Science.gov

Sample records for current biotechnology abstracts

  1. Interfacing microbiology and biotechnology. Conference abstracts

    SciTech Connect

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  2. Geothermal Energy: Current abstracts

    SciTech Connect

    Ringe, A.C.

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  3. Extremophiles and biotechnology: current uses and prospects

    PubMed Central

    Coker, James A.

    2016-01-01

    Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology. PMID:27019700

  4. Seventeenth symposium on biotechnology for fuels and chemicals. Program and abstracts

    SciTech Connect

    1995-05-01

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  5. Eighteenth symposium on biotechnology for fuels and chemicals: Program and abstracts

    SciTech Connect

    1996-12-31

    This volume provides the proceedings for the Eighteenth Symposium on Biotechnology for Fuels and Chemicals held May 5-9, 1996 in Gatlinburg, Tennessee. The proceedings contains abstracts for oral and poster presentations.

  6. Twelfth symposium on biotechnology for fuels and chemicals: Program and abstracts

    SciTech Connect

    Scheitlin, F.M.

    1990-01-01

    This report is the program and abstracts of the twelfth symposium on biotechnology for fuels and chemicals, held on May 7--11, 1990, at Gatlinburg, Tennessee. The symposium, sponsored by the Department of Energy, Oak Ridge National Laboratory, Solar Energy Research Institute, Badger Engineers, Inc., Gas Research Institute, and American Chemical Society, consists of five sessions: Session 1, thermal, chemical, and biological processing; Session 2 and 3, applied biological research; Session 4, bioengineering research; and Session 5, biotechnology, bioengineering, and the solution of environmental problems. It also consists of a poster session of the same five subject categories.

  7. Biotechnology.

    ERIC Educational Resources Information Center

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  8. Current fungal biotechnologies: Guidelines useful for pulping and bleaching

    SciTech Connect

    Kirk, T.K.

    1996-10-01

    This symposium deals with the potential use of fungi in pulping wood and bleaching pulp. The fungi useful in this regard are higher basidiomycetes, which are nature`s major degraders of lignin. Their ligninolytic enzyme systems were discovered 14 years ago, and have been studied intensely since then. However, neither these enzymes nor the fungi themselves have been harnessed commercially in biotechnological processes-with the exception that some of the fungi are grown as food. Using the fungi in pulp manufacturing processes, therefore, must be approached without the benefit of direct guidelines, which increases the uncertainty and risk. It is instructive, therefore, to review current commercial fungal-based bio-technologies, components of which provide information useful to the development and evaluation of proposed processes. This paper will briefly review existing types of biotechnical processes that are based on filamentous fungi, and discuss how that information is being used to guide development of new processes for biopulping and biobleaching.

  9. Biotechnological production of muconic acid: current status and future prospects.

    PubMed

    Xie, Neng-Zhong; Liang, Hong; Huang, Ri-Bo; Xu, Ping

    2014-01-01

    Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering. PMID:24751381

  10. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  11. Current state and perspectives of truffle genetics and sustainable biotechnology.

    PubMed

    Poma, Anna; Limongi, Tania; Pacioni, Giovanni

    2006-09-01

    Mycorrhizal fungi belonging to the genus Tuber produce, after the establishment of a productive interaction with a plant host, hypogeous fruitbodies of great economic value known as ''truffles''. This review summarizes the state of art on life cycle, genetic, and biotechnological investigations of Tuber spp. The ascocarp formation in truffles is a consequence of the activation of the sexual phase of the biological cycle. The formation of a dikaryotic secondary mycelium and the karyogamy in the ascal cell (followed by meiosis with ascospores formation) have been hypothesized by several authors but some doubts yet arise from the Tuber cycle by considering that a series of abnormalities have been pointed out in respect to other Ascomycetes. It is unclear if binucleated hyphal cells are derived from the fusion of mononucleated cells belonging to mycelia from different mating types or from one only. According to the karyotypes of Tuber melanosporum, Tuber magnatum, and Tuber borchii, the numbers of hyphal chromosomes suggest a chromosome number of eight (2n); these values are in the range of those of several Ascomycetes and observed for Tuber aestivum (2n=10). The importance and growth in interest during the last years in the fungi protoplasts isolation and transformation techniques can be related to current developments in Tuber genetics and biotechnology. T. borchii could be transformed through liposome-mediated delivery of genetic material as mycelial protoplasts isolation and fusion with liposomes has already been established. On the other hand, Agrobacterium-mediated transformation has been successfully established for T. borchii. PMID:16802150

  12. Current Technological Improvements in Enzymes toward Their Biotechnological Applications

    PubMed Central

    Baweja, Mehak; Nain, Lata; Kawarabayasi, Yutaka; Shukla, Pratyoosh

    2016-01-01

    Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way. PMID:27379087

  13. Current Technological Improvements in Enzymes toward Their Biotechnological Applications.

    PubMed

    Baweja, Mehak; Nain, Lata; Kawarabayasi, Yutaka; Shukla, Pratyoosh

    2016-01-01

    Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way. PMID:27379087

  14. Fifteenth symposium on biotechnology for fuels and chemicals: Program and abstracts

    SciTech Connect

    Not Available

    1993-07-01

    This collection contains 173 abstracts from presented papers and poster sessions. The five sessions of the conference were on the subjects of: (1) Thermal, Chemical, and Biological Processing, (2) Applied Biological Research, (3) Bioprocessing Research (4), Process Economics and Commercialization, and (5) Environmental Biotechnology. Examples of specific topics in the first session include the kinetics of ripening cheese, microbial liquefaction of lignite, and wheat as a feedstock for fuel ethanol. Typical topics in the second session were synergism studies of bacterial and fungal celluloses, conversion of inulin from jerusalem artichokes to sorbitol and ethanol by saccharomyces cerevisiae, and microbial conversion of high rank coals to methane. The third session entertained topics such as hydrodynamic modeling of a liquid fluidized bed bioreactor for coal biosolubilization, aqueous biphasic systems for biological particle partitioning, and arabinose utilization by xylose-fermenting yeast and fungi. The fourth session included such topics as silage processing of forage biomass to alcohol fuels, economics of molasses to ethanol in India, and production of lactic acid from renewable resources. the final session contained papers on such subjects as bioluminescent detection of contaminants in soils, characterization of petroleum contaminated soils in coral atolls in the south Pacific, and landfill management for methane generation and emission control.

  15. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  16. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. PMID:25842169

  17. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. PMID:27575335

  18. Current state and perspectives of producing biodiesel‐like compounds by biotechnology

    PubMed Central

    Uthoff, Stefan; Bröker, Daniel; Steinbüchel, Alexander

    2009-01-01

    Summary The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel‐like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally ‘green’ fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost‐intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by‐products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t‐butanol have been developed, which enhance by‐product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole‐cell catalysis for the production of fatty acid ethyl esters, which is also referred to as ‘microdiesel’, by recombinant microorganisms has recently been suggested. PMID:21255288

  19. Diatom cultivation and biotechnologically relevant products. Part II: current and putative products.

    PubMed

    Lebeau, T; Robert, J-M

    2003-02-01

    While diatoms are widely present in terms of diversity and abundance in nature, few species are currently used for biotechnologically applications. Most studies have focussed on intracellularly synthesised eicosapentaenoic acid (EPA), a polyunsaturated fatty acid (PUFA) used for pharmaceutical applications. Applications for other intracellular molecules, such as total lipids for biodiesel, amino acids for cosmetic, antibiotics and antiproliferative agents, are at the early stage of development. In addition, the active principle component must be identified amongst the many compounds of biotechnological interest. Biomass from diatom culture may be applied to: (1). aquaculture diets, due to the lipid- and amino-acid-rich cell contents of these microorganisms, and (2). the treatment of water contaminated by phosphorus and nitrogen in aquaculture effluent, or heavy metal (bioremediation). The most original application of microalgal biomass, and specifically diatoms, is the use of silicon derived from frustules in nanotechnology. The competitiveness of biotechnologically relevant products from diatoms will depend on their cost of production. Apart from EPA, which is less expensive when obtained from Phaeodactylum tricornutum than from cod liver, comparative economic studies of other diatom-derived products as well as optimisation of culture conditions are needed. Extraction of intracellular metabolites should be also optimised to reduce production costs, as has already been shown for EPA. Using cell immobilisation techniques, benthic diatoms can be cultivated more efficiently allowing new, biotechnologically relevant products to be investigated. PMID:12664140

  20. Ocean, Wave, and Tidal Energy Systems: Current abstracts

    NASA Astrophysics Data System (ADS)

    Smith, L.; Lane, D. W.

    1988-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a bimonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Data Base (EDB) during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  1. Biotechnologies as a Context for Enhancing Junior High-School Students' Ability to Ask Meaningful Questions about Abstract Biological Processes.

    ERIC Educational Resources Information Center

    Olsher, G.; Dreyfus, A.

    1999-01-01

    Suggests a new approach to teaching about biochemical cellular processes by stimulating student interest in those biochemical processes that allowed for the outcomes of modern biotechnologies. Discusses the development of students' ability to ask meaningful questions about intra-cellular processes, and the resulting meaningful learning of relevant…

  2. Advanced Technology Section semiannual progress report, April 1-September 30, 1977. Volume 1. Biotechnology and environmental programs. [Lead Abstract

    SciTech Connect

    Pitt, W.W. Jr.; Mrochek, J.E.

    1980-06-01

    Research efforts in six areas are reported. They include: centrifugal analyzer development; advanced analytical systems; environmental research; bioengineering research;bioprocess development and demonstration; and, environmental control technology. Individual abstracts were prepared for each section for ERA/EDB. (JCB)

  3. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  4. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes.

