in differentiation process of stem cells derived from retinal Müller cells into the ganglion cell. METHODS The passage culture method of Müller cells from retina of newborn Sprague Dawley rats was carried out by repeated incomplete pancreatic enzyme digestion method. The cells were detected by fluorescence-activated cell sorter (FACS), immunohistochemistry technology and reverse transcription-polymerase chain reaction (RT-PCR) to determine the purity. The third passage of cells was induced in the serum-free dedifferentiation medium. The expression of the specific markers Ki-67 and nestin of retinal stem cells was measured by RT-PCR and Western blot. The cell proliferation of retinal stem cells was detected by 5-ethynyl-2′-deoxyuridine (Edu) staining. The cells were randomly divided into 5 groups as follows: group A: Brn-3bsiRNA group; group B: Brn-3b control siRNA group; group C: pGC-Brn-3b-green fluorescent protein (GFP) group; group D: pGC-GFP group; group E: control group (without any handling). The purified Müller cells were cultured for 3-7d, then, the percentage of ganglion cells was counted by immunofluorescence staining. RESULTS FACS demonstrated the purity of retinal Müller cells was more 97.44%. A few spherical cell spheres appeared. Immunofluorescence staining showed that stem cells within the spheres were positive for retinal stem cell-specific markers nestin (red fluorescence, 92.94%±6.48%) and Ki-67 (green fluorescence, 85.96%±6.04%). Meanwhile, RT-PCR analysis showed cell spheres in the culture to have expressed a battery of transcripts characteristic of stem cells such as nestin and Ki-67, which were absent in the Müller cells. Western blot analysis further confirmed the expression of nestin and Ki-67 in the cell spheres but not in the Müller cells. Edu staining showed most of the nuclei within the cell spheres were stained red (82.80%±6.65%), suggesting the new cell spheres had the capacity for

  5. Culture and proliferation of highly purified adult Schwann cells from rat, dog, and man.

    PubMed

    Haastert-Talini, Kirsten

    2012-01-01

    This chapter presents fast and easy protocols to obtain highly purified cultures of proliferating adult rat, canine, and human Schwann cells. Cell preparation from predegenerated adult sciatic nerves combined with the use of melanocyte growth medium supplemented with forskolin, fibroblast growth factor-2, pituitary extract, and heregulin as selective, serum-free culture medium and two methods for a consecutive cell-enrichment step are described. Our protocols result in approximately 90% pure Schwann cell cultures (or higher). The average time to obtain highly purified in vitro cultures of adult Schwann cells is 21 days. PMID:22367812

  6. Pouched Rats' Detection of Tuberculosis in Human Sputum: Comparison to Culturing and Polymerase Chain Reaction

    PubMed Central

    Mahoney, Amanda; Weetjens, Bart J.; Cox, Christophe; Beyene, Negussie; Reither, Klaus; Makingi, George; Jubitana, Maureen; Kazwala, Rudovick; Mfinanga, Godfrey S.; Kahwa, Amos; Durgin, Amy; Poling, Alan

    2012-01-01

    Setting. Tanzania. Objective. To compare microscopy as conducted in direct observation of treatment, short course centers to pouched rats as detectors of Mycobacterium tuberculosis. Design. Ten pouched rats were trained to detect tuberculosis in sputum using operant conditioning techniques. The rats evaluated 910 samples previously evaluated by smear microscopy. All samples were also evaluated through culturing and multiplex polymerase chain reaction was performed on culture growths to classify the bacteria. Results. The patientwise sensitivity of microscopy was 58.0%, and the patient-wise specificity was 97.3%. Used as a group of 10 with a cutoff (defined as the number of rat indications to classify a sample as positive for Mycobacterium tuberculosis) of 1, the rats increased new case detection by 46.8% relative to microscopy alone. The average samplewise sensitivity of the individual rats was 68.4% (range 61.1–73.8%), and the mean specificity was 87.3% (range 84.7–90.3%). Conclusion. These results suggest that pouched rats are a valuable adjunct to, and may be a viable substitute for, sputum smear microscopy as a tuberculosis diagnostic in resource-poor countries. PMID:22848808

  7. Adeno-associated virus mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model

    PubMed Central

    Jiang, Wenmin; Tang, Luosheng; Zeng, Jun; Chen, Baihua

    2016-01-01

    Purpose: This study aimed to determine whether chronic intraocular pressure (IOP) elevation induces retinal oxidative stress and alters mitochondrial morphology and function of retinal ganglion cells (RGC) and to explore the effects of AAV-SOD2 gene therapy on the RGC survival and mitochondrial dysfunction. Methods: Chronic experimental glaucoma was induced unilaterally in adult male Sprague-Dawley rats by laser burns at trabecular meshwork and episcleral veins 2 times with an interval of one week. One eye of each rat was intravitreally pretreated with recombinant adeno-associated virus expressing SOD2 (AAV-SOD2) or recombinant AAV expressing GFP (AAV-GFP) 21 days before glaucoma induction. RGCs counting, morphometric analysis of retina and optic nerve, and detection of activities of retinal SOD2 and catalase, MDA, mitochondrial morphology, mitochondrial dynamin protein OPA1 and DRP-1 expressions were conducted at 4, 8, 12 and 24 weeks. Results: Severe RGC loss, degeneration of optic nerve, reduced thickness of RGC layer and nerve fiber layer, significant decrease in total SOD and catalase activities, mitochondrial dysfunction and increased MDA were observed at 4, 8, 12 and 24 weeks after glaucoma. Pretreatment with AAV-SOD2 significantly reduced MDA and attenuated the damage to RGCs through a mitochondria-related pathway. Conclusion: AAV mediated pre-treatment with SOD2 is able to attenuate oxidative stress and improve mitochondrial dysfunction of RGC and optic nerve secondary to glaucoma. Thus, SOD2 may be used to prevent the retinal RGCs from glaucoma, which provides a promising strategy for glaucoma therapy. PMID:27158370

  8. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  9. PRECISION-CUT SLICE CULTURE METHOD FOR RAT PLACENTA

    PubMed Central

    Gilligan, Jeffrey; Tong, Ming; Longato, Lisa; de la Monte, Suzanne M; Gundogan, Fusun

    2011-01-01

    Primary trophoblasts, placental explants, and cell line cultures are commonly used to investigate placental development, physiology, and pathology, particularly in relation to pregnancy outcomes. Organotypic slice cultures are increasingly used in other systems because they maintain the normal three-dimensional tissue architecture and have all cell types represented. Herein, we demonstrate the utility of the precision-cut placental slice culture model for studying trophoblastic diseases. PMID:22079834

  10. Organ Explant Culture of Neonatal Rat Ventricles: A New Model to Study Gene and Cell Therapy

    PubMed Central

    den Haan, A. Dénise; Veldkamp, Marieke W.; Bakker, Diane; Boink, Geert J. J.; Janssen, Rob B.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2013-01-01

    Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, −80.5±3.5 mV in freshly isolated tissue, and −60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to

  11. Neuronal modulation of calcium channel activity in cultured rat astrocytes

    SciTech Connect

    Corvalan, V.; Cole, R.; De Vellis, J.; Hagiwara, Susumu )

    1990-06-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca{sup 2+} and blocked by either Cd{sup 2+} or Co{sup 2+} that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron dependent and was not observed when astrocytes were cocultured with purified oligodendrocytes.

  12. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

    PubMed

    Oltedal, Leif; Hartveit, Espen

    2010-05-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels. PMID:20211976

  13. Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage.

    PubMed

    Shimazawa, Masamitsu; Yamashima, Tetsumori; Agarwal, Neeraj; Hara, Hideaki

    2005-08-16

    The purpose of this study was to determine whether minocycline, a semi-synthetic tetracycline derivative, reduces (a) the in vitro neuronal damage occurring after serum deprivation in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) and/or (b) the in vivo retinal damage induced by N-methyl-D-aspartate (NMDA) intravitreal injection in mice. In addition, we examined minocycline's putative mechanisms of action against oxidative stress and endoplasmic reticulum (ER) stress. In vitro, retinal damage was induced by 24-h serum deprivation, and cell viability was measured by Hoechst 33342 staining or resazurin reduction assay. In cultures of RGC-5 cells maintained in serum-free medium for up to 24 h, the number of cells undergoing cell death was reduced by minocycline (0.2-20 microM). Serum deprivation resulted in increased oxidative stress, as revealed by an increase in the fluorescence intensity for 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), a reactive oxygen species (ROS) indicator. Minocycline at 2 and 20 microM inhibited this ROS production. However, even at 20 microM minocycline did not inhibit the retinal damage induced by tunicamycin (an ER stress inducer). Furthermore, in mice in vivo minocycline at 90 mg/kg intraperitoneally administered 60 min before an NMDA intravitreal injection reduced the NMDA-induced retinal damage. These findings indicate that minocycline has neuroprotective effects against in vitro and in vivo retinal damage, and that an inhibitory effect on ROS production may contribute to the underlying mechanisms. PMID:16051195

  14. [Nonadhesive populations in cultures of mesenchymal stromal cells from hematopoietic organs in mouse and rat].

    PubMed

    Byeverova, E I; Bragina, E V; Molchanova, E A

    2008-01-01

    The study of adhesive properties of multipotent mesenchymal stromal cells evaluated from fibroblast colony-forming units in the bone marrow of adult mice and rats in populations of cells attached and unattached to plastic substrate after 2 h to 7 days in culture demonstrated both similarities and differences. The increase in the fibroblast colony-forming units in the adhesive population peaked on day 7 of in vitro culture in both cases; however, nearly no fibroblast colony-forming units were observed in the nonadhesive population from the mouse bone marrow in this period. Conversely, the number of colonies from the rat bone marrow nonadhesive population on day 7 of culture considerably increased, and this nonadhesive population in long-term culture became the source for subsequent nonadhesive subpopulations containing fibroblast colony-forming units. After 7 days of in vitro culture, the suspension of cells isolated from the liver of 17-day-old rat fetuses also contained a fraction of unattached fibroblast colony-forming units. In the nonadhesive subpopulations from the bone marrow and fetal liver, fibroblast colony-forming units were observed up to day 48 and 30, respectively. Stromal cell precursors of nonadhesive subpopulations from the rat bone marrow featured a period of colony formation reduced to 7 days (i.e., they were formed 1.5-2 times faster compared to the primary culture). The total number of fibroblast colony-forming units from all nonadhesive subpopulations was roughly 6 and 7.4 times that of the adhesive population of the primary culture from the bone marrow and fetal liver, respectively. Considering that the mammalian bone marrow remains the preferred source of mesenchymal stromal cells, using nonadhesive subpopulations in the presented culture system can considerably increase the yield of stromal precursor cells. PMID:19137707

  15. Isolation and Culture of Alveolar Epithelial Type I and Type II Cells from Rat Lungs

    PubMed Central

    Gonzalez, Robert F.; Dobbs, Leland G.

    2014-01-01

    The pulmonary alveolar epithelium, comprised of alveolar Type I (TI) and Type II (TII) cells, covers more than 99% of the internal surface area of the lungs. The study of isolated and cultured alveolar epithelial TI and TII cells has provided a large amount of information about the functions of both cell types. This chapter provides information about methods for isolating and culturing both of these cell types from rat lungs. PMID:23097106

  16. Directional summation in non-direction selective retinal ganglion cells.

    PubMed

    Abbas, Syed Y; Hamade, Khaldoun C; Yang, Ellen J; Nawy, Scott; Smith, Robert G; Pettit, Diana L

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  17. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  18. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects

    PubMed Central

    Alexander, P; Thomson, H A J; Luff, A J; Lotery, A J

    2015-01-01

    The retinal pigment epithelium (RPE) is a single layer of cells that supports the light-sensitive photoreceptor cells that are essential for retinal function. Age-related macular degeneration (AMD) is a leading cause of visual impairment, and the primary pathogenic mechanism is thought to arise in the RPE layer. RPE cell structure and function are well understood, the cells are readily sustainable in laboratory culture and, unlike other cell types within the retina, RPE cells do not require synaptic connections to perform their role. These factors, together with the relative ease of outer retinal imaging, make RPE cells an attractive target for cell transplantation compared with other cell types in the retina or central nervous system. Seminal experiments in rats with an inherited RPE dystrophy have demonstrated that RPE transplantation can prevent photoreceptor loss and maintain visual function. This review provides an update on the progress made so far on RPE transplantation in human eyes, outlines potential sources of donor cells, and describes the technical and surgical challenges faced by the transplanting surgeon. Recent advances in the understanding of pluripotent stem cells, combined with novel surgical instrumentation, hold considerable promise, and support the concept of RPE transplantation as a regenerative strategy in AMD. PMID:26043704

  19. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects.

    PubMed

    Alexander, P; Thomson, H A J; Luff, A J; Lotery, A J

    2015-08-01

    The retinal pigment epithelium (RPE) is a single layer of cells that supports the light-sensitive photoreceptor cells that are essential for retinal function. Age-related macular degeneration (AMD) is a leading cause of visual impairment, and the primary pathogenic mechanism is thought to arise in the RPE layer. RPE cell structure and function are well understood, the cells are readily sustainable in laboratory culture and, unlike other cell types within the retina, RPE cells do not require synaptic connections to perform their role. These factors, together with the relative ease of outer retinal imaging, make RPE cells an attractive target for cell transplantation compared with other cell types in the retina or central nervous system. Seminal experiments in rats with an inherited RPE dystrophy have demonstrated that RPE transplantation can prevent photoreceptor loss and maintain visual function. This review provides an update on the progress made so far on RPE transplantation in human eyes, outlines potential sources of donor cells, and describes the technical and surgical challenges faced by the transplanting surgeon. Recent advances in the understanding of pluripotent stem cells, combined with novel surgical instrumentation, hold considerable promise, and support the concept of RPE transplantation as a regenerative strategy in AMD. PMID:26043704

  20. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    PubMed Central

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  1. Metabolic Syndrome Triggered by High-Fructose Diet Favors Choroidal Neovascularization and Impairs Retinal Light Sensitivity in the Rat

    PubMed Central

    Thierry, Magalie; Pasquis, Bruno; Acar, Niyazi; Grégoire, Stéphane; Febvret, Valérie; Buteau, Bénédicte; Gambert-Nicot, Ségolène; Bron, Alain M.; Creuzot-Garcher, Catherine P.; Bretillon, Lionel

    2014-01-01

    Diabetic retinopathy and age-related macular degeneration are the leading causes of blindness in Western populations. Although it is a matter of controversy, large-scale population-based studies have reported increased prevalence of age-related macular degeneration in patients with diabetes or diabetic retinopathy. We hypothesized that metabolic syndrome, one of the major risk factors for type 2 diabetes, would represent a favorable environment for the development of choroidal neovascularization, the main complication of age-related macular degeneration. The fructose-fed rat was used as a model for metabolic syndrome in which choroidal neovascularization was induced by laser photocoagulation. Male Brown Norway rats were fed for 1, 3, and 6 months with a standard equilibrated chow diet or a 60%-rich fructose diet (n = 24 per time point). The animals expectedly developed significant body adiposity (+17%), liver steatosis at 3 and 6 months, hyperleptinemia at 1 and 3 months (two-fold increase) and hyperinsulinemia at 3 and 6 months (up to two-fold increase), but remained normoglycemic and normolipemic. The fructose-fed animals exhibited partial loss of rod sensitivity to light stimulus and reduced amplitude of oscillatory potentials at 6 months. Fructose-fed rats developed significantly more choroidal neovascularization at 14 and 21 days post-laser photocoagulation after 1 and 3 months of diet compared to animals fed the control diet. These results were consistent with infiltration/activation of phagocytic cells and up-regulation of pro-angiogenic gene expression such as Vegf and Leptin in the retina. Our data therefore suggested that metabolic syndrome would exacerbate the development of choroidal neovascularization in our experimental model. PMID:25380250

  2. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    SciTech Connect

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  3. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death.

    PubMed

    Urcola, J Haritz; Hernández, María; Vecino, Elena

    2006-08-01

    Glaucoma is a chronic and progressive optic nerve neuropathy involving the death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is considered to be the major risk factor associated with the development of this neuropathy. The objective of the present study was to compare the effects on RGC survival of three different experimental methods to induce chronic elevation of IOP in rats. These methods were: (i) injections of latex microspheres into the eye anterior chamber; (ii) injections into the anterior chamber of a mixture of microspheres plus hydroxypropylmethylcellulose (HPM) and (iii) cauterization of three episcleral veins. The IOP of right (control) and left (glaucomatous) eyes was measured with an applanation tonometer in awake animals. Thirteen to 30 weeks later, RGCs were retrogradely labeled with 3% fluorogold. Subsequently, we analyzed the density of RGCs, as well as the major axis length and area of RGC soma resulting from the application of each method. A significant increase in IOP was found following application of each of the three methods. Cell death was evident in the glaucomatous eyes as compared to controls. However, no statistical differences were found between the extent of cell death associated with each of the three methods. IOP increase also induced a significant increase in the size of the soma of the remaining RGCs. In conclusion, the three methods used to increase IOP induce a similar degree of RGC death. Moreover, the extent of cell death was similar when the retinas were maintained under conditions of elevated IOP for 24 weeks in comparison to 13 weeks. PMID:16682027

  4. TOXIC INTERACTIONS BETWEEN CARBON TETRACHLORIDE AND CHLOROFORM IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    Primary cultures of adult rat hepatocytes were incubated (1.5-16 hr) with various concentrations of CC14 (<0.5 mM) and/or CHCl3 (<2.5 mM). gent dependent alterations in hepatocyte functions were assessed by measuring (1) [3H]choline incorporation into phosphatidylcholine (endopla...

  5. EFFECT OF PHORBOL ESTERS ON CLONAL CULTURES OF HUMAN, HAMSTER, AND RAT RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    The effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on the growth of epithelial cells from rat, hamster, and human respiratory tract has been measured by monitoring colony formation in culture. TPA and its active derivatives stimulated colony formation of ...

