Sample records for current limiter fcl

  1. A Practical Study of the 66kV Fault Current Limiter (FCL) System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Yuguchi, Kyosuke; Ohkuma, Takeshi; Hobara, Natsuro; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and facilities can be configured for efficiency, among other benefits. For these reasons, fault current limiters based on various principles of operation have been developed both in Japan and abroad. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66kV model at the island power system and the superconducting cable power system. Also we have made a practical study of 66kV class, which is the testing items and the future subjects of the rectifier type FCL system.

  2. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  3. A Solid-State Fault Current Limiting Device for VSC-HVDC Systems

    NASA Astrophysics Data System (ADS)

    Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz

    2013-08-01

    Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.

  4. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    NASA Astrophysics Data System (ADS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  5. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  6. Development of a 66kV Class Rectifier Type Fault Current Limiter System

    NASA Astrophysics Data System (ADS)

    Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa; Tokuda, Noriaki; Murai, Masaki; Nagasaki, Norihisa; Yuguchi, Kyousuke

    A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500 kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and it is expected that FCLs may be used in more efficient power system design. For these reasons, FCLs based on various principles of operation have been developed in the world. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66 kV class FCL model. Also we have proposed a 66 kV class prototype single-phase model and the current limiting performance of this model was evaluated using a short circuit generator.

  7. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  8. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers,more » salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.« less

  9. Design, Test and Demonstration of Fault Current Limiting HTS Transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazelton, Drew

    The project developed new technology that enables the creation of a high temperature superconductor-based FCL power transformer. SuperPower’s research and development created new methods to bond HTS conductor to a supporting substrate, test, and insulate the resulting bonded conductor, reduce winding ac losses, ensure FCL functionality during a transformer fault and build firm superconducting joints in the transformer harnesses and cabling. The bonded conductor in this program was shown to meet the critical operating parameters of providing the superconducting transformer operation while being able to meet the target normal state resistance required for FCL operation. The bonded conductor was alsomore » shown to be able to handle the fabrication stresses associated with the manufacture of the FCL transformer while also being able to handle the high hoop stresses and axial forces during a fault transient. Much of the technology developed here is applicable to the broader applied superconductivity community. The ability to tailor the clad conductors performance characteristics gives the designer of devices utilizing HTS a broader capability to address the particular needs of an given application. SuperPower worked with its sub-recipients Waukesha Electric Systems, ORNL, Southern California Edison and University of Houston to develop the design, fabrication, installation and operational aspects of a fault current limiting transformer on the electrical grid.« less

  10. Application of the Radon-FCL approach to seismic random noise suppression and signal preservation

    NASA Astrophysics Data System (ADS)

    Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning

    2016-08-01

    The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon-FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon-FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.

  11. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    PubMed

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  12. Design and test of current limiting modules using YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; Gamble, B.; Kraemer, H.-P.; Madura, D.; Otto, A.; Romanosky, W.

    2010-01-01

    Within the cooperation between American Superconductor Corporation (AMSC) and Siemens Corporate Technology we have investigated the fault current limiting performance of YBCO-coated conductors (also called second-generation or 2G HTS wires) stabilized with stainless steel laminates. Design rules for the length and width of the wire depending on utility grid requirements have been established. Bifilar coils have been manufactured and tested with a typical limitation period of 50 ms under stepwise increasing voltage loads to determine the maximum temperature the wires can withstand without degradation. Coils have been assembled into limiter modules demonstrating uniform tripping of the individual coils and recovery within seconds. At present this cooperation is proceeding within a joint project funded by the US Department of Energy (DOE) that encompasses the design, construction and testing of a 115 kV FCL for power transmission within a time frame of 4-5 years, and additional partners. Besides AMSC and Siemens, Nexans contributes the high voltage terminations and Los Alamos National Lab investigates the ac losses. Installation and testing are planned for a Southern California Edison substation. The module planned for the transmission voltage application consists of 63 horizontally arranged coils connected in parallel and series to account for a rated current of 1.2 kArms and voltage of 31 kVrms plus margins. The rated voltage of the module is considerably lower than the line to ground voltage in the 115 kV grid owing to our shunted limiter concept. The shunt reactor connected in parallel to the module outside the cryostat allows for adjustment of the limited current and reduces voltage drop across the module in case of a fault. The fault current reduction ratio is 42% for our present design. A subscale module comprising six full-size coils has been assembled and tested recently to validate the coil performance and coil winding technique. The module had a critical

  13. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    NASA Astrophysics Data System (ADS)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  14. Superconductivity in layered ZrP2-x Se x with PbFCl-type structure

    NASA Astrophysics Data System (ADS)

    Ishida, Shigeyuki; Fujihisa, Hiroshi; Hase, Izumi; Yanagi, Yousuke; Kawashima, Kenji; Oka, Kunihiko; Gotoh, Yoshito; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi; Kito, Hijiri

    2016-05-01

    We performed a systematic study of the crystal structure, physical properties, and electronic structure of PbFCl-type ZrP2-x Se x (0.3 ≤ x ≤ 0.9). We successfully synthesized single-phase polycrystalline samples for the Se substitution range of 0.4 ≤ x ≤ 0.8. The crystal structure of the compound is characterized by the alternate stacking of a two-dimensional P square net and a Zr-(P1-x Se x ) network. ZrP2-x Se x exhibits a dome-like superconductivity phase diagram and has a maximum superconducting transition temperature (T c) of 6.3 K for x ≈ 0.6. Resistivity and Hall measurements indicated that electron-phonon scattering plays a dominant role and that electron-type carriers dominate charge transport. Specific heat measurements confirmed that ZrP2-x Se x exhibits bulk superconductivity. Further, the value of the specific heat jump at T c (ΔC/γT c ≈ 1.35) is in keeping with the BCS weak-coupling model. These facts suggest a rather conventional pairing mechanism in ZrP2-x Se x . The x dependence of T c can be explained on the basis of the density of states (DOS) for x ≤ 0.7, whereas the decrease in T c with an increase in the DOS for x = 0.8 needs further investigation. One possible reason for the suppression of superconductivity is that the PbFCl-type structure becomes unstable for x ≥ 0.8. The results of electronic structure calculations agree reasonably well with those of the experimental observations, suggesting that the Zrd band plays a primary role in determining the physical properties. Further, the calculations predict a significant change in the Fermi-surface topology for x ≥ 0.8 this is a probable reason for the decrease in T c as well as the instability of the PbFCl-type structure.

  15. Over-current carrying characteristics of rectangular-shaped YBCO thin films prepared by MOD method

    NASA Astrophysics Data System (ADS)

    Hotta, N.; Yokomizu, Y.; Iioka, D.; Matsumura, T.; Kumagai, T.; Yamasaki, H.; Shibuya, M.; Nitta, T.

    2008-02-01

    A fault current limiter (FCL) may be manufactured at competitive qualities and prices by using rectangular-shaped YBCO films which are prepared by metal-organic deposition (MOD) method, because the MOD method can produce large size elements with a low-cost and non-vacuum technique. Prior to constructing a superconducting FCL (SFCL), AC over-current carrying experiments were conducted for 120 mm long elements where YBCO thin film of about 200 nm in thickness was coated on sapphire substrate with cerium oxide (CeO2) interlayer. In the experiments, only single cycle of the ac damping current of 50 Hz was applied to the pure YBCO element without protective metal coating or parallel resistor and the magnitude of the current was increased step by step until the breakdown phenomena occurred in the element. In each experiment, current waveforms flowing through the YBCO element and voltage waveform across the element were measured to get the voltage-current characteristics. The allowable over-current and generated voltage were successfully estimated for the pure YBCO films. It can be pointed out that the lower n-value trends to bring about the higher allowable over-current and the higher withstand voltage more than tens of volts. The YBCO film having higher n-value is sensitive to the over-current. Thus, some protective methods such as a metal coating should be employed for applying to the fault current limiter.

  16. Novel phosphate halides BaMn{sup III}[PO{sub 4}]FCl and BaMn{sup III}[PO{sub 4}]F{sub 2}: Effects of mixed halides on crystal structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Da-Ting, E-mail: pdtcug@gmail.com; Sun, Wei, E-mail: 421221789@qq.com; Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Canada SK S7N 5E2

    2016-02-15

    Two new phosphate halides BaMn{sup III}[PO{sub 4}]FCl (1) and BaMn{sup III}[PO{sub 4}]F{sub 2} (2), have been synthesized under hydrothermal conditions. Structural characterizations show that both new compounds adopt layered structures but with different polyhedral linkages. Introduction of Cl into Compound (1) results in isolated hemimorphic [MnO{sub 4}FCl] octahedra, different from the chain of [MnO{sub 4}F{sub 2}]/[MnO{sub 2}F{sub 4}] octahedra in Compound (2). These compounds have significantly different molecular vibration modes and thermal stabilities. Magnetic measurements reveal that Compound (2) has larger antiferromagnetic interactions than Compound (1), because the former has strong interactions between Mn{sup 3+}-Mn{sup 3+} ions within corner-shared Mn{supmore » 3+}-octahedral chains whereas the latter only possesses isolated Mn{sup 3+}-octahedra. Both compounds transform to a new orthorhombic compound BaMn{sup II}(PO{sub 4})F (3) after thermal decomposition. - Graphical abstract: The large radius of Cl{sup -} ions makesBaMn{sup III}[PO{sub 4}]FCl to adopt isolated [MnO{sub 4}FCl] rather than corner-sharing octahedra as observed in BaMn{sup III}[PO{sub 4}]F{sub 2}. - Highlights: • Two novel phosphate halides BaMn[PO{sub 4}]FCl and BaMn[PO{sub 4}]F{sub 2} have been prepared. • These new compounds adopt different types of layered structures. • They have different molecular vibration modes and thermal stabilities. • BaMn[PO{sub 4}]FCl has weaker antiferromagnetic interactions than BaMn[PO{sub 4}]F{sub 2}. • The former adopts isolated octahedra whereas the latter adopts octahedral chains.« less

  17. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  18. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  19. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  20. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  1. Adjustable direct current and pulsed circuit fault current limiter

    DOEpatents

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  2. Current limiter circuit system

    DOEpatents

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  3. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  4. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  5. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  6. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  7. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  8. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  9. Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament Deformation.

    PubMed

    Ban, Ehsan; Zhang, Sijia; Zarei, Vahhab; Barocas, Victor H; Winkelstein, Beth A; Picu, Catalin R

    2017-07-01

    The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure-function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.

  10. Current-limiting challenges for all-spin logic devices

    PubMed Central

    Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng

    2015-01-01

    All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410

  11. Electropneumatic transducer automatically limits motor current

    NASA Technical Reports Server (NTRS)

    Lovitt, T. F.

    1966-01-01

    Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.

  12. Maximum time-dependent space-charge limited diode currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, M. E.; Fisch, N. J.

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximummore » applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.« less

  13. Superconducting dc Current Limiting Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Bunin, R. A.; Voloshin, I. F.; Degtyarenko, P. N.; Yevsin, D. V.; Ivanov, V. P.; Sidorov, V. A.; Fisher, L. M.; Tshai, E. V.

    Acircuitofadc superconductingfault current limiter witha direct current circuit-breaker fora nominal current 300A is proposed. It includes the 2G high temperature superconducting (HTS) tapes and the high-speed dc vacuum circuit breaker.Thetestresultsof current-limitingcapacityandrecoverytimeof superconductivityafter currentfaultatvoltage upto3 kV are presented.

  14. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  15. MgB2-based superconductors for fault current limiters

    NASA Astrophysics Data System (ADS)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  16. Resistive-Type Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Martini, L.; Bocchi, M.; Angeli, G.

    Among the wide range of High-Temperature Superconducting (HTS) materials presently known Bismuth Strontium Calcium Copper Oxide (BSCCO) is a very suitable candidate for power applications either at low temperature (e.g. <30K) at any field or at high temperature (e.g. 77K) in self-field conditions. This is due to several advantages of BSCCO from an electrical, thermal, mechanical and economic point of view. In particular, BSCCO has been proven to be particularly suitable for hybrid current leads and HTS cables. However, BSCCO-based Superconducting Fault Current Limiter (SFCL) applications have been an important issue within the Ricerca sul Sistema Energetico (RSE) S.p.A. R&D portfolio in the last decade. The SFCL project, funded in the framework of a R&D national project, started focusing on a preliminary single-phase device, which was submitted to dielectric and short-circuit current testing. The first success paved the way for the finalization of the remaining two phases and the final result was a three-phase resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes that was installed in the S. Dionigi substation, belonging to the Italian utility A2A Reti Elettriche S.p.A. (A2A), in the Milan MV distribution grid. The in-field activity lasted for more than two years, demonstrating the SFCL capability to cope with the grid in every-day operating conditions. Moreover, at the end of the experimentation, the SFCL device was able to perform a true limitation during a three-phase fault, thereby becoming one of the first SFCL devices in the world (the first in Italy) installed in a real grid and to have limited a real short-circuit current.

  17. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  18. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  19. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Jessner, A.; Lesch, H.; Kunzl, T.

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volume. These considerations apply wherever there is a significant amount of charged current flow, in particular in the gap regions. There they can be used to derive limits on the size of such gaps and their stability.

  20. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  1. Electron beam transport with current above the Alfven--Lawson limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al'terkop, B.A.; Sokulin, A.Y.; Tarakanov, V.P.

    1989-08-01

    The quasisteady state of a magnetized electron beam with a current above the Alfven-Lawson limit in a cylindrical waveguide of finite length is analyzed. The distribution of the electrostatic field, the limiting current, and the critical length of the waveguide are found in a two-dimensional system. The basic characteristics of the beam for the injection of a current above the limit---the position of the virtual cathode, the beam thickness, and the current which can be transported---are determined. The current which can be transported may exceed the theoretical limit. The accuracy of the analytic results is confirmed by comparison with themore » results of experiments and numerical simulations.« less

  2. Perspectives on setting limits for RF contact currents: a commentary.

    PubMed

    Tell, Richard A; Tell, Christopher A

    2018-01-15

    Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the

  3. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan; Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  4. Pinch current limitation effect in plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai

    The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.

  5. Current limiting mechanisms in electron and ion beam experiments

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1990-01-01

    The emission and collection of current from satellites or rockets in the ionosphere is a process which, at equilibrium, requires a balance between inward and outward currents. In most active experiments in the ionosphere and magnetosphere, the emitted current exceeds the integrated thermal current by one or more orders of magnitude. The system response is typically for the emitted current to be limited by processes such as differential charging of insulating surfaces, interactions between an emitted beam and the local plasma, and interactions between the beam and local neutral gas. These current limiting mechanisms have been illustrated for 20 years in sounding rocket and satellite experiments, which are reviewed here. Detailed presentations of the Spacecraft Charging at High Altitude (SCATHA) electron and ion gun experiments are used to demonstrate the general range of observed phenomena.

  6. Possibilities and limitations of current stereo-endoscopy.

    PubMed

    Mueller-Richter, U D A; Limberger, A; Weber, P; Ruprecht, K W; Spitzer, W; Schilling, M

    2004-06-01

    Stereo-endoscopy has become a commonly used technology. In many comparative studies striking advantages of stereo-endoscopy over two-dimensional presentation could not be proven. To show the potential and fields for further improvement of this technology is the aim of this article. The physiological basis of three-dimensional vision limitations of current stereo-endoscopes is discussed and fields for further research are indicated. New developments in spatial picture acquisition and spatial picture presentation are discussed. Current limitations of stereo-endoscopy that prevent a better ranking in comparative studies with two-dimensional presentation are mainly based on insufficient picture acquisition. Devices for three-dimensional picture presentation are at a more advanced developmental stage than devices for three-dimensional picture acquisition. Further research should emphasize the development of new devices for three-dimensional picture acquisition.

  7. Flexible moldable conductive current-limiting materials

    DOEpatents

    Shea, John Joseph; Djordjevic, Miomir B.; Hanna, William Kingston

    2002-01-01

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  8. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  9. Nondestructive test determines overload destruction characteristics of current limiter fuses

    NASA Technical Reports Server (NTRS)

    Swartz, G. A.

    1968-01-01

    Nondestructive test predicts the time required for current limiters to blow /open the circuit/ when subjected to a given overload. The test method is based on an empirical relationship between the voltage rise across a current limiter for a fixed time interval and the time to blow.

  10. Using electric current to surpass the microstructure breakup limit

    PubMed Central

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919

  11. 40 CFR 74.25 - Current promulgated SO2 emissions limit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Current promulgated SO2 emissions... promulgated SO2 emissions limit. The designated representative shall submit the following data: (a) Current promulgated SO2 emissions limit of the combustion source, expressed in lbs/mmBtu, which shall be the most...

  12. Return to National Basketball Association Competition Following Anterior Cruciate Ligament and Fibular Collateral Ligament Injuries: A Case Report.

    PubMed

    LaPrade, Robert F; O'Brien, Luke; Kennedy, Nicholas I; Cinque, Mark E; Chahla, Jorge

    2017-01-01

    Numerous outcome studies regarding anterior cruciate ligament (ACL) reconstruction demonstrate the ability of athletes to return to a high level of play. However, to our knowledge, there is limited literature regarding return to play following injury to both the ACL and the fibular collateral ligament (FCL). We describe the case of a National Basketball Association (NBA) player who sustained a combined ACL and FCL knee injury and subsequently underwent surgical reconstruction of both affected ligaments. He was able to return to a preinjury level of competition at 9 months postoperatively. It is possible for athletes to return to competitive basketball and maintain a high production level following a single-staged reconstruction of both the ACL and the FCL.

  13. Current limitations and recommendations to improve testing ...

    EPA Pesticide Factsheets

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizations, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormonal pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1)adequately sensitive species and life-stages, 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern, and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and to reduce uncertainty. For example, in vitro high throughput

  14. Limitations for current production in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, P Sebastian; Bradley, Dan F; Schrott, Germán D; Busalmen, Juan Pablo

    2013-04-01

    Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A double-stage start-up structure to limit the inrush current used in current mode charge pump

    NASA Astrophysics Data System (ADS)

    Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi

    2016-06-01

    A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).

  16. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  17. Development of superconducting power devices in Europe

    NASA Astrophysics Data System (ADS)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be "smart grids". Superconductivity will offer "smart" devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  18. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery.

    PubMed

    Tan, Youri P A; Liverneaux, Philippe; Wong, Jason K F

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  19. A superconducting direct-current limiter with a power of up to 8 MVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current atmore » a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.« less

  20. A superconducting direct-current limiter with a power of up to 8 MVA

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  1. Applications of the superconducting lossless resistor in electric power systems

    NASA Astrophysics Data System (ADS)

    Qian, Ping; Chen, Ji-yan; Hua, Rong; Chen, Zhongming

    2003-04-01

    The main features and some very useful applications of the superconducting lossless resistor (LLR) in electric power systems are introduced in this paper. According our opinion, there are two different kinds of LLR, i.e., the time-variant LLR (Tv-LLR) and the time-invariant LLR (Ti-LLR). First, Tv-LLR is well suited for developing new type of the fault-current limiter (FCL) since it has no heat energy dissipated from its superconducting element during current-limiting process. Second, it may be used to produce the high voltage circuit breaker with current limiting ability. While Ti-LLR may be used to manufacture a new type of the superconducting transformer, with compact volume, lightweight and with continuously regulated turn-ratio (so it familiarized as time-variable transformer, TVT).

  2. Transport properties of kA class QMG current limiting elements

    NASA Astrophysics Data System (ADS)

    Morita, M.; Miura, O.; Ito, D.

    2001-09-01

    In order to estimate the feasibility of a resistive type fault current limiter made of QMG, transport properties of QMG current limiting elements which can transport about 1 kA continuously in a superconducting state were studied. QMG is a rare earth based bulk superconductor that has high Jc properties and relatively high electrical resistivity in a normal state. Because of these properties, QMG is a promising bulk material for superconducting fault current limiter applications. A bar-shaped sample in which the cross-section and the effective length were 2.2×0.8 mm2 and 30 mm, respectively, was prepared. Bypass resistance of 7 mΩ was connected in parallel with the sample. A field assist mechanism that can apply a magnetic field of about 0.9 T to the sample was installed. A half cycle of AC current up to about 3 kA was applied to the samples at 77 K. In the case when applied current ( I) was less than 1000 A in a self-field, flux flow voltage was less than 0.5 mV. The n-value was about 6. In the applied field of 0.9 T, a rapid increase of voltage (quench) was observed around I=1820 A. The quench phenomena reproduced without degradation in the case of I>1820 A. From these results, it was found that QMG fault current elements can endure the thermal shock of the quench by the optimization of bypass resistance and the applied field.

  3. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    PubMed Central

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  4. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Shyshkin, O.; Yamaguchi, S.

    2017-07-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  5. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  6. Limitations of bootstrap current models

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Meneghini, Orso; ...

    2014-03-27

    We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model and (2) a recent modification of the Sauter model by Koh et al. For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core- to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional couplingmore » – an approximation inherent to both analytic models – is quantified. Moreover, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.« less

  7. Measurements and tests of HTS bulk material in resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Noe, M.; Juengst, K.-P.; Werfel, F. N.; Elschner, S.; Bock, J.; Wolf, A.; Breuer, F.

    2002-08-01

    The application of superconducting fault current limiters (SCFCL) depends highly on their technical and economical benefits. Therefore it is obvious that the main requirements on the SCFCL are a reliable, fail-safe and rapid current limitation, low losses, and an inexpensive production. As a potential candidate material we have investigated HTS bulk material in resistive fault current limiters. Our report focuses on the E- j-curves, the AC-losses and the quench behaviour of melt cast processed-BSCCO 2212 and melt textured polycrystalline-YBCO 123. Within a temperature range from 64 to 80 K E- j-curves and AC losses of HTS elements were measured. The measurement results show that HTS bulk material meets the SCFCL specifications. In order to avoid hot spots during limitation and to improve mechanical stability a metallic bypass is needed. First test results of the quench behaviour of HTS bulk material with metallic bypass demonstrate safe limitation up to the specified electrical field of 100 V/m.

  8. Alternative model of space-charge-limited thermionic current flow through a plasma

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  9. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  10. The role of discharge variation in scaling of drainage area and food chain length in rivers.

    PubMed

    Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M

    2010-11-12

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  11. Extension of a GIS procedure for calculating the RUSLE equation LS factor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongming; Yang, Qinke; Li, Rui; Liu, Qingrui; Moore, Demie; He, Peng; Ritsema, Coen J.; Geissen, Violette

    2013-03-01

    The Universal Soil Loss Equation (USLE) and revised USLE (RUSLE) are often used to estimate soil erosion at regional landscape scales, however a major limitation is the difficulty in extracting the LS factor. The geographic information system-based (GIS-based) methods which have been developed for estimating the LS factor for USLE and RUSLE also have limitations. The unit contributing area-based estimation method (UCA) converts slope length to unit contributing area for considering two-dimensional topography, however is not able to predict the different zones of soil erosion and deposition. The flowpath and cumulative cell length-based method (FCL) overcomes this disadvantage but does not consider channel networks and flow convergence in two-dimensional topography. The purpose of this research was to overcome these limitations and extend the FCL method through inclusion of channel networks and convergence flow. We developed LS-TOOL in Microsoft's.NET environment using C♯ with a user-friendly interface. Comparing the LS factor calculated with the three methodologies (UCA, FCL and LS-TOOL), LS-TOOL delivers encouraging results. In particular, LS-TOOL uses breaks in slope identified from the DEM to locate soil erosion and deposition zones, channel networks and convergence flow areas. Comparing slope length and LS factor values generated using LS-TOOL with manual methods, LS-TOOL corresponds more closely with the reality of the Xiannangou catchment than results using UCA or FCL. The LS-TOOL algorithm can automatically calculate slope length, slope steepness, L factor, S factor, and LS factors, providing the results as ASCII files which can be easily used in some GIS software. This study is an important step forward in conducting more accurate large area erosion evaluation.

  12. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  13. Clinicopathologic evaluation of hepatic lipidosis in periparturient dairy cattle.

    PubMed

    Kalaitzakis, Emmanouil; Roubies, Nikolaos; Panousis, Nikolaos; Pourliotis, Konstantinos; Kaldrymidou, Eleni; Karatzias, Harilaos

    2007-01-01

    Fatty change of the liver (FCL) is very common in dairy cattle periparturiently. Many laboratory methods have been implicated in order to assist the diagnosis. To investigate whether FCL in dairy cattle could be evaluated by assessment of ornithine carbamoyl transferase (OCT) by means of an assay modified for bovine serum, other enzyme activity, serum bile acids (SBA) concentration, or other biochemical constituents. A total of 187 dairy cattle were included: 106 were suspected to have liver dysfunction and were examined after referral by veterinarians; 70 were clinically healthy with mild FCL; and 11 were clinically healthy without FCL. Blood and liver biopsy samples were obtained after clinical examination. Histologic examination by light microscopy and classification of samples according to the severity of FCL was done, and total lipid and triglyceride concentration was measured. In serum, OCT, aspartate aminotransferase (AST), alanine aminotransferase (ALT), sorbitol dehydrogenase (SDH), glutamate dehydrogenase (GDH), alkaline phosphatase (ALP), and gamma-glutamyltransferase (gamma-GT) activity as well as SBA, glucose, ketones, total bilirubin (tBIL), and nonesterified fatty acids (NEFA) concentration were measured. OCT and AST activity and tBIL concentration correlate well with the degree of FCL. SBA concentration does not contribute well to FCL diagnosis. The majority of FCL cases appeared within the first 21 days-in-milk (DIM). The majority of moderate-to-severe and severe FCL cases arose in the first 7 DIM. Except for OCT, AST, and tBIL, none of the biochemical tests used, including SBA, had sufficient discriminatory power to differentiate reliably between mild and severe FCL because of poor sensitivity. A weak correlation between clinical signs and the extent of FCL was evident.

  14. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    NASA Astrophysics Data System (ADS)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  15. Hybrid superconducting a.c. current limiter extrapolation 63 kV-1 250 A

    NASA Astrophysics Data System (ADS)

    Tixador, P.; Levêque, J.; Brunet, Y.; Pham, V. D.

    1994-04-01

    Following the developement of a.c. superconducting wires a.c. current superconducting limiters have emerged. These limiters limit the fault currents nearly instantaneously, without detection nor order giver and may be suitable for high voltages. They are based on the natural transition from the superconducting state to the normal resistive state by overstepping the critical current of a superconducting coil which limits or triggers the limitation. Our limiter device consists essentially of two copper windings coupled through a saturable magnetic circuit and of a non inductively wound superconducting coil with a reduced current compared to the line current. This design allows a simple superconducting cable and reduced cryogenic losses but the dielectric stresses are high during faults. A small model (150 V/50 A) has experimentally validated our design. An industrial scale current limiter is designed and the comparisons between this design and other superconducting current limiters are given. Les courants de court-circuit sur les grands réseaux électriques ne cessent d'augmenter. Dans ce contexte sont apparus les limiteurs supraconducteurs de courant suite au développement des brins supraconducteurs alternatifs. Ces limiteurs peuvent limiter les courants de défaut presque instantanément, sans détection de défaut ni donneur d'ordre et ils sont extrapolables aux hautes tensions. Ils sont fondés sur la transition naturelle de l'état supraconducteur à l'état normal très résistif par dépassement du courant critique d'un enroulement supraconducteur qui limite ou déclenche la limitation. Notre limiteur est composé de deux enroulements en cuivre couplés par un circuit magnétique saturable et d'une bobine supraconductrice à courant réduit par rapport au courant de la ligne. Cette conception permet un câble supraconducteur simple et des pertes cryogéniques réduites mais les contraintes diélectriques en régime de défaut sont importantes. Une maquette

  16. Flux-lock type of superconducting fault current limiters: A comprehensive review

    NASA Astrophysics Data System (ADS)

    Badakhshan, M.; Mousavi G., S. M.

    2018-04-01

    Power systems must be developed and extended to supply the continuous enhancement of demands for electrical energy. This development of systems in addition to the integration of distributed generation (DG) units to the power systems results higher capacity of system. Hence, short circuit current of network is confronted with persistent increasing. Since exploration of high temperature superconducting (HTS) materials, superconducting fault current limiters (SFCLs) have attracted a lot of attention all over the world. There are different types of SFCLs. Flux-lock type of SFCL because of its characteristics in fault current limitation is an important category of SFCLs. This paper aims to present a comprehensive review of research activities and applications of Flux-lock type of SFCLs in power systems.

  17. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice.

    PubMed

    Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah

    2017-07-17

    Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a

  18. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE PAGES

    Campanell, M. D.

    2018-04-19

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  19. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, M. D.

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  20. Adaptation of superconducting fault current limiter to high-speed reclosing

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yanabu, S.

    2009-10-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  1. Method and apparatus to trigger superconductors in current limiting devices

    DOEpatents

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  2. Structural Aspects of Antioxidant and Genotoxic Activities of Two Flavonoids Obtained from Ethanolic Extract of Combretum leprosum

    PubMed Central

    Viau, Cassiana Macagnan; Moura, Dinara Jaqueline; Pflüger, Pricila; Facundo, Valdir Alves

    2016-01-01

    Combretum leprosum Mart., a member of the Combretaceae family, is a traditionally used Brazilian medicinal plant, although no evidence in the literature substantiates its antioxidant action and the safety of its use. We evaluated the antioxidant properties of the ethanolic extract (EE) from flowers of C. leprosum and its isolated products 5,3′-dihydroxy-3,7,4′-trimethoxyflavone (FCL2) and 5,3′,4′-trihydroxy-3,7-dimethoxyflavone (FCL5) in Saccharomyces cerevisiae strains proficient and deficient in antioxidant defenses. Their mutagenic activity was also assayed in S. cerevisiae, whereas cytotoxic and genotoxic properties were evaluated by MTT and Comet Assays, respectively, in V79 cells. We show that the EE, FCL2, and FCL5 have a significant protective effect against H2O2. FCL2 showed a better antioxidant action, which can be related to the activation of the 3′-OH in the presence of a methoxyl group at 4′ position in the B-ring of the molecule, while flavonoids did not induce mutagenesis in yeast, and the EE was mutagenic at high concentrations. The toxicity of these compounds in V79 cells increases from FCL2 = FCL5 < EE; although not cytotoxic, FCL5 induced an increase in DNA damage. The antioxidant effect, along with the lower toxicity and the absence of genotoxicity, suggests that FCL2 could be suitable for pharmacological use. PMID:27478483

  3. Investigating fuel-cell transport limitations using hydrogen limiting current

    DOE PAGES

    Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...

