Science.gov

Sample records for current sheet filamentation

  1. Current sheet oscillations in the magnetic filament approach

    SciTech Connect

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2012-06-15

    Magnetic filament approach is applied for modeling of nonlinear 'kink'-like flapping oscillations of thin magnetic flux tubes in the Earth's magnetotail current sheet. A discrete approximation for the magnetic flux tube was derived on a basis of the Hamiltonian formulation of the problem. The obtained system of ordinary differential equations was integrated by method of Rosenbrock, which is suitable for stiff equations. The two-dimensional exact Kan's solution of the Vlasov equations was used to set the background equilibrium conditions for magnetic field and plasma. Boundary conditions for the magnetic filament were found to be dependent on the ratio of the ionospheric conductivity and the Alfven conductivity of the magnetic tube. It was shown that an enhancement of this ratio leads to the corresponding increase of the frequency of the flapping oscillations. For some special case of boundary conditions, when the magnetic perturbations vanish at the boundaries, the calculated frequency of the 'kink'-like flapping oscillations is rather close to that predicted by the 'double gradient' analytical model. For others cases, the obtained frequency of the flapping oscillations is somewhat larger than that from the 'double gradient' theory. The frequency of the nonlinear flapping oscillations was found to be a decreasing function of the amplitude.

  2. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-07-15

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.

  3. Self-Consistent Current Sheets and Filaments in Relativistic Collisionless Plasma with Arbitrary Energy Distribution of Particles

    SciTech Connect

    Kocharovsky, V. V.; Kocharovsky, Vl. V.; Martyanov, V. Ju.

    2010-05-28

    A new class of self-consistent planar current sheets and cylindrical current filaments with a functional freedom for the resultant spatial profiles is found analytically for collisionless plasma. Invariants of particle motion are employed to obtain exact stationary solutions of Vlasov-Maxwell equations for arbitrary energy distribution of particles. This method automatically takes into account complicated particle motion in a self-consistent magnetic field, can be equally well applied to relativistic and nonrelativistic plasma, and yields a much wider class of solutions as compared to models of the Harris-Bennett type and their known generalizations. We discuss typical analytical solutions and general properties of magnetostatic neutral structures: spatial scales, magnitudes of current and magnetic field, degree of anisotropy of particle distributions, and possible equipartition of magnetic and particle energies.

  4. Folding of viscous sheets and filaments

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, M.; Mahadevan, L.

    2000-12-01

    We consider the nonlinear folding behavior of a viscous filament or a sheet under the influence of an external force such as gravity. Everyday examples of this phenomenon are provided by the periodic folding of a sheet of honey as it impinges on toast, or the folding of a stream of shampoo as it falls on one's hand. To understand the evolution of a fold, we formulate and solve a free-boundary problem for the phenomenon, give scaling laws for the size of the folds and the frequency with which they are laid out, and verify these experimentally.

  5. Current sheet model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The model of a rectenna based on the current sheet equivalency of a large planar array is described. The model is mathematically characterized by expression for the fraction of the incident plane wave that is reflected from the sheet. The model is conceptually justified for normal incidence by comparing it to the waveguide model in which evanescent modes, present as beyond and cutoff, correspond to the near field components which become negligible at any significant distance from the antenna array.

  6. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    SciTech Connect

    Tempel, Elmo; Libeskind, Noam I. E-mail: nlibeskind@aip.de

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  7. An Excursion Set Model of the Cosmic Web: the Abundance of Sheets, Filaments And Halos

    SciTech Connect

    Shen, Jiajian; Abel, Tom; Mo, Houjun; Sheth, Ravi; /Pennsylvania U.

    2006-01-11

    We discuss an analytic approach for modeling structure formation in sheets, filaments and knots. This is accomplished by combining models of triaxial collapse with the excursion set approach: sheets are defined as objects which have collapsed along only one axis, filaments have collapsed along two axes, and halos are objects in which triaxial collapse is complete. In the simplest version of this approach, which we develop here, large scale structure shows a clear hierarchy of morphologies: the mass in large-scale sheets is partitioned up among lower mass filaments, which themselves are made-up of still lower mass halos. Our approach provides analytic estimates of the mass fraction in sheets, filaments and halos, and its evolution, for any background cosmological model and any initial fluctuation spectrum. In the currently popular {Lambda}CDM model, our analysis suggests that more than 99% of the mass in sheets, and 72% of the mass in filaments, is stored in objects more massive than 10{sup 10}M{sub {circle_dot}} at the present time. For halos, this number is only 46%. Our approach also provides analytic estimates of how halo abundances at any given time correlate with the morphology of the surrounding large-scale structure, and how halo evolution correlates with the morphology of large scale structure.

  8. Filament Structure, Organization, and Dynamics in MreB Sheets*

    PubMed Central

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C.

    2010-01-01

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several μm long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions. PMID:20223832

  9. Filament structure, organization, and dynamics in MreB sheets.

    PubMed

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions. PMID:20223832

  10. THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS

    SciTech Connect

    Toala, Jesus A.; Vazquez-Semadeni, Enrique; Gomez, Gilberto C.

    2012-01-10

    Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time ({tau}{sub ff}) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density {rho} can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to {radical}A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly {radical}A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.

  11. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  12. Current filamentation instability in laser wakefield accelerators.

    PubMed

    Huntington, C M; Thomas, A G R; McGuffey, C; Matsuoka, T; Chvykov, V; Kalintchenko, G; Kneip, S; Najmudin, Z; Palmer, C; Yanovsky, V; Maksimchuk, A; Drake, R P; Katsouleas, T; Krushelnick, K

    2011-03-11

    Experiments using an electron beam produced by laser-wakefield acceleration have shown that varying the overall beam-plasma interaction length results in current filamentation at lengths that exceed the laser depletion length in the plasma. Three-dimensional simulations show this to be a combination of hosing, beam erosion, and filamentation of the decelerated beam. This work suggests the ability to perform scaled experiments of astrophysical instabilities. Additionally, understanding the processes involved with electron beam propagation is essential to the development of wakefield accelerator applications. PMID:21469796

  13. Current Filamentation Instability in Laser Wakefield Accelerators

    SciTech Connect

    Huntington, C. M.; Drake, R. P.; Thomas, A. G. R.; McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Kneip, S.; Najmudin, Z.; Palmer, C.; Katsouleas, T.

    2011-03-11

    Experiments using an electron beam produced by laser-wakefield acceleration have shown that varying the overall beam-plasma interaction length results in current filamentation at lengths that exceed the laser depletion length in the plasma. Three-dimensional simulations show this to be a combination of hosing, beam erosion, and filamentation of the decelerated beam. This work suggests the ability to perform scaled experiments of astrophysical instabilities. Additionally, understanding the processes involved with electron beam propagation is essential to the development of wakefield accelerator applications.

  14. Hydrodynamic interactions of sheets vs filaments: Synchronization, attraction, and alignment

    NASA Astrophysics Data System (ADS)

    Olson, Sarah D.; Fauci, Lisa J.

    2015-12-01

    The synchronization of nearby sperm flagella as they swim in a viscous fluid was observed nearly a century ago. In the early 1950s, in an effort to shed light on this intriguing phenomenon, Taylor initiated the mathematical analysis of the fluid dynamics of microorganism motility. Since then, models have investigated sperm hydrodynamics where the flagellum is treated as a waving sheet (2D) or as a slender waving filament (3D). Here, we study the interactions of two finite length, flexible filaments confined to a plane in a 3D fluid and compare these to the interactions of the analogous pair of finite, flexible sheets in a 2D fluid. Within our computational framework using regularized Stokeslets, this comparison is easily achieved by choosing either the 2D or 3D regularized kernel to compute fluid velocities induced by the actuated structures. We find, as expected, that two flagella swimming with a symmetric beatform will synchronize (phase-lock) on a fast time scale and attract towards each other on a longer time scale in both 2D and 3D. For a symmetric beatform, synchronization occurs faster in 2D than 3D for sufficiently stiff swimmers. In 3D, a greater enhancement in efficiency and swimming velocity is observed for attracted swimmers relative to the 2D case. We also demonstrate the tendency of two asymmetrically beating filaments in a 3D fluid to align — in tandem — exhibiting an efficiency boost for the duration of their sustained alignment.

  15. Filaments and sheets of the warm-hot intergalactic medium

    NASA Astrophysics Data System (ADS)

    Klar, J. S.; Mücket, J. P.

    2012-06-01

    Filaments, forming in the context of cosmological structure formation, are not only supposed to host the majority of the baryons at low redshifts in the form of the warm-hot intergalactic medium (WHIM), but also to supply forming galaxies at higher redshifts with a substantial amount of cold gas via cold steams. In order to get insight into the hydro- and thermodynamical characteristics of these structures, we performed a series of hydrodynamical simulations. Instead of analysing extensive simulations of cosmological structure formation, we simulate certain well-defined structures and study the impact of different physical processes as well as of the scale dependencies. In this paper, we continue our work, and extend our simulations into three dimensions. Instead of a pancake structure, we now obtain a configuration consisting of well-defined sheets, filaments and a gaseous halo. We use a set of simulations, parametrized by the length of the initial perturbation L, to obtain detailed information on the state of the gas and its evolution inside the filament. For L > 4 Mpc, we obtain filaments which are fully confined by an accretion shock. Additionally, they exhibit an isothermal core, in which temperature is balanced by radiative cooling and heating due to the extragalactic ultraviolet background. This indicates on a multiphase structure for the medium temperature WHIM. We obtain scaling relations for the main quantities of this core. After its formation, the core becomes shielded against further infall of gas on to the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in cosmological hydrosimulations. They are constricted by the outwards moving accretion shock of the halo. Thermal conduction can lead to a complete evaporation of the cold stream for L > 6 Mpc h-1. This corresponds to haloes more massive than Mhalo= 1013 M⊙, and implies that star formation in more

  16. The magnetohydrodynamics of current sheets

    NASA Technical Reports Server (NTRS)

    Priest, E. R.

    1985-01-01

    Examples of current sheets are summarized and their formation is described. A universal phenomenon in cosmic plasmas is the creation of sheets off intense current near X-type neutral points (where the magnetic field vanishes). These sheets are important as sites where the magnetic-field energy is converted efficiently into heat and bulk kinetic energy and where particles can be accelerated to high energies. Examples include disruptions in laboratory tokamaks, substorms in the earth's magnetosphere, and flares on the sun. The basic behavior of a one-dimensional sheet is presented, together with an account of the linear tearing-mode instability that can cause the field lines in such a sheet to reconnect. Such reconnection may develop in different ways: it may arise from a spontaneous instability or it may be driven, either from outside by motions or locally by a resistivity enhancement. Various processes are described that may occur during the nonlinear development of tearing, along with the many numerical and laboratory experiments that are aiding our understanding of this intriguing cosmical process.

  17. Current filamentation and onset in magnetoplasmadynamic thrusters

    NASA Astrophysics Data System (ADS)

    Giannelli, Sebastiano; Misuri, Tommaso; Andrenucci, Mariano

    2011-06-01

    The possible role of current filamentation in the operation of magnetoplasmadynamic thrusters is investigated here by means of a stability analysis of a current-carrying plasma in a simplified coaxial configuration. Magnetoplasmadynamic thrusters are known to enter a strongly unstable regime, named onset in the literature, when operated above a threshold current level, given the propellant mass flow rate. During onset, a transition from diffuse to spotty current pattern occurs, leading to intense fluctuations of thruster terminal voltage and to severe anode damage with commonly employed anode materials. Despite several experimental and theoretical efforts in the last few decades, no complete and definitive understanding of the physical nature of this phenomenon is yet available. In this work it is shown that conditions suitable for azimuthal symmetry breaking and the subsequent development of this instability can actually exist in magnetoplasmadynamic thrusters. A physically coherent explanation of the complex onset phenomenology is then proposed, showing that both the plasma dynamics and the voltage fluctuations can be ultimately explained in terms of the filamentation instability and its effects.

  18. Reconnection in thin current sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  19. Modeling Harris Current Sheets with Themis Observations

    NASA Technical Reports Server (NTRS)

    Kepko, L.; Angelopoulos, V.; McPherron, R. L.; Apatenkov, S.; Glassmeier, K.-H.

    2010-01-01

    Current sheets are ubiquitous in nature. occurring in such varied locations as the solar atmosphere. the heliosphere, and the Earth's magnetosphere. The simplest current sheet is the one-dimensional Harris neutral sheet, with the lobe field strength and scale-height the only free parameters. Despite its simplicity, confirmation of the Harris sheet as a reasonable description of the Earth's current sheet has remained elusive. In early 2009 the orbits of the 5 THEMIS probes fortuitously aligned such that profiles of the Earth's current sheet could be modeled in a time dependent manner. For the few hours of alignment we have calculated the time history of the current sheet parameters (scale height and current) in the near-Earth region. during both quiet and active times. For one particular substorm. we further demonstrate good quantitative agreement with the diversion of cross tail current inferred from the Harris modeling with the ionospheric current inferred from ground magnetometer data.

  20. Ohm's law for a current sheet

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  1. Runaway electrons in plasma current sheets

    SciTech Connect

    Gurevich, A.V.; Sudan, R.N. )

    1994-01-31

    It is shown that a runaway electron population accelerates along the main magnetic field in a Sweet-Parker current sheet. After a characteristic distance the entire current is carried by runaways. The thickness of this runaway sheet is much smaller than the original Ohmic sheet. The influence of microinstabilities is discussed.

  2. Thinning of current sheets and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Singh, N.; Deverapalli, C.

    Using three-dimensional particle-in-cell (3DPIC) simulations, we study the formation of a thin current sheet. The processes associated with thin current sheets reported here include its thinning, associated potential well in its central part, ion acceleration into the well, current-driven ion mode instabilities, electron and ion heating, current sheet re- broadening, current disruption in the central part of the current sheet and magnetic reconnection. It is shown that current driven instabilities become explosive when the preferential heating of electrons by the ions make electron temperature higher than that of the ions. This explosive stage is associated with high plasma resistivity, current disruption and bifurcated current sheets. The current disruption is linked to the magnetic reconnection.

  3. Current Filament Merging Driven by Cross-Field Plasma Flows

    NASA Astrophysics Data System (ADS)

    Vincena, S.; Gekelman, W.; Collette, A.; Cooper, C.

    2007-05-01

    The study of the penetration and mixing of plasmas with differing density, temperature, and species composition has wide-ranging applicability to space plasma systems such as coronal mass ejections, magnetic clouds, galactic jets, and super novae. In these laboratory experiments, two high-beta plasmas are created using a pair of 1.5J, 8ns lasers which strike facing solid carbon targets at right angles to the background magnetic field. The targets are immersed within a low-beta, helium plasma and the lasers are aimed to produce head-on, or glancing collisions. The cylindrical background plasma is 17 m long (10 parallel Alfven wavelengths) by 60 cm wide (300 ρi or 175 c/ωpe). The laser-produced plasmas (LPPs) expand as diamagnetic cavities, become polarized, and then E× B drift at speeds of Mach 10 (v/cs) across the field. As they do so, the ambient plasma facilitates charge separation between energetic LPP electrons and relatively unmagnetized 1keV LPP ions. One of the many resulting dynamic features is the release of a continuous stream of electrons from each LPP. Downstream from the LPP merging, the fast electron current filaments come together with reconnection-like X-line field patterns and eventually merge with a broadband spectrum of electromagnetic (whistler wave) fluctuations. Near-miss LPP collisions result in elongated current sheet formations and the shedding of magnetic field eddies. Current sheet thicknesses are a few electron inertial lengths and the width is approximately one ion inertial length. These results will be presented along with 3D measurements of the magnetic fields and the underlying current systems. These experiments are conducted at the Basic Plasma Science Facility, in the upgraded Large Plasma Device (LAPD) located at the University of California, Los Angeles, USA. This work is funded by the United States Department of Energy and the National Science Foundation.

  4. Simulation of Current Filaments in Photoconductive Semiconductor Switches

    NASA Astrophysics Data System (ADS)

    Kambour, K.; Myles, Charles W.

    2005-03-01

    Optically-triggered, high-power photoconductive semiconductor switches (PCSS's) using semi-insulating GaAs are under development at Sandia. These switches carry current in high carrier-density filaments. The properties of these filaments can be explained by collective impact ionization theory in which energy redistribution by carrier-carrier scattering within the filament enhances the impact ionization. This allows these filaments to be sustained by fields which are relatively low compared to the bulk breakdown fields. For GaAs, the sustaining field is approximately 4.5 kV/cm. For this talk, a hydrodynamic implementation of the collective impact ionization theory is used to compute the properties of these filaments. These continuum calculations are based on previous calculations in which the steady-state properties of filaments are computed using a Monte Carlo method to solve the Boltzmann equation. The effects of defects will also be considered in the presentation of the results.

  5. Experimental study of the dynamics of a thin current sheet

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; DeHaas, T.; Van Compernolle, B.; Daughton, W.; Pribyl, P.; Vincena, S.; Hong, D.

    2016-05-01

    Many plasmas in natural settings or in laboratory experiments carry currents. In magnetized plasmas the currents can be narrow field-aligned filaments as small as the electron inertial length ≤ft(\\tfrac{c}{{ω }pe}\\right) in the transverse dimension or fill the entire plasma column. Currents can take the form of sheets, again with the transverse dimension the narrow one. Are laminar sheets of electric current in a magnetized plasma stable? This became an important issue in the 1960s when current-carrying plasmas became key in the quest for thermonuclear fusion. The subject is still under study today. The conditions necessary for the onset for tearing are known, the key issue is that of the final state. Is there a final state? One possibility is a collection of stable tubes of current. On the other hand, is the interaction between the current filaments which are the byproduct endless, or does it go on to become chaotic? The subject of three-dimensional current systems is intriguing, rich in a variety of phenomena on multiple scale sizes and frequencies, and relevant to fusion studies, solar physics, space plasmas and astrophysical phenomena. In this study a long (δz = 11 m) and narrow (δx = 1 cm, δy = 20 cm) current sheet is generated in a background magnetoplasma capable of supporting Alfvén waves. The current is observed to rapidly tear into a series of magnetic islands when viewed in a cross-sectional plane, but they are in essence three-dimensional flux ropes. At the onset of the current, magnetic field line reconnection is observed between the flux ropes. The sheet on the whole is kink-unstable, and after kinking exhibits large-scale, low-frequency (f ≪ f ci ) rotation about the background field with an amplitude that grows with distance from the source of the current. Three-dimensional data of the magnetic and electric fields is acquired throughout the duration of the experiment and the parallel resistivity is derived from it. The parallel

  6. Fundamental mechanisms of tensile fracture in aluminum sheet undirectionally reinforced with boron filament

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1972-01-01

    Results are presented from an experimental study of the tensile-fracture process in aluminum sheet unidirectionally reinforced with boron filament. The tensile strength of the material is severely limited by a noncumulative fracture mechanism which involves the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level. Matrix fracture follows in a completely ductile manner. The minimum filament stress for initiation of the fracture mechanism is shown to be approximately 1.17 GN/sq m (170 ksi), and appears to be independent of filament diameter, number of filament layers, and the strength of the filament-matrix bond. All the commonly observed features of tensile fracture surfaces are explained in terms of the observed noncumulative fracture mechanism.

  7. Nonquasineutral relativistic current filaments and their X-ray emission

    SciTech Connect

    Gordeev, A. V.; Losseva, T. V.

    2009-02-15

    Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small ({sigma}B/en{sub e}c << 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t{sub sk} = (r{sub 0{omega}pe}/c){sup 2}t{sub st}, where t{sub sk} is the skin time, t{sub st} is the typical time of electron-ion collisions, and r{sub 0} is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric (E{sub r}) and magnetic (B{sub {theta}}) fields, ultrarelativistic electron beams on the typical charge-separation scale r{sub B} = B/(4{pi}en{sub e}) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t{sub sk}. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies h {omega} up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the

  8. Topology and Stability of EMHD Current Sheets

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    1997-11-01

    Thin current sheets (c/ω_pe < d < r_ci) are governed by electron MHD effects. Their width, stability, and current limitations are important to the magnetic reconnection problem.(J. F. Drake et al, Phys. Rev. Lett. 73), 1251 (1994); S. V. Bulanov et al, Phys. Fluids B 4, 36 (1992). Using a large laboratory plasma we generate thin current sheets by drawing pulsed currents to a sheet electrode. The space-time evolution of the current sheet is obtained from three-dimensional magnetic probe measurements and J = nabla × B / μ_0. The current sheet is guided by a uniform axial magnetic field B_0. Time variations in the current sheet, accompanied by induced return currents, propagate in the whistler mode along B_0. While force-free EMHD fields usually produce stable current sheets, on longer time scales the ion motion can lead to current disruptions.(J. M. Urrutia and R. L. Stenzel, Phys. Plasmas 4), 36 (1997). Electron compressibility (d < c/ω_ce) and the role of B0 are investigated.

  9. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  10. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  11. Current sheets in the solar corona

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.; Otani, N. F.