  6. Mechanism of soluble beta-amyloid 25-35 neurotoxicity in primary cultured rat cortical neurons.

    PubMed

    Wang, Yong; Liu, Lili; Hu, Weimin; Li, Guanglai

    2016-04-01

    This study aimed to determine the effects of different concentrations of soluble beta-amyloid 25-35 (Aβ25-35) on cell viability, calcium overload, and PI3K-p85 expression in cultured cortical rat neurons. Primary cultured cerebral cortical neurons of newborn rats were divided randomly into six groups. Five groups were treated with soluble Aβ25-35 at concentrations of 10nmol/L, 100nmol/L, 1μmol/L, 10μmol/L, or 30μmol/L. Cell Counting Kit-8 staining was used to measure cell viability, laser-scanning confocal imaging was used to detect changes in intracellular free calcium concentration, and western blot assay was used to measure neuronal PI3K-p85 expression. Soluble Aβ25-35 was found to reduce cell viability and induce calcium overload in primary cultured rat cerebral cortical neurons, in a concentration-dependent manner. At certain concentrations, soluble Aβ25-35 also increased neuronal PI3K-p85 expression. These findings reveal that soluble Aβ25-35 reduces the viability of cultured cerebral cortical rat neurons. The neurotoxicity mechanism may involve calcium overload and disruption of insulin signal transduction pathways. PMID:26940239

  7. Characteristics of rat megakaryocyte colonies and their progenitors in agar culture

    SciTech Connect

    Kellar, K.L.; Rolovic, Z.; Evatt, B.L.; Sewell, E.T.

    1985-11-01

    The characteristics of megakaryocyte colonies that develop from megakaryocyte progenitors of rat bone marrow stimulated by rat spleen-conditioned medium (SCM) in agar culture were investigated. Colony frequency was optimal on day 7 and increased relative to both the number of cells plated and the concentration of SCM used. Colonies were categorized as small cell and big cell. Small-cell colonies had a greater proliferative potential, with a mean of 25 cells/colony. Big-cell colonies averaged 15 cells/colony. The ratio of big-cell to small-cell colonies was 0.69 +/- 0.29. Granulocyte-macrophage colonies, which were also stimulated by SCM, accounted for 70% +/- 15% of the total colonies in the cultures. Cytocidal experiments with tritiated thymidine reduced megakaryocyte colony formation by 45% and granulocyte-macrophage colony formation by 21%. The properties of rat, mouse, and human megakaryocyte progenitors as assayed in vitro are compared.

  8. Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells.

    PubMed

    Guo, Xiaoling; Zhu, Deliang; Lian, Ruiling; Han, Yuting; Guo, Yonglong; Li, Zhijie; Tang, Shibo; Chen, Jiansu

    2016-06-01

    Age-related macular degeneration (AMD) is a leading cause of blindness among the aging population. Currently, replacement of diseased retinal pigment epithelium (RPE) cells with transplanted healthy RPE cells could be a feasible approach for AMD therapy. However, maintaining cell-cell contact and good viability of RPE cells cultured in vitro is difficult and fundamentally determines the success of RPE cell transplantation. This study was conducted to examine the role of Matrigel and Activin A (MA) in regulating cell-cell contact and anti-apoptotic activity in human RPE (hRPE) cells, as assessed by atomic force microscopy (AFM), scanning electron microscope (SEM), immunofluorescence staining, quantitative polymerase chain reaction (qPCR) analysis, Annexin V/propidium iodide (PI) analysis, mitochondrial membrane potential (△Ψ m) assays, intracellular reactive oxygen species (ROS) assays and Western blotting. hRPE cells cultured in vitro could maintain their epithelioid morphology after MA treatment over at least 4 passages. The contact of N-cadherin to the lateral cell border was promoted in hRPE cells at P2 by MA. MA treatment also enhanced the expression of tight junction-associated genes and proteins, such as Claudin-1, Claudin-3, Occludin and ZO-1, as well as polarized ZO-1 protein distribution and barrier function, in cultured hRPE cells. Moreover, MA treatment decreased apoptotic cells, ROS and Bax and increased △Ψ m and Bcl2 in hRPE cells under serum withdrawal-induced apoptosis. In addition, MA treatment elevated the protein expression levels of β-catenin and its target proteins, including Cyclin D1, c-Myc and Survivin, as well as the gene expression levels of ZO-1, β-catenin, Survivin and TCF-4, all of which could be down-regulated by the Wnt/β-catenin pathway inhibitor XAV-939. Taken together, MA treatment could effectively promote cell-cell contact and anti-apoptotic activity in hRPE cells, partly involving the Wnt/β-catenin pathway. This study

  9. Effects of methyl isocyanate on rat brain cells in culture.

    PubMed

    Anderson, D; Goyle, S; Phillips, B J; Tee, A; Beech, L; Butler, W H

    1990-09-01

    Since the disaster in Bhopal, India, people exposed to methyl isocyanate (MIC) have complained of various disorders including neuromuscular dysfunction. In an attempt to get information about such dysfunction we have previously shown that MIC can affect muscle cells in culture. The present communication reports investigations into the effect of MIC on brain cells in culture. MIC was toxic to brain cells and the response was dose related. The observations were supported by light and electron microscopy. PMID:2207030

  10. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.

    PubMed

    Bantseev, Vladimir; Youn, Hyun-Yi

    2006-12-01

    Mitochondria provide energy generated by oxidative phosphorylation and at the same time play a central role in apoptosis and aging. As a byproduct of respiration, the electron transport chain is known to be the major intracellular site for the generation of reactive oxygen species (ROS). Exposure to solar and occupational ultraviolet (UV) radiation, and thus production of ROS and subsequent cell death, has been implicated in a large spectrum of skin and ocular pathologies, including cataract. Retinal pigment epithelial cell apoptosis generates photoreceptor dysfunction and ultimately visual impairment. The purpose of this article was to characterize in vitro changes following oxidative stress with UV-B radiation in (a) ocular lens optics and cellular function in terms of mitochondrial dynamics of bovine lens epithelium and superficial cortical fiber cells and (b) human retinal pigment epithelial (ARPE-19) cells. Cultured bovine lenses and confluent cultures of ARPE-19 cells were irradiated with broadband UV-B radiation at energy levels of 0.5 and 1.0 J/cm(2). Lens optical function (spherical aberration) was monitored daily up to 14 days using an automated laser scanning system that was developed at the University of Waterloo. This system consists of a single collimated scanning helium-neon laser source that projects a thin (0.05 mm) laser beam onto a plain mirror mounted at 45 degrees on a carriage assembly. This mirror reflects the laser beam directly up through the scanner table surface and through the lens under examination. A digital camera captures the actual position and slope of the laser beam at each step. When all steps have been made, the captured data for each step position is used to calculate the back vertex distance for each position and the difference in that measurement between beams. To investigate mitochondrial movement, the mitochondria-specific fluorescent dye Rhodamine 123 was used. Time series were acquired with a Zeiss 510 (configuration Meta

  11. Polarized Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cell Monolayers Have Higher Resistance to Oxidative Stress-Induced Cell Death Than Nonpolarized Cultures

    PubMed Central

    Hsiung, Jamie; Zhu, Danhong

    2015-01-01

    Oxidative stress-mediated injury to the retinal pigment epithelium (RPE) is a major factor involved in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Human embryonic stem cell (hESC)-derived RPE cells are currently being evaluated for their potential for cell therapy in AMD patients through subretinal injection of cells in suspension and subretinal placement as a polarized monolayer. To gain an understanding of how transplanted RPE cells will respond to the highly oxidatively stressed environment of an AMD patient eye, we compared the survival of polarized and nonpolarized RPE cultures following oxidative stress treatment. Polarized, nonpolarized/confluent, nonpolarized/subconfluent hESC-RPE cells were treated with H2O2. Terminal deoxynucleotidyl transferase dUTP nick end labeling stains revealed the highest amount of cell death in subconfluent hESC-RPE cells and little cell death in polarized hESC-RPE cells with H2O2 treatment. There were higher levels of proapoptotic factors (phosphorylated p38, phosphorylated c-Jun NH2-terminal kinase, Bax, and cleaved caspase 3 fragments) in treated nonpolarized RPE—particularly subconfluent cells—relative to polarized cells. On the other hand, polarized RPE cells had constitutively higher levels of cell survival and antiapoptotic signaling factors such as p-Akt and Bcl-2, as well as antioxidants superoxide dismutase 1 and catalase relative to nonpolarized cells, that possibly contributed to polarized cells’ higher tolerance to oxidative stress compared with nonpolarized RPE cells. Subconfluent cells were particularly sensitive to oxidative stress-induced apoptosis. These results suggest that implantation of polarized hESC-RPE monolayers for treating AMD patients with geographic atrophy should have better survival than injections of hESC-RPE cells in suspension. PMID:25411476

  12. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    PubMed

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. PMID:27129211

  13. Prospective identification and culture of rat enteric neural stem cells (ENSCs).

    PubMed

    Gao, Tingting; Chen, Haijiao; Liu, Mei; Ge, Wenliang; Yin, Qiyou

    2016-05-01

    Hirschprung's disease (HD), a very common congenital abnormality in children, occurs mainly due to the congenital developmental defect of the enteric nervous system. The absence of enteric ganglia from the distal gut due to deletion in gut colonization by neural crest progenitor cells may lead to HD. The capacity to identify and isolate the enteric neuronal precursor cells from developing and mature tissues would enable the development of cell replacement therapies for HD. However, a mature method to culture these cells is a challenge. The present study aimed to propose a method to culture enteric neural stem cells (ENSCs) from the DsRed transgenic fetal rat gut. The culture medium used contained 15 % chicken embryo extract, basic fibroblast growth factor, and epidermal growth factor. ENSCs were cultured from embryonic day 18 in DsRed transgenic rat. Under inverted microscope and fluorescence staining, ENSCs proliferated to form small cell clusters on the second day of culture. The neurospheres-like structure were suspended in the medium, and there were some filaments between the adherent cells from day 3 to day 6 of the culture. The neurospheres were formed by ENSCs on day 8 of the culture. Network-like connections were formed between the adherent cells and differentiated cells after adding 10 % FBS. The differentiated cells were positive for neurofilament and glial fibrillary acidic protein antibodies. The present study established a method to isolate and culture ENSCs from E18 DsRed transgenic rats in the terminal stage of embryonic development. This study would offer a way to obtain plenty of cells for the future research on the transplantation of HD. PMID:25407731

  14. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria.

    PubMed

    Quaroni, A; Wands, J; Trelstad, R L; Isselbacher, K J

    1979-02-01

    Rat small intestinal epithelial cell lines have been established in vitro and subcultured serially for periods up to 6 mo. These cells have an epithelioid morphology, grow as monolayers of closely opposed polygonal cells, and during the logarithmic phase of growth have a population doubling time of 19--22 h. Ultrastructural studies revealed the presence of microvilli, tight junctions, an extensive Golgi complex, and the presence of extracellular amorphous material similar in appearance to isolated basement membrane. These cells exhibit a number of features characteristic of normal cells in culture; namely, a normal rat diploid karyotype, strong density inhibition of growth, lack of growth in soft agar, and a low plating efficiency when seeded at low density. They did not produce tumors when injected in syngeneic animals. Immunochemical studies were performed to determine their origin using antisera prepared against rat small intestinal crypt cell plasma membrane, brush border membrane of villus cells and isolated sucrase-isomaltase complex. Antigenic determinants specific for small intestinal epithelial (crypt and villus) cells were demonstrated on the surface of the epithelioid cells, but they lacked immunological determinants specific for differentiated villus cells. An antiserum specifically staining extracellular material surrounding the cells cultured in vitro demonstrated cross-reactivity to basement membrane in rat intestinal frozen sections. It is concluded that the cultured epithelioid cells have features of undifferentiated small intestinal crypt cells. PMID:88453

  15. Stimulation of fibrinogen synthesis in cultured rat hepatocytes by fibrinogen degradation product fragment D.

    PubMed Central

    LaDuca, F M; Tinsley, L A; Dang, C V; Bell, W R

    1989-01-01

    The direct stimulation of fibrinogen biosynthesis by fibrinogen degradation produces (FDPs) was studied in rat hepatocyte cultures. Pure rat FDP fragment D (FDP-D) (Mr 90,000) and FDP fragment E (FDP-E) (Mr 40,000) and mixtures of the two (FDP-DE) were added to rat hepatocytes cultured in serum-free hormonally defined medium. Hydrocortisone (20 microM) significantly increased synthesis of fibrinogen, as determined by incorporation of [35S]methionine. FDP-D and FDP-E did not increase fibrinogen synthesis in the presence of hydrocortisone. However, hepatocytes cultured without hydrocortisone displayed increased fibrinogen synthesis (2.0- to 2.8-fold) with FDP-D (2.6-6.7 microM) but not with FDP-E (5.7 microM). At these FDP concentrations the synthesis of albumin, haptoglobin, and transferrin was not increased. FDP-D-induced fibrinogen synthesis was inhibited (greater than 90%) by actinomycin D and cycloheximide, indicating that the increase in [35S]methionine incorporation was from de novo protein synthesis. The role of FDP-D was further substantiated by showing that FDP-D, but not FDP-E, bound to the hepatocytes. These data indicate that FDP-D, but not FDP-E, directly and specifically stimulates fibrinogen synthesis in rat hepatocytes; this stimulation does not require any additional serum or protein cofactors. Images PMID:2813424

  16. Cultured Ito cells of rat liver express the alpha 2-macroglobulin gene.

    PubMed

    Andus, T; Ramadori, G; Heinrich, P C; Knittel, T; Meyer zum Büschenfelde, K H

    1987-11-01

    Ito cells were isolated from rat liver and kept in culture for up to 13 days. The capability of the Ito cells to synthesize alpha 2-macroglobulin was analyzed at different times after isolation and by pulse-chase experiments. Newly synthesized alpha 2-macroglobulin was determined by immunoprecipitation followed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and fluorography. alpha 2-Macroglobulin synthesis was hardly detectable in Ito cells and their media 3 days after plating. However, 5-11 days after the isolation of the cells, increasing amounts of alpha 2-macroglobulin were synthesized. The results of pulse-chase experiments performed on day 7 showed that radioactively labeled alpha 2-macroglobulin decreased in the intracellular compartment and increased in the culture medium. alpha 2-Macroglobulin was identified by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing and non-reducing conditions. Furthermore, when unlabeled alpha 2-macroglobulin was added during the immunoprecipitation, a competition was observed. Incubation of pancreatic elastase with culture medium of rat Ito cells or rat hepatocytes led to the same cleavage products as found with alpha 2-macroglobulin. alpha 2-Macroglobulin-specific mRNA could be demonstrated by Northern blot analysis of total RNA extracted from rat Ito cells. Under the conditions where alpha 2-macroglobulin was synthesized in Ito cells, no synthesis of alpha 1-macroglobulin, alpha 1-inhibitor 3, alpha 1-proteinase inhibitor, alpha 1-acid glycoprotein, alpha 1-acute-phase globulin (T-kininogen) and albumin could be demonstrated. It is concluded that alpha 2-macroglobulin is a true secretory protein of rat Ito cells in culture. This could be of importance for collagen metabolism in liver diseases. PMID:2444437

  17. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  18. Functional studies of rat, porcine, and human pancreatic islets cultured in ten commercially available media.

    PubMed

    Holmes, M A; Clayton, H A; Chadwick, D R; Bell, P R; London, N J; James, R F

    1995-10-27

    There have been no extensive studies investigating the effect of tissue culture media on the in vitro functional characteristics of rat, porcine and human Islets of Langerhans. We therefore aimed to compare ten commercially available tissue culture media on the basis of their ability to maintain islet viability. Following isolation, islets were cultured free-floating in the ten media (RPMI 1640-11mM glucose (control), RPMI 1640-2.2mM glucose, Dulbecco's MEM, TCM 199, CMRL 1066, Iscove's MEM, Waymouth's MEM, Serum-Free medium, Ex-cell 300, Ham's F-12) and viability was assessed after 24 hr, 3 days, and 7 days on the basis of macroscopic appearance, cell membrane integrity, and insulin secretion in response to glucose stimulation both by dynamic incubation and by perifusion. Each islet species demonstrated physiological insulin release characteristics in all media--however, it was possible to distinguish between the media by comparing the stimulation indices calculated from the insulin release studies. Significantly higher stimulation indices were produced in Iscove's MEM for rat islets, in Ham's F-12 for porcine islets and in CMRL 1066 for human islets. Over the entire culture period a significant deterioration in function was observed in all species cultured in the control media, although this was reversed when islets were cultured in the optimal media. Furthermore, in the case of porcine and human islets a significant improvement in function over the seven-day period was noted in the optimal media. In conclusion, of the commercially available media, the optimal tissue culture medium for rat islets is Iscove's MEM, for porcine islets is Ham's F-12, and for human islets is CMRL 1066. PMID:7482747

  19. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  20. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses.

    PubMed

    Asselin, Audrey; Hattar, Susan; Oboeuf, Martine; Greenspan, David; Berdal, Ariane; Sautier, Jean-Michel

    2004-11-01

    Since bone repair may occur, following endochondral ossification, we have investigated the behaviour of chondrocytes isolated from nasal septum cartilage of foetal rats and cultured up to 21 days in the presence of a melt-derived bioactive glass (Bioglass 45S5) and a less reactive glass with 60 wt% silica content (60S). In both cultures, chondrocytes proliferate and form typical cartilaginous nodules on day 5 of cultures. However, on day 12, the nodules in contact with 45S5 granules became darker than in 60S cultures, corresponding to the emergence of matrix biomineralization. Transmission electron microscopy showed a collagen-rich matrix composed of densely packed fibres and mineralized foci formed of needle-shaped crystals in contact with an electron-dense layer located at the periphery of the material. The specific activity of alkaline phosphatase was significant higher in 45S5 cultures on day 15 than in 60S cultures. Real time RT-PCR was used to monitor gene expression levels of specific chondrogenic markers. The transcription factor Sox9 was expressed throughout the culture period, but with no significant differences between the two kinds of cultures. In contrast, Runx2 expression was higher in experiment cultures on day 12. Type II collagen mRNA and aggrecan, showed an almost similar expression pattern with a strong expression at the beginning of cultures but higher in experiment cultures. Indian hedgehog was strongly expressed between day 9 and 12 with a significant stimulation in 45S5 cultures. Similarly, type X collagen mRNA seemed to be up-regulated in 45S5 cultures on day 20. In conclusion, this study shows hat 45S5 Bioglass has the ability to support the growth of chondrocytes and to stimulate some chondrogenic molecular markers. PMID:15159078

  1. Ketamine-induced apoptosis in cultured rat cortical neurons

    SciTech Connect

    Takadera, Tsuneo . E-mail: t-takadera@hokuriku-u.ac.jp; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.