    PubMed

    Lanéelle, Marie-Antoinette; Tropis, Maryelle; Daffé, Mamadou

    2013-12-01

    Corynebacterium glutamicum is the world's largest producer of glutamate and lysine. Industrial glutamate overproduction is induced by empirical processes, such as biotin limitation, supplementation with specific surfactants or addition of sublethal concentration of certain antibiotics to the culture media. Although Gram-positive bacteria, C. glutamicum and related bacterial species and genera contain, in addition to the plasma membrane, an outer permeability membrane similar to that of Gram-negative microorganisms. As the amino acids have to cross both membranes, their integrity, composition and fluidity influence the export process. While the precise mechanism of the export of the amino acids by C. glutamicum is not fully understood, the excretion of amino acids through the inner membrane involved at least a major export system mechanosensitive channel MscS family (MscCG) encoded by NCgl1221. As the various industrial treatments have been shown to affect the lipid content of the bacterial cell, it is strongly believed that defects in the hallmark of the outer membrane, 2-alkyl, 3-hydroxylated long-chain fatty acids (mycolic acids), could be key factors in the glutamate overproduction. This review aims at giving an overview of the current knowledge on mycolic acids structure, biosynthesis and transfer in C. glutamicum and their relevance for amino acid biotechnological production. PMID:24113823

  5. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine

    PubMed Central

    Aponte, Pedro Manuel

    2015-01-01

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  6. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    PubMed

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. PMID:21680172

  7. Biotechnology in China

    SciTech Connect

    Hunter, D.H.; Kung, S.D.

    1989-12-31

    The purpose of this report is to formulate strategies to continue and expand cooperation with China in biotechnology. Toward this end, the report focuses on three areas: (1) the mechanisms by which China sets priorities and funds biotechnology research; (2) the current status of China`s biotechnology research. Particular emphasis is placed on areas of potential interest to American scientists; and (3) the roles of various types of international cooperation programs in the development of biotechnology in China.

  8. The Impact on Future Guidance Programs of Current Developments in Computer Science, Telecommunications, and Biotechnology.

    ERIC Educational Resources Information Center

    Mitchell, Lynda K.; Hardy, Philippe L.

    The purpose of this chapter is to envision how the era of technological revolution will affect the guidance, counseling, and student support programs of the future. Advances in computer science, telecommunications, and biotechnology are discussed. These advances have the potential to affect dramatically the services of guidance programs of the…

  9. Current Literature on Venereal Disease, 1972. Number Two. Abstracts and Bibliography.

    ERIC Educational Resources Information Center

    Lea, Mildred V., Ed.

    Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…

  10. Current Literature on Venereal Disease, 1972. Number One. Abstracts and Bibliography.

    ERIC Educational Resources Information Center

    Lea, Mildred V., Ed.

    Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…

  11. Current Literature on Venereal Disease, 1972. Number Three. Abstracts and Bibliography.

    ERIC Educational Resources Information Center

    Lea, Mildred V., Ed.

    Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…

  12. Current status and biotechnological advances in genetic engineering of ornamental plants.

    PubMed

    Azadi, Pejman; Bagheri, Hedayat; Nalousi, Ayoub Molaahmad; Nazari, Farzad; Chandler, Stephen F

    2016-11-01

    Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties. PMID:27396521

  13. The zootechnical applications of biotechnology in animal reproduction: current methods and perspectives.

    PubMed

    Thibier, Michel

    2005-01-01

    The development of the four generations of Reproductive Biotechnology, particularly in cattle and since the last world war, represents one of the best examples of the success story of technology transfer. This review will only refer to the first three generations and will not deal with nuclear transfer nor transgenesis. Based on sound so-called "finalised" research, Artificial Insemination first, then in vivo collected embryo transfer and later in vitro fertilised embryo transfer have been implemented worldwide. Each of these Biotechnologies has many advantages and limitations. In addition to the specificity of each of them, one major point is that farmers and breeders may choose either collectively or individually, the best technology to be used in order to achieve the goals they have set for their industry. It is noteworthy that these technologies have been able to match with the economics demands over the last decades and yet are in a very good capacity to respond to the contemporary demand of sustainable development. In this context, there are further advantages such as potentially contributing to maintaining biodiversity or allowing preservation ex situ of genes otherwise threatened to extinction. PMID:15982450

  14. Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives.

    PubMed

    Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo

    2016-07-01

    Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability. PMID:27154347

  15. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles.

    PubMed

    Zhang, Yu; Li, Xuegong; Bartlett, Douglas H; Xiao, Xiang

    2015-06-01

    A key aspect of marine environments is elevated pressure; for example, ∼70% of the ocean is at a pressure of at least 38MPa. Many types of Bacteria and Archaea reside under these high pressures, which drive oceanic biogeochemical cycles and catalyze reactions among rocks, sediments and fluids. Most marine prokaryotes are classified as piezotolerant or as (obligate)-piezophiles with few cultivated relatives. The biochemistry and physiology of these organisms are largely unknown. Recently, high-pressure cultivation technology has been combined with omics and DNA recombination methodologies to examine the physiology of piezophilic marine microorganisms. We are now beginning to understand the adaptive mechanisms of these organisms, along with their ecological functions and evolutionary processes. This knowledge is leading to the further development of high-pressure-based biotechnology. PMID:25776196

  16. Development of a Computerized Current Awareness Service Using "Chemical Abstracts" Condensates

    ERIC Educational Resources Information Center

    Roberts, Anita B.; And Others

    1972-01-01

    The experiences in developing current awareness services for selective dissemination of information from Chemical Abstracts'' Condensates data base are described. File standardization, the weighted-term method of searching, and the algorithm used to perform the search on the CDC 6600 computer and a user survey are discussed. (2 references)…

  17. Current practices in endotoxin and pyrogen testing in biotechnology. The Quality Assurance/Quality Control Task Group. Parenteral Drug Association

    SciTech Connect

    Not Available

    1990-01-01

    This article presents the results of a nationwide survey of the biotechnology industry regarding endotoxin and pyrogen testing and control. It identifies procedures and methods being used by biotechnology companies, and firms working with biotechnology products, in the testing for and detection of endotoxin and other pyrogenic substances. The review attempts to identify areas of commonality and standardization within the industry and includes topics for discussion at the end of the survey results.

  18. [Genetically modified food (food derived from biotechnology): current and future trends in public acceptance and safety assessment].

    PubMed

    Nishiura, Hiroshi; Imai, Hirohisa; Nakao, Hiroyuki; Tsukino, Hiromasa; Kuroda, Yoshiki; Katoh, Takahiko

    2002-11-01

    Current and future trends regarding genetically modified (GM) crops and food stuffs were reviewed, with a particular focus on public acceptance and safety assessment. While GM foods, foods derived from biotechnology, are popular with growers and producers, they are still a matter of some concern among consumers. In fact, our recent surveys showed that Japanese consumers had become uneasy about the potential health risks of genetically modified foods. Many Japanese consumers have only vague ideas about the actual health risks, and they appear to be making decisions simply by rejecting GM food because of non-informed doubts. Although the debate about GM foods has increased in the mass media and scientific journals, few articles concerning direct studies on the potential toxicity or adverse health effects of GM foods have appeared. The roles of relevant international regulatory bodies in ensuring that GM crops and food are safe are therefore have summarized. Finally, the current debate on use of GM crops in agriculture and future trends for development of GM foods with enriched nutrients, better functionality, and medicinal ingredients, which will be of direct benefit to the consumer, are covered. PMID:12508467

  19. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments.

    PubMed

    Liu, C Tony; Tomsho, John W; Benkovic, Stephen J

    2014-08-15

    Benzoxaboroles have garnered much attention in recent years due to their diverse applications in bio-sensing technology, material science, and therapeutic intervention. Part of the reason arises from the benzoxaboroles' unique chemical properties, especially in comparison to their acyclic boronic acid counterparts. Furthermore, the low bio-toxicity combined with the high target specificity associated with benzoxaboroles make them very attractive as therapeutic agents. Herein, we provide an updated summary on the current knowledge of the fundamental chemical reactivity of benzoxaboroles, followed by highlighting their major applications reported to date. PMID:24864040

  20. Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification.

    PubMed

    Leal, Miguel Costa; Pimentel, Tânia; Ricardo, Fernando; Rosa, Rui; Calado, Ricardo

    2015-06-01

    Market globalization and recurring food safety alerts have resulted in a growing consumer awareness of the need for food traceability. This is particularly relevant for seafood due to its perishable nature and importance as a key protein source for the population of the world. Here, we provide an overview of the current needs for seafood origin traceability, along with the limitations and challenges for its implementation. We focus on geochemical, biochemical, and molecular tools and how they should be optimized to be implemented globally and to address our societal needs. We suggest that seafood traceability is key to enforcing food safety regulations and fisheries control, combat fraud, and fulfill present and future expectations of conscientious producers, consumers, and authorities. PMID:25865857

  1. Disease resistance breeding in rose: current status and potential of biotechnological tools.

    PubMed

    Debener, Thomas; Byrne, David H

    2014-11-01

    The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will

  2. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application. PMID:26810078

  3. Preface: Biocatalysis and Agricultural Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  4. Biotechnology: Education.

    ERIC Educational Resources Information Center

    Airozo, Diana; Warmbrodt, Robert D.

    Biotechnology is the latest in a series of technological innovations that have revolutionized the fields of agriculture and the health sciences; however, there are concerns with this technology. This document is designed to help foster dialogue with emphasis on education and the development of a public understanding of the principals involved in…

  5. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  6. Biotechnology Works!

    ERIC Educational Resources Information Center

    Cohen, Libby G.; Spenciner, Loraine

    There have been few initiatives addressing the improvement of science education for students with disabilities. Funded by the National Science Foundation, Biotechnology Works is a summer institute in immunology and genetics for students with disabilities, high school science teachers, and high school counselors. During the 1998 summer session,…

  7. Biotechnology, Ethics and Education

    ERIC Educational Resources Information Center

    Fitzsimons, Peter John

    2007-01-01

    Fundamental differences between current and past knowledge in the field of biotechnology mean that we now have at our disposal the means to irreversibly change what is meant by "human nature". This paper explores some of the ethical issues that accompany the (as yet tentative) attempt to increase scientific control over the human genetic code in…

  8. Microbial biotechnology.

    PubMed

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  9. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology.

    PubMed

    Lesage-Meessen, Laurence; Bou, Marine; Sigoillot, Jean-Claude; Faulds, Craig B; Lomascolo, Anne

    2015-04-01

    The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications. PMID:25761625

  10. Applied Biotechnology in Nematology

    PubMed Central

    Caswell-Chen, E. P.; Williamson, V. M.; Westerdahl, B. B.