    1988-01-01

    Coronal magnetic fields are twisted up by motion of their footpoints in the photosphere. When the twist exceeds a critical amount, kink-ballooning instabilities occur. These instabilities are studied numerically, in long, thin, axially bounded magnetic fields. Nonlinearly, the three-dimensional kinking motion compresses magnetic flux, forming a current sheet. Magnetic energy can be dissipated at a rate orders of magnitude greater than without the current sheets. The energy of footpoint motion can then go into coronal heating, via Ohmic dissipation in the current sheets.

  12. Origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.

  13. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  14. Atomistic Simulation Approach to a Continuum Description of Self-Assembled β-Sheet Filaments

    PubMed Central

    Park, Jiyong; Kahng, Byungnam; Kamm, Roger D.; Hwang, Wonmuk

    2006-01-01

    We investigated the supramolecular structure and continuum mechanical properties of a β-sheet nanofiber comprised of a self-assembling peptide ac-[RARADADA]2-am using computer simulations. The supramolecular structure was determined by constructing candidate filaments with dimensions compatible with those observed in atomic force microscopy and selecting the most stable ones after running molecular dynamics simulations on each of them. Four structures with different backbone hydrogen-bonding patterns were identified to be similarly stable. We then quantified the continuum mechanical properties of these identified structures by running three independent simulations: thermal motion analysis, normal mode analysis, and steered molecular dynamics. Within the range of deformations investigated, the filament showed linear elasticity in transverse directions with an estimated persistence length of 1.2–4.8 μm. Although side-chain interactions govern the propensity and energetics of filament self-assembly, we found that backbone hydrogen-bonding interactions are the primary determinant of filament elasticity, as demonstrated by its effective thickness, which is smaller than that estimated by atomic force microscopy or from the molecular geometry, as well as by the similar bending stiffness of a model filament without charged side chains. The generality of our approach suggests that it should be applicable to developing continuum elastic ribbon models of other β-sheet filaments and amyloid fibrils. PMID:16415051

  15. Structure of the Magnetotail Current Sheet

    NASA Technical Reports Server (NTRS)

    Larson, Douglas J.; Kaufmann, Richard L.

    1996-01-01

    An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.

  16. Structure of the Magnetotail Current Sheet

    NASA Technical Reports Server (NTRS)

    Larson, Douglas J.; Kaufmann, Richard L.

    1996-01-01

    An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.

  17. RADIATING CURRENT SHEETS IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Goodman, Michael L.; Judge, Philip G. E-mail: judge@ucar.edu

    2012-05-20

    An MHD model of a hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a 50 km height range. A subset of these solutions contains current sheets and has properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths {approx}25-150 G. The radiative flux F{sub R} emitted by individual sheets is {approx}4.9 Multiplication-Sign 10{sup 5}-4.5 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1}, to be compared with the observed chromospheric emission rate of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. Essentially all emission is from regions with thicknesses {approx}0.5-13 km containing the neutral sheet. About half of F{sub R} comes from sub-regions with thicknesses 10 times smaller. A resolution {approx}< 5-130 m is needed to resolve the properties of the sheets. The sheets have total H densities {approx}10{sup 13}-10{sup 15} cm{sup -3}. The ionization fraction in the sheets is {approx}2-20 times larger, and the temperature is {approx}2000-3000 K higher than in the surrounding plasma. The Joule heating flux F{sub J} exceeds F{sub R} by {approx}4%-34%, the difference being balanced in the energy equation mainly by a negative compressive heating flux. Proton Pedersen current dissipation generates {approx}62%-77% of the positive contribution to F{sub J} . The remainder of this contribution is due to electron current dissipation near the neutral sheet where the plasma is weakly magnetized.

  18. The Jovian magnetotail and its current sheet

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Ness, N. F.

    1980-01-01

    Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.

  19. Charged particle dynamics in turbulent current sheets

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Vainchtein, D. L.; Neishtadt, A. I.; Zelenyi, L. M.

    2016-05-01

    We study dynamics of charged particle in current sheets with magnetic fluctuations. We use the adiabatic theory to describe the nonperturbed charged particle motion and show that magnetic field fluctuations destroy the adiabatic invariant. We demonstrate that the evolution of particle adiabatic invariant's distribution is described by a diffusion equation and derive analytical estimates of the rate of adiabatic invariant's diffusion. This rate is proportional to power density of magnetic field fluctuations. We compare analytical estimates with numerical simulations. We show that adiabatic invariant diffusion results in transient particles trapping in the current sheet. For magnetic field fluctuation amplitude a few times larger than a normal magnetic field component, more than 50% of transient particles become trapped. We discuss the possible consequences of destruction of adiabaticity of the charged particle motion on the state of the current sheets.

  20. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  1. Birkeland currents in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Tsyganenko, Nikolai A.; Stern, David P.; Kaymaz, Zerefsan

    1993-01-01

    A search was conducted for the signatures of Birkeland currents in the Earth's magnetic tail, using observed values of B(sub x) and B(sub y) from large sets of spacecraft data. The data were binned by x and y for -10 greater than x(sub GSM) greater than -35 and absolute value of y(sub GSM) less than or equal to 20 R(sub E) (less than or equal to 30 R(sub E) for x(sub GSM) less than or equal to -25 R(sub E)) and in each bin their distribution in the (B(sub x), B(sub y)) plane was fitted by least squares to a piecewise linear function. That gave average x-y distributions of the flaring angle between B(sub xy) and the x direction, as well as that angle's variation across the thickness of the plasma sheet. Angles obtained in the central plasma sheet differed from those derived near the lobe boundary. That is the expected signature if earthward or tailward Birkeland current sheets are embedded in the plasma sheet, and from this dfiference we derived the dawn-dusk profiles of the tail Birkeland currents for several x(sub GSM) intervals. It was found that (1) the Birkeland currents have the sense of region 1 currents, when mapped to the ionosphere; (2) both the linear current density (kiloamperes/R(sub E)) and the net magnitude of the field-aligned currents decrease rapidly down the tail; (3) the total Birkeland current at x approximately equals -10 R(sub E) equals approximately equals 500-700 kA, which is approx. 30% of the net region 1 current observed at ionospheric altitudes, in agreement with model mapping results; and (4) the B(sub z) and B(sub y) components of the interplanetary magnetic field influence the distribution of Birkeland currents in the tail.

  2. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  3. The current-voltage relationship in auroral current sheets

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.; Menietti, J. D.; Burch, J. L.

    1987-01-01

    The current-voltage relation within narrow auroral current sheets is examined through the use of high-resolution data from the high altitude Dynamics Explorer 1 satellite. The north-south perpendicular electric field and the east-west magnetic field are shown for three cases in which there are large amplitude, oppositely directed paired electric fields and narrow current sheets. These data are shown to indicate that there is a linear Ohm's law relationship between the current density and the parallel potential drop within the narrow current sheets. This linear relationship had previously been verified for large-scale auroral formations greater than 20 km wide at the ionosphere. The evidence shown here extends our knowledge down to the scale size of discrete auroral arcs.

  4. On ballooning instability in current sheets

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Kozlov, Daniil

    2015-06-01

    The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.

  5. Current Sheet Thinning Associated with Dayside Reconnection

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.; Ma, X.

    2011-12-01

    The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.

  6. Can prominences form in current sheets

    NASA Technical Reports Server (NTRS)

    Malherbe, J. M.; Forbes, T. G.

    1986-01-01

    Two-dimensional numerical simulations of the formation of cold condensations in a vertical current sheet have been performed using the radiative, resistive MHD equations with line-tied boundary conditions at one end of the sheet. Prominence-like condensations are observed to appear above and below an X-line produced by the onset of the tearing-mode instability. Cooling in the sheet is initiated by Ohmic decay, with the densest condensations occurring in the region downstream of a fast-mode shock. This shock, which is due to the line-tied boundary conditions, terminates one of the two supermagnetosonic reconnection jets that develop when the tearing is fully developed. The condensation properties of shock waves, which may trigger or considerably enhance the conditions for thermal condensation are emphasized.

  7. Hybrid simulations of thin current sheets

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1993-01-01

    A one-dimensional, hybrid simulation code is used to study current sheets with a nonzero normal magnetic field B(sub z) and a dawn-to-dusk electric field E(sub y). Such configurations are dependent upon only two parameters: we use the normalized normal magnetic field B-normalized (sub z) = B(sub z)/(4(pi)(n(sub b)) (v(exp 2 sub T))(exp 1/2) and normalized electric field V-normalized (sub D) = (1/V(sub T)(cE(sub y)/B(sub z)), where V(sub T) is the thermal velocity of ions prior to their interaction with the current sheet and n(sub b) is the number density outside the current sheet (at the simulation boundary). A third parameter that is relevant to the motion of particles in current sheets is kappa(sub A), the value of kappa = (R(sub min)/rho(sub max))(exp 1/2) for particles of average energy. We find that if either B-normalized (sub z) is close to or greater than 1, or if kappa(sub A) is close to 1, a rotational mode develops in which the z = 0 current rotates with the ion sense about the normal magnetic field, while for small values of both B-normalized (sub z) or kappa(sub A), the configuration is quasi-steady. To achieve values of kappa(sub A) of the order of or larger than 1, we decrease the value of V-normalized (sub D) uniformly. We find that the magnetic field fluctuations and particle distribution functions are similar in many respects to what was observed in the day 240, 1986, Active Magnetospheric Particle Tracer Explorer (AMPTE)/CCE current disruption event, an event that appears to be located at the site of initiation of current disruption and related particle energization.

  8. Nonlinear dynamics of filamentation instability and current filament merging in a high density current-driven plasma

    NASA Astrophysics Data System (ADS)

    Khorashadizadeh, S. M.; Taghadosi, M. R.; Niknam, A. R.

    2015-12-01

    The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank-Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.

  9. Sample introduction into a direct current plasma by filament vaporization

    SciTech Connect

    Buckley, B.T.

    1989-01-01

    This dissertation describes sample introduction into a direct current plasma by a tungsten filament vaporizer. The filament heater was designed to resistively heat a 0.1 mm diameter tungsten wire quickly and efficiently. The heating system is under microprocessor control for precise power application to the filament. The cell volume is small, less than 4 mL, and the accessibility of the primary emission zone allowed placement of the filament less than 5 cm from the confluence point of the plasma. The first study describes some of the fundamental design considerations, as well as performance of the interface. The absolute mass detection limits for Ca, Fe, Al, and Cu are 80, 2,000, 90, and 200 fg respectively. The blackbody emission temperature of the filament was measured. The initial heating rate was 50,000{degree}C/s. Observations are reported for optimization of operating parameters, as well as how to locate the region of maximum analyte emission intensity. Finally, the application of this technique to the analysis of a biological sample, swine blood, is reported. The second study examines the sources of noise and their components. Noise is grouped into additive and multiplicative noise occurring in three frequency ranges. The largest contribution, greater than 90%, was shot to shot multiplicative variations in sample vaporization and excitation. The third study examines the effect of addition of concomitant substances to the analyte. The substances were added both as metal salts to the aqueous analyte solution and as dopant gases to the carrier gas. Measured transport efficiencies ranged from 60 to 103% for manganese under various concomitant conditions. A 1% doping of the carrier gas with hydrogen caused significant enhancement of the emission signal of three metals, Fe, Al, and Ca. Enhancement correlated with volatility of the reduced form of the element.

  10. Formation of current sheets in magnetic reconnection

    SciTech Connect

    Boozer, Allen H.

    2014-07-15

    An ideal evolution of magnetic fields in three spatial dimensions tends to cause neighboring field lines to increase their separation exponentially with distance ℓ along the lines, δ(ℓ)=δ(0)e{sup σ(ℓ)}. The non-ideal effects required to break magnetic field line connections scale as e{sup −σ}, so the breaking of connections is inevitable for σ sufficiently large—even though the current density need nowhere be large. When the changes in field line connections occur rapidly compared to an Alfvén transit time, the constancy of j{sub ||}/B along the magnetic field required for a force-free equilibrium is broken in the region where the change occurs, and an Alfvénic relaxation of j{sub ||}/B occurs. Independent of the original spatial distribution of j{sub ||}/B, the evolution is into a sheet current, which is stretched by a factor e{sup σ} in width and contracted by a factor e{sup σ} in thickness with the current density j{sub ||} increasing as e{sup σ}. The dissipation of these sheet currents and their associated vorticity sheets appears to be the mechanism for transferring energy from a reconnecting magnetic field to a plasma. Harris sheets, which are used in models of magnetic reconnection, are shown to break up in the direction of current flow when they have a finite width and are in a plasma in force equilibrium. The dependence of the longterm nature of magnetic reconnection in systems driven by footpoint motion can be studied in a model that allows qualitative variation in the nature of that motion: slow or fast motion compared to the Alfvén transit time and the neighboring footpoints either exponentially separating in time or not.

  11. Cusp-points and current sheet dynamics

    NASA Astrophysics Data System (ADS)

    Vainshtein, S. I.

    1990-04-01

    Cusp points are produced in magnetic streamers of the solar corona. They may also be produced in the tail region of the earth's magnetosphere. This paper makes an analysis of such points in an equilibrium plasma. It is found that the very presence of a cusp point is inevitably associated with current sheets; these are the site of magnetic-field line reconnection. Special attention is paid to two examples. One examines a current sheet in a very much rarefield plasma (a problem formulated by Syrovatskii, 1966). The other one investigates the rosette structure of two merging magnetic islands. Analysis of the plasma behavior in the vicinity of the cusp points shows that, in the latter case, equilibrium cannot be realized. Therefore reconnection must proceed violently, at the high rates observed in numerical simulations.

  12. Radiation from a current filament driven by a traveling wave

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1976-01-01

    Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum.

  13. Current state of genome-scale modeling in filamentous fungi.

    PubMed

    Brandl, Julian; Andersen, Mikael R

    2015-06-01

    The group of filamentous fungi contains important species used in industrial biotechnology for acid, antibiotics and enzyme production. Their unique lifestyle turns these organisms into a valuable genetic reservoir of new natural products and biomass degrading enzymes that has not been used to full capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi. PMID:25700817

  14. Theory of electron current filamentation instability and ion density filamentation in the early development of a DPF discharge

    SciTech Connect

    Guillory, J.; Rose, D. V.; Lerner, E. J.

    2009-01-21

    Two-dimensional simulations of the initial stages of plasma formation in a dense plasma focus show the formation, in a few tens of nanoseconds, of a dense layer of plasma (n{sub e}{approx}10{sup 18} cm{sup -3},T{sub e}{approx}3 eV) in a thin layer surrounding the insulator-covered central anode of the focus device, and carrying axially-directed current at rather high current density.Earlier work on the filamentation of dense cathode plasma in high-power diodes seems to indicate that the anode plasma current layer in a dense plasma focus (DPF) device could be subject to the same instability, creating a growth of axially-directed filaments in the current density. The growth rate for resistive-thermal-driven filamentation, e.g. at 30 torr and {approx}3 eV electron temperature, exceeds the that due to non-thermal current (JxB) driving, and is determined by electron dynamics, so its evolution is quicker than the response-time of the ions.Nonetheless, with such a growing current-density perturbation as a seed and its increasing rippling of the azimuthal magnetic field as a driver, the ions will eventually take part in the azimuthal bunching, forming filaments in the ion density as well. The resistive-thermal-driven filamentation fields thus serve to 'hurry-up' the development of ion density filamentation, as shown approximately in the work presented here. This theory predicts, for light ions, a relatively early ({<=}250 ns) development of visible filaments along the anode, perhaps even before the main rundown phase of the focus plasma motion, and these filaments may persist during the 'liftoff' phase of the current layer to form the rundown phase of the plasma front. This work is supported by Larwenceville Plasma Physics.

  15. Thin current sheets in the deep geomagnetic tail

    SciTech Connect

    Pulkkinen, T.I. ); Baker, D.N.; Owen, C.J. ); Gosling, J.T. ); Murphy, N. )

    1993-11-19

    The ISEE-3 magnetic field and plasma electron data from Jan-March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45R[sub E], and in 24 cases the current sheet was thinner than 3.0R[sub E]; 6 very thin current sheets (thickness [lambda] < 0.5R[sub E]) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was [approximately]17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude. 21 refs., 5 figs.

  16. Thin current sheets in the deep geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Owen, C. J.; Gosling, J. T.; Murphy, N.

    1993-01-01

    The International Sun-Earth Explorer 3 (ISEE-3) magnetic field and plasma electron data from Jan - March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45 R(sub E), and in 24 cases the current sheet was thinner than 3.0 R(sub E); 6 very thin current sheets (thickness lambda less than 0.5 R(sub E) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was about 17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude.

  17. Observational evidence for large-scale current sheets

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    One of the most significant predictions of the catastrophe model of solar eruptions developed by Lin Forbes (2000) that a current sheet forms following the onset of the eruption. Various modes of plasma turbulence as a result of plasma instabilities are invoked inside the current sheet, yielding fast dissipation of the magnetic field, namely magnetic reconnection, through the sheet. Because the timescale of reconnection is long compared to the timescale of the onset stage, dissipation of the sheet is slow, so the current sheet is able to become fairly long. The evolution in the global feature of the current sheet is significant constrained by the local Alfven speed, and the internal properties and features of the sheet, on the other hand, are dependent in an apparent way on the development of the turbulence caused by the instabilities. The tearing mode instability among those that may occur in the sheet is the most important one that accounts for the large thickness and high electric resistivity of the current sheet. In the present work, we show a set of events that were observed to develop thick current sheets with several apparent features indicating the progress of the turbulence in the sheet, and the results for the sheet thickness determined by UVCS and LASCO experiments on SOHO, and deduce from these results the effective resistivity that is responsible for the rapid reconnection. We suggest that the high effective resistivity is related to the so-called hyper-resistivity that is produced by the tearing mode.

  18. Radiation-Dominated Relativistic Current Sheets

    SciTech Connect

    Jaroschek, C. H.; Hoshino, M.

    2009-08-14

    Relativistic current sheets (RCSs) feature plasma instabilities considered as the potential key to magnetic energy dissipation in Poynting-flux-dominated plasma flows. Kinetic plasma simulations show that the physical nature of RCS evolution changes in the presence of radiation losses: In the ultrarelativistic regime (i.e., magnetization parameter sigma=10{sup 4} defined as the ratio of magnetic to plasma rest frame energy density), the combined effect of nonlinear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the relativistic tearing mode. In contrast to previous studies of the RCS with sigmaapprox1, the relativistic tearing mode then prevails over the drift kink mode. The ultrarelativistic RCS shows a typical life cycle from radiation-induced collapse towards a radiation-quiescent phase with topology analogous to that introduced by Sweet and Parker.

  19. Plasma in the Jovian current sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Van Allen, J. A.; Parish, J. L.; Schardt, A. W.

    1979-01-01

    A large body of spectral data for protons with energies greater than 200 keV has been analyzed. It is concluded that the main body of plasma in the Jovian current sheet observed by Pioneer 10 on its outbound pass probably has an energy well below the lowest threshold of the Pioneer 10 detectors. This premise is examined using a semiempirical model of the magnetic field in the magnetodisk and simple magnetohydrodynamic theory. Results indicate that the dominant contribution to the plasma pressure in the region from 25 to 65 Jovian radii is from as yet unobserved protons (ions) with energies of the order of 0.1 to 10 keV.

  20. Plasmoid instability in double current sheets

    SciTech Connect

    Nemati, M. J.; Wang, Z. X. Wei, L.; Selim, B. I.

    2015-01-15

    The linear behavior of plasmoid instability in double current sheet configurations, namely, double plasmoid mode (DPM), is analytically and numerically investigated within the framework of a reduced magnetohydrodynamic model. Analytical analysis shows that if the separation of double current sheets is sufficiently small [κx{sub s}≪κ{sup 2/9}S{sub L}{sup 1/3}], the growth rate of DPMs scales as κ{sup 2/3}S{sub L}{sup 0} in the non-constant-ψ regime, where κ=kL{sub CS}/2 is the wave vector measured by the half length of the system L{sub CS}/2, 2x{sub s} is the separation between two resonant surfaces, and S{sub L}=L{sub CS}V{sub A}/2η is Lundquist number with V{sub A} and η being Alfven velocity and resistivity, respectively. If the separation is very large [κx{sub s}≫κ{sup 2/9}S{sub L}{sup 1/3}], the growth rate scales as κ{sup −2/5}S{sub L}{sup 2/5} in the constant-ψ regime. Furthermore, it is also analytically found that the maximum wave number scales as x{sub s}{sup −9/7}S{sub L}{sup 3/7} at the transition position between these two regimes, and the corresponding maximum growth rate scales as x{sub s}{sup −6/7}S{sub L}{sup 2/7} there. The analytically predicted scalings are verified in some limits through direct numerical calculations.

  1. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2016-08-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.

  2. Formation of current filaments and magnetic field generation in a quantum current-carrying plasma

    SciTech Connect

    Niknam, A. R.; Taghadosi, M. R.; Majedi, S.; Khorashadizadeh, S. M.

    2013-09-15

    The nonlinear dynamics of filamentation instability and magnetic field in a current-carrying plasma is investigated in the presence of quantum effects using the quantum hydrodynamic model. A new nonlinear partial differential equation is obtained for the spatiotemporal evolution of the magnetic field in the diffusion regime. This equation is solved by applying the Adomian decomposition method, and then the profiles of magnetic field and electron density are plotted. It is shown that the saturation time of filamentation instability increases and, consequently, the instability growth rate and the magnetic field amplitude decrease in the presence of quantum effects.