  2. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  3. Role of apolipoprotein A-I in HDL binding to a rat hepatoma cell in culture

    SciTech Connect

    Gottlieb, B.A.

    1985-01-01

    The binding of HDL to rat Fu5AH hepatoma cells at 4/sup 0/, and uptake and degradation at 37/sup 0/, was investigated in monolayer cultures. HDL, free of apo E and apo A-IV, was obtained from the plasma of nephrotic rats (HDLne). /sup 125/I-labeled HDLne bound to the cells in a specific, saturable manner. By Scatchard analysis, two classes of binding sites were obtained: a high affinity binding site (Kd = 1.25 +/- 0.023 ..mu..g/ml, or 5 x 10/sup -9/ M), and a lower affinity site (Kd = 45 +/- 15 ..mu..g/ml, or 1.8 x 10/sup -7/ M). In competitive binding experiments, normal rat HDL was nearly as effective as HDLne, but rat VLDL and human lipoproteins were ineffective. Rat apo A-I/phospholipid complexes also did not complete effectively for HDLne binding, although they were capable of binding to the cells. However, LDL (1.02 < d < 1.063) from nephrotic rat plasma, containing 20% of apo A-I, was as effective as rat HDL in competing for HDLne binding when the competition was expressed as a function of apo A-I content. Control experiments indicated that labeled apo A-I from HDLne did not exchange appreciably with unlabeled apo A-I on the LDLne. When the hepatoma cells were allowed to internalize and degrade HDLne at 37/sup 0/, the acid-soluble products (iodotyrosine and iodide) were derived almost entirely from the breakdown of apo A-I. We conclude that the rat hepatoma cell (Fu5AH) has high affinity HDL binding sites which recognize apo A-I-lipid complexes in which apo A-I an appropriate conformation.

  4. Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome

    PubMed Central

    Bujakowska, Kinga M.; Zhang, Qi; Siemiatkowska, Anna M.; Liu, Qin; Place, Emily; Falk, Marni J.; Consugar, Mark; Lancelot, Marie-Elise; Antonio, Aline; Lonjou, Christine; Carpentier, Wassila; Mohand-Saïd, Saddek; den Hollander, Anneke I.; Cremers, Frans P.M.; Leroy, Bart P.; Gai, Xiaowu; Sahel, José-Alain; van den Born, L. Ingeborgh; Collin, Rob W.J.; Zeitz, Christina; Audo, Isabelle; Pierce, Eric A.

    2015-01-01

    Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet–Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy. PMID:25168386

  5. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures.

    PubMed

    Lepsch, Lucilia B; Planeta, Cleopatra S; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine. PMID:26295051

  6. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    PubMed Central

    Lepsch, Lucilia B.; Planeta, Cleopatra S.; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine. PMID:26295051

  7. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite.

    PubMed

    El-Remessy, Azza B; Khalil, Ibrahim E; Matragoon, Suraporn; Abou-Mohamed, Gamal; Tsai, Nai-Jer; Roon, Penny; Caldwell, Ruth B; Caldwell, Robert W; Green, Keith; Liou, Gregory I

    2003-11-01

    In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Delta9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-D-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma. PMID:14578199

  8. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures.

    PubMed

    Ramboer, Eva; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures. PMID:26648816

  9. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids.

    PubMed

    Fodor, László; Boros, András; Dezso, Péter; Maksay, Gábor

    2006-11-01

    Ionotropic glycine receptors were studied in cultured spinal cord neurons prepared from 17-day-old rat embryos, using whole-cell patch clamp electrophysiology. Glycine receptors of 3-17 days in vitro were characterized via subtype-specific channel blockade by micromolar picrotoxin and cyanotriphenylborate, as well as nanomolar strychnine. Potentiation by nanomolar tropisetron indicated coexpression of beta with alpha subunits. The neuroactive steroids pregnenolone sulfate and dehydroepiandrosterone sulfate, as well as alphaxalone and its 3beta epimer betaxalone inhibited the chloride current with IC(50) values of 19, 46, 16 and 208 microM, respectively, with no potentiation. Reverse transcription polymerase chain reaction and immunocytochemistry demonstrated mRNAs and proteins of alpha1, alpha2, alpha3 and beta subunits in rat spinal cord cultures. In conclusion, neuroactive steroids, both positive and negative modulators of gamma-aminobutyric-acid(A) receptors, inhibited heteromeric glycine receptors at micromolar concentrations. PMID:16784797

  10. Maintenance of liver functions in rat hepatocytes cultured as spheroids in a rotating wall vessel.

    PubMed

    Brown, Lanika A; Arterburn, Linda M; Miller, Ana P; Cowger, Nancy L; Hartley, Sonya M; Andrews, Annette; Silber, Paul M; Li, Albert P

    2003-01-01

    Rat hepatocytes were cultured initially as spheroids on culture plates and then transferred into a rotating wall vessel (high-aspect ratio vessel [HARV]) for further culturing. Morphological evaluation based on electron microscopy showed that hepatocyte spheroids cultured for 30 d in the HARV had a compact structure with tight cell-cell junctions, numerous smooth and rough endoplasmic reticulum, intact mitochondria, and bile canaliculi lined with microvilli. The viability and differentiated properties of the hepatocytes cultured in the HARV were further substantiated by the presence of both phase I oxidation and phase II conjugation drug-metabolizing enzyme activities, as well as albumin synthesis. Homogenates prepared from freshly isolated hepatocytes and hepatocytes cultured in the HARV showed similar cytochrome P450 2B activities measured as pentoxyresorufin-O-dealkylase and testosterone 16beta-hydroxylase. Further, intact hepatocytes cultured in the HARV were found to metabolize chlorzoxazone to 6-hydroxychlorzoxazone; dextromethorphan to dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan; midazolam to 1-hydroxymidazolam and 4-hydroxymidazolam; and 7-hydroxycoumarin to its glucuronide and sulfate conjugates. In conclusion, we found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term (1 mo) maintenance of viability and cellular function. PMID:12892522

  11. Changes in expression of a functional G sub i protein in cultured rat heart cells

    SciTech Connect

    Allen, I.S.; Gaa, S.T.; Rogers, T.B. )

    1988-07-01

    The muscarinic cholinergic agonist, carbachol, and pertussis toxin were used to examine the functional status of the guanine nucleotide-binding protein that inhibits adenylate cyclase (G{sub i}) in cultured neonatal rat heart myocytes. The isoproterenol stimulation of adenylate cyclase activity in myocyte membranes and adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) accumulation in intact cells (4 days in culture) were insensitive to carbachol. However, in cells cultured for 11 days, carbachol inhibited isoproterenol-stimulated cAMP accumulation by 30%. Angiotensin II (ANG II) was also found to inhibit isoproterenol-stimulated cAMP accumulation in day 11 cells in a dose-dependent manner. Pertussis toxin treatment reversed the inhibitory effects of both ANG II and carbachol, suggesting a role for G{sub i} in the process. Carbachol binding to membranes from day 4 cells was relatively insensitive to guanine nucleotides when compared with binding to membranes from day 11 or adult cells. Furthermore, pertussis toxin-mediated {sup 32}P incorporation into a 39- to 41-kDa substrate in day 11 membranes was increased 3.2-fold over that measured in day 4 membranes. These findings support the view that, although G{sub i} is expressed, it is nonfunctional in 4-day-old cultured neonatal rat heart myocytes and acquisition of functional G{sub i} is dependent on culture conditions. Furthermore, the ANG II receptor can couple to G{sub i} in heart.

  12. Characterization of a primary bile ductular cell culture from the livers of rats during extrahepatic cholestasis.

    PubMed Central

    Sirica, A. E.; Sattler, C. A.; Cihla, H. P.

    1985-01-01

    The establishment of novel bile ductular cell cultures was accomplished with the use of explants of a hyperplastic bile ductular tissue preparation obtained from rat livers at 10 to 15 weeks after bile duct ligation or a bile ductular cell fraction isolated from this tissue preparation by a procedure involving Percoll density gradient centrifugation. Observations made on these primary explant and monolayer bile ductular cell cultures were limited to the first 3 days of culture where the morphologic features of the bile ductular epithelium remained fairly well preserved, while fibroblast contamination was found to be very low. These cultured cells also retained over this period a high specific activity for the bile ductular cell marker enzyme gamma-glutamyl transpeptidase, as well as possessed measurable but decreasing specific activities for leucine aminopeptidase and alkaline phosphatase. Karyotypic analysis of the cultured monolayer cells further showed them to be diploid. In addition, preliminary transplantation studies demonstrated the presence of well-differentiated bile ductular-like structures following inoculation of the freshly isolated bile ductular cell fraction into the interscapular fat pads of recipient rats. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:2861743

  13. Co-culture of rat trigeminal ganglion neurons and corneal epithelium.

    PubMed

    Forbes, D J; Pozos, R S; Nelson, J D

    1987-03-01

    Corneal epithelium and the trigeminal ganglion neurons which normally innervate the epithelium have been grown in adjacent chambers of a 35 mm tissue culture plate. Dissociated nerve cells from late embryonic rats were plated inside an 8 mm cloning cylinder attached to the center of the culture plate by silicone grease. In 7-10 days neurites extended out of this inner chamber by growing through the grease seal and along parallel scratches in the collagen coating of the tissue culture plate. Once this occurred, pure corneal epithelial explants were isolated from young adult rats and plated in the area surrounding the cloning cylinder, i.e. in the outer chamber. Cultures were monitored regularly with phase microscopy and, at various times, were fixed for ultrastructural examination. Within 24-48 hours of the epithelial plating, there were both individual neurites and bundles of neurites in contact with the epithelium. This interaction increased substantially over the next few days. Growth cones of the neurites could be seen to approach the microvilli-covered surface of the epithelium, travel over the surface and penetrate between the epithelial cells. This tissue culture model of the innervated ocular surface may prove valuable in the study of a variety of ocular conditions or diseases, as well as provide a means to study functional relationships and mechanisms of cellular interaction between neurons and their target cells. PMID:3556022

  14. Regulation of period 1 expression in cultured rat pineal

    NASA Technical Reports Server (NTRS)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  15. Inducing coproporphyria in rat hepatocyte cultures using cyclic AMP and cyclic AMP-releasing agents.

    PubMed

    De Matteis, Francesco; Harvey, Carolyn

    2005-07-01

    Cyclic AMP (c-AMP), added on its own to rat hepatocyte cultures, caused a marked accumulation of coproporphyrin III. The results obtained by comparing the effect of c-AMP to that of exogenous 5-aminolevulinate (ALA), and from adding c-AMP and ALA together, indicated that the coproporphyrinogen III metabolism was blocked, even though no inhibition of the relevant enzyme, coproporphyrinogen oxidase, could be demonstrated. Preferential accumulation of coproporphyrin could also be produced in cultures of rat hepatocytes by agents that raise the cellular levels of cyclic AMP, such as glucagon. The effect of supplementing the culture medium with triiodothyronine (T3) on the response of rat hepatocytes to c-AMP was also investigated. T3, which is known to stimulate mitochondrial respiration, uncoupling O2 consumption from ATP synthesis, produced a c-AMP-like effect when given on its own and potentiated the effect of c-AMP, with an apparent increase in the severity of the metabolic block. It is suggested that an oxidative mechanism may be activated in c-AMP and T3-induced coproporphyria, preferentially involving the mitochondrial compartment, leading to oxidation of porphyrinogen intermediates of haem biosynthesis, especially coproporphyrinogen. Coproporphyin, the fully oxidized aromatic derivative produced, cannot be metabolized and will therefore accumulate. PMID:15902420

  16. Primary culture of purified Leydig cells isolated from adult rat testes.

    PubMed

    Browning, J Y; Heindel, J J; Grotjan, H E

    1983-02-01

    Methods for isolating highly purified Leydig cells permit the study of acute responses and biochemical properties of Leydig cells independent of other testicular cell types. The present study describes the development of a primary culture system for purified Leydig cells from adult rats in which the cells retain their ability to secrete testosterone for at least 72 h in culture. When Leydig cells were cultured in tissue culture medium 199--0.1% BSA (M199-BSA), basal testosterone secretion declined by 72 h, whereas hCGB-stimulated testosterone secretion was reduced by 48 h. Changing the culture medium twice daily or adding 0.5% fetal calf serum (fcs) enhanced basal and gonadotropin-stimulated testosterone secretion at 72 h in culture, although responsiveness to hCG was reduced to 57% of that in freshly isolated cells. Incubation of Leydig cells in the defined culture medium Dulbecco's Modified Eagles-Ham's F-12 (1:1, vol/vol) supplemented with 15 mM Hepes buffer, transferrin, insulin, and epidermal growth factor (DHG:F12 + Hepes + TIE) in either the presence or absence of 0.5% fcs yielded functional Leydig cells for longer intervals in culture. Furthermore, testosterone secretion was greater in DHG:F12 + Hepes + TIE than in M199-BSA at all time intervals tested. In DHG:F12 + Hepes + TIE, basal and gonadotropin-stimulated testosterone production by Leydig cells were maintained for 72 h in culture. Degenerative changes in morphology were apparent in some cells at 72 h, but not at earlier times in culture. This primary culture system for isolated Leydig cells provides a valuable tool to examine the temporally regulated events in Leydig cell function. PMID:6848362

  17. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages.

    PubMed Central

    Kawabe, T; Isobe, K I; Hasegawa, Y; Nakashima, I; Shimokata, K

    1992-01-01

    Alveolar macrophages (AM) from normal rats had immunosuppressive activity to mitogen-induced proliferative responses of splenic lymphocytes. We studied the mechanism and the implication of the nitric oxide synthetase pathway in AM-mediated suppression of concanavalin A (Con A)-induced lymphocyte proliferation. The culture supernatant from AM cultures alone did not have immunosuppressive activity to Con A-induced proliferative responses of non-adherent spleen cells (n-ad SC), but the culture supernatant from co-culture of AM and autologous n-ad SC had this activity. Con A-pulsed AM also liberated the immunosuppressive factor. When AM and autologous n-ad SC were cultured separately under the condition that medium could freely communicate, the culture supernatant did not suppress the Con A-induced proliferative response of n-ad SC. This indicated that the immunosuppressive factor was liberated when AM was activated by cell-to-cell contact with n-ad SC. Further, we examined the immunosuppressive activity of the culture supernatant of co-culture of AM and autologous n-ad SC to Con A-induced responses of allogeneic n-ad SC and xenogeneic murine n-ad SC, and allogeneic mixed leucocyte reaction, and found that this culture supernatant could suppress all these proliferative responses. Nitrate (NO2-) synthesis was markedly augmented in the culture supernatants of Con A-pulsed AM and co-culture of AM and n-ad SC. NG-monomethyl-L-arginine (MMA), a specific competitive inhibitor of the nitric oxide synthetase pathway (NOSP), extinguished both NO2- synthesis by AM and AM-mediated immunosuppressive activity. These data suggest that NOSP was important in AM-mediated suppression of Con A-induced lymphocyte proliferation. PMID:1385798

  18. Catecholamine regulation of lactate dehydrogenase in rat brain cell culture

    SciTech Connect

    Kumar, S.; McGinnis, J.F.; de Vellis, J.

    1980-03-25

    The mechanism of catecholamine induction of the soluble cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27) was studied in the rat glial tumor cell line, C6. Lactate dehydrogenase was partially purified from extracts of (/sup 3/H)leucine-labeled cells by affinity gel chromatography and quantitatively immunoprecipitated with anti-lactate dehydrogenase-5 IgG and with antilactate dehydrogenase-1 IgG. The immunoprecipitates were dissociated and electrophoresed on sodium dodecyl sulfate polyacrylamide gels. Using this methodology, the increased enzyme activity of lactate dehydrogenase in norepinephrine-treated C6 cells was observed to be concomitant with the increased synthesis of enzyme molecules. Despite the continued presence of norepinephrine, the specific increase in the rate of synthesis of lactate dehydrogenase was transient. It was first detected at 4 h, was maximum at 9 h, and returned to basal levels by 24 h. The half-life of lactate dehydrogenase enzyme activity was 36 h during the induction and 40 h during deinduction. The half-life for decay of /sup 3/H-labeled lactate dehydrogenase was 41 h. These observations suggest that the increase in lactate dehydrogenase activity in norepinephrine-treated cells does not involve any change in the rate of degradation. Norepinephrine increased the specific rate of synthesis of both lactate dehydrogenase-5 (a tetramer of four M subunits) and lactate dehydrogenase-1 (a tetramer of four H subunits), although to different extents. Since these subunits are coded for by two separate genes on separate chromosomes, it suggests that the regulatory mechanism involves at least two separate sites of action.

  19. The metabolism of malate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. )

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  20. Characterization of nucleoside transport systems in cultured rat epididymal epithelium.

    PubMed

    Leung, G P; Ward, J L; Wong, P Y; Tse, C M

    2001-05-01

    The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na(+) dependent, while 30% was Na(+) independent. The Na(+)-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na(+)-dependent [(3)H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na(+)-dependent [(3)H]guanosine uptake was inhibited by thymidine by 20% and Na(+)-dependent [(3)H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na(+)-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma. PMID:11287319

  1. Subcellular distribution of lead in cultured rat hepatocytes

    SciTech Connect

    Mittelstaedt, R.A.; Pounds, J.G.

    1984-10-01

    A clear understanding of the sequence and molecular mechanism of the events involved in lead toxicity is hampered by a lack of information about lead compartmentation within the cell. As part of a continuing effort to identify the mechanism by which lead affects cellular functions, we examined the subcellular distribution of /sup 210/Pb in cultured hepatocytes. The cells were isolated, labeled, homogenized in sucrose-N-((2-hydroxyethyl)piperazine)-N'-2-ethanesulfonic acid buffer, and fractionated into mitochondrial, microsomal, and cytosolic components by differential centrifugation. Complete fractionation of the cells revealed that 71% of the cellular /sup 210/Pb was associated with the mitochondria, 5% with the microsomes, and 24% with the cytosol. A modified, rapid fractionation procedure indicated that 45% of the cellular lead was associated with both the mitochondria and the cytosol and 10% with the microsomes. When the cells were separated into total particulates and cytosol with a single centrifugation, 22% of the /sup 210/Pb was associated with the soluble fraction. The process of homogenization and fractionation of the isolated hepatocytes altered the intracellular distribution of /sup 210/Pb. This experimental approach to studying the localization of lead may be compromised by the redistribution of /sup 210/Pb during the extensive centrifugations and resuspensions required for subcellular fractionation and suggests that the subcellular distribution patterns of /sup 210/Pb obtained by the fractionation of cells reflects the distribution of lead in the homogenate rather than the distribution of /sup 210/Pb in the intact cell.