    1993-01-01

    During the past two decades, rapid advances in biotechnology and molecular biology have affected the understanding and treatment of human and plant diseases. The human and Caenorhabditis elegans genome-sequencing projects promise further techniques and results useful to applied nematology. Of course, biotechnology is not a panacea for nematological problems, but it provides many powerful tools that have potential use in applied biology and nematode management. The tools will facilitate research on a range of previously intractable problems in nematology, from identification of species and pathotypes to the development of resistant cultivars that have been inaccessible because of technical limitations. However, to those unfamiliar or not directly involved with the new technologies and their extensive terminology, the benefits of the advances in biotechnology may not be readily discerned. The sustainable agriculture of the future will require ecology-based management, and successful integrated nematode management will depend on combinations of control tactics to reduce nematode numbers. In this review we discuss how biotechnology may influence nematode management, define terminology relative to potential applications, and present current and future avenues of research in applied nematology, including species identification, race and pathotype identification, development of resistant cultivars, definition of nematode-host interactions, nematode population dynamics, establishment of optimal rotations, the ecology of biological control and development of useful biological control agents, and the design of novel nematicides. PMID:19279831

  11. Space and biotechnology: An industry profile

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Norton, David J.; Tom, Baldwin H.

    1988-01-01

    The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.

  12. ENVIRONMENTAL ASSESSMENT AND OVERVIEW OF BIOTECHNOLOGY PROCESS APPLICATIONS

    EPA Science Inventory

    The report is an overview of industrial biotechnology processes, waste streams associated with these processes, and the effectiveness of current control technologies in treating process waste streams. (Biotechnology is defined here as processes that employ microbial cultures or e...

  13. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    ERIC Educational Resources Information Center

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  14. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  15. Biotechnology in Europe.

    ERIC Educational Resources Information Center

    Dibner, M. D.

    1986-01-01

    Describes programs used by European countries and companies for advancing the commercialization of biotechnology. Compares European strategies and efforts in biotechnology with those undertaken in the United States. Includes listings of the European countries and the areas of biotechnology research. (ML)

  16. Management in biophotonics and biotechnologies

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  17. Biotechnology and Open University Science.

    ERIC Educational Resources Information Center

    Grobstein, Clifford

    1985-01-01

    Discusses whether biotechnology commercial application will significantly inhibit the free flow of information traditional in academic environments. Background factors, crux of the concern, assessment, and current options are given. Although little evidence that industry-university collaboration has impaired academic molecular genetics exists,…

  18. Is biotechnology the new alchemy?

    PubMed

    Kirkham, Georgiana

    2009-03-01

    In this article I examine similarities between the science and ethics of biotechnology on the one hand, and those of alchemy on the other, and show that the understanding of nature and naturalness upon which many contemporary ethical responses to biotechnology are predicated is, in fact, significantly similar to the understanding of nature that was the foundation of the practice of alchemy. In doing so I demonstrate that the ethical issues and social responses that are currently arising from advances in the field of biotechnology are interestingly similar to those that arose in reaction to the practice and prevalence of alchemy from its inception in Europe in the mid-twelfth century until at least the early modern period. I argue that a proper conception of the ethical issues and a sensible interpretation of the power and the promise of the science of biotechnology are most likely if we understand such attitudes to nature, and to the ethical issues surrounding technological and scientific developments, in terms of an historical and cultural continuum. That is, we should regard biotechnology as merely the latest in a string of technological and scientific developments rather than, as is often alleged, as something entirely new, requiring its own special ethical response. Finally, I suggest that examining the parallels between the ethical issues generated by alchemy and by biotechnology show us that such issues are best situated and discussed within a framework of virtue ethics, as it allows us to think seriously about the relationship between art and nature and the proper role of humans in relation to their technology. PMID:19831210

  19. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  20. Western Australian school students' understanding of biotechnology

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  1. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  2. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  3. [Biotechnology and vaccinations].

    PubMed

    Peret, R

    1990-12-01

    Current biotechnologies used in the manufacture of new vaccines are of three kinds: Genetic recombinations leading to either vaccinal sub-units or living vaccines represented by recombinant vectors; Chemical synthesis techniques; Use of the spatial configuration of an anti-antibody similar to the initial antigen. These are the anti-idiotype vaccines. Genetic engineering is the basis of a new generation of vaccines, sought with the aim of attempting to eradicate a number of diseases throughout the world. However, there is presently an inadequacy in resources, most often linked to financial considerations, which limits widespread systematic vaccination. In the future, vaccines against dental caries will probably be obtained from purified proteins of hydrolase fractions common to cariogenic bacteria and resulting from genetic recombinations in the form of vaccinal sub-units. PMID:2077866

  4. Environmentally compatible applications of biotechnology

    SciTech Connect

    Frederick, R.J.; Egan, M.

    1994-09-01

    Using living organisms to minimize harmful human impact on the environment is relatively recent thrust of biotechnology. Biotechnology developments are being employed as green technologies in a variety of applications that fall into the category of environmental biotechnology. The following aspects of biotechnology are discussed in this article: biosensors; bioremediation; bioleaching; natural plastics; clean fuels; pesticides; regulation of biotechnology products and processes. 58 refs.

  5. The 17th Symposium on Biotechnology for Fuels and Chemicals

    NASA Astrophysics Data System (ADS)

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  6. Biotechnology in Food Production and Processing

    NASA Astrophysics Data System (ADS)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  7. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  8. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  9. Ohio Biotechnology Competency Profile.

    ERIC Educational Resources Information Center

    Miller, Lavonna; Bowermeister, Bob; Boudreau, Joyce

    This document, which lists the biotechnology competencies identified by representatives from biotechnology businesses and industries as well as secondary and post-secondary educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through…

  10. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  11. Bioethics and biotechnology

    PubMed Central

    2007-01-01

    Biotechnology is at the intersection of science and ethics. Technological developments are shaped by an ethical vision, which in turn is shaped by available technology. Much in biotechnology can be celebrated for how it benefits humanity. But technology can have a darker side. Biotechnology can produce unanticipated consequences that cause harm or dehumanise people. The ethical implications of proposed developments must be carefully examined. The ethical assessment of new technologies, including biotechnology, requires a different approach to ethics. Changes are necessary because new technology can have a more profound impact on the world; because of limitations with a rights-based approach to ethics; because of the importance and difficulty of predicting consequences; and because biotechnology now manipulates humans themselves. The ethical questions raised by biotechnology are of a very different nature. Given the potential to profoundly change the future course of humanity, such questions require careful consideration. Rather than focussing on rights and freedoms, wisdom is needed to articulate our responsibilities towards nature and others, including future generations. The power and potential of biotechnology demands caution to ensure ethical progress. PMID:19003197

  12. Modern Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  13. Modern biotechnology in China.

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2010-01-01

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned. PMID:19626302

  14. Proceedings of the Symposium on Research in Biology and Biotechnology in Developing Countries (National University of Singapore, November 2-4, 1983). Selected Papers.

    ERIC Educational Resources Information Center

    Rao, A. N., Ed.

    These proceedings of a symposium designed to increase public awareness of current research in biology and biotechnology include: welcoming addresses by Chau Sian Eng and S. Radhakrishna; an opening address by Tay Eng Soon; five papers; four abstracts; summary; symposium program; and list of participants. The five papers are: (1) "The Role of…

  15. Corporate intelligence in biotechnology.

    PubMed

    Persidis

    1999-05-01

    'Know thy neighbor' is a critical component of today's biotechnology practice. The industry is extremely rich in science and business information, and the pace of change is dramatic. Successful participation in biotechnology will always depend on good technology, management and money. In addition, an ingredient that needs more attention is competitive information- gathering and analysis. Competitive intelligence can be defined as actionable information that requires the ability to filter and synthesize relevant knowledge for the benefit of the company. Why is this necessary? How can it be done well? What examples are there? These are good questions that are inevitably faced by all biotechnology practitioners, and some answers are provided herein. PMID:10322287

  16. PBT-1 Prana Biotechnology.

    PubMed

    Huckle, Richard

    2005-01-01

    PBT-1 (clioquinol), is undergoing phase II clinical trials by Prana Biotechnology Ltd for the potential treatment of Alzheimer's disease. By October 2004, the company had planned phase III trials for the first half of 2005. PMID:15675609

  17. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  18. Traditional Chinese Biotechnology

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  19. Haloalkane dehalogenases: biotechnological applications.

    PubMed

    Koudelakova, Tana; Bidmanova, Sarka; Dvorak, Pavel; Pavelka, Antonin; Chaloupkova, Radka; Prokop, Zbynek; Damborsky, Jiri

    2013-01-01

    Haloalkane dehalogenases (EC 3.8.1.5, HLDs) are α/β-hydrolases which act to cleave carbon-halogen bonds. Due to their unique catalytic mechanism, broad substrate specificity and high robustness, the members of this enzyme family have been employed in several practical applications: (i) biocatalytic preparation of optically pure building-blocks for organic synthesis; (ii) recycling of by-products from chemical processes; (iii) bioremediation of toxic environmental pollutants; (iv) decontamination of warfare agents; (v) biosensing of environmental pollutants; and (vi) protein tagging for cell imaging and protein analysis. This review discusses the application of HLDs in the context of the biochemical properties of individual enzymes. Further extension of HLD uses within the field of biotechnology will require currently limiting factors - such as low expression, product inhibition, insufficient enzyme selectivity, low affinity and catalytic efficiency towards selected substrates, and instability in the presence of organic co-solvents - to be overcome. We propose that strategies based on protein engineering and isolation of novel HLDs from extremophilic microorganisms may offer solutions. PMID:22965918

  20. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  1. The evolution of the biotechnology industry in Germany.

    PubMed

    Müller, Christian

    2002-07-01

    In the past five years, the climate for commercial biotechnology in Germany has improved significantly and has resulted in an increase in the number of biotechnology companies. On examination of the underlying factors of the evolution of the biotechnology industry in Germany, and against the background of the current situation, it is predicted that many German biotech companies will have to change their business models to focus on product development rather than on platform technologies. PMID:12062972

  2. Perspectives on biotechnological applications of archaea

    PubMed Central

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  3. Agave biotechnology: an overview.