  3. A comparison of coronal and interplanetary current sheet inclinations

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.

    1983-01-01

    The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.

  4. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    SciTech Connect

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    2012-08-15

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from the driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.

  5. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    2012-08-01

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into "tokamak-like" plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from the driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.

  6. Chaotic Scattering In Magnetic Current Sheets

    NASA Astrophysics Data System (ADS)

    Martin, R.; Holland, D.; Matsuoka, H.; Rappa, R.

    We revisit the subject of nonlinear charged particle dynamics and chaos in current sheet magnetic fields using the modified Harris magnetic field. While much has been written on this subject in the last decade we feel there are some as-yet-unanswered fundamental questions as well as some "folklore" which is in need of clarification. We begin by demonstrating that the general behavior of the average exponential di- vergence rate (AEDR) of individual orbits is strongly correlated with the phase space partitions, i.e. the AEDR for integrable orbits goes to zero for long times, the AEDR of stochastic orbits approaches an asymptotic value for long times, and the AEDR of transient orbits (and short lived stochastic orbits) is not well defined. Furthermore, we show that the Lyapunov exponent for a distribution of particles only has well de- fined values at the resonant energy surfaces defined by Burkhart and Chen. Next it is shown that the "chaos" of the system is maximum at = 1 only in the sense that a lot of particles enter the stochastic region of phase space for this energy. The average Lyapunov exponent at = 1 actually approaches zero, and for those energies where the Lyapunov exponent is defined, it increases as the ratio of normal component of the field to the asymptotic field strength increases. Finally, we present particle escape rate and fractal invariant set results corroborating these conclusions and consider the consequences for anomalous transport in these fields.

  7. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  8. Bashful ballerina: Southward shifted heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2003-11-01

    It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  9. MESSENGER Observations of Asymmetries at Mercury's Magnetotail Current Sheet

    NASA Astrophysics Data System (ADS)

    Poh, Gangkai; Slavin, James; Jia, Xianzhe; Raines, Jim; Sun, Wei-Jie; Genestreti, Kevin; Smith, Andy; Gershman, Daniel; Anderson, Brian

    2016-04-01

    Dawn-dusk asymmetries in the Earth's magnetotail current sheet have been observed and remain an active area of research. With an internal magnetic dipole field structure similar to Earth's, similar dawn-dusk asymmetries might be expected in Mercury's magnetotail current sheet. However, no observation of dawn-dusk asymmetries has been reported in the structure of Mercury's magnetotail. Using 4 years of MESSENGER's magnetic field and plasma data, we analyzed 319 current sheet crossings. From the polarity of Bz in the cross-tail current sheet, we determined that MESSENGER is on closed field lines about 90% of the time. During the other 10% MESSENGER observed negative Bz indicating that it was tailward of the Near Mercury Neutral Line (NMNL). The Bz magnetic field is also observed to be higher at the dawnside than the duskside of the magnetotail current sheet by approximately a factor of three. Further the asymmetry decreases with increasing downstream distance. A reduction (enhancement) in Bz should correspond to a more (less) stretched and thinned (thickened) current sheet. Analysis of current sheet thickness based upon MESSENGER's observations confirms this behavior with mean current sheet thickness and Bz intensity having dawn-dusk asymmetries with the same sense. Plasma β in the current sheet also exhibits a dawn-dusk asymmetry opposite to that of Bz. This is consistent with expectations based on MHD stress balance. Earlier studies had shown a dawn-dusk asymmetry in the heavy ion in Mercury's magnetotail. We suggest that this enhancement of heavy ions in the duskside current sheet, due to centrifugal acceleration of ions from the cusp and gradient-curvature drift from the NMNL, may provide a partial explanation of the dawn-dusk current sheet asymmetries found in this study.

  10. Current status of liquid sheet radiator research

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcmaster, Matthew S.

    1993-01-01

    Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).

  11. The current-voltage relationship in auroral current sheets

    SciTech Connect

    Weimer, D.R. ); Gurnett, D.A.; Goertz, C.K. ); Menietti, J.D.; Burch, J.L. ); Sugiura, M. )

    1987-01-01

    The current-voltage relation within narrow auroral current sheets is examined through the use of high-resolution data from the high-altitude Dynamics Explorer 1 satellite. The north-south perpendicular electric field and the east-west magnetic field are shown for three cases in which there are large amplitude, oppositely directed paired electric fields which are confined to a region less than 20 km wide. The magnetic field variations are found to be proportional to the second integral of the high-altitude perpendicular electric field. It is shown that at the small-scale limit, this relationship between {Delta}B and E is consistent with a linear Ohm's law relationship between the current density and the parallel potential drop along the magnetic field line. This linear relationship had previously been verified for large-scale auroral formations greater than 20 km wide at the ionosphere. The evidence shown here extends the knowledge down to the scale size of discrete auroral arcs.

  12. Dynamics of thin current sheets: Cluster observations

    NASA Astrophysics Data System (ADS)

    Baumjohann, W.; Roux, A.; Le Contel, O.; Nakamura, R.; Birn, J.; Hoshino, M.; Lui, A. T. Y.; Owen, C. J.; Sauvaud, J.-A.; Vaivads, A.; Fontaine, D.; Runov, A.

    2007-06-01

    The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models, and looks for these signatures in Cluster data from two events. For both events transient magnetic signatures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of Jy and the corresponding field-aligned currents (Jx). Event 1 covers a pseudo-breakup, developing only at high latitudes. First, a thin (H≍2000 km≍2ρi, with ρi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H≍1000-2000 km≍1-2ρi), crossed about 30 min later, is found to be active, with fast earthward ion flow bursts (300-600 km/s) and simultaneous large amplitude fluctuations (δB/B~1). In the quiet CS the current density Jy is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300-600 km/s), observed during the active period, maximizes near or at the CS center. During the active phase of Event 1 no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active

  13. Multipoint studies of 2D magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Petrukovich, Anatoli; Zelenyi, Lev; Nakamura, Rumi; Artemyev, Anton

    2016-07-01

    CLUSTER and Themis projects provide unique tools for magnetotail current sheet studies at a wide range of downtail distances: multipoint curlometer allows to measure electric current density, whereas regular electron data contains information on largescale tail structure. Observations show that moderately thin ion-scale embedded sheet is formed during substorm growth phase. Comparison of curlometer with particle data helps to estimate contributions of transient and magnetized ions as well as electrons to current density. Thin intense sheet with sub-ion scale is appearing after onset near reconnection zones, but vertical pressure balance requirement substantially limits the possible range of sheet thickness. Horizontal (along the tail) gradients become more important only in the near tail, within 10-12 Earth radii. Essential quantitative characteristics of ions-scale embedded sheet are boundary field b0 and maximal possible intensity of ion current.

  14. Fine-scale structure of the Jovian magnetotail current sheet

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1983-01-01

    During the outbound leg of its passage through the Jovian magnetosphere in the Voyager 2 spacecraft observed 50 traversals of the magnetotail current sheet during a 10 day period at distances between 30 and 130 R sub j. Analysis of these observations shown that the Jovian tail sheet tends to lie approximately parallel to the ecliptic plane and to oscillate about the tail axis with the 10 hour planetary rotation period. The magnetic structure near and within the current sheet was variable with time and distance from Jupiter, but generally corresponded to one of the following: (1) simple rotation of field across the sheet, with an approximately southward direction in the sheet (generally northward beyond a distance from Jupiter of approximately 84 R sub j; (2) field having a southward component in a broad region near the sheet, but northward in a restricted region at the sheet itself; or (3) a clear bipolar variation of the sheet normal field component as the sheet was crossed (i.e., the field became northward and then southward, or vice versa, in crossing the sheet).

  15. Magnetorotational instability, current relaxation, and current-vortex sheet

    SciTech Connect

    Silveira, F. E. M.; Galvão, R. M. O.

    2013-08-15

    The conjugate effect of current relaxation and of current-vortex sheet formation on the magnetorotational instability is explored in a conducting fluid. It is found that the relative amplification of the magnetic viscosity from marginal stability to the instability determined by the maximum growth rate is around 924% when resistive effects dominate, while the corresponding quantity is around 220% in the ideal limit. This shows that the conjugate influence is much more efficient to amplify the magnetic viscosity than just the effect due to the standard magnetic tension. It is also found that the magnitude of the magnetic viscosity is effectively enhanced by the conjugate influence. The results presented here may contribute to the understanding of the various processes that play a significant role in the mechanism of anomalous viscosity observed in Keplerian disks. It is argued that the new effect shall be relevant in thin accretion disks. It is also mentioned that the proposed formulation may be of interest for some theories of magnetic reconnection. Possible extensions of this work are suggested.

  16. Current Sharing Among Multiple Lock-On Filaments in GaAs

    NASA Astrophysics Data System (ADS)

    Hjalmarson, H. P.; Loubriel, G. M.; Zutavern, F. J.

    1998-03-01

    Optically-triggered, high-power photoconductive semiconductor switches (PCSS's) using semi-insulating GaAs are under development at Sandia. These switches carry current in high carrier-density filaments. A major problem is the increased electrode damage in high power applications. One method we use to increase switch longevity is to trigger multiple filaments which share the current. For this talk, a hydrodynamic implementation of the collective impact ionization theory is used to evaluate and refine this method. To be specific, the current-voltage characteristic for two filaments is compared with that for a single filament. An important issue is the interaction of the two filaments as a function of their distance separation.

  17. Eruptive Current Sheets Trailing SOHO/LASCO CMEs

    NASA Astrophysics Data System (ADS)

    Webb, David F.

    2015-04-01

    Current sheets are important signatures of magnetic reconnection during the eruption of solar magnetic structures. Many models of eruptive flare/Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with the post-eruption magnetic loop arcade. Current sheets have been interpreted in white light images as narrow rays trailing the outward-moving CME, in ultraviolet spectra as narrow, bright hot features, and with different manifestations in other wavebands. This study continues that of Webb et al. (2003), who analyzed SMM white light CMEs having candidate magnetic disconnection features at the base of the CME. About half of those were followed by coaxial, bright rays suggestive of newly formed current sheets, and Webb et al. (2003) presented detailed results of analysis of those structures. In this work we extend the study of white light eruptive current sheets to the more sensitive and extensive SOHO/LASCO coronagraph data on CMEs. We comprehensively examined all LASCO CMEs during two periods that we identify with the minimum and maximum activity of solar cycle 23. We identified ~130 ray/current sheets during these periods, nearly all of which trailed CMEs with concave-outward backs. The occurrence rate of the ray/current sheets is 6-7% of all CMEs, irrespective of the solar cycle. We analyze the rays for durations, speeds, alignments, and motions and compare the observational results with some model predictions.

  18. Dynamic Response of Magnetic Reconnection Due to Current Sheet Variability

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.; Burch, J. L.; Hesse, M.; Pollock, C. J.

    2014-12-01

    Magnetic reconnection is a process which regulates the interaction between regions of magnetized plasma. While many factors have an impact on the evolution of this process, there still remains a lack of understanding of the key behaviors involved in the triggering of fast reconnection. Despite an abundance of in-situ measurements, indicating the high degree of variability in the thickness, density and composition along the current sheet, no simulation studies exist which account for such current sheet variations. 2D and 3D simulations have a periodic boundary in the dimension along the current sheet and so tend to neglect these variations in the current sheet originating external to the modeled reconnection region. Here we focus on the effects on reconnection due to the variability in the thickness and density of the current sheet. Using 2.5D kinetic simulations of 2-species plasma, we isolate and explore the dynamic effects on reconnection associated with variations in the current sheet originating externally to the reconnection region. While periodic boundary conditions are still used, in the direction along the current sheet, a step-change perturbation in thickness or density of the current sheet is introduced once a stable reconnection rate is reached. The dynamic response of the overall system, after introducing the perturbation, is then evaluated, with a focus on the reconnection rate. When the reconnection rate is slowed significantly over time, loading of the inflow region occurs (a build-up of plasma and magnetic energy/pressure. This state is indicated by an asymptotic behavior in the reconnection rate over time. If a sudden variation in the current sheet is introduced under these conditions, a resultant triggering of fast reconnection may occur, which could lead to an episode of fast reconnection, saw-tooth-crash condition or even act as a trigger for sub-storms.

  19. Prediction of the heliospheric current sheet tilt: 1992-1996

    SciTech Connect

    Suess, S.T. ); McComas, D.J. ); Hoeksema, J.T. )

    1993-02-05

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here the authors show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so they use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993. 10 refs., 6 figs.

  20. The origin of the warped heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-01-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  1. The origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  2. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    SciTech Connect

    Wyper, P. F.; Pontin, D. I.

    2013-03-15

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers.

  3. Observations of steady anomalous magnetic heating in thin current sheets. [of solar corona

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Van Den Oord, G. H. J.; Hoyng, P.

    1985-01-01

    The Hard X-ray Imaging Spectrometer of the Solar Maximum Mission has yielded observations of a faint, steadily emitting loop-like structure, which have allowed the thermal evolution of this loop over a period of about 15 hr to be followed. Only 0.1 percent of the volume of the loop appears to be steadily heated, at the large rate of 0.6 erg/cu cm sec; this suggests that the heating represents the dissipation of magnetic fields in thin current sheets. Ion-kinetic tearing, as proposed by Galeev et al. (1981), is noted to be especially consonant with these observations. The source of the present X-ray emission is identified with the H-alpha filament in the same region. The present findings are held to constitute the first direct evidence for the steady dissipation of coronal magnetic fields via enhanced thin current sheet resistivity.

  4. Diffusive shock acceleration in the presence of current sheets

    NASA Technical Reports Server (NTRS)

    Kota, J.; Jokipii, J. R.

    1994-01-01

    We study the nature of diffusive shock acceleration in the presence of current sheets which are oriented normal to the shock, so that the drift along the sheets carries particles either away from or toward the shock plane. We consider a system with periodic regions of alternating magnetic field direction. This can be taken to be a very crude representation of the termination of the solar wind, with the equator being one sheet and the pole, with its rapid opposite drift, being another. We find very important effects of the current sheets. For example, particle intensities at the shock will be enhanced near one sheet and depressed at the other. Furthermore, the intensity at high energies (averaged over the shock plane) may in fact be considerably larger than in the standard one-dimensional infinite shock case. Implications of these results for the possible acceleration of cosmic electrons up to high energies at the solar-wind termination shock will briefly be discussed.

  5. Fundamental Mechanisms of Tensile Fracture in Aluminum Sheet Unidirectionally Reinforced with Boron Filament. Ph.D. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1971-01-01

    Results are presented from an experimental research effort to gain a more complete understanding of the physics of tensile fracture in unidirectionally reinforced B-Al composite sheet. By varying the degree of filament degradation resulting from fabrication, composite specimens were produced which failed in tension by the cumulative mode, the noncumulative mode, or by any desired combination of the two modes. Radiographic and acoustic emission techniques were combined to identify and physically describe a previously unrecognized fundamental fracture mechanism which was responsible for the noncumulative mode. The tensile strength of the composite was found to be severely limited by the noncumulative mechanism which involved the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level followed by ductile fracture of the matrix. The minimum average filament stress required for initiation of the fracture mechanism was shown to be approximately 170 ksi, and appeared to be independent of filament diameter, number of filament layers, and the identity of the matrix alloy.

  6. Filament to filament bridging and its influence on developing high critical current density in multifilamentary Bi2Sr2CaCu2Ox round wires

    NASA Astrophysics Data System (ADS)

    Shen, T.; Jiang, J.; Kametani, F.; Trociewitz, U. P.; Larbalestier, D. C.; Schwartz, J.; Hellstrom, E. E.

    2010-02-01

    Increasing the critical current density (Jc) of the multifilamentary round wire Ag/Bi2Sr2CaCu2Ox(2212) requires understanding its complicated microstructure, in which extensive bridges between filaments are prominent. In this first through-process quench study of 2212 round wire, we determined how its microstructure develops during a standard partial-melt process and how filament bridging occurs. We found that filaments can bond together in the melt state. As 2212 starts to grow on subsequent cooling, we observed that two types of 2212 bridges form. One type, which we call Type-A bridges, forms within filaments that bonded in the melt; Type-A bridges are single grains that span multiple bonded filaments. The other type, called Type-B bridges, form between discrete filaments through 2212 outgrowths that penetrate into the Ag matrix and intersect with other 2212 outgrowths from adjacent filaments. We believe the ability of these two types of bridges to carry inter-filament current is intrinsically different: Type-A bridges are high- Jc inter-filament paths whereas Type-B bridges contain high-angle grain boundaries and are typically weak linked. Slow cooling leads to more filament bonding, more Type-A bridges and a doubling of Jc without changing the flux pinning. We suggest that Type-A bridges create a 3D current flow that is vital to developing high Jc in multifilamentary 2212 round wire.

  7. Eigenmodes of quasi-static magnetic islands in current sheet

    SciTech Connect

    Li Yi; Cai Xiaohui; Chai Lihui; Wang Shui; Zheng Huinan; Shen Chao

    2011-12-15

    As observation have shown, magnetic islands often appear before and/or after the onset of magnetic reconnections in the current sheets, and they also appear in the current sheets in the solar corona, Earth's magnetotail, and Earth's magnetopause. Thus, the existence of magnetic islands can affect the initial conditions in magnetic reconnection. In this paper, we propose a model of quasi-static magnetic island eigenmodes in the current sheet. This model analytically describes the magnetic field structures in the quasi-static case, which will provide a possible approach to reconstructing the magnetic structures in the current sheet via observation data. This model is self-consistent in the kinetic theory. Also, the distribution function of charged particles in the magnetic island can be calculated.

  8. Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.

    2001-01-01

    The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.

  9. Visco-resistive tearing in thin current sheets.

    NASA Astrophysics Data System (ADS)

    Velli, M. M. C.; Tenerani, A.; Rappazzo, A. F.; Pucci, F.

    2014-12-01

    How fast magnetic energy release is triggered and occurs in high Lundquist (S) and high Reynolds number ( R ) plasmas such as that of the solar corona is a fundamental problem for understanding phenomena ranging from coronal heating to flares and CMEs. Diffusion or collisional reconnection driven by macroscopic flows in quasi-steady Sweet-Parker (SP) current sheets are processes far too slow to fit observational data. Spontaneous reconnection, driven by the onset of the tearing instability inside current sheets, provides an alternative paradigm to SP reconnection. Nevertheless, as long as macroscopic current layers are considered, the growth of such an instability is also a slow process. Recently it has been shown that SP current sheets are rapidly unstable in high S plasmas, indeed have a growth rate diverging with increasing S. It has been suggested that such instabilities are triggered during the nonlinear stage of the primary tearing instability of a macroscopic layer. The formation of plasmoids in this presumed SP sheet speeds up the reconnection rate to ideal values. Recently, we have suggested that SP sheets can not be realized in quasi-ideal plasmas, and that the plasmoid instability is triggered on a much larger scale (i.e. with current sheets having a much larger ration of thickness to length than SP). Here we present a linear parametric study of the tearing instability for a Harris current sheet, while taking into account both viscosity and current sheets of variable aspect ratios. The present study shows that an explosive growth of the reconnection rate may be reached during the linear stage, once a critical width of the current layer is reached. In the absence of a strong guide field this depends on viscosity and a range of critical aspect ratios can be found for different values of S, R, or S and Prandtl number.

  10. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  11. Solar wind and substorm excitation of the wavy current sheet

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Lester, M.; Fear, R. C.; Lucek, E.; Dandouras, I.; Fazakerley, A. N.; Singer, H.; Yeoman, T. K.

    2009-06-01

    Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the -YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.

  12. Current Sheet Formation and Reconnection at a Magnetic X Line

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Antiochos, S. K.

    2011-05-01

    Phenomena ranging from the quiescent heating of the ambient plasma to the highly explosive release of energy and acceleration of particles in flares are conjectured to result from magnetic reconnection at electric current sheets in the Sun's corona. We are investigating numerically the formation and eventual reconnection of a current sheet in an initially potential 2D magnetic field containing a null. Subjecting this simple configuration to unequal stresses in the four quadrants bounded by the X-line separatrix distorts the potential null into a double-Y-line current sheet. Although the gas pressure is finite in our simulations, so that the plasma beta is infinite at the null, we find that even small distortions of the magnetic field induce the formation of a tangential discontinuity there. This result is well known to occur in the zero-beta, force-free limit; surprisingly, it persists into the high-beta regime where, in principle, a small plasma pressure inhomogeneity could balance all of the magnetic stress. In addition to working to understand the dynamical details of this ideal process, we are examining the effect of resistive dissipation on the development of the current sheet and are seeking to determine the critical condition for fast-reconnection onset in the sheet. Our progress on understanding these issues, and the implications for the dynamic activity associated with current sheets in the solar corona, will be reported at the conference. We gratefully acknowledge NASA sponsorship of our research.

  13. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  14. Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Zelenyi, L. M.; Malova, H. V.; Sharma, A. S.