  2. Expression of precerebellins in cultured rat calvaria osteoblast-like cells.

    PubMed

    Rucinski, Marcin; Zok, Agnieszka; Guidolin, Diego; De Caro, Raffaele; Malendowicz, Ludwik K

    2008-10-01

    Cerebellin (CER), originally isolated from rat cerebellum, is a hexadecapeptide derived from the larger precursor called precerebellin 1 (Cbln1). At present 4 propeptides designated as Cbln1, Cbln2, Cbln3 and Cbln4 are recognized. They belong to precerebellin subfamily of the C1q family proteins. Precerebellins act as transneuronal regulators of synapse development and synaptic plasticity in various brain regions. Initially CER was thought to be a cerebellum specific peptide, however subsequent studies revealed its presence in other brain regions as well as in extraneuronal tissues. We investigated whether precerebellins are expressed and involved in regulation of cultured rat calvarial osteoblast-like (ROB) cells. Classic RT-PCR revealed the presence of Cbln1 and Cbln3 mRNA in fragments of rat calvaria, in freshly isolated ROB cells and in ROB cells cultured for 7, 14 and 21 days. Cbln2 and Cbln4 mRNA, on the other hand, could not be demonstrated in ROB cells but was found to be present in the brain. In freshly isolated ROB cells expression of Cbln1 gene was very low and gradually increased in relation to the duration of culture. Expression of Cbln3, on the other hand, was very low in fragments of rat calvaria, and increased notably after digestion with collagenase-I. The highest expression of this precerebellin was observed at day 14 of culture while at days 7 and 21 levels of expressions were notably lower. Neither Cbln2 nor Cbln4 was found to be expressed in the ROB cells. Neither CER nor des-Ser1-CER (10(-10)-10(-6)M) affect osteocalcin production and proliferation rate of studied cells. The above findings suggest that CER, which theoretically would be derived from Cbln1, modulate neither differentiated (osteocalcin secretion) nor basic (proliferation) functions of cultured rat osteoblast-like cells. The obtained data raise an intriguing hypothesis that precerebellins may be involved in regulating of spatial organization of osteoblastic niches in the bone

  3. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture

    PubMed Central

    Reda, A.; Hou, M.; Winton, T.R.; Chapin, R.E.; Söder, O.; Stukenborg, J.-B.

    2016-01-01

    STUDY QUESTION Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? SUMMARY ANSWER We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. WHAT IS KNOWN ALREADY Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no

  4. Creatine metabolism in the seminiferous epithelium of rats. I. Creatine synthesis by isolated and cultured cells.

    PubMed

    Moore, N P; Gray, T J; Timbrell, J A

    1998-03-01

    The testis synthesizes creatine from both arginine and glycine precursors, but when rat testicular tissue is separated into seminiferous tubules and interstitial cells, creatine synthesis occurs only in the tubular fraction. The purpose of the work presented here was to define the locus of creatine synthesis within the seminiferous tubules, by using cell separation and culture techniques to examine synthesis in the Sertoli cells and germ cells. The total creatine content, in the cellular compartment and incubation medium, of Sertoli-germ cell co-cultures and of Sertoli cell-enriched cultures, largely free of germ cells, increased by similar amounts over a 24 h incubation period. Sertoli cell-enriched cultures incorporated radioactivity from L-[guanidino-14C]arginine and [1-14C]glycine into both creatine and its biosynthetic precursor, guanidinoacetic acid. Isolated germ cells did not incorporate radioactivity from L-[guanidino-14C]arginine into either creatine or guanidinoacetic acid when incubated at a similar density and protein concentration under similar conditions. It is concluded that the synthesis of creatine observed in isolated rat seminiferous tubules occurs within the Sertoli cells and not the germ cells. PMID:9640271

  5. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    SciTech Connect

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  6. Genetic pediatric retinal diseases

    PubMed Central

    Say, Emil Anthony T.

    2014-01-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high.

  7. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy. PMID:26677078

  8. Optimization of neuronal cultures from rat superior cervical ganglia for dual patch recording.

    PubMed

    Amendola, Julien; Boumedine, Norah; Sangiardi, Marion; El Far, Oussama

    2015-01-01

    Superior cervical ganglion neurons (SCGN) are often used to investigate neurotransmitter release mechanisms. In this study, we optimized the dissociation and culture conditions of rat SCGN cultures for dual patch clamp recordings. Two weeks in vitro are sufficient to achieve a significant CNTF-induced cholinergic switch and to develop mature and healthy neuronal profiles suited for detailed patch clamp analysis. One single pup provides sufficient material to prepare what was formerly obtained from 12 to 15 animals. The suitability of these cultures to study neurotransmitter release mechanisms was validated by presynaptically perturbing the interaction of the v-SNARE VAMP2 with the vesicular V-ATPase V0c subunit. PMID:26399440

  9. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium

    SciTech Connect

    Saneto, R.P.; de Vellis, J.

    1985-05-01

    A serumless, chemically defined medium has been developed for the culture of oligodendrocytes isolated from primary neonatal rat cerebral cultures. Combined together, insulin, transferrin, and fibroblast growth factor synergistically induced an essentially homogeneous population (95-98%) of cells expressing glycerol-3-phosphate dehydrogenase activity to undergo cell division. Proliferating cells were characterized by several criteria: (i) ultrastructural analysis by transmission electron microscopy identified the cell type as an oligodendrocyte; (ii) biochemical assays showed expression of three oligodendrocyte biochemical markers, induction of both glycerol phosphate dehydrogenase and lactate dehydrogenase, and presence of 2',3'-cyclic nucleotide 3'-phosphodiesterase; and (iii) immunocytochemical staining showed cultures to be 95-98% positive for glycerol phosphate dehydrogenase, 90% for myelin basic protein, 60-70% for galactocerebroside, and 70% for A2B5.

  10. Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms

    SciTech Connect

    Noreault, Trisha L.; Nichols, Ralph C.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Peter R.; Evans, Ronald M.; Sinclair, Jacqueline F. . E-mail: JSINC@dartmouth.edu

    2005-12-01

    Arsenic is a naturally occurring, worldwide contaminant implicated in numerous pathological conditions in humans, including cancer and several forms of liver disease. One of the contributing factors to these disorders may be the alteration of cytochrome P450 (CYP) levels by arsenic. In rat and human hepatocyte cultures, arsenic, in the form of arsenite, decreases the induction of several CYPs. The present study investigated whether arsenite utilizes transcriptional or post-transcriptional mechanisms to decrease CYP3A23 in primary cultures of rat hepatocytes. In these cultures, a 6-h treatment with 5 {mu}M arsenite abolished dexamethasone (DEX)-mediated induction of CYP3A23 protein and activity, but did not inhibit general protein synthesis. However, arsenite treatment only reduced DEX-induced levels of CYP3A23 mRNA by 30%. The effects of arsenite on CYP3A23 transcription were examined using a luciferase reporter construct containing 1.4 kb of the CYP3A23 promoter. Arsenite caused a 30% decrease in DEX-induced luciferase expression of this reporter. Since arsenite abolished induction of CYP3A23 protein, but caused only a small decrease in CYP3A23 mRNA, the effects of arsenite on translation of CYP3A23 mRNA were investigated. Polysomal distribution analysis showed that arsenite decreased translation by decreasing the DEX-mediated increase in CYP3A23 mRNA association with polyribosomes. Arsenite did not decrease intracellular glutathione or increase lipid peroxidation, suggesting that the effect of arsenite on CYP3A23 does not involve oxidative stress. Overall, the results suggest that low-level arsenite decreases both transcription and translation of CYP3A23 in primary rat hepatocyte cultures.

  11. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle.

    PubMed Central

    Davey, B; Younkin, L H; Younkin, S G

    1979-01-01

    1. It has been proposed that the influence of innervation on the cholinesterase activity (ChE) of skeletal muscle and on end-plate ChE in particular is mediated by trophic substance(s) moved by axonal transport and released from nerve. We have tested this hypothesis using rat extensor digitorum longus (e.d.l.) and diaphragm muscles denervated in vitro for several days and then maintained in organ culture to assay putative trophic substance(s). 2. The cholinesterase activity (ChE) of rat extensor digitorum longus (e.d.l.) muscles decreased dramatically after 5 days of denervation in vivo as previously reported. The ChE of rat e.d.l. muscles denervated in vivo for 3 days and then maintained in organ culture for 2 days was essentially identical to that of muscles denervated 5 days in vivo. 3. The ChE OF E.D.L. MUSCLES DENERVATED IN VIVO FOR 3 DAYS AND THEN MAINTAINED FOR 2 DAYS IN CULTURE MEDIUM SUPPLEMENTED WITH SCIATIC NERVE OR INNERVATED MUSCLE EXTRACT WAS SIGNIFICANTLY HIGHER THAN THAT OF MUSCLES DENERVATED IN VIVO FOR 5 DAYS OR DENERVATED IN VIVO FOR 3 DAYS AND THEN CULTURED FOR 2 DAYS IN CULTURE MEDIUM ALONE. Supplementing the culture medium with brain or spinal cord extract also significantly increased the ChE of organ-cultured e.d.l. muscles. 4. Supplementing the culture medium with liver or spleen extract or with the extract of muscle denervated for 3--7 days in vivo before extraction did not increase the ChE or organ-cultured e.d.l. muscles. 5. The effect of muscle extract on the ChE of organ-cultured e.d.l. muscles was dose dependent and occurred gradually reaching a maximum after approximately 24 h of culture. 6. Substance(s) which increased the ChE of organ-cultured e.d.l. muscles were found to accumulate in transected sciatic nerve in the region just proximal to the site of transection where substances moved by axonal transport are known to accumulate. 7. Media conditioned with neurally stimulated e.d.l. or diaphragm muscles caused a substantial and

  12. Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes

    SciTech Connect

    Henkens, Tom . E-mail: Tom.Henkens@vub.ac.be; Papeleu, Peggy; Elaut, Greetje; Vinken, Mathieu; Rogiers, Vera; Vanhaecke, Tamara

    2007-01-01

    Histone deacetylase inhibitors (HDI) have been shown to increase differentiation-related gene expression in several tumor-derived cell lines by hyperacetylating core histones. Effects of HDI on primary cultured cells, however, have hardly been investigated. In the present study, the ability of trichostatin A (TSA), a prototype hydroxamate HDI, to counteract the loss of liver-specific functions in primary rat hepatocyte cultures has been investigated. Upon exposure to TSA, it was found that the cell viability of the cultured hepatocytes and their albumin secretion as a function of culture time were increased. TSA-treated hepatocytes also better maintained cytochrome P450 (CYP)-mediated phase I biotransformation capacity, whereas the activity of phase II glutathione S-transferases (GST) was not affected. Western blot and qRT-PCR analysis of CYP1A1, CYP2B1 and CYP3A11 protein and mRNA levels, respectively, further revealed that TSA acts at the transcriptional level. In addition, protein expression levels of the liver-enriched transcription factors (LETFs) hepatic nuclear factor 4 alpha (HNF4{alpha}) and CCAAT/enhancer binding protein alpha (C/EBP{alpha}) were accordingly increased by TSA throughout culture time. In conclusion, these findings indicate that TSA plays a major role in the preservation of the differentiated hepatic phenotype in culture. It is suggested that the effects of TSA on CYP gene expression are mediated via controlling the expression of LETFs.

  13. Role of in vitro factors in ozone toxicity for cultured rat lung fibroblasts

    SciTech Connect

    Wenzel, D.G.; Morgan, D.L.

    1982-01-01

    Ozone toxicity for cultured rat lung fibroblasts was concentration dependent and was affected by the manner in which ozone was delivered to the cells, i.e. cultures were either rotated with a thin moving overlay of medium or were stationary with a fixed layer of medium between the cells and the gas phase. The influence of culture medium components and culture dish composition on the toxicity of ozone were also investigated. Cell viability, used to measure ozone toxicity, was quantified by the chromium-51 release assay, and by a viability index calculated from the percentage of cells stained with a vital dye combined with the decrease in cell number as determined by DNA measurements. During stationary ozone exposure, toxicity appeared to be mediated primarily by hydrogen peroxide and could be inhibited by catalase or fetal bovine serum when measured by the viability index. During rotated exposure, catalase and fetal bovine serum provided no protection when measured by the viability index, however, when measured by the chromium-51 release assay, fetal bovine serum was partially protective. The effect of ozone on the fibroblasts was not influenced by whether culture dishes were glass or plastic, or whether the culture medium was balanced salt solution or complete chemically-defined medium.

  14. Association of ICAM-1 with the cytoskeleton in rat alveolar epithelial cells in primary culture.

    PubMed

    Barton, W W; Wilcoxen, S E; Christensen, P J; Paine, R

    1996-11-01

    Intercellular adhesion molecule-1 ICAM-1) is a transmembrane adhesion protein that is expressed constitutively on the apical surface of type I cells in vivo and on type II cells in vitro as they spread in culture, assuming type I cell-like characteristics. To investigate the possible interaction of ICAM-1 with the alveolar epithelial cell cytoskeleton, rat type II cells in primary culture were extracted with nonionic detergent, and residual ICAM-1 associated with the cytoskeletal remnants was determined using immunofluorescence microscopy, immunoprecipitation, and cell-based enzyme-linked immunosorbent assay. A large fraction of alveolar epithelial cell ICAM-1 remained associated with the cytoskeleton after detergent extraction, whereas two other transmembrane molecules, transferrin receptor and class II major histocompatibility complex, were completely removed. ICAM-1 was redistributed on the cell surface after the disruption of actin filaments with cytochalasin B, suggesting interaction with the actin cytoskeleton. In contrast, ICAM-1 was completely detergent soluble in rat pulmonary artery endothelial cells, human umbilical vein endothelial cells, and rat alveolar macrophages. The association of ICAM-1 with the alveolar epithelial cell cytoskeleton was not altered after stimulation with inflammatory cytokines. However, detergent resistant ICAM-1 was significantly increased after crosslinking of ICAM-1 on the cell surface, suggesting that this cytoskeletal association may be modulated by interactions of alveolar epithelial cells with inflammatory cells. The association of ICAM-1 with the cytoskeleton in alveolar epithelial cells may provide a fixed intermediary between mobile inflammatory cells and the alveolar surface. PMID:8944713

  15. Laser speckle analysis of retinal vascular dynamics

    PubMed Central

    Neganova, Anastasiia Y; Postnov, Dmitry D; Jacobsen, Jens Christian B.; Sosnovtseva, Olga

    2016-01-01

    Studies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally. We suggest to use full-field laser speckle imaging to evaluate vascular responses of the retinal network. Image segmentation and vessel recognition algorithms together with response mapping allow us to analyze diameter changes and blood flow responses in the intact retinal network upon systemic administration of the vasoconstrictor angiotensin II, the vasodilator acetylcholine or on the changing level of anesthesia in in vivo rat preparations.

  16. Cytomegalovirus Retinitis after Intravitreal Bevacizumab Injection in an Immunocompetent Patient

    PubMed Central

    Bae, So Hyun; Kim, Tae Wan; Chung, Hum

    2013-01-01

    We report a case of cytomegalovirus (CMV) retinitis after intravitreal bevacizumab injection. A 61-year-old woman with diabetic macular edema developed dense vitritis and necrotizing retinitis 3 weeks after intravitreal bevacizumab injection. A diagnostic vitrectomy was performed. The undiluted vitreous sample acquired by vitrectomy was analyzed by polymerase chain reaction and culture. Polymerase chain reaction of the vitreous was positive for CMV DNA. Other laboratory results did not show evidence of other infectious retinitis and systemic immune dysfunction. Human immunodeficiency virus antibodies were also negative. After systemic administration of ganciclovir, retinitis has resolved and there has been no recurrence of retinitis during the follow-up period of 12 months. Ophthalmologists should be aware of potential risk for CMV retinitis after intravitreal bevacizumab injection. PMID:23372384

  17. Involvement of ER stress in retinal cell death

    PubMed Central

    Shimazawa, Masamitsu; Inokuchi, Yuta; Ito, Yasushi; Murata, Hiroshi; Aihara, Makoto; Miura, Masayuki; Araie, Makoto

    2007-01-01

    Purpose To clarify whether endoplasmic reticulum (ER) stress is involved in retinal cell death, using cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed with E1A virus), and transgenic mice ER stress-activated indicator (ERAI) mice carrying a human XBP1 and venus a variant of green fluorescent protein (GFP) fusion gene. Methods RGC-5 damage was induced by tunicamycin, and cell viability was measured by double nuclear staining (Hoechst 33342 and either YO-PRO-1 or propidium iodide). The expressions of glucose-regulated protein 78(GRP78)/BiP, the phosphorylated form of eukaryotic initiation factor 2α (p-eIF2α), and C/EBP-homologous (CHOP) protein after tunicamycin (in vitro or in vivo) or N-methyl-D-aspartate (NMDA; in vivo) treatment were measured using immunoblot or immunostaining. ERAI mice carrying the F-XBP1-DBD-venus expression gene were used to monitor ER-stress in vivo. Twenty-four hours after intravitreal injection of tunicamycin or NMDA, or after raising intraocular pressure (IOP), the retinal fluorescence intensity was visualized in anesthetized animals using an ophthalmoscope and in retinal flatmount or cross-section specimens using laser confocal microscopy. Results Treatment with tunicamycin induced apoptotic cell death in RGC-5 and also induced production of ER stress-related proteins (BiP, the phosphorylated form of eIF2α, and CHOP protein). In vivo, tunicamycin induced retinal ganglion cell (RGC) loss and thinning of the inner plexiform layer, 7 days after intravitreal injection. In flatmounted retinas of ERAI mice, the fluorescence intensity arising from the XBP-1-venus fusion protein, indicating ER-stress activation, was increased at 24 h after tunicamycin, NMDA, or IOP elevation. In transverse cross-sections from ERAI mice, the fluorescence intensity was first increased in cells of the ganglion cell and inner plexiform layers at 12 and 24 h, respectively, after NMDA injection, and it was localized to ganglion and