    PubMed

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology. PMID:25058832

  4. Biotechnological production of vanillin.

    PubMed

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed. PMID:11548997

  5. Advances in reproductive biotechnologies.

    PubMed

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  6. Advances in reproductive biotechnologies

    PubMed Central

    Choudhary, K. K.; Kavya, K. M.; Jerome, A.; Sharma, R. K.

    2016-01-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  7. Preface: Biocatalysis and Biotechnology for Functional Foods and Industrial Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and biotechnology with emphasis on functional foods and industrial products. Biocatalysis and biotechnology defined in this book include enzyme catalysis, biotransformation, bioconversi...

  8. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    ERIC Educational Resources Information Center

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  9. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We hav processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture gas shown the introduction of transgenic crops with pesticidal ...

  10. Opportunities for biotechnology and policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  11. Opportunities for Biotechnology and Policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  12. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  13. Projector Center. What Is Biotechnology?

    ERIC Educational Resources Information Center

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  14. OVERVIEW OF CROP BIOTECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  15. BIOTECHNOLOGY RESEARCH PROGRAM

    EPA Science Inventory

    In accordance with EPA's mission to minimize risks to human health and to safeguard ecological integrity, the EPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) is committed to assessing and mitigating any risk posed by biotechnology-derived crops. Consequently, ...

  16. Biotechnologies and Human Dignity

    ERIC Educational Resources Information Center

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  17. Biotechnology and derived products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms able to infect and kill insect pests, metabolites from plants and microorganisms, and transgenic crops are biotechnologically derived products that are being promoted for use to control insect pests in lieu of chemical insecticides. Products based on these technologies effectively co...

  18. Biotechnology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program quide presents the biotechnology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and lists of…

  19. Biotechnology in weed control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  20. The Challenge in Teaching Biotechnology

    ERIC Educational Resources Information Center

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  1. The Ohio Science Workbook: Biotechnology.

    ERIC Educational Resources Information Center

    Reames, Spencer E., Comp.

    Because of the daily impact of biotechnology, it is important that students have some knowledge and experience with biotechnology in order to enable them to deal with the issues that arise as a result of its implementation. The purpose of this workbook is to assist in the efforts to expose students to the concepts of biotechnology through hands-on…

  2. The attitudes of religious, environmental, and science policy leaders toward biotechnology.

    PubMed

    Miller, J D

    1985-12-01

    Biotechnology is an increasingly visible and important item on the national science policy agenda. With growing corporate and governmental funding, basic research in recombinant DNA and related technologies is expanding rapidly. In a parallel and related process, new agricultural, medical, and other applications are being developed and a growing list of genetically-engineered products is ready for field testing and market distribution. In the months and years ahead, the flow of genetically-engineered products into the marketplace and the media coverage related to those new products will increase the public's awareness of biotechnology. In addition, it is possible that some public policy debate will occur over the issue of field testing new genetically-engineered materials. Media coverage of this type of controversy will also heighten awareness and influence the aggregate level of public awareness of biotechnology. The prospect of a public debate or controversy over any biotechnology issue illustrates a fundamental problem in the formulation of science policy within a democratic political system. The processes and techniques involved in genetic engineering and complex and require some level of scientific background knowledge. A 1979 study found that only seven per cent of American adults met a minimal definition of scientific literacy. It is clear that the current levels of public awareness and knowledge about biotechnology will not allow a public policy debate similar to those associated with controversies involving Social Security or gasoline prices. How, then, does a democratic society establish public policies on advanced technical issues like biotechnology? This report will outline a model of policy formulation for specialized issues and describe the results of a national study of relevant policy leaders concerning biotechnology. To understand the formulation of public policy toward biotechnology, it is necessary to focus on the role of the policy leaders in a

  3. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  4. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    PubMed

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers. PMID:16465992

  5. Knowledge and Attitudes towards Biotechnology of Elementary Education Preservice Teachers: The First Spanish Experience

    ERIC Educational Resources Information Center

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-01-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is…

  6. Abstraction in mathematics.

    PubMed

    Ferrari, Pier Luigi

    2003-07-29

    Some current interpretations of abstraction in mathematical settings are examined from different perspectives, including history and learning. It is argued that abstraction is a complex concept and that it cannot be reduced to generalization or decontextualization only. In particular, the links between abstraction processes and the emergence of new objects are shown. The role that representations have in abstraction is discussed, taking into account both the historical and the educational perspectives. As languages play a major role in mathematics, some ideas from functional linguistics are applied to explain to what extent mathematical notations are to be considered abstract. Finally, abstraction is examined from the perspective of mathematics education, to show that the teaching ideas resulting from one-dimensional interpretations of abstraction have proved utterly unsuccessful. PMID:12903658

  7. Biotechnology for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  8. Biotechnological advancements in alfalfa improvement.

    PubMed

    Kumar, Suresh

    2011-05-01

    Review of biotechnology research in alfalfa shows that molecular techniques are extensively being used for basic and applied research toward alfalfa improvement. Biotechnological approaches have been used in two major areas, genomics and transgenics. In genomics, molecular markers, structural and functional genomics allowed identification of genes of interest and their regulatory components. Alfalfa being obstinate to genetic and genomic analysis, comparative genomics is used for molecular and genetic dissection of various plant processes in alfalfa. Alternatively, transgenic approach involves incorporation of specific and useful genes into alfalfa to improve the traits of interest. Input traits to improve agronomic performance and output traits to improve forage quality, or to produce novel industrial/pharmaceutical proteins, are the focus of current transgenic research in alfalfa. However, transgenic approach is controversial requiring cautious experimental design to combat bioisafety concerns. Ideally, forage alfalfa needs to possess more fermentable carbohydrates, proteins with balanced amino acid profile that degrade slower in rumen, improved winter hardiness, better water use efficiency, pest resistance and no anti-quality factors. Concerted efforts are required to bring together maximum of these characteristic features into the alfalfa plant. PMID:21279557

  9. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  10. Biotechnology in South Africa.

    PubMed

    Cloete, Thomas E; Nel, Louis H; Theron, Jacques

    2006-12-01

    Since adopting the National Biotechnology Strategy in 2001, the South African government has established several regional innovation centres and has put in place initiatives to encourage international partnerships that can spur internal development of life science ventures. This strategy seeks to capitalize on the high quality of research carried out in public research institutions and universities but is hampered, somewhat, by the lack of entrepreneurial culture among South African researchers due to, among other reasons, the expenses involved in registering foreign patents. Although private sector development is still relatively embryonic, start-ups are spinning out of universities and pre-existing companies. These represent a vital source of innovations for commercialization in the future, provided that the challenges facing the emerging South African biotechnology industry can be overcome. PMID:17070947

  11. Environmental Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  12. Engineering synergy in biotechnology.

    PubMed

    Nielsen, Jens; Fussenegger, Martin; Keasling, Jay; Lee, Sang Yup; Liao, James C; Prather, Kristala; Palsson, Bernhard

    2014-05-01

    Biotechnology is a central focus in efforts to provide sustainable solutions for the provision of fuels, chemicals and materials. On the basis of a recent open discussion, we summarize the development of this field, highlighting the distinct but complementary approaches provided by metabolic engineering and synthetic biology for the creation of efficient cell factories to convert biomass and other feedstocks to desired chemicals. PMID:24743245

  13. Biotechnology's foreign policy.

    PubMed

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them. PMID:12402751

  14. New master program in management in biophotonics and biotechnologies

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Tuchin, V. V.

    2006-08-01

    We develop new graduate educational highly interdisciplinary program that will be useful for addressing problems in worldwide biotechnologies and related biomedical industries. This Master program called Management in Biophotonics and Biotechnologies provides students with the necessary training, education and problem-solving skills to produce managers who are better equipped to handle the challenges of modern business in modern biotechnologies. Administered jointly by Cranfield University (UK) and Saratov State University, Russia) graduates possess a blend of engineering, biotechnologies, business and interpersonal skills necessary for success in industry. The Master courses combine a regular year program in biophotonics & biotechnologies disciplines with the core requirements of a Master degree. A major advantage of the program is that it will provide skills not currently available to graduates in any other program, and it will give the graduates an extra competitive edge for getting a job then.

  15. BIOTECHNOLOGY: THE PROMISE, POTENTIAL RISKS & HOW CAN WE FIND OUT

    EPA Science Inventory

    The green science and technology movement prods existing and newly invented technologies to serve stronger roles in enhanced pollution reduction and control. Biotechnology is one of several emerging technologies that are capable of displacing current more polluting technology. Bi...

  16. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits. PMID:26070432

  17. Teachers' Concerns About Biotechnology Education

    NASA Astrophysics Data System (ADS)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-04-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns about biotechnology instruction and their reported practices. Consistent with the Stages of Concern framework as modified by Hord et al., we investigated teachers' awareness, informational, personal, management, consequences, collaboration, and refocusing concerns about biotechnology teaching by employing a qualitative design that allowed for the emergence of teachers' ideas. Twenty high school life science teachers attending a biotechnology institute were interviewed using an interview protocol specifically designed to target various Stages of Concern. Although the Stages of Concern framework guided the development of interview questions in order to target a wide range of concerns, data analysis employed a grounded theory approach wherein patterns emerged from teachers' own words and were constantly compared with each other to generate larger themes. Our results have potential to provide guidance for professional development providers and curriculum developers committed to supporting initial implementation of biotechnology education. Recommendations include supporting teacher development of biotechnology content knowledge; promoting strategies for obtaining, storing and managing biotechnology equipment and materials; providing opportunities for peer teaching as a means of building teacher confidence; and highlighting career opportunities in biotechnology and the intersections of biotechnology and everyday life.

  18. INVENTORY ABSTRACTION

    SciTech Connect

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the

  19. History of biotechnology in Austria.

    PubMed

    Roehr, M

    2000-01-01

    Austria has contributed significantly to the progress of the biotechnologies in the past and is actively engaged in doing so today. This review describes the early history of biotechnology in Austria, beginning with the Vienna process of baker's yeast manufacture in 1846, up to the achievements of the 20th century, e.g. the submerged vinegar process, penicillin V, immune biotechnology, biomass as a renewable source of fermentation products (power alcohol, biogas, organic acids etc.), biopulping, biopolymers, biocatalysis, mammalian cell technology, nanotechnology of bacterial surface layers, and environmental biotechnology. PMID:11036693

  20. Integrating ecology into biotechnology.

    PubMed

    McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip

    2007-06-01

    New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity. PMID:17509863

  1. Biotechnology touches the forest

    SciTech Connect

    Powledge, J.M.