    2000-06-01

    A self-consistent theory of thin current sheets, where the magnetic field line tension is balanced by the ion inertia rather than by the pressure gradient, is presented. Assuming that ions are the main current carriers and their dynamics is quasi-adiabatic, the Maxwell-Vlasov equations are reduced to the nonlocal analogue of the Grad-Shafranov equation using a new set of integrals of motion, namely, the particle energy and the sheet invariant of the quasi-adiabatic motion. It is shown that for a drifting Maxwellian distribution of ions outside the sheet the equilibrium equation can be reduced in the limits of strong and weak anisotropy to universal equations that determine families of equilibria with similar profiles of the magnetic field. In the region Bn/B0sheet and close to its central plane, the ion drift velocity outside the sheet, and the ion thermal velocity, respectively) the thickness of such similar profiles is of the order of (vT/vD)1/3ρ0, where ρ0 is the thermal ion gyroradius outside the sheet. In the limit of weak anisotropy (vT/vD>>1) the self-consistent current sheet equilibrium may also exist with no indications of the catastrophe reported earlier by Burkhart et al. [1992a]. On the contrary, it is found that in this limit the magnetic field profiles again become similar to each other with the characteristic thickness ~ρ0. The profiles of plasma and current densities as well as the components of the pressure tensor are calculated for arbitrary ion anisotropy outside the sheet. It is shown that the thin current sheet for the equilibrium considered here is usually embedded into a much thicker plasma sheet. Moreover, in the case of weak anisotropy the perturbation of the plasma density inside the sheet is shown to be proportional to the parameter vD/vT, and as a result the electrostatic effects should be small, consistent with observations. This model of the thin current sheet

  15. On spontaneous formation of current sheets: Untwisted magnetic fields

    SciTech Connect

    Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.

    2010-11-15

    This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through

  16. Current sheets and pressure anisotropy in the reconnection exhaust

    SciTech Connect

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  17. New insights from modeling the neutral heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Raath, J. L.; Strauss, R. D.; Potgieter, M. S.

    2015-12-01

    Recently, the modulation of cosmic rays in the heliosphere has increasingly been studied by solving the well known transport equation via an approach based on stochastic differential equations. This approach, which is now well-established and published, allows for an in depth study of the modulation effects of the wavy heliospheric current sheet, in particular as its waviness increases with solar activity up to extreme maximum conditions. This is possible because of the numerical stability of the approach as well as its ability to trace pseudo-particles so that insightful trajectories of how they respond to the wavy heliospheric current sheet can be computed and displayed. Utilising such a stochastic model, we present valuable new insights into how the geometry of the wavy current sheet can affect the modulation of cosmic rays, especially at the highest levels of solar activity. This enables us to show, from a modeling perspective, why a certain choice for the current sheet profile is more suited than another at these high solar activity levels. We emphasise the importance of an effective tilt angle and illustrate how this concept can be employed effectively in interpreting results pertaining to the wavy current sheet as well as the modulation associated with this important heliospheric structure.

  18. A circuit model for filament eruptions and two-ribbon flares

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Kuin, N. P. M.

    1989-01-01

    A circuit model is derived for solar filament eruptions and two-ribbon flares. In the model the filament is approximated as a line current and the current sheet as infinitely thin. The model reproduces the slow energy buildup and eruption of the filament and the energy dissipation in a current sheet at the top of postflare loops during the two-ribbon flare. The two circuits considered are that of the filament and its return current and that of the current sheet and its return current. These circuits are inductively coupled, and free energy stored in the filament in the pre-flare phase is found to be transferred to the sheet during the impulsive phase and rapidly dissipated there. In the solutions for the evolution of the filament current sheet system four phases are distinguished: (1) a slow energy buildup, (2) a 'metastable' state, (3) the eruptive phase, and (4) a postflare phase. These phases are described in detail.

  19. What causes the warp in the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    A comparative discussion of the warp in the heliospheric current sheet is presented. Pioneer 10 and 11 data of the interplanetary magnetic field compared with earlier data (Helios 1 and 2) show a good agreement on the phenomenon of the warp; however, the interpretations differ. One theory (Thomas and Smith, 1980) proposes that fast solar wind streams associated with interaction regions may move the current sheet higher to heliospheric latitudes, thus causing the warp; while the earlier theory (1976) adequately explained the phenomenon by using the observed photospheric magnetic field and the Zeeman effect but omitted the solar wind dynamical considerations as part of the computations. It is shown that the Helios data of the polarity of the interplanetary magnetic field are in good agreement with the computed location of the current sheet, confirming the earlier theory.

  20. Dynamic of Current Sheets and Their Associated Particle Energization

    SciTech Connect

    Li, Hui; Guo, Fan; Makwan, Kirit; Li, Xiaocan; Zhandrin, Vladimir; Daughton, William Scott

    2015-08-19

    Magnetic reconnection in current sheets has relevance to Earth's magnetosphere, solar flares, high-energy astrophysics (pulsar wind nebula (e.g. Crab Nebula), gamma-ray bursts, black hole jets), and laboratory plasma/fusion. Data are shown for several cases with varying values of configuration energy Ec and β. Several conclusions were drawn: Depending on the “configuration energy”, the formation, shape, and lifetime of current sheets can vary. Plasma condition (configuration, β, driving, etc.) strongly affect the efficiency of particle acceleration. For low β and general “configuration energy”, particle heating is expected. For low β, large and long-lived current sheets, it is possible to produce highly non-thermal particles via collisionless plasmoid reconnection.

  1. On current sheet approximations in models of eruptive flares

    NASA Technical Reports Server (NTRS)

    Bungey, T. N.; Forbes, T. G.

    1994-01-01

    We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.

  2. Current Sheet Formation and Reconnection Dynamics in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Antiochos, S. K.; DeVore, C.; Zurbuchen, T. H.

    2009-05-01

    Current sheet formation is a necessary consequence of the evolution of the multi-polar magnetic field topologies that are ubiquitous throughout the solar corona. We present a very high-resolution study of 3D MHD current sheet formation and the resulting reconnection dynamics in an environment appropriate for the corona. The initial field consists of a translationally invariant, potential field with a null-point topology (i.e., 4-flux systems) and a low-beta plasma. A finite-extent, 3D Syrovatskii-type current sheet forms as a result of stressing of this system by a uniform, incompressible flow applied at the line-tied photospheric boundary. The system is assumed to be ideal, except for the presence of numerical resistivity. The fully 3-D evolution is calculated with very high resolution (9x and 10x refinement across the full extent of the current sheet) using the Adaptively Refined MHD Solver (ARMS). The initial evolution of this computationally-intensive simulation results in a current sheet with a nearly 30-to-1 aspect ratio, a significant fraction of the system characteristic length, that unexpectedly appears to be stable. In addition, up to this point in the evolution any magnetic reconnection that we observe is of the slow Sweet-Parker type. We expect, however, that as we continue stressing the field, the current sheet will become unstable and develop explosive dynamics. We discuss the implications of our results on coronal structure and activity, such as heating and eruptions. This work has been supported, in part, by the NASA HTP and SR&T programs.

  3. Magnetic Reconnection Onset and Energy Release at Current Sheets

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, Spiro K.

    2015-04-01

    Reconnection and energy release at current sheets are important at the Sun (coronal heating, coronal mass ejections, flares, and jets) and at the Earth (magnetopause flux transfer events and magnetotail substorms) and other magnetized planets, and occur also at the interface between the Heliosphere and the interstellar medium, the heliopause. The consequences range from relatively quiescent heating of the ambient plasma to highly explosive releases of energy and accelerated particles. We use the Adaptively Refined Magnetohydrodynamics Solver (ARMS) model to investigate the self-consistent formation and reconnection of current sheets in an initially potential 2D magnetic field containing a magnetic null point. Unequal stresses applied to the four quadrants bounded by the X-line separatrix distort the potential null into a double-Y-type current sheet. We find that this distortion eventually leads to onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands due to plasmoid instability. In the absence of a mechanism for ideal instability or loss of equilibrium of the global structure, however, this reconnection leads to minimal energy release. Essentially, the current sheet oscillates about its force-free equilibrium configuration. When the structure is susceptible to a large-scale rearrangement of the magnetic field, on the other hand, the energy release becomes explosive. We identify the conditions required for reconnection to transform rapidly a large fraction of the magnetic free energy into kinetic and other forms of plasma energy, and to restructure the current sheet and its surrounding magnetic field dramatically. We discuss the implications of our results for understanding heliophysical activity, particularly eruptions, flares, and jets in the corona.Our research was supported by NASA’s Heliophysics Supporting Research and Living With a Star Targeted Research and Technology programs.

  4. Electric fields and current sheet structure in magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Cully, C. M.

    The electric currents of the central plasma sheet play a pivotal role in the dynamics of the Earth's magnetosphere. I describe new instrumentation developed for measuring its properties, and analyze data from existing instruments. The analysis shows the structure and physical current-carrying mechanisms of the quiescent central plasma sheet in new detail. Electric field observations are critical for this work. I discuss two aspects of space-based double-probe electric field experiments: the probe design and the signal processing. I develop a numerical model that self-consistently solves for the interaction between the probes and the nearby plasma environment, including the effects of the spacecraft and its attendant photoelectrons. I also describe the signal processing hardware developed for the 5-satellite THEMIS mission, known as the Digital Fields Boards (DFB). THEMIS was launched in February 2007, and all 5 DFBs are working as intended. Since THEMIS is only recently launched, I analyze data from the 4-satellite Cluster mission, which has similar instrumentation. With Cluster data, the position of the current sheet relative to the satellite can be determined, allowing direct comparisons between observations and models. To encompass the wide variety of possible current-carrying mechanisms, I develop a kinetic model based on the quasi-isotropic formalism of Schindler and Birn [2002]. The model fits many of the observed sheets well. The observations reveal a wide variety of current-carrying mechanisms. Some of the thinnest currents consist entirely of a pair of electron Hall currents which together form a bifurcated current sheet driven by strong inward-pointing electric fields.

  5. Localization of Magnetized Electrons in Current Filaments as a Fundamental Cause of Coulomb Explosion

    SciTech Connect

    Gordeev, A.V.; Losseva, T.V.

    2005-01-15

    Mechanisms for generating current filaments in a dense plasma under the action of focused laser pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and nonzero electron vorticity {omega}{sub e} = B - (c/e){nabla} x p{sub e} that originate at magnetic fields in the range 4{pi}n{sub e} m{sub e} c{sup 2} << B{sup 2} << 4{pi}n{sub i} m{sub i} c{sup 2} are investigated under the conditions of Coulomb explosion at currents below the ion Alfven current. A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal (B{sub z}) and a purely azimuthal (B{sub {theta}}) magnetic field and also in a more general case of a helical magnetic field, having two components, under conditions such that the charge separation occurs on a spatial scale on the order of the magnetic Debye radius r{sub B} {approx_equal} |B |/(4{pi}en{sub e}). It is shown that strong electric fields generated in the current filaments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse ion plasma frequencies {omega}{sup -1}{sub pi}. The possible formation of current filaments on different spatiotemporal scales is considered.

  6. Test Report - Fault Current Through Graphite Filament Reinforced Plastic

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.

  7. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect

    Ren, Chuang

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  8. Thermal-resistive current filamentation in the cathode plasma of a pinch-reflex diode

    SciTech Connect

    Tripathi, V.K.; Ottinger, P.F.; Guillory, J.

    1983-06-01

    Electron current flow drawn off a hollow cylindrical cathode in a pinch-reflex ion diode is observed to have a filamentary structure. Such filamentation can lead to nonuniform anode turn on and ion emission. Consequently, ion beam brightness is degraded. In this context a purely growing thermal-resistive instability in the cathode plasma is examined. The instability causes current filamentation and grows on a time scale comparable to the electron--ion energy equilibration time. Electron inelastic collisions have a stabilizing influence on the instability.

  9. Kinetic Simulations of Thinnest Current Sheets as detected by Cluster.

    NASA Astrophysics Data System (ADS)

    Singh, N.; Deverapllai, C.

    Recently reported observations from Cluster in the magneto-tail show existence of extremely thin current sheets ETCSs They have thickness of just a few electron skin depth L e in contrast to the previously reported thin current sheets TCSs having thickness of ion skin depth L i This suggests that the reconnecting current sheets evolve over scale size ranging from much larger than L i to ones to the limiting smallest width sim L e The phase of the current sheet CS evolution when the magnetic reconnection occurs in such a CS has remained a nagging challenge We report here three-dimensional kinetic simulations of ETCSs using a particle-in-cell code with electron to ion mass ratio M m 1836 Our simulation results show the following important features of an evolving CS i Thinning process of a non-equilibrium CS when started with a CS of scale size several L e ii The thinning occurs via counter propagating magneto-sonic waves iii Setting of convergent electric fields pointing toward the CS center during the course of the thinning iv Direct acceleration of un-magnetized ions by the electric fields toward the CS center setting counter-streaming in ion flow v E times B drift of the electrons which completely support the current in the CS vi Current-sheet-driven electrostatic instabilities CSDEI mostly confined within the CS vii Electron drift and developing shear in the drift provide free energy for the CSDEI viii Electron heating transverse to the anti-parallel magnetic field generating

  10. Coronal Current Sheet Evolution in the Aftermath of a CME

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  11. Observational support for the current sheet catastrophe model of substorm current disruption

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.

    1992-01-01

    The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.

  12. Current Sheet Evolution In The Aftermath Of A CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.

    2006-01-01

    We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  13. Trigger of Fast Reconnection via Collapsing Current Sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, A.; Velli, M.; Rappazzo, A. F.; Pucci, F.

    2015-12-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in astrophysical and laboratory plasmas. However, both the questions of how magnetic reconnection is triggered in high Lundquist (S) and Reynolds (R) number plasmas, and how it can then occur on fast, ideal, time-scales remain open. Indeed, it has been argued that fast reconnection rates could be achieved once kinetic scales are reached, or, alternatively, by the onset of the so-called plasmoid instability within Sweet-Parker current sheets. However, it has been shown recently that a tearing mode instability (the "ideal tearing") can grow on an ideal, i.e., S-independent, timescale once the width a of a current sheet becomes thin enough with respect to its macroscopic length L, a/L ~ S-1/3. This suggests that current sheet thinning down to such a threshold aspect ratio —much larger, for S>>1, than the Sweet-Parker one that scales as a/L ~ S-1/2— might provide the trigger for fast reconnection even within the fluid plasma framework. Here we discuss the transition to fast reconnection by studying with visco-resistive MHD simulations the onset and evolution of the tearing instability within a single collapsing current sheet. We indeed show that the transition to a fast tearing mode instability takes place when an inverse aspect ratio of the order of the threshold a/L ~ S-1/3 is reached, and that the secondary current sheets forming nonlinearly become the source of a succession of recursive tearing instabilities. The latter is reminiscent of the fractal reconnection model of flares, which we modify in the light of the "ideal tearing" scenario.

  14. Energization of Ions in near-Earth current sheet disruptions

    NASA Technical Reports Server (NTRS)

    Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.

    1995-01-01

    In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.

  15. A RECONNECTING CURRENT SHEET IMAGED IN A SOLAR FLARE

    SciTech Connect

    Liu Rui; Liu Chang; Wang Haimin; Lee, Jeongwoo; Wang, Tongjiang; Stenborg, Guillermo

    2010-11-01

    Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space, and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last 50 years, yet direct, unambiguous observational verification has been absent. In this Letter, we show a bright sheet structure of global length (>0.25 R {sub sun}) and macroscopic width ((5-10)x10{sup 3} km) distinctly above the cusp-shaped flaring loop, imaged during the flare rising phase in EUV. The sheet formed due to the stretch of a transequatorial loop system and was accompanied by various reconnection signatures. This unique event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  16. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  17. Structure of current sheets in magnetic holes at 1 AU

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Burlaga, L. F.

    1978-01-01

    Current density profiles in several types of interplanetary magnetic holes have been calculated using high-resolution Imp 6 magnetic field data (12.5 vector measurements/s), assuming that the currents flow in planar sheets and that the magnetic field varies only in the direction normal to the sheet. The planarity was verified in four holes which were observed by two suitably spaced spacecraft. Four types of simple magnetic holes are discussed, in which B varies nearly monotonically on each side of the hole. In two of the holes, B varies in intensity but not in direction as a result of currents normal to B. In the other two holes, B changes in both magnitude and direction as a result of currents both normal and parallel to B. The observed structures are found to be qualitatively consistent with the models of Burlaga and Lemaire (1978). Examples of complex irregular magnetic holes are also presented, and they are shown to contain multiple current sheets in which currents flow parallel to one another at various angles with respect to B. There is no model of such magnetic holes at present.

  18. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  19. Observations of Current Sheets Passing Through the Near Lunar Wake

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wong, H. C.; Ma, Y.; Zhou, M.

    2015-12-01

    Two reconnection exhausts were detected by one of the dual ARTEMIS orbiters in the solar wind near the Moon. Almost meanwhile, the other ARTEMIS orbiter encountered the two corresponding (to the exhausts) current sheets that show no reconnection signals at the relatively central and marginal locations in the near lunar wake. In the ``Margin Event", a strong magnetic enhancement in the normal direction has been found peaking near the neutral line. In the ``Center Event", the current sheet was significantly broadened in thickness. The rotations of magnetic field direction of the two current sheets became more smooth than those of the exhausts. It is the dropout currents which cannot penetrate into the near wake that mainly caused these observational magnetic features. Such magnetic configuration is very similar to the magnetic geometry between two anti-polarity permanent magnets parallel to each other in non conducting context. The essential reason is that the extremely low density plasma in the near wake can no longer carry as strong currents as in the solar wind to support the curl of the magnetic fields.

  20. Current Sheets in the Heliosheath: Voyager 1, 2009

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2011-01-01

    We identified all of the current sheets for which we have relatively complete and accurate magnetic field (B) data from Voyager 1 (V1) from days of year (DOYs) 1 to 331, 2009, which were obtained deep in the heliosheath between 108.5 and 111.8 AU. Three types of current sheets were found: (1) 15 proton boundary layers (PBLs), (2) 10 and 3 magnetic holes and magnetic humps, respectively, and (3) 3 sector boundaries. The magnetic field strength changes across PBL, and the profile B(t) is linearly related to the hyperbolic tangent function, but the direction of B does not change. For each of the three sector boundaries, B rotated in a plane normal to the minimum variance direction, and the component of B along the minimum variance direction was zero within the uncertainties, indicating that the sector boundaries were tangential discontinuities. The structure of the sector boundaries was not as simple as that for PBLs. The average thickness of magnetic holes and humps (approx.30 RL) was twice that of the PBLs (approx.15 RL). The average thickness of the current sheets associated with sector boundaries was close to the thickness of the PBLs. Our observations are consistent with the hypothesis that magnetic holes and humps are solitons, which are initiated by the mirror mode instability, and evolve by nonlinear kinetic plasma processes to pressure balanced structures maintained by magnetization currents and proton drift currents in the gradients of B.

  1. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  2. CURRENT SHEETS FORMATION IN TANGLED CORONAL MAGNETIC FIELDS

    SciTech Connect

    Rappazzo, A. F.; Parker, E. N. E-mail: parker@oddjob.uchicago.edu

    2013-08-10

    We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in Cartesian geometry, where two magnetic field components are present: the strong guide field B{sub 0}, extended along the axial direction, and the dynamical orthogonal field b. Magnetic field lines thread the system along the axial direction that spans the length L and are line-tied at the top and bottom plates. The magnetic field b initially has only large scales, with its gradient (current) length scale of the order of l{sub b}. We identify the magnetic intensity threshold b/B{sub 0} {approx} l{sub b}/L. For values of b below this threshold, field-line tension inhibits the formation of current sheets, while above the threshold they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width {delta} decreasing at least exponentially, after which the simulations become underresolved.

  3. Current Sheets Formation in Tangled Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Parker, E. N.

    2013-08-01

    We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in Cartesian geometry, where two magnetic field components are present: the strong guide field B 0, extended along the axial direction, and the dynamical orthogonal field b. Magnetic field lines thread the system along the axial direction that spans the length L and are line-tied at the top and bottom plates. The magnetic field b initially has only large scales, with its gradient (current) length scale of the order of l b . We identify the magnetic intensity threshold b/B 0 ~ l b /L. For values of b below this threshold, field-line tension inhibits the formation of current sheets, while above the threshold they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width δ decreasing at least exponentially, after which the simulations become underresolved.

  4. Wavy Current Sheet in Space and on the Ground

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong; Boakes, Peter; Wang, Guoqiang

    2014-05-01

    One event from the ECLAT wavy current sheet event list (15 October 2004) is studied where the Cluster spacecraft are located near the dusk flank of the Earth's magnetotail (-12, 7, 4) Re in GSM coordinates. It is the purpose of this investigation to see whether the waves measured in the Earth's magnetotail have a counterpart in the magnetometer measurements on the ground. For the event under consideration, the Cluster data show a fast earthward plasma flow, after which the current sheet starts to oscillate with "harmonic" waves near the Pi2 frequency band. Investigating the normals of the current sheet during these waves shows that this is magnetotail flapping. The magnetic foot points of the Cluster spacecraft are near the 210 meridian stations TIK and KTN. Only TIK shows power at the same frequency as Cluster, whereas KTN does not show any signature of these waves. The curlometer technique applied to the Cluster data shows that there are strong, variable, field-aligned currents during the flapping period, which may couple the flapping to the ground over a small range of longitudes.