  18. Orexin B inhibits proliferation and stimulates specialized function of cultured rat calvarial osteoblast-like cells.

    PubMed

    Ziolkowska, Agnieszka; Rucinski, Marcin; Tyczewska, Marianna; Malendowicz, Ludwik K

    2008-12-01

    Orexin-A (OXA) and orexin-B (OXB) are polypeptides derived from the same 130 amino acid long precursor (prepro-orexin) that bind and activate two closely related orphan G protein-coupled receptors OX1-R and OX2-R. These hypothalamic neuropeptides stimulate food intake and energy expenditure and play a significant role in sleep-wakefulness regulation. Present studies aimed to investigate the effects of orexins on proliferative activity and osteocalcin secretion by cultured rat calvarial osteoblast-like (ROB) cells. Conventional RT-PCR methods detected expression of the OX1-R gene in freshly isolated ROB cells and cells cultured for 7, 14 and 21 days. In contrast, at all time points tested, expression of prepro-OX or OX2-R genes was not demonstrated. QPCR revealed the highest expression of OX1-R gene in freshly isolated bone cells and a notably lower one in cultured ROB cells. Exposure of cultured cells to both OXA and OXB stimulated expression of the OX1-R gene. However, this effect was seen at the lowest tested concentration (1x10(-10) M). Exposure of cultured ROB cells to OXA for 48 h did not change osteocalcin concentrations in media analyzed at days 7, 14 and 21 of culture. On the contrary, OXB notably stimulated osteocalcin concentrations in media taken at days 14 and 21 of culture. In contrast, OXA exerted a notable inhibitory effect on the proliferative activity of ROB cells at day 7 of culture, while OXB exerted a similar effect at day 14. Thus, the obtained results suggest that: (i)(ROB) cells are provided with functional OX1-R gene; (ii) in ROB cells expression of this gene seems to be up-regulated by low concentrations of both OXA and OXB; (iii) OXB exerts inhibitory effects on proliferative activity and stimulating effects on osteocalcin secretion by cultured ROB cells; (iv) rat calvarial osteoblasts provided with OX receptor may be a target for circulating orexins. Thus, orexins may be included in the expanding group of neuropeptides involved in the

  19. Retinal image quality in the rodent eye.

    PubMed

    Artal, P; Herreros de Tejada, P; Muñoz Tedó, C; Green, D G

    1998-01-01

    Many rodents do not see well. For a target to be resolved by a rat or a mouse, it must subtend a visual angle of a degree or more. It is commonly assumed that this poor spatial resolving capacity is due to neural rather than optical limitations, but the quality of the retinal image has not been well characterized in these animals. We have modified a double-pass apparatus, initially designed for the human eye, so it could be used with rodents to measure the modulation transfer function (MTF) of the eye's optics. That is, the double-pass retinal image of a monochromatic (lambda = 632.8 nm) point source was digitized with a CCD camera. From these double-pass measurements, the single-pass MTF was computed under a variety of conditions of focus and with different pupil sizes. Even with the eye in best focus, the image quality in both rats and mice is exceedingly poor. With a 1-mm pupil, for example, the MTF in the rat had an upper limit of about 2.5 cycles/deg, rather than the 28 cycles/deg one would obtain if the eye were a diffraction-limited system. These images are about 10 times worse than the comparable retinal images in the human eye. Using our measurements of the optics and the published behavioral and electrophysiological contrast sensitivity functions (CSFs) of rats, we have calculated the CSF that the rat would have if it had perfect rather than poor optics. We find, interestingly, that diffraction-limited optics would produce only slight improvement overall. That is, in spite of retinal images which are of very low quality, the upper limit of visual resolution in rodents is neurally determined. Rats and mice seem to have eyes in which the optics and retina/brain are well matched. PMID:9682864

  20. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    SciTech Connect

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-07-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of /sup 125/I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of /sup 125/I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of /sup 125/I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence (/sup 3/H) norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors.

  1. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    SciTech Connect

    Shen Chong; Meng Qin Schmelzer, Eva; Bader, Augustinus

    2009-07-15

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 {mu}M which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 {mu}M. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to {beta}-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  2. U. v. -enhanced reactivation of u. v. -irradiated herpes virus by primary cultures of rat hepatocytes

    SciTech Connect

    Zurlo, J.; Yager, J.D. )

    1984-04-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. The development of a primary rat hepatocyte culture system is reported to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. Enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurred in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions tht may have a role in the initiation of hepatocarcinogenesis.

  3. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity.

    PubMed

    Shen, Chong; Meng, Qin; Schmelzer, Eva; Bader, Augustinus

    2009-07-15

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 muM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 muM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to beta-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs. PMID:19463838

  4. Cultured rat calvarial osteoblast-like cells are provided with orexin type 1 receptors.

    PubMed

    Ziolkowska, Agnieszka; Rucinski, Marcin; Tortorella, Cinzia; Tyczewska, Marianna; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2007-12-01

    Orexins A and B are hypothalamic peptides which are derived from the proteolytic cleavage of prepro-orexin and act via two subtypes of receptors, named OX1-R (that almost exclusively binds orexin-A) and OX2-R (nonselective for both orexins). Several lines of evidence show that other neuropeptides, which like orexins are involved in the central control of energy homeostasis (e.g. leptin and ghrelin), may play a role in the regulation of bone metabolism, acting via autocrine-paracrine or endocrine routes. Therefore, we studied by reverse transcription-polymerase chain reaction (RT-PCR) the expression of the orexin system in rat calvarial osteoblast-like (ROB) cells, whose osteoblastic lineage was immunocytochemically demonstrated by their osteonectin and collagen-1alpha content at day 14 of culture. Conventional PCR detected the mRNA expression of OX1-R, but not OX2-R and prepro-orexin in ROB cells at days 2, 7 and 21 of culture. Semiquantitative real time-PCR evidenced a gradual down-regulation of OX1-R mRNA in relation to the duration of culture. This novel finding suggests that rat osteoblasts could be a target for circulating orexin-A, especially during their early stages of differentiation into mature osteoblasts. PMID:17982683

  5. [Application of a Fotonic Sensor for measurement of chronotropy and contractility in cultured rat cardiac myocytes].

    PubMed

    Kawana, S; Kimura, H; Miyamoto, A; Ohshika, H; Namiki, A

    1993-10-01

    We used a Fotonic Sensor, a fiber optic displacement measurement instrument, to measure the chronotropy and the contractility of cultured neonatal rat cardiac myocytes. The principle of the measurement is to detect changes in the distance between the probe and myocytes vertically extruded by the contraction. A fiber optic probe consists of adjacent pairs of light-transmitting and light-receiving fibers. The ratio of reflected light to transmitted light changes proportionally to the distance between the probe and an object at a certain range shown in a calibration curve. The analogue output from the sensor was transferred to a personal computer through an analogue/digital converter and analyzed. The sensor was able to detect the rate of myocyte beating, i.e., chronotropy, with a high correlation to the frequency of electrically stimulated beating and agreed well with the beating rate counted visually under a microscope. The contractility was evaluated by the maximum contraction velocity (Vm) by the first derivatives of the contraction curves obtained by the sensor. Norepinephrine (NE) and isoproterenol (ISO) increased the contractility in cultured myocytes in a dose-dependent fashion. In the preparation of rat ventricular papillary muscle, NE- and ISO-induced increase in the Vm in the radial direction significantly correlated with the increase in tension measured with a force-displacement transducer. These results indicate that the Fotonic Sensor is an appropriate instrument for evaluating the chronotropy and the contractility of cultured myocytes. PMID:8253432

  6. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue

    SciTech Connect

    McCarthy, K.D.; de Vellis, J.

    1980-06-01

    A novel method has been developed for the preparation of nearly pure separate cultures of astrocytes and oligodendrocytes. The method is based on (a) the absence of viable neurons in cultures prepared from postnatal rat cerebra, (b) the stratification of astrocytes and oligodendrocytes in culture, and (c) the selective detachment of the overlying oligodendrocytes when exposed to sheer forces generated by shaking the cultures on an orbital shaker for 15 to 18 h at 37/sup 0/C. Preparations appear >98% pure and contain approx.1-2 x 10/sup 7/ viable cells (20 to 40 mg of cell protein). Three methods were used to characterize these two culture types. First, electron microscopic examination was used to identify the cells in each preparation (mixed and separated cultures of astrocytes and oligodendrocytes) and to assess the purity of each preparation. Second, two oligodendroglial cell markets, 2',3' -cycle nucleotide 3' -phosphohydrolase (EC 3.1.4.37) and glycerol phosphate dehydrogenase (EC 1.1.1.8) were monitored. Third, the regulation of cyclic AMP accumulation in each culture type was examined. In addition to these studies, we examined the influence of brain extract and dibutyryl cAMP on the gross morphology and ultrasturcture of each preparation. These agents induced astroglial process formation without any apparent morphological effect on oligodendrocytes. Collectively, the results indicate that essentially pure cultures of astrocytes and of oligodendrocytes can be prepared and maintained. These preparations should significantly aid in efforts to examine the biochemistry, physiology, and pharmacology of these two major classes of central nervous system cells.

  7. Mitochondrial activity assessed by cytofluorescence after in-vitro-irradiation of primary rat brain cultures

    SciTech Connect

    Cervos-Navarro, J.; Hamdorf, G. )

    1993-05-01

    Mitochondria play a key role in cell homeostasis and are the first cell organells affected by ionizing irradiation, as it was proved by previous electron microscopic investigations. In order to observe functional parameters of mitochondria after low-dose irradiation, primary rat brain cultures (prepared from 15-day-old rat fetuses) were irradiated from a [sup 60]Co-source with 0.5 and 1 Gy at the age of 2 or 7 days in vitro (div). Cytofluorescence measurement was made by a Cytofluor[sup [trademark]2350] using Rhodamine 123. This fluorescent dye is positively charged and accumulates specifically in the mitochondria of living cells without cytotoxic effect. Since its retention depends on the negative membrane potential as well as the proton gradient that exists across the inner mitochondrial membrane, Rhodamine 123 accumulation reflects the status of mitochondrial activity as a whole. After irradiation with 0.5 and 1 Gy on day 2 in culture there was a decrease in Rhodamine uptake in the irradiated cultures during the first week after the irradiation insult which reached minimum values after 3 days. Rhodamine uptake increased during the following period and finally reached the values of the control cultures. In the second experiment with irradiated cultures on day 7 and the same doses of 0.5 and 1 Gy the accumulation of Rhodamine decreased only initially then increased tremendously. After both doses values of Rhodamine-accumulation were higher than the control level. The results demonstrated that irradiation caused a change in mitochondrial activity depending on the time of irradiation. The dramatic increase over the control levels after irradiation on day 7 in vitro is attributed to the fact that at this time synapses have already developed. Deficiency of mitochondrial activity as well as hyperactivity and the consequent change in energy production may lead to changes in neuronal metabolism including an increase in production of free radicals.

  8. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  9. Tumor necrosis factor-induced contraction of cultured rat mesangial cells: interaction with angiotensin II.

    PubMed

    Medina, J; Baud, L; Garcia Escribano, C; Gila, J A; Rodriguez Puyol, D; Rodriguez Puyol, M

    1993-08-01

    The role of tumor necrosis factor alpha in the regulation of renal function, particularly glomerular filtration rate, has not been completely defined. This study was designed to assess the intrinsic role of this cytokine on glomerular filtration rate by analyzing its short-term effect on the degree of contraction in cultured rat mesangial cells, not only directly but also in the presence of angiotensin II. Contraction was evaluated both morphologically--by measuring planar cell surface area of cultured rat mesangial cells and glomerular cross-sectional area of isolated rat glomeruli--and biochemically--by analyzing myosin light-chain phosphorylation in cells. Tumor necrosis factor alpha significantly decreased planar cell surface area in a dose-dependent and time-dependent manner, an effect completely abolished by preincubation of the cells with platelet-activating factor receptor antagonists BN 52021 and alprazolam. This effect was also observed in the presence of angiotensin II, whether tumor necrosis factor alpha was added before or after angiotensin II, increasing the reduction in planar cell surface area induced by angiotensin II in both cases. Changes in planar cell surface area were evident not only when the absolute values of this parameter were considered but also when the percentage of contracted cells (cells with a planar cell surface area reduction > 10%) was analyzed. Tumor necrosis factor alpha also induced a significant reduction of glomerular cross-sectional area in isolated rat glomeruli. The results of the morphologic studies were supported by myosin light-chain phosphorylation experiments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8340701

  10. Elastase effect on the extracellular matrix of rat aortic smooth muscle cells in culture

    SciTech Connect

    Kispert, J.; Mogayzel, P.J. Jr.; Pratt, C.A.; Toselli, P.; Wolfe, B.L.; Faris, B.; Franzblau, C.

    1986-05-01

    The effect of porcine pancreatic elastase on the extracellular matrix (ECM) of neonatal rat aortic smooth muscle cell cultures was monitored both chemically and ultrastructurally. Initially, the elastin appeared as non-coalesced material closely associated with filaments, presumably microfibrils. The insoluble elastin accumulated in the ECM of cells in culture for 6 weeks accounted for 40-45% of the total protein. After exposure to elastase for 30-60 minutes, the elastin content was reduced to 14-20%. The reduction in the total protein content of the cultures after elastase treatment was due primarily to the loss of elastin. Although the amino acid compositions of the elastin isolated from cultures both before and after elastase treatment were similar, there were striking ultrastructural differences in the amorphous elastin. The elastin assumed a mottled appearance after elastase exposure, similar to that seen in in vivo emphysema models. Pulse experiments with /sup 3/H-valine demonstrated an increase in protein synthesis by the cells 20 hours after elastase exposure, suggesting the potential for elastin repair. The use of this culture system will aid in clarifying the role of elastolysis in pulmonary and vascular injuries.

  11. Surfactant and varespladib co-administration in stimulated rat alveolar macrophages culture.

    PubMed

    De Luca, Daniele; Vendittelli, Francesca; Trias, Joaquim; Fraser, Heather; Minucci, Angelo; Gentile, Leonarda; Perez-Gil, Jesus; Conti, Giorgio; Antonelli, Massimo; Capoluongo, Ettore D

    2013-01-01

    Acute lung injury is a life-threatening condition characterized by surfactant dysfunction and raised secretory phospholipase A2 (sPLA2) activity. Varespladib is a sPLA2 inhibitor shown to be effective in animal models of acute lung injury. We aimed at investigating the effect of co-administration of surfactant and varespladib on sPLA2 activity. Alveolar macrophages were cultured and stimulated with lipopolysaccharide and then treated with either varespladib, surfactant, varespladib followed by surfactant or nothing. sPLA2 activity, free fatty acids, tumour necrosis factor-α (TNF-α) and protein concentrations were measured in culture supernatants. Treatment with varespladib (p=0.019) and varespladib + surfactant (p=0.013), reduced the enzyme activity by approximately 15% from the basal level measured in the untreated cultures. Surfactant, varespladib and varespladib + surfactant, respectively decreased free fatty acids by -45% (p=0.045), - 62% (p=0.009) and -48% (p=0.015), from the baseline concentration of the untreated cultures. Varespladib and poractant- α co-administration reduces sPLA2 activity and free fatty acids release in cultured rat alveolar macrophages, although a clear drug synergy was not evident. Since co-administration may be useful to reduce inflammation and surfactant inactivation in acute lung injury, further in vivo studies are warranted to verify its clinical usefulness. PMID:23590147

  12. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    PubMed Central

    Nagoshi, Tomohisa; Nishikawa, Tetsuo; Date, Taro; Yoshimura, Michihiro

    2013-01-01

    In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2) expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs) culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis. PMID:24288663

  13. Temporal expression of transporters and receptors in a rat primary co-culture blood-brain barrier model.

    PubMed

    Liu, Houfu; Li, Yang; Lu, Sijie; Wu, Yiwen; Sahi, Jasminder

    2014-10-01

    1. The more relevant primary co-cultures of brain microvessel endothelial cells and astrocytes (BMEC) are less utilized for screening of potential CNS uptake when compared to intestinal and renal cell lines. 2. In this study, we characterized the temporal mRNA expression of major CNS transporters and receptors, including the transporter regulators Pxr, Ahr and Car in a rat BMEC co-cultured model. Permeability was compared with the Madin-Darby canine kidney (MDCKII)-MDR1 cell line and rat brain in situ perfusion model. 3. Our data demonstrated differential changes in expression of individual transporters and receptors over the culture period. Expression of ATP-binding cassette transporters was better retained than that of solute carrier transporters. The insulin receptor (IR) was best maintained among investigated receptors. AhR demonstrated high mRNA expression in rat brain capillaries and expression was better retained than Pxr or Car in culture. Mdr1b expression was up-regulated during primary culture, albeit Mdr1a mRNA levels were much higher. P-gp and Bcrp-1 were highly expressed and functional in this in vitro system. 4. Permeability measurements with 18 CNS marketed drugs demonstrated weak correlation between rBMEC model and rat in situ permeability and moderate correlation with MDCKII-MDR1 cells. 5. We have provided appropriate methodologies, as well as detailed and quantitative characterization data to facilitate improved understanding and rational use of this in vitro rat BBB model. PMID:24827375

  14. [Protective effects of total saponins of semen Ziziphi spinosae on cultured rat myocardial cells].

    PubMed

    Chen, X J; Yu, C L; Liu, J F

    1990-03-01

    The effects of total saponins of Semen Ziziphi spinosae (ZS) were observed on cultured neonatal rat myocardial cells injured by deprivation of oxygen and glucose (DOG) or treatment with chlorpromazine (CPZ) and mitomycin C (MMC). The increases of lactate dehydrogenase release from damaged myocardial cells induced by DOG, CPZ and MMC were attenuated by ZS (33 micrograms/ml) except 11 micrograms/ml which showed no effect on MMC (24 h) and CPZ (9 h)-induced injuries. These data suggest that ZS is an effective protective drug for myocardial cells. PMID:2125800

  15. [The pharmacological mechanism of gastrodin on calcitonin gene-related peptide of cultured rat trigeminal ganglion].