    2017-03-09

    Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less

  4. Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

    PubMed Central

    Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.

    2014-01-01

    Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685

  5. Reformulated space-charge-limited current model and its application to disordered organic systems

    NASA Astrophysics Data System (ADS)

    Woellner, Cristiano F.; Freire, José A.

    2011-02-01

    We have reformulated a traditional model used to describe the current-voltage dependence of low mobility materials sandwiched between planar electrodes by using the quasi-electrochemical potential as the fundamental variable instead of the local electric field or the local charge carrier density. This allows the material density-of-states to enter explicitly in the equations and dispenses with the need to assume a particular type of contact. The diffusion current is included and as a consequence the current-voltage dependence obtained covers, with increasing bias, the diffusion limited current, the space-charge limited current, and the injection limited current regimes. The generalized Einstein relation and the field and density dependent mobility are naturally incorporated into the formalism; these two points being of particular relevance for disordered organic semiconductors. The reformulated model can be applied to any material where the carrier density and the mobility may be written as a function of the quasi-electrochemical potential. We applied it to the textbook example of a nondegenerate, constant mobility material and showed how a single dimensionless parameter determines the form of the I(V) curve. We obtained integral expressions for the carrier density and for the mobility as a function of the quasi-electrochemical potential for a Gaussianly disordered organic material and found the general form of the I(V) curve for such materials over the full range of bias, showing how the energetic disorder alone can give rise, in the space-charge limited current regime, to an I∝Vn dependence with an exponent n larger than 2.

  6. Defining the safe current limit for opening ID photon shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.

    The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less

  7. In situ forces and length patterns of the fibular collateral ligament under controlled loading: an in vitro biomechanical study using a robotic system.

    PubMed

    Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang

    2015-04-01

    The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.

  8. Current Status and Research into Overcoming Limitations of Capsule Endoscopy

    PubMed Central

    Kwack, Won Gun; Lim, Yun Jeong

    2016-01-01

    Endoscopic investigation has a critical role in the diagnosis and treatment of gastrointestinal (GI) diseases. Since 2001, capsule endoscopy (CE) has been available for small-bowel exploration and is under continuous development. During the past decade, CE has achieved impressive improvements in areas such as miniaturization, resolution, and battery life. As a result, CE is currently a first-line tool for the investigation of the small bowel in obscure gastrointestinal bleeding and is a useful alternative to wired enteroscopy. Nevertheless, CE still has several limitations, such as incomplete examination and limited diagnostic and therapeutic capabilities. To resolve these problems, many groups have suggested several models (e.g., controlled CO2 insufflation system, magnetic navigation system, mobile robotic platform, tagging and biopsy equipment, and targeted drug-delivery system), which are in development. In the near future, new technological advances will improve the capabilities of CE and broaden its spectrum of applications not only for the small bowel but also for the colon, stomach, and esophagus. The purpose of this review is to introduce the current status of CE and to review the ongoing development of solutions to address its limitations. PMID:26855917

  9. Regulation of Compound Leaf Development in Medicago truncatula by Fused Compound Leaf1, a Class M KNOX Gene[C][W

    PubMed Central

    Peng, Jianling; Yu, Jianbin; Wang, Hongliang; Guo, Yingqing; Li, Guangming; Bai, Guihua; Chen, Rujin

    2011-01-01

    Medicago truncatula is a legume species belonging to the inverted repeat lacking clade (IRLC) with trifoliolate compound leaves. However, the regulatory mechanisms underlying development of trifoliolate leaves in legumes remain largely unknown. Here, we report isolation and characterization of fused compound leaf1 (fcl1) mutants of M. truncatula. Phenotypic analysis suggests that FCL1 plays a positive role in boundary separation and proximal-distal axis development of compound leaves. Map-based cloning indicates that FCL1 encodes a class M KNOX protein that harbors the MEINOX domain but lacks the homeodomain. Yeast two-hybrid assays show that FCL1 interacts with a subset of Arabidopsis thaliana BEL1-like proteins with slightly different substrate specificities from the Arabidopsis homolog KNATM-B. Double mutant analyses with M. truncatula single leaflet1 (sgl1) and palmate-like pentafoliata1 (palm1) leaf mutants show that fcl1 is epistatic to palm1 and sgl1 is epistatic to fcl1 in terms of leaf complexity and that SGL1 and FCL1 act additively and are required for petiole development. Previous studies have shown that the canonical KNOX proteins are not involved in compound leaf development in IRLC legumes. The identification of FCL1 supports the role of a truncated KNOX protein in compound leaf development in M. truncatula. PMID:22080596

  10. Temporal variation in pelagic food chain length in response to environmental change

    PubMed Central

    Ruiz-Cooley, Rocio I.; Gerrodette, Tim; Fiedler, Paul C.; Chivers, Susan J.; Danil, Kerri; Ballance, Lisa T.

    2017-01-01

    Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997–1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate. PMID:29057322

  11. Space-charge limited current in CdTe thin film solar cell

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Shen, Kai; Li, Xun; Yang, Ruilong; Deng, Yi; Wang, Deliang

    2018-04-01

    In this study, we demonstrate that space-charge limited current (SCLC) is an intrinsic current shunting leakage in CdTe thin film solar cells. The SCLC leakage channel, which is formed by contact between the front electrode, CdTe, and the back electrode, acts as a metal-semiconductor-metal (MSM) like transport path. The presence of SCLC leaking microchannels in CdTe leads to a band bending at the MSM structure, which enhances minority carrier recombination and thus decreases the minority carrier lifetime in CdTe thin film solar cells. SCLC was found to be a limiting factor both for the fill factor and the open-circuit voltage of CdTe thin film solar cells.

  12. Short wavelength limits of current shot noise suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less

  13. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  14. Dual influences of ecosystem size and disturbance on food chain length in streams.

    PubMed

    McHugh, Peter A; McIntosh, Angus R; Jellyman, Phillip G

    2010-07-01

    The number of trophic transfers occurring between basal resources and top predators, food chain length (FCL), varies widely in the world's ecosystems for reasons that are poorly understood, particularly for stream ecosystems. Available evidence indicates that FCL is set by energetic constraints, environmental stochasticity, or ecosystem size effects, although no single explanation has yet accounted for FCL patterns in a broad sense. Further, whether environmental disturbance can influence FCL has been debated on both theoretical and empirical grounds for quite some time. Using data from sixteen South Island, New Zealand streams, we determined whether the so-called ecosystem size, disturbance, or resource availability hypotheses could account for FCL variation in high country fluvial environments. Stable isotope-based estimates of maximum trophic position ranged from 2.6 to 4.2 and averaged 3.5, a value on par with the global FCL average for streams. Model-selection results indicated that stream size and disturbance regime best explained across-site patterns in FCL, although resource availability was negatively correlated with our measure of disturbance; FCL approached its maximum in large, stable springs and was <3.5 trophic levels in small, fishless and/or disturbed streams. Community data indicate that size influenced FCL, primarily through its influence on local fish species richness (i.e., via trophic level additions and/or insertions), whereas disturbance did so via an effect on the relative availability of intermediate predators (i.e., predatory invertebrates) as prey for fishes. Overall, our results demonstrate that disturbance can have an important food web-structuring role in stream ecosystems, and further imply that pluralistic explanations are needed to fully understand the range of structural variation observed for real food webs.

  15. Noise of space-charge-limited current in solids is thermal.

    NASA Technical Reports Server (NTRS)

    Golder, J.; Nicolet, M.-A.; Shumka, A.

    1973-01-01

    The white noise level of space-charge-limited current (SCLC) of holes in a silicon device measured at five temperatures ranging from 113 to 300 K is shown to be proportional to the absolute temperature. This proves experimentally the thermal origin of noise for SCLC in solids.

  16. Thermal noise in space-charge-limited hole current in silicon

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Golder, J.; Nicolet, M.

    1972-01-01

    Present theories on noise in single-carrier space-charge-limited currents in solids have not been quantitatively substantiated by experimental evidence. To obtain such experimental verification, the noise in specially fabricated silicon structures is being measured and analyzed. The first results of this verification effort are reported.

  17. On the limit of field-aligned current intensity in the polar magnetosphere

    NASA Technical Reports Server (NTRS)

    Cole, Keith D.

    1991-01-01

    Field-aligned current (FAC) is here defined by 4 pi j = alpha B, where alpha is constant along a magnetic field line. The upper limit value of alpha in the polar magnetosphere, possible source regions of the strongest FAC and the relationship of them to some auroral and ionospheric irregularity cross-field scale sizes are discussed. Cross-field dimensions of the strongest FAC are related to the gyroradii of source particles (O(+), He(2+), He(+), H(+), e) in the current-generating region. It is suggested that experimental determination, and mapping of the values of alpha, may assist with the search for the generators of such currents in near-earth space including in the nearby solar wind. The upper limit of alpha is associated with the breakup of FAC systems.

  18. Limiting diffusion current at rotating disk electrode with dense particle layer.

    PubMed

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  19. Theory of space charge limited currents in films and nanowires with dopants

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  20. Thermal studies of a superconducting current limiter using Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Lévêque, J.; Rezzoug, A.

    1999-07-01

    Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. L'augmentation des courants de défaut dans les grands réseaux électriques ravive l'intérêt pour les limiteurs de courant. Les limiteurs supraconducteurs de courants peuvent limiter quasi-instantanément, sans donneur d'ordre ni détection de défaut, les courants de court-circuit réduisant ainsi les contraintes supportées par les installations électriques situées en amont du défaut. La limitation s'accompagne nécessairement de la transition du supraconducteur par dépassement de son courant critique. Pour éviter la destruction de la bobine supraconductrice la température ne doit pas excéder une certaine valeur. La conception d'une bobine supraconductrice exige donc la résolution simultanée d'une équation électrique et d'une équation thermique. Nous présentons une résolution de ce problème electrothermique par la méthode de Monte-Carlo. Cette méthode nous permet de calculer l'évolution de la résistance de la bobine et du courant de limitation. Des résultats expérimentaux sont comparés avec les résultats théoriques.

  1. Biomechanics of far cortical locking.

    PubMed

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  2. Biomechanics of Far Cortical Locking

    PubMed Central

    Bottlang, Michael; Feist, Florian

    2011-01-01

    The development of FCL was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biological fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have shown to enhance fixation and fracture healing: Flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80–88% to actively promote callus proliferation similar to an external fixator. Load distribution is evenly shared between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by s-shaped flexion of FCL screws has shown to induce symmetric callus formation. In combination, these features of FCL constructs have shown to induce more callus and to yield significantly stronger and more consistent healing compared to standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biological healing response of external fixators. PMID:21248556

  3. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    NASA Astrophysics Data System (ADS)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  4. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  5. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    NASA Astrophysics Data System (ADS)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  6. Current limiting cathodes for non transit-time limited operation of InP TED's in the 100 GHz window

    NASA Astrophysics Data System (ADS)

    Friscouri, Marie-Renée; Rolland, Paul-Alain

    1985-03-01

    Reverse-biased low-barrier Schottky contact and reverse-biased isotype GaInAsP/InP heterojunction, used as current limiting cathodes for InP TED's, are investigated on the basis of output power and efficiency improvement as compared to N +NN + devices.

  7. Solid-state circuit breaker with current-limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, H.J.

    1982-08-16

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  8. Solid-state circuit breaker with current limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, Heinrich J.

    1984-01-01

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  9. Two-dimensional relativistic space charge limited current flow in the drift space

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-01

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  10. Space charge limited current emission for a sharp tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg

    In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2more » (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.« less

  11. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  12. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  13. Theory of Space Charge Limited Current in Fractional Dimensional Space

    NASA Astrophysics Data System (ADS)

    Zubair, Muhammad; Ang, L. K.

    The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.

  14. Self field triggered superconducting fault current limiter

    DOEpatents

    Tekletsadik, Kasegn D [Rexford, NY

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  15. Application of active quenching of second generation wire for current limiting

    DOE PAGES

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  16. Design and optimization of LCL-VSC grid-tied converter having short circuit fault current limiting ability

    NASA Astrophysics Data System (ADS)

    Liu, Mengqi; Liu, Haijun; Wang, Zhikai

    2017-01-01

    Traditional LCL grid-tied converters haven't the ability to limit the short-circuit fault current and only remove grid-connected converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system is set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.

  17. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    NASA Astrophysics Data System (ADS)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  18. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  19. LAMDA programmer's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, T.P.; Clark, R.M.; Mostrom, M.A.

    This report discusses the following topics on the LAMDA program: General maintenance; CTSS FCL script; DOS batch files; Macintosh MPW scripts; UNICOS FCL script; VAX/MS command file; LINC calling tree; and LAMDA calling tree.

  20. LAMDA programmer`s manual. [Final report, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, T.P.; Clark, R.M.; Mostrom, M.A.

    This report discusses the following topics on the LAMDA program: General maintenance; CTSS FCL script; DOS batch files; Macintosh MPW scripts; UNICOS FCL script; VAX/MS command file; LINC calling tree; and LAMDA calling tree.

  1. Application Study of a High Temperature Superconducting Fault Current Limiter for Electric Power System

    NASA Astrophysics Data System (ADS)

    Naito, Yuji; Shimizu, Iwao; Yamaguchi, Iwao; Kaiho, Katsuyuki; Yanabu, Satoru

    Using high temperature superconductor, a Superconducting Fault Current Limiter (SFCL) was made and tested. Superconductor and vacuum interrupter as commutation switch are connected in parallel with bypass coil. When a fault occurs and the excessive current flows, superconductor is first quenched and the current is transferred to bypass coil because on voltage drop of superconductor. At the same time, since magnetic field is generated by current which flows in bypass coil, commutation switch is immediately driven by electromagnetic repulsion plate connected to driving rod of vacuum interrupter, and superconductor is separated from this circuit. Using the testing model, we could separate the superconductor from a circuit due to movement of vacuum interrupter within half-cycle current and transfer all current to bypass coil. Since operation of a commutation switch is included in current limiting operation of this testing model, it is one of helpful circuit of development of SFCL in the future. Moreover, since it can make the consumed energy of superconductor small during fault state due to realization of high-speed switch with simple composition, the burden of superconductor is reduced compared with conventional resistive type SFCL and it is considered that the flexibility of a SFCL design increases. Cooperation with a circuit breaker was also considered, the trial calculation of a parameter and energy of operation is conducted and discussion in the case of installing the SFCL to electric power system is made.

  2. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    PubMed

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  3. Characteristic parameters of superconductor-coolant interaction including high Tc current density limits

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.

    1989-01-01

    In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.

  4. Operating characteristics of superconducting fault current limiter using 24kV vacuum interrupter driven by electromagnetic repulsion switch

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.

    2008-02-01

    Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.

  5. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  6. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    PubMed

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  7. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  8. Relativistic space-charge-limited current for massive Dirac fermions

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  9. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    PubMed

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  10. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  11. Gene transfer into the kidney: current status and limitations.

    PubMed

    Moullier, P; Salvetti, A; Champion-Arnaud, P; Ronco, P M

    1997-01-01

    Gene therapy is obviously a controversial issue and a wave of suspicion has dampened the initial enthusiasm raised by this new therapeutic approach. It has now become fashionable to downplay the potential for gene therapy in most fields including kidney-related diseases. In our opinion, this is an unfair and unrealistic view of the future. In fact, gene therapy of well-selected kidney diseases will certainly become feasible, but a large data base on vectors and transfer methods both in the normal kidney and in disease models has first to be collected. Any significant progress in the biology of the vectors, in the cellular interactions of the newly introduced DNA, and in the regulation and persistency of the transgene should be rapidly translated to the kidney in relevant experimental models. Herein, we present the use and current limitations of gene transfer to the kidney and the potential therapeutic perspectives.

  12. Investigations of current limiting properties of the MgB2 wires subjected to pulse overcurrents in the benchtop tester

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.

    2007-04-01

    A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).

  13. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the linemore » in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide

  14. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOEpatents

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  15. A Limited In-Flight Evaluation of the Constant Current Loop Strain Measurement Method

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Collura, Joseph V.

    1997-01-01

    For many years, the Wheatstone bridge has been used successfully to measure electrical resistance and changes in that resistance. However, the inherent problem of varying lead wire resistance can cause errors when the Wheatstone bridge is used to measure strain in a flight environment. The constant current loop signal-conditioning card was developed to overcome that difficulty. This paper describes a limited evaluation of the constant current loop strain measurement method as used in the F-16XL ship 2 Supersonic Laminar Flow Control flight project. Several identical strain gages were installed in close proximity on a shock fence which was mounted under the left wing of the F- 1 6XL ship 2. Two strain gage bridges were configured using the constant current loop, and two were configured using the Wheatstone bridge circuitry. Flight data comparing the output from the constant current loop configured gages to that of the Wheatstone bridges with respect to signal output, error, and noise are given. Results indicate that the constant current loop strain measurement method enables an increased output, unaffected by lead wire resistance variations, to be obtained from strain gages.

  16. Current Limitations on VLBI Accuracy

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gipson, John; MacMillan, Daniel

    1998-01-01

    The contribution of VLBI to geophysics and geodesy arises from its ability to measure distances between stations in a network and to determine the orientation of stations in the network as well as the orientation of the network with respect to the external reference frame of extragalactic radio objects. Integrating nearly two decades of observations provides useful information about station positions and velocities and the orientation of the Earth, but the complications of the real world and the limitations of observing, modeling and analysis prevent recovery of all effects. Of the factors that limit the accuracy of seemingly straightforward geodetic parameters, the neutral propagation medium has been subject to the greatest scrutiny, but the treatment of the mapping function, the wet component and spatial/temporal inhomogeneities is still improving. These affect both the terrestrial scale and consistency over time. The modeling of non-secular site motions (tides and loading) has increased in sophistication, but there are some differences between the models and the observations. VLBI antennas are massive objects, so their behavior is quite unlike GPS monuments, but antenna deformations add some (generally) unmodeled signal. Radio sources used in geodetic VLBI observations are selected for strength and (relative) absence of structure, but apparent changes in position can leak into geodetic parameters. A linear rate of change of baseline or site parameters is the simplest model and its error improves with time span. However, in most cases the VLBI data distribution is insufficient to look for real non-linear behavior that might affect the average rate. A few sites have multiple VLBI antennas, and some show small differences in rate. VLBI intrinsically measures relative positions and velocities, but individual site positions and velocities are generally more useful. The creation of the VLBI terrestrial reference frame, which transforms relative information into

  17. Current Law Limits the State Department’s Authority to Manage Certain Overseas Properties Cost Effectively

    DTIC Science & Technology

    2002-07-11

    GAO-02-790R Management of Overseas Property United States General Accounting Office Washington, DC 20548 July 11, 2002 The Honorable Christopher...Representatives Subject: Current Law Limits the State Department’s Authority to Manage Certain Overseas Properties Cost Effectively Dear Mr. Chairman: The...limits the Department of State’s authority to implement cost -effective decisions about sales of unneeded overseas property and the use of sales proceeds

  18. Invertebrates and Organ Systems: Science Instruction and "Fostering a Community of Learners"

    ERIC Educational Resources Information Center

    Rico, Stephanie A.; Shulman, Judith H.

    2004-01-01

    This paper is the third in a set of papers that explores the understanding and implementation of the educational system, "Fostering a Community of Learners" (FCL) across subject matters. We examine how FCL is influenced by the discipline of science, the teaching of science, and the conceptions that teachers have surrounding these two topics. We…

  19. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    NASA Astrophysics Data System (ADS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  20. Stochastic dynamics of extended objects in driven systems II: Current quantization in the low-temperature limit

    NASA Astrophysics Data System (ADS)

    Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R.

    2016-12-01

    Driven Langevin processes have appeared in a variety of fields due to the relevance of natural phenomena having both deterministic and stochastic effects. The stochastic currents and fluxes in these systems provide a convenient set of observables to describe their non-equilibrium steady states. Here we consider stochastic motion of a (k - 1) -dimensional object, which sweeps out a k-dimensional trajectory, and gives rise to a higher k-dimensional current. By employing the low-temperature (low-noise) limit, we reduce the problem to a discrete Markov chain model on a CW complex, a topological construction which generalizes the notion of a graph. This reduction allows the mean fluxes and currents of the process to be expressed in terms of solutions to the discrete Supersymmetric Fokker-Planck (SFP) equation. Taking the adiabatic limit, we show that generic driving leads to rational quantization of the generated higher dimensional current. The latter is achieved by implementing the recently developed tools, coined the higher-dimensional Kirchhoff tree and co-tree theorems. This extends the study of motion of extended objects in the continuous setting performed in the prequel (Catanzaro et al.) to this manuscript.

  1. 40 CFR 1036.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... throughout the following equations: (1) For vocational engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the emission standard, in g/hp-hr, that applies under subpart B of... tractor engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the...

  2. 40 CFR 1036.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... throughout the following equations: (1) For vocational engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the emission standard, in g/hp-hr, that applies under subpart B of... tractor engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the...

  3. 40 CFR 1036.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... throughout the following equations: (1) For vocational engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the emission standard, in g/hp-hr, that applies under subpart B of... tractor engines: Emission credits (Mg) = (Std−FCL) · (CF) · (Volume) · (UL) · (10−6) Where: Std = the...

  4. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    NASA Astrophysics Data System (ADS)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  5. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    PubMed

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Space charge tune shift, fast resonance traversal, and current limits in circular accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, G.H.

    1996-06-01

    Space charge tune shifts, fast resonance traversals, and current limits are important design issues for low energy, high power circular accelerators. Areas of interest are accumulator rings and fast cycling synchrotrons, and typical applications are for pulsed spallation neutron sources, heavy ion fusion storage ring drivers, and booster injectors for high energy proton and ion facilities. Aspects of the three topics are discussed in the paper. {copyright} {ital 1996 American Institute of Physics.}

  7. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.

  8. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  9. Current limitations into the application of virtual reality to mental health research.

    PubMed

    Huang, M P; Alessi, N E

    1998-01-01

    Virtual Reality (VR) environments have significant potential as a tool in mental health research, but are limited by technical factors and by mental health research factors. Technical difficulties include cost and complexity of virtual environment creation. Mental health research difficulties include current inadequacy of standards to specify needed details for virtual environment design. Technical difficulties are disappearing with technological advances, but the mental health research difficulties will take a concerted effort to overcome. Some of this effort will need to be directed at the formation of collaborative projects and standards for how such collaborations should proceed.

  10. A review of mild traumatic brain injury diagnostics: current perspectives, limitations, and emerging technology.

    PubMed

    Cook, Glen A; Hawley, Jason S

    2014-10-01

    Mild traumatic brain injury (mTBI) or concussion is a common battlefield and in-garrison injury caused by transmission of mechanical forces to the head. The energy transferred in such events can cause structural and/or functional changes in the brain that manifest as focal neurological, cognitive, or behavioral dysfunction. Current diagnostic criteria for mTBI are highly limited, variable, and based on subjective self-report. The subjective nature of the symptoms, both in quantity and quality, together with their large overlap in other physical and behavioral maladies, limit the clinician's ability to accurately diagnose, treat, and make prognostic decisions after such injuries. These diagnostic challenges are magnified in an operational environment as well. The Department of Defense has invested significant resources into improving the diagnostic tools and accuracy for mTBI. This focus has been to supplement the clinician's examination with technology that is better able to objectify brain dysfunction after mTBI. Through this review, we discuss the current state of three promising technologies--soluble protein biomarkers, advanced neuroimaging, and quantitative electroencephalography--that are of particular interest within military medicine. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  11. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft

    NASA Astrophysics Data System (ADS)

    Bahri, S.; Sasongko, R. A.

    2018-04-01

    The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.

  12. Formation of a spark discharge in an inhomogeneous electric field with current limitation by a large ballast Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldanov, B. B., E-mail: baibat@mail.ru

    2016-01-15

    Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.

  13. Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy.

    PubMed

    Reid, Obadiah G; Munechika, Keiko; Ginger, David S

    2008-06-01

    We describe local (~150 nm resolution), quantitative measurements of charge carrier mobility in conjugated polymer films that are commonly used in thin-film transistors and nanostructured solar cells. We measure space charge limited currents (SCLC) through these films using conductive atomic force microscopy (c-AFM) and in macroscopic diodes. The current densities we measure with c-AFM are substantially higher than those observed in planar devices at the same bias. This leads to an overestimation of carrier mobility by up to 3 orders of magnitude when using the standard Mott-Gurney law to fit the c-AFM data. We reconcile this apparent discrepancy between c-AFM and planar device measurements by accounting for the proper tip-sample geometry using finite element simulations of tip-sample currents. We show that a semiempirical scaling factor based on the ratio of the tip contact area diameter to the sample thickness can be used to correct c-AFM current-voltage curves and thus extract mobilities that are in good agreement with values measured in the conventional planar device geometry.

  14. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    NASA Astrophysics Data System (ADS)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  15. Current situations and discussions in Japan in relation to the new occupational equivalent dose limit for the lens of the eye.

    PubMed

    Yokoyama, Sumi; Hamada, Nobuyuki; Hayashida, Toshiyuki; Tsujimura, Norio; Tatsuzaki, Hideo; Kurosawa, Tadahiro; Nabatame, Kuniaki; Ohguchi, Hiroyuki; Ohno, Kazuko; Yamauchi-Kawaura, Chiyo; Iimoto, Takeshi; Ichiji, Takeshi; Hotta, Yutaka; Iwai, Satoshi; Akahane, Keiichi

    2017-09-25

    Since the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens of the eye in 2011, there have been extensive discussions in various countries. This paper reviews the current situation in radiation protection of the ocular lens and the discussions on the potential impact of the new lens dose limit in Japan. Topics include historical changes to the lens dose limit, the current situation with occupational lens exposures (e.g., in medical workers, nuclear workers, and Fukushima nuclear power plant workers) and measurements, and the current status of biological studies and epidemiological studies on radiation cataracts. Our focus is on the situation in Japan, but we believe such information sharing will be useful in many other countries.

  16. Microarray-based gene expression profiling to elucidate effectiveness of fermented Codonopsis lanceolata in mice.

    PubMed

    Choi, Woon Yong; Kim, Ji Seon; Park, Sung Jin; Ma, Choong Je; Lee, Hyeon Yong

    2014-04-08

    In this study, the effect of Codonopsis lanceolata fermented by lactic acid on controlling gene expression levels related to obesity was observed in an oligonucleotide chip microarray. Among 8170 genes, 393 genes were up regulated and 760 genes were down regulated in feeding the fermented C. lanceolata (FCL). Another 374 genes were up regulated and 527 genes down regulated without feeding the sample. The genes were not affected by the FCL sample. It was interesting that among those genes, Chytochrome P450, Dmbt1, LOC76487, and thyroid hormones, etc., were mostly up or down regulated. These genes are more related to lipid synthesis. We could conclude that the FCL possibly controlled the gene expression levels related to lipid synthesis, which resulted in reducing obesity. However, more detailed protein expression experiments should be carried out.

  17. Dissipated energy as a design parameter of coated conductors for their use in resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Schacherer, C.; Kudymow, A.; Noe, M.

    2008-02-01

    Coated conductors are suitable for many power applications like motors, magnets and superconducting fault current limiters (SCFCLs). For their use in resistive SCFCLs main requirements are quench stability and resistance development above Tc. Several coated conductors are available with different kinds of stabilization like thickness or material of cap-layer and additional stabilization. The stabilization can vary and has a great influence on the quench stability and quench behaviour of a coated conductor. Thus, for the dimensioning of a superconducting current limiting element there is a need of reliable and universal design parameters. This paper presents experimental quench test results on several coated conductor types with different stabilization and geometry. The test results show that the dissipated energy during a quench is a very useful parameter for the SCFCL design.

  18. Limit on Tensor Currents from Li 8 β Decay

    NASA Astrophysics Data System (ADS)

    Sternberg, M. G.; Segel, R.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Buchinger, F.; Burkey, M.; Caldwell, S.; Chaudhuri, A.; Crawford, J. E.; Deibel, C. M.; Greene, J.; Gulick, S.; Lascar, D.; Levand, A. F.; Li, G.; Pérez Galván, A.; Sharma, K. S.; Van Schelt, J.; Yee, R. M.; Zabransky, B. J.

    2015-10-01

    In the standard model, the weak interaction is formulated with a purely vector-axial-vector (V -A ) structure. Without restriction on the chirality of the neutrino, the most general limits on tensor currents from nuclear β decay are dominated by a single measurement of the β -ν ¯ correlation in He 6 β decay dating back over a half century. In the present work, the β -ν ¯ -α correlation in the β decay of Li 8 and subsequent α -particle breakup of the Be8 * daughter was measured. The results are consistent with a purely V -A interaction and in the case of couplings to right-handed neutrinos (CT=-CT' ) limits the tensor fraction to |CT/CA|2<0.011 (95.5% C.L.). The measurement confirms the He 6 result using a different nuclear system and employing modern ion-trapping techniques subject to different systematic uncertainties.

  19. Aerospace technology development of three types of solid state remote power controllers for 120VDC with current ratings of five, and thirty amperes, one type having current limiting

    NASA Technical Reports Server (NTRS)

    Baker, D. E.

    1975-01-01

    The first generation of remote power controllers (RPC) developed included: a 5-ampere design (Type 1), capable of limiting maximum overload current to 15 amperes for .1 sec; and 5-ampere noncurrent (Type 2) and 30-ampere noncurrent (Type 3) limiting designs, both with selectable instant trip levels for high-current overload. Each design provides overcurrent protection through an inverse I squared T trip-out function with an automatic reset option and demonstrates step-applied fault capability with a 4000-ampere surge, fast-risetime (low-inductance) power source. They also meet MIL - STD - 461A specification for electromagnetic interference. The second generation RPCs traded off specification compliance for reduction in cost and complexity for the Type 1 and 2 designs and give comparable or improved performance in most areas. The noncurrent limiting RPC proved to be a more economical and feasible method of overload protection for certain load types.

  20. Using of explosive technologies for development of a compact current-limiting device for operation on 110 kV class systems

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.

    2016-11-01

    This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.