  5. Current carriers in the near-earth cross-tail current sheet during substorm growth phase

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Williams, D. J.; Huang, C. Y.; Frank, L. A.; Russell, C. T.

    1990-01-01

    Throughout most of the growth phase of a substorm, the cross-tail current at x about -10 Re can be supplied by the curvature drift of a bi-directional field aligned distribution of 1 keV electrons. Just prior to its local disruption after substorm onset, the cross-tail current in the now thin (about 400 km) current sheet is carried by the cross-tail serpentine motion of non-adiabatic ions (Speiser, 1965). The instability of this latter current leads to the local disruption of the near-earth current sheet.

  6. Numerical experiments of magnetic reconnection in the solar flare and CME current sheet

    NASA Astrophysics Data System (ADS)

    Mei, Zhixing; Lin, Jun; Shen, Chengcai

    2012-07-01

    Magnetic reconnection plays a critical role in the energy conversion in the solar eruption. This paper performs a set of MHD experiments for the magnetic reconnection process in a current sheet formed in a disrupting magnetic configuration. The eruption results from the loss of equilibrium in the magnetic configuration that includes a current-carrying flux rope, which is used to model the filament floating in the corona. In order to study the fine structure and micro process inside the current sheet (CS), the mesh refinement technology is used to depress the numerical diffusion. A uniform physical diffusion is applied and results in a Lundquist number S=10^4 in the vicinity of CS. Because of the advantage of the foregoing setting, some features appear with high resolution, including plasmoids due to the tearing mode and the plasmoid instabilities, turbulence regions, and the slow mode shocks. Inside CS, magnetic reconnection goes through the Sweet-Parker and the fractal fashions, and eventually, it displays a time-dependent Petschek pattern. Our results seem to support the concept of fractal reconnection suggested by Shibata et al. (1995) and Shibata & Tanuma (2001). And our results suggest that the CS evolves through a Sweet-Parker reconnection prior to the fast reconnection stage. For the first time, the detailed features and/or fine structures inside the CME/flare CS in the eruption were investigated in this work.

  7. Particle dynamics and resistivity characteristics in bifurcated current sheets

    NASA Astrophysics Data System (ADS)

    Andriyas, Tushar

    Charged particle chaos and its collective effects in different magnetic geometries are investigated in a sequence of various numerical experiments. The fields generated by the particles as a result of interaction with the background electric and magnetic fields is not accounted for in the simulation. An X-line is first used to describe the geometry of the magnetotail prior to magnetic reconnection and a study of the behavior of charged particles is done from a microscopic viewpoint. Another important geometry in the magnetotail prior to substorm onset is Bifurcated Current Sheet. The same analysis is done for this configuration. The existence of at least one positive Lyapunov exponent shows that the motion of the particles is chaotic. By using statistical mechanics, the macroscopic properties of this chaotic motion are studied. Due to particles being charged, an electric field (perpendicular to the magnetic field in weak magnetic field region) accelerates the particles on average. Finite average velocity in the direction of electric field gives rise to an effective resistivity even in a collisionless regime such as solar corona and the magnetotail. Starting from initial velocities that are chosen randomly from a uniform distribution, the evolution of these distributions tends to a Maxwellian by the end of the simulation that is somewhat analogous to collisions in a Lorentz gas model. The effective resistivity due to such collisions is estimated. Ohmic heating is found to occur as a result of such an effective resistivity. Such collisions due to collective particle effects are essentially a different mechanism from classical collision notion. These experiments are done for two types of ions found in the plasma sheet prior to substorm onset, viz., protons and oxygen ions. Observational evidence of oxygen ions in the central plasma sheet, which flow out along open field lines from the ionosphere, were also simulated in the same manner. Oxygen ions have been found to

  8. Configuration of Jupiter's magnetic tail and equatorial current sheet

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Burlaga, L. F.

    1981-01-01

    Recent research reports by Behannon et al. (1981) and Connerney et al. (1981) are summarized. It is noted that the analysis made of the detailed neutral sheet crossings by the minimum variance method shows a consistent result with regard to the orientation of the neutral sheet in the magnetic tail as a two-dimensional surface rocking back and forth about the Jupiter sun-line as the rotation of the planet leads to a precession of the tilted dipole magnetic axis. The occurrence of neutral sheet crossings is found not to be consistent with any of the axially symmetric theoretical models proposed earlier on the basis of the 1974 Pioneer 10 observations. It is noted that a simple nonaxially symmetric model has been developed on the basis of the Voyager results which indicates the strong control upon orientation by the interaction of the solar wind with the Jovian magnetosphere. The model is described as simple because it improves the fit of theory to observation but uses fewer parameters. A quantitative model of the magnetodisc equatorial current sheet has been developed for the inner magnetosphere region which matches well the in-situ magnetic field observations.

  9. Current Sheet Evolution in the Aftermath of a CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of the coronal restructuring following a Coronal Mass Ejection (CME) on November 26,2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after a CME in the NW quadrant, UVCS began taking spectra at 1.7 solar radius, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the Fe XVIII emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by Ulysses-SWICS throughout the magnetic cloud associated with the CME. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  10. Morphology and Density Structure of Post-CME Current Sheets

    NASA Technical Reports Server (NTRS)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  11. Heliospheric current sheet inclinations predicted from source surface maps

    NASA Technical Reports Server (NTRS)

    Shodhan, S.; Crooker, N. U.; Hughes, W. J.; Siscoe, G. L.

    1994-01-01

    The inclinations of the neutral line at the ecliptic plane derived from source surface model maps of coronal fields are measured for the interval from June 1976 to March 1992. The mean and median values of 53 deg and 57 deg are close to the average inclinations determined earlier from minimum variance analyses of solar wind measurements at sector boundaries, but the mode falls in the 80 deg - 90 deg bin. This result, which is based on the model assumptions implicit in deriving the source surface maps, predicts that the heliospheric current sheet typically intersects the ecliptic plane nearly at right angles, even without steepening by stream interaction regions. High inclinations dominate the solar cycle for about 7 years around solar maximum. Dips to lower inclination occur near solar minimum, but high variance admits a wide range of inclinations throughout the cycle. Compared to the smooth solar cycle variation of the maximum latitudinal excursion of the neutral line, often treated as the tilt angle of a flat heliospheric current sheet, the noisy variation of the inclinations reflects the degree to which the neutral line deviates from a sine wave, implying warps and corrugations in the current sheet. About a third of the time the neutral line so deviates that it doubles back in longitude.

  12. Pulsar Wind Nebulae as Cosmic Pevatrons: A Current Sheet's Tale

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    2012-11-01

    I outline, from a theoretical and somewhat personal perspective, significant features of Pulsar Wind Nebulae (PWNe) as Cosmic Accelerators. I pay special attention to the recently discovered gamma ray "flares" in the Crab Nebula's emission, focusing on the possibility, raised by the observations, that the accelerating electric field exceeds the magnetic field, suggesting that reconnection in the persistent current layer (a "current sheet") plays a significant role in the behavior of this well studied Pevatron. I address the present status of the termination shock model for the particle accelerator that converts the wind flow energy to the observed non-thermal particle spectra, concluding that it has a number of major difficulties related to the transverse magnetic geometry of the shock wave. I discuss recent work on the inferred pair outflow rates, which are in excess of those predicted by existing theories of pair creation, and use those results to point out that the consequent mass loading of the wind reduces the wind's bulk flow 4-velocity to the point that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the " σ" problem. I discuss some suggestions that current starvation in the current flow supporting the structured ("striped") upstream magnetic field perhaps induces a transition to superluminal wave propagation. I show that current starvation probably does not occur, because those currents are carried in the current sheet separating the stripes rather than in the stripes themselves.

  13. Instabilities in a thin current sheet and their consequences

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2004-04-01

    Using a fully 3-D particle in-cell simulation, we studied the electrodynamics of a thin current sheet (CS). Starting with a uniform plasma and anti-parallel magnetic field, Harris equilibrium is achieved during the early stage of the simulation. In the processes of reaching the equilibrium, both electrons and ions in the newly formed CS are energized and develop pitch-angle anisotropies. We find two distinct stages of primarily electrostatic instabilities; in the first stage the relative drift between electrons and ions drives the instability in the central regions of the CS. The electrostatic fluctuations scatter electrons causing current disruption in the central region. The associated reduction in the average drift velocity of the current-carrying electrons generates sheared flow. The second stage of the instability begins when the drift velocity develops a minimum in the central plane. Then the shear and the growing electrostatic fluctuations under the condition of the maintained anti-parallel driving magnetic field configuration feed each other making the instability explosive. The growing fluctuations create plasma clumps as the electrons and ions are progressively trapped in the large-amplitude waves. The density clumping also generates clumps in the current. The non-uniform current distribution causes magnetic reconnection, accompanied by heating of electrons and ion at a fast rate and nearly complete bifurcation of the current sheet. Anomalous resistivity during different stages of the evolution of the CS is calculated and compared against theory.

  14. Instabilities in a Thin Current Sheet and Their Consequences

    NASA Astrophysics Data System (ADS)

    Singh, N.

    Using a fully 3-D particle in-cell simulation, we studied the electrodynamics of a thin current sheet (CS). Starting with a uniform plasma and anti-parallel magnetic field, Harris equilibrium is achieved during the early stage of the simulation. In the processes of reaching the equilibrium, both electrons and ions in the newly formed CS are energized and develop pitch-angle anisotropies. We find two distinct stages of primarily electrostatic instabilities; in the first stage the relative drift between electrons and ions drives the instability in the central regions of the CS. The electrostatic fluctuations scatter electrons causing current disruption in the central region. The associated reduction in the average drift velocity of the current-carrying electrons generates sheared flow. The second stage of the instability begins when the drift velocity develops a minimum in the central plane. Then the shear and the growing electrostatic fluctuations under the condition of the maintained anti-parallel driving magnetic field configuration feed each other making the instability explosive. The growing fluctuations create plasma clumps as the electrons and ions are progressively trapped in the large-amplitude waves. The density clumping also generates clumps in the current. The non-uniform current distribution causes magnetic reconnection, accompanied by heating of electrons and ion at a fast rate and nearly complete bifurcation of the current sheet. Anomalous resistivity during different stages of the evolution of the CS is calculated and compared against theory.

  15. Heliospheric current sheet and its interaction with solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Malova, Helmi; Popov, Victor; Grigorenko, Elena; Dunko, Andrey; Petrukovich, Anatoly

    2016-04-01

    We investigated effects resulting from the interaction of solar cosmic rays (SCR) with the heliospheric current sheet (HCS) in the solar wind. Self-consistent kinetic model of the HCS is developed, where ions demonstrate quasi-adiabatic dynamics. HCS is considered as the equilibrium embedded current structure, where the two main kinds of plasma with different temperatures give the main contribution to the current (low-energy background plasma and SCR). It is shown that HCS is a relatively thin multiscale configuration of the current sheet, embedded in a thicker plasma layer. The taking into account of SCR particles in HCS could lead to a change of its structure and to enhancement of its properties such as the embedding and multi-scaling. Parametric family of solutions is considered where the current balance in HCS is provided at different temperatures of SCR and different concentrations of high-energy plasma. Concentrations of SCR are determined which may contribute to the thickening of the HCS that can be observed in satellite studies. The possibility to apply this modeling for the explanation of experimental observations is considered.

  16. Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-01

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh-Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  17. A new stationary analytical model of the heliospheric current sheet and the plasma sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman A.; Khabarova, Olga V.; Malova, Helmi V.

    2015-10-01

    We develop a single-fluid 2-D analytical model of the axially symmetric thin heliospheric current sheet (HCS) embedded into the heliospheric plasma sheet (HPS). A HCS-HPS system has a shape of a relatively thin plasma disk limited by separatrices that also represent current sheets, which is in agreement with Ulysses observations in the aphelion, when it crossed the HCS perpendicular to its plane. Our model employs a differential rotation of the solar photosphere that leads to unipolar induction in the corona. Three components of the interplanetary magnetic field (IMF), the solar wind speed, and the thermal pressure are taken into account. Solar corona conditions and a HCS-HPS system state are tied by boundary conditions and the "frozen-in" equation. The model allows finding spatial distributions of the magnetic field, the speed within the HPS, and electric currents within the HCS. An angular plasma speed is low within the HPS due to the angular momentum conservation (there is no significant corotation with the Sun), which is consistent with observations. We found that the HPS thickness L decreases with distance r, becoming a constant far from the Sun (L ~2.5 solar radii (R0) at 1 AU). Above the separatrices and at large heliocentric distances, the solar wind behavior obeys Parker's model, but the magnetic field spiral form may be different from Parker's one inside the HPS. At r ≤ 245 R0, the IMF spiral may undergo a turn simultaneously with a change of the poloidal current direction (from sunward to antisunward).

  18. L-mode filament characteristics on MAST as a function of plasma current measured using visible imaging

    NASA Astrophysics Data System (ADS)

    Kirk, A.; Thornton, A. J.; Harrison, J. R.; Militello, F.; Walkden, N. R.; the MAST Team; the EUROfusion MST1 Team

    2016-08-01

    Clear filamentary structures are observed at the edge of tokamak plasmas. These filaments are ejected out radially and carry plasma in the far scrape off layer (SOL) region, where they are responsible for producing most of the transport. A study has been performed of the characteristics of the filaments observed in L-mode plasma on MAST, using visible imaging. A comparison has then been made with the observed particle and power profiles obtained at the divertor as a function of the plasma current. The radial velocity and to a lesser extent the radial size of the filaments are found to decrease as the plasma current is increased at constant density and input power. The results obtained in this paper on the dependence of the average filament dynamics on plasma current are consistent with the idea that the filaments are responsible for determining the particle profiles at the divertor.

  19. Simulation of current-filament dynamics and relaxation in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Sovinec, C. R.

    2012-10-01

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into ``tokamak-like'' plasmas in the Pegasus ST. Resistive MHD simulations with the NIMROD code utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction to reproduce critical transport effects. With sufficient injected current, adjacent passes of the current channel merge periodically, releasing axisymmetric current rings from the driven channel. The current rings provide a new phenomenological understanding for filament relaxation in Pegasus [O'Bryan, Sovinec, Bird. Phys. Plas. submitted]. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles. When the current injection ceases, closed flux surfaces form quickly. Better electron thermal confinement with a two-temperature model produces a slower rate of decay for plasma current and internal energy than the single-temperature MHD model.

  20. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  1. Kinetic scale current sheet observed at the magnetopause

    NASA Astrophysics Data System (ADS)

    Norgren, Cecilia; Graham, Daniel; Khotyaintsev, Yuri; André, Mats; Vaivads, Andris

    2016-04-01

    Kinetic scale current sheets associated with sharp plasma boundaries are often formed in plasmas. Studying the processes responsible for plasma transport and acceleration operating within these thin boundaries require high-resolution data. We present an event observed by the Magnetospheric Multiscale (MMS) mission as the spacecraft cross a reconnection diffusion region at the magnetopause. We investigate the kinetic structure of the reconnection layer including particle distribution functions and waves and find what terms in the generalized Ohm's law balances the observed electric field.

  2. Steady State Properties of Lock-On Current Filaments in GaAs

    NASA Astrophysics Data System (ADS)

    Kambour, K.; Kang, Samsoo; Myles, Charles W.; Hjalmarson, Harold P.

    1999-10-01

    Collective impact ionization has been used by Hjalmarson et al.(H. Hjalmarson, F. Zutavern, G. Loubriel, A. Baca, and D. Wake, Sandia Report SAND93-3972(1996).) to explain the lock-on effect, observed in optically activated, semi-insulating GaAs switches. We have used this theory to study some of the steady state properties of the lock-on current filaments which accompany this effect. In steady state, the energy gained from the electric field is exactly compensated for by the the energy lost due to the phonon cooling of the hot carriers. In the simplest approximation, the carrier distribution approaches a quasi-equilibrium Maxwell-Boltzmann distribution. In this presentation we report preliminary results on the validity of this quasi-equilibrium approximation. We find that this approximation leads to a filament carrier density which is much lower than the high density needed to achieve a quasi-equilibrium distribution. Further work is in progress.

  3. Spatial and temporal evolution of filamentation instability in a current-carrying plasma

    SciTech Connect

    Mohammadhosseini, B.; Niknam, A. R.; Shokri, B.

    2010-12-15

    The spatial and temporal evolution of the electric and magnetic fields in a current-carrying plasma is investigated in the nonlinear regime. Using the magnetohydrodynamic equations, a nonlinear diffusion equation for the magnetic field in the plasma is obtained. This nonlinear equation is numerically solved and the spatiotemporal evolution of the electric and magnetic fields and the electron density distribution are plotted. It is shown that as the time passes, the profile of the electric and magnetic fields changes from a sinusoidal shape to a saw-tooth one and the electron density distribution becomes very steepened. Also, the mechanism of the filament formation is then discussed. Furthermore, the effects of the thermal motion, collisions, and ion mass on growth rate of filaments as well as the saturation time are argued. Finally, it is found that the energy dissipation is associated with the aforementioned effects and strong plasma density gradient.

  4. Electromagnetic Perturbations in the Reconnecting Current Sheet in MRX

    SciTech Connect

    Dorfman, Seth; Ji, Hantao; Yamada, MasAki; Ren Yang; Gerhardt, Stefan; Kulsrud, Russell; McGeehan, Brendan; Wang Yansong

    2006-11-30

    Magnetic reconnection is a fundamental plasma process in which magnetic field lines break and reconnect, converting magnetic field energy into particle kinetic energy. Electromagnetic fluctuations, which may play a role in fast reconnection, are studied from both an experimental and theoretical standpoint. The waves, which are in the lower hybrid range of frequencies, may be produced by a plasma instability known as the oblique lower hybrid drift instability. When the electron drift velocity is large, the theory predicts coupling between whistler and acoustic waves in the ion frame that may lead to an instability in the vicinity of the current sheet. On the experimental side, an antenna placed in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory is used to apply perturbations, and their propagation characteristics are measured. Results from a 2mm diameter antenna indicate that any induced fluctuations are confined to the current sheet and are preferentially excited in the direction of electron flow within the layer. Preliminary data from a 2cm diameter antenna shows a wave propagating in the electron flow direction at the local electron drift velocity. Thus electron drift appears to play a crucial role in the appearance of fluctuations.

  5. Current Sheet Formation, Equilibria and Heating in the Closed Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.

    2014-12-01

    Parker model for coronal heating is investigated within theframework of reduced magnetohydrodynamics (RMHD) in cartesian geometry. A popular hypothesis is that in response to slow photospheric motionsthe magnetic field evolves quasi-statically through a seriesof unstable equilibria. Instabilities, e.g., kink modes or else,allow the release of energy while the field relaxes to a new equilibrium.On the other hand it has long been suggested that the dynamics relevant to the basic heating of coronal loops may not entaila quasi-static evolution (Parker 1972, 1994), and recently it has beenshown that the relaxation of an initial configuration out of equilibriumdevelops current sheets without accessing intermediate equilibria (Rappazzo & Parker 2013).The properties of the equilibria are therefore key in understanding thedynamics of coronal heating both in the case of low-frequency photospheric motions (DC) and for propagating waves (AC).Equilibria and nonlinear dynamics are studied numerically and theoretically,explaining why dynamics are inhibited below a critical twist, while for highervalues of the fluctuations nonlinear dynamics lead to the formation of current sheets (and magnetic reconnection in the non ideal case), whose thickness istracked with the analiticity strip method and shown to decrease at least exponentiallydown to dissipative lenght-scales on fast ideal Alfvenic timescales. The impact onthe heating of solar and stellar coronae will be discussed.

  6. Reconnection in photospheric-chromospheric current sheet and coronal heating

    SciTech Connect

    Kumar, P.; Kumar, N.; Uddin, W.

    2011-02-15

    It has been observed by various ground and space based solar missions that magnetic reconnection occurs frequently in the photosphere-chromosphere region as well as in the solar corona. The purpose of this article is to examine the process of reconnection in thin current sheet formed between two oppositely directed magnetic flux tubes in photospheric-chromospheric region. Using the data of different atmospheric models for the solar photosphere and chromosphere, we have estimated the rate of magnetic reconnection in terms of Alfvenic Mach number, growth rate of tearing mode, island length scales, and energy dissipation rate necessary to heat the chromospheric plasma. It is found that magnetic Reynolds number for the current sheet in the chromosphere varies from 1.14 Multiplication-Sign 10{sup 3} to 7.14 Multiplication-Sign 10{sup 6} which indicates that the field lines in the photosphere and chromosphere reconnect with speed, that is, 0.00034 to 0.0297 times the Alfven speed. Frequency of the MHD waves generated in the chromosphere reconnection region is of the order of 100 Hz, so these high-frequency waves may be the sources of coronal heating and solar wind acceleration.

  7. Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  8. Earth magnetotail current sheet near and beyond the Lunar orbit

    NASA Astrophysics Data System (ADS)

    Vasko, I.; Petrukovich, A. A.; Artemyev, A.; Nakamura, R.; Zelenyi, L. M.