    1984-09-01

    Both the United States and New Zealand are doing research in forest biotechnology and much of the interest is in speedy propagation from seed to mature tree. A number of propagation techniques are discussed, such as tissue culture, the culture of tissue from mature trees and somatic embryo genesis. Much of the tissue culture work has been done on radiata pine. Field testing results are considered. The aims and the advantages of forest biotechnology are discussed under the following headings. 1) Disease resistance: research is being carried out on a loblolly pine which would be resistant to fusiform rust. 2) Animal feed: some trees have been discovered to have lower lignin content and similar cellulose and hemicellulose to alfalfa. 3) Specialty chemicals: terpenes, in the tree resin, could be turned into hormones, drugs and other chemicals: the genetic system for the overall biosynthesis of terpenes has been studied. 4) Herbicide resistance. The resistance to glyphosate in poplars is being studied. In conclusion, further research into forest species, using molecular biology is considered essential.

  2. Biotechnology: from university to industry

    SciTech Connect

    Kenney, M.F.

    1984-01-01

    This study examines the birth of the biotechnology industry in the US. It is argued that biotechnology may have important implications for the future of American capitalism. The study is contextualized theoretically through the use of the idea of the capitalism experiences waves of innovations at certain historical periods. Finally, the idea of a new regime of accumulation based on information technologies is explored and biotechnology's potential position in the information society is explored. The first section of the study examines the role of the university in biotechnology. The various objectives of administrators and professors are explored as is the role of corporate gift giving in transforming the university into an institution more useful for capitalist accumulation. The second section examines the corporate role in biotechnology: both from the viewpoint of the small venture capital-financed biotechnology firms and the large multinational oil, chemical, and pharmaceutical companies that have made a number of important investments in biotechnology. The last chapter describes the unique effects that biotechnology will have upon the US agricultural sector.

  3. A Case for Teaching Biotechnology

    ERIC Educational Resources Information Center

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  4. On Teaching Biotechnology in Kentucky.

    ERIC Educational Resources Information Center

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  5. The Challenge in Teaching Biotechnology

    NASA Astrophysics Data System (ADS)

    Steele, F.; Aubusson, P.

    2004-08-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because todays students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South Wales (NSW). In NSW few students were electing to answer examination questions related to biotechnology, suggesting that few students were studying the topic. This study looks at why electives relating to biotechnology are chosen or not chosen by students and teachers, with the intention of developing a greater understanding of the requirements for provision of a successful unit of study in this subject. Data was obtained through a survey of secondary science teachers, interviews with teachers and two case studies of the teaching of a biotechnology unit. Teachers reported a range of obstacles to the teaching of biotechnology including the difficulty of the subject matter and a lack of practical work that was suited to the content of the teaching unit. If biotechnology is worth learning in school science, then further research is needed to identify ways to promote the effective teaching of this topic, which teachers regard as important for, and interesting to, students but which most teachers choose not to teach.

  6. Linking marine biology and biotechnology.

    PubMed

    de Nys, Rocky; Steinberg, Peter D

    2002-06-01

    Studies of biological systems in which there is a direct link between the challenges faced by marine organisms and biotechnologies enable us to rationally search for active natural compounds and other novel biotechnologies. This approach is proving successful in developing new methods for the prevention of marine biofouling and for the identification of new lead compounds for the development of ultraviolet sunscreens. PMID:12180100

  7. A Sourcebook of Biotechnology Activities.

    ERIC Educational Resources Information Center

    Rasmussen, Alison M., Ed.; Matheson, Robert H., III, Ed.

    This book contains 22 lessons using hands-on activities designed to present some aspect of biotechnology in a usable form that teachers can adapt for their classrooms. The introductory section serves as a resource that introduces the teacher and student to the history of biotechnology. The activities are divided into five units that group lessons…

  8. Biotechnology Outlines for Classroom Use.

    ERIC Educational Resources Information Center

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  9. Teachers' Concerns about Biotechnology Education

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  10. Ergonomics problems and solutions in biotechnology laboratories

    SciTech Connect

    Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.

    1995-03-01

    The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.

  11. Biotechnological advances in Lilium.

    PubMed

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily. PMID:27318470

  12. Biotechnological Applications of Transglutaminases

    PubMed Central

    Rachel, Natalie M.; Pelletier, Joelle N.

    2013-01-01

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases. PMID:24970194

  13. [Ethical aspects of biotechnology].

    PubMed

    de Jong, O J

    1987-01-15

    The relationship between man and animals usually receives little if any attention in ethics. Albert Schweitzer and his 'reverence for life' (1923) was the only exception. The rapid and recent developments of biotechnological possibilities in the field of veterinary medicine have so far not been considered from the point of view of ethics. In agreement with Schweitzer, Karl Barth (1951) stressed the principle of life which man and animals have in common. Passages in the Bible attribute one and the same 'life' ('soul') to both (Book of Proverbs 12: 10) and presuppose 'salvation' or 'preservation' of the two (Psalm 36:7c). Human responsibility in associating with this related species will therefore have to be apparent from careful maintenance of the conditions of this form of life, in research as well as in management. PMID:3824339

  14. Evolutionary history and biotechnological future of carboxylases.

    PubMed

    Schada von Borzyskowski, Lennart; Rosenthal, Raoul G; Erb, Tobias J

    2013-11-01

    Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology. PMID:23702164

  15. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    NASA Astrophysics Data System (ADS)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  16. Biotechnology-a sustainable alternative for chemical industry.

    PubMed

    Gavrilescu, Maria; Chisti, Yusuf

    2005-11-01

    This review outlines the current and emerging applications of biotechnology, particularly in the production and processing of chemicals, for sustainable development. Biotechnology is "the application of scientific and engineering principles to the processing of materials by biological agents". Some of the defining technologies of modern biotechnology include genetic engineering; culture of recombinant microorganisms, cells of animals and plants; metabolic engineering; hybridoma technology; bioelectronics; nanobiotechnology; protein engineering; transgenic animals and plants; tissue and organ engineering; immunological assays; genomics and proteomics; bioseparations and bioreactor technologies. Environmental and economic benefits that biotechnology can offer in manufacturing, monitoring and waste management are highlighted. These benefits include the following: greatly reduced dependence on nonrenewable fuels and other resources; reduced potential for pollution of industrial processes and products; ability to safely destroy accumulated pollutants for remediation of the environment; improved economics of production; and sustainable production of existing and novel products. PMID:15919172

  17. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  18. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  19. Biotechnology: Economic and Behavioral Considerations.

    ERIC Educational Resources Information Center

    McGhan, William F.; Beardsley, Robert S.

    1990-01-01

    The paper reviews factors related to effects of biotechnology on the discipline of pharmacy administration including needs assessment, diffusion of technology, cost benefit analysis, marketing, cost containment, patient education and compliance, ethics, and health professions training. (DB)

  20. An Overview of NASA Biotechnology

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  1. Biotechnology as an intellectual property.

    PubMed

    Adler, R G

    1984-04-27

    Recent advances in biotechnology have created many public policy and legal issues, one of the most significant of which is the treatment of biotechnological industrial products, particularly under the patent system. Patents represent one of several types of intellectual property; their ownership confers the right to exclude others from benefitting from the tangible products of a proprietary subject matter. Intellectual property law and its protections will play a major role in the rate at which biotechnology develops in the United States. In this article biotechnological intellectual property issues are reviewed in the context of their underlying legal requirements. The implications of other factors, such as international competition, research funding, and gene ownership, are also considered. PMID:6584975

  2. Biotechnology of oil seed crops

    SciTech Connect

    James, A.T.

    1985-02-01

    A general summary of possibilities and limitation application of biotechnology processes to processing and/or production of fats and oils is presented. Enzymatic processes, cloning of premium perennial oil crops and genetic manipulation of oil seed compositions are discussed.

  3. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  4. Biotechnology of riboflavin.

    PubMed

    Schwechheimer, Susanne Katharina; Park, Enoch Y; Revuelta, José Luis; Becker, Judith; Wittmann, Christoph

    2016-03-01

    Riboflavin (vitamin B2) production has shifted from chemical synthesis to exclusive biotechnological synthesis in less than 15 years. The underlying extraordinary achievement in metabolic engineering and bioprocess engineering is reviewed in this article with regard to the two most important industrial producers Bacillus subtilis and Ashbya gossypii. The respective biosynthetic routes and modifications are discussed, and also the regulation of riboflavin synthesis. As the terminal biosynthesis of riboflavin starts from the two precursors, ribulose 5-phosphate and guanosine triphosphate (GTP), both strains have been optimized for an improved flux through the pentose phosphate pathway as well as the purine biosynthetic pathway. Specific targets for improvement of A. gossypii were the increase of the glycine pool and the increase of carbon flow through the glyoxylic shunt. In B. subtilis, research interest, amongst others, has focused on gluconeogenesis and overexpression of the rib operon. In addition, insight into large-scale production of vitamin B2 is given, as well as future prospects and possible developments. PMID:26758294

  5. Development and enhancement of agricultural biotechnology in some countries in Latin America.

    PubMed

    Glick, B R; Pasternak, J J; Downer, R G; Dumbroff, E B; Winter, K A

    1991-03-01

    A number of research institutions and both local and international agencles in Latin America are using biotechnology as part of an effort to enhance agricultural productivity. However, it is very much an open question as to whether all of these various organizations can provide the best means of realizing this goal. Latin American countries vary dramatically in their knowledge base and current use of modern biotechnology. Thus, while some countries lack the ability to develop, or possibly even implement, many aspects of modern biotechnology, others are quite advanced in this regard. This review provides a somewhat selective overview of current research in the area of agricultural biotechnology in Mexico, Costa Rica and Ecuador, with emphasis on how the existing agencies and institutions have responded to the challenge of biotechnology. In addition, general strategies for the development of agricultural biotechnology in these countries are presented and discussed. PMID:24424928

  6. Biology and biotechnology of Trichoderma

    PubMed Central

    Schuster, André

    2010-01-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications. PMID:20461510

  7. Abstracting and indexing guide

    USGS Publications Warehouse

    U.S. Department of the Interior; Office of Water Resources Research

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  8. Israel Education Abstracts; A Selected Bibliography of Current and Past Literature and Materials on the Philosophy, Policy and Practice of Education in Israel. Vol. 4, No. 2, 1969 Covering Period of April 1969--July 1969.