  1. Superconducting cosmic string: Equation of state for spacelike and timelike current in the neutral limit

    NASA Astrophysics Data System (ADS)

    Peter, Patrick

    1992-02-01

    The equation of state relating the tension T and the energy per unit length U of a cosmic string is investigated in the simplest nontrivial case, namely, that of a field theory with U(1)local×U(1)global invariance, in four dimensions, which is interpretable as the zero-charge-coupling-constant limit of the more general superconducting string models that have been previously investigated. This limit has the advantage of giving vacuum vortex defects that are strictly local so that the quantities such as U and T that are relevant for the macroscopic description can be computed without ambiguity. In the case of ``electric'' states (with timelike current) for which no comparable previous calculations exist, it is shown there is a critical frequency wc beyond which the vortex becomes unstable due to ``charge'' carrier emission. In the case of ``magnetic'' states (with spacelike current), the present analysis provides more precise results than those of previous investigations, whose predictions are broadly confirmed for typical moderate models in which the tension T remains comparable to the energy density U though not for extreme models, in which serious discrepancies are revealed.

  2. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    USGS Publications Warehouse

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid

  3. Temperature affects thrombolytic efficacy using rt-PA and eptifibatide, an in vitro study.

    PubMed

    Meunier, Jason M; Chang, Wan-Tsu W; Bluett, Brent; Wenker, Evan; Lindsell, Christopher J; Shaw, George J

    2012-09-01

    The potential for hypothermia as a neuroprotectant during stroke has led to its increase in clinical use. At the same time, combination pharmaceutical therapies for ischemic stroke using recombinant tissue plasminogen activator (rt-PA), and GP IIb-IIIa inhibitors, such as Eptifibatide (Epf ), are under study. However, there is little data on how the reactions triggered by these agents are impacted by temperature. Here, clot lysis during exposure to the combination of rt-PA and Epf is measured in an in vitro human clot model at hypothermic temperatures. The hypothesis is that lytic efficacy of rt-PA and Epf decreases with decreasing temperature. Whole blood clots from 31 volunteers were exposed to rt-PA (0.5 μg/mL) and Epf (0.63 μg/mL) in human fresh-frozen plasma (rt-PA+Epf ), rt-PA alone in plasma (rt-PA Alone), or to plasma alone (Control), at temperatures from 30°C to 37°C, for 30 minutes. Clot lysis was measured using a microscopic imaging technique; the mean fractional clot loss (FCL) at 30 minutes was used to determine lytic efficacy. Temperature had a significant impact on FCL in clots exposed to rt-PA+Epf, with the FCL being lower at 30°C to 36°C than at 37°C. The FCL remained significantly higher for rt-PA+Epf–treated clots than Controls regardless of temperature, with the exception of measurements made at 30°C when no significant differences in the FCL were observed between groups. The use of hypothermia as a neuroprotectant may negatively impact the therapeutic benefit of thrombolytic agents.

  4. Temperature Affects Thrombolytic Efficacy Using rt-PA and Eptifibatide, an In Vitro Study

    PubMed Central

    Chang, Wan-Tsu W.; Bluett, Brent; Wenker, Evan; Lindsell, Christopher J.; Shaw, George J.

    2012-01-01

    The potential for hypothermia as a neuroprotectant during stroke has led to its increase in clinical use. At the same time, combination pharmaceutical therapies for ischemic stroke using recombinant tissue plasminogen activator (rt-PA), and GP IIb-IIIa inhibitors, such as Eptifibatide (Epf ), are under study. However, there is little data on how the reactions triggered by these agents are impacted by temperature. Here, clot lysis during exposure to the combination of rt-PA and Epf is measured in an in vitro human clot model at hypothermic temperatures. The hypothesis is that lytic efficacy of rt-PA and Epf decreases with decreasing temperature. Whole blood clots from 31 volunteers were exposed to rt-PA (0.5 μg/mL) and Epf (0.63 μg/mL) in human fresh-frozen plasma (rt-PA+Epf ), rt-PA alone in plasma (rt-PA Alone), or to plasma alone (Control), at temperatures from 30°C to 37°C, for 30 minutes. Clot lysis was measured using a microscopic imaging technique; the mean fractional clot loss (FCL) at 30 minutes was used to determine lytic efficacy. Temperature had a significant impact on FCL in clots exposed to rt-PA+Epf, with the FCL being lower at 30°C to 36°C than at 37°C. The FCL remained significantly higher for rt-PA+Epf–treated clots than Controls regardless of temperature, with the exception of measurements made at 30°C when no significant differences in the FCL were observed between groups. The use of hypothermia as a neuroprotectant may negatively impact the therapeutic benefit of thrombolytic agents. PMID:23667777

  5. "Variations in trace metal and halogen ratios in magmatic gases through an eruptive. Cycle of the Pu'u O'o Vent, Kilauea, Hawaii: July-August 1985""

    NASA Astrophysics Data System (ADS)

    Miller, Theresa L.; Zoller, William H.; Crowe, Bruce M.; Finnegan, David L.

    1990-08-01

    Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four 7LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably due to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/Br and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.

  6. Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:  transport-limited currents.

    PubMed

    Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A

    1998-05-01

    A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.

  7. Importance of a moderate plate-to-bone distance for the functioning of the far cortical locking system.

    PubMed

    Yang, Jesse Chieh-Szu; Lin, Kang-Ping; Wei, Hung-Wen; Chen, Wen-Chuan; Chiang, Chao-Ching; Chang, Ming-Chau; Tsai, Cheng-Lun; Lin, Kun-Jhih

    2018-06-01

    The far cortical locking (FCL) system, a novel bridge-plating technique, aims to deliver controlled and symmetric interfragmentary motion for a potential uniform callus distribution. However, clinical data for the practical use of this system are limited. The current study investigated the biomechanical effect of a locking plate/far cortical locking construct on a simulated comminuted diaphyseal fracture of the synthetic bones at different distance between the plate and the bone. Biomechanical in vitro experiments were performed using composite sawbones as bone models. A 10-mm osteotomy gap was created and bridged with FCL constructs to determine the construct stiffness, strength, and interfragmentary movement under axial compression, which comprised one of three methods: locking plates applied flush to bone, at 2 mm, or at 4 mm from the bone. The plate applied flush to the bone exhibited higher stiffness than those at 2 mm and 4 mm plate elevation. A homogeneous interfragmentary motion at the near and far cortices was observed for the plate at 2 mm, whereas a relatively large movement was observed at the far cortex for the plate applied at 4 mm. A plate-to-bone distance of 2 mm had the advantages of reducing axial stiffness and providing nearly parallel interfragmentary motion. The plate flush to the bone prohibits the dynamic function of the far cortical locking mechanism, and the 4-mm offset was too unstable for fracture healing. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    PubMed Central

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  9. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence

    PubMed Central

    Verberk, Wilco C.E.P.; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S.

    2016-01-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  10. Semi-empirical equation of limiting current for cobalt electrodeposition in the presence of magnetic field and additive electrolyte

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aziz, N.

    2016-02-01

    One of the available methods to solve a roughening in cobalt electrodeposition is magneto electrodeposition (MED) in the presence of additive electrolyte. Semi-empirical equation of limiting current under a magnetic field for cobalt MED in the presence of boric acid as an additive electrolyte was successfully developed. This semi empirical equation shows the effects of the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of the electro active species (D), the kinematic viscosity of the electrolyte (v), magnetic strength (B) and the number of electrons involved in the redox process (n). The presence of boric acid led to decrease in the limiting current, but the acid was found useful as a buffer to avoid the local pH rise caused by parallel hydrogen evolution reaction (HER).

  11. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  12. Progress in American Superconductor's HTS wire and optimization for fault current limiting systems

    NASA Astrophysics Data System (ADS)

    Malozemoff, Alexis P.

    2016-11-01

    American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.

  13. 40 CFR 74.25 - Current promulgated SO2 emissions limit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... promulgated SO2 emissions limit of the combustion source, expressed in lbs/mmBtu, which shall be the most... date. If the promulgated SO2 emissions limit is not expressed in lbs/mmBtu, the limit shall be converted to lbs/mmBtu by multiplying the limit by the appropriate factor as specified in Table 1 of § 74.23...

  14. Endoscopic diagnosis of extrahepatic bile duct carcinoma: Advances and current limitations

    PubMed Central

    Tamada, Kiichi; Ushio, Jun; Sugano, Kentaro

    2011-01-01

    The accurate diagnosis of extrahepatic bile duct carcinoma is difficult, even now. When ultrasonography (US) shows dilatation of the bile duct, magnetic resonance cholangiopancreatography followed by endoscopic US (EUS) is the next step. When US or EUS shows localized bile duct wall thickening, endoscopic retrograde cholangiopancreatography should be conducted with intraductal US (IDUS) and forceps biopsy. Fluorescence in situ hybridization increases the sensitivity of brush cytology with similar specificity. In patients with papillary type bile duct carcinoma, three biopsies are sufficient. In patients with nodular or infiltrating-type bile duct carcinoma, multiple biopsies are warranted, and IDUS can compensate for the limitations of biopsies. In preoperative staging, the combination of dynamic multi-detector low computed tomography (MDCT) and IDUS is useful for evaluating vascular invasion and cancer depth infiltration. However, assessment of lymph nodes metastases is difficult. In resectable cases, assessment of longitudinal cancer spread is important. The combination of IDUS and MDCT is useful for revealing submucosal cancer extension, which is common in hilar cholangiocarcinoma. To estimate the mucosal extension, which is common in extrahepatic bile duct carcinoma, the combination of IDUS and cholangioscopy is required. The utility of current peroral cholangioscopy is limited by the maneuverability of the “baby scope”. A new baby scope (10 Fr), called “SpyGlass” has potential, if the image quality can be improved. Since extrahepatic bile duct carcinoma is common in the Far East, many researchers in Japan and Korea contributed these studies, especially, in the evaluation of longitudinal cancer extension. PMID:21611097

  15. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    PubMed

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  16. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    NASA Astrophysics Data System (ADS)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  17. Present limits for the luminosity, the beam current and the beam lifetime in Doris II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesemann, H.; Sarau, B.

    1985-10-01

    The e e storage ring DORIS II has been operating for high energy physics experiments in the region of the Y resonances around 2x5 GeV and as a source for synchrotron radiation near 3.7 GeV. A luminosity of nearly 3x10T cm Ssec or more than 1500 (nb) /day has been achieved. For synchrotron radiation e -currents of about 100 mA are stored in 4 bunches (out of 480 buckets). As long as the beam-beam interaction does not limit the luminosity the optimum performance of the ring is obtained for both modes of operation if the currents stored are large, themore » cross section of the beam is small and the lifetime is long. Thus we concentrate the discussion on these subjects.« less

  18. Variations in trace metal and halogen ratios in magmatic gases through an eruptive cycle of the Pu'u O'o vent, Kilauea, Hawaii: July-August 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, T.L.; Zoller, W.H.; Crowe, B.M.

    1990-08-10

    Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four {sup 7}LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably duemore » to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/BR and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.« less

  19. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  20. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments

    PubMed Central

    Chen, Sheng

    2012-01-01

    Botulinum neurotoxins (BoNTs) cause flaccid paralysis by interfering with vesicle fusion and neurotransmitter release in the neuronal cells. BoNTs are the most widely used therapeutic proteins. BoNT/A was approved by the U.S. FDA to treat strabismus, blepharospam, and hemificial spasm as early as 1989 and then for treatment of cervical dystonia, glabellar facial lines, axillary hyperhidrosis, chronic migraine and for cosmetic use. Due to its high efficacy, longevity of action and satisfactory safety profile, it has been used empirically in a variety of ophthalmological, gastrointestinal, urological, orthopedic, dermatological, secretory, and painful disorders. Currently available BoNT therapies are limited to neuronal indications with the requirement of periodic injections resulting in immune-resistance for some indications. Recent understanding of the structure-function relationship of BoNTs prompted the engineering of novel BoNTs to extend therapeutic interventions in non-neuronal systems and to overcome the immune-resistance issue. Much research still needs to be done to improve and extend the medical uses of BoNTs. PMID:23162705

  1. Identifying krill eggs in the central California current using novel multiplex PCR primers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Carrion, C. N.; Slesinger, E.; Marinovic, B.

    2016-02-01

    Euphausiids, otherwise known as krill, are an important link between primary producers and higher trophic levels within the central California current upwelling system. Euphausia pacifica and Thysanoessa spinifera, two of the most common euphausiid species along the central California coast, are both broadcast spawners and have some overlap in habitat, e.g. near marine life hotspots like the Monterey Bay and Gulf of Farallones. Species composition of euphausiid egg population within these regions is currently unknown. Distinct morphological differences between their eggs are lost once the egg dies or is preserved via formalin, alcohol, or freezing. In this project we designed genus specific DNA primers (mtCOI) for use in a multiplex PCR to distinguish among spawned euphausiid eggs of Euphausia spp. and Thysanoessa spp. in central California current surface waters. Effective and ineffective application of primers in a multiplex versus single-plex PCR is discussed, with an emphasis on primer design limitations in reference to the available barcoded regions of mitochondrial cytochrome oxidase subunit I (mtCOI) for each species in GenBank. This new protocol expands current monitoring efforts into sampling a non-swimming portion of the population which has the potential to improve euphausiid biomass estimates.

  2. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  3. Materials and energy flow in the life cycle of leather: a case study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zia Uddin Md.; Ahmed, Tanvir; Hashem, Md. Abul

    2018-05-01

    This article presents the results of the materials and energy flow analysis for leather produced in Bangladesh and establishes an inventory for the life cycle assessment. Also, a comparison is made with the material and energy flow of the Indian leather. A cradle to gate analysis is performed for full-chrome leather (FCL), a representative leather article from an export-oriented industry in Bangladesh, taking into consideration the main processes associated with leather production and the corresponding materials and energy input. Data was collected on annual wet-salted rawhide consumption, water, and steam consumption, chemicals requirement, tannery solid waste generation, electricity, fuel oil use for the generator and steam boiler. Moreover, an analysis of the physical and chemical properties of wastewater emissions of the different leather unit processes was performed. The input and output profiles of the FCL were compared to those of an Indian leather. It was seen that FCL consumed water 2 times higher than the Indian leather while the electricity consumption of Indian leather was almost 2 times higher than its Bangladeshi counterpart. The Indian leather had significantly higher carbon footprint (in terms of CO2 equivalent emission) mainly because of the consumption of grid electricity that comes from coal-based power generation. Wastewater parameters such as chloride, Total Dissolved Solids (TDS) and Total Solids (TS) for the Indian leather are more than 4.5, 3 and 3 times higher respectively than that of corresponding emissions for the Bangladeshi FCL, which can be attributed to the higher use of inorganic salts in the process. Despite similar input of chromium compounds for both the leathers, the emission of total chromium was slightly higher in the case of Indian leather probably due to lower uptake of chromium by the substrate. Bangladeshi FCL used twice in the amount of (NH4)2SO4 than India, which may be responsible for the higher BOD load in the

  4. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  5. Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one

    NASA Astrophysics Data System (ADS)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2011-03-01

    Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Study on a linear relationship between limited pressure difference and coil current of on/off valve and its influential factors.

    PubMed

    Zhang, Junzhi; Lv, Chen; Yue, Xiaowei; Li, Yutong; Yuan, Ye

    2014-01-01

    On/off solenoid valves with PWM control are widely used in all types of vehicle electro-hydraulic control systems respecting to their desirable properties of reliable, low cost and fast acting. However, it can hardly achieve a linear hydraulic modulation by using on/off valves mainly due to the nonlinear behaviors of valve dynamics and fluid, which affects the control accuracy significantly. In this paper, a linear relationship between limited pressure difference and coil current of an on/off valve in its critical closed state is proposed and illustrated, which has a great potential to be applied to improve hydraulic control performance. The hydraulic braking system of case study is modeled. The linear correspondence between limited pressure difference and coil current of the inlet valve is simulated and further verified experimentally. Based on validated simulation models, the impacts of key parameters are researched. The limited pressure difference affected by environmental temperatures is experimentally studied, and the amended linear relation is given according to the test data. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  8. Making the Right Choice: Optimizing rt-PA and eptifibatide lysis, an in vitro study

    PubMed Central

    Shaw, George J.; Meunier, Jason M.; Lindsell, Christopher J.; Pancioli, Arthur M.; Holland, Christy K.

    2010-01-01

    Introduction Recombinant tissue plasminogen activator (rt-PA) is the only FDA approved lytic therapy for acute ischemic stroke. However, there can be complications such as intra-cerebral hemorrhage. This has led to interest in adjuncts such as GP IIb-IIIa inhibitors. However, there is little data on combined therapies. Here, we measure clot lysis for rt-PA and eptifibatide in an in vitro human clot model, and determine the drug concentrations maximizing lysis. A pharmacokinetic model is used to compare drug concentrations expected in clinical trials with those used here. The hypothesis is that there is a range of rt-PA and eptifibatide concentrations that maximize in vitro clot lysis. Materials and Methods Whole blood clots were made from blood obtained from 28 volunteers, after appropriate institutional approval. Sample clots were exposed to rt-PA and eptifibatide in human fresh-frozen plasma; rt-PA concentrations were 0, 0.5, 1, and 3.15 μg/ml, and eptifibatide concentrations were 0, 0.63, 1.05, 1.26 and 2.31 μg/ml. All exposures were for 30 minutes at 37 C. Clot width was measured using a microscopic imaging technique and mean fractional clot loss (FCL) at 30 minutes was used to determine lytic efficacy. On average, 28 clots (range: 6-148) from 6 subjects (3-24) were used in each group. Results and Conclusions FCL for control clots was 14% (95% Confidence Interval: 13-15%). FCL was 58% (55-61%) for clots exposed to both drugs at all concentrations, except those at an rt-PA concentration of 3.15 μg/ml, and eptifibatide concentrations of 1.26 μg/ml (Epf) or 2.31 μg/ml. Here, FCL was 43% (36-51) and 35% (32-38) respectively. FCL is maximized at moderate rt-PA and eptifibatide concentration; these values may approximate the average concentrations used in some rt-PA and eptifibatide treatments. PMID:20813398

  9. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  10. Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glorioso, Paolo; Crossley, Michael; Liu, Hong

    2017-09-20

    Here in this paper we further develop the fluctuating hydrodynamics proposed in a number of ways. We first work out in detail the classical limit of the hydrodynamical action, which exhibits many simplifications. In particular, this enables a transparent formulation of the action in physical spacetime in the presence of arbitrary external fields. It also helps to clarify issues related to field redefinitions and frame choices. We then propose that the action is invariant under a Z2 symmetry to which we refer as the dynamical KMS symmetry. The dynamical KMS symmetry is physically equivalent to the previously proposed local KMSmore » condition in the classical limit, but is more convenient to implement and more general. It is applicable to any states in local equilibrium rather than just thermal density matrix perturbed by external background fields. Finally we elaborate the formulation for a conformal fluid, which contains some new features, and work out the explicit form of the entropy current to second order in derivatives for a neutral conformal fluid.« less

  11. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    NASA Astrophysics Data System (ADS)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation

  12. Targeted therapy in biliary tract cancers-current limitations and potentials in the future.

    PubMed

    Sahu, Selley; Sun, Weijing

    2017-04-01

    Biliary tract cancers (BTC)/Cholangiocarcinoma (CCA) is an aggressive biliary tract epithelial malignancy from varying locations within the biliary tree with cholangiocyte depreciation., including intrahepatic cholangiocarcinoma (iCCA) (iCCA), extrahepatic cholangiocarcinoma (eCCA) and gallbladder carcinoma (GBC). The disease is largely heterogeneous in etiology, epidemiology, and molecular profile. There are limited treatment options and low survival rates for those patients with advanced or metastatic disease. Systemic treatment is confined to cytotoxic chemotherapy with the combination of gemcitabine and cisplatin. Lack of a stereotype genetic signature makes difficult in identification of potential actionable target directly, which may also explain lack of obvious clinic benefit with target oriented agents from current studies. It is crucial to understand of BTC carcinogenesis, tumor-stroma interactions, and key molecular pathways, and herald to establish targeted, individualized therapies for the heterogeneous disease, and eventually to improve the survival and overall outcome of patients.

  13. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    NASA Astrophysics Data System (ADS)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  14. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  15. Microheterogeneity in Frozen Protein Solutions

    PubMed Central

    Twomey, Alan; Kurata, Kosaku; Nagare, Yutaka; Takamatsu, Hiroshi; Aksan, Alptekin

    2015-01-01

    In frozen and lyophilized systems, the biological to be stabilized (e.g. therapeutic protein, biomarker, drug-delivery vesicle) and the cryo-/lyoprotectant should be co-localized for successful stabilization. During freezing and drying, many factors cause physical separation of the biological from the cryo-/lyoprotectant, called microheterogeneity (MH), which may result in poor stabilization efficiency. We have developed a novel technique that utilized confocal Raman microspectroscopy in combination with counter-gradient freezing to evaluate the effect of a wide range of freezing temperatures (−20 < TF < 0°C) on the MH generated within a frozen formulation in only a few experiments. The freezing experiments conducted with a model system (albumin and trehalose) showed the presence of different degrees of MH in the freeze-concentrated liquid (FCL) in all solutions tested. Mainly, albumin tended to accumulate near the ice interface, where it was physically separated from the cryoprotectant. In frozen 10 wt% trehalose solutions, heterogeneity in FCL was relatively low at any TF. In frozen 20 wt% trehalose solutions, the optimum albumin to trehalose ratio in the FCL can only be ensured if the solution was frozen within a narrow range of temperatures (−16 < TF < −10°C). In the 30 wt% trehalose solutions, freezing within a much more narrow range (−12 < TF < −10°C) was needed to ensure a fairly homogeneous FCL. The method developed here will be helpful for the development of uniformly frozen and stable formulations and freezing protocols for biological as MH is presumed to directly impact stability. PMID:25888798

  16. Moonlighting Glutamate Formiminotransferases Can Functionally Replace 5-Formyltetrahydrofolate Cycloligase*

    PubMed Central

    Jeanguenin, Linda; Lara-Núñez, Aurora; Pribat, Anne; Mageroy, Melissa Hamner; Gregory, Jesse F.; Rice, Kelly C.; de Crécy-Lagard, Valérie; Hanson, Andrew D.

    2010-01-01

    5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side reaction of serine hydroxymethyltransferase. Unlike other folates, it is not a one-carbon donor but a potent inhibitor of folate enzymes and must therefore be metabolized. Only 5-CHO-THF cycloligase (5-FCL) is generally considered to do this. However, comparative genomic analysis indicated (i) that certain prokaryotes lack 5-FCL, implying that they have an alternative 5-CHO-THF-metabolizing enzyme, and (ii) that the histidine breakdown enzyme glutamate formiminotransferase (FT) might moonlight in this role. A functional complementation assay for 5-CHO-THF metabolism was developed in Escherichia coli, based on deleting the gene encoding 5-FCL (ygfA). The deletion mutant accumulated 5-CHO-THF and, with glycine as sole nitrogen source, showed a growth defect; both phenotypes were complemented by bacterial or archaeal genes encoding FT. Furthermore, utilization of supplied 5-CHO-THF by Streptococcus pyogenes was shown to require expression of the native FT. Recombinant bacterial and archaeal FTs catalyzed formyl transfer from 5-CHO-THF to glutamate, with kcat values of 0.1–1.2 min−1 and Km values for 5-CHO-THF and glutamate of 0.4–5 μm and 0.03–1 mm, respectively. Although the formyltransferase activities of these proteins were far lower than their formiminotransferase activities, the Km values for both substrates relative to their intracellular levels in prokaryotes are consistent with significant in vivo flux through the formyltransferase reaction. Collectively, these data indicate that FTs functionally replace 5-FCL in certain prokaryotes. PMID:20952389

  17. Distal Insertions of the Biceps Femoris

    PubMed Central

    Branch, Eric A.; Anz, Adam W.

    2015-01-01

    Background: Avulsion of the biceps femoris from the fibula and proximal tibia is encountered in clinical practice. While the anatomy of the primary posterolateral corner structures has been qualitatively and quantitatively described, a quantitative analysis regarding the insertions of the biceps femoris on the fibula and proximal tibia is lacking. Purpose: To quantitatively assess the insertions of the biceps femoris, fibular collateral ligament (FCL), and anterolateral ligament (ALL) on the fibula and proximal tibia as well as establish relationships among these structures and to pertinent surgical anatomy. Study Design: Descriptive laboratory study. Methods: Dissections were performed on 12 nonpaired, fresh-frozen cadaveric specimens identifying the biceps femoris, FCL, and ALL, and their insertions on the proximal tibia and fibula. The footprint areas, orientations, and distances from relevant osseous landmarks were measured using a 3-dimensional coordinate measurement device. Results: Dissection produced 6 easily identifiable and reproducible anatomic footprints. Tibial footprints included the insertion of the ALL and an insertion of the biceps femoris (TBF). Fibular footprints included the insertion of the FCL, a distal insertion of the biceps femoris (DBF), a medial footprint of the biceps femoris (MBF), and a proximal footprint of the biceps femoris (PBF). The mean area of these footprints (95% CI) was as follows: ALL, 53.0 mm2 (38.4-67.6); TBF, 93.9 mm2 (72.0-115.8); FCL, 86.8 mm2 (72.3-101.2); DBF, 119 mm2 (91.1-146.9); MBF, 46.8 mm2 (29.0-64.5); and PBF, 215 mm2 (192.4-237.5). The mean distance (95% CI) from the Gerdy tubercle to the center of the ALL footprint was 24.3 mm (21.6-27.0) and to the center of the TBF was 22.5 mm (21.0-24.0). The center of the DBF was 8.68 mm (7.0-10.3) from the anterior border of the fibula, the center of the FCL was 14.6 mm (12.5-16.7) from the anterior border of the fibula and 20.7 mm (19.0-22.4) from the tip of the fibular

  18. Construction of testing facilities and verifying tests of a 22.9 kV/630 A class superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Yim, S.-W.; Yu, S.-D.; Kim, H.-R.; Kim, M.-J.; Park, C.-R.; Yang, S.-E.; Kim, W.-S.; Hyun, O.-B.; Sim, J.; Park, K.-B.; Oh, I.-S.

    2010-11-01

    We have constructed and completed the preparation for a long-term operation test of a superconducting fault current limiter (SFCL) in a Korea Electric Power Corporation (KEPCO) test grid. The SFCL with rating of 22.9 kV/630 A, 3-phases, has been connected to the 22.9 kV test grid equipped with reclosers and other protection devices in Gochang Power Testing Center of KEPCO. The main goals of the test are the verification of SFCL performance and protection coordination studies. A line-commutation type SFCL was fabricated and installed for this project, and the superconducting components were cooled by a cryo-cooler to 77 K in the sub-cooled liquid nitrogen pressurized by 3 bar of helium gas. The verification test includes un-manned - long-term operation with and without loads and fault tests. Since the test site is 170 km away from the laboratory, we will adopt the un-manned operation with real-time remote monitoring and controlling using high speed internet. For the fault tests, we will apply fault currents up to around 8 kArms to the SFCL using an artificial fault generator. The fault tests may allow us not only to confirm the current limiting capability of the SFCL, but also to adjust the SFCL - recloser coordination such as resetting over-current relay parameters. This paper describes the construction of the testing facilities and discusses the plans for the verification tests.

  19. Current interruption in inductive storage systems with inertial current source

    NASA Astrophysics Data System (ADS)

    Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.

    1980-03-01

    Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.

  20. Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament.

    PubMed

    Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H

    2017-08-01

    The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.

  1. Background of Civil Defense and Current Damage Limiting Studies.

    ERIC Educational Resources Information Center

    Romm, Joseph

    A brief history of civil defense administration precedes analysis of nuclear attack conditions and the influence of protective measures. Damage limitation procedure is explained in terms of--(1) blast effects, (2) radiation doses, (3) geographical fallout distribution patterns, and (4) national shelter needs. Major concept emphasis relates to--(1)…

  2. Current status of nuclear cardiology: a limited review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botvinick, E.H.; Dae, M.; Hattner, R.S.

    1985-11-01

    To summarize the current status of nuclear cardiology, the authors will focus on areas that the emphasize the specific advantages of nuclear cardiology methods: (a) their benign, noninvasive nature, (b) their pathophysiologic nature, and (c) the ease of their computer manipulation and analysis, permitting quantitative evaluation. The areas covered include: (a) blood pool scintigraphy and parametric imaging, (b) pharmacologic intervention for the diagnosis of ischemic heart disease, (c) scintigraphic studies for the diagnosis and prognosis of coronary artery disease, and (d) considerations of cost effectiveness.

  3. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    NASA Technical Reports Server (NTRS)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar

  4. Electric and magnetic microfields inside and outside space-limited configurations of ions and ionic currents

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu; Ebeling, W.; Schimansky-Geier, L.

    2005-01-01

    The problem of electric and magnetic microfields inside finite spherical systems of stochastically moving ions and outside them is studied. The first possible field of applications is high temperature ion clusters created by laser fields [1]. Other possible applications are nearly spherical liquid systems at room-temperature containing electrolytes. Looking for biological applications we may also think about a cell which is a complicated electrolytic system or even a brain which is a still more complicated system of electrolytic currents. The essential model assumption is the random character of charges motion. We assume in our basic model that we have a finite nearly spherical system of randomly moving charges. Even taking into account that this is at best a caricature of any real system, it might be of interest as a limiting case, which admits a full theoretical treatment. For symmetry reasons, a random configuration of moving charges cannot generate a macroscopic magnetic field, but there will be microscopic fluctuating magnetic fields. Distributions for electric and magnetic microfields inside and outside such space- limited systems are calculated. Spherical systems of randomly distributed moving charges are investigated. Starting from earlier results for infinitely large systems, which lead to Holtsmark- type distributions, we show that the fluctuations in finite charge distributions are larger (in comparison to infinite systems of the same charge density).

  5. Determination of mycotoxins in foods: current state of analytical methods and limitations.

    PubMed

    Köppen, Robert; Koch, Matthias; Siegel, David; Merkel, Stefan; Maul, Ronald; Nehls, Irene

    2010-05-01

    Mycotoxins are natural contaminants produced by a range of fungal species. Their common occurrence in food and feed poses a threat to the health of humans and animals. This threat is caused either by the direct contamination of agricultural commodities or by a "carry-over" of mycotoxins and their metabolites into animal tissues, milk, and eggs after feeding of contaminated hay or corn. As a consequence of their diverse chemical structures and varying physical properties, mycotoxins exhibit a wide range of biological effects. Individual mycotoxins can be genotoxic, mutagenic, carcinogenic, teratogenic, and oestrogenic. To protect consumer health and to reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities and researchers worldwide. However, the variety of chemical structures makes it impossible to use one single technique for mycotoxin analysis. Hence, a vast number of analytical methods has been developed and validated. The heterogeneity of food matrices combined with the demand for a fast, simultaneous and accurate determination of multiple mycotoxins creates enormous challenges for routine analysis. The most crucial issues will be discussed in this review. These are (1) the collection of representative samples, (2) the performance of classical and emerging analytical methods based on chromatographic or immunochemical techniques, (3) the validation of official methods for enforcement, and (4) the limitations and future prospects of the current methods.