    PubMed

    Luo, Guo-Gang; Fan, Wen-Jing; Yuan, Xing-Yun; Yuan, Bo-Bo; Lü, She-Min; Cao, Yong-Xiao; Xu, Cang-Bao

    2011-12-01

    The Chinese herbal medicine Tianma (Gastrodia elata) has been used for treating and preventing primary headache over thousands of years, but the exact pharmacological mechanism of the main bioactive ingredient gastrodin remains unclear. In present study, the effects of gastrodin on calcitonin gene-related peptide (CGRP) and phosphorylated extracellular signal-regulated kinase1/2 (pERK1/2) expression were observed in rat trigeminal ganglion (TG) after in vitro organ culture to explore the underlying intracellular mechanism of gastrodin on primary vascular-associated headache. CGRP-immunoreactivity (CGRP-ir) positive neurons count, positive area, mean optical density and integrated optical density by means of immunohistochemistry stain were compared at different concentrations of gastrodin, which was separately co-incubated with DMEM in SD rat TG for 24 hours. Only at 5 or 10 mmol L(-1) concentration, gastrodin demonstrated significantly concentration-dependent reduction of CGRP-ir (+) expression and its action closed to 1.2 mmol L(-1) sumatriptan succinate. While at 2.5, 20, and 40 mmol L(-1) concentration, gastrodin did not show remarkable effects on CGRP-ir (+) expression. The optimal concentration of gastrodin (5 and 10 mmol L(-1)) similarly inhibited CGRP-mRNA expression level separately compared with 1.2 mmol L(-1) sumatriptan succinate and 10 micromol L(-1) flunarizine hydrochloride, which was quantitatively analyzed by real-time PCR (RT-PCR). pERK1/2 level was examined by Western blotting after co-cultured with optimal concentration of gastrodin and effective specific ERK1/2 pathway inhibitors PD98059, U0126. The result indicated that gastrodin significantly reduced pERK1/2 protein actions similarly to ERK1/2 pathway specific blockade. It suggests ERK1/2 signaling transduction pathway may be involved in gastrodin intracellular mechanism. This study indicates gastrodin (5 and 10 mmol L(-1)) can remarkably reduce CGRP-ir (+) neuron, CGRP-mRNA and pERK1

  16. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    PubMed

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration. PMID:24478366

  17. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes.

    PubMed

    Tzeng, Thing-Fong; Hong, Tang-Yao; Tzeng, Yu-Cheng; Liou, Shorong-Shii; Liu, I-Min

    2015-09-01

    The present study investigates the amelioration of diabetic retinopathy (DR) by Zingiber zerumbet rhizome ethanol extracts (ZZRext) in streptozotocin-induced diabetic rats (STZ-diabetic rats). ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day) for three months. Blood-retinal barrier (BRB) breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB) activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK) in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes. PMID:26389948

  18. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes

    PubMed Central

    Tzeng, Thing-Fong; Hong, Tang-Yao; Tzeng, Yu-Cheng; Liou, Shorong-Shii; Liu, I-Min

    2015-01-01

    The present study investigates the amelioration of diabetic retinopathy (DR) by Zingiber zerumbet rhizome ethanol extracts (ZZRext) in streptozotocin-induced diabetic rats (STZ-diabetic rats). ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day) for three months. Blood-retinal barrier (BRB) breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB) activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK) in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes. PMID:26389948

  19. Characterization of a rat in vitro ovarian culture system to study the ovarian toxicant 4-vinylcyclohexene diepoxide.

    PubMed

    Devine, Patrick J; Sipes, I Glenn; Skinner, Michael K; Hoyer, Patricia B

    2002-10-15

    Repeated daily dosing of rats with the occupational chemical 4-vinylcyclohexene diepoxide (VCD) causes selective depletion of the smallest preantral ovarian follicles (primordial and primary). These targeted populations are difficult to study because they comprise very little of the overall mass of ovarian tissue. Additionally, they are randomly distributed throughout the ovary. Therefore, a neonatal rat ovarian culture system containing predominantly primordial and primary follicles was developed and its susceptibility to VCD was assessed. The in vivo sensitivity of neonatal rats to VCD dosing was first confirmed by daily injection of VCD (80 mg/kg/day ip) on postnatal days (PND) 4-19. On PND 19, depletion of primordial and small primary follicles was evident. Ovarian cultures were then established utilizing a floating organ culture system to treat ovaries from PND 4 Fischer 344 rats in vitro. Initial follicle populations in cultured ovaries consisted of primordial (81%) and small primary (19%) follicles, whereas larger-sized preantral follicles had developed after 15 days in culture (67% primordial, 31% small primary, and 2% large primary). Cultured rat ovaries were sensitive to follicle depletion by incubation with VCD (> or =30 microM), and follicle loss occurred in a time-dependent manner (8-15 days). Evidence for apoptosis in VCD-exposed ovaries, as demonstrated in vivo, was obtained using immunohistochemistry. There was significantly more staining for apoptosis-associated active caspase-3 and TUNEL in ovaries incubated with VCD (30 microM, 15 days) compared with matched controls. These results demonstrate that small preantral follicles of cultured neonatal rat ovaries are sensitive to VCD exposure. The similarities between VCD's effects in vitro and in vivo demonstrate the usefulness of this system for future mechanistic studies related to ovarian follicle loss induced by VCD or other ovotoxic chemicals. PMID:12408955

  20. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  1. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    PubMed Central

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  2. Effect of quercetine on survival and morphological properties of cultured embryonic rat spinal motoneurones.

    PubMed

    Ternaux, Jean-Pierre; Portalier, Paule

    2002-10-25

    Quercetine a flavonoid compound present in many plants and in the extract of Ginkgo biloba was shown to enhance the survival of purified rat spinal embryonic motoneurones, sampled at day embryonic 15 and maintained in culture for several days. Survival of embryonic spinal motoneurones is dose dependent and concentrations of quercetine ranging from 1 to 10 microM increase by 25% the number of living motoneurones in the culture. Excepted a slight significant decrease in the number of branches at day 3 and a small reduction of total neuritic length, no drastic changes in the motoneurones morphologies were observed in presence of quercetine. Results are discussed in term of neuronal protective effect of quercetine. PMID:12377378

  3. Pulse exposure of cultured rat neurons to aluminum-maltol affected the axonal transport system.

    PubMed

    Kashiwagi, Y; Nakamura, Y; Miyamae, Y; Hashimoto, R; Takeda, M

    1998-08-01

    Although chronic aluminum neurotoxicity has been well established, the mechanism of the toxicity has not been elucidated yet. In order to simplify the study of the aluminum neurotoxicity, we employed the pulse exposure of cultured rat cortical neurons to 250 microM aluminum-maltol for 1 h at the early stage (6 h after plating), which resulted in abnormal distribution of neurofilament L (NFL) and fast axonal transported proteins, whereas the axonal transport of tubulin, actin, and clathrin were not impaired. Otherwise, the pulse exposure of neurons at the late stage (4 days after plating) to the same concentration of aluminum-maltol did not affect the cell morphology and the distribution of NFL. The pulse exposure of cultured neurons to aluminum-maltol at the early stage might affect the axonal transport system of NFL and fast axonal transported proteins. PMID:9756345

  4. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    SciTech Connect

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-05-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts.

  5. Morphological changes in cultures of hippocampus following prenatal irradiation in the rat

    SciTech Connect

    Hamdorf, G.; Shahar, A.; Cervos-Navarro, J.; Scheffler, A.; Sparenberg, A.; Skoberla, A. )

    1990-07-01

    The effect of prenatal irradiation was studied in organotypic cultures of hippocampus, prepared from newborn rats that had been exposed to whole-body irradiation of 1 Gy from a {sup 60}Co-source at day 13 of pregnancy. Light and electron microscopic observations showed remarkable damage to neuronal mitochondria accompanied by extensive swelling, vacuolation of the Golgi complex, and formation of multilamellar bodies and vesicles of the lysosomal type. In contrast to neuronal alterations, no delay in synaptogenesis or onset of myelination was observed based upon the absence of significant morphological changes in synapses and myelin sheaths. Using this tissue culture model it could be confirmed that prenatal exposure to irradiation, even at low doses, induces specific morphological changes in the brain.

  6. Increased Oxidative and Nitrative Stress Accelerates Aging of the Retinal Vasculature in the Diabetic Retina

    PubMed Central

    Lamoke, Folami; Shaw, Sean; Yuan, Jianghe; Ananth, Sudha; Duncan, Michael; Martin, Pamela; Bartoli, Manuela

    2015-01-01

    Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress. PMID:26466127

  7. Detection of Retinitis Pigmentosa by Differential Interference Contrast Microscopy

    PubMed Central

    Kim, Yu Jeong; Lee, Hyunho; Cho, Joon Hyong; Cho, Young Ho; Kim, Chul-Ki; Lee, Taik Jin; Lee, Seok; Park, Ki Ho; Yu, Hyeong Gon; Lee, Hyuk-jae; Jun, Seong Chan; Kim, Jae Hun

    2014-01-01

    Differential interference contrast microscopy is designed to image unstained and transparent specimens by enhancing the contrast resulting from the Nomarski prism-effected optical path difference. Retinitis pigmentosa, one of the most common inherited retinal diseases, is characterized by progressive loss of photoreceptors. In this study, Differential interference contrast microscopy was evaluated as a new and simple application for observation of the retinal photoreceptor layer and retinitis pigmentosa diagnostics and monitoring. Retinal tissues of Royal College of Surgeons rats and retinal-degeneration mice, both well-established animal models for the disease, were prepared as flatmounts and histological sections representing different elapsed times since the occurrence of the disease. Under the microscopy, the retinal flatmounts showed that the mosaic pattern of the photoreceptor layer was irregular and partly collapsed at the early stage of retinitis pigmentosa, and, by the advanced stage, amorphous. The histological sections, similarly, showed thinning of the photoreceptor layer at the early stage and loss of the outer nuclear layer by the advanced stage. To count and compare the number of photoreceptors in the normal and early-retinitis pigmentosa-stage tissues, an automated cell-counting program designed with MATLAB, a numerical computing language, using a morphological reconstruction method, was applied to the differential interference contrast microscopic images. The number of cells significantly decreased, on average, from 282 to 143 cells for the Royal College of Surgeons rats and from 255 to 170 for the retinal-degeneration mouse. We successfully demonstrated the potential of the differential interference contrast microscopy technique’s application to the diagnosis and monitoring of RP. PMID:24810005

  8. Generation of rhythmic patterns of activity by ventral interneurones in rat organotypic spinal slice culture

    PubMed Central

    Ballerini, Laura; Galante, Micaela; Grandolfo, Micaela; Nistri, Andrea

    1999-01-01

    In the presence of certain excitatory substances the rat isolated spinal cord generates rhythmic oscillations believed to be an in-built locomotor programme (fictive locomotion). However, it is unknown whether a long-term culture of the same tissue can express rhythmic activity. Such a simplified model system would provide useful data on the minimal circuitry involved and the cellular mechanisms mediating this phenomenon. For this purpose we performed patch clamp recording (under whole-cell voltage or current clamp conditions) from visually identified ventral horn interneurones of an organotypic slice culture of the rat spinal cord. Ventral horn interneurones expressed rhythmic bursting when the extracellular [K+] was raised from 4 to 6-7 mM. Under voltage clamp this activity consisted of composite synaptic currents grouped into bursts lasting 0.9 ± 0.5 s (2.8 ± 1.5 s period) and was generated at network level as it was blocked by tetrodotoxin or low-Ca2+-high-Mg2+ solution and its periodicity was unchanged at different potential levels. In current clamp mode bursting was usually observed as episodes comprising early depolarizing potentials followed by hyperpolarizing events with tight temporal patterning. Bursting was fully suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced in amplitude and duration by N-methyl-D-aspartate (NMDA) receptor antagonism without change in periodicity. Extracellular field recording showed bursting activity over a wide area of the ventral horn. Regular, rhythmic activity similar to that induced by K+ also appeared spontaneously in Mg2+-free solution. The much slower rhythmic pattern induced by strychnine and bicuculline was also accelerated by high-K+ solution. The fast and regular rhythmic activity of interneurones in the spinal organotypic culture is a novel observation which suggests that the oversimplified circuit present in this culture is a useful model for investigating spinal rhythmic activity. PMID:10332095

  9. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    PubMed

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells. PMID:27297901

  10. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  11. The retinal ciliopathies.

    PubMed

    Adams, N A; Awadein, Ahmed; Toma, Hassanain S

    2007-09-01

    While the functions of many of the proteins located in or associated with the photoreceptor cilia are poorly understood, disruption of the function of these proteins may result in a wide variety of phenotypes ranging from isolated retinal degeneration to more pleiotropic phenotypes. Systemic findings include neurosensory hearing loss, developmental delay, situs-inversus, infertility, disorders of limb and digit development, obesity, kidney disease, liver disease, and respiratory disease. The concept of "retinal ciliopathies" brings to attention the importance of further molecular analysis of this organelle as well as provides a potential common target for therapies for these disorders. The retinal ciliopathies include retinitis pigmentosa, macular degeneration, cone-dystrophy, cone-rod dystrophy, Leber congenital amaurosis, as well as retinal degenerations associated with Usher syndrome, primary ciliary dyskinesia, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, Laurence-Moon syndrome, McKusick-Kaufman syndrome, and Biemond syndrome. Mutations for these disorders have been found in retinitis pigmentosa-1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), retinitis pigmentosa GTPase regulator interacting protein (RPGR-IP), as well as the Usher, Bardet-Biedl, and nephronophthisis genes. Other systemic disorders associated with retinal degenerations that may also involve ciliary abnormalities include: Alstrom, Edwards-Sethi, Ellis-van Creveld, Jeune, Meckel-Gruber, Orofaciodigital Type 9, and Gurrieri syndromes. Understanding these conditions as ciliopathies may help the ophthalmologist to recognize associations between seemingly unrelated diseases and have a high degree of suspicion that a systemic finding may be present. PMID:17896309

  12. Screening retinal transplants with Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  13. Development of Animal Models of Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Kung, Jennifer; Beier, Corinne; Mandel, Yossi; Dalal, Roopa; Huie, Philip; Wang, Jenny; Lee, Seungjun; Sher, Alexander; Jones, Bryan William; Palanker, Daniel

    2015-01-01

    Purpose Development of nongenetic animal models of local retinal degeneration is essential for studies of retinal pathologies, such as chronic retinal detachment or age-related macular degeneration. We present two different methods to induce a highly localized retinal degeneration with precise onset time, that can be applied to a broad range of species in laboratory use. Methods A 30-μm thin polymer sheet was implanted subretinally in wild-type (WT) rats. The effects of chronic retinal separation from the RPE were studied using histology and immunohistochemistry. Another approach is applicable to species with avascular retina, such as rabbits, where the photoreceptors and RPE were thermally ablated over large areas, using a high power scanning laser. Results Photoreceptors above the subretinal implant in rats degenerated over time, with 80% of the outer nuclear layer disappearing within a month, and the rest by 3 months. Similar loss was obtained by selective photocoagulation with a scanning laser. Cells in the inner nuclear layer and ganglion cell layer were preserved in both cases. However, there were signs of rewiring and decrease in the size of the bipolar cell terminals in the damaged areas. Conclusions Both methods induce highly reproducible degeneration of photoreceptors over a defined area, with complete preservation of the inner retinal neurons during the 3-month follow-up. They provide a reliable platform for studies of local retinal degeneration and development of therapeutic strategies in a wide variety of species. PMID:26207299

  14. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model.

    PubMed

    McManus, Michael C; Boland, Eugene D; Simpson, David G; Barnes, Catherine P; Bowlin, Gary L

    2007-05-01

    Fibrinogen has a well-established tissue engineering track record because of its ability to induce improved cellular interaction and scaffold remodeling compared to synthetic scaffolds. While the feasibility of electrospinning fibrinogen scaffolds of submicron diameter fibers and their mechanical properties have been demonstrated, in vitro cellular interaction has not yet been evaluated. The goal of this study was to demonstrate, based on cellular interaction and scaffold remodeling, that electrospun fibrinogen can be used successfully as a tissue engineering scaffold. Electrospun fibrinogen scaffolds were disinfected, seeded with neonatal rat cardiac fibroblasts, and cultured for 2, 7, and 14 days. Cultures were treated to regulate scaffold degradation by either supplementing serum-containing media with aprotinin or crosslinking the scaffolds with glutaraldehyde vapor. Biocompatibility was assessed through a WST-1 cell proliferation assay. Postculture scaffolds were evaluated by scanning electron microscopy and histology. Cell culture demonstrated that fibroblasts readily migrate into and remodel electrospun fibrinogen scaffolds with deposition of native collagen. Supplementation of culture media with different concentrations of aprotinin-modulated scaffold degradation in a predictable fashion, but glutaraldehyde vapor fixation was less reliable. Based on the observed cellular interactions, there is tremendous potential for electrospun fibrinogen as a tissue engineering scaffold. PMID:17120217

  15. Preparation and culture of rat lens epithelial explants for studying terminal differentiation.

    PubMed

    Zelenka, Peggy S; Gao, Chun Y; Saravanamuthu, Senthil S

    2009-01-01

    The anterior surface of the ocular lens is covered by a monolayer of epithelial cells, which proliferate in an annular zone underlying the ciliary body. Following division, these cells migrate posteriorly, where FGF diffusing from the retina induces them to differentiate into a posterior array of elongated lens fiber cells, which compose the bulk of the lens. Differentiation of lens epithelial cells into lens fibers can be induced in vitro by culturing explants of the central region of the anterior epithelium in the presence of FGF-2. Explants are prepared from lenses of neonatal rats by removing the lens from the eye and grasping the lens capsule on the posterior side with dissecting tweezers. The posterior capsule is then gently torn open and pressed down into the plastic bottom of a tissue culture dish. The peripheral regions of the explant are removed with a scalpel and the central area is then cultured in the presence of 100 ng/ml FGF-2 for as long as 2-3 weeks, depending on the parameters to be studied. Since epithelial cells in cultured explants differentiate in approximate synchrony over a period of days to weeks, the time course of signaling and gene expression can be determined using molecular, biochemical, and pharmacological techniques. Immunofluorescence microscopy is a powerful adjunct to these methods as it demonstrates the subcellular localization of proteins of interest and can reveal the physiological consequences of experimental manipulations of signaling pathways. PMID:19773734

  16. Neuronal-enriched cultures from embryonic rat ventral mesencephalon for pharmacological studies of dopamine neurons.

    PubMed

    Pardo, B; Paíno, C L; Casarejos, M J; Mena, M A

    1997-05-01

    The method described herein provides a convenient and rapid procedure to obtain enriched neuronal cultures containing reproducible numbers of dopamine (DA) cells. These cultures allow experimental paradigms designed to study the effect of drugs on DA neurons without astroglial mediation. Neuronal-enriched cultures are prepared from the mesencephalon of rat embryos at the 14th day of gestation (E14). At that moment, DA cells of the developing substantia nigra are located ventrally at the level of the mesencephalic flexure. Because the neurons of the pars compacta are mostly born between E12 and E15, E14 corresponds to an optimal stage for obtaining a high survival of DA cells. A defined medium (EF12) allows the maturation of DA neurons and reduces drastically the number of astrocytes. After 7 days in vitro (DIV) in EF12, the cultures contain 2-5% astrocytes (GFAP+ cells) and DA neurons represent 0.5-2% of the cells, as assessed by immunostaining to tyrosine hydroxylase (TH). The function of DA neurons is assessed by [3H]DA uptake and of those non-DA neurons by the high affinity [3H]GABA uptake. Cell survival is assessed by Trypan blue dye exclusion. PMID:9385075

  17. Rat vascular smooth muscle cells in culture contract upon Ca2+ repletion after depletion.

    PubMed Central

    Kobayashi, S.; Kanaide, H.; Hasegawa, M.; Yamamoto, H.; Nakamura, M.