    ERIC Educational Resources Information Center

    Elefant, William L., Ed.

    Two sections comprise this selected bibliography on education in Israel. The first, "Current Items Section (April 1969--July 1969)," contains abstracts of documents dealing with new educational publications, foundations of education, the educational ladder, the teaching-learning process, educational frameworks, the administration of educational…

  9. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    PubMed

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. PMID:23195849

  10. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  11. Biotechnology Approaches to Life Detection

    NASA Technical Reports Server (NTRS)

    Steele, Andrew; McKay, David; Schweitzer, Mary

    2001-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. Several new and innovative biotechnology approaches are being explored. Firstly we have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to micron sized numbered spots on a small (2-3 cm) test plate where they become firmly attached after freeze drying. Using technology that has been developed for gene mining in DNA technology up to 10,000 tests per square inch can now be applied to a test plate. On Mars or the planet/moon of interest, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent and ultrasonication and then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. At the moment a small UV light source will illuminate the test plate, which is observed with a small CCD camera, although other detection systems will be applied. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. Furthermore with up to a thousand test plates available false positives and several variations of antibody can also be screened for. The entire instrument can be quite small and light, on the order of 10 cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. The stains in these spots may be directly activated, with no antibodies being necessary. The proposed system will look for three classes of

  12. Biotechnology in the wood industry.

    PubMed

    Mai, C; Kües, U; Militz, H

    2004-02-01

    Wood is a natural, biodegradable and renewable raw material, used in construction and as a feedstock in the paper and wood product industries and in fuel production. Traditionally, biotechnology found little attention in the wood product industries, apart from in paper manufacture. Now, due to growing environmental concern and increasing scientific knowledge, legal restrictions to conventional processes have altered the situation. Biotechnological approaches in the area of wood protection aim at enhancing the treatability of wood with preservatives and replacing chemicals with biological control agents. The substitution of conventional chemical glues in the manufacturing of board materials is achieved through the application of fungal cultures and isolated fungal enzymes. Moreover, biotechnology plays an important role in the waste remediation of preservative-treated waste wood. PMID:12937955

  13. Biotechnological routes based on lactic acid production from biomass.

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2011-01-01

    Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their "greener" properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. PMID:21846500

  14. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    PubMed

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry. PMID:24780860

  15. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  16. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  17. Biotechnology Facility (BTF) for ISS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  18. Infusing Authentic Inquiry into Biotechnology

    ERIC Educational Resources Information Center

    Hanegan, Nikki L.; Bigler, Amber

    2009-01-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in "World J Microbiol Biotechnol" 12:439-443, 1996; Dawson and Cowan in "Int J Sci Educ" 25(1):57-69, 2003; Schiller in "Business Review: Federal Reserve Bank of Philadelphia" (Fourth Quarter), 2002; Smith and Emmeluth in "Am Biol Teach" 64(2):93-99, 2002). A…

  19. The Future of Plant Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  20. The Development of Plant Biotechnology.

    ERIC Educational Resources Information Center

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  1. Biotechnology Gains Brighten Resource Outlook.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1979-01-01

    This report details recent advances in fermentation biotechnology as presented by speakers at the 27th International Union of Pure and Applied Chemistry (IUPAC) Congress. Discussion centered around the use of bacteria, yeasts, and fungi as future sources of essential materials as food, fuel, and medicine. (BT)

  2. Western Australian School Students' Understanding of Biotechnology.

    ERIC Educational Resources Information Center

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Surveys (n=1116) 15-year-old students from 11 Western Australian schools to determine their understanding of and attitude towards recent advances in modern biotechnology. Discusses reasons for students' over-estimation of the use of biotechnology in society. Provides a rationale for the inclusion of biotechnology, a cutting edge science, in the…

  3. Impact of Biotechnology on Pharmacy Practice.

    ERIC Educational Resources Information Center

    Black, Curtis D.; And Others

    1990-01-01

    Discussed is the role of schools of pharmacy in (1) preparing future practitioners to assimilate and shape the impact of biotechnology; (2) establish graduate and research programs to enhance and apply products of biotechnology; and (3) identify manpower needs to fully realize potential advances caused by biotechnology. (DB)

  4. Supercritical fluids and their applications in biotechnology and related areas.

    PubMed

    Williams, John R; Clifford, Anthony A; al-Saidi, Salim H R

    2002-11-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids (SFs) and their uses in biotechnology and related areas. It covers the fundamentals of supercritical science and moves on to the biotechnological and associated applications of these fluids. Subject areas covered include pure substances as supercritical fluids, the properties of supercritical fluids, organic cosolvents, solubility, and the following applications: extraction, chromatography, reactions, particle production, deposition, and the drying of biological specimens. Within each application, and where possible, the basic principles of the technique are given, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, nonsupercritical methods. PMID:12448881

  5. Biotechnology in the Andean Group: common policies and instruments.

    PubMed

    Aguirre, C

    1993-10-01

    Although applications of biotechnology have taken a slower pace than initially anticipated, they certainly hold potentials for contributing to the social welfare and economic growth of all nations. Aware of such potentials, the andean countries (Bolivia, Columbia, Ecuador, Peru and Venezuela) individually and collectively, within their economic integration process, are making efforts to develop this new technology area. At the national level, science and technology policies and strategies are being revamped to create an appropriate environment for the development and application of biotechnology and several projects are under execution. These efforts still need, however, further political support and investment. In 1969 the andean countries established an economic integration agreement (the Cartagena Agreement), which included technology as one of its main concerns. For 22 years conceptual and operational developments have taken place creating joint capabilities in many technology areas, including biotechnology. In the last two years the pace has slowed down and is not accompanying national efforts. This is particularly serious as no country can by itself fully develop biotechnology. In spite of current difficulties the Andean Group is well placed to accelerate the development of biotechnology through the application of existing policies and legislation at communitarian level. PMID:7764197

  6. European Union research and innovation perspectives on biotechnology.

    PubMed

    Cichocka, Danuta; Claxton, John; Economidis, Ioannis; Högel, Jens; Venturi, Piero; Aguilar, Alfredo

    2011-12-20

    "Food, Agriculture and Fisheries and Biotechnology" is one of 10 thematic areas in the Cooperation programme of the European Union's 7th Framework Programme for Research, Technological Development and Demonstration Activities (FP7). With a budget of nearly €2 billion for the period 2007-2013, its objective is to foster the development of a European Knowledge-Based Bio-Economy (KBBE) by bringing together science, industry and other stakeholders that produce, manage or otherwise exploit biological resources. Biotechnology plays an important role in addressing social, environmental and economic challenges and it is recognised as a key enabling technology in the transition to a green, low carbon and resource-efficient economy. Biotechnologies for non-health applications have received a considerable attention in FP7 and to date 61 projects on industrial, marine, plant, environmental and emerging biotechnologies have been supported with a contribution of €262.8 million from the European Commission (EC). This article presents an outlook of the research, technological development and demonstration activities in biotechnology currently supported in FP7 within the Cooperation programme, including a brief overview of the policy context. PMID:21745504

  7. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential.

    PubMed

    Snellman, Erick A; Colwell, Rita R

    2004-10-01

    Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications. PMID:15378387

  8. Cytometry: The Journal of the International Society for Analytical Cytology, Supplement 6, 1993: Abstracts

    SciTech Connect

    Mayall, B.H.; Landay, A.L.; Shapiro, H.M.; Visser, J.W.M.

    1993-12-31

    This contains the 465 presentation and poster abstracts for the XVI Congress of the International Society for Analytical Cytology, March 1993. Plenary Sessions included the following: Industrial Cytometry; Clinical Issues (in Cytology); Molecular Pathology; biotechnology; new biology; temporal cytometry.

  9. Studying Biotechnological Methods Using Animations: The Teacher's Role

    NASA Astrophysics Data System (ADS)

    Yarden, Hagit; Yarden, Anat

    2011-12-01

    Animation has great potential for improving the way people learn. A number of studies in different scientific disciplines have shown that instruction involving computer animations can facilitate the understanding of processes at the molecular level. However, using animation alone does not ensure learning. Students sometimes miss essential features when they watch only animations, mainly due to the cognitive load involved. Moreover, students seem to attribute a great deal of authority to the computer and may develop misconceptions by taking animations of abstract concepts too literally. In this study, we attempted to explore teachers' perceptions concerning the use of animations in the classroom while studying biotechnological methods, as well as the teachers' contribution to the enactment of animations in class. Thirty high-school biotechnology teachers participated in a professional development workshop, aimed at investigating how teachers plan for and support learning with animation while studying biotechnological methods in class. From that sample, two teachers agreed to participate in two case studies aimed at characterizing teachers' contribution to the enactment of animations in class while studying biotechnological methods. Our findings reveal marked teacher contribution in the following three aspects: establishing the "hands-on" point of view, helping students deal with the cognitive load that accompanies the use of animation, and implementing constructivist aspects of knowledge construction while studying using animations.

  10. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host

    PubMed Central

    Scaife, Mark A; Nguyen, Ginnie TDT; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-01-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. Significance Statement Chlamydomonas reinhardtii offers potential as a host for the production of high value compounds for industrial biotechnology. Synthetic biology provides a mechanism to generate generic, well characterised tools for application in the rational genetic manipulation of organisms: if synthetic biology principles were adopted for manipulation of C. reinhardtii, development of this microalga as an industrial biotechnology platform would be expedited. PMID:25641561

  11. The rise (and decline?) of biotechnology.

    PubMed

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. PMID:24747562

  12. Transforming exoelectrogens for biotechnology using synthetic biology.

    PubMed

    TerAvest, Michaela A; Ajo-Franklin, Caroline M

    2016-04-01

    Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. PMID:26284614

  13. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted. PMID:25025271

  14. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  15. New challenges in microalgae biotechnology.