  6. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    NASA Astrophysics Data System (ADS)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  7. Axial p-n junction and space charge limited current in single GaN nanowire.

    PubMed

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  8. Axial p-n junction and space charge limited current in single GaN nanowire

    NASA Astrophysics Data System (ADS)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  9. Physical Heterogeneity and Aquatic Community Function in ...

    EPA Pesticide Factsheets

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.

  10. Successful Nd:Yag Laser Photocoagulation Of Arrhythmogenic Myocardium: Potential Limitations Of Current Optical Delivery Systems.

    NASA Astrophysics Data System (ADS)

    Svenson, Robert H.; Marroum, Marie-Claire; Frank, Frank; Selle, Jay G.; Gallagher, John J.; Bou-Saba, George; Seifert, Kathleen T.; Linder, Kathy; Tatsis, George P.

    1987-04-01

    Canine myocardial lesions of predictable dimensions can be achieved with Nd:YAG laser photocoagulation. These lesions are well demarcated from surrounding normal tissue and heal with homogeneous scar formation. Intraoperative Nd:YAG laser photocoagulation successfully ablated 52 of 55 ventricular tachycardias in 17 patients. Histologic examination of tissues from these arrhythmogenic areas showed differences from lesions produced on canine epicardium. Lesions from the human cases were less predictable and not well circumscribed. These differences are felt to be due to optical inhomogeneities present in diseased, scarred human myocardium, geometric irregularities of the endocardial surface, anatomical constraints on tissue-fiber distance, and the angle of incidence of the beam with the tissue. Modifications of current delivery systems may overcome some of these limitations. Ablation of ventricular tachycardia arising deeper than 4.0 to 6.0 mm. from the irradiated surface may require interstitial probes coupled to the fiberoptic.

  11. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering

    PubMed Central

    Fernández-Robredo, P.; Sancho, A.; Johnen, S.; Recalde, S.; Gama, N.; Thumann, G.; Groll, J.; García-Layana, A.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein. PMID:24672707

  12. Near-thermal reactions of Au(+)(1S,3D) with CH3X (X = F,Cl).

    PubMed

    Taylor, William S; Matthews, Cullen C; Hicks, Ashley J; Fancher, Kendall G; Chen, Li Chen

    2012-01-26

    Reactions of Au(+)((1)S) and Au(+)((3)D) with CH(3)F and CH(3)Cl have been carried out in a drift cell in He at a pressure of 3.5 Torr at both room temperature and reduced temperatures in order to explore the influence of the electronic state of the metal on reaction outcomes. State-specific product channels and overall two-body rate constants were identified using electronic state chromatography. These results indicate that Au(+)((1)S) reacts to yield an association product in addition to AuCH(2)(+) in parallel steps with both neutrals. Product distributions for association vs HX elimination were determined to be 79% association/21% HX elimination for X = F and 50% association/50% HX elimination when X = Cl. Reaction of Au(+)((3)D) with CH(3)F also results in HF elimination, which in this case is thought to produce (3)AuCH(2)(+). With CH(3)Cl, Au(+)((3)D) reacts to form AuCH(3)(+) and CH(3)Cl(+) in parallel steps. An additional product channel initiated by Au(+)((3)D) is also observed with both methyl halides, which yields CH(2)X(+) as a higher-order product. Kinetic measurements indicate that the reaction efficiency for both Au(+) states is significantly greater with CH(3)Cl than with CH(3)F. The observed two-body rate constant for depletion of Au(+)((1)S) by CH(3)F represents less than 5% of the limiting rate constant predicted by the average dipole orientation model (ADO) at room temperature and 226 K, whereas CH(3)Cl reacts with Au(+)((1)S) at the ADO limit at both room temperature and 218 K. Rate constants for depletion of Au(+)((3)D) by CH(3)F and CH(3)Cl were measured at 226 and 218 K respectively, and indicate that Au(+)((3)D) is consumed at approximately 2% of the ADO limit by CH(3)F and 69% of the ADO limit by CH(3)Cl. Product formation and overall efficiency for all four reactions are consistent with previous experimental results and available theoretical models.

  13. Reaching the Ionic Current Detection Limit in Silicon-Based Nanopores

    NASA Astrophysics Data System (ADS)

    Puster, Matthew; Rodriguez-Manzo, Julio Alejandro; Nicolai, Adrien; Meunier, Vincent; Drndic, Marija

    2015-03-01

    Solid-state nanopores act as single-molecule sensors whereby passage of an individual molecule in aqueous electrolyte through a nanopore is registered as a change in ionic conductance (ΔG). Future nanopore applications such as DNA sequencing at high bandwidth require high ΔG for optimal signal-to-noise ratio. Reducing the nanopore diameter and thickness increase ΔG. Molecule size limits the diameter, thus efforts concentrate on minimizing the thickness by thinning oxide/nitride films or using 2D materials. Weighted by electrolyte conductivity the highest ΔG reported to date for DNA translocations were obtained with nanopores made in oxide/nitride films. We present a controlled electron irradiation technique to thin such films to the limit of their stability, producing nanopores tailored to molecule size in amorphous Si with thicknesses less than 2 nm. We compare ΔG values with results found in the literature for DNA translocation through these nanopores, where access resistance becomes comparable to the resistance through the nanopore itself.

  14. Interhemispheric currents in the ring current region as seen by the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Tenfjord, P.; Ostgaard, N.; Haaland, S.; Laundal, K.; Reistad, J. P.

    2013-12-01

    The existence of interhemispheric currents has been predicted by several authors, but their extent in the ring current has to our knowledge never been studied systematically by using in-situ measurements. These currents have been suggested to be associated with observed asymmetries of the aurora. We perform a statistical study of current density and direction during ring current crossings using the Cluster spacecraft. We analyse the extent of the interhemispheric field aligned currents for a wide range of solar wind conditions. Direct estimations of equatorial current direction and density are achieved through the curlometer technique. The curlometer technique is based on Ampere's law and requires magnetic field measurements from all four spacecrafts. The use of this method requires careful study of factors that limit the accuracy, such as tetrahedron shape and configuration. This significantly limits our dataset, but is a necessity for accurate current calculations. Our goal is to statistically investigate the occurrence of interhemispheric currents, and determine if there are parameters or magnetospheric states on which the current magnitude and directions depend upon.

  15. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  16. Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack

    NASA Astrophysics Data System (ADS)

    Burke, S. K.

    1994-09-01

    A method for crack size determination using eddy-current nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the eddy-current measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.

  17. Treatment for spasmodic dysphonia: limitations of current approaches

    PubMed Central

    Ludlow, Christy L.

    2009-01-01

    Purpose of review Although botulinum toxin injection is the gold standard for treatment of spasmodic dysphonia, surgical approaches aimed at providing long-term symptom control have been advancing over recent years. Recent findings When surgical approaches provide greater long-term benefits to symptom control, they also increase the initial period of side effects of breathiness and swallowing difficulties. However, recent analyses of quality-of-life questionnaires in patients undergoing regular injections of botulinum toxin demonstrate that a large proportion of patients have limited relief for relatively short periods due to early breathiness and loss-of-benefit before reinjection. Summary Most medical and surgical approaches to the treatment of spasmodic dysphonia have been aimed at denervation of the laryngeal muscles to block symptom expression in the voice, and have both adverse effects as well as treatment benefits. Research is needed to identify the central neuropathophysiology responsible for the laryngeal muscle spasms in order target treatment towards the central neurological abnormality responsible for producing symptoms. PMID:19337127

  18. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  19. Clinical decision guidelines for NHS cosmetic surgery: analysis of current limitations and recommendations for future development.

    PubMed

    Cook, S A; Rosser, R; Meah, S; James, M I; Salmon, P

    2003-07-01

    Because of increasing demand for publicly funded elective cosmetic surgery, clinical decision guidelines have been developed to select those patients who should receive it. The aims of this study were to identify: the main characteristics of such guidelines; whether and how they influence clinical decision making; and ways in which they should be improved. UK health authorities were asked for their current guidelines for elective cosmetic surgery and, in a single plastic surgery unit, we examined the impact of its guidelines by observing consultations and interviewing surgeons and managers. Of 115 authorities approached, 32 reported using guidelines and provided sufficient information for analysis. Guidelines mostly concerned arbitrary sets of cosmetic procedures and lacked reference to an evidence base. They allowed surgery for specified anatomical, functional or symptomatic reasons, but these indications varied between guidelines. Most guidelines also permitted surgery 'exceptionally' for psychological reasons. The guidelines that were studied in detail did not appreciably influence surgeons' decisions, which reflected criteria that were not cited in the guidelines, including cost of the procedure and whether patients sought restoration or improvement of their appearance. Decision guidelines in this area have several limitations. Future guidelines should: include all cosmetic procedures; be informed by a broad range of evidence; and, arguably, include several nonclinical criteria that currently inform surgeons' decision-making.

  20. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation describes the limits to open class performance. The contents include: 1) Standard Class; 2) 15m/Racing Class; 3) Open Class; and 4) Design Solutions associated with assumptions, limiting parameters, airfoil performance, current trends, and analysis.

  1. Conjugated foldamers with unusually high space-charge-limited current hole mobilities.

    PubMed

    Li, Yong; Dutta, Tanmoy; Gerasimchuk, Nikolay; Wu, Shijie; Shetye, Kuldeep; Jin, Lu; Wang, Ruixin; Zhu, Da-Ming; Peng, Zhonghua

    2015-05-13

    Charge carrier mobility and its optimization play a critical role in the development of cutting-edge organic electronic and optoelectronic devices. Even though space-charge-limited current (SCLC) hole mobilities as high as 1.4 cm(2) V(-1) s(-1) have been reported for microscopically sized highly ordered liquid-crystalline conjugated small molecules, the SCLC hole mobility of device-sized thin films of conjugated polymers is still much lower, ranging from 10(-6) to 10(-3) cm(2) V(-1) s(-1). Herein, we report the synthesis, characterizations, and thin-film SCLC mobility of three discotic conjugated polymers, INDT-TT, INDT-BT, and INDT-NDT. Optical studies indicate that polymer INDT-NDT adopts a folded conformation in solutions of good or poor solvents, whereas polymer INDT-TT stays as random monomeric chains in good solvents and interchain aggregates in poor solvents. INDT-BT polymer chains, however, stay as foldamers in dilute solutions of good solvents but interchain aggregates in concentrated solutions or poor solvents. Circular dichroism spectroscopy provides clear evidence for the helical folding of INDT-NDT in solutions. Thin films spin-coated from 1,2-dichlorobenzene solutions of the polymers show SCLC hole mobility of 2.20 × 10(-6), 8.79 × 10(-5), and 2.77 × 10(-2) cm(2) V(-1) s(-1) for INDT-TT, INDT-BT, and INDT-NDT, respectively. HRTEM and powder XRD measurements show that INDT-NDT pristine thin films contain nanocrystalline domains, whereas the INDT-TT and INDT-BT films are amorphous. Thin films of INDT-NDT:PC71BM blends show increased crystallinity and further improved SCLC hole mobility up to 1.29 × 10(-1) cm(2) V(-1) s(-1), one of the highest SCLC mobility values ever recorded on solution-processed organic semiconducting thin films. The persistent folding conformation of INDT-NDT is believed to be responsible for the high crystallinity of its thin films and its high SCLC mobilities.

  2. The Depth Limits of Eddy Current Testing for Defects: A Computational Investigation and Smooth-Shaped Defect Synthesis from Finite Element Optimization

    DTIC Science & Technology

    2015-04-22

    AND SUBTITLE 5a. CONTRACT NUMBER W56HZV-07-2-0001 W56HZV-08- C - 0236 The Depth Limits of Eddy Current Testing for Defects: A...Unlimited b. ABSTRACT Unlimited c . THIS PAGE Unlimited Unlimited 12 19b. TELEPHONE NUMBER (include area code) 586-282-6471 Standard Form 298...Dave Gunter, Acting Associate Director, Analytics, US Army TARDEC  Dr. Dave Horner, Director, DoD HPC Mod Program  Mr. Steve Knott , Deputy

  3. Combining Pharmacological and Psychological Treatments for Binge Eating Disorder: Current Status, Limitations, and Future Directions.

    PubMed

    Grilo, Carlos M; Reas, Deborah L; Mitchell, James E

    2016-06-01

    Binge eating disorder (BED) is characterized by recurrent binge eating and marked distress about binge eating without the extreme compensatory behaviors for weight control that characterize other eating disorders. BED is prevalent, associated strongly with obesity, and is associated with heightened levels of psychological, psychiatric, and medical concerns. This article provides an overview of randomized controlled treatments for combined psychological and pharmacological treatment of BED to inform current clinical practice and future treatment research. In contrast to the prevalence and significance of BED, to date, limited research has been performed on combining psychological and pharmacological treatments for BED to enhance outcomes. Our review here found that combining certain medications with cognitive behavioral therapy (CBT) or behavioral weight loss (BWL) interventions produces superior outcomes to pharmacotherapy only but does not substantially improve outcomes achieved with CBT/BWL only. One medication (orlistat) has improved weight losses with CBT/BWL albeit minimally, and only one medication (topiramate) has enhanced reductions achieved with CBT in both binge eating and weight. Implications for future research are discussed.

  4. Step-by-step design of a single phase 3.3 kV/200 a resistive type superconducting fault current limiter (R-SFCL) and cryostat

    NASA Astrophysics Data System (ADS)

    Kar, Soumen; Rao, V. V.

    2018-07-01

    In our first attempt to design a single phase R-SFCL in India, we have chosen the typical rating of a medium voltage level (3.3 kVrms, 200 Arms, 1Φ) R-SFCL. The step-by-step design procedure for the R-SFCL involves conductor selection, time dependent electro-thermal simulations and recovery time optimization after fault removal. In the numerical analysis, effective fault limitation for a fault current of 5 kA for the medium voltage level R-SFCL are simulated. Maximum normal state resistance and maximum temperature rise in the SFCL coil during current limitation are estimated using one-dimensional energy balance equation. Further, a cryogenic system is conceptually designed for aforesaid MV level R-SFCL by considering inner and outer vessel materials, wall-thickness and thermal insulation which can be used for R-SFCL system. Finally, the total thermal load is calculated for the designed R-SFCL cryostat to select a suitable cryo-refrigerator for LN2 re-condensation.

  5. Electric fence standards comport with human data and AC limits.

    PubMed

    Kroll, Mark W; Perkins, Peter E; Panescu, Dorin

    2015-08-01

    The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.

  6. Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit

    2018-01-01

    We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.

  7. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji

    2016-10-20

    There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Updates on Force Limiting Improvements

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Scharton, Terry

    2013-01-01

    The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.

  9. Limitations and potentials of current motif discovery algorithms

    PubMed Central

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194

  10. Effect of low frequency ultrasound on combined rt-PA and eptifibatide thrombolysis in human clots.

    PubMed

    Meunier, Jason M; Holland, Christy K; Pancioli, Arthur M; Lindsell, Christopher J; Shaw, George J

    2009-01-01

    Fibrinolytics such as recombinant tissue plasminogen activator (rt-PA) are used to treat thrombotic disease such as acute myocardial infarction (AMI) and ischemic stroke. Interest in increasing efficacy and reducing side effects has led to the study of adjuncts such as GP IIb-IIIa inhibitors and ultrasound (US) enhanced thrombolysis. Currently, GP IIb-IIIa inhibitor and fibrinolytic treatment are often used in AMI, and are under investigation for stroke treatment. However, little is known of the efficacy of combined GP IIb-IIIa inhibitor, fibrinolytic and ultrasound treatment. We measure the lytic efficacy of rt-PA, eptifibatide (Epf) and 120 kHz ultrasound treatment in an in-vitro human clot model. Blood was drawn from 15 subjects after IRB approval. Clots were made in 20 microL pipettes, and placed in a water tank for microscopic visualization during lytic treatment. Clots were exposed to control, rt-PA (rt-PA), eptifibatide (Epf), or rt-PA+eptifibatide (rt-PA + Epf), with (+US) or without (-US) ultrasound for 30 minutes at 37 degrees C in human plasma. Clot lysis was measured over time, using a microscopic imaging technique. The fractional clot loss (FCL) and initial lytic rate (LR) were used to quantify lytic efficacy. LR values for (- US) treated clots were 0.8+/-0.1(control), 1.8+/-0.3 (Epf), 1.5+/-0.2 (rt-PA), and 1.3+/-0.4 (rt-PA + Epf) (% clot width/minute) respectively. In comparison, the (+ US) group exhibited LR values of 1.6+/-0.2 (control), 4.3+/-0.4 (Epf), 6.3+/-0.4 (rt-PA), and 4.6+/-0.6 (rt-PA + Epf). For (- US) treated clots, FCL was 6.0+/-0.8 (control), 9.2+/-2.5 (Epf), 15.6+/-1.7 (rt-PA), and 28.0+/-2.2% (rt-PA + Epf) respectively. FCL for (+ US) clots was 13.5+/-2.4 (control), 20.7+/-6.4 (Epf), 44.4+/-3.6 (rt-PA) and 30.3+/-3.6% (rt-PA + Epf) respectively. Although the addition of eptifibatide enhances the in-vitro lytic efficacy of rt-PA in the absence of ultrasound, the efficacy of ultrasound and rt-PA is greater than that of combined

  11. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    PubMed

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  12. Excess surface area in bioelectrochemical systems causes ion transport limitations.

    PubMed

    Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. © 2014 Wiley Periodicals, Inc.

  13. Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution.

    PubMed

    Mao, Wenzhi; Kaya, Cihan; Dutta, Anindita; Horovitz, Amnon; Bahar, Ivet

    2015-06-15

    With rapid accumulation of sequence data on several species, extracting rational and systematic information from multiple sequence alignments (MSAs) is becoming increasingly important. Currently, there is a plethora of computational methods for investigating coupled evolutionary changes in pairs of positions along the amino acid sequence, and making inferences on structure and function. Yet, the significance of coevolution signals remains to be established. Also, a large number of false positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings. Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the effectiveness and limitations of different methods. The analysis shows that recent computationally expensive methods designed to remove biases from indirect couplings outperform others in detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional methods such as mutual information benefit from refinements such as shuffling, while being highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome database corroborated these results. Finally, using a training dataset of 162 families of proteins, we propose a combined method that outperforms existing individual methods. Overall, the study provides simple guidelines towards the choice of suitable methods and strategies based on available MSA size and computing resources. Software is freely available through the Evol component of ProDy API. © The Author 2015. Published by Oxford University Press.

  14. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    PubMed Central

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  15. Cut-off characterisation of energy spectra of bright Fermi sources: Current instrument limits and future possibilities

    NASA Astrophysics Data System (ADS)

    Romoli, Carlo; Taylor, Andrew M.; Aharonian, Felix

    2017-01-01

    The cut-off region of the gamma-ray spectrum of astrophysical sources encodes important information about the acceleration processes producing the parent particle population. For bright AGNs the cut-off happens in an energy range around a few tens of GeV, a region where satellites are limited by their effective area and current ground based telescopes by energy threshold. In the attempt to maximise the statistics, we have looked at two of the brightest AGNs seen by the Fermi-LAT (3C 454.3 and 3C 279) during extremely luminous flares. Our analysis showed the difficulty to obtain good constraints on the cut-off parameters when a power-law with modified exponential cut-off was assumed to fit the SEDs. We discuss the potential of future low-threshold Cherenkov telescope arrays, in particular CTA, showing the impact that a much bigger effective area can have on the determination of spectral parameters in the cut-off region. This preliminary study serves as an example, demonstrating the importance of having good wide-energy coverage around 10 GeV.

  16. Conditionally Active Min-Max Limit Regulators

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay (Inventor); May, Ryan D. (Inventor)

    2017-01-01

    A conditionally active limit regulator may be used to regulate the performance of engines or other limit regulated systems. A computing system may determine whether a variable to be limited is within a predetermined range of a limit value as a first condition. The computing system may also determine whether a current rate of increase or decrease of the variable to be limited is great enough that the variable will reach the limit within a predetermined period of time with no other changes as a second condition. When both conditions are true, the computing system may activate a simulated or physical limit regulator.

  17. Current Management of Presbyopia

    PubMed Central

    Papadopoulos, Pandelis A.; Papadopoulos, Alexandros P.

    2014-01-01

    Presbyopia is a physiologic inevitability that causes gradual loss of accommodation during the fifth decade of life. The correction of presbyopia and the restoration of accommodation are considered the final frontier of refractive surgery. Different approaches on the cornea, the crystalline lens and the sclera are being pursued to achieve surgical correction of this disability. There are however, a number of limitations and considerations that have prevented widespread acceptance of surgical correction for presbyopia. The quality of vision, optical and visual distortions, regression of effect, complications such as corneal ectasia and haze, anisometropia after monovision correction, impaired distance vision and the invasive nature of the currently techniques have limited the utilization of presbyopia surgery. The purpose of this paper is to provide an update of current procedures available for presbyopia correction and their limitations. PMID:24669140

  18. Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.

    2010-02-01

    We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].

  19. Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Mart, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Palma, I.; Díaz, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijerf, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Leisos, A.; Leone, F.; Leonora, E.; Lindsey Clark, M.; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Maris, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Papaikonomou, A.; Papaleo, R.; Păvălas, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Pleinert, M.-O.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rauch, T.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Tönnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.

    2017-05-01

    Studying atmospheric neutrino oscillations in the few-GeV range with a multi-megaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice. [Figure not available: see fulltext.

  20. [Occupational exposure limits for polycyclic aromatic hydrocarbons. Current legal status and proposed changes].

    PubMed

    Brzeźnicki, Sławomir; Bonczarowska, Marzena; Gromiec, Jan P

    2009-01-01

    The evaluation of occupational exposure to polycyclic aromatic hydrocarbons (PAHs) in Poland is based on the results of measurements of their concentrations in workplace air compared to appropriate occupational exposure limits. The inconsistence in current regulations is the source of many interpretation-related problems. The objective of this work was to determine PAH concentrations in different technological processes and to analyze statistically the obtained data to indicate the presence (or absence) of differences between exposure indices calculated for 9 PAHs listed in the decree of the Minister of Labor and those (8 compounds) set by the Minister of Health. Air samples were collected during graphite electrode production, coke production, aluminum smelting, tire production and road paving. PAH concentrations in collected air samples were analyzed by HPLC. The obtained data calculated for each technological process indicate that indices of exposure based on 8 or 9 PAHs, taking into account their relative carcinogenicity, did not differ considerably and are not statistically different from exposure indices calculated for 11 PAHs. In view that the indices of exposure calculated for 8 and 9 compounds are not statistically different and that of all the PAHs listed in the decree of the Minister of Labor, two compounds are not classified as carcinogenic, it seems justified to substitute the latter by the list of compounds issued by the Minister of Health. The proposed modification should result in a better consistency of legal regulations without altering the quality of the occupational exposure evaluation. Furthermore, removing benzo(a)pyrene and dibenzo(ah)anthracene from the OEL list should solve the existing interpretation-related problems.

  1. Reducing Uncertainty for Acute Febrile Illness in Resource-Limited Settings: The Current Diagnostic Landscape

    PubMed Central

    Robinson, Matthew L.; Manabe, Yukari C.

    2017-01-01

    Diagnosing the cause of acute febrile illness in resource-limited settings is important—to give the correct antimicrobials to patients who need them, to prevent unnecessary antimicrobial use, to detect emerging infectious diseases early, and to guide vaccine deployment. A variety of approaches are yielding more rapid and accurate tests that can detect more pathogens in a wider variety of settings. After decades of slow progress in diagnostics for acute febrile illness in resource-limited settings, a wave of converging advancements will enable clinicians in resource-limited settings to reduce uncertainty for the diagnosis of acute febrile illness. PMID:28719277

  2. The small-comet hypothesis: An upper limit to the current impact rate on the moon

    NASA Astrophysics Data System (ADS)

    Grier, Jennifer A.; McEwen, Alfred S.

    Frank et al. [1986b] and Frank and Sigwarth [1993] hypothesized the intense bombardment of the terrestrial atmosphere by small comets. Their model requires that the Moon is impacted by small comets (107-108 g) at a rate of almost one per minute. We calculate that an object of this mass, even with an exceedingly low density and relatively low velocity, will nevertheless produce a crater at least 50 m in diameter. These craters will excavate immature lunar soil and produce a very bright spot with a diameter of at least 150 m. If low-density comets exist that might not create deep craters [O'Keefe and Ahrens, 1982], they will nevertheless disturb the regolith sufficiently to create detectable bright spots. If the small-comet hypothesis is correct then the near-global lunar imaging returned by Clementine in 1994 should reveal ∼107 bright spots in locations where craters are not present in images acquired in the 1960's and early 1970's. We find no new bright spots in a carefully-studied area of 5.2×104 km², so an upper limit to the current cratering rate by small comets is 33/yr, ∼104 below that expected if the small-comet hypothesis were valid.

  3. College Carrier Current: A Survey of 208 Campus-Limited Radio Stations.

    ERIC Educational Resources Information Center

    Broadcast Inst. of North America, New York, NY.

    The purpose of this survey was to determine the extent to which carrier current radio has become a medium which can link and unify relatively small, well-defined groups in an effective and inexpensive way. The survey focused upon the auspices, structure, affiliation, day-to-day managerial responsibility, and administrative liaison of the stations;…

  4. Opportunities for exercise during pullet rearing, Part II: Long-term effects on bone characteristics of adult laying hens at the end-of-lay.

    PubMed

    Casey-Trott, T M; Korver, D R; Guerin, M T; Sandilands, V; Torrey, S; Widowski, T M

    2017-08-01

    Osteoporosis in laying hens has been a production and welfare concern for several decades. The objective of this study was to determine whether differing opportunities for exercise during pullet rearing influences long-term bone quality characteristics in end-of-lay hens. A secondary objective was to assess whether differing opportunities for exercise in adult housing systems alters bone quality characteristics in end-of-lay hens. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S), or 60-bird furnished cages (FC-L) for adult housing. Wing and leg bones were collected at the end-of-lay to quantify bone composition and strength using quantitative computed tomography and bone breaking strength (BBS). At the end-of-lay, Avi hens had greater total and cortical cross-sectional area (P < 0.05) for the radius and tibia, greater total bone mineral content of the radius (P < 0.001), and greater tibial cortical bone mineral content (P = 0.029) than the Conv hens; however, total bone mineral density of the radius (P < 0.001) and cortical bone mineral density of the radius and tibia (P < 0.001) were greater in the Conv hens. Hens in the FC-L had greater total bone mineral density for the radius and tibia (P < 0.05) and greater trabecular bone mineral density for the radius (P = 0.027), compared to hens in the FC-S and CC. Total bone mineral content of the tibia (P = 0.030) and cortical bone mineral content of the radius (P = 0.030) and tibia (P = 0.013) were greater in the FC-L compared to the CC. The humerus of Conv hens had greater BBS than the Avi hens (P < 0.001), and the tibiae of FC-L and FC-S hens had greater BBS than CC hens (P = 0.006). Increased opportunities for exercise offered by the aviary rearing system provided improved bone quality characteristics lasting through to the end-of-lay. © The

  5. Partitioning of F and Cl Between Apatite and a Synthetic Shergottite Liquid (QUE 94201) at 4 Gpa from 1300 TO 1500 C

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (Xsite), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to accurately determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multicomponent silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al., recently reported that the exchange coefficients vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing, and McCubbin et al. reported substantial deviations in the Cl-F exchange Kd along the F-Cl apatite join that could be explained by the preferential incorporation of F into apatite. In the present study, we assess the effect of apatite crystal chemistry on F-Cl exchange equilibria between apatite and melt at 4 GPa over the temperature range of 1300-1500 C. The goal of these experiments is to assess the variation in the Ap-melt Cl-F exchange Kd over a broad range of F:Cl ratios in apatite. The results of these experiments could be used to understand at what

  6. Circuit protects regulated power supply against overload current

    NASA Technical Reports Server (NTRS)

    Airth, H. B.

    1966-01-01

    Sensing circuit in which a tunnel diode controls a series regulator transistor protects a low voltage transistorized dc regulator from damage by excessive load currents. When a fault occurs, the faulty circuit is limited to a preset percentage of the current when limiting first occurs.

  7. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer

  8. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective.

    PubMed

    Bohnert, Tonika; Patel, Aarti; Templeton, Ian; Chen, Yuan; Lu, Chuang; Lai, George; Leung, Louis; Tse, Susanna; Einolf, Heidi J; Wang, Ying-Hong; Sinz, Michael; Stearns, Ralph; Walsky, Robert; Geng, Wanping; Sudsakorn, Sirimas; Moore, David; He, Ling; Wahlstrom, Jan; Keirns, Jim; Narayanan, Rangaraj; Lang, Dieter; Yang, Xiaoqing

    2016-08-01

    Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    NASA Astrophysics Data System (ADS)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at <100m vertical and 1-10km spatial resolutions in order to assess processes driving land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting

  10. Reducing Current Spread using Current Focusing in Cochlear Implant Users

    PubMed Central

    Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.