    1985-01-01

    We investigated the effects of Ca2+-repletion following depletion on cultured vascular smooth muscle cells (SMCs) from the rat aorta. With Ca2+-repletion, the cells in primary cultures contracted, as indicated by a decrease in cell area. The process was slow (30 min to maximum effect) and reversible (relaxation completed by 120 min). Contraction during Ca2+-repletion was never observed in subcultured cells. The SMCs in primary culture after treatment maintained the ability to grow and to exclude dye, with a normal plating efficiency. There was no treatment-related additional leakage of intracellular enzymes, LDH and CPK, into the medium. Ca2+-repletion at first accelerated the 45Ca uptake by SMCs (1-5 min after repletion) and then increased Ca2+ efflux after about 10 min of Ca2+-repletion. We conclude that Ca2+-repletion after depletion induces a transient and reversible contraction of vascular SMCs in primary culture, without cell injury and in association with a transient increase in Ca2+ influx and then efflux. This phenomenon may relate to the decrease in perfusion flow in hearts and kidneys during Ca2+-repletion after depletion (Ca2+-paradox). Images Fig. 1 Fig. 3 PMID:4084451

  18. Extracellular calcium protects cultured rat hepatocytes from injury caused by hypothermic preservation.

    PubMed

    Umeshita, K; Monden, M; Fujimori, T; Sakai, H; Gotoh, M; Okamura, J; Mori, T

    1988-04-01

    Effects of various preservation solutions were compared in an experimental hypothermic preservation model using cultured rat hepatocytes. Hepatocytes prepared by the collagenase perfusion method were cultured for 48 hr, then the medium in each culture dish was exchanged for various preservation solutions, and the dishes were hypothermically (0-2 degrees C) stored in a refrigerator for 12-72 hr. After the preservation period, the hepatocytes were cultured again at 37 degrees C for 2 hr. Hepatocytes' viability after 18-hr preservation and reculture was greater when they were preserved in "intracellular" rather than "extracellular" solutions. Even with Euro-Collins solution (intracellular solution), hepatocyte viability decreased to approximately 20% after 24-hr preservation, and an increase in the cellular lipid peroxide content was observed. However, when this solution contained a submillimolar concentration of calcium, lipid peroxidation was significantly suppressed and hepatocyte viability was dramatically improved. Vitamin E was almost equally effective and a marked synergistic effect was observed with calcium. Calcium was found to be capable of maintaining the cellular glutathione level during cold storage, which seems to suppress lipid peroxidation and consequently improve hepatocyte survival. PMID:3371055

  19. Metabolism of tobacco-specific nitrosamines by cultured rat nasal mucosa

    SciTech Connect

    Brittebo, E.B.; Castonguay, A.; Furuya, K.; Hecht, S.S.

    1983-09-01

    The metabolism of two nasal carcinogens, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), was investigated using cultured nasal septa of F344 rats. The explants were cultured with 14C-labeled N-nitrosamines, and unbound metabolites present in the medium were quantitated by high-performance liquid chromatography. The results indicated that the mucosa of the nasal septum had a marked capacity to metabolize NNN and NNK to hydroxylated products which were released into the culture media. Extensive activation by alpha-carbon hydroxylation of NNN (preferentially 2'-carbon hydroxylation) and NNK was observed, whereas no deactivation by pyridine N-oxidation could be detected. Microautoradiographic studies of explants showed that binding of radioactivity occurred preferentially in the respiratory and olfactory epithelia and in the subepithelial glands of the nasal mucosa. The results suggest that reactive metabolites of NNN and NNK are formed within the target tissue rather than being transported from the liver to the nasal mucosa. The results also show that the culture of nasal septa can be used to ascertain the role of the nasal mucosa in the activation of nasal-specific carcinogens.

  20. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  1. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  2. Lysophosphatidic acid does not cause blood/lymphatic vessel plasticity in the rat mesentery culture model.

    PubMed

    Sweat, Richard S; Azimi, Mohammad S; Suarez-Martinez, Ariana D; Katakam, Prasad; Murfee, Walter L

    2016-07-01

    Understanding the mechanisms behind endothelial cell identity is crucial for the goal of manipulating microvascular networks. Lysophosphatidic acid (LPA) and serum stimulation have been suggested to induce a lymphatic identity in blood endothelial cells in vitro. The objective of this study was to determine if LPA or serum induces blood-to-lymphatic vessel phenotypic transition in microvascular networks. The rat mesentery culture model was used to observe the effect of stimulation on blood and lymphatic microvascular networks ex vivo. Vascularized mesenteric tissues were harvested from adult Wistar rats and cultured with LPA or 10% serum for up to 5 days. Tissues were then immunolabeled with PECAM to identify blood vessels and LYVE-1 or Prox1 to identify lymphatic vessels. We show that while LPA caused capillary sprouting and increased vascular length density in adult microvascular networks, LPA did not cause a blood-to-lymphatic phenotypic transition. The results suggest that LPA is not sufficient to cause blood endothelial cells to adopt a lymphatic identity in adult microvascular networks. Similarly, serum stimulation caused robust angiogenesis and increased lymphatic/blood vessel connections, yet did not induce a blood-to-lymphatic phenotypic transition. Our study highlights an understudied area of lymphatic research and warrants future investigation into the mechanisms responsible for the maintenance of blood and lymphatic vessel identity. PMID:27401461

  3. Characterization of metabotropic glutamate receptor-stimulated phosphoinositide hydrolysis in rat cultured cerebellar granule cells.

    PubMed Central

    Toms, N. J.; Jane, D. E.; Tse, H. W.; Roberts, P. J.

    1995-01-01

    1. The pharmacology of excitatory amino acid (EAA)-stimulated phosphoinositide (PI) hydrolysis, monitored via [3H]-inositol monophosphate accumulation, was investigated in primary cultures of rat cerebellar granule cells. 2. EAA-stimulated PI hydrolysis peaked after 4-5 days in vitro and subsequently declined. 3. The agonist order of potency was found to be (EC50): L-quisqualic acid (Quis) (2 microM) >> L-glutamate (50 microM) > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) (102 microM). L-Glutamate (Emax = 873% of basal activity) elicited the largest stimulation of PI hydrolysis, whereas Quis (Emax = 603%) and (1S,3R)-ACPD (Emax = 306%) produced somewhat lower stimulations. 4. Several phenylglycine derivatives were found to be active in inhibiting 2 microM Quis-stimulated PI hydrolysis, in order of potency (IC50): (S)-4-carboxy-3-hydroxyphenylglycine (41 microM) > or = (S)-4-carboxyphenylglycine (51 microM) >> (+)-alpha-methyl-4-carboxyphenylglycine (243 microM). 5. Cultured cerebellar granule cells of the rat appear to have Group I mGluR pharmacology similar to that reported for cloned mGluR1 and provide an ideal system for investigating novel mGluR1 ligands in a native environment. PMID:8680712

  4. Evaluation of the rat embryo culture system as a predictive test for human teratogens.

    PubMed

    Guest, I; Buttar, H S; Smith, S; Varma, D R

    1994-01-01

    Ingestion of the anticonvulsant drug valproic acid and of the angiotensin converting enzyme inhibitor captopril during pregnancy has been associated with abnormal fetal outcome in humans. In contrast, the use of the antiinflammatory drug ibuprofen and the antihistamine diphenhydramine has not been documented to be embryotoxic in humans. We evaluated the rat embryo culture system as a predictive model of teratogenesis, using these four drugs as test agents. Valproic acid, ibuprofen, and diphenhydramine were embryotoxic, inducing concentration-dependent decreases in growth and a significant increase in anomalies. Valproic acid caused an increase in neural tube defects, ibuprofen increased the incidence of abnormal maxillary processes, and diphenhydramine increased the number of embryos with distorted body morphology. These abnormalities were induced at concentrations of valproic acid and diphenhydramine that are used clinically, but ibuprofen only induced toxicity at concentrations greatly exceeding the therapeutic range. Captopril was not embryotoxic up to 5 mM, the highest concentration tested. These results suggest that the rat embryo culture system produces both false positive and false negative data on the teratogenic potential of drugs. Although such an in vitro assay may be suitable to determine the mechanism of teratogenesis, it is not a sensitive indicator of potential human teratogens on its own. These data support the view that in vitro systems can only supplement clinical and epidemiological observations in humans, possibly as a method to determine mechanisms of actions of teratogens. PMID:8012899

  5. Improved clonal and nonclonal growth of human, rat and bovine adrenocortical cells in culture.

    PubMed

    McAllister, J M; Hornsby, P J

    1987-10-01

    This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determined by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblast overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had similar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortical cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and increased the cloning efficiency of cultured bovine adrenocortical cells. PMID:3667487

  6. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    SciTech Connect

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  7. Safety and Efficacy of Suicide Gene Therapy with Adenosine Deaminase 5-Fluorocytosine Silmutaneously in in Vitro Cultures of Melanoma and Retinal Cell Lines

    PubMed Central

    Sakkas, Antonios; Zarogoulidis, Paul; Domvri, Kalliopi; Hohenforst-Schmidt, Wolfgang; Bougiouklis, Dimitris; Kakolyris, Stylianos; Zarampoukas, Thomas; Kioumis, Ioannis; Pitsiou, Georgia; Huang, Haidong; Li, Qiang; Meditskou, Soultana; Tsiouda, Theodora; Pezirkianidis, Nikolaos; Zarogoulidis, Konstantinos

    2014-01-01

    Local treatment as a treatment modality is gaining increased general acceptance over time. Novel drugs and methodologies of local administration are being investigated in an effort to achieve disease local control. Suicide gene therapy is a method that has been investigated as a local treatment with simultaneously distant disease control. In our current experiment we purchased HTB-70 (melanoma cell line, derived from metastatic axillary node) and CRL-2302 (human retinal epithelium) were from ATCC LGC Standards and Ancotil®, 2.5 g/250 ml (1 g/00ml) (5-Flucytosine) MEDA; Pharmaceuticals Ltd. UK. Adenosine Cytosine Deaminase (Ad.CD) was also used in order to convert the pro-drug 5-Flucytosine to the active 5-Fluoracil. Three different concentrations of 5-Flucytosine (5-FC) were administered (0.2ml, 0.8ml and 1.2ml). At indicated time-points (4h, 8h and 24h) cell viability and apoptosis were measured. Our concept was to investigate whether suicide gene therapy with Ad. CD-5-FC could be used with safety and efficiency as a future local treatment for melanoma located in the eye cavity. Indeed, our results indicated that in every 5-FC administration had mild cytotoxicity for the retinal cells, while increased apoptosis was observed for the melanoma cell line. PMID:24799955

  8. Safety and efficacy of suicide gene therapy with adenosine deaminase 5-fluorocytosine silmutaneously in in vitro cultures of melanoma and retinal cell lines.

    PubMed

    Sakkas, Antonios; Zarogoulidis, Paul; Domvri, Kalliopi; Hohenforst-Schmidt, Wolfgang; Bougiouklis, Dimitris; Kakolyris, Stylianos; Zarampoukas, Thomas; Kioumis, Ioannis; Pitsiou, Georgia; Huang, Haidong; Li, Qiang; Meditskou, Soultana; Tsiouda, Theodora; Pezirkianidis, Nikolaos; Zarogoulidis, Konstantinos

    2014-01-01

    Local treatment as a treatment modality is gaining increased general acceptance over time. Novel drugs and methodologies of local administration are being investigated in an effort to achieve disease local control. Suicide gene therapy is a method that has been investigated as a local treatment with simultaneously distant disease control. In our current experiment we purchased HTB-70 (melanoma cell line, derived from metastatic axillary node) and CRL-2302 (human retinal epithelium) were from ATCC LGC Standards and Ancotil(®), 2.5 g/250 ml (1 g/00ml) (5-Flucytosine) MEDA; Pharmaceuticals Ltd. UK. Adenosine Cytosine Deaminase (Ad.CD) was also used in order to convert the pro-drug 5-Flucytosine to the active 5-Fluoracil. Three different concentrations of 5-Flucytosine (5-FC) were administered (0.2ml, 0.8ml and 1.2ml). At indicated time-points (4h, 8h and 24h) cell viability and apoptosis were measured. Our concept was to investigate whether suicide gene therapy with Ad. CD-5-FC could be used with safety and efficiency as a future local treatment for melanoma located in the eye cavity. Indeed, our results indicated that in every 5-FC administration had mild cytotoxicity for the retinal cells, while increased apoptosis was observed for the melanoma cell line. PMID:24799955

  9. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  10. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone.

    PubMed

    Johnson, Timothy E; Zhang, Xiaohua; Bleicher, Kimberly B; Dysart, Gary; Loughlin, Amy F; Schaefer, William H; Umbenhauer, Diane R

    2004-11-01

    Statins are widely used to treat lipid disorders. These drugs are safe and well tolerated; however, in <1% of patients, myopathy and/or rhabdomyolysis can develop. To better understand the mechanism of statin-induced myopathy, we examined the ability of structurally distinct statins to induce apoptosis in an optimized rat myotube model. Compound A (a lactone) and Cerivastatin (an open acid) induced apoptosis, as measured by TUNEL and active caspase 3 staining, in a concentration- and time-dependent manner. In contrast, an epimer of Compound A (Compound B) exhibited a much weaker apoptotic response. Statin-induced apoptosis was completely prevented by mevalonate or geranylgeraniol, but not by farnesol. Zaragozic acid A, a squalene synthase inhibitor, caused no apoptosis on its own and had no effect on Compound-A-induced myotoxicity, suggesting the apoptosis was not a result of cholesterol synthesis inhibition. The geranylgeranyl transferase inhibitors GGTI-2133 and GGTI-2147 caused apoptosis in myotubes; the farnesyl transferase inhibitor FTI-277 exhibited a much weaker effect. In addition, the prenylation of rap1a, a geranylgeranylated protein, was inhibited by Compound A in myotubes at concentrations that induced apoptosis. A similar statin-induced apoptosis profile was seen in human myotube cultures but primary rat hepatocytes were about 200-fold more resistant to statin-induced apoptosis. Although the statin-induced hepatotoxicity could be attenuated with mevalonate, no effect was found with either geranylgeraniol or farnesol. In studies assessing ubiquinone levels after statin treatment in rat and human myotubes, there was no correlation between ubiquinone levels and apoptosis. Taken together, these observations suggest that statins cause apoptosis in myotube cultures in part by inhibiting the geranylgeranylation of proteins, but not by suppressing ubiquinone concentration. Furthermore, the data from primary hepatocytes suggests a cell-type differential

  11. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    SciTech Connect

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.

  12. Effects of cerebro-protective agents on enzyme activities of rat primary glial cultures and rat cerebral cortex.

    PubMed

    Bielenberg, G W; Hayn, C; Krieglstein, J

    1986-08-15

    The effects of different cerebro-protective agents on selected key enzymes of the energy metabolism of rat primary glial cultures and rat cerebral cortex were studied. As indicators for the capacity of the most important pathways of energy metabolism the following enzyme activities were determined: hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G-6-P-DH), malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), and cytochrome-c-reductase (CCR). After a one week growth period, rat glial cultures were incubated for 3 or 4 weeks with the substances to be tested. Bencyclane (5 X 10(-5) mol/l) increased the activities of HK, G-6-P-DH, and LDH, whereas PFK and CCR were reduced. Pyritinol (10(-4) mol/l) led to a higher G-6-P-DH activity, simultaneously lowering the values for PFK, CCR, PK, LDH, and MDH. Under the influence of an extract of the leaves of Ginkgo bilobae (EGB; 100 mg/l) PFK, LDH, and MDH activities were reduced. All these alterations in enzyme activities went along with simultaneous reductions in protein content, therefore not allowing to exclude toxic effects with regard to the doses used. Moreover, direct interference with the analytical procedure was demonstrable for bencyclane and EGB. Piracetam (10(-3) mol/l), flunarizine (10(-6) mol/l), dihydroergocristine (5 X 10(-6) mol/l), and nicergoline (5 X 10(-6) mol/l) failed to induce any alteration in the employed doses. The most striking effects were obtained with meclofenoxate which was tested at 10(-3) and 10(-4) mol/l. The higher dose caused an elevation of HK, PFK, CCR, G-6-P-DH, GDH and MDH activities, while slightly reducing PK. With the lower dose of meclofenoxate CCR and G-6-P-DH activities were increased. Short-term incubation of the cultures with 10(-3) mol/l meclofenoxate for 24 hr led to an increase in LDH, G-6-P-DH, and GDH activities. Chronic incubation with meclofenoxate (10(-3) mol/l) followed by 48 hr

  13. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  14. Intravital video microscopy measurements of retinal blood flow in mice.