    PubMed

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. PMID:27062304

  16. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. PMID:25908504

  17. Piaget on Abstraction.

    ERIC Educational Resources Information Center

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  18. Biofuels and Biotechnology

    SciTech Connect

    Mielenz, Jonathan R

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  19. Biotechnology awareness study, Part 2: Meeting the information needs of biotechnologists.

    PubMed

    Cunningham, D; Grefsheim, S; Simon, M; Lansing, P S

    1991-01-01

    The second part of the biotechnology awareness study focused on health sciences libraries and how well they are meeting the needs of biotechnologists working in the study's nine medical centers. A survey was conducted over a three-month period to assess the demand for biotechnology-related reference services at nine libraries and the sources the librarians used to answer the questions. Data on monographic and current serial holdings were also collected. At the end of the survey period, librarians were asked for their perceptions about biotechnology research at their institutions and in their geographic areas. Their responses were compared to the responses the scientists at the nine schools gave to the same or similar questions. Results showed few biotechnology-related reference questions were asked of the librarians. The recorded questions dealt with a range of biotechnology subjects. MEDLINE was used to answer 77% of the questions received during the survey period. More detailed notes in MeSH and a guide to online searching for biotechnology topics were suggested by the librarians as ways to improve reference service to this group of researchers. Journal collections were generally strong, with libraries owning from 50% to 87% of the titles on a core list of biotechnology journals compiled for this study. All libraries subscribed to the five titles most often cited by the scientists surveyed. Generally, librarians were unaware of the biotechnology-related research being done on their campuses or in their geographic areas. PMID:1998819

  20. Advanced genetic tools for plant biotechnology

    SciTech Connect

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  1. Synthesis of aromatic cytokinins for plant biotechnology.

    PubMed

    Plíhalová, Lucie; Vylíčilová, Hana; Doležal, Karel; Zahajská, Lenka; Zatloukal, Marek; Strnad, Miroslav

    2016-09-25

    Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents. PMID:26703810

  2. Biotechnological production of limonene in microorganisms.

    PubMed

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials. PMID:26915992

  3. OIL POLLUTION ABSTRACTS. VOLUME 6, NUMBER 1

    EPA Science Inventory

    Oil Pollution Abstracts (formerly entitled Oil Pollution Reports) is a quarterly compilation of abstracts of current oil pollution related literature and research projects. Comprehensive coverage of oil pollution and its prevention and control is provided, with emphasis on the aq...

  4. Relevance of chemistry to white biotechnology

    PubMed Central

    Gupta, Munishwar N; Raghava, Smita

    2007-01-01

    White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up. PMID:17880746

  5. Undergraduate Biotechnology Students' Views of Science Communication

    NASA Astrophysics Data System (ADS)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  6. Certain problems of space biotechnology

    NASA Technical Reports Server (NTRS)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  7. Infusing Authentic Inquiry into Biotechnology

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  8. Biotechnological synthesis of functional nanomaterials.

    PubMed

    Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S

    2011-08-01

    Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. PMID:21742483

  9. Past, Present, and Future Industrial Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  10. The evolution of biotechnology and its impact on health care.

    PubMed

    Evens, Ronald; Kaitin, Kenneth

    2015-02-01

    For more than three decades the field of biotechnology has had an extraordinary impact on science, health care, law, the regulatory environment, and business. During this time more than 260 novel biotechnology products were approved for over 230 indications. Global sales of these products exceeded $175 billion in 2013 and have helped sustain a vibrant life sciences sector that includes more than 4,600 biotech companies worldwide. In this article we examine the evolution of biotechnology during the past three decades and the profound impact that it has had on health care through four interrelated and interdependent tracks: innovations in science, government activity, business development, and patient care. The future impact of biotechnology is promising, as long as the public and private sectors continue to foster policies and provide funds that lead to scientific breakthroughs; governments continue to offer incentives for private-sector biotech innovation; industry develops business models for cost-effective research and development; and all stakeholders establish policies to ensure that the therapeutic advances that mitigate or cure medical conditions that currently have inadequate or no available therapies are accessible to the public at a reasonable cost. PMID:25646100

  11. Biotechnology for Non-biology Majors: An Activity Using a Commercial Biotechnology Laboratory.

    ERIC Educational Resources Information Center

    Wray, Francis P.; Fox, Mary C.; Huether, Carl A.; Schurdak, Eric R.

    2001-01-01

    Presents an inexpensive activity to stimulate student interest in biotechnology that was developed in partnership with a biotechnology company. Focuses on the use of DNA by a commercial laboratory; describing the analysis procedure; important uses of DNA technology in modern society; and ethical, social, and legal issues related to biotechnology.…

  12. Immunological and Hematopoietic Biotechnology Studies

    NASA Technical Reports Server (NTRS)

    Fernandez-Botran, Rafael; Sonnenfeld, Gerald

    1996-01-01

    The purpose of the work carried under this interchanges was to support the development of space flight biotechnology experiments in the areas of immunology and hematopoiesis to facilitate the commercial development of space. The studies involved the interaction and development of experiments with biotechnology companies for necessary ground-based studies to allow the development of flight studies. The thrust of the work was to develop experiments with the Chiron Corporation and Bioserve involving the use of interleukin-2 to modulate the effects of spaceflight on immune responses. Spaceflight has been shown to have multiple effects on immune responses (1). lnterleukin-2 is an immuno-regulator that could have potential to counter some of the alterations induced in immune responses by spaceflight (1). To test this possibility before flight, rats were suspended antiorthostatically (2) and treated with interleukin-2. Antiorthostatic suspension is a model for some of the effects of spaceflight on immune responses (2). The interleukin-2 was given to see if it could alter some of the effects of suspension. This was achieved. As a result of these studies, two flight experiments were developed and flown with the Chiron Corp. And Bioserve to determine if use of interleukin-2 could prevent or attenuate the effects of space flight on immune responses.

  13. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1975

    1975-01-01

    Papers abstracted represent those submitted to the distribution center at the 83rd American Society for Engineering Education Convention. Abstracts are grouped under headings corresponding to the main topic of the paper. (Editor/CP)

  14. Self-Report and Academic Factors in Relation to High School Students' Success in an Innovative Biotechnology Program

    ERIC Educational Resources Information Center

    Peterman, Karen; Pan, Yi; Robertson, Jane; Lee, Shelley Glenn

    2014-01-01

    Biotechnology constitutes one of the most challenging, cutting-edge, and rapidly growing fields in science today. Both the practical implications and the hands-on nature of this "modern science" make the topic of biotechnology an attractive addition to the high school science curriculum. The current study is the first of its kind to…

  15. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  16. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  17. Biotechnology Education and the Internet. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  18. Undergraduate Biotechnology Students' Views of Science Communication

    ERIC Educational Resources Information Center

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  19. Biotechnology in the Middle School Curriculum

    ERIC Educational Resources Information Center

    Campbell, De Ann

    2007-01-01

    Biotechnology is a fairly new concept for middle school students as well as teachers. If the latest craze of TV shows focused on crime scene investigation events were not so popular, the term and concept might be even obscure to the public. There is an increased presence of biotechnology in our daily surroundings that makes it practical and…

  20. Cell biotechnology of rhodophytes in China

    NASA Astrophysics Data System (ADS)

    Wang, Su-Juan; Kuang, Mei; Ma, Ling-Bo

    1998-03-01

    Cell biotechnology of rhodophytes is important not only in theoretical research but also in cultural practice and for exploitation of genetic resources. In this paper, cell biotechnology of Porphyra is reviewed. Tissue culture and protoplast studies on other rhodophytes in China are discussed.

  1. Matching Society Values: Students' Views of Biotechnology

    ERIC Educational Resources Information Center

    Saez, Maria J.; Nino, Angela Gomez; Carretero, Antonio

    2008-01-01

    The rapid growth of biotechnology knowledge during the past decades has made it necessary to rethink the contents of the school curriculum and has provoked a consideration of the ethical and social issues related to the use of biotechnological applications. With the financial assistance of the European Union, the European Initiative for…

  2. Development and assessment of a biotechnology workforce development center model

    NASA Astrophysics Data System (ADS)

    Huxley, Mary Pat

    Life science and biotechnology companies are the fastest growing industries in the nation, with more than 30% of these companies and close to 50% of the nation's life science workers located in California. The need for well-trained biotechnology workers continues to grow. Educational institutions and industry professionals have attempted to create the training and the workforce for the bioscience and biotechnology industry. Many have concluded that one way would be to create a multiuse training center where trainees from high school age through late adulthood could receive up-to-date training. This case study had 2 unique phases. Phase 1 consisted of examining representative stakeholder interview data for characteristics of an ideal biotechnology shared-use regional education (B-SURE) center, which served as the basis for an assessment tool, with 107 characteristics in 8 categories. This represented what an ideal center model should include. Phase 2 consisted of using this assessment tool to gather data from 6 current biotechnology regional centers to determine how these centers compared to the ideal model. Results indicated that each center was unique. Although no center met all ideal model characteristics, the 6 centers could clearly be ranked. Recommendations include refining the core characteristics, further assessing the existing and planned centers; evaluating and refining the interview instrument in Phase 1 and the assessment tool in Phase 2 by including additional stakeholders in both phases and by adding reviewers of Phase 1 transcripts; and determining a method to demonstrate a clear return on investment in a B-SURE center.

  3. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  4. Against Free Markets, against Science? Regulating the Socio-Economic Effects of Biotechnology

    ERIC Educational Resources Information Center

    Kinchy, Abby J.; Kleinman, Daniel Lee; Autry, Robyn

    2008-01-01

    This study challenges the assumption that abstract "globalization" forces are driving transformations in the relationships between states and markets. Employing three cases of policy debate regarding the regulation of agricultural biotechnology (ag-biotech), we examine the role of discourse in the formation of neoliberal regulatory schemes. We…

  5. Students' Perception of Interdisciplinary, Problem-Based Learning in a Food Biotechnology Course

    ERIC Educational Resources Information Center

    Ng, Betsy L. L.; Yap, Kueh C.; Hoh, Yin K.

    2011-01-01

    Abstract: Students' perception of 8 criteria (rationale of the problem; interdisciplinary learning; facilitator asked essential questions; learner's skills; assessments; facilitation procedures; team's use of resources [team collaboration], and facilitator within a problem-based learning context) were assessed for a food biotechnology course that…

  6. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  7. Fossil energy biotechnology: A research needs assessment

    NASA Astrophysics Data System (ADS)

    1993-11-01

    The Office of Program Analysis of the U.S. Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation's fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  8. Progress towards the 'Golden Age' of biotechnology.