    2012-01-01

    Cochlear implant performance in difficult listening situations is limited by channel interactions. It is known that partial tripolar (PTP) stimulation reduces the spread of excitation (SOE). However, the greater the degree of current focusing, the greater the absolute current required to maintain a fixed loudness. As current increases, so does SOE. In experiment 1, the SOE for equally loud stimuli with different degrees of current focusing is measured via a forward-masking procedure. Results suggest that at a fixed loudness, some but not all patients have a reduced SOE with PTP stimulation. Therefore, it seems likely that a PTP speech processing strategy could improve spectral resolution for only those patients with a reduced SOE. In experiment 2, the ability to discriminate different levels of current focusing was measured. In experiment 3, patients subjectively scaled verbal descriptors of stimuli of various levels of current focusing. Both discrimination and scaling of verbal descriptors correlated well with SOE reduction, suggesting that either technique have the potential to be used clinically to quickly predict which patients would receive benefit from a current focusing strategy. PMID:22230370

  11. BK Virus-Associated Nephropathy: Current Situation in a Resource-Limited Country.

    PubMed

    Yooprasert, P; Rotjanapan, P

    Data on BK virus-associated nephropathy (BKVAN) and treatment strategy in a resource-limited country are scarce. This study aimed to evaluate epidemiology of BKVAN and its situation in Thailand. A retrospective analysis was conducted among adult kidney transplant recipients at Ramathibodi Hospital from October 2011 to September 2016. Patients' demographic data, information on kidney transplantation, immunosuppressive therapy, cytomegalovirus and BK virus infections, and allograft outcomes were retrieved and analyzed. This study included 623 kidney transplant recipients. Only 327 patients (52.49%) received BK virus infection screening, and 176 of 327 patients had allograft dysfunction as a trigger for screening. BKVAN was identified in 39 of 327 patients (11.93%). Deceased donor transplantation and cytomegalovirus infection were associated with a higher risk of BKVAN (odds ratio = 2.2, P = .024, 95% confidence intervals [1.1, 4.43], and odds ratio = 2.6, P = .006, 95% confidence intervals [1.29, 5.26], respectively). BKVAN patients were at significantly higher risk for allograft rejection (P < .001) and allograft failure (P = .036). At the end of the study, 4 graft losses were documented (12.12%). BKVAN was associated with high rate of allograft rejection and failure. However, surveillance of its complications has been underperformed at our facility. Implementing a formal practice guideline may improve allograft outcome in resource-limited countries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Future aeromedical assessment in general aviation: a contribution to the actual discussion

    PubMed Central

    Siedenburg, J

    2008-01-01

    The past years saw a transition of competencies from the Joint Aviation Authorities (JAA) to the European Aviation Safety Agency (EASA), which was founded in 2003, based on EU Regulation 1592/02. EASA started its work in the fields of Airworthiness and will soon its competencies inter alia to Flight Operations and Flight Crew Licensing, the latter including the requirements for aeromedical assessment. The appropriate new EU Regulation will most probably be published in April. It includes the Essential Requirements for Licensing and aeromedical certification. A proposal for a new Commission Regulation promulgates the Implementing Rules for Personnel Licensing, detailing – inter alia – the Medical Requirements (Annex II to the Regulation). The specific rules, numeric standards are published as Acceptable Means of Compliance (AMC) and Guidance Material (GM). The provisions are based on JAR-FCL 3 and have been transposed to the format choosen by EASA by a small working group of aeromedical experts (FCL.001). Comments received by the European Aviation Safety Agency (EASA) prompted the agencys statement that the JAR-FCL 3 requirements for private pilots were excessive and too demanding and that a better regulation in General Aviation had to be developed. Another working group (MDM.032), including one aeromedical specialist, was tasked to draft a set of lighter requirements for non-complex aircraft used in non-commercial operations. In this context a much lighter form of aeromedical assessment - involving self-declaration by the pilot and general practitioners as asessors – has been proposed. PMID:19048096

  13. Increasing the Extracted Beam Current Density in Ion Thrusters

    NASA Astrophysics Data System (ADS)

    Arthur, Neil Anderson

    Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam

  14. Evaluating the impacts of proposed speed limit increases in Michigan : research spotlight.

    DOT National Transportation Integrated Search

    2014-07-01

    Recent proposed speed limit legislation led MDOT to evaluate the : states current speed limit policies and potential alternatives. Currently, : Michigan freeways have a maximum speed limit of 70 mph for passenger : vehicles and 60 mph for trucks a...

  15. 78 FR 64287 - Voluntary Intermodal Sealift Agreement Open Season

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... program. Participants operating vessels in international trade may receive top tier consideration in the... clearance process with DSS. Participants must have a FCL and security clearances at a minimum of SECRET.../intermodal service and resource requirements against industry commitments. JPAG meetings are often SECRET...

  16. 28 CFR 553.11 - Limitations on inmate personal property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Numerical limitations. Authorized personal property may be subject to numerical limitations. The institution's Admission and Orientation program shall include notification to the inmate of any numerical limitations in effect at the institution and a current list of any numerical limitations shall be posted on...

  17. 28 CFR 553.11 - Limitations on inmate personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Numerical limitations. Authorized personal property may be subject to numerical limitations. The institution's Admission and Orientation program shall include notification to the inmate of any numerical limitations in effect at the institution and a current list of any numerical limitations shall be posted on...

  18. 48 CFR 352.231-70 - Salary rate limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Salary rate limitation... Salary rate limitation. As prescribed in 331.101-70, the Contracting Officer shall insert the following clause: Salary Rate Limitation (January 2010) (a) Pursuant to the current and applicable prior HHS...

  19. Design of electrodes and current limits for low frequency electrical impedance tomography of the brain.

    PubMed

    Gilad, O; Horesh, L; Holder, D S

    2007-07-01

    For the novel application of recording of resistivity changes related to neuronal depolarization in the brain with electrical impedance tomography, optimal recording is with applied currents below 100 Hz, which might cause neural stimulation of skin or underlying brain. The purpose of this work was to develop a method for application of low frequency currents to the scalp, which delivered the maximum current without significant stimulation of skin or underlying brain. We propose a recessed electrode design which enabled current injection with an acceptable skin sensation to be increased from 100 muA using EEG electrodes, to 1 mA in 16 normal volunteers. The effect of current delivered to the brain was assessed with an anatomically realistic finite element model of the adult head. The modelled peak cerebral current density was 0.3 A/m(2), which was 5 to 25-fold less than the threshold for stimulation of the brain estimated from literature review.

  20. Multiple Transportable Carbohydrates During Exercise: Current Limitations and Directions for Future Research.

    PubMed

    Wilson, Patrick B

    2015-07-01

    The concept of multiple transportable carbohydrates (MTC) refers to a combination of saccharides that rely on distinct transporters for intestinal absorption. Ingestion of MTC during prolonged exercise has been purported to increase carbohydrate absorption efficiency, increase exogenous carbohydrate oxidation, reduce gastrointestinal (GI) distress, and improve athletic performance when carbohydrate intake is high (>50-60 g·h⁻¹). Although reviews of MTC research have been published previously, a comprehensive literature evaluation underscoring methodological limitations has not been conducted to guide future work. Accordingly, this review outlined the plausible mechanisms of MTC and subsequently evaluated MTC research based on several factors, including participant characteristics, exercise modality, exercise task, treatment formulation, treatment blinding, and pre-exercise nutrition status. A total of 27 articles examining MTC during exercise were identified and reviewed. Overall, ingestion of MTC led to increased exogenous carbohydrate oxidation, reduced GI distress, and improved performance during cycling lasting ≥2.5 hours, particularly when carbohydrate was ingested at ≥1.2 g·min⁻¹. Despite the apparent benefits, several limitations in the literature were apparent, including that only 3 studies used running, only 2 studies were conducted in the field, most participants were fasted, and women and adolescents were underrepresented. In addition, the majority of the studies fed carbohydrate at ≥1.2 g·min⁻¹, which may have inflated levels of GI distress and exaggerated performance decrements with single-saccharide feedings. Based on these limitations, future MTC investigations should consider focusing on running, examining team-based sports, including women and adolescents, conducting experiments under field conditions, examining the modifying effects of pre-exercise nutrition, and using modest feeding protocols (1.0-1.2 g·min⁻¹).

  1. Vaccines for pandemic influenza. The history of our current vaccines, their limitations and the requirements to deal with a pandemic threat.

    PubMed

    Hampson, Alan W

    2008-06-01

    Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our current vaccines, their shortcomings, and concerns regarding global vaccine supply in a pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egg-grown virus and have only modest improvements compared with those first introduced over 60 years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have been found poorly immunogenic and present other challenges for vaccine producers which further exacerbate an already limited global production capacity. There have been some recent improvements in vaccine production methods and improvements to immunogenicity by the development of new adjuvants, however, these still fall short of providing timely supplies of vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil the demands of a pandemic situation are under evaluation, however, these remain some distance from clinical reality and face significant regulatory hurdles.

  2. Method of determining the x-ray limit of an ion gauge

    DOEpatents

    Edwards, Jr., David; Lanni, Christopher P.

    1981-01-01

    An ion gauge having a reduced "x-ray limit" and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The "x-ray limit" (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: ##EQU1## where: I.sub.x ="x-ray limit", I.sub.l and I.sub.h =the collector current at the lower and higher grid voltage respectively; and, .alpha.=the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  3. Eddy current damper

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Rich, R. W.

    1989-01-01

    A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.

  4. Dual Purpose Simulation: New Data Link Test and Performance Limit Testing of Currently Deployed Data Link

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    While the results of this paper are similar to those of [I], in this paper technical difficulties present in [I] are eliminated, producing better results, enabling one to more readily see the benefits of Prioritized CSMA (PCSMA). A new analysis section also helps to generalize this research so that it is not limited to exploration of the new concept of PCSMA. Commercially available network simulation software, OPNET version 7.0, simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. The simulation involves 111 Air Traffic Control (ATC) ground stations, 32 airports distributed throughout the U.S., which are either sources or destinations for the air traffic landing or departing from the three cities, and also 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collision-less PCSMA is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, PCSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of PCSMA for implementing low latency, high throughput and efficient connectivity. Moreover, since PCSMA outperforms traditional CSMA, by simulating with it, we can determine the limits of performance beyond which traditional CSMA may not pass. So we have the tools to determine the traffic-loading conditions where traditional CSMA will fail, and we are testing a new and better data link that could replace it with relative ease. Work is currently being done to drastically expand the number of flights to make the simulation more

  5. Current Collection in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.

    1997-01-01

    It is found that the upper-bound limit for current collection in the case of strong magnetic field from the current is close to that given by the Parker-Murphy formula. This conclusion is consistent with the results obtained in laboratory experiments. This limit weakly depends on the shape of the wire. The adiabatic limit in this case will be easily surpassed due to strong magnetic field gradients near the separatrix. The calculations can be done using the kinetic equation in the drift approximation. Analytical results are obtained for the region where the Earth's magnetic field is dominant. The current collection can be calculated (neglecting scattering) using a particle simulation code. Dr. Singh has agreed to collaborate, allowing the use of his particle code. The code can be adapted for the case when the current magnetic field is strong. The needed dm for these modifications is 3-4 months. The analytical description and essential part of the program is prepared for the calculation of the current in the region where the adiabatic description can be used. This was completed with the collaboration of Drs. Khazanov and Liemohn. A scheme of measuring the end body position is also proposed. The scheme was discussed in the laboratory (with Dr. Stone) and it was concluded that it can be proposed for engineering analysis.

  6. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  7. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  8. Current Guidelines Have Limited Applicability to Patients with Comorbid Conditions: A Systematic Analysis of Evidence-Based Guidelines

    PubMed Central

    Lugtenberg, Marjolein; Burgers, Jako S.; Clancy, Carolyn; Westert, Gert P.; Schneider, Eric C.

    2011-01-01

    Background Guidelines traditionally focus on the diagnosis and treatment of single diseases. As almost half of the patients with a chronic disease have more than one disease, the applicability of guidelines may be limited. The aim of this study was to assess the extent that guidelines address comorbidity and to assess the supporting evidence of recommendations related to comorbidity. Methodology/Principal Findings We conducted a systematic analysis of evidence-based guidelines focusing on four highly prevalent chronic conditions with a high impact on quality of life: chronic obstructive pulmonary disease, depressive disorder, diabetes mellitus type 2, and osteoarthritis. Data were abstracted from each guideline on the extent that comorbidity was addressed (general comments, specific recommendations), the type of comorbidity discussed (concordant, discordant), and the supporting evidence of the comorbidity-related recommendations (level of evidence, translation of evidence). Of the 20 guidelines, 17 (85%) addressed the issue of comorbidity and 14 (70%) provided specific recommendations on comorbidity. In general, the guidelines included few recommendations on patients with comorbidity (mean 3 recommendations per guideline, range 0 to 26). Of the 59 comorbidity-related recommendations provided, 46 (78%) addressed concordant comorbidities, 8 (14%) discordant comorbidities, and for 5 (8%) the type of comorbidity was not specified. The strength of the supporting evidence was moderate for 25% (15/59) and low for 37% (22/59) of the recommendations. In addition, for 73% (43/59) of the recommendations the evidence was not adequately translated into the guidelines. Conclusions/Significance Our study showed that the applicability of current evidence-based guidelines to patients with comorbid conditions is limited. Most guidelines do not provide explicit guidance on treatment of patients with comorbidity, particularly for discordant combinations. Guidelines should be more

  9. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2008-01-01

    This presentation discusses open or unlimited class aircraft performance limitations and design solutions. Limitations in this class of aircraft include slow climbing flight which requires low wing loading, high cruise speed which requires high wing loading, gains in induced or viscous drag alone which result in only half the gain overall and other structural problems (yaw inertia and spins, flutter and static loads integrity). Design solutions include introducing minimum induced drag for a given span (elliptical span load or winglets) and introducing minimum induced drag for a bell shaped span load. It is concluded that open class performance limits (under current rules and technologies) is very close to absolute limits, though some gains remain to be made from unexplored areas and new technologies.

  10. Effect of Low Frequency Ultrasound on Combined rt-PA and Eptifibatide Thrombolysis in Human Clots

    PubMed Central

    Meunier, Jason M.; Holland, Christy K.; Pancioli, Arthur M.; Lindsell, Christopher J.; Shaw, George J.

    2009-01-01

    Introduction Fibrinolytics such as recombinant tissue plasminogen activator (rt-PA) are used to treat thrombotic disease such as acute myocardial infarction (AMI) and ischemic stroke. Interest in increasing efficacy and reducing side effects has led to the study of adjuncts such as GP IIb-IIIa inhibitors and ultrasound (US) enhanced thrombolysis. Currently, GP IIb-IIIa inhibitor and fibrinolytic treatment are often used in AMI, and are under investigation for stroke treatment. However, little is known of the efficacy of combined GP IIb-IIIa inhibitor, fibrinolytic and ultrasound treatment. We measure the lytic efficacy of rt-PA, eptifibatide (Epf) and 120 kHz ultrasound treatment in an in-vitro human clot model. Materials and Methods Blood was drawn from 15 subjects after IRB approval. Clots were made in 20 μL pipettes, and placed in a water tank for microscopic visualization during lytic treatment. Clots were exposed to control, rt-PA (rt-PA), eptifibatide (Epf), or rt-PA+eptifibatide (rt-PA+Epf), with or without ultrasound for 30 minutes at 37°C in human plasma. Clot lysis was measured over time, using a microscopic imaging technique. The fractional clot loss (FCL) and initial lytic rate (LR) were used to quantify lytic efficacy. Results and Conclusions LR values for (−US) treated clots were 0.8±0.1(control), 1.8±0.3 (Epf), 1.5±0.2 (rt-PA), and 1.3±0.4 (rt-PA+Epf) (% clot width/minute) respectively. In comparison, the (+US) group exhibited LR values of 1.6±0.2 (control), 4.3±0.4 (Epf), 6.3±0.4 (rt-PA), and 4.6±0.6 (rt-PA+Epf). For (−US) treated clots, FCL was 6.0±0.8 (control), 9.2±2.5 (Epf), 15.6±1.7 (rt-PA), and 28.0±2.2% (rt-PA+Epf) respectively. FCL for (+US) clots was 13.5±2.4 (control), 20.7±6.4 (Epf), 44.4±3.6 (rt-PA) and 30.3±3.6% (rt-PA+Epf) respectively. Although the addition of eptifibatide enhances the in-vitro lytic efficacy of rt-PA in the absence of ultrasound, the efficacy of ultrasound and rt-PA is greater than that of

  11. Ultimate Limit to the Spatial Resolution in Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick C.; Chatraphorn, Sojiphong

    2003-03-01

    Motivated by the continual improvement in the spatial resolution of source currents detected by magnetic field imaging, in particular scanning SQUID microscopy, we have determined a theoretical limit to the spatial resolution for a given set of parameters. The guiding principle here is that by adding known information (e.g. CAD diagram) about the source currents into the inversion algorithm, we reduce the number of unknown parameters and hence lower the uncertainty in the remaining parameters. We consider the ultimate limit to be the case where all the information about the system is known, except for a single parameter, e.g. the separation w of two long, straight wires each carrying a current I/2. For this particular example we find that for a current I=100;μA, with magnetic field noise Δ B=10 pT, at a standoff z=100;μm, the minimum resolvable separation is 2;μm, about an order of magnitude less than the present limit.

  12. Minimum current principle and variational method in theory of space charge limited flow

    NASA Astrophysics Data System (ADS)

    Rokhlenko, A.

    2015-10-01

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to "agree" with the perturbation by "minimal" change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  13. A brightness exceeding simulated Langmuir limit

    NASA Astrophysics Data System (ADS)

    Nakasuji, Mamoru

    2013-08-01

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  14. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  15. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  16. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  17. Fighting Sharka in Peach: Current Limitations and Future Perspectives

    PubMed Central

    Cirilli, Marco; Geuna, Filippo; Babini, Anna R.; Bozhkova, Valentina; Catalano, Luigi; Cavagna, Beniamino; Dallot, Sylvie; Decroocq, Véronique; Dondini, Luca; Foschi, Stefano; Ilardi, Vincenza; Liverani, Alessandro; Mezzetti, Bruno; Minafra, Angelantonio; Pancaldi, Marco; Pandolfini, Tiziana; Pascal, Thierry; Savino, Vito N.; Scorza, Ralph; Verde, Ignazio; Bassi, Daniele

    2016-01-01

    Sharka, caused by Plum Pox Virus (PPV), is by far the most important infectious disease of peach [P. persica (L.) Batsch] and other Prunus species. The progressive spread of the virus in many important growing areas throughout Europe poses serious issues to the economic sustainability of stone fruit crops, peach in particular. The adoption of internationally agreed-upon rules for diagnostic tests, strain-specific monitoring schemes and spatial–temporal modeling of virus spread, are all essential for a more effective sharka containment. The EU regulations on nursery activity should be modified based on the zone delimitation of PPV presence, limiting open-field production of propagation materials only to virus-free areas. Increasing the efficiency of preventive measures should be augmented by the short-term development of resistant cultivars. Putative sources of resistance/tolerance have been recently identified in peach germplasm, although the majority of novel resistant sources to PPV-M have been found in almond. However, the complexity of introgression from related-species imposes the search for alternative strategies. The use of genetic engineering, particularly RNA interference (RNAi)-based approaches, appears as one of the most promising perspectives to introduce a durable resistance to PPV in peach germplasm, notwithstanding the well-known difficulties of in vitro plant regeneration in this species. In this regard, rootstock transformation to induce RNAi-mediated systemic resistance would avoid the transformation of numerous commercial cultivars, and may alleviate consumer resistance to the use of GM plants. PMID:27625664

  18. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    PubMed Central

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2017-01-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI. PMID:28164083

  19. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  20. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    NASA Astrophysics Data System (ADS)

    Sutanto, E.; Chandra, F.; Dinata, R.

    2017-05-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.

  1. Quantifying Deep-Imaging Limits of the VLA

    NASA Astrophysics Data System (ADS)

    Mayeshiba, Julia; Mayeshiba, J.; Rau, U.; Owen, F. N.

    2014-01-01

    The confusion limit is important to understand when conducting surveys of faint radio sources. The source count distributions derived from these surveys are indicative of the large-scale structure and evolution of the universe. The VLA’s confusion limit is not well-defined and astronomers have frequently observed below its current estimated confusion limit. Our study seeks to refine and understand these estimated values and their differences. In our study, we used sources from the center one square degree of the S3-SEX simulated sky made by Wilman et al. As a first step, we verified that our simulation matched observed trends of the confusion limit. During this process we studied the dependence of the achieved confusion limit on cleaning depth and PSF shape. We also reproduced the different limits seen by Frazer Owen in 2008 and NVSS. With this check completed, we then roughly estimated the confusion limits for the VLA’s four configurations. Our preliminary results showed that at an observing frequency of 1.4GHz , there is a confusion limit of 10µJy for the D Configuration and 5µJy for the C Configuration. These estimates are a factor of two lower than the lowest confusion limits reached by observers. While it is encouraging that our estimated confusion limits follow observed trends, more analysis of our process is needed. We could not accurately estimate confusion limits for the A and B configurations due to an artifact dominated image in the A Configuration and an estimated confusion limit that was too close to the noise level in the B Configuration. For the second part of our study we tested CASA’s source-finding algorithm. We found that as currently implemented, it has significant difficulty finding fainter sources.

  2. Current strategies for improving access and adherence to antiretroviral therapies in resource-limited settings

    PubMed Central

    Scanlon, Michael L; Vreeman, Rachel C

    2013-01-01

    The rollout of antiretroviral therapy (ART) significantly reduced human immunodeficiency virus (HIV)-related morbidity and mortality, but good clinical outcomes depend on access and adherence to treatment. In resource-limited settings, where over 90% of the world’s HIV-infected population resides, data on barriers to treatment are emerging that contribute to low rates of uptake in HIV testing, linkage to and retention in HIV care systems, and suboptimal adherence rates to therapy. A review of the literature reveals limited evidence to inform strategies to improve access and adherence with the majority of studies from sub-Saharan Africa. Data from observational studies and randomized controlled trials support home-based, mobile and antenatal care HIV testing, task-shifting from doctor-based to nurse-based and lower level provider care, and adherence support through education, counseling and mobile phone messaging services. Strategies with more limited evidence include targeted HIV testing for couples and family members of ART patients, decentralization of HIV care, including through home- and community-based ART programs, and adherence promotion through peer health workers, treatment supporters, and directly observed therapy. There is little evidence for improving access and adherence among vulnerable groups such as women, children and adolescents, and other high-risk populations and for addressing major barriers. Overall, studies are few in number and suffer from methodological issues. Recommendations for further research include health information technology, social-level factors like HIV stigma, and new research directions in cost-effectiveness, operations, and implementation. Findings from this review make a compelling case for more data to guide strategies to improve access and adherence to treatment in resource-limited settings. PMID:23326204

  3. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  4. Thematic Continuities: Talking and Thinking about Adaptation in a Socially Complex Classroom

    ERIC Educational Resources Information Center

    Ash, Doris

    2008-01-01

    In this study I rely on sociocultural views of learning and teaching to describe how fifth- sixth-grade students in a Fostering a Community of Learners (FCL) classroom gradually adopted scientific ideas and language in a socially complex classroom. Students practiced talking science together, using everyday, scientific, and hybrid discourses as…

  5. A Dilemma about Homemakers' Involvement in Developing Public Policies That Affect the Family.

    ERIC Educational Resources Information Center

    Long, James S.

    As a society, we believe that persons affected by a public decision should be represented in the development of that policy. The Family Community Leadership program (FCL), recently launched in Alaska, Colorado, Hawaii, New Mexico, Oregon, and Washington, has been established to increase homemakers' understanding of social concerns that influence…

  6. Photosensitive space charge limited current in screen printed CdTe thin films

    NASA Astrophysics Data System (ADS)

    Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2018-05-01

    Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.

  7. Effects of Hot Limiter Biasing on Tokamak Runaway Discharges

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Ghoranneviss, M.; Ghanbari, M. R.

    2013-10-01

    In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.

  8. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  9. Dark current of organic heterostructure devices with insulating spacer layers

    NASA Astrophysics Data System (ADS)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  10. Comparison of simulations to experiment for a detailed analysis of space-charge-limited transient current measurements in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-05-01

    Space-charge-limited current transients (also referred as time resolved dark injection) is an attractive technique for mobility measurements in low mobility materials, particularly the organic semiconductors. Transients are generally analyzed in terms of the Many-Rakavy theory, which is an approximate analytical solution of the time-dependent drift-diffusion problem after application of a voltage step. In this contribution, we perform full time-dependent drift-diffusion simulation and compare simulated and experimental transients measured on a sample of triaryl-amine based electroactive dendrimer (experimental conditions: μ≈10-5 cm2/(Vs), L=300 nm, E<105 V/cm). We have found that the Many-Rakavy theory is indeed valid for estimating the mobility value, but it fails to predict quantitatively the time-dependent current response. In order to obtain a good agreement in between simulation and experiment, trapping and quasi-ohmic contact models were needed to be taken into account. In the case of the studied electroactive dendrimer, the experimental results were apparently consistent with the constant mobility Many-Rakavy theory, but with this model, a large uncertainty of 20% was found for the mobility value. We show that this uncertainty can be significantly reduced to 10% if a field-dependent mobility is taken into account in the framework of the extended Gaussian disorder model. Finally, we demonstrate that this fitting procedure between simulated and experimental transient responses also permits to unambiguously provide the values of the contact barrier, the trap concentration, the trap depth in addition to that of the mobility of carriers.

  11. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  12. Superconducting current injection transistor with very high critical-current-density edge-junctions

    NASA Astrophysics Data System (ADS)

    van Zeghbroeck, B. J.

    1985-03-01

    A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.

  13. Limitations of the Current Standards of Care for Treating Gout and Crystal Deposition in the Primary Care Setting: A Review.

    PubMed

    Keenan, Robert T

    2017-02-01

    diagnosis and management of the disease, such as the importance of compliance with long-term treatment. Gout treatment may also confounded by contraindications to current standards of therapy and the limitations of current treatment paradigms. Recently approved medications, as well as drugs under development, may provide new ways for reaching the sUA target and also "curing" the disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Lower Extremity Limb Salvage with Cross Leg Pedicle Flap, Cross Leg Free Flap, and Cross Leg Vascular Cable Bridge Flap.

    PubMed

    Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi

    2018-05-16

     Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps.  A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed.  A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%.  When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. 40 CFR 1036.150 - Interim provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 17, 2013, § 1036.150 was amended by revising paragraphs (d), (g)(2), and (g)(3), effective Aug. 16... certify your entire U.S.-directed production volume within that averaging set to these standards. This...'s CO2 emissions relative to its 2012 baseline level and certify it to an FCL below the applicable...

  16. 5 CFR 847.206 - Time limit for making an election.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Time limit for making an election. 847... REGULATIONS (CONTINUED) ELECTIONS OF RETIREMENT COVERAGE BY CURRENT AND FORMER EMPLOYEES OF NONAPPROPRIATED... limit for making an election. (a) Except as provided in paragraph (b) of this section, the time limit...

  17. Criteria for setting speed limits in urban and suburban areas in Florida

    DOT National Transportation Integrated Search

    2003-03-01

    Current methods of setting speed limits include maximum statutory limits by road class and geometric characteristics and speed zoning practice for the roads where the legislated limit does not reflect local differences. Speed limits in speed zones ar...

  18. Deriving exposure limits

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1990-07-01

    Historically many different agencies and standards organizations have proposed laser occupational exposure limits (EL1s) or maximum permissible exposure (MPE) levels. Although some safety standards have been limited in scope to manufacturer system safety performance standards or to codes of practice most have included occupational EL''s. Initially in the 1960''s attention was drawn to setting EL''s however as greater experience accumulated in the use of lasers and some accident experience had been gained safety procedures were developed. It became clear by 1971 after the first decade of laser use that detailed hazard evaluation of each laser environment was too complex for most users and a scheme of hazard classification evolved. Today most countries follow a scheme of four major hazard classifications as defined in Document WS 825 of the International Electrotechnical Commission (IEC). The classifications and the associated accessible emission limits (AEL''s) were based upon the EL''s. The EL and AEL values today are in surprisingly good agreement worldwide. There exists a greater range of safety requirements for the user for each class of laser. The current MPE''s (i. e. EL''s) and their basis are highlighted in this presentation. 2. 0

  19. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

  20. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    PubMed

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less

  2. The thermal limits to life on Earth

    NASA Astrophysics Data System (ADS)

    Clarke, Andrew

    2014-04-01

    Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ~60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ~-20 °C. Lichens appear to be able to grow down to ~-10 °C. Higher plants and invertebrates living at high latitudes can survive down to ~-70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ~-2 °C.

  3. Intensity limits of the PSI Injector II cyclotron

    NASA Astrophysics Data System (ADS)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  4. Load flows and faults considering dc current injections

    NASA Technical Reports Server (NTRS)

    Kusic, G. L.; Beach, R. F.

    1991-01-01

    The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.

  5. Consistent Application of the Boltzmann Distribution to Residual Entropy in Crystals

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2007-01-01

    Four different approaches to residual entropy (the entropy remaining in crystals comprised of nonsymmetric molecules like CO, N[subscript 2]O, FClO[subscript 3], and H[subscript 2]O as temperatures approach 0 K) are analyzed and a new method of its calculation is developed based on application of the Boltzmann distribution. The inherent connection…

  6. Dynamics of edge currents in a linearly quenched Haldane model

    NASA Astrophysics Data System (ADS)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  7. Realization of non-symmorphic Dirac cones in PbFCl materials

    NASA Astrophysics Data System (ADS)

    Schoop, Leslie

    While most 3D Dirac semimetals require two bands with different orbital character to be protected, there is also the possibility to find 3D Dirac semimetals that are guaranteed to exist in certain space groups. Those are resulting from the non-symmoprhic symmetry of the space group, which forces the bands to degenerate at high symmetry points in the Brillouin zone. Non-symmorphic space groups can force three- four, six and eight fold degeneracies which led to the proposal to find 3D Dirac Semimetals as well as new quasiparticles in such space groups. Problematic for realizing this types of Dirac materials is that they require and odd band filling in order to have the Fermi level located at or also near by the band crossing points. Therefore, although the first prediction for using non-symmoprhic symmetry to create a Dirac material was made in 2012, it took almost four years for an experimental verification of this type of Dirac crossing. In this talk I will introduce the material ZrSiS that has, besides other Dirac features, a Dirac cone protected by non-symmorphic symmetry at about 0.5 eV below the Fermi level and was the first material where this type of Dirac cone was imaged with ARPES. I will then proceed to discuss ways to shift this crossing to the Fermi edge and finally show an experimental verification of a fourfold Dirac crossing, protected by non-symmorphic symmetry, at the Fermi energy.

  8. Efficiency limits for photoelectrochemical water-splitting

    DOE PAGES

    Fountaine, Katherine T.; Lewerenz, Hans Joachim; Atwater, Harry A.

    2016-12-02

    Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance andmore » catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.« less

  9. Device for limiting single phase ground fault of mining machines

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.

    2017-10-01

    The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.

  10. Ebw Assisted Plasma Current Startup in Mast

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Saveliev, Alexander

    2009-04-01

    EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.

  11. Determination of the Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, Aaron; Blaauw, Rhiannon

    2017-01-01

    The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.