    2015-12-01

    We analyze the structure of the Earth magnetotail current sheet (CS) in middle, -50 REcurrent sheet thickness L, current density amplitude j0 and velocity vD=j0/e n0 (n0 is the plasma density). We analyze dawn-dusk distributions of the CS parameters: L is about 3000 km at the dusk flank and grows up to 12000 km toward the dawn flank; j0 grows toward the dusk flank by a factor of 2-3; the most intense CSs (with higher vD) are observed near the midnight. We show that ion-scale CSs with the thickness of several ion thermal gyroradii (say less than seven) are observed in middle and distant tail regions in more than 50% of crossings. For observed CSs electrons provide likely the dominant contribution to the current density. We divide the subset into intense and weak CSs (using parameter vD). The weak CSs have thickness of about 20 ion thermal gyroradii and Bz of about 1.5 nT. The intense CSs have thickness of about 3-7 thermal gyroradii and much smaller Bz implying a more stretched field line configuration. For intense CSs velocity vD is larger for larger amplitudes of ion bulk velocity vx that is likely due to larger contribution of Speiser ions. Intense CSs may be responsible for the Bursty Bulk Flow generation in the middle and distant tail regions.

  9. Comparison of the spinning of selachian egg case ply sheets and orb web spider dragline filaments.

    PubMed

    Knight, D P; Vollrath, F

    2001-01-01

    Liquid crystal spinning appears to be widespread in the animal kingdom, utilizing protein dopes to give materials with a range of different secondary structures including beta-pleat, alpha-helix and collagen-fold. Here we seek to identify the essential design features used in natural liquid crystal spinning by comparing the spinning of two very different materials: the egg case wall of Selachians (dogfish, rays, and their allies) and the dragline silk of orb web spiders. The fish extrudes a "sea and island" composite in which the islands consist of flat ribbons of carefully orientated collagen and the sea, small quantities of an amorphous matrix. Dragline silk filaments are largely constructed from spidroin, a beta protein and have a skin and core structure together with two to three coats. The essential design features common to both systems appear to be the following: (i) intracellular co-storage of a hexagonal columnar liquid crystalline component and a peroxidase within the same secretory vesicles; (ii) luminal storage of a highly concentrated liquid crystalline dope; (iii) use of a dope containing immiscible droplets; (iv) hyperbolic extrusion dies; (v) control of pH and water content of the dope; (vi) preorientation of dope molecules before assembly into fibrils; (vii) combination of extrusion die, treatment/coating bath, and solvent recovery plant within a single microminiaturized device; (viii) slow natural spinning rates. The most important difference is that spiders produce a tough material by unfolding and hydrogen-bonding their silk dope molecules while Selachian fish do it by covalently cross-linking the molecules without unfolding them. PMID:11749189

  10. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng

    2003-04-30

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| {approx} 9 R{sub E}) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J{sub {phi}} {approx} 10 nA/m{sup 2}) and very high plasma {beta} ({beta} {approx} 40) between 7 and 10 R{sub E}. The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J{sub {parallel}max} {approx} 3 {micro}A/m{sup 2}) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents.

  11. Catapult current sheet relaxation model confirmed by THEMIS observations

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  12. Wavelet-based coherent vorticity sheet and current sheet extraction from three-dimensional homogeneous magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Yoshimatsu, Katsunori; Kondo, Yuji; Schneider, Kai; Okamoto, Naoya; Hagiwara, Hiroyuki; Farge, Marie

    2009-08-01

    A method for extracting coherent vorticity sheets and current sheets out of three-dimensional homogeneous magnetohydrodynamic (MHD) turbulence is proposed, which is based on the orthogonal wavelet decomposition of the vorticity and current density fields. Thresholding the wavelet coefficients allows both fields to be split into coherent and incoherent parts. The fields to be analyzed are obtained by direct numerical simulation (DNS) of forced incompressible MHD turbulence without mean magnetic field, using a classical Fourier spectral method at a resolution of 5123. Coherent vorticity sheets and current sheets are extracted from the DNS data at a given time instant. It is found that the coherent vorticity and current density preserve both the vorticity sheets and the current sheets present in the total fields while retaining only a few percent of the degrees of freedom. The incoherent vorticity and current density are shown to be structureless and of mainly dissipative nature. The spectral distributions of kinetic and magnetic energies of the coherent fields only differ in the dissipative range, while the corresponding incoherent fields exhibit near-equipartition of energy. The probability distribution functions of total and coherent fields for both vorticity and current density coincide almost perfectly, while the incoherent fields have strongly reduced variances. Studying the energy flux confirms that the nonlinear dynamics is fully captured by the coherent fields only.

  13. NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS

    SciTech Connect

    Borovsky, Joseph E.; Denton, Michael H.

    2011-10-01

    It has been conjectured that strong current sheets are the sites of proton heating in the solar wind. For the present study, a strong current sheet is defined by a >45{sup 0} rotation of the solar-wind magnetic-field direction in 128 s. A total of 194,070 strong current sheets at 1 AU are analyzed in the 1998-2010 ACE solar-wind data set. The proton temperature, proton specific entropy, and electron temperature at each current sheet are compared with the same quantities in the plasmas adjacent to the current sheet. Statistically, the plasma at the current sheets is not hotter or of higher entropy than the plasmas just outside the current sheets. This is taken as evidence that there is no significant localized heating of the solar-wind protons or electrons at strong current sheets. Current sheets are, however, found to be more prevalent in hotter solar-wind plasma. This is because more current sheets are counted in the fast solar wind than in the slow solar wind, and the fast solar wind is hotter than the slow solar wind.

  14. Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets

    NASA Astrophysics Data System (ADS)

    Mei, Z.; Shen, C.; Wu, N.; Lin, J.; Murphy, N. A.; Roussev, I. I.

    2012-10-01

    Magnetic reconnection plays a critical role in energy conversion during solar eruptions. This paper presents a set of magnetohydrodynamic experiments for the magnetic reconnection process in a current sheet (CS) formed in the wake of the rising flux rope. The eruption results from the loss of equilibrium in a magnetic configuration that includes a current-carrying flux rope, representing a pre-existing filament. In order to study the fine structure and micro processes inside the CS, mesh refinement is used to reduce the numerical diffusion. We start with a uniform, explicitly defined resistivity which results in a Lundquist number S = 104 in the vicinity of CS. The use of mesh refinement allows the simulation to capture high-resolution features such as plasmoids from the tearing mode and plasmoid instability regions of turbulence and slow-mode shocks. Inside the CS, magnetic reconnection goes through the Sweet-Parker and the fractal stages, and eventually displays a time-dependent Petschek pattern. Our results support the concept of fractal reconnection suggested by Shibata et al. and Shibata & Tanuma, and also suggest that the CS evolves through Sweet-Parker reconnection prior to the fast reconnection stage. For the first time, the detailed features and/or fine structures inside the coronal mass ejection/flare CS in the eruption were investigated in this work.

  15. The peculiarities of formation of thin current sheet in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Kropotkin, Alexey; Artemyev, Anton; Malova, Helmi; Domrin, Vladimir

    We investigate the process of self-consistent thinning of magnetotail current sheet in the presence of the evolving magnetic field normal component Bz, which usually decreases during the substorm growth phase. Using PIC codes to describe plasma processes with ions becoming demagnetized and electrons being considered as the cold neutralizing background, we show that the appearance of the self-consistent electric field component inside CS can lead to the current sheet thinning and to the appearance of an extremely thin current sheet with thickness close to the ion gyroradius. Due to particle [ExB] drift during the current sheet evolution, the enhanced trapping of ions near the current sheet central plane takes place. It is shown that the density of quasi-trapped particles around current sheet at the final stage depends on both the value of the initial magnetic field normal component Bz, and the speed of the Bz decrease. If the initial magnetic field normal component is less than about 0.14 of the tangential field at the edges, the trapped plasma density near the current sheet is small. As a result, the above mentioned extremely thin current sheet is formed. In the opposite case, when the initial normal component related to the tangential field is larger than 0.14, the density of trapped particles is much higher, which produces effective thickening of the current sheet. In both cases transient (Speiser) ions are the main current carriers, but in the second case local diamagnetic currents of the trapped plasma perturb the сurrent sheet profile making it thicker. Also trapped particles can be responsible for intense negative currents at the current sheet edges. During the Bz decrease, an additional effect of ion polarization drifts in the Y direction can compete with these negative diamagnetic fields of quasi-trapped ions. Therefore the ion dynamics is probably the general mechanism which contributes to the formation of thin current sheet and its fine structure.

  16. THEMIS two-point measurements of the cross-tail current density: A thick bifurcated current sheet in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Saito, Miho

    2015-08-01

    The basic properties of the near-Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail-like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets.

  17. Analogies between Jovian magnetodisk and heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman; Khabarova, Olga; Malova, Helmi

    Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., Астрономический журнал, V. 90, №11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013

  18. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments.

    PubMed

    Calvaresi, Matteo; Eckhart, Leopold; Alibardi, Lorenzo

    2016-06-01

    The hard corneous material of avian and reptilian scales, claws, beak and feathers is mainly derived from the presence of proteins formerly known as beta-keratins but now termed Corneous beta-proteins of sauropsids to distinguish them from keratins, which are members of the intermediate filament protein family. The modeling of the conserved 34 amino acid residues long central beta-sheet region of Corneous beta-proteins using an ab initio protein folding and structure prediction algorithm indicates that this region is formed by four antiparallel beta-sheets. Molecular dynamic simulations and Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) analysis showed that the disposition of polar and apolar amino acids within the beta-region gives rise to an amphipathic core whose stability is further increased, especially in an aqueous environment, by the association into a dimer due to apolar interactions and specific amino-acid interactions. The dimers in turn polymerize into a 3nm thick linear beta-filament due to van der Waals and hydrogen-bond interactions. It is suggested that once this nuclear core of anti-parallel sheets evolved in the genome of a reptilian ancestor of the extant reptiles and birds about 300 millions years ago, new properties emerged in the corneous material forming scales, claws, beaks and feathers in these amniotes based on the tendency of these unique corneous proteins to form stable filaments different from keratin intermediate filaments or sterical structures formed by other corneous proteins so far known. PMID:26965557

  19. Particle energization and current sheets in Alfvenic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto

    2015-11-01

    Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.

  20. Current sheet thinning, reconnection onset, and auroral morphology during geomagnetic substorms

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M. S.

    2015-12-01

    Geomagnetic substorms represent a fundamental energy release mechanism for the terrestrial magnetosphere. Specifically, the evolution of thin currents sheets during the substorm growth phase plays a key role for substorms because such current sheets present a much lower threshold for the onset of tearing modes and magnetic reconnection than the usually thick magnetotail current sheet. Here we examine and compare two basic processes for current sheet thinning in the Earth's magnetotail: Current sheet thinning (1) through closed magnetic flux depletion (MFD) in the near Earth magnetotail caused by divergent flux transport to replace closed flux on the dayside and (2) through accumulation of open flux magnetic flux in the tail lobes also caused by dayside reconnection. Both processes are expected to operate during any period of enhanced dayside reconnection. It is demonstrated that closed magnetic flux depletion (MFD) in the near Earth magnetotail and the increase of open lobe magnetic flux can lead to the evolution of two separate thin current sheets in the near Earth and the mid tail regions of the magnetosphere. While the auroral morphology associated with MFD and near Earth current sheet formation is well consistent with typical substorm growth observation, midtail current sheet formation through lobe flux increase shows only a minor influence on the auroral ionosphere. We discuss the physics of the dual current sheet formation and local and auroral properties of magnetic reconnection in either current sheet. It is suggested that only reconnection onset in the near Earth current sheet may be consistent with substorm expansion because the flux tube entropy depletion of mid tail reconnection appears insufficient to cause geosynchronous particle injection and dipolarization. Therefore reconnection in the mid tail current sheet is more likely associated with bursty bulk flows or dipolarization fronts which stop short of geosynchronous distances.

  1. Earth's distant magnetotail current sheet near and beyond lunar orbit

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Petrukovich, A. A.; Artemyev, A. V.; Nakamura, R.; Zelenyi, L. M.

    2015-10-01

    We analyze the structure of the Earth magnetotail current sheet (CS) in middle, X∈[-50,-20] RE, and distant, X∈[-100,-80] RE, regions using data set of 573 CS crossings by Geotail in 1994-1995. For a subset of 213 CSs we determine the CS thickness L, average current density j0, and velocity vD=j0/en0 (n0 is the ion number density). We find similar dawn-dusk distributions of CS parameters for middle and distant tail: L is about 3000 km at the dusk flank and grows up to 12,000 km toward the dawn flank; j0 grows toward the dusk flank by a factor of 2-3; and the most intense CSs (with higher vD) are observed near midnight. We show that ion-scale CSs with the thickness of several ion thermal gyroradii (say less than seven) are observed in middle and distant tail in more than 50% of crossings. For observed CSs electrons likely provide the dominant contribution to the current density. We divide the subset into intense and weak CSs (using parameter vD). Weak CSs have thickness of about 20 ion thermal gyroradii and Bz of about 1.5 nT. Intense CSs have thickness of about 3-7 thermal gyroradii and much smaller Bz implying more stretched field line configuration. Intense CSs are accompanied by fast ion flows: vD is larger for larger amplitudes of ion bulk velocity vx that is likely due to larger contribution of Speiser ions. The properties of the CS in middle and distant tail are compared with those found for the near-Earth tail.

  2. Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Sanny, Jeff; Mcpherron, R. L.; Russell, C. T.; Baker, D. N.; Pulkkinen, T. I.; Nishida, A.

    1994-01-01

    The thinning of the near-Earth current sheet during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 magnetospheric substorm is studied. The expansion onset of the substorm occurred at 1054 UT, March 22, 1979. During the growth phase, two spacecraft, International Sun Earth Explorer (ISEE) 1 and ISEE 2, were within the current sheet approximately 13 R(sub E) from the Earth and obtained simultaneous high-resolution magnetic data at two points in the current sheet. Plasma data were also provided by the ISEE spacecraft and solar wind data by IMP 8. To facilitate the analysis, the GSM magnetic field data are transformed to a 'neutral sheet coordinate system' in which the new x axis is parallel to the average magnetic field above and below the neutral sheet and the new y axis lies in the GSM equatorial plane. A model based on the assumption that the current sheet is a time-invariant structure fails to predict neutral sheet crossing times. Consequently, the Harris sheet model, which allows one to remove the restriction of time invariancy, is used instead. It is found that during the growth phase, a model parameter corresponding to the thickness of the current sheet decreased exponentially from about 5 R(sub E) to 1 R(sub E) with a time constant of about 14 min. In addition, the ISEE 1 and ISEE 2 neutral sheet crossings after expansion onset indicate that the neutral sheet was moving upward at 7 km/s relative to the spacecraft. Since both crossings occurred in approximately 80 s, the current sheet thickness is estimated to be about 500 km. These results demonstrate that the near-Earth current sheet undergoes dramatic thinning during the substorm growth phase and expansion onset.

  3. Modeling the heliospheric current sheet: Solar cycle variations

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Linker, J. A.; Mikić, Z.

    2002-07-01

    In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.

  4. The evolution of plane current{endash}vortex sheets

    SciTech Connect

    Dahlburg, R.B.; Boncinelli, P.; Einaudi, G.

    1997-05-01

    The linear and nonlinear evolution of the plane current{endash}vortex sheet, with a basic magnetic field given by B{sub 0}(y)=tanhy{bold {cflx e}}{sub z}, and a basic velocity field given by W{sub 0}(y)=VtanhRy{bold {cflx e}}{sub z}, is examined. The discovery of an ideal instability in a large region of parameter space previously found to be stable is reported. In this paper numerical evidence is presented that this parameter regime is in fact highly unstable, with growth rates exceeding those of the modes existing in the region of parameter space previously found to be unstable. An examination of the perturbation energy balance indicates that enhanced energy transfer from the basic velocity field to the perturbed velocity and magnetic fields is responsible for the enhanced growth rate. This occurs due to processes absent from both the resistive and Kelvin{endash}Helmholtz instabilities. Nonlinearly it is found that magnetic reconnection can occur on an ideal time scale in certain cases. These faster instabilities lead to a more violent cascade of excitation in the streamwise direction, as evidenced by the rapid formation of higher harmonics of the initial disturbance. A nonlinear saturation due to increased correlation of the perturbed velocity and magnetic field occurs for all cases. {copyright} {ital 1997 American Institute of Physics.}

  5. Characteristics of a current sheet shear mode in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-05-01

    The current study shows the characteristics of the kink-type electromagnetic mode excited in the thin current layer formed around the x-line during the quasi-steady phase of magnetic reconnection. The linear wave analyses are carried out for the realistic current sheet profile which differs significantly from the Harris current sheet. It is found that the peak growth rate is very sensitive to the current sheet width even though the relative drift velocity at the center of the current sheet is fixed. This indicates that the mode is excited by the velocity shear rather than the relative drift velocity. Thus, the mode is termed here a current sheet shear mode. It is also shown that the wavenumber ky has a clear mass ratio dependency as ky λi ∝ (mi /me )1/4, implying the coupling of the ion and electron dynamics, where λi is the ion inertia length.

  6. Review on Current Sheets in CME Development: Theories and Observations

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Murphy, Nicholas A.; Shen, Chengcai; Raymond, John C.; Reeves, Katharine K.; Zhong, Jiayong; Wu, Ning; Li, Yan

    2015-11-01

    We introduce how the catastrophe model for solar eruptions predicted the formation and development of the long current sheet (CS) and how the observations were used to recognize the CS at the place where the CS is presumably located. Then, we discuss the direct measurement of the CS region thickness by studying the brightness distribution of the CS region at different wavelengths. The thickness ranges from 104 km to about 105 km at heights between 0.27 and 1.16 R_{⊙} from the solar surface. But the traditional theory indicates that the CS is as thin as the proton Larmor radius, which is of order tens of meters in the corona. We look into the huge difference in the thickness between observations and theoretical expectations. The possible impacts that affect measurements and results are studied, and physical causes leading to a thick CS region in which reconnection can still occur at a reasonably fast rate are analyzed. Studies in both theories and observations suggest that the difference between the true value and the apparent value of the CS thickness is not significant as long as the CS could be recognised in observations. We review observations that show complex structures and flows inside the CS region and present recent numerical modelling results on some aspects of these structures. Both observations and numerical experiments indicate that the downward reconnection outflows are usually slower than the upward ones in the same eruptive event. Numerical simulations show that the complex structure inside CS and its temporal behavior as a result of turbulence and the Petschek-type slow-mode shock could probably account for the thick CS and fast reconnection. But whether the CS itself is that thick still remains unknown since, for the time being, we cannot measure the electric current directly in that region. We also review the most recent laboratory experiments of reconnection driven by energetic laser beams, and discuss some important topics for future works.

  7. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability.

    PubMed

    Uzdensky, D A; Loureiro, N F

    2016-03-11

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations. PMID:27015487

  8. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.; Loureiro, N. F.

    2016-03-01

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

  9. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    SciTech Connect

    Catapano, F. Zimbardo, G.; Artemyev, A. V. Vasko, I. Y.

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  10. Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.; Boldyrev, Stanislav

    2013-07-01

    We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.

  11. The influence of the heliospheric current sheet and angular separation on flare-accelerated solar wind

    NASA Technical Reports Server (NTRS)

    Henning, H. M.; Scherrer, P. H.; Hoeksema, J. T.

    1985-01-01

    A complete set of major flares was used to investigate the effect of the heliospheric current sheet on the magnitude of the flare associated disturbance measured at earth. It was also found that the angular separation tended to result in a smaller disturbance. Thirdly, it was determined that flares tend to occur near the heliospheric current sheet.

  12. The influence of the heliospheric current sheet and angular separation on flare accelerated solar wind

    NASA Technical Reports Server (NTRS)

    Henning, H. M.; Scherrer, P. H.; Hoeksema, J. T.

    1985-01-01

    A complete set of major flares was used to investigate the effect of the heliospheric current sheet on the magnitude of the flare associated disturbance measured at Earth. It was also found that the angular separation tended to result in a smaller disturbance. Thirdly, it was determined that flares tend to occur near the heliospheric current sheet.

  13. Periodic Crossings of Saturn's Current Sheet by Cassini: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Arridge, C. S.; Dougherty, M. K.; Russell, C. T.

    2006-12-01

    Cassini continues to provide exciting new observations from the magnetosphere of Saturn. These observations are helping us understand the structure and dynamics of this rotationally dominant magnetosphere. One of the puzzling observations from the latest magnetotail passes is the occurrence of periodic current sheet crossings in a magnetosphere known for its almost axis-symmetric magnetic field. In these crossings, the radial and azimuthal components of the magnetic field reverse sign twice during a spin period of Saturn in a manner similar to the dipole tilt induced motions of the Jovian current sheet. As the dipole tilt of Saturn's magnetic field is less than 0.2 degree, it is not clear how the current sheet can flap up and down over the spacecraft when it is located quite far from the nominal location of the current sheet. In this presentation, we will examine all of the data so far collected by Cassini to catalogue all of the periodic current sheet crossings in the data. We will examine parameters like the radial distance, latitude, longitude and local time of the spacecraft to understand under what conditions the current sheet crossings are observed. We comment on the relationship between these periodic current sheet crossings to periodicities in the quasi- dipolar region of the magnetosphere. Finally, we will explore models of Saturn's current sheet that can explain the periodicities of the observed magnetic field.