    PubMed

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. PMID:23797042

  9. Biotechnological opportunities in biosurfactant production.

    PubMed

    Geys, Robin; Soetaert, Wim; Van Bogaert, Inge

    2014-12-01

    In the recent years, biosurfactants proved to be an interesting alternative to petrochemically derived surfactants. Two classes of biosurfactants, namely glycolipids and lipopeptides, have attracted significant commercial interest. Despite their environmental advantages and equal performance, commercialization of these molecules remains a challenge due to missing acquaintance of the applicants, higher price and lack of structural variation. The latter two issues can partially be tackled by screening for novel and better wild-type producers and optimizing the fermentation process. Yet, these traditional approaches cannot overcome all hurdles. In this review, an overview is given on how biotechnology offers opportunities for increased biosurfactant production and the creation of new types of molecules, in this way enhancing their commercial potential. PMID:24995572

  10. Flashing light in microalgae biotechnology.

    PubMed

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. PMID:26747205

  11. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  12. Does "Social Work Abstracts" Work?

    ERIC Educational Resources Information Center

    Holden, Gary; Barker, Kathleen; Covert-Vail, Lucinda; Rosenberg, Gary; Cohen, Stephanie A.

    2008-01-01

    Objective: The current study seeks to provide estimates of the adequacy of journal coverage in the Social Work Abstracts (SWA) database. Method: A total of 23 journals listed in the Journal Citation Reports social work category during the 1997 to 2005 period were selected for study. Issue-level coverage estimates were obtained for SWA and…

  13. [Bacillus thuringiensis: a biotechnology model].

    PubMed

    Sanchis, V; Lereclus, D

    1999-01-01

    This paper is on the different biotechnological approaches that have been used to improve Bacillus thuringiensis (Bt) for the control of agricultural insect pests and have contributed to the successful use of this biological control agent; it describes how a better knowledge of the high diversity of Bt strains and toxins genes together with the development of efficient host-vector systems has made it possible to overcome a number of the problems associated with Bt based insect control measures. First we present an overview of the biology of Bt and of the mode of action of its insecticidal toxins. We then describe some of the progress that has been made in furthering our knowledge of the genetics of Bt and of its insecticidal toxin genes and in the understanding of their regulation. The paper then deals with the use of recombinant DNA technology to develop new Bt strains for more effective pest control or to introduce the genes encoding partial-endotoxins directly into plants to produce insect-resistant trangenic plants. Several examples describing how biotechnology has been used to increase the production of insecticidal proteins in Bt or their persistence in the field by protecting them against UV degradation are presented and discussed. Finally, based on our knowledge of the mechanism of transposition of the Bt transposon Tn4430, we describe the construction of a new generation of recombinant strains of Bt, from which antibiotic resistance genes and other non-Bt DNA sequences were selectively eliminated, using a new generation of site-specific recombination vectors. In the future, continuing improvement of first generation products and research into new sources of resistance is essential to ensure the long-term control of insect pests. Chimeric toxins could also be produced so as to increase toxin activity or direct resistance towards a particular type of insect. The search for new insecticidal toxins, in Bt or other microorganisms, may also provide new weapons

  14. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  15. Final Report: Northern Virginia Community College Training for Biotechnology Workers

    SciTech Connect

    Weiss, Johanna V

    2010-05-31

    The intent of this project was to expand Northern Virginia Community College's capability to offer training to support the Biotechnology Industry in the northern Virginia region. The general goal of this project was to create a College Biotechnology Program; specific goals of the project were to a) design curricula/courses to prepare students to become entry-level lab technicians, b) redesign and equip lab space to better suit the needs of the program, c) develop partnerships with the local industry through outreach and the formation on an advisory board, d) recruit students into the program, and e) provide instructional support for local high school teachers. At the end of the grant period, NOVA has successfully created two new curricula in biotechnology: an Associate of Applied Science (A.A.S.) in Biotechnology (initiated in Fall 2008) and a Career Studies Certificate for Biotechnology Lab Technicians (to be initiated in Fall 2010). These curricula were designed with advice from an external advisory committee which is comprised of representatives from industry, transfer institutions and high school administrators. To date, almost all courses have been designed and piloted; the equipment needed for the courses and the initial supplies were paid for by the grant as was the re-modeling of some lab space to be used for the biotech courses. In order to market the program, the NOVA Biotech Program has also established relationships with the local high schools. Presentations were given at several local high schools and on-site workshops were held for high school students and teachers. As a result, close to 1000 students have attended program open houses, presentations within the high schools, or workshops held in the summer. Over 100 teachers have received information and/or training in biotechnology. These outreach efforts as well as high quality curricula have started to attract a number of students to the program – for example, there are currently 70 students

  16. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  17. Loving Those Abstracts

    ERIC Educational Resources Information Center

    Stevens, Lori

    2004-01-01

    The author describes a lesson she did on abstract art with her high school art classes. She passed out a required step-by-step outline of the project process. She asked each of them to look at abstract art. They were to list five or six abstract artists they thought were interesting, narrow their list down to the one most personally intriguing,…

  18. Development and application of biotechnologies in the metal mining industry.

    PubMed

    Johnson, D Barrie

    2013-11-01

    Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years. PMID:23329131

  19. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  20. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  1. Developments in biotechnological research in Austria

    SciTech Connect

    Kubicek, C.P.

    1996-12-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. 234 refs.

  2. Microalgal lipids biochemistry and biotechnological perspectives.

    PubMed

    Bellou, Stamatia; Baeshen, Mohammed N; Elazzazy, Ahmed M; Aggeli, Dimitra; Sayegh, Fotoon; Aggelis, George

    2014-12-01

    In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties

  3. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics.

    PubMed

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  4. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    PubMed Central

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  5. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  6. Leadership Abstracts, 1996.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1996-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 9 for 1996 includes the following 12 abstracts: (1) "Tech-Prep + School-To-Work: Working Together To Foster Educational Reform," (Roderick F. Beaumont); (2)…

  7. Community Development Abstracts.

    ERIC Educational Resources Information Center

    Agency for International Development (Dept. of State), Washington, DC.

    This volume of 1,108 abstracts summarizes the majority of important works on community development during the last ten years. Part I contains abstracts of periodical literature and is classified into 19 sections, including general history, communications, community and area studies, decision-making, leadership, migration and settlement, social…

  8. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  9. Has Abstractness Been Resolved?

    ERIC Educational Resources Information Center

    Al-Omoush, Ahmad

    1989-01-01

    A discussion focusing on the abstractness of analysis in phonology, debated since the 1960s, describes the issue, reviews the literature on the subject, cites specific natural language examples, and examines the extent to which the issue has been resolved. An underlying representation is said to be abstract if it is different from the derived one,…

  10. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  11. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  12. Journalism Abstracts. Vol. 15.

    ERIC Educational Resources Information Center

    Popovich, Mark N., Ed.

    This book, the fifteenth volume of an annual publication, contains 373 abstracts of 52 doctoral and 321 master's theses from 50 colleges and universities. The abstracts are arranged alphabetically by author, with the doctoral dissertations appearing first. These cover such topics as advertising, audience analysis, content analysis of news issues…

  13. Knowledge-Based Abstracting.

    ERIC Educational Resources Information Center

    Black, William J.

    1990-01-01

    Discussion of automatic abstracting of technical papers focuses on a knowledge-based method that uses two sets of rules. Topics discussed include anaphora; text structure and discourse; abstracting techniques, including the keyword method and the indicator phrase method; and tools for text skimming. (27 references) (LRW)

  14. Leadership Abstracts, 1995.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1995-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, and teaching in community colleges. The 12 abstracts for Volume 8, 1995, are: (1) "Redesigning the System To Meet the Workforce Training Needs of the Nation," by Larry Warford; (2) "The College President, the Board, and the Board Chair: A…

  15. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  16. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  17. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  18. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  19. The Impact of Biotechnology upon Pharmacy Education.

    ERIC Educational Resources Information Center

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  20. Biotechnology Education: A Multiple Instructional Strategies Approach.

    ERIC Educational Resources Information Center

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  1. Yeasts: From genetics to biotechnology

    SciTech Connect

    Russo, S.; Poli, G.; Siman-Tov, R.B.

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  2. Archaeal DNA polymerases in biotechnology.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Huang, Yanchao

    2015-08-01

    DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols. PMID:26150245

  3. Ethics in biotechnology and biosecurity.

    PubMed

    Jameel, S

    2011-01-01

    Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed. PMID:22120790

  4. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  5. Immunoassays in monitoring biotechnological drugs.

    PubMed

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials. PMID:8857560

  6. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  7. Biotechnology for the 21st century, FY 1993

    SciTech Connect

    Not Available

    1992-02-01

    This report outlines the Federal role in biotechnology research and describes the foundation for a coordinated national initiative that will, over the coming years, maximize the effectiveness of the Federal investment in biotechnology research. Specifically, this report: (1) Defines the baseline of programmatic activity and Federal funding in biotechnology research, (2) Highlights ongoing agency programs and new initiatives, (3) Outlines national strategic objectives for biotechnology research, (4) Presents the first interagency Federal biotechnology research budget, and (5) Suggests directions for future efforts. Biotechnology Research Areas include: Agriculture, Energy, Environment, Health, Manufacturing/Bioprocessing, General Foundations, Genome Projects, Marine Biotechnology, Structural Biology, Social Impact Research, and Infrastructure.

  8. Progress in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S. ); Kang, Sun Ki . Dept. of Chemical Engineering)

    1991-05-01

    Studies directed at the development of an environmentally acceptable technology for the treatment and disposal of geothermal sludges have shown that a biotechnology based on microbial biochemical processes is technically and economically feasible. Process designs for the emerging biotechnology have to take several variables into consideration. In the present paper some of these variables will be discussed in terms of their effect on the cost and efficiency of potential processes. 7 refs., 4 figs., 4 tabs.

  9. Biotechnological production and application of fructooligosaccharides.

    PubMed

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications. PMID:25519697

  10. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271