  12. Understanding and Implementing Limited IRB Review

    EPA Science Inventory

    • The Common Rule regulations that govern human subjects research were revised in January 2017, and are currently scheduled to take effect in July 2018. Among the many changes that affect researchers and Institutional Review Boards (IRBs) is a new process for “Limited...

  13. Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Strumpell

    2004-12-31

    Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiationmore » examination (PIE).« less

  14. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  15. Current Fluctuations in Stochastic Lattice Gases

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2005-01-01

    We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.

  16. Current collection in a magnetoplasma

    NASA Technical Reports Server (NTRS)

    Laframboise, Jim G.; Sonmor, L. J.

    1990-01-01

    The authors present a survey of a very incomplete subject, current collection in a magnetoplasma. The best-developed and simplest theories for current collection are steady-state collisionless theories, and these must be understood before departures from them can be analyzed usefully. Thus, the authors begin with a review of them. The authors include some recent numerical results which indicate that steady-state collisionless Laplace-limit currents remain substantially below the Parker-Murphy (1967) canonical upper bound out to very large electrode potentials, and approach it as a limit only very slowly if at all. Attempts to correct this theory for space-charge effects lead to potential disturbances which extend to infinite distance along the electrode's magnetic shadow, unless collisional effects are also taken into account. However, even a small amount of relative plasma drift motion, such as that involved in a typical rocket experiment, can change this conclusion fundamentally. It is widely believed that time-averaged current collection may be increased by effects of plasma turbulence, and the authors review the available evidence for and against this contention. Steady-state collisionless particle dynamics predicts the existence of a toroidal region of trapped orbits which surrounds the electrode. Light emissions from this region have been photographed, indicating that collisional ionization may also occur there, and this, and/or scattering by collisions or possibly turbulent fluctuations in this region, may also increase current collection by the electrode. The authors also discuss effects on particle motions near the electrode, associated with breakdown of magnetic insulation in the region of large electric fields near it.

  17. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    PubMed Central

    Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. PMID:27646707

  18. Climate Analogues Suggest Limited Potential for Intensification of Production on Current Croplands Under Climate Change

    NASA Technical Reports Server (NTRS)

    Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  19. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-09-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  20. Josephson current in ballistic graphene Corbino disk

    NASA Astrophysics Data System (ADS)

    Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina

    2018-06-01

    We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.

  1. Limitation of life-sustaining treatment in patients with prolonged admission to the ICU. Current situation in Spain as seen from the EPIPUSE Study.

    PubMed

    Hernández-Tejedor, A; Martín Delgado, M C; Cabré Pericas, L; Algora Weber, A

    2015-10-01

    Limitation of life-sustaining treatment (LLST) is a recommended practice in certain circumstances. Limitation practices are varied, and their application differs from one center to another. The present study evaluates the current situation of LLST practices in patients with prolonged admission to the ICU who suffer worsening of their condition. A prospective, observational cohort study was carried out. Seventy-five Spanish ICUs. A total of 589 patients suffering 777 complications or adverse events with organ function impairment after day 7 of admission, during a three-month recruitment period. The timing of limitation, the subject proposing LLST, the degree of agreement within the team, the influence of LLST upon the doctor-patient-family relationship, and the way in which LLST is implemented. LLST was proposed in 34.3% of the patients presenting prolonged admission to the ICU with severe complications. The incidence was higher in patients with moderate to severe lung disease, cancer, immunosuppressive treatment or dependence for basic activities of daily living. LLST was finally implemented in 97% of the cases in which it was proposed. The decision within the medical team was unanimous in 87.9% of the cases. The doctor-patient-family relationship usually does not change or even improves in this situation. LLST in ICUs is usually carried out under unanimous decision of the medical team, is performed more frequently in patients with severe comorbidity, and usually does not have a negative impact upon the relationship with the patients and their families. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  2. [Current overview of cartilage regeneration procedures].

    PubMed

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  3. Current Simulation Gaming in Australia.

    ERIC Educational Resources Information Center

    Diehl, B. J.

    1979-01-01

    The current level of simulation and game (SG) research and development activity in Australia is limited compared with levels in America and England; but Australian interest in SG is rapidly increasing, especially due to the recent formation of the Australian Decision-Simulation and Educational Gaming Association. (CMV)

  4. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology currently available (BPT). (a) Erosion and sediment controls. Design, install and... minimum, such controls must be designed, installed and maintained to: (1) Control stormwater volume and... appropriate controls. (d) Pollution prevention measures. Design, install, implement, and maintain effective...

  5. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology currently available (BPT). (a) Erosion and sediment controls. Design, install and... minimum, such controls must be designed, installed and maintained to: (1) Control stormwater volume and... appropriate controls. (d) Pollution prevention measures. Design, install, implement, and maintain effective...

  6. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  7. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  8. [Is there an age limit for cadaveric kidney donors currently?].

    PubMed

    Cofán Pujol, F; Oppenheimer Salinas, F; Talbot-Wright, R; Carretero González, P

    1996-12-01

    The insufficient number of kidney transplants has gradually raised the age limit to the cadaver kidney donor. The use of grafts harvested from older donors has been debated due to the existing structural and functional changes that might influence renal function and long-term graft survival. The foregoing aspects are discussed herein. The anatomical, histological and functional changes in the kidney associated with ageing are analyzed. The clinical experience with renal grafts from older donors before and after cyclosporine became available are reviewed. The ethical issues on whether grafts from very old donors should be used and who should receive these grafts are discussed. The use of grafts from donors over 60 years old had no significant short and medium term differences in comparison with younger donors in terms of graft survival, although a higher incidence of acute tubular necrosis and poor renal function have been observed. There are no conclusive studies on the long-term effects on graft survival when kidneys from donors aged over 65 are utilized. In our experience, the results achieved with grafts from donors over 70 has been unsatisfactory. The guidelines utilized in the selection of grafts derived from older donors are presented. Grafts from donors aged 60 to 70 may be utilized in renal transplantation following precise selection criteria. Graft survival has been satisfactory, although a higher incidence of acute tubular necrosis and higher creatinine levels have been observed. We do not advocate the use of grafts from donors over 70, except in very exceptional cases. Long-term multicenter studies on grafts from very old donors and trials using alternative immunosuppressor modalities that might permit optimal use of these grafts are warranted.

  9. Analysis, Simulation, and Fabrication of Current Mode Controlled DC-DC Power Converters

    DTIC Science & Technology

    1999-12-01

    susceptibility), vou/ vin . 3 . The output impedance including the load. 22 The crossover frequency, coc, appears in all poles and is defined as: oo... VIN - 3 0 VIN - 3 V Delay to Outputs (TJ=25*C, (Note 2) 200 500 200 500 ns ( Current Limit Adjust Section Current Limit Offset

  10. ANSI Standard: Complying with Background Noise Limits.

    ERIC Educational Resources Information Center

    Schaffer, Mark E.

    2003-01-01

    Discusses the new classroom acoustics standard, ANSI Standard S12.60, which specifies maximum sound level limits that are significantly lower than currently typical for classrooms. Addresses guidelines for unducted HVAC systems, ducted single-zone systems, and central VAV or multizone systems. (EV)

  11. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  12. Surgical strategy for bile duct cancer: Advances and current limitations

    PubMed Central

    Akamatsu, Nobuhisa; Sugawara, Yasuhiko; Hashimoto, Daijo

    2011-01-01

    The aim of this review is to describe recent advances and topics in the surgical management of bile duct cancer. Radical resection with a microscopically negative margin (R0) is the only way to cure cholangiocarcinoma and is associated with marked survival advantages compared to margin-positive resections. Complete resection of the tumor is the surgeon’s ultimate aim, and several advances in the surgical treatment for bile duct cancer have been made within the last two decades. Multidetector row computed tomography has emerged as an indispensable diagnostic modality for the precise preoperative evaluation of bile duct cancer, in terms of both longitudinal and vertical tumor invasion. Many meticulous operative procedures have been established, especially extended hepatectomy for hilar cholangiocarcinoma, to achieve a negative resection margin, which is the only prognostic factor under the control of the surgeon. A complete caudate lobectomy and resection of the inferior part of Couinaud’s segment IV coupled with right or left hemihepatectomy has become the standard surgical procedure for hilar cholangiocarcinoma, and pylorus-preserving pancreaticoduodenectomy is the first choice for distal bile duct cancer. Limited resection for middle bile duct cancer is indicated for only strictly selected cases. Preoperative treatments including biliary drainage and portal vein embolization are also indicated for only selected patients, especially jaundiced patients anticipating major hepatectomy. Liver transplantation seems ideal for complete resection of bile duct cancer, but the high recurrence rate and decreased patient survival after liver transplant preclude it from being considered standard treatment. Adjuvant chemotherapy and radiotherapy have a potentially crucial role in prolonging survival and controlling local recurrence, but no definite regimen has been established to date. Further evidence is needed to fully define the role of liver transplantation and adjuvant

  13. Historical perspective on diameter-limit cutting in northeastern forests

    Treesearch

    Matthew J. Kelty; Anthony W. D' Amato; Anthony W. D' Amato

    2006-01-01

    The use of diameter-limit cutting and high-grading is currently a concern for long-term sustainability of forests in the Northeastern United States and surrounding areas. This paper reviews historical information about the kinds of harvesting used in this region from 1620 to 1950, to provide a context for current discussions. Throughout this period, most timber...

  14. Mechanical Computing Redux: Limitations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Liu, Tsu-Jae King

    2014-03-01

    Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

  15. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  16. Gamma irradiation and steam pretreatment of jute stick powder for the enhancement of dye adsorption efficiency

    NASA Astrophysics Data System (ADS)

    Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra

    2017-11-01

    The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.

  17. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.

  18. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  19. Work zone variable speed limit systems: Effectiveness and system design issues.

    DOT National Transportation Integrated Search

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  20. Work zone variable speed limit systems : effectiveness and system design issues.

    DOT National Transportation Integrated Search

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  1. Invited review current progress and limitations of spider silk for biomedical applications.

    PubMed

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  2. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  3. Cross-tail current - Resonant orbits

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Lu, Chen

    1993-01-01

    A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.

  4. Applying Flammability Limit Probabilities and the Normoxic Upward Limiting Pressure Concept to NASA STD-6001 Test 1

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Beeson, Harold; Fernandez-Pello, A. Carlos

    2014-01-01

    Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit.

  5. Flavor and topological current correlators in parity-invariant three-dimensional QED

    NASA Astrophysics Data System (ADS)

    Karthik, Nikhil; Narayanan, Rajamani

    2017-09-01

    We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.

  6. Regenerating the human heart: direct reprogramming strategies and their current limitations.

    PubMed

    Ghiroldi, Andrea; Piccoli, Marco; Ciconte, Giuseppe; Pappone, Carlo; Anastasia, Luigi

    2017-10-27

    Cardiovascular diseases are the leading cause of death in the Western world. Unfortunately, current therapies are often only palliative, consequently essentially making heart transplantation necessary for many patients. However, several novel therapeutic approaches in the past two decades have yielded quite encouraging results. The generation of induced pluripotent stem cells, through the forced expression of stem cell-specific transcription factors, has inspired the most promising strategies for heart regeneration by direct reprogramming of cardiac fibroblasts into functional cardiomyocytes. Initial attempts at this reprogramming were conducted using a similar approach to the one used with transcription factors, but during years, novel strategies have been tested, e.g., miRNAs, recombinant proteins and chemical molecules. Although preliminary results on animal models are promising, the low reprogramming efficiency, as well as the incomplete maturation of the cardiomyocytes, still represents important obstacles. This review covers direct transdifferentiation strategies that have been proposed and developed and illustrates the pros and cons of each approach. Indeed, as described in the manuscript, there are still many unanswered questions and drawbacks that require a better understanding of the basic signaling pathways and transcription factor networks before functional cells, suitable for cardiac regeneration and safe for the patients, can be generated and used for human therapies.

  7. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity.

    PubMed

    Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus

    2014-08-13

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 7 CFR 1400.204 - Limited partnerships, limited liability partnerships, limited liability companies, corporations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Limited partnerships, limited liability partnerships..., limited liability partnerships, limited liability companies, corporations, and other similar legal entities. (a) A limited partnership, limited liability partnership, limited liability company, corporation...

  9. Limits on νμ(νμ)-->ντ(ντ) and νμ(νμ)-->(νe)νe oscillations from a precision measurement of neutrino-nucleon neutral current interactions

    NASA Astrophysics Data System (ADS)

    McFarland, K. S.; Naples, D.; Arroyo, C. G.; Auchincloss, P.; de Barbaro, P.; Bazarko, A. O.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Budd, H.; Conrad, J.; Drucker, R. B.; Harris, D. A.; Johnson, R. A.; Kim, J. H.; King, B. J.; Kinnel, T.; Koizumi, G.; Koutsoliotas, S.; Lamm, M. J.; Lefmann, W. C.; Marsh, W.; McNulty, C.; Mishra, S. R.; Nienaber, P.; Nussbaum, M.; Oreglia, M. J.; Perera, L.; Quintas, P. Z.; Romosan, A.; Sakumoto, W. K.; Schumm, B. A.; Sciulli, F. J.; Seligman, W. G.; Shaevitz, M. H.; Smith, W. H.; Spentzouris, P.; Steiner, R.; Stern, E. G.; Vakili, M.; Yang, U. K.

    1995-11-01

    We present limits on νμ(νμ)-->ντ(ντ) and νμ(νμ)-->νe(νe) oscillations based on a study of inclusive νN interactions performed using the CCFR massive coarse-grained detector in the Fermilab Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of νμN vs ντN or νeN charged-current interactions. The νμ energies ranged from 30 to 500 GeV with a mean of 140 GeV. The minimum and maximum νμ flight lengths are 0.9 and 1.4 km, respectively. For νμ-->ντ oscillations, the lowest 90% confidence upper limit in sin22α of 2.7×10-3 is obtained at Δm2~50 eV2. This result is the most stringent limit to date for 25<Δm2<90 eV2. For νμ-->νe oscillations, the lowest 90% confidence upper limit in sin22α of 1.9×10-3 is obtained at Δm2~350 eV2. This result is the most stringent limit to date for 250<Δm2<450 eV2, and also excludes at 90% confidence much of the high Δm2 region favored by the recent LSND observation.

  10. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    PubMed

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  11. 40 CFR 445.11 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application of the best practicable control technology currently available (BPT). 445.11 Section 445.11... attainable by the application of the best practicable control technology currently available (BPT). Except as... the following effluent limitations which represent the application of BPT: Effluent Limitations...

  12. Current Concepts in Gastrointestinal Photodynamic Therapy

    PubMed Central

    Webber, John; Herman, Mark; Kessel, David; Fromm, David

    1999-01-01

    Objective To review current concepts of photodynamic therapy (PDT) applied to the treatment of tumors of the gastrointestinal tract. Summary Background Data PDT initially involves the uptake or production of a photosensitive compound by tumor cells. Subsequent activation of the photoreactive compound by a specific wavelength of light results in cell death, either directly or as a result of vascular compromise and/or apoptosis. Methods The authors selectively review current concepts relating to photosensitization, photoactivation, time of PDT application, tissue selectivity, sites of photodynamic action, PDT effects on normal tissue, limitations of PDT, toxicity of photosensitizers, application of principles of PDT to tumor detection, and current applications of PDT to tumors of the gastrointestinal tract. Results PDT is clearly effective for small cancers, but it is not yet clear in which cases such treatment is more effective than other currently acceptable approaches. The major side effect of PDT is cutaneous photosensitization. The major limitation of PDT is depth of tumor kill. As data from current and future clinical trials become available, a clearer perspective of where PDT fits in the treatment of cancers will be gained. Many issues regarding pharmacokinetic data of photosensitizers, newer technology involved in light sources, optimal treatment regimens that take advantage of the pharmacophysiology of photoablation, and light dosimetry still require solution. One can foresee application of differing sensitizers and light sources depending on the specific clinical situation. As technologic advances occur, interstitial PDT may have significant application. Conclusions PDT has a potentially important role either as a primary or adjuvant mode of treatment of tumors of the gastrointestinal tract. PMID:10400031

  13. Toroidal band limiter for a plasma containment device

    DOEpatents

    Kelley, George G.

    1978-01-01

    This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.

  14. Antidepressant use and functional limitations in U.S. older adults.

    PubMed

    An, Ruopeng; Lu, Lingyun

    2016-01-01

    The upsurge in prevalence and long-term use of antidepressants among older adults might have profound health implications beyond depressive symptom management. This study examined the relationship between antidepressant use and functional limitation onset in U.S. older adults. Study sample came from 2006 and 2008 waves of the Health and Retirement Study, in combination with data from 2005 and 2007 Prescription Drug Study. Self-reported antidepressant use was identified based on the therapeutic classification of Cerner Multum's Lexicon. Functional limitations were classified into those pertaining to physical mobility, large muscle function, activities of daily living, gross motor function, fine motor function, and instrumental activities of daily living. Cox proportional hazard models were performed to assess the effects of antidepressant use on future functional limitation onset by limitation category, antidepressant type, and length of use, adjusted by depression status and other individual characteristics. Antidepressant use for one year and longer was associated with an increase in the risk of functional limitation by 8% (95% confidence interval=4%-12%), whereas the relationship between antidepressant use less than a year and function limitation was statistically nonsignificant. Antidepressant use was associated with an increase in the risk of functional limitation by 8% (3%-13%) among currently nondepressed participants but not currently depressed participants. Long-term antidepressant use in older adults should be prudently evaluated and regularly monitored to reduce the risk of functional limitation. Future research is warranted to examine the health consequences of extended and/or off-label antidepressant use in absence of depressive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Historical trends in creel limits, length-based limits, and season restrictions for black basses in the United States and Canada

    USGS Publications Warehouse

    Paukert, C.; McInerny, M.; Schultz, Ronald

    2007-01-01

    We determined for largemouth bass (Micropterus salmoides), smallmouth bass (M. dolomeui), and spotted bass (M. punctulatus) historical trends in state- and province-wide creel limits, length limits, and season closures along with the rationale justifying these regulations. Based on data gathered via mail surveys and the Internet, 55 jurisdictions had state- or province-wide creel limits, minimum length limits, or season closures, with each regulation type enacted as early as pre-1900. Most early regulations were established to protect spawning bass, but providing equitable distribution of harvest and increasing the quality of bass catch or harvest were the most common rationales for current regulations. Spatial and temporal trends in regulations were similar among species, were affected by geographic location, were not affected by angler preference except for season closures, and were frequently uninfluenced by advances in scientific knowledge of black bass biology.

  16. Online Ratings Systems for Physicians and Institutions: Limitations of the Current State of the Art.

    PubMed

    Daskivich, Timothy J; Spiegel, Brennan; Kim, Hyung L

    2017-03-01

    Consumers are increasingly using online ratings tools that compare surgeons and institutions to identify high-quality providers. However, concerns regarding their limitations-data quality, validity of statistical comparisons, and impact on access to care-should be considered before full-scale implementation. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. The occupational exposure limit for fluid aerosol generated in metalworking operations: limitations and recommendations.

    PubMed

    Park, Donguk

    2012-03-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m(3), short-term exposure limit ; 15 mg/m(3)) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m(3)) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.

  18. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    NASA Technical Reports Server (NTRS)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  19. The theoretical limit to plant productivity.

    PubMed

    DeLucia, Evan H; Gomez-Casanovas, Nuria; Greenberg, Jonathan A; Hudiburg, Tara W; Kantola, Ilsa B; Long, Stephen P; Miller, Adam D; Ort, Donald R; Parton, William J

    2014-08-19

    Human population and economic growth are accelerating the demand for plant biomass to provide food, fuel, and fiber. The annual increment of biomass to meet these needs is quantified as net primary production (NPP). Here we show that an underlying assumption in some current models may lead to underestimates of the potential production from managed landscapes, particularly of bioenergy crops that have low nitrogen requirements. Using a simple light-use efficiency model and the theoretical maximum efficiency with which plant canopies convert solar radiation to biomass, we provide an upper-envelope NPP unconstrained by resource limitations. This theoretical maximum NPP approached 200 tC ha(-1) yr(-1) at point locations, roughly 2 orders of magnitude higher than most current managed or natural ecosystems. Recalculating the upper envelope estimate of NPP limited by available water reduced it by half or more in 91% of the land area globally. While the high conversion efficiencies observed in some extant plants indicate great potential to increase crop yields without changes to the basic mechanism of photosynthesis, particularly for crops with low nitrogen requirements, realizing such high yields will require improvements in water use efficiency.

  20. Integral Battery Power Limiting Circuit for Intrinsically Safe Applications

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M.; Blalock, Norman N.

    2010-01-01

    A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the

  1. Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benwell, Andrew; Kemp, Mark; Burkhart, Craig

    2010-06-11

    An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.

  2. Infant and under-five mortality in Afghanistan: current estimates and limitations

    PubMed Central

    Becker, Stan; Hansen, Peter M; Kumar, Dhirendra; Kumar, Binay; Niayesh, Haseebullah; Peters, David H; Burnham, Gilbert

    2010-01-01

    Abstract Objective To examine historical estimates of infant and under-five mortality in Afghanistan, provide estimates for rural areas from current population-based data, and discuss the methodological challenges that undermine data quality and hinder retrospective estimations of mortality. Methods Indirect methods of estimation were used to calculate infant and under-five mortality from a household survey conducted in 2006. Sex-specific differences in underreporting of births and deaths were examined and sensitivity analyses were conducted to assess the effect of underreporting on infant and under-five mortality. Findings For 2004, rural unadjusted infant and under-five mortality rates were estimated to be 129 and 191 deaths per 1000 live births, respectively, with some evidence indicating underreporting of female deaths. If adjustment for underreporting is made (i.e. by assuming 50% of the unreported girls are dead), mortality estimates go up to 140 and 209, respectively. Conclusion Commonly used estimates of infant and under-five mortality in Afghanistan are outdated; they do not reflect changes that have occurred in the past 15 years or recent intensive investments in health services development, such as the implementation of the Basic Package of Health Services. The sociocultural aspects of mortality and their effect on the reporting of births and deaths in Afghanistan need to be investigated further. PMID:20680122

  3. Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters

    NASA Astrophysics Data System (ADS)

    Holgate, J. T.; Coppins, M.

    2017-04-01

    The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.

  4. Robotic applications in abdominal surgery: their limitations and future developments.

    PubMed

    Taylor, G W; Jayne, D G

    2007-03-01

    In the past 20 years, the technical aspects of abdominal surgery have changed dramatically. Operations are now routinely performed by laparoscopic techniques utilizing small abdominal incisions, with less patient discomfort, earlier recovery, improved cosmesis, and in many cases reduced economic burden on the healthcare provider. These benefits have largely been seen in the application of laparoscopic techniques to relatively straightforward procedures. It is not clear whether the same benefits carry through to more complex abdominal operations, which are more technically demanding and for which current laparoscopic instrumentation is less well adapted. The aim of surgical robotics is to address these problems and allow the advantages of minimal access surgery to be seen in a greater range of operations. A literature search was performed to ascertain the current state of the art in surgical robotics for the abdomen, and the technologies emerging within this field. The reference lists of the sourced articles were also searched for further relevant papers. Currently available robotic devices for abdominal surgery are limited to large, costly 'slave-master' or telemanipulator systems, such as the da Vinci (Intuitive Surgical, Sunny Vale, CA). In addition to their size and expense, these systems share the same limitation, by virtue of the fulcrum effect on instrument manipulation inherent in the use of ports by which external instruments gain access to the abdominal cavity. In order to overcome these limitations several smaller telemanipulator systems are being developed, and progress towards freely mobile intracorporeal devices is being made. While current robotic systems have considerable advantages over conventional laparoscopic techniques, they are not without limitations. Miniaturisation of robotic components and systems is feasible and necessary to allow minimally invasive techniques to reach full potential. The ultimate extrapolation of this progress is the

  5. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Angela C.; Rogers, A.; Rees, M.

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  6. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE PAGES

    Burnett, Angela C.; Rogers, A.; Rees, M.; ...

    2016-09-22

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  7. HIV: current opinion in escapology.

    PubMed

    Klenerman, Paul; Wu, Ying; Phillips, Rodney

    2002-08-01

    Much recent work strongly supports the hypothesis that CD8(+) T lymphocytes (CTLs) exert important immune control over HIV and so are a major selective force in its evolution. We analyse this host-pathogen interplay and focus on new data that describe the overall 'effectiveness' of CTL responses (strength, spread, specificity and 'stamina') and the mechanisms by which HIV may evade this suppressive activity. CTLs directed against HIV recognise very large numbers of distinct epitopes across the genome, are largely functional, turn over rapidly, and possess a phenotype that is distinct from CD8(+) lymphocytes specific for other viruses. Mutation of HIV epitopes that alters or abolishes CTL recognition altogether appears to be the most important immune escape mechanism, as the variation that HIV generates defies the limits of the T cell repertoire. However, this immune evasion is still only well-studied in a few patients. The rules that govern immune escape, and the ultimate limits of CTL capacity to deal with the variant epitopes that currently circulate, are not understood. This information will determine the feasibility of current vaccine approaches that, so far, make no provision for the enormous antigenic plasticity of HIV.

  8. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    PubMed

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Podocyturia: Potential applications and current limitations

    PubMed Central

    Trimarchi, Hernán

    2017-01-01

    Chronic kidney disease is a prevalent condition that affects millions of people worldwide and is a major risk factor of cardiovascular morbidity and mortality. The main diseases that lead to chronic kidney disease are frequent entities as diabetes mellitus, hypertension and glomerulopathies. One of the clinical markers of kidney disease progression is proteinuria. Moreover, the histological hallmark of kidney disease is sclerosis, located both in the glomerular and in the interstitial compartments. Glomerulosclerosis underscores an irreversible lesion that is clinically accompanied by proteinuria. In this regard, proteinuria and glomerular sclerosis are linked by the cell that has been conserved phylogenetically not only to prevent the loss of proteins in the urine, but also to maintain the health of the glomerular filtration barrier: The podocyte. It can then be concluded that the link between proteinuria, kidney disease progression and chronic kidney disease is mainly related to the podocyte. What is this situation due to? The podocyte is unable to proliferate under normal conditions, and a complex molecular machinery exists to avoid its detachment and eventual loss. When the loss of podocytes in the urine, or podocyturia, is taking place and its glomerular absolute number decreased, glomerulosclerosis is the predominant histological feature in a kidney biopsy. Therefore, tissular podocyte shortage is the cause of proteinuria and chronic kidney disease. In this regard, podocyturia has been demonstrated to precede proteinuria, showing that the clinical management of proteinuria cannot be considered an early intervention. The identification of urinary podocytes could be an additional tool to be considered by nephrologists to assess the activity of glomerulopathies, for follow-up purposes and also to unravel the pathophysiology of podocyte detachment in order to tailor the therapy of glomerular diseases more appropriately. PMID:28948159

  10. 77 FR 64039 - Limited Approval and Disapproval of Air Quality Implementation Plans; Nevada; Clark County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... Approval and Disapproval of Air Quality Implementation Plans; Nevada; Clark County; Stationary Source... limited approval and limited disapproval of revisions to the Clark County portion of the applicable state... limited approval and limited disapproval action is to update the applicable SIP with current Clark County...

  11. Relativistic theory of radiofrequency current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Metens, T.

    1991-05-01

    A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less

  12. Equilibrium β-limits in classical stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  13. Equilibrium β-limits in classical stellarators

    DOE PAGES

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...

    2017-11-17

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  14. Gender and Sexuality: The Discursive Limits of "Equality" in Higher Education

    ERIC Educational Resources Information Center

    Morrish, Liz; Sauntson, Helen

    2010-01-01

    This special issue sets out to investigate a number of areas of concern, regarding gender and sexuality, which are identifiable in the current British higher education environment. We argue that current dominant "neoliberal" discourses, which emphasise the commodification of higher education in the U.K., function to set limits upon…

  15. Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2015-11-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.

  16. Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin

    Space-charge limited flow is a topic of much interest and varied application. We extend existing understanding of space-charge limits by simulations, and develop new tools and techniques for doing these simulations along the way. The Child-Langmuir limit is a simple analytic solution for space-charge limited current density in a one-dimensional diode. It has been previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of finite radius r and outer drift tube R > r and gap length L, we further examine the space charge limit in two dimensions. We simulate a two-dimensional axisymmetric parallel plate diode of various aspect ratios (r/L), and develop a scaling law for the measured two-dimensional space-charge limit (2DSCL) relative to the Child-Langmuir limit as a function of the aspect ratio of the diode. These simulations are done with a large (100T) longitudinal magnetic field to restrict electron motion to 1D, with the two-dimensional particle-in-cell simulation code OOPIC. We find a scaling law that is a monotonically decreasing function of this aspect ratio, and the one-dimensional result is recovered in the limit as r >> L. The result is in good agreement with prior results in planar geometry, where the emission area is proportional to the cathode width. We find a weak contribution from the effects of the drift tube for current at the beam edge, and a strong contribution of high current-density "wings" at the outer-edge of the beam, with a very large relative contribution when the beam is narrow. Mechanisms for enhancing current beyond the Child-Langmuir limit remain a matter of great importance. We analyze the enhancement effects of upstream ion injection on the transmitted current in a one-dimensional parallel plate diode. Electrons are field-emitted at the cathode, and ions are injected at a controlled current from the anode. An analytic

  17. Relationships among smoking habits, airflow limitations, and metabolic abnormalities in school workers.

    PubMed

    Horie, Masafumi; Noguchi, Satoshi; Tanaka, Wakae; Goto, Yasushi; Yoshihara, Hisanao; Kawakami, Masaki; Suzuki, Masaru; Sakamoto, Yoshio

    2013-01-01

    Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥ 30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012-1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010-1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975-0.994; p = 0.007). Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities.

  18. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  19. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  20. Current state of cartilage tissue engineering

    PubMed Central

    Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S

    2003-01-01

    Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283

  1. 21 CFR 211.111 - Time limitations on production.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Time limitations on production. 211.111 Section 211.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and...

  2. 21 CFR 211.111 - Time limitations on production.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Time limitations on production. 211.111 Section 211.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and...

  3. 21 CFR 211.111 - Time limitations on production.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Time limitations on production. 211.111 Section 211.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and...

  4. 50 CFR 635.24 - Commercial retention limits for sharks, swordfish, and BAYS tunas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Small Boat permit trip limit is set above zero. The current shark trip limit for HMS Commercial Caribbean Small Boat permit holders is set at zero. (5) A person who owns or operates a vessel that has been... released in the water in a manner that maximizes survival. (7) [Reserved] (8) Inseason trip limit...