  14. Galactic Cosmic Ray Modulation near the Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Thomas, S. R.; Owens, M. J.; Lockwood, M.; Scott, C. J.

    2014-07-01

    Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called `snow-plough' effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.

  15. Electromagnetic fluctuations due to current sheet instabilities in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Büchner, Jörg; Munoz Sepulveda, Patricio Alejandro

    2016-07-01

    In collisionless magnetic reconnection, dissipation region, where frozen-in condition of magnetic field breaks down, develops two scale structure, viz., electron current sheets embedded inside ion current sheets. Instabilities of these current sheets lead to the development of electromagnetic turbulence which can cause anomalous dissipation enhancing the reconnection rate. Laboratory experiments, e.g., Magnetic Reconnection Experiment and VINETA-II have measured fluctuations in electron current sheets in the lower hybrid frequency range. We present simulations of the electromagnetic turbulence generated by current sheet instabilities. The characteristic features of the electromagnetic turbulence, which can be used to identify the unstable modes responsible for the turbulence, will be studied. The results will be compared with the laboratory experiments.

  16. The Venus ionopause current sheet - Thickness length scale and controlling factors

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.; Luhmann, J. G.; Scarf, F. L.; Brace, L. H.

    1981-01-01

    Data from the fluxgate magnetometer, plasma wave experiment and Langmuir probe aboard Pioneer Venus are used to investigate the characteristic thickness length scale of the ionopause current sheet, as well as how this length scale is controlled. Thickness is found to be a bistatic quality, large scales being associated with high field strengths and current sheet altitudes below 300 km, while smaller scales are found with lower field strengths and ionopause altitudes above 300 km. Ion collisions and plasma wave activity contribute to the formation of the broader, low-altitude ionopause current sheets. Although evidence suggests that the wave activity influences the thin ionopause current sheets, a simple model points to the control of the thin ionopause current sheets by ionospheric ion and electron temperatures

  17. Numerical simulation of three-dimensional reconnection due to the instability of collisionless current sheets

    NASA Astrophysics Data System (ADS)

    Büchner, J.; Kuska, J.-P.

    1997-01-01

    Based on analytical calculations we have currently argued that spontaneous reconnection through thin collisionless current sheets is an essentially three-dimensional (3 D) process (Büchner, 1996 a, b). Since 3 D kinetic PIC codes have become available, the three dimensional nature of the collisionless current sheet decay are now illustrated by numerical simulations (Büchner and Kuska, 1996; Pritchett and Coroniti, 1996; Zhu and Winglee, 1996). While the latter two claim a coupling to a longer wavelength kink mode as a main factor, destabilizing thin current sheets in 3 D, our simulations have revealed that even shorter scale perturbations in the current direction suffice to destabilize thin sheets very quickly. Since past simulation runs, however, were limited to mass ratios near unity, the influence of the electrons was not treated adequately. We have now investigated the stability of thin collisionless current sheets including 64 times lighter negatively charged particles. We can now show that while the two-dimensional tearing instability slows down for M = M_p/m_e = 64, the three-dimensional current sheet decay is a much faster process - practically as fast as the mass ratio M = 1 3 D sheet decay, even without kinking the sheet. We further conclude that, unlike the two-dimensional tearing instability, the three-dimensional decay of thin current sheets is not controlled by the electrons. For a sheet width comparable with the ion inertial length, we also recovered signatures of the Hall effect as predicted by Vasyliunas (1975) in the mass ratio M = 64 case. The ion inertial length seems to be the critical scale at which the sheet starts to decay.

  18. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  19. Bifurcated current sheets produced by magnetic reconnection in the solar wind

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Szabo, A.

    2008-10-01

    We report observations from the Wind spacecraft of Petschek-like magnetic reconnection exhausts and thin current sheets in the solar wind on 19 and 20 November 2007, encompassing a solar wind disturbance driven by a magnetic cloud and followed by a corotating high-speed stream. We have identified an unusually large number (11) of reconnection exhausts in this 2-day interval using 3-s plasma and magnetic field data. Despite the relatively smooth large-scale field rotation associated with the magnetic cloud, five of the exhausts occurred within the cloud; three of those exhausts were associated with extremely small (<18°) local field shear angles. All 11 exhausts contained double-step magnetic field rotations; such double-step rotations are called bifurcated current sheets since they result from the splitting of reconnecting current sheets as an after-effect of the reconnection process. We have also identified 27 current sheets in this 2-day interval that were too thin to be adequately resolved by the 3-s plasma measurement cadence. All of these thin current sheets were well resolved by the 92 ms magnetic field measurement. At least three, and possibly six, of these relatively thin current sheets had double-step magnetic field rotations, indicating the underlying current sheets had probably been disrupted by magnetic reconnection. Current sheets thinner than ˜3 ion inertial lengths were not present in this data set. The relative lack of such ultrathin current sheets in the solar wind in general suggests that such current sheets usually are quickly disrupted by magnetic reconnection.

  20. Bifurcated Current Sheets Produced by Magnetic Reconnection in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Szabo, A.

    2008-12-01

    We report observations from the Wind spacecraft of Petschek-like magnetic reconnection exhausts and thin current sheets in the solar wind on 19 and 20 November 2007, encompassing a solar wind disturbance driven by a magnetic cloud and followed by a corotating high-speed stream. We have identified an unusually large number (11) of reconnection exhausts in this 2-day interval using 3-s plasma and magnetic field data. Despite the relatively smooth, large-scale field rotation associated with the magnetic cloud, 5 of the exhausts occurred within the cloud; 3 of those exhausts were associated with extremely small (less than 18 deg) local field shear angles. All 11 exhausts contained double-step magnetic field rotations; such double-step rotations are called bifurcated current sheets since they result from the splitting of reconnecting current sheets as an after-effect of the reconnection process. We have also identified 27 current sheets in this 2-day interval that were too thin to be adequately resolved by the 3-s plasma measurement cadence. All of these thin current sheets were well resolved by the 92 ms magnetic field measurement. At least 3, and possibly 6, of these relatively thin current sheets had double-step magnetic field rotations, indicating the underlying current sheets had probably been disrupted by magnetic reconnection. Current sheets thinner than about 3 ion inertial lengths were not present in this data set. The relative lack of such ultra-thin current sheets in the solar wind in general suggests that such current sheets usually are quickly disrupted by magnetic reconnection.

  1. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  2. On the role of topological complexity in spontaneous development of current sheets

    SciTech Connect

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  3. On the role of topological complexity in spontaneous development of current sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-08-01

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  4. A coronal magnetic field model with horizontal volume and sheet currents

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1994-01-01

    When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.

  5. Differential measurement of cosmic-ray gradient with respect to interplanetary current sheet

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Behannon, K. W.; Burlaga, L. F.

    1985-01-01

    Simultaneous magnetic field and charged particle measurements from the Voyager spacecraft at heliographic latitude separations from 10 deg. to 21 deg. are used to determine the latitude gradient of the galactic cosmic ray flux with respect to the interplanetary current sheet. By comparing the ratio of cosmic ray flux at Voyager 1 to that a Voyager 2 during periods when both spacecraft are first nort and then south of the interplanetary current sheet, we find an estimate of the latitudinal gradient with respect to the current sheet of approximately -0.15 + or 0.05% deg under restricted interplanetary conditions.

  6. Radial deformation of the solar current sheet as a cause of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.

  7. Differential measurement of cosmic-ray gradient with respect to interplanetary current sheet

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Behannon, K. W.; Burlaga, L. F.

    1985-01-01

    Simultaneous magnetic field and charged particle measurements from the Voyager pacecraft at heliographic latitude separations from 10 deg to 21 deg are used to determine the latitude gradient of the galactic cosmic ray flux with respect to the interplanetary current sheet. By comparing the ratio of cosmic ray flux at Voyager 1 to that at Voyager 2 during periods when both spacecraft are first north and then south of the interplanetary current sheet, we find an estimate of the latitudinal gradient with respect to the current sheet of approximately -0.15 + or- 0.05%/deg under restricted interplanetary conditions.

  8. Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition

    PubMed Central

    Hawaldar, Ranjit; Merino, P.; Correia, M. R.; Bdikin, Igor; Grácio, José; Méndez, J.; Martín-Gago, J. A.; Singh, Manoj Kumar

    2012-01-01

    We report hot filament thermal CVD (HFTCVD) as a new hybrid of hot filament and thermal CVD and demonstrate its feasibility by producing high quality large area strictly monolayer graphene films on Cu substrates. Gradient in gas composition and flow rate that arises due to smart placement of the substrate inside the Ta filament wound alumina tube accompanied by radical formation on Ta due to precracking coupled with substrate mediated physicochemical processes like diffusion, polymerization etc., led to graphene growth. We further confirmed our mechanistic hypothesis by depositing graphene on Ni and SiO2/Si substrates. HFTCVD can be further extended to dope graphene with various heteroatoms (H, N, and B, etc.,), combine with functional materials (diamond, carbon nanotubes etc.,) and can be extended to all other materials (Si, SiO2, SiC etc.,) and processes (initiator polymerization, TFT processing) possible by HFCVD and thermal CVD. PMID:23002423

  9. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Plasmoid Instability

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Uzdensky, Dmitri

    The recent realization that Sweet-Parker reconnection current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets are unlikely to be realized in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is just being formed. We present such an analysis in the context of nonlinear resistive MHD for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that, under most conditions, the longest-wavelength mode dominates, resulting in just one or two big plasmoids produced in the immediate aftermath of current sheet formation. Specific examples pertaining to solar flares and to parasitic modes of the magnetorotational instability are provided.

  10. A current filamentation mechanism for breaking magnetic field lines during reconnection.

    PubMed

    Che, H; Drake, J F; Swisdak, M

    2011-06-01

    During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence. PMID:21633355

  11. Reconnection of Quasi-singular Current Sheets: The "Ideal" Tearing Mode

    NASA Astrophysics Data System (ADS)

    Pucci, Fulvia; Velli, Marco

    2014-01-01

    A strong indication that fast reconnection regimes exist within resistive magnetohydrodynamics was given by the proof that the Sweet-Parker current sheet, maintained by a flow field with an appropriate inflow-outflow structure, could be unstable to a reconnecting instability which grows without bound as the Lundquist number, S, tends to infinity. The requirement of a minimum value for S in order for the plasmoid instability to kick in does little to resolve the paradoxical nature of the result. Here we argue against the realizability of Sweet-Parker current sheets in astrophysical plasmas with very large S by showing that an "ideal" tearing mode takes over before current sheets reach such a thickness. While the Sweet-Parker current sheet thickness scales as ~S -1/2, the tearing mode becomes effectively ideal when a current sheet collapses to a thickness of the order of ~S -1/3, up to 100 times thicker than S -1/2, when (as happens in many astrophysical environments) S is as large as 1012. Such a sheet, while still diffusing over a very long time, is unstable to a tearing mode with multiple x-points: here we detail the characteristics of the instability and discuss how it may help solve the flare trigger problem and effectively initiate the turbulent disruption of the sheet.

  12. Motion of non-uniform double current-vortex sheets in magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, Chihiro

    2016-03-01

    A nonlinear motion of vortex sheets with a non-uniform current is investigated using the vortex blob method. The fluid interface forms a double layered current-vortex sheet due to the boundary condition possessing the induction equation. We can prove that the current only flows on the interface and that does not appear in the bulk when we apply the initial magnetic field to be parallel to the interface. We show that the current induced on a vortex sheet leads to a strong amplification of the magnetic field, taking the motion of vortex sheets in magnetohydrodynamic Richtmyer-Meshkov instability as an example. When the initial Lorentz force term is large, an oscillation due to the Alfvén wave appears and the nonlinear growth is suppressed.

  13. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (<3) values of the PVI index. We observed a distinct population of high PVI (>3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  14. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  15. An Observational Research on Magnetic Reconnection Current Sheet Occurred in Two Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Cai, Q. W.; Wu, N.; Lin, J.

    2015-11-01

    The coronal magnetic configuration is severely stretched by the disruption in the process of coronal mass ejection (CME), pushing the magnetic fields of opposite polarity to approach one another, and creating a magnetic neutral region (current sheet) behind CME. Magnetic reconnection taking place inside the current sheet converts the magnetic energy into heat and kinetic energy of the plasma, and the kinetic energy of energetic particles. The role of the current sheet in this process is two-fold: the region where reconnection occurs, and connecting the flare to the associated CME. We studied the events of 2003 January 3 and 2003 November 4, respectively. Development of the current sheet was observed in both cases. We investigated the dynamic features of the two events, as well as physical properties of the current sheet, on the basis of analyzing the observational data from LASCO (Large Angle and Spectrometric Coronagraph) and UVCS (Ultraviolet Coronagraph Spectrometer) on board SOHO (Solar and Heliospheric Observatory), and the Hα data from BBSO (Big Bear Solar Observatory) and YNAO (Yunnan Observatories). The existence of ions with high ionization state, such as Fe^{+17} and Si^{+11}, indicated a high temperature up to 3×10^{6}-5×10^{6} K. Direct measurements showed that the apparent thickness of the current sheet varies from 1.3×10^{4} to 1.1×10^{5} km, which increases first and then decreases with time. Using the CHIANTI code (v.7.1), we further calculated the averages of the electron temperature and the corresponding emission measure in the current sheet of the 2003 January 3 event, which were about 3.86× 10^{6} K and 6.1× 10^{24} cm^{-5}, respectively. We also noticed that the current sheet twisted forth and back in a quasi-periodical fashion during the event on 2003 November 4 by analyzing the data from SOHO/UVCS.

  16. Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles

    NASA Astrophysics Data System (ADS)

    Huybrechts, P.

    2003-04-01

    The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.

  17. An Empirical Model of Saturn's Current Sheet Based on Global MHD Modeling of Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Hansen, K. C.; Nickerson, J. S.; Gombosi, T. I.

    2014-12-01

    Cassini observations imply that during southern summer Saturn's magnetospheric current sheet is displaced northward above the rotational equator and should be similarly displaced southward during northern summer [C.S. Arridge et al., Warping of Saturn's magnetospheric and magnetotail current sheets, Journal of Geophysical Research, Vol. 113, August 2008]. Arridge et al. show that Cassini data from the noon, midnight and dawn local time sectors clearly indicate this bending and they present an azimuthally independent model to describe this bowl shaped geometry. We have used our global MHD model, BATS-R-US/SWMF, to study Saturn's magnetospheric current sheet under different solar wind dynamic pressures and solar zenith angle conditions. We find that under typical conditions the current sheet does bend upward and take on a basic shape similar to the Arridge model in the noon, midnight, and dawn sectors. However, the MHD model results show significant variations from the Arridge model including the degree of bending, variations away from a simple bowl shape, non-uniformity across local time sectors, drastic deviations in the dusk sector, and a dependence on the solar wind dynamic pressure. We will present a detailed description of our 3D MHD model results and the characteristics of the current sheet in the model. We will point out variations from the Arridge model. In addition, we will present a new empirical model of Saturn's current sheet that attempts to characterize the dependences on the local time sector and the solar wind dynamic pressure.

  18. A Theoretical Model of a Thinning Current Sheet in the Low-β Plasmas

    NASA Astrophysics Data System (ADS)

    Takeshige, Satoshi; Takasao, Shinsuke; Shibata, Kazunari

    2015-07-01

    Magnetic reconnection is an important physical process in various explosive phenomena in the universe. In previous studies, it was found that fast reconnection takes place when the thickness of a current sheet becomes on the order of a microscopic length such as the ion Larmor radius or the ion inertial length. In this study, we investigated the pinching process of a current sheet by the Lorentz force in a low-β plasma using one-dimensional magnetohydrodynamics (MHD) simulations. It is known that there is an exact self-similar solution for this problem that neglects gas pressure. We compared the non-linear MHD dynamics with the analytic self-similar solution. From the MHD simulations, we found that with the gas pressure included the implosion process deviates from the analytic self-similar solution as t\\to {t}0, where t0 is the explosion time when the thickness of a current sheet of the analytic solution becomes 0. We also found that a pair of MHD fast-mode shocks is generated and propagates after the formation of the pinched current sheet as t\\to {t}0. On the basis of the Rankine-Hugoniot relations, we derived the scaling law of the physical quantities with respect to the initial plasma beta in the pinched current sheet. Our study could help us estimate the physical quantities in the pinched current sheet formed in a low-β plasma.

  19. The Helium Abundance at Quiescent Current Sheets and the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Ko, Y.-K.; VonSteiger, R.

    2008-01-01

    Ulysses MAG data were used to identify current sheets during sunspot minimum years of 1994-1997 and 2004-2006. The purpose of limiting the dates was to focus attention on 'quiescent current sheets' with as little influence from ICMEs as possible. SWOOPS data were then used in a superposed epoch analysis to study Helium abundance in the vicinity of the current sheet, similar to the study done by Borrini et al. (1981). That earlier study found a narrow (ca. 2 day) minimum in He/H around the current sheet that is extremely variable from one year to the next in the period 1971-1978. A similar result is found here for data at all latitudes and distances in 2004-2006. Conversely, data from 1994-1997 produce a deep minimum several times wider (ca. 10 days). The reason for this is found to be that low He/H is more closely associated with slow wind than the current sheet per se. There are thus apparently at least two sources of slow wind, one associated with very low He/H of 0-0.02 and one associated with moderate abundance of 0.03-0.05. The large variability is a consequence of the relatively small number of current sheet encounters around solar minimum and the random distribution of low He/H intervals, lasting less than 1 day to more than 7 days, throughout slow wind.

  20. Fast magnetic reconnection in thin current sheets: effects of different current profiles and electron inertia in Ohm's law.

    NASA Astrophysics Data System (ADS)

    Pucci, Fulvia; Del Sarto, Daniele; Tenerani, Anna; Velli, Marco

    2015-04-01

    By examining sheets with thicknesses scaling as different powers of the Lundquist number S, we previously showed (Pucci and Velli, 2014) that the growth rate of the tearing mode increases as current sheets thin and, once the inverse aspect ratio reaches a scaling a/L = S-1/3, the time-scale for the instability to develop becomes of the order of the Alfvén time. That means that a fast instability sets in well before Sweet-Parker type current sheets can form. In addition, such an instability produces many islands in the sheet, leading to fast nonlinear evolution and most probably a turbulent disruption of the sheet itself. This has fundamental implications for magnetically driven reconnection throughout the corona, and in particular for coronal heating and the triggering of coronal mass ejections. Here we extend the study of reconnection instabilities to magnetic fields of grater complexity, displaying different current structures such as, for example, multiple or asymmetric current layers. We also consider the possibility of a Δ' dependence on wave-number k-p for different values of p, studying analogies and variations of the trigger scaling relation a/L ~ S-1/3 with respect to the Harris current sheet equilibrium. At large Lundquist numbers in typical Heliospheric plasmas kinetic effects become more important in Ohm's law: we consider the effects of electron skin depth reconnection, showing that we can define a trigger relation similar to the resistive case. The results are important to the transition to fast reconnection in the solar corona, solar wind, magnetosphere as well as laboratory plasmas. F. Pucci and M. Velli, "Reconnection of quasi-singular current sheets: the 'ideal" tearing mode" ApJ 780:L19, 2014.

  1. Excitation of an electrostatic wave by a cold electron current sheet of finite thickness

    NASA Technical Reports Server (NTRS)

    Hwang, K. S.; Fontheim, E. G.; Ong, R. S. B.

    1983-01-01

    Calculations for the threshold of current-driven instabilities and the growth rates of ion acoustic and electrostatic ion cyclotron instabilities in a magnetized plasma driven a current sheet with a finite width are presented. Maxwellian equations are employed to model the velocity distributions of electrons and ions in a direction perpendicular to the sheet. A dispersion relation is defined for the regions of instability, and boundary conditions are characterized in order to obtain a set of eigenvalue equations. Thresholds are delineated for various regions, including ducted mode solutions where only ion-acoustic waves are excited in areas where the frequency range significantly exceeds the ion cyclotron frequency. When a constant electron drift velocity is present, a thick current sheet is more unstable than a thin one. Fewer modes become unstable with a thinner sheet.

  2. Magnetohydrodynamic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.; Black, C.

    2011-12-01

    Phenomena ranging from the quiescent heating of the ambient plasma to the highly explosive release of energy and acceleration of particles in flares are conjectured to result from magnetic reconnection at electric current sheets in the Sun's corona. We are investigating numerically, using a macroscopic magnetohydrodynamic (MHD) model with adaptive mesh refinement, the formation and reconnection of a current sheet in an initially potential 2D magnetic field containing a null. Subjecting this simple configuration to unequal stresses in the four quadrants bounded by the X-line separatrix distorts the potential null into a double-Y-line current sheet. We find that even small distortions of the magnetic field induce the formation of a tangential discontinuity in the high-beta region around the null. A continuously applied stress eventually leads to the onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands. We compare the current-sheet development and evolution for three cases: quasi-ideal MHD with numerical resistivity only; uniformly resistive MHD; and MHD with an embedded kinetic reconnection model. Analogous kinetic simulations using particle-in-cell (PIC) methods to investigate the small-scale dynamics of the system also are being pursued (C. Black et al., this meeting). Our progress toward understanding this simple system will be reported, as will the implications of our results for the dynamic activity associated with coronal current sheets and for general multiscale modeling of magnetized plasmas in the Heliosphere. Our research was supported by NASA.