    PubMed

    Harris, Norman R; Watts, Megan N; Leskova, Wendy

    2013-01-01

    Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats. PMID:24429840

  15. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons

    PubMed Central

    Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P

    2016-01-01

    Background Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Results Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Conclusion Mycolactone

  16. Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

    PubMed Central

    2015-01-01

    In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-La2O3 in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-La2O3, respectively. Similar to the RAW264.7 cells, the toxicity of nano-La2O3 was stronger than that of micro-La2O3 in the A549 cells. We found that nano-La2O3 was absorbed in the lungs more and was eliminated more slowly than micro-La2O3. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure. PMID:26191385

  17. Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation.

    PubMed

    Song, M S; Rauw, G; Baker, G B; Kar, S

    2008-11-01

    It has been suggested that accumulation of beta-amyloid (Abeta) peptide triggers neurodegeneration, at least in part, via glutamate-mediated excitotoxicity in Alzheimer's disease (AD) brain. This is supported by observations that toxicity induced by Abeta peptide in cultured neurons and in adult rat brain is known to be mediated by activation of glutamatergic N-methyl-d-aspartate (NMDA) receptors. Additionally, recent clinical studies have shown that memantine, a noncompetitive NMDA receptor antagonist, can significantly improve cognitive functions in some AD patients. However, very little is currently known about the potential role of memantine against Abeta-induced toxicity. In the present study, we have shown that Abeta(1-42)-induced toxicity in rat primary cortical cultured neurons is accompanied by increased extracellular and decreased intracellular glutamate levels. We subsequently demonstrated that Abeta toxicity is induced by increased phosphorylation of tau protein and activation of tau kinases, i.e. glycogen synthase kinase-3beta and extracellular signal-related kinase 1/2. Additionally, Abeta treatment induced cleavage of caspase-3 and decreased phosphorylation of cyclic AMP response element binding protein, which are critical in determining survival of neurons. Memantine treatment significantly protected cultured neurons against Abeta-induced toxicity by attenuating tau-phosphorylation and its associated signaling mechanisms. However, this drug did not alter either conformation or internalization of Abeta(1-42) and it was unable to attenuate Abeta-induced potentiation of extracellular glutamate levels. These results, taken together, provide new insights into the possible neuroprotective action of memantine in AD pathology. PMID:19046381

  18. A 90-Day Subchronic Toxicity Study of Submerged Mycelial Culture of Cordyceps cicadae (Ascomycetes) in Rats.

    PubMed

    Chen, Yen-Lien; Yeh, Shu-Hsing; Lin, Ting-Wei; Chen, Chin-Chu; Chen, Chin-Shuh; Kuo, Chia-Feng

    2015-01-01

    Cordyceps cicadae is a parasitic fungus that hibernates inside a host (Cicada flammata Dist.) and then grows its fruiting body on the surface of the insect. The complete insect/fungus combination of C. cicadae has been widely applied in Chinese traditional medicine. Recent studies have demonstrated that the medicinal benefits of cultured mycelia are as effective as those found in the wild. However, toxicological information regarding the chronic consumption of C. cicadae mycelia culture is not available. This study was conducted to evaluate the possible toxicity arising from repeated exposure to freeze-dried submerged mycelial culture of C. cicadae for 90 days. A total of eighty 8-week-old Sprague-Dawley rats were divided into 4 groups (10 males and 10 females in each group). C. cicadae was administered daily to animals by gavage at doses of 0, 500, 1000, and 2000 mg/kg body weight for 90 days. No animal deaths occurred and no treatment-related clinical signs were observed during the study period. No statistical differences in body weight gain, relative organ weight, hematology, serum chemistry, and urinalysis were observed. Gross necropsy and histopathological findings indicated that there was no treatment-related abnormality. Based on the results, the no observed adverse effect level of C. cicadae whole broth is determined to be > 2000 mg/kg for male and female Sprague-Dawley rats. The results of this study provides support for the use of C. cicadae fermentation product as a safe agent in functional food. PMID:26559863

  19. Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

    PubMed Central

    Zhang, Wei-Min; Zhang, Zhi-Ren; Zhang, Yong-Gang; Gao, Yan-Sheng

    2016-01-01

    Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose a cell-based system that provided sustained delivery of PEDF and compared the effect of weekly injections of PEDF and neural stem cell (NSC)-based intraocular administration of PEDF on retinal ganglion cell (RGC) survival and axon regeneration after optic nerve injury. Methods: Seventy-two rats were randomly assigned to 3 groups: group with injections of phosphate buffered saline (PBS) (n=24), group with weekly injections of PEDF (n=24), and group with NSC-based administration of PEDF (n=24). Western blot was used to analyze the PEDF protein level 2 weeks after injection. Retinal flat mounts and immunohistochemistry were employed to analyze RGC survival and axon regeneration 2 weeks and 4 weeks after injection. The data were analyzed with one-way ANOVA in SPSS (version 19.0). A P<0.05 was considered significant. Results: The PEDF protein level in the group with NSC-based administration of PEDF increased compared with that in the groups with injections of PEDF and PBS (P<0.05). The PEDF-modified NSCs differentiated into GFAP-positive astrocytes andβ-tubulin-III-positive neurons. NSC-based administration of PEDF effectively increased RGC survival and improved the axon regeneration of the optic nerve compared with weekly injections of PEDF. Conclusion: Subretinal space transplantation of PEDF-secreting NSCs sustained high concentrations of PEDF, differentiated into neurons and astrocytes, and significantly promoted RGC survival and axon regeneration after optic nerve injury. PMID:27582587

  20. VANISHING RETINAL DETACHMENT

    PubMed Central

    2015-01-01

    Purpose: The purpose of this report is to describe a case of rhegmatogenous retinal detachment in the setting of chronic kidney disease that exhibited complete retinal reattachment after serial hemodialysis. Methods: Retrospective case report. Results: A 58-year-old woman with acute vision loss was found to have a macula-involving rhegmatogenous retinal detachment. Due to chronic kidney disease, she continued with routinely scheduled hemodialysis for 1 week until surgical clearance was obtained. Preoperative examination revealed complete reattachment of the retina with a persistent retinal tear. Barrier laser was applied to the tear and the retina remained attached until the most recent follow-up 8 months later. The workup of alternate etiologies was unrevealing. Conclusion: This case describes a temporal association between hemodialysis and resolution of subretinal fluid due to rhegmatogenous retinal detachment. A potential causal linkage is suggested based on shifting fluid dynamics associated with hemodialysis. A shift in treatment paradigm is not advised. PMID:26352323

  1. Differentiation of adult rat bone marrow stem cells into epithelial progenitor cells in culture.

    PubMed

    Shu, Chang; Li, Ting Yu; Tsang, Lai Ling; Fok, Kin Lam; Lo, Pui Shan; Zhu, Jin Xia; Ho, Lo Sze; Chung, Yiu Wa; Chan, Hsiao Chang

    2006-10-01

    We have previously obtained monoclonal bone marrow stem cells from adult rats (rMSCs) and induced them into phenotypic neurons. In the present study, we aimed to induce rMSCs into epithelial cells by culturing them onto compartmentalized permeable supports, which have been used for growing a variety of polarized epithelia in culture. Hematoxylin staining showed that after 4 days grown on permeable supports, rMSCs formed an epithelial-like monolayer. Immunofluorescence of the permeably-supported monolayers, but not the rMSCs grown in culture flasks, showed positive signals for epithelial markers, cytokeratin 5 & 8. RT-PCR results also showed the mRNA expression of epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) as well as tight junction protein ZO-1 in the rMSC-derived monolayers grown on permeable supports but absent from those grown in culture flasks. However, western blot only detected protein expression of ZO-1 but not ENaC nor CFTR. The short-circuit current measurements showed that the rMSC-derived monolayers grown on permeable supports exhibited a trans-monolayer resistance of 30-50 Omega cm(2); however, the monolayers did not respond to activators or blockers of CFTR or ENaC. The results suggest that compartmentalized or polarized culture conditions provide a suitable environment for rMSCs to differentiate into epithelial progenitor cells with tight junction formation; however, this condition is not sufficient for functional expression of epithelial ion channels associated with well-differentiated epithelia. PMID:16877014

  2. Ellagic acid metabolism and binding to DNA in organ explant cultures of the rat.

    PubMed

    Teel, R W; Martin, R M; Allahyari, R

    1987-08-01

    Ellagic acid (EA) is a plant phenolic compound with postulated antimutagenic and anticarcinogenic activity. In this study, explants of esophagus, forestomach, colon, bladder, trachea, lung and liver from male Sprague-Dawley rats (130-140 g) were incubated in culture medium containing [3H]EA (20 microM, 4.5 microCi/ml) for 24 h at 37 degrees C. After extraction, purification and quantitation of explant DNA significant differences in the binding of EA to the DNA was observed. The most binding occurred in esophagus and the least in lung. Analysis of the organsoluble fraction of the culture medium by high performance liquid chromatography yielded 3 metabolites of EA. None of the metabolites were identified. Elution of water-soluble metabolites from an alumina column showed that there were sulfate ester, glucuronide and glutathione conjugates of EA in the explant culture medium from all the organs. The profile of water-soluble conjugates was very similar between colon and forestomach and between trachea and lung. These results indicate that EA binds to DNA in different tissues and that tissues metabolize EA to both organosoluble and water-soluble products. PMID:3621152

  3. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium.

    PubMed Central

    Saneto, R P; de Vellis, J

    1985-01-01

    A serumless, chemically defined medium has been developed for the culture of oligodendrocytes isolated from primary neonatal rat cerebral cultures. Combined together, insulin, transferrin, and fibroblast growth factor synergistically induced an essentially homogenous population (95-98%) of cells expressing glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) activity to undergo cell division. Proliferating cels were characterized by several criteria: (i) ultrastructural analysis by transmission electron microscopy identified the cell type as an oligodendrocyte; (ii) biochemical assays showed expression of three oligodendrocyte biochemical markers, induction of both glycerol phosphate dehydrogenase and lactate dehydrogenase (EC 1.1.1.27), and presence of 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37); and (iii) immunocytochemical staining showed cultures to be 95-98% positive for glycerol phosphate dehydrogenase, 90% for myelin basic protein, 60-70% for galactocerebroside, and 70% for A2B5. Few cells (less than 5%) stained positive for glial fibrillary acidic protein, and none were detected positive for fibronectin. Images PMID:2987930

  4. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  5. Effects of vigabatrin and of GABA on myelinated rat cerebellar cultures

    PubMed Central

    Hauw, J. J.; Boutry, J. M.; Sun, P.; Sazdovitch, V.; Duyckaerts, C.

    1989-01-01

    1 The aim of this study was to evaluate the effect of high concentrations of vigabatrin (γ-vinyl GABA) and of GABA on myelin of the central nervous system cultures. 2 Explants of rat cerebellum were cultured for 14-19 days in vitro on collagen-coated coverslips in Leighton tubes. They were exposed for up to 14 days to 500 nmol ml-1 vigabatrin or to 1000 nmol ml-1 GABA. 3 Qualitative and quantitative blind examination of living cultures and of Sudan black B-stained slides showed mild toxicity of both drugs for myelinated fibres. No clear-cut differences could be demonstrated between the two compounds, although vigabatrin seemed slightly more toxic than GABA at these doses. 4 In electron microscopy, no patent intramyelinic oedema nor primary demyelination were seen. On the contrary, some degenerating myelinated fibres and astrocytic gliosis were seen in both experimental conditions. The changes involved axons as well as myelin sheaths. 5 The toxicity of GABA and vigabatrin was surprisingly mild in this very sensitive model. ImagesFigure 1Figure 2 PMID:2757909

  6. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    SciTech Connect

    Brouwer, A.; Knook, D.L.

    1982-10-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA /sup 125/I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA /sup 125/I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA /sup 125/I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA /sup 125/I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA /sup 125/I. The intracellular degradation of CA /sup 125/I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA /sup 125/I occurred within the Kupffer cell lysosomes.

  7. Protective role of intracellular glutathione against ethanol-induced damage in cultured rat gastric mucosal cells

    SciTech Connect

    Mutoh, H.; Hiraishi, H.; Ota, S.; Yoshida, H.; Ivey, K.J.; Terano, A.; Sugimoto, T. )

    1990-06-01

    This study investigated whether intracellular glutathione is cytoprotective against ethanol-induced injury to cultured rat gastric mucosal cells in vitro. Secondly, it investigated whether reduced glutathione or oxidized glutathione is responsible for this cytoprotection. Cytolysis was quantified by measuring 51Cr release from prelabeled cells. Concentrations of ethanol greater than 12% caused cell damage and increased 51Cr release in a dose-dependent and time-related fashion. When a substrate for glutathione synthesis, N-acetyl-L-cysteine, was provided to cultured cells for 4 h before challenge with ethanol, cytolysis was significantly decreased corresponding with an increase in cellular glutathione content. Pretreatment with diethyl maleate, which depletes reduced glutathione without forming oxidized glutathione, potentiated ethanol-induced cell damage in a dose-dependent manner with the decrease of cellular glutathione content. The administration of tert-butyl hydroperoxide (which is specifically reduced by glutathione peroxidase to generate oxidized glutathione from reduced glutathione) or diamide (which nonenzymatically oxidizes reduced glutathione to oxidized glutathione) enhanced ethanol injury. We conclude that in cultured gastric mucosal cells, (a) intracellular glutathione maintains integrity of gastric mucosal cells against ethanol in vitro; and (b) reduced glutathione rather than oxidized glutathione is responsible for this cytoprotection. We postulate that the presence of reduced glutathione is essential to allow glutathione peroxidase to catalyze the ethanol-generated toxic oxygen radical, hydrogen peroxide.

  8. Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins.

    PubMed

    Dieterich, Daniela C; Trivedi, Niraj; Engelmann, Ralf; Gundelfinger, Eckart D; Gordon-Weeks, Phillip R; Kreutz, Michael R

    2002-05-01

    In a screen to identify genes that are expressed differentially in the retina after partial optic nerve crush, we identified MAP1B as an up-regulated transcript. Western blot analysis of inner retina protein preparations confirmed changes in the protein composition of the microtubule-associated cytoskeleton of crushed vs. uncrushed nerve. MAP1B immunoreactivity and transcript levels were elevated for two weeks after crush. Immunostaining and Western blots with monoclonal antibodies directed against developmentally regulated phosphorylation sites on MAP1B revealed a gradient of MAP1B phosphorylation from the proximal optic nerve stump to the soma of retinal ganglion cells. Most interestingly, using antibodies directed against developmentally regulated phosphorylation sites on MAP1B, we observed that a significant number of crushed optic nerve axons develop MAP1B-immunopositive growth cones, which cross the crush site and migrate along the distal nerve fragment. In parallel, an abnormal distribution of highly phosphorylated neurofilament protein (pNF-H) in the cell soma and dendrites of presumably axotomized retinal ganglion cells was observed following partial nerve crush. This redistribution is present for the period between day 7 and 28 postcrush and is not seen in cells that stay connected to the superior colliculus. Axotomized ganglion cells, which contain pNF-H in soma and dendrites appear to have been disconnected from the colliculus at an early stage but survive axonal trauma for long periods. PMID:12028353

  9. Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices

    PubMed Central

    Borlak, Jürgen; Singh, Prafull Kumar; Rittelmeyer, Ina

    2015-01-01

    Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency

  10. STEROIDOGENIC ASSESSMENT USING OVARY CULTURE IN CYCLING RATS: EFFECTS OF BIS(2-DIETHYLHEXYL) PHTHALATE ON OVARIAN STEROID PRODUCTION

    EPA Science Inventory

    In vitro whole-ovary culture in rats was used to characterize ovarian steroidogenesis and to evaluate changes produced by In vivo exposure to bis (2-diethylhexyl) phthalate (DEHP). Steroidogenic profiles [progesterone (P4), estradiol (E2), and testosterone (T)] from minced ovary ...

  11. The morphology and cell culture of the striated musculature of the rat azygos vein.

    PubMed

    Cullinan, V; Campbell, J H; Mosse, P R; Campbell, G R

    1986-01-01

    The azygos vein of the rat can be divided into three regions: The proximal cardiac region, where the wall is composed of two and sometimes three layers of cardiac muscle and a thin discontinuous layer of smooth muscle cells. Vascular casts of this region demonstrate layers of capillaries closely following the orientation of the cardiac fibres. A transitional zone, where both cardiac and smooth muscle cells interdigitate. In this zone, close associations between smooth muscle and cardiac muscle cells can be observed, however, gap junctions do not appear to be present. Beyond this transitional zone the vessel resembles a typical thin-walled vein. The cells of the media of the entire length of azygous vein have been isolated and grown in culture and two separate viable populations identified corresponding to smooth and cardiac muscle. PMID:3510740

  12. In vitro metabolism and toxicity assessment of N-methylcarbazole in primary cultured rat hepatocytes.

    PubMed

    Yang, W; Jiang, T R; Davis, P J; Acosta, D

    1991-01-01

    N-Methycarbazole (NMC), a carcinogen and mutagen in tobacco smoke, was converted to two major metabolites by primary cultured rat hepatocytes as measured by high performance liquid chromatography (HPLC): N-hydroxymethylcarbazole (NHMC) and carbazole. These two metabolites had comparable retention times and identical ultraviolet spectra as those of reference standards. Identical retention times and mass spectra were also observed as detected by gas chromatography-mass spectroscopy (GC-MS) for NHMC and its reference standard. The toxicities of NMC and its two metabolites were assessed by lactate dehydrogenase (LDH) leakage and neutral red (NR) uptake. The rank order of cytotoxicity of NMC and its metabolites was found to be: NHMC greater than NMC greater than carbazole. Thus, we conclude that the hydroxylation of NMC to NHMC may represent a toxification step, while the further dealkylation to carbazole is most likely a detoxication process. PMID:1896996

  13. Differential Diagnosis of Retinal Vasculitis

    PubMed Central

    Abu El-Asrar, Ahmed M.; Herbort, Carl P.; Tabbara, Khalid F.

    2009-01-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with th