  5. Model Performance of Water-Current Meters

    USGS Publications Warehouse

    Fulford, J.M.; ,

    2002-01-01

    The measurement of discharge in natural streams requires hydrographers to use accurate water-current meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the performance of four models of current meters - Price type-AA, Price pygmy, Marsh McBirney 2000 and Swoffer 2100. Tests for consistency and accuracy for six meters of each model are summarized. Variation of meter performance within a model is used as an indicator of consistency, and percent velocity error that is computed from a measured reference velocity is used as an indicator of meter accuracy. Velocities measured by each meter are also compared to the manufacturer's published or advertised accuracy limits. For the meters tested, the Price models werer found to be more accurate and consistent over the range of test velocities compared to the other models. The Marsh McBirney model usually measured within its accuracy specification. The Swoffer meters did not meet the stringent Swoffer accuracy limits for all the velocities tested.

  6. Wake turbulence limits on paired approaches to parallel runways

    DOT National Transportation Integrated Search

    2002-07-01

    Wake turbulence considerations currently restrict the use of parallel runways less than 2500 ft (762 m) apart. : However, wake turbulence is not a factor if there are appropriate limits on allowed longitudinal pair spacings : and/or allowed crosswind...

  7. From an 'ice-see' perspective: The current use, potential and limitations of Structure-from-Motion photogrammetry for cryospheric applications

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Allan, Mark; Smith, Mark; Quincey, Duncan; Carrivick, Jonathan; Watson, C. Scott

    2016-04-01

    Structure-from-Motion with Multi-View Stereo (SfM-MVS) methods are rapidly becoming the tool of choice for geoscientists who require a relatively low-cost and viable alternative to traditional surveying technologies for characterising the form and short-term evolution of Earth surface landforms and landscapes. Uptake of SfM-MVS methods by workers in the cryospheric science community has been particularly rapid. The choice to use SfM-MVS has many logistical benefits which promote its adoption in remote glacial environments, namely the requirement for little more than a digital camera and proprietary or open-source software for topographic reconstruction, and a surveyed network of ground control to transform the resultant 3D models into a real-world co-ordinate system, if desired. Optionally, a dedicated aerial photography platform (e.g. kite, blimp, multirotor or fixed-wing UAV) may be used for initial photograph acquisition, which can facilitate glacier-scale observation and analysis. To date, cryospheric applications of SfM-MVS have included: the monitoring of glacier, moraine, and rock glacier movement; the evolution of ice cliffs on debris-covered glaciers; the reconstruction of ice-marginal or deglaciated topography; patch- and moraine-scale sedimentological characterisation; and the characterisation of glacier surfaces to monitor supraglacial drainage development or to inform energy balance modelling. This contribution will showcase existing applications and original data and discuss exciting potential opportunities and current limitations of the SfM-MVS method for the cryospheric sciences.

  8. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  9. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  10. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  11. Limited English proficiency workers. Health and safety education.

    PubMed

    Hong, O S

    2001-01-01

    1. As the population of adults with limited English proficiency plays an increasingly important role in the United States workplaces, there has been a growing recognition that literacy and limited English skills affect health and safety training programs. 2. Several important principles can be used as the underlying framework to guide teaching workers with limited English proficiency: clear and vivid way of teaching; contextual curriculum based on work; using various teaching methods; and staff development. 3. Two feasible strategies were proposed to improve current situation in teaching health and safety to workers with limited English proficiency in one company: integrating safety and health education with ongoing in-house ESL instruction and developing a multilingual video program. 4. Successful development and implementation of proposed programs requires upper management support, workers' awareness and active participation, collaborative teamwork, a well structured action plan, testing of pilot program, and evaluation.

  12. Electromigration failures under bidirectional current stress

    NASA Astrophysics Data System (ADS)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  13. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  14. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  15. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  16. Freezing-induced phase separation and spatial microheterogeneity in protein solutions.

    PubMed

    Dong, Jinping; Hubel, Allison; Bischof, John C; Aksan, Alptekin

    2009-07-30

    Amid decades of research, the basic mechanisms of lyo-/cryostabilization of proteins and more complex organisms have not yet been fully established. One major bottleneck is the inability to probe into and control the molecular level interactions. The molecular interactions are responsible for the significant differences in the outcome of the preservation processes. (1) In this communication, we have utilized confocal Raman microspectroscopy to quantify the freezing-induced microheterogeneity and phase separation (solid and liquid) in a frozen solution composed of a model protein (lysozyme) and a lyo-/cryoprotectant (trehalose), which experienced different degrees of supercooling. Detailed quantitative spectral analysis was performed across the ice, the freeze-concentrated liquid (FCL) phases, and the interface region between them. It was established that the characteristics of the microstructures observed after freezing depended not only on the concentration of trehalose in the solution but also on the degree of supercooling. It was shown that, when samples were frozen after high supercooling, small amounts of lysozyme and trehalose were occluded in the ice phase. Lysozyme preserved its native-like secondary structure in the FCL region but was denatured in the ice phase. Also, it was observed that induction of freezing after a high degree of supercooling of high trehalose concentrations resulted in aggregation of the sugar and the protein.

  17. Fundamental Physical Limits for the Size of Future Planetary Surface Exploration Systems

    NASA Astrophysics Data System (ADS)

    Andrews, F.; Hobbs, S. E.; Honstvet, I.; Snelling, M.

    2004-04-01

    With the current interest in the potential use of Nanotechnology for spacecraft, it becomes increasingly likely that environmental sensor probes, such as the "lab-on-a-chip" concept, will take advantage of this technology and become orders of magnitude smaller than current sensor systems. This paper begins to investigate how small these systems could theoretically become, and what are the governing laws and limiting factors that determine that minimum size. The investigation focuses on the three primary subsystems for a sensor network of this nature Sensing, Information Processing and Communication. In general, there are few fundamental physical laws that limit the size of the sensor system. Limits tend to be driven by factors other than the laws of physics. These include user requirements, such as the acceptable probability of error, and the potential external environment.

  18. Population genetics and the evolution of geographic range limits in an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  19. Off-axis current drive and real-time control of current profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team

    2008-04-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.

  20. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  1. Relationships among Smoking Habits, Airflow Limitations, and Metabolic Abnormalities in School Workers

    PubMed Central

    Horie, Masafumi; Noguchi, Satoshi; Tanaka, Wakae; Goto, Yasushi; Yoshihara, Hisanao; Kawakami, Masaki; Suzuki, Masaru; Sakamoto, Yoshio

    2013-01-01

    Background Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality. Objective We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities. Methods Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history. Results Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012–1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010–1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975–0.994; p = 0.007). Conclusions Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities. PMID:24312268

  2. Successional dynamics drive tropical forest nutrient limitation

    NASA Astrophysics Data System (ADS)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  3. On the density limit in the helicon plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotelnikov, Igor A., E-mail: I.A.Kotelnikov@inp.nsk.su

    2014-12-15

    Existence of the density limit in the helicon plasma sources is revisited. The low- and high-frequency regimes of a helicon plasma source operation are distinguished. In the low-frequency regime with ω<√(ω{sub ci}ω{sub ce}), the density limit is deduced from the Golant-Stix criterion of the accessibility of the lower hybrid resonance. In the high-frequency case, ω>√(ω{sub ci}ω{sub ce}), an appropriate limit is given by the Shamrai-Taranov criterion. Both these criteria are closely related to the phenomenon of the coalescence of the helicon wave with the Trivelpiece-Gould mode. We draw a conclusion that the derived density limits are not currently achieved inmore » existing devices, perhaps, because of high energy cost of gas ionization.« less

  4. Mass Deacidification: An Update on Possibilities and Limitations.

    ERIC Educational Resources Information Center

    Porck, Henk J.

    This report provides an update of the possibilities and limitations of currently available mass deacidification methods, focusing on the major developments in research and application of the main operational systems. This study is intended primarily to support the development of a well-considered preservation policy by librarians and archivists,…

  5. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  6. Coil Realizability Criteria for Stellarator Surface Currents

    NASA Astrophysics Data System (ADS)

    Boozer, A.; Hirshman, S.; Brooks, A.

    1998-11-01

    The method of automatic optimization(P. Merkel, Nucl. Fusion 27 (1987) 867.) for the design of stellarator coils (NESCOIL code) typically yields a two-dimensional surface current potential φ from which current filaments can be extracted, using the relation Ks = n × nabla φ. Until now, the realizability of coils obtained in this way has been largely decoupled from the physics optimization process which originally provided the matching surface on which B_normal = 0 (thus determining φ). For quasi-axisymmetric stellarators (QAS)(A. Reiman, et al., to be published.) or quasi- omnigeneous stellarators(S. P. Hirshman, D. A. Spong, et al., Phys. Rev. Lett. 80 (1998) 528.) with finite parallel plasma currents, it is often found that the current potential becomes too complicated to be consistent with realizable coils. We have developed analytic measures of the complexity of the current potential. These measures can be incorporated into the physics optimizer and can limit the plasma boundaries to those which are likely to produce realizable coils.

  7. Volcanic Plume Heights on Mars: Limits of Validity for Convective Models

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.

    2002-01-01

    Previous studies have overestimated volcanic plume heights on Mars. In this work, we demonstrate that volcanic plume rise models, as currently formulated, have only limited validity in any environment. These limits are easily violated in the current Mars environment and may also be violated for terrestrial and early Mars conditions. We indicate some of the shortcomings of the model with emphasis on the limited applicability to current Mars conditions. Specifically, basic model assumptions are violated when (1) vertical velocities exceed the speed of sound, (2) radial expansion rates exceed the speed of sound, (3) radial expansion rates approach or exceed the vertical velocity, or (4) plume radius grossly exceeds plume height. All of these criteria are violated for the typical Mars example given here. Solutions imply that the convective rise, model is only valid to a height of approximately 10 kilometers. The reason for the model breakdown is hat the current Mars atmosphere is not of sufficient density to satisfy the conservation equations. It is likely that diffusion and other effects governed by higher-order differential equations are important within the first few kilometers of rise. When the same criteria are applied to eruptions into a higher-density early Mars atmosphere, we find that eruption rates higher than 1.4 x 10(exp 9) kilograms per second also violate model assumptions. This implies a maximum extent of approximately 65 kilometers for convective plumes on early Mars. The estimated plume heights for both current and early Mars are significantly lower than those previously predicted in the literature. Therefore, global-scale distribution of ash seems implausible.

  8. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2004-12-01

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields

  9. Dark forces coupled to nonconserved currents

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim

    2017-10-01

    New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.

  10. Tendency of a rotating electron plasma to approach the Brillouin limit

    DOE PAGES

    Gueroult, Renaud; Fruchtman, Amnon; Fisch, Nathaniel J.

    2013-07-24

    In this study, a neutral plasma is considered to be immersed in an axial magnetic field together with a radial electric field. If the electrons are magnetized, but the ions are not magnetized, then the electrons will rotate but the ions will not rotate, leading to current generation. The currents, in turn, weaken the axial magnetic field, leading to an increase in the rotation frequency of the slow Brillouin mode. This produces a positive feedback effect, further weakening the magnetic field. The operating point thus tends to drift towards the Brillouin limit, possibly finding stability only in proximity to themore » limit itself. An example of this effect might be the cylindrical Hall thruster configuration.« less

  11. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  12. Risk analysis of ODOT's HMA percent within limits (PWL) specification.

    DOT National Transportation Integrated Search

    2007-08-01

    The Oklahoma Department of Transportation (ODOT) is considering switching its method of payment : for hot mix asphalt (HMA) construction from their current procedure to a Percent Within Limits (PWL) : specification. Quality characteristics are percen...

  13. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Harris, J. R.

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models thatmore » predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.« less

  14. The limits to tree height.

    PubMed

    Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D

    2004-04-22

    Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

  15. The Implementation of IAS 16 and IAS 41 at Andrew Peller Limited

    ERIC Educational Resources Information Center

    Lapointe-Antunes, Pascale; Moore, James

    2013-01-01

    This case asks students to play the role of Doug Grodeckie, Manager of Financial Reporting at Andrew Peller Limited (APL). Doug was asked to prepare a report analyzing Andrew Peller Limited's current tangible long-lived assets disclosures and making recommendations on how best to comply with International Accounting Standard (IAS) 16 Property,…

  16. Diffusion-limited aggregation in two dimensions

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.

    1985-03-01

    We have studied the aggregation of silica microspheres confined to two dimensions at an air-water interface. Under microscopic observation, both monomers and clusters are seen to aggregate by a diffusion-limited process. The clusters' fractal dimension is 1.20+/-0.15, smaller than values obtained from current models of aggregation. We propose that anisotropic repulsive interactions account for the low dimensionality by more effectively repelling particles from the side of an existing dendrite than from the end.

  17. Pacific western boundary currents and their roles in climate.

    PubMed

    Hu, Dunxin; Wu, Lixin; Cai, Wenju; Gupta, Alex Sen; Ganachaud, Alexandre; Qiu, Bo; Gordon, Arnold L; Lin, Xiaopei; Chen, Zhaohui; Hu, Shijian; Wang, Guojian; Wang, Qingye; Sprintall, Janet; Qu, Tangdong; Kashino, Yuji; Wang, Fan; Kessler, William S

    2015-06-18

    Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents-in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow-has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.

  18. Global Ocean Currents Database

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.

    2016-02-01

    The NOAA's National Centers for Environmental Information has released an ocean currents database portal that aims 1) to integrate global ocean currents observations from a variety of instruments with different resolution, accuracy and response to spatial and temporal variability into a uniform network common data form (NetCDF) format and 2) to provide a dedicated online data discovery, access to NCEI-hosted and distributed data sources for ocean currents data. The portal provides a tailored web application that allows users to search for ocean currents data by platform types and spatial/temporal ranges of their interest. The dedicated web application is available at http://www.nodc.noaa.gov/gocd/index.html. The NetCDF format supports widely-used data access protocols and catalog services such as OPeNDAP (Open-source Project for a Network Data Access Protocol) and THREDDS (Thematic Real-time Environmental Distributed Data Services), which the GOCD users can use data files with their favorite analysis and visualization client software without downloading to their local machine. The potential users of the ocean currents database include, but are not limited to, 1) ocean modelers for their model skills assessments, 2) scientists and researchers for studying the impact of ocean circulations on the climate variability, 3) ocean shipping industry for safety navigation and finding optimal routes for ship fuel efficiency, 4) ocean resources managers while planning for the optimal sites for wastes and sewages dumping and for renewable hydro-kinematic energy, and 5) state and federal governments to provide historical (analyzed) ocean circulations as an aid for search and rescue

  19. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  20. Photon and graviton mass limits

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred Scharff; Nieto, Michael Martin

    2010-01-01

    Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time. Historically, these studies have passed through three stages: (1) testing the power in the inverse-square laws of Newton and Coulomb, (2) seeking a nonzero value for the rest mass of photon or graviton, and (3) considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since the previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. “Cold dark matter” (slow, invisible classical particles) fits well at large scales. “Modified Newtonian dynamics” provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. “Dark energy” might be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. Significant mass limits are summarized in a table.

  1. Photon and graviton mass limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Alfred Scharff; Nieto, Michael Martin; Theoretical Division

    2010-01-15

    Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time. Historically, these studies have passed through three stages: (1) testing the power in the inverse-square laws of Newton and Coulomb, (2) seeking a nonzero value for the rest mass of photon or graviton, and (3) considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since the previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomymore » makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. ''Cold dark matter'' (slow, invisible classical particles) fits well at large scales. ''Modified Newtonian dynamics'' provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. ''Dark energy''might be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. Significant mass limits are summarized in a table.« less

  2. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  3. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  4. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  5. Thermal stress imposed by prototype bilayer and current ground crew chemical defense ensembles: a limited laboratory comparison. Final report, 30 June 1986-1 January 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krock, L.P.; Navalta, R.; Myhre, L.G.

    An open bilayer ground-crew chemical defense ensemble (CDE) was proposed to reduce the thermal burden during vapor-only exposure periods. This study compared the thermal-stress profile of the proposed ensemble to that produced by the currently employed closed CDE. Four subjects, alternating ensembles on separate days, walked on a treadmill in an environmental chamber at 5.3 km/h (3.3 mph) and 2% grade (an energy expenditure of 350 kcal/h) for alternating work/rest to achieve significant recovery. Mean total sweat production was lower (1.38 vs. 2.50 liters) and percent sweat evaporation greater (65.7% vs. 30.0%) in the prototype ensemble than in the CDE.more » The prototype ensemble provided greater heat dissipation and allowed more-efficient sweat evaporation which had the double benefit of reducing heat storage and limiting dehydration.« less

  6. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations.

    PubMed

    Hayat, Amaury; Hacket-Pain, Andrew J; Pretzsch, Hans; Rademacher, Tim T; Friend, Andrew D

    2017-01-01

    Increasing CO 2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO 2 . There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.

  7. Intelligent Assistive Technology Applications to Dementia Care: Current Capabilities, Limitations, and Future Challenges

    PubMed Central

    Bharucha, Ashok J.; Anand, Vivek; Forlizzi, Jodi; Dew, Mary Amanda; Reynolds, Charles F.; Stevens, Scott; Wactlar, Howard

    2009-01-01

    The number of older Americans afflicted by Alzheimer disease and related dementias will triple to 13 million persons by 2050, thus greatly increasing healthcare needs. An approach to this emerging crisis is the development and deployment of intelligent assistive technologies that compensate for the specific physical and cognitive deficits of older adults with dementia, and thereby also reduce caregiver burden. The authors conducted an extensive search of the computer science, engineering, and medical databases to review intelligent cognitive devices, physiologic and environmental sensors, and advanced integrated sensor networks that may find future applications in dementia care. Review of the extant literature reveals an overwhelming focus on the physical disability of younger persons with typically nonprogressive anoxic and traumatic brain injuries, with few clinical studies specifically involving persons with dementia. A discussion of the specific capabilities, strengths, and limitations of each technology is followed by an overview of research methodological challenges that must be addressed to achieve measurable progress to meet the healthcare needs of an aging America. PMID:18849532

  8. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  9. Adult Cigarette Smoking in the United States: Current Estimates

    MedlinePlus

    ... Tobacco Use Hispanics/Latinos and Tobacco Use Lesbian, Gay, Bisexual, and Transgender Persons and Tobacco Use Cigarette ... limitation (14.4%) By Sexual Orientation 2 Lesbian/gay/bisexual adults were more likely to be current ...

  10. Do exposure limits for hand-transmitted vibration prevent carpal tunnel syndrome?

    PubMed

    Gillibrand, S; Ntani, G; Coggon, D

    2016-07-01

    An apparently high frequency of carpal tunnel syndrome (CTS) among shipyard workers undergoing health surveillance because of exposure to hand-transmitted vibration (HTV) prompted concerns that current regulatory limits on exposure might not protect adequately against the disorder. To explore whether within regulatory limits, higher exposures to HTV predispose to CTS. As part of a retrospective audit, we compared duration and current intensity of exposure to HTV in cases with new-onset CTS and controls matched for age. Conditional logistic regression was used to quantify associations, which were summarized by odds ratios (ORs) and 95% confidence intervals (CIs). There were 23 cases and 55 controls. After adjustment for body mass index and previous diagnosis of diabetes, no clear associations were observed either with duration of exposure to HTV or with current intensity of exposure. Risk was non-significantly elevated in men with ≥30 years' exposure to HTV (OR 1.6), but in the highest category of current exposure [8-h energy-equivalent frequency-weighted acceleration (A8) ≥ 4.0 m/s(2)], risk was lower than that in the reference category (A8 < 2.5 m/s(2)). Moreover, there was a significantly reduced risk of CTS in men with a previous diagnosis of hand-arm vibration syndrome (HAVS) (OR 0.2, 95% CI 0.1-0.9). We found no evidence that below the current limit for A(8) of 5 m/s(2), higher exposures to HTV predispose to CTS. However, care should be taken not to overlook the possibility of treatable CTS when workers with diagnosed HAVS present with new or worsening sensory symptoms in the hand. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Investigation of Physical Processes Limiting Plasma Density in DIII--D

    NASA Astrophysics Data System (ADS)

    Maingi, R.

    1996-11-01

    Understanding the physical processes which limit operating density is crucial in achieving peak performance in confined plasmas. Studies from many of the world's tokamaks have indicated the existence(M. Greenwald, et al., Nucl. Fusion 28) (1988) 2199 of an operational density limit (Greenwald limit, n^GW_max) which is proportional to the plasma current and independent of heating power. Several theories have reproduced the current dependence, but the lack of a heating power dependence in the data has presented an enigma. This limit impacts the International Thermonuclear Experimental Reactor (ITER) because the nominal operating density for ITER is 1.5 × n^GW_max. In DIII-D, experiments are being conducted to understand the physical processes which limit operating density in H-mode discharges; these processes include X-point MARFE formation, high core recycling and neutral pressure, resistive MHD stability, and core radiative collapse. These processes affect plasma properties, i.e. edge/scrape-off layer conduction and radiation, edge pressure gradient and plasma current density profile, and core radiation, which in turn restrict the accessible density regime. With divertor pumping and D2 pellet fueling, core neutral pressure is reduced and X-point MARFE formation is effectively eliminated. Injection of the largest-sized pellets does cause transient formation of divertor MARFEs which occasionally migrate to the X-point, but these are rapidly extinguished in pumped discharges in the time between pellets. In contrast to Greenwald et al., it is found that the density relaxation time after pellets is largely independent of the density relative to the Greenwald limit. Fourier analysis of Mirnov oscillations indicates the de-stabilization and growth of rotating, tearing-type modes (m/n= 2/1) when the injected pellets cause large density perturbations, and these modes often reduce energy confinement back to L-mode levels. We are examining the mechanisms for de

  12. Downwelling dynamics of the western Adriatic Coastal Current

    NASA Astrophysics Data System (ADS)

    Geyer, W. R.; Mullenbach, B. L.; Kineke, G. C.; Sherwood, C. R.; Signell, R. P.; Ogston, A. S.; Puig, P.; Traykovski, P.

    2004-12-01

    The western Adriatic coastal current (WACC) flows for hundreds of kilometers along the east coast of Italy at speeds of 20 to 100 cm/s. It is fed by the buoyancy input from the Po River and other rivers of the northern Adriatic Sea, with typical freshwater discharge rates of 2000 m**3/s. The Bora winds provide the dominant forcing agent of the WACC during the winter months, resulting in peak southeastward flows reaching 100 cm/s. The energy input of the Bora is principally in the northern Adriatic, and the coastal current response is due mainly to the set up of the pressure field, although there is sometimes an accompanying local component of down-coast winds that further augments the coastal current. Downwelling conditions occur during Bora, with or without local wind-forcing, because the bottom Ekman transport occurs in either case. Downwelling results in destratification of the coastal current, due to both vertical mixing and straining of the cross-shore density gradient. The relative contributions of mixing and straining depends on the value of the Kelvin number K=Lf/(g_Oh)**1/2, where L is the width of the coastal current, f is the Coriolis parameter, g_O is reduced gravity, and h is the plume thickness. For a narrow coastal current (K<1), straining occurs more rapidly than vertical mixing. This is the case in the WACC during Bora events, with strain-induced destratification occurring in less than 24 hours. The straining process limits vertical mixing of the coastal current with the ambient Adriatic water, because once the isopycnals become vertical, no more mixing can occur. This limitation of mixing may explain the persistence of the density anomaly of the coastal current in the presence of high stresses. The straining process also has important implications for sediment transport: destratification allows sediment to be distributed throughout the water column during Bora events, resulting in enhanced down-coast fluxes. The influence of the downwelling

  13. Tendinopathy: injury, repair, and current exploration

    PubMed Central

    Lipman, Kelsey; Wang, Chenchao; Ting, Kang; Soo, Chia; Zheng, Zhong

    2018-01-01

    Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions. PMID:29593382

  14. BOOK REVIEW: The Current Comparator

    NASA Astrophysics Data System (ADS)

    Petersons, Oskars

    1989-01-01

    techniques for magnetic errors and magnetic-shield excitation for capacitive errors. The magnetic-shield-excitation technique leads naturally to two-stage transformer approaches, described in a small subchapter. Sensitivity of current comparators is discussed in terms of available signal levels for given excitations and current-comparator characteristics. The discussion, however, does not cover more basic limitations, such as inherent noise. A subchapter is devoted to electronically-aided current transformers. Although electronically-aided transformers are not in a strict sense current comparators, many of the design considerations and error sources are the same. Seven different circuits are presented with a brief qualitative discussion. The third chapter, covering design and construction, will be exceptionally valuable for someone needing basic information on how to construct a current comparator quickly. Indeed, all the necessary design, construction, and testing steps are presented in a well-illustrated 15-page chapter. The tests for shielding effectiveness discussed in this chapter and the knowledge of interwinding capacitances calculable from the equations in the previous chapter should enable one also to predict the limits of errors without an exhaustive and complete calibration. Chapter 4 is devoted to current-transformer calibration—the original objective for the current-comparator development work. The principal tool for this is the compensated current comparator, in effect a two-stage transformer operated in the current-comparator mode. The compensated current comparator is not only accurate but is also an extremely versatile device and, hence, deserves the attention that it receives in this book. Considerable space is devoted to the calibration of current comparators themselves using other current comparators in ratio-buildup (bootstrap) techniques. This information is more than most of the users will want since the pre-eminent feature of a current comparator is

  15. The reliability and validity of the Caregiver Work Limitations Questionnaire.

    PubMed

    Lerner, Debra; Parsons, Susan K; Chang, Hong; Visco, Zachary L; Pawlecki, J Brent

    2015-01-01

    To test a new Caregiver Work Limitations Questionnaire (WLQ). On the basis of the original WLQ, this new survey instrument assesses the effect of caregiving for ill and/or disabled persons on the caregiver's work performance. A questionnaire was administered anonymously to employees of a large business services company. Scale reliability and validity were tested with psychometric methods. Of 4128 survey participants, 18.3% currently were caregivers, 10.2% were past caregivers, and 71.5% were not caregivers. Current caregivers were limited in their ability to perform basic job tasks between mean 10.3% and 16.8% of the time. Confirmatory factor analysis yielded a scale structure similar to the WLQ's. Scales reliabilities (the Cronbach's α) ranged from 0.91 to 0.95. The Caregiver WLQ is a new tool for understanding the workplace effect of caregiving.

  16. Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.

  17. The current role and limitations of surrogate endpoints in advanced prostate cancer.

    PubMed

    Gomella, Leonard G; Oliver Sartor, A

    2014-01-01

    The identification of appropriate surrogate endpoints for evaluating cancer therapeutics has been of ongoing interest across various tumor types. Metastatic castrate-resistant prostate cancer (mCRPC) has been a particularly challenging area. As more targeted and novel therapies are being developed in this disease space, an urgent need exists to identify surrogate endpoints in mCRPC. The ability to discern patient benefit in the absence of patient death or other complications would facilitate both drug development and more appropriate patient care. We reviewed the available literature and guidelines used in the development and approval of recent agents for mCRPC. The majority of regulatory approvals of new medications have relied on overall survival (OS) or prevention of complications such as skeletal related events (SRE's). Progression-free survival measures, such as bone scans, computed tomography scans, and prostate-specific antigen related changes, have not been validated nor uniformly accepted as outcome surrogates. All of the successful recent pivotal Phase III trials designed to achieve regulatory approval in mCRPC have used either OS or SRE's as the primary endpoint. There are significant problematic issues that exist associated with defining and implementing surrogate markers in mCRPC beyond survival and complications. Suggestions are made as to how the current situation might be improved. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 40 CFR 434.52 - Effluent limitations quidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology currently available (BPT). 434.52 Section 434.52 Protection of Environment ENVIRONMENTAL... practicable control technology currently available (BPT). (a) Reclamation areas. The limitations in this... this subsection after application of the best practicable control technology currently available: BPT...

  19. 40 CFR 434.52 - Effluent limitations quidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology currently available (BPT). 434.52 Section 434.52 Protection of Environment ENVIRONMENTAL... practicable control technology currently available (BPT). (a) Reclamation areas. The limitations in this... this subsection after application of the best practicable control technology currently available: BPT...

  20. 40 CFR 434.52 - Effluent limitations quidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technology currently available (BPT). 434.52 Section 434.52 Protection of Environment ENVIRONMENTAL... practicable control technology currently available (BPT). (a) Reclamation areas. The limitations in this... this subsection after application of the best practicable control technology currently available: BPT...

  1. 40 CFR 434.52 - Effluent limitations quidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology currently available (BPT). 434.52 Section 434.52 Protection of Environment ENVIRONMENTAL... practicable control technology currently available (BPT). (a) Reclamation areas. The limitations in this... this subsection after application of the best practicable control technology currently available: BPT...

  2. 40 CFR 434.52 - Effluent limitations quidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology currently available (BPT). 434.52 Section 434.52 Protection of Environment ENVIRONMENTAL... practicable control technology currently available (BPT). (a) Reclamation areas. The limitations in this... this subsection after application of the best practicable control technology currently available: BPT...

  3. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delmas, Marie; Rodriguez, Jean-Baptiste; Rossignol, Rémi

    2016-05-07

    GaSb-rich superlattice (SL) p-i-n photodiodes grown by molecular beam epitaxy were studied theoretically and experimentally in order to understand the poor dark current characteristics typically obtained. This behavior, independent of the SL-grown material quality, is usually attributed to the presence of defects due to Ga-related bonds, limiting the SL carrier lifetime. By analyzing the photoresponse spectra of reverse-biased photodiodes at 80 K, we have highlighted the presence of an electric field, breaking the minibands into localized Wannier-Stark states. Besides the influence of defects in such GaSb-rich SL structures, this electric field induces a strong tunneling current at low bias which canmore » be the main limiting mechanism explaining the high dark current density of the GaSb-rich SL diode.« less

  5. A squid-based beam current monitor for FAIR/CRYRING

    NASA Astrophysics Data System (ADS)

    Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas

    2015-11-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.

  6. Transitions of Turbulence in Plasma Density Limits

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2002-11-01

    Density limits have been observed in nearly all toroidal devices. In most cases exceeding this limit is manifested by a catastrophic growth of edge MHD instabilities [1]. In tokamaks, several other density limiting processes have been identified which limit performance but do not necessarily result in disruption. One such process is degradation of the edge transport barrier and H- to L-mode transition at high density. Further density increase, however can result in a disruption. The 3D nonlocal electromagnetic turbulence code BOUT [2], which models the boundary plasma turbulence in a realistic x-point geometry using two-fluids modified Braginski equations, is used in two numerical experiments. (1) Increasing the density while holding pressure constant (therefore keeping magnetic geometry the same). The pressure remains below the ELM threshold in these numerical experiments. (2) Increasing density while holding temperature constant. Small changes of equilibrium magnetic geometry resulting from the change in the edge pressure gradient are ignored in these simulations. These simulations extend previous work [3] by including the effect of Er well on turbulence, real magnetic geometry, the separatrix and SOL physics. Our simulations show the turbulent fluctuation levels and transport increase with increasing collisionality. Ultimately perpendicular turbulent transport dominates the parallel classical transport, leading to collapse of the sheath; the Er-well is lost and the region of high transport propagates inside the last closed flux surface. As the density increases these simulations show: Drift-wave turbulence--> Resistive MHD-->Detachment from divertor -->Disruption(?) and transport switches from diffusive to bursty processes. The onset of disruption will be calculated by MHD codes Corsica and Elite. The role of radiation on the transition will also be assessed. The scaling of the density limit with plasma current will be studied by conducting an additional series

  7. Enhancement of pumped current in quantum dots

    NASA Astrophysics Data System (ADS)

    Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro

    A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.

  8. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  9. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  10. Towards Limits on Neutrino Mixing Parameters from Nucleosynthesis in the Big Bang and Supernovae

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Young

    1997-11-01

    Astrophysical environments can often provide stricter limits on neutrino mass and mixing parameters than terrestrial experiments. However, before firm limits can be found, there must be confidence in the understanding of the astrophysical environment being used to make these limits. In this dissertation, progress towards limits on neutrino mixing parameters from big bang nucleosynthesis and supernova r-process nucleosynthesis is sought. By way of assessment of current knowledge of neutrino oscillation parameters, we examine the potential for a 'natural' three-neutrino mixing scheme (one without sterile neutrinos) to satisfy available data and astrophysical arguments. A small parameter space currently exists for a natural three-neutrino oscillation solution meeting known constraints. If such a solution is ruled out, and current hints about neutrino oscillations are confirmed, mixing between active and sterile neutrinos will probably be required. Because mixing between active and sterile neutrinos with parameters appropriate for the atmospheric or solar neutrino problems increases the primordial 4He abundance, big bang nucleosynthesis considerations can place limits on such mixing. In the present work the overall consistency of standard big bang nucleosynthesis is discussed in light of recent discordant determinations of the primordial deuterium abundance. Cosmological considerations favor a larger baryon density, which supports the lower reported value of D/H. Studies of limits on active-sterile neutrino mixing derived from big bang nucleosynthesis considerations are here extended to consider the dependance of these constraints on the primordial deuterium abundance. If the neutrino-heated ejecta in the post-core-bounce supernova environment is the site of r-process nucleosynthesis, limits can be placed on mixing between νe, and νsbμ, or νsbτ. Refined limits will require a better understanding of this r-process environment, since current supernova models do not

  11. Surgery for limited-stage small-cell lung cancer.

    PubMed

    Barnes, Hayley; See, Katharine; Barnett, Stephen; Manser, Renée

    2017-04-21

    Current treatment guidelines for limited-stage small-cell lung cancer (SCLC) recommend concomitant platinum-based chemo-radiotherapy plus prophylactic cranial irradiation, based on the premise that SCLC disseminates early, and is chemosensitive. However, although there is usually a favourable initial response, relapse is common and the cure rate for limited-stage SCLC remains relatively poor. Some recent clinical practice guidelines have recommended surgery for stage 1 (limited) SCLC followed by adjuvant chemotherapy, but this recommendation is largely based on the findings of observational studies. To determine whether, in patients with limited-stage SCLC, surgical resection of cancer improves overall survival and treatment-related deaths compared with radiotherapy or chemotherapy, or a combination of radiotherapy and chemotherapy, or best supportive care. We performed searches on CENTRAL, MEDLINE, Embase, CINAHL, and Web of Science up to 11 January 2017. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. We included randomised controlled trials (RCTs) with adults diagnosed with limited-stage SCLC, confirmed by cytology or histology, and radiological assessment, considered medically suitable for resection and radical radiotherapy, which randomised participants to surgery versus any other intervention. We imported studies identified by the search into a reference manager database. We retrieved the full-text version of relevant studies, and two review authors independently extracted data. The primary outcome measures were overall survival and treatment-related deaths; and secondary outcome measures included loco-regional progression, quality of life, and adverse events. We included three trials with 330 participants. We judged the quality of the evidence as very low for all the outcomes. The quality of the data was limited by the lack of complete outcome reporting, unclear risk of bias in the methods in which the

  12. Relationship between Birkeland current regions, particle precipitation, and electric fields

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.

  13. Multiple dating approach (14C, U/Th and 36Cl) of tsunami-transported reef-top megaclasts on Bonaire (Leeward Antilles) - potential and current limitations

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; May, Simon Matthias; Engel, Max; Mechernich, Silke; Keulertz, Rebecca; Schroeder-Ritzrau, Andrea; Fohlmeister, Jens; Frank, Norbert; Dunai, Tibor; Brueckner, Helmut

    2016-04-01

    Coastal hazard assessment depends on reliable information on the magnitude and frequency of past high-energy wave events (EWE: tsunamis, storms). For this purpose onshore sedimentary records represent promising geo-archives for the mid- and late-Holocene EWE history. In comparison to fine-grained sediments which have been extensively studied in the recent past, supralittoral megaclasts are less investigated, essentially due to the difficulties related to the dating of corresponding depositional events, and thus their limited value for inferring the timing of major events. On Bonaire (Leeward Antilles, Caribbean), supratidal coarse-clast deposits form prominent landforms all around the island. Fields of large boulders (up to 150 t) are among the best-studied reef-top megaclasts worldwide. Transport by Holocene tsunamis is assumed at least for the largest boulders (Engel and May, 2012). Although a large dataset of 14C and electron spin resonance (ESR) ages is available for major coral rubble ridges and ramparts, showing some age clusters during the Late Holocene, it is still debated whether these data reflect the timing of major depositional/transport event(s), and how these data sets are biased by reworking of coral fragments. In addition, different processes may be responsible for the deposition of the coral rubble ridges and ramparts (storm) and the solitary megaclasts (tsunami). As an attempt to overcome the current challenges for dating the dislocation of the megaclasts, three distinct dating methods were implemented: (i) 14C dating of boring bivalves (Lithophaga) attached to the boulders; (ii) uranium-series (U/Th) dating of post-depositional, secondary calcitic flowstone at the underside of the boulders; and (iii) surface exposure dating of overturned boulders via 36Cl concentration measurements in corals. The three 14C datings yield age estimates >37 ka, i.e. most probably beyond the applicability of the method, which sheds doubt on the usefulness of this

  14. Limits on fundamental limits to computation.

    PubMed

    Markov, Igor L

    2014-08-14

    An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.

  15. Isolated lateral collateral ligament complex injury in rock climbing and Brazilian Jiu-jitsu.

    PubMed

    Davis, Bryan A; Hiller, Lucas P; Imbesi, Steven G; Chang, Eric Y

    2015-08-01

    We report two occurrences of high-grade tears of the lateral collateral ligament complex (LCLC), consisting of the anterolateral ligament (ALL) and fibular collateral ligament (FCL). One injury occurred in a rock climber and the other in a martial artist. Increasing awareness of isolated injuries of the LCLC will allow for appropriate diagnosis and management. We review and discuss the anatomy of the LCLC, the unique mechanism of isolated injury, as well as physical and imaging examination findings.

  16. Transient current interruption mechanism in a magnetically delayed vacuum switch

    NASA Technical Reports Server (NTRS)

    Morris, Gibson, Jr.; Dougal, Roger A.

    1993-01-01

    The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.

  17. Feasibility and costs of phosphorus application limits on 39 U.S. swine operations.

    PubMed

    Lory, John A; Massey, Raymond E; Zulovich, Joseph M; Hoehne, John A; Schmidt, Amy M; Carlson, Marcia S; Fulhage, Charles D

    2004-01-01

    Concerns about manure P and water quality have prompted new regulations imposing P limits on land application of manure. Previous research established that P limits increase land needs for animal feeding operations. We evaluated the effect of N, annual P, and rotation P limits on the feasibility of manure management. A mechanistic model characterized manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Extensive information collected from each operation was used to determine effects of manure storage type, ownership structure, and application limits on attributes of manure management. Phosphorus limits had substantially greater effect on slurry operations, increasing land needs 250% (0.3 hectares per animal unit [AU]) and time for manure application 24% (2.5 min AU(-1)) for rotation P limits and 41% (4.4 min AU(-1)) for annual P limits. Annual P limits were infeasible for current land application equipment on two operations and had the greatest effect on time and costs because they required all but three slurry operations to reduce discharge rate. We recommend implementing rotation P limits (not to exceed crop N need) to minimize time effects, allow most farmers to use their current manure application methods, and allow manure to fulfill crop N and P needs in the year of application. Phosphorus limits increased potential manure value but would require slurry operations to recover at least 61% of manure value through manure sales. Phosphorus limits are likely to shape the U.S. swine industry through differential effects on the various sectors of the swine industry.

  18. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2005-05-05

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local

  19. Antifungal resistance: current trends and future strategies to combat

    PubMed Central

    Wiederhold, Nathan P

    2017-01-01

    Antifungal resistance represents a major clinical challenge to clinicians responsible for treating invasive fungal infections due to the limited arsenal of systemically available antifungal agents. In addition current drugs may be limited by drug–drug interactions and serious adverse effects/toxicities that prevent their prolonged use or dosage escalation. Fluconazole resistance is of particular concern in non-Candida albicans species due to the increased incidence of infections caused by these species in different geographic locations worldwide and the elevated prevalence of resistance to this commonly used azole in many institutions. C. glabrata resistance to the echinocandins has also been documented to be rising in several US institutions, and a higher percentage of these isolates may also be azole resistant. Azole resistance in Aspergillus fumigatus due to clinical and environmental exposure to this class of agents has also been found worldwide, and these isolates can cause invasive infections with high mortality rates. In addition, several species of Aspergillus, and other molds, including Scedosporium and Fusarium species, have reduced susceptibility or pan-resistance to clinically available antifungals. Various investigational antifungals are currently in preclinical or clinical development, including several of them that have the potential to overcome resistance observed against the azoles and the echinocandins. These include agents that also target ergosterol and b-glucan biosynthesis, as well as compounds with novel mechanisms of action that may also overcome the limitations of currently available antifungal classes, including both resistance and adverse effects/toxicity. PMID:28919789

  20. The Evolving Landscape of HIV Drug Resistance Diagnostics for Expanding Testing in Resource-Limited Settings.

    PubMed

    Inzaule, Seth C; Hamers, Ralph L; Paredes, Roger; Yang, Chunfu; Schuurman, Rob; Rinke de Wit, Tobias F

    2017-01-01

    Global scale-up of antiretroviral treatment has dramatically changed the prospects of HIV/AIDS disease, rendering life-long chronic care and treatment a reality for millions of HIV-infected patients. Affordable technologies to monitor antiretroviral treatment are needed to ensure long-term durability of limited available drug regimens. HIV drug resistance tests can complement existing strategies in optimizing clinical decision-making for patients with treatment failure, in addition to facilitating population-based surveillance of HIV drug resistance. This review assesses the current landscape of HIV drug resistance technologies and discusses the strengths and limitations of existing assays available for expanding testing in resource-limited settings. These include sequencing-based assays (Sanger sequencing assays and nextgeneration sequencing), point mutation assays, and genotype-free data-based prediction systems. Sanger assays are currently considered the gold standard genotyping technology, though only available at a limited number of resource-limited setting reference and regional laboratories, but high capital and test costs have limited their wide expansion. Point mutation assays present opportunities for simplified laboratory assays, but HIV genetic variability, extensive codon redundancy at or near the mutation target sites with limited multiplexing capability have restricted their utility. Next-generation sequencing, despite high costs, may have potential to reduce the testing cost significantly through multiplexing in high-throughput facilities, although the level of bioinformatics expertise required for data analysis is currently still complex and expensive and lacks standardization. Web-based genotype-free prediction systems may provide enhanced antiretroviral treatment decision-making without the need for laboratory testing, but require further clinical field evaluation and implementation scientific research in resource-limited settings.

  1. Ultra-processed foods and the limits of product reformulation.

    PubMed

    Scrinis, Gyorgy; Monteiro, Carlos Augusto

    2018-01-01

    The nutritional reformulation of processed food and beverage products has been promoted as an important means of addressing the nutritional imbalances in contemporary dietary patterns. The focus of most reformulation policies is the reduction in quantities of nutrients-to-limit - Na, free sugars, SFA, trans-fatty acids and total energy. The present commentary examines the limitations of what we refer to as 'nutrients-to-limit reformulation' policies and practices, particularly when applied to ultra-processed foods and drink products. Beyond these nutrients-to-limit, there are a range of other potentially harmful processed and industrially produced ingredients used in the production of ultra-processed products that are not usually removed during reformulation. The sources of nutrients-to-limit in these products may be replaced with other highly processed ingredients and additives, rather than with whole or minimally processed foods. Reformulation policies may also legitimise current levels of consumption of ultra-processed products in high-income countries and increased levels of consumption in emerging markets in the global South.

  2. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  3. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  4. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  5. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.

    PubMed

    Zhang, Peng

    2015-05-19

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.

  6. Limiting the Temperatures in Naturally Ventilated Buildings in Warm Climates. Building Research Establishment Current Paper 7/74.

    ERIC Educational Resources Information Center

    Petherbridge, P.

    Formulas used in the calculation of cooling loads and indoor temperatures are employed to demonstrate the influence of various building parameters--such as thermal transmittance (U-value), solar absorptivity, and thermal storage--on the indoor thermal environment. The analysis leads to guidance on ways of limiting temperatures in naturally…

  7. Polymer on Top: Current Limits and Future Perspectives of Quantitatively Evaluating Surface Grafting.

    PubMed

    Michalek, Lukas; Barner, Leonie; Barner-Kowollik, Christopher

    2018-03-07

    Well-defined polymer strands covalently tethered onto solid substrates determine the properties of the resulting functional interface. Herein, the current approaches to determine quantitative grafting densities are assessed. Based on a brief introduction into the key theories describing polymer brush regimes, a user's guide is provided to estimating maximum chain coverage and-importantly-examine the most frequently employed approaches for determining grafting densities, i.e., dry thickness measurements, gravimetric assessment, and swelling experiments. An estimation of the reliability of these determination methods is provided via carefully evaluating their assumptions and assessing the stability of the underpinning equations. A practical access guide for comparatively and quantitatively evaluating the reliability of a given approach is thus provided, enabling the field to critically judge experimentally determined grafting densities and to avoid the reporting of grafting densities that fall outside the physically realistic parameter space. The assessment is concluded with a perspective on the development of advanced approaches for determination of grafting density, in particular, on single-chain methodologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Discussing study limitations in reports of biomedical studies- the need for more transparency.

    PubMed

    Puhan, Milo A; Akl, Elie A; Bryant, Dianne; Xie, Feng; Apolone, Giovanni; ter Riet, Gerben

    2012-02-23

    Unbiased and frank discussion of study limitations by authors represents a crucial part of the scientific discourse and progress. In today's culture of publishing many authors or scientific teams probably balance 'utter honesty' when discussing limitations of their research with the risk of being unable to publish their work. Currently, too few papers in the medical literature frankly discuss how limitations could have affected the study findings and interpretations. The goals of this commentary are to review how limitations are currently acknowledged in the medical literature, to discuss the implications of limitations in biomedical studies, and to make suggestions as to how to openly discuss limitations for scientists submitting their papers to journals. This commentary was developed through discussion and logical arguments by the authors who are doing research in the area of hedging (use of language to express uncertainty) and who have extensive experience as authors and editors of biomedical papers. We strongly encourage authors to report on all potentially important limitations that may have affected the quality and interpretation of the evidence being presented. This will not only benefit science but also offers incentives for authors: If not all important limitations are acknowledged readers and reviewers of scientific articles may perceive that the authors were unaware of them. Authors should take advantage of their content knowledge and familiarity with the study to prevent misinterpretations of the limitations by reviewers and readers. Articles discussing limitations help shape the future research agenda and are likely to be cited because they have informed the design and conduct of future studies. Instead of perceiving acknowledgment of limitations negatively, authors, reviewers and editors should recognize the potential of a frank and unbiased discussion of study limitations that should not jeopardize acceptance of manuscripts.

  9. Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents

    NASA Astrophysics Data System (ADS)

    Drozdzewski, D.; Shaw, W.; Dominey-Howes, D.; Brander, R.; Walton, T.; Gero, A.; Sherker, S.; Goff, J.; Edwick, B.

    2012-04-01

    This paper begins a process of addressing a significant gap in knowledge about people's responses to being caught in rip currents. While rip currents are the primary hazard facing recreational ocean swimmers in Australia, debate exists about the best advice to give swimmers caught in rip currents. Such surf rescue advice - on what to do and how to respond when caught in a rip - relies on empirical evidence. However, at present, knowledge about swimmers reactions and responses to rip currents is limited. This gap is a considerable barrier to providing effective advice to beach goers and to understanding how this advice is utilised (or not) when actually caught in the rip current. This paper reports the findings of a pilot study that focussed on garnering a better understanding of swimmers' experiences when caught in rip currents. A large scale questionnaire survey instrument generated data about rip current survivors' demographics, knowledge of beach safety and their reactions and responses when caught in a rip current. A mix of online and paper surveys produced a total of 671 completed surveys. Respondents were predominantly an informed group in terms of rip current knowledge, beach experience and had a high self-rated swimming ability. Preliminary insights from the survey show that most respondents recalled a "swim across the rip/parallel to the beach" message when caught in the rip and most escaped unassisted by acting on this message. However, while nearly a quarter of respondents recalled a message of "not to panic", short answer responses revealed that the onset of panic inhibited some respondents from recalling or enacting any other type of beach safety message when caught in the rip current. Results also showed that despite the research sample being younger, competent and frequent ocean swimmers, they were more likely to swim at unpatrolled beaches and outside of the red and yellow safety flags. Moreover, they were still caught in a rip current and they

  10. Technology-based suicide prevention: current applications and future directions.

    PubMed

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  11. Bunyavirus Taxonomy: Limitations and Misconceptions Associated with the Current ICTV Criteria Used for Species Demarcation.

    PubMed

    Blitvich, Bradley J; Beaty, Barry J; Blair, Carol D; Brault, Aaron C; Dobler, Gerhard; Drebot, Michael A; Haddow, Andrew D; Kramer, Laura D; LaBeaud, Angelle Desiree; Monath, Thomas P; Mossel, Eric C; Plante, Kenneth; Powers, Ann M; Tesh, Robert B; Turell, Michael J; Vasilakis, Nikos; Weaver, Scott C

    2018-04-23

    The International Committee on Taxonomy of Viruses (ICTV) has implemented numerous changes to the taxonomic classification of bunyaviruses over the years. Whereas most changes have been justified and necessary because of the need to accommodate newly discovered and unclassified viruses, other changes are a cause of concern, especially the decision to demote scores of formerly recognized species to essentially strains of newly designated species. This practice was first described in the seventh taxonomy report of the ICTV and has continued in all subsequent reports. In some instances, viruses that share less than 75% nucleotide sequence identity across their genomes produce vastly different clinical presentations, possess distinct vector and host associations, have different biosafety recommendations, and occur in nonoverlapping geographic regions are classified as strains of the same species. Complicating the matter is the fact that virus strains have been completely eliminated from ICTV reports; thus, critically important information on virus identities and their associated biological and epidemiological features cannot be readily related to the ICTV classification. Here, we summarize the current status of bunyavirus taxonomy and discuss the adverse consequences associated with the reclassification and resulting omission of numerous viruses of public health importance from ICTV reports. As members of the American Committee on Arthropod-borne Viruses, we encourage the ICTV Bunyavirus Study Group to reconsider their stance on bunyavirus taxonomy, to revise the criteria currently used for species demarcation, and to list additional strains of public and veterinary importance.

  12. Current conduction in junction gate field effect transistors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, C.

    1970-01-01

    The internal physical mechanism that governs the current conduction in junction-gate field effect transistors is studied. A numerical method of analyzing the devices with different length-to-width ratios and doping profiles is developed. This method takes into account the two dimensional character of the electric field and the field dependent mobility. Application of the method to various device models shows that the channel width and the carrier concentration in the conductive channel decrease with increasing drain-to-source voltage for conventional devices. It also shows larger differential drain conductances for shorter devices when the drift velocity is not saturated. The interaction of the source and the drain gives the carrier accumulation in the channel which leads to the space-charge-limited current flow. The important parameters for the space-charge-limited current flow are found to be the L/L sub DE ratio and the crossover voltage.

  13. Field-Tuned Superconductor-Insulator Transition with and without Current Bias.

    PubMed

    Bielejec, E; Wu, Wenhao

    2002-05-20

    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin beryllium films quench condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product nuz = 1.35+/-0.10 and a critical sheet resistance, R(c), of about 1.2R(Q), with R(Q) = h/4e(2). However, in the presence of dc bias currents that are smaller than the zero-field critical currents, nuz becomes 0.75+/-0.10. This new set of exponents suggests that the field-tuned transitions with and without a dc bias current belong to different universality classes.

  14. Noise-margin limitations on gallium-arsenide VLSI

    NASA Technical Reports Server (NTRS)

    Long, Stephen I.; Sundaram, Mani

    1988-01-01

    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  15. Low noise constant current source for bias dependent noise measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.

    2011-01-15

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 {mu}A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noisemore » voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.« less

  16. Gate-tunable current partition in graphene-based topological zero lines

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua

    2017-06-01

    We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.

  17. Water Analysis: Emerging Contaminants and Current Issues (2009 Review)

    EPA Science Inventory

    This biennial review covers developments in Water Analysis for Emerging Environmental Contaminants over the period of 2007-2008. A few significant references that appeared between January and February 2009 are also included. Analytical Chemistry’s current policy is to limit rev...

  18. Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized

    NASA Technical Reports Server (NTRS)

    Schwerman, Paul (Inventor)

    2017-01-01

    A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.

  19. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  20. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  1. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  2. Pharmacological evaluation for improvement of Kanazawa Sutra, medicinal thread for anal fistula.

    PubMed

    Yokogawa, Takami; Sasaki, Yohei; Ando, Hirokazu; Yamamoto, Katsuya; Mikage, Masayuki

    2017-04-01

    Kanazawa Sutra (KanS) is a medicinal thread that is used for the treatment of anal fistula. It is used as a substitute for Kshara Sutra (KS) which is used in Ayurvedic medicine. KanS is composed of Ficus carica latex (FCL), Capsicum annuum tincture (CAT), Achyranthes fauriei Kshara (which is processed ash from the whole plant) and powdered Curcuma longa rhizome (CLR). In this study, we evaluated the ingredients of KanS by measuring nitric oxide (NO) production in murine macrophage-like cell line J774.1 as well as examining cytotoxicity to rat skeletal muscle myoblasts (L6) and L6 differentiation, with a view to improving its pharmacological effect. We focused on Mallotus japonicus bark (MJB), which is described in the Japanese Pharmacopeia and belongs to the Euphorbiaceae family. Its biological activities were evaluated in a similar manner to the evaluation of KanS ingredients. We found that MJB extracts showed similar biological activity to Euphorbia neriifolia latex (ENL), an ingredient of KS. We conclude that the NO inhibitory activity of KanS is mainly due to CLR, and its cytotoxicity to L6 and inhibitory activity on L6 differentiation are mainly due to CLR and FCL. As CAT has no characteristic activity, the biological activity and the anal fistula treatment ability of KanS would be improved by substituting MJB for CAT.

  3. Vibrational spectroscopic characterization of the sulphate-halide mineral sulphohalite - implications for evaporites.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Theiss, Frederick L

    2014-12-10

    The mineral sulphohalite - Na6(SO4)2FCl is a rare sodium halogen sulphate and occurs associated with evaporitic deposits. Sulphohalite formation is important in saline evaporites and in pipe scales. Sulphohalite is an anhydrous sulphate-halide with an apparent variable anion ratio of formula Na6(SO4)2FCl. Such a formula with oxyanions lends itself to vibrational spectroscopy. The Raman band at 1003cm(-1) is assigned to the (SO4)(2-) ν1 symmetric stretching mode. Shoulders to this band are found at 997 and 1010cm(-1). The low intensity Raman bands at 1128, 1120 and even 1132cm(-1) are attributed to the (SO4)(2-) ν3 antisymmetric stretching vibrations. Two symmetric sulphate stretching modes are observed indicating at least at the molecular level the non-equivalence of the sulphate ions in the sulphohalite structure. The Raman bands at 635 and 624cm(-1) are assigned to the ν4 SO4(2-) bending modes. The ν2 (SO4)(2-) bending modes are observed at 460 and 494cm(-1). The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from Td to C3v or even C2v. No evidence of bands attributable to the halide ions was found. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Material limitations on the detection limit in refractometry.

    PubMed

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  5. Eddy current sensing of intermetallic composite consolidation

    NASA Technical Reports Server (NTRS)

    Dharmasena, Kumar P.; Wadley, Haydn N. G.

    1991-01-01

    A finite element method is used to explore the feasibility and optimization of a probe-type eddy current sensor for determining the thickness of plate specimens during a hot isostatic pressing cycle. The dependence of the sensor's impedance upon sample-sensor separation in the high frequency limit is calculated, and factors that maximize sensitivity to the final stages of densification are identified.

  6. The current role of vascular stents.

    PubMed

    Busquet, J

    1993-09-01

    The limitations of percutaneous balloon angioplasty have favoured the development and the use of vascular endoprostheses or stents. These thin-walled metal devices maintain after expansion, an optimal and constant diameter for the vascular lumen. Restenosis, dissection, abrupt closure, residual stenosis or re-opened total occlusion represent appropriate indications for stenting. A large experience with non-coronary application of stents is currently available in iliac, femoro-popliteal and renal arteries, aorta, large veins.

  7. Simulation in Training--The Current Imperative.

    DTIC Science & Technology

    1980-05-16

    Carlisle Barracks, PA 17013 - I1. CONTROLLING OFFICE NAME AND ADDRESS 12 . REPORT DATE I. NUMBER OF PAGES 24 14. MONITORING AGENCY NAME & ADDRESSQIf different...growth in components, spare parts, fuel and lubricants, as well as limited space in which to train, the Army must adapt a strategy of field train- ing...I________________________ k AUTHOR(S): Richard P. Diehl, LTC, INF TITLE: Simulation in Training--The Current Imperative FORMAT: Individual Study Project DATE: 16

  8. The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases

    NASA Astrophysics Data System (ADS)

    Lazarescu, Alexandre

    2015-12-01

    One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.

  9. Current State of the Art Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  10. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  11. Distributed energy store railgun - The limiting case

    NASA Astrophysics Data System (ADS)

    Marshall, Richard A.

    1991-01-01

    When the limiting case of a distributed energy store railgun is analyzed, (i.e., the case where the space between adjacent energy stores become indefinitely small) three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal with an exponential tail. Second, the rail-to-rail voltage behind the rearmost active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated.

  12. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  13. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  14. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2006

    EPA Science Inventory

    This biennial review covers developments in Environmental Mass Spectrometry over the period of 2004-2005. A few significant references that appeared between January and February 2006 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 s...

  15. WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2005 REVIEW

    EPA Science Inventory

    This biennial review covers developments in Water Analysis over the period of 2003-2004. A few significant references that appeared between January and February 2005 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 significant refe...

  16. WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES: 2007 REVIEW

    EPA Science Inventory

    This biennial review covers developments in Water Analysis over the period of 2005-2006. A few significant references that appeared between January and March 2007 are also included. Analytical Chemistry's current policy is to limit reviews to include 200-250 significant referen...

  17. Material Limitations on the Detection Limit in Refractometry

    PubMed Central

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513

  18. All-carbon sp-sp2 hybrid structures: Geometrical properties, current rectification, and current amplification

    PubMed Central

    Zhang, Zhenhua; Zhang, Junjun; Kwong, Gordon; Li, Ji; Fan, Zhiqiang; Deng, Xiaoqing; Tang, Guiping

    2013-01-01

    All-carbon sp-sp2 hybrid structures comprised of a zigzag-edged trigonal graphene (ZTG)and carbon chains are proposed and constructed as nanojunctions. It has been found that such simple hybrid structures possess very intriguing propertiesapp:addword:intriguing. The high-performance rectifying behaviors similar to macroscopic p-n junction diodes, such as a nearly linear positive-bias I-V curve (metallic behavior), a very small leakage current under negative bias (insulating behavior), a rather low threshold voltage, and a large bias region contributed to a rectification, can be predicted. And also, a transistor can be built by such a hybrid structure, which can show an extremely high current amplification. This is because a sp-hybrid carbon chain has a special electronic structure which can limit the electronic resonant tunneling of the ZTG to a unique and favorable situation. These results suggest that these hybrid structures might promise importantly potential applications for developing nano-scale integrated circuits. PMID:23999318

  19. Asymmetric SOL Current in Vertically Displaced Plasma

    NASA Astrophysics Data System (ADS)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  20. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms

    PubMed Central

    Lopez, Felipe L; Ernest, Terry B; Tuleu, Catherine; Gul, Mine Orlu

    2015-01-01

    Introduction: Most conventional drug delivery systems are not acceptable for pediatric patients as they differ in their developmental status and dosing requirements from other subsets of the population. Technology platforms are required to aid the development of age-appropriate medicines to maximize patient acceptability while maintaining safety, efficacy, accessibility and affordability. Areas covered: The current approaches and novel developments in the field of age-appropriate drug delivery for pediatric patients are critically discussed including patient-centric formulations, administration devices and packaging systems. Expert opinion: Despite the incentives provided by recent regulatory modifications and the efforts of formulation scientists, there is still a need for implementation of pharmaceutical technologies that enable the manufacture of licensed age-appropriate formulations. Harmonization of endeavors from regulators, industry and academia by sharing learning associated with data obtained from pediatric investigation plans, product development pathways and scientific projects would be the way forward to speed up bench-to-market age appropriate formulation development. A collaborative approach will benefit not only pediatrics, but other patient populations such as geriatrics would also benefit from an accelerated patient-centric approach to drug delivery. PMID:26165848