  3. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    SciTech Connect

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A.

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle acceleration in

  4. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    SciTech Connect

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are approx.1-5 x 10/sup 4/ km and approx.5-50 nA/m/sup 2/. Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of approx.1.2 x 10/sup 5/ K and approx.40 in the center of the current sheet to approx.1 x 10/sup 6/ K and approx.3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (approx.1 at ICE), and that a region of strongly enhanced mass loading (ion source rate approx.24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is approx.2.6 x 10/sup 26/ H/sub 2/O+/sec, which is only approx.1% of the independently determined total cometary efflux. 79 refs., 37 figs.

  5. Self-organization in space plasma: formation of magnetic shear in current sheets

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Delcourt, Dominique; Mingalev, Oleg; Malova, Helmi; Popov, Victor; Grigorenko, Elena; Petrukovich, Anatoli

    2016-07-01

    Thin current sheets are plasma structures that usually appear near reconnection regions. The presence of the shear magnetic field is characteristic for these structures. Self-consistent kinetic model of magnetotail thin current sheet (TCS) is used to understand the mechanisms of self-organization of sheared thin current sheets in a space plasma. It is shown that these configurations appear as a result of self-consistent evolution of some initial magnetic perturbation at current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field-aligned currents in the center of the current sheet, as a result of north-south asymmetry of quasi-adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented.

  6. Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System

    NASA Astrophysics Data System (ADS)

    Nagai, Takeyoshi; Gruber, Nicolas; Frenzel, Hartmut; Lachkar, Zouhair; McWilliams, James C.; Plattner, Gian-Kasper

    2015-08-01

    The coastal upwelling region of the California Current System (CalCS) is a well-known site of high productivity and lateral export of nutrients and organic matter, yet neither the magnitude nor the governing processes of this offshore transport are well quantified. Here we address this gap using a high-resolution (5 km) coupled physical-biogeochemical numerical simulation (ROMS). The results reveal (i) that the offshore transport is a very substantial component of any material budget in this region, (ii) that it reaches more than 800 km into the offshore domain, and (iii) that this transport is largely controlled by mesoscale processes, involving filaments and westward propagating eddies. The process starts in the nearshore areas, where nutrient and organic matter-rich upwelled waters pushed offshore by Ekman transport are subducted at the sharp lateral density gradients of upwelling fronts and filaments located at ˜25-100 km from the coast. The filaments are very effective in transporting the subducted material further offshore until they form eddies at their tips at about 100-200 km from the shore. The cyclonic eddies tend to trap the cold, nutrient, and organic matter-rich waters of the filaments, whereas the anticyclones formed nearby encapsulate the low nutrient and low organic matter waters around the filament. After their detachment, both types of eddies propagate further in offshore direction, with a speed similar to that of the first baroclinic mode Rossby waves, providing the key mechanism for long-range transport of nitrate and organic matter from the coast deep into the offshore environment.

  7. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-06-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  8. Metastability of collisionless current sheets. Hannes Alfven Lecture on behalf of Albert Galeev

    NASA Astrophysics Data System (ADS)

    Zelenyi, L.; Galeev, A.

    2009-04-01

    Complicated magnetic configurations containing numerous magnetic field reversals are widespread in nature. Each of such reversals is supported by corresponding current sheet (CS) which could often have very small thickness comparable to ion skin depth. Since the beginning of Space Age "in situ" investigations of current sheets in the Earth's magnetosphere (magnetopause and magnetotail) acquired one of the highest priorities in national space programs and became one of the cornerstones of various international activities, like ISTP, IACG, and ILWS, which appeared to be very effective. Intense theoretical efforts were undertaken by theorists all over the world to develop both equilibrium models of current sheets and analyze its stability and further nonlinear evolution. Lack of collisions and smallness of many characteristic scales in comparison with ion Larmor radius made an application of straightforward MHD approach dramatically questionable. Professor Alfven was one of the first who suggested in 1968 simple but very physical self-consistent particle model of CS. One of the most intriguing features of current sheets in collisionless plasma is their ability to accumulate tremendous amounts of magnetic energy (1015 J for magnetospheric substorms , 1024 J for solar flare associated sheets) and then suddenly sometimes almost explosively release them. We will demonstrate in this talk that such METASTABILITY is a principal intrinsic feature of current sheets in hot plasma. Very intense theoretical debates of 80-ies and late 90-ies resulted in some consensus that current sheets with the small component of magnetic field normal to their plane become overstable for spontaneous reconnection (i.e. versus the development of ion tearing mode). Analysis of INTERBALL and especially 4- point CLUSTER data have shown that real current sheets observed in the Earth's magnetotail very rarely resemble simplistic HARRIS current sheets which have been used for an early stability

  9. A Tailward Moving Current Sheet Normal Magnetic Field Front Followed by an Earthward Moving Dipolarization Front

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-01-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  10. A tailward moving current sheet normal magnetic field front followed by an earthward moving dipolarization front

    NASA Astrophysics Data System (ADS)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-07-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  11. Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M.

    2012-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.

  12. Plasmoid instability in a large post-CME current sheet system

    NASA Astrophysics Data System (ADS)

    Guo, L.; Bhattacharjee, A.; Huang, Y.; CenterIntegrated Computation; Analysis of Reconnection; Turbulence

    2011-12-01

    Solar flares and CME that cause violent space weather change have been studied for years. The standard model suggests that there is a current sheet connecting the CME and the site of the post-CME flare after the eruption, but understanding of the detailed physical mechanism of dynamical processes in the current sheet remains incomplete. Recently, the secondary plasmoid instabilities of large scale current sheet in high Lundquist number environment such as solar corona and the change of magnetic topology in such a current sheet system has become a subject of great interest (Bhattacharjee et al. 2009). In our work, we study a post-CME current sheet via both observation and simulation. We use SOHO/LASCO observations of a fast halo CME as well as a slow CME. After the fast halo CME event on January 8, 2002, we observe a long, thin current sheet which connects the CME to a flare site on the surface of the sun. In this current sheet we identify over 60 bright plasmoid-like blobs in 39 hours. In the slow CME event on June 25, 2005, we observe 32 such blobs in 18 hours after the formation of the current sheet. We simulate both cases using high-Lundquist-number resistive MHD simulations of the model of Lin & Forbes (2000), and demonstrate that the distribution of plasmoid size in both cases appears to conform well to a distribution function that is independent of the Lundquist number and predicted by theory. The average observed plasmoid speed in both cases is a fraction of the typical Alfven speed, qualitatively consistent with the simulations. Thus, we propose that these observations can be plausibly accounted for by the plasmoid instability of the large-scale current sheet. The observed bright blobs are probably evidence of large-scale plasmoids, and their behavior appears to be qualitatively consistent with high-Lundquist-number MHD simulations.
    observation case summary

  13. Study of the magnetotail current sheet properties using observations from the MMS mission

    NASA Astrophysics Data System (ADS)

    Andriopoulou, Maria; Nakamura, Rumi; Baumjohann, Wolfgang; Artemyev, Anton V.; Torkar, Klaus; Russell, Christopher T.; Torbert, Roy B.; Lindqvist, Per-Arne; Khotyaintsev, Yuri V.; Pollock, Craig J.; Fuselier, Stephen A.; Burch, James L.; Genestreti, Kevin J.

    2016-04-01

    The small interspacecraft distances of the recently launched Magnetospheric Multiscale (MMS) mission and the unprecedented time resolution of the plasma and field measurements of the instruments onboard each spacecraft allow us to study the properties of magnetotail current sheet crossings in great detail in terms of their spatial and temporal evolution and resolve several cases in ion and electron scales. In the present study we focus on some case studies of thin current sheets during the MMS commissioning phase, which lasted till August 2015. For this analysis, we use plasma density data obtained from plasma detectors and plasma density proxi estimated from spacecraft potential variations by taking into account the effect of the ASPOC ion beam current. The results of this study could be a useful input for current sheet models and simulations.

  14. Relating thin current sheet formation and tail reconnection to substorm development

    SciTech Connect

    Birn, J.; Schindler, K.

    2002-01-01

    Observations and simulations have demonstrated the important role of thin current sheet formation and magnetic reconnection in the course of substorms. We discuss new results on the formation of thin current sheets, obtained both within MHD and kinetic theory. They demonstrate when kinetic effects become important and indicate the possibility of a catastrophic onset of substorm dynamics and the potential association with arc brightening. MHD simulations show the role of reconnection in the buildup of the substorm current wedge and the influence of the underlying configuration on the quasi-static and dynamic evolution.

  15. Fast magnetic reconnection with plasmoid / current sheet ejection events in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Inomoto, Michiaki; Ono, Yasushi; Hayashi, Yoshinori

    2012-07-01

    Non-steady and fast magnetic reconnections due to plasmoid or current sheet ejection events have been investigated in laboratory experiments using TS-3, TS-4 and UTST plasma merging devices in the University of Tokyo. In these devices, magnetic reconnection is induced by two different schemes, a) push reconnection driven by flux injection from the upstream region, b) pull reconnection driven by flux extraction to the downstream region. Current sheet or plasmoid ejection events are observed in these reconnection experiments particularly with strong guide magnetic field parallel to the reconnection electric field. In push reconnection experiments, anomalous resistivity is induced by the ion's kinetic effect (meandering motion) when the current sheet width is compressed shorter than the ion gyroradius by the strongly injected inflow flux. This fast reconnection regime does not involve plasmoid / current sheet ejection events. On the other hand, the guide field reduces the ion gyroradius and suppresses the onset of the anomalous resistivity, providing slow and steady magnetic reconnection. Impulsive fast reconnection with strong guide field develops, nevertheless, due to plasmoid / current sheet ejection events in pull and push reconnection experiments with extremely large external driving forces. In such a situation, the inflow flux is forcedly pushed into the reconnection region even faster than the maximal reconnection rate, resulting in flux pile up in front of the diffusion region. This piled flux induces large current density inside the current sheet in which plasmoid structure with closed flux surface is formed in pull reconnection case. The induced large current density or plasmoid is then ejected from the diffusion region with significant increase of reconnection electric field. As a result, magnetic reconnection condition with even larger reconnection rate than that obtained by anomalous resistivity was achieved under strong guide field and large external

  16. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  17. Detection of thin current sheets and associated reconnection in the Earth's turbulent magnetosheath using cluster multi-point measurements

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Retino, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2013-04-01

    Magnetic reconnection occurs in turbulent plasma within a large number of volume-filling thin current sheets and is one major candidate for energy dissipation of turbulent plasma. Such dissipation results in particle heating and non-thermal particle acceleration. In situ observations are needed to study the detailed properties of thin current sheets and associated reconnection, in order to determine its importance as a dissipation mechanism at small scales. In particular, multi-point measurements are crucial to unambiguously identify spatial scales (e.g current sheet thickness) and estimate key quantities such as E*J. Here we present a study of the properties of thin current sheets detected in the Earths magnetosheath downstream of the quasi-parallel shock by using Cluster spacecraft data. The current sheets were detected by the rotation of the magnetic field as computed by four-point measurements. We study the distribution of current sheets as a function of the magnetic shear angle θ, their duration and the waiting time between consecutive current sheets. We found that high shear (θ > 90 degrees) current sheets show different properties with respect to low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. We also compare our four-point detection method with other single-point methods (e.g. Partial Variance of Increments - PVI) and we discuss the results of such comparison.

  18. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  19. RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA

    SciTech Connect

    Inoue, Tsuyoshi

    2012-11-20

    The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.

  20. Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach

    SciTech Connect

    Vasko, I. Y.; Artemyev, A. V.; Popov, V. Y.; Malova, H. V.

    2013-02-15

    In this paper, we present new class of solutions of Grad-Shafranov-like (GS-like) equations, describing kinetic plane and axially symmetric 2D current sheets. We show that these equations admit symmetry groups only for Maxwellian and {kappa}-distributions of charged particles. The admissible symmetry groups are used to reduce GS-like equations to ordinary differential equations for invariant solutions. We derive asymptotes of invariant solutions, while invariant solutions are found analytically for the {kappa}-distribution with {kappa}=7/2. We discuss the difference of obtained solutions from equilibria widely used in other studies. We show that {kappa} regulates the decrease rate of plasma characteristics along the current sheet and determines the spatial distribution of magnetic field components. The presented class of plane and axially symmetric (disk-like) current sheets includes solutions with the inclined neutral plane.

  1. How to identify reconnecting current sheets in incompressible Hall MHD turbulence

    NASA Astrophysics Data System (ADS)

    Donato, S.; Greco, A.; Matthaeus, W. H.; Servidio, S.; Dmitruk, P.

    2013-07-01

    Using high Reynolds number simulations of two-dimensional Hall magnetohydrodynamics (HMHD) turbulence, a statistical association between magnetic discontinuities and magnetic reconnection is demonstrated. We find that sets of discontinuities, identified using the normalized partial variance of vector increments (PVI method), strongly depend on threshold in PVI statistic that is used as an identifying condition and on the strength of the Hall term. The analysis confirms that the Hall term plays an important role in turbulence and it affects the methods employed for detection of reconnecting current sheets. In particular, we found the following: (1) Among all the discontinuities detected by the PVI method, the reconnecting ones are on average thinner. (2) A reduction in size of all discontinuities and of reconnecting current sheets is observed as the threshold θ grows. (3) The average width of the reconnecting current sheets decreases as the strength of the Hall term grows and the ion inertial scale di increases with respect to the dissipative scale.

  2. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  3. Intermittent Turbulence and SOC Dynamics in a 2-D Driven Current-Sheet Model

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vinas, A. F.; Vassiliasdis, D.; Baker, D. N.

    2005-01-01

    Borovsky et al. have shown that Earth's magnetotail plasma sheet is strongly turbulent. More recently, Borovsky and Funsten have shown that eddy turbulence dominates and have suggested that the eddy turbulence is driven by fast flows that act as jets in the plasma. Through basic considerations of energy and magnetic flux conservation, these fast flows are thought to be localized to small portions of the total plasma sheet and to be generated by magnetic flux reconnection that is similarly localized. Angelopoulos et al., using single spacecraft Geotail data, have shown that the plasma sheet turbulence exhibits signs of intermittence and Weygand et al., using four spacecraft Cluster data, have confirmed and expanded on this conclusion. Uritsky et al., using Polar UVI image data, have shown that the evolution of bright, nightside, UV auroral emission regions is consistent with many of the properties of systems in self-organized criticality (SOC). Klimas et al. have suggested that the auroral dynamics is a reflection of the dynamics of the fast flows in the plasma. sheet. Their hypothesis is that the transport of magnetic fludenergy through the magnetotail is enabled by scale-free avalanches of localized reconnection whose SOC dynamics are reflected in the auroral UV emission dynamics. A corollary of this hypothesis is that the strong, intermittent, eddy turbulence of the plasma sheet is closely related to its critical dynamics. The question then arises: Can in situ evidence for the SOC dynamics be found in the properties of the plasma sheet turbulence? A 2-dimensional numerical driven current-sheet model of the central plasma sheet has been developed that incorporates an idealized current-driven instability with a resistive MHD system. It has been shown that the model can evolve into SOC in a physically relevant parameter regime. Initial results from a study of intermittent turbulence in this model and the relationship of this turbulence to the model's known SOC

  4. Neoclassical tearing mode saturation in periodic current sheets

    SciTech Connect

    Militello, F.

    2008-04-15

    The saturation of Neoclassical Tearing Mode islands in a periodic slab configuration is investigated. Several theoretical models, all based on a generalization of Rutherford's procedure, that aim at reducing the complete system to a single equation of the magnetic island width, are compared against numerical simulations. When the effects of the bootstrap current and of the second derivative of the equilibrium current profile are included, the numerical saturation levels are well matched with the predictions of this equation in a wide region of the stability diagram. However, the numerical results diverge from the standard theory when evaluating the threshold for nonlinear destabilization, since the theoretical value appears to be strongly conservative. In other words, the standard generalization of Rutherford's equation is not able to capture the minimum value of the linear stability parameter and of the island width such that below them the Neoclassical Tearing Mode is always suppressed. To correct this discrepancy, a new theoretical model in which the transverse propagation of the island affects the bootstrap current term is proposed.

  5. Experimental Study of Lower-hybrid Drift Turbulence in a Reconnecting Current Sheet

    SciTech Connect

    Carter, T. A.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Trintchouck, F.

    2002-06-18

    The role of turbulence in the process of magnetic reconnection has been the subject of a great deal of study and debate in the theoretical literature. At issue in this debate is whether turbulence is essential for fast magnetic reconnection to occur in collisionless current sheets. Some theories claim it is necessary in order to provide anomalous resistivity, while others present a laminar fast reconnection mechanism based on the Hall term in the generalized Ohm's law. In this work, a thorough study of electrostatic potential fluctuations in the current sheet of the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] was performed in order to ascertain the importance of turbulence in a laboratory reconnection experiment. Using amplified floating Langmuir probes, broadband fluctuations in the lower hybrid frequency range (fLH approximately 5-15 MHz) were measured which arise with the formation of the current sheet in MRX. The frequency spectrum, spatial amplitude profile, and spatial correlation characteristics of the measured turbulence were examined carefully, finding consistency with theories of the lower-hybrid drift instability (LHDI). The LHDI and its role in magnetic reconnection has been studied theoretically for decades, but this work represents the first detection and detailed study of the LHDI in a laboratory current sheet. The observation of the LHDI in MRX has provided the unique opportunity to uncover the role of this instability in collisionless reconnection. It was found that: (1) the LHDI fluctuations are confined to the low-beta edge of current sheets in MRX; (2) the LHDI amplitude does not correlate well in time or space with the reconnection electric field, which is directly related to the rate of reconnection; and (3) significant LHDI amplitude persists in high collisionality current sheets where the reconnection rate is classical. These findings suggest that the measured LHDI fluctuations do not play an

  6. Current Sheet and Reconnection Inflow-Outflow Observations During Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Holman, Gordon; Reeves, Kathy R.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2011-01-01

    Magnetic reconnection is widely accepted as a dominant source of energy during solar flares; however, observations of it have been indirect and/or incomplete. Using the suite of instruments available spanning wavelength space, we will provide observations and measurements of both the inputs and outputs predicted from reconnection in the form of inflows preceding outflows (i.e. supra-arcade downflows, supra-arcade downflowing loops, upflows, and disconnection events). We will also present evidence for current sheets through which reconnection is expected to occur and discuss current sheet motion during flare progression.

  7. Laboratory Observation of Resistive Electron Tearing in a Two-Fluid Reconnecting Current Sheet.

    PubMed

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; Yoo, Jongsoo; Fox, William

    2016-08-26

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. The reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate. PMID:27610861

  8. Current-sheet velocity oscillation and radiation emission in plasma focus discharges

    SciTech Connect

    Melzacki, K.; Nardi, V.

    1995-12-31

    A phenomenon of current sheet velocity oscillation during the compression phase in plasma focus discharge has been found with a Schlieren photography technique. The oscillation period has been determined as about 17 ns and coincided with the period of the simultaneously measured time derivative of the current. The same velocity behavior has been observed with magnetic probes. A microwave emission burst (in 3 cm and 10 cm bands) consisting of a sequence of very narrow (FWHM < 1 ns) peaks, 17 ns apart one another, has also been observed before, during, and after the pinch. The microwave was polarized with the electric field parallel to the electrode axis. All these effects have been recorded on the same PF device (6 kJ). The origin of these oscillations can be interpreted in a few ways, e.g. as related to the electrode-plasma sheath RLC circuit, or to the j{sub s}xB of the plasma current sheet, where j{sub s} is the current density component perpendicular to the current sheet surface. The j{sub s} is related to the current sheet velocity. These results provide the basis of the analysis.

  9. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  10. Confinement of pure ion plasma in a cylindrical current sheet

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K.

    1999-12-01

    A novel method for containing a pure ion plasma at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma of about 5×1011cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107cm-3 trapped deuterium plasma at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j×B forces from this induced current, additional ions are injected into the plasma along the axis to increase the density (and mutual electrostatic repulsion) of the target plasma. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4×1014cm-3.

  11. Modeling of different scenarios of thin current sheet equilibria in the Earth’s magnetotail

    SciTech Connect

    Ul’kin, A. A.; Malova, H. V. Popov, V. Yu.; Zelenyi, L. M.

    2015-02-15

    The Earth’s magnetosphere is an open dynamic system permanently interacting with the solar wind, i.e., the plasma flow from the Sun. Some plasma processes in the magnetosphere are of spontaneous explosive character, while others develop rather slowly as compared to the characteristic times of plasma particle motion in it. The large-scale current sheet in the magnetotail can be in an almost equilibrium state both in quiet periods and during geomagnetic perturbations, and its variations can be considered quasistatic. Thus, under some conditions, the magnetotail current sheet can be described as an equilibrium plasma system. Its state depends on various parameters, in particular, on those determining the dynamics of charged particles. Knowing the main governing parameters, one can study the structure and properties of the current sheet equilibrium. This work is devoted to the self-consistent modeling of the equilibrium thin current sheet (TCS) of the Earth’s magnetotail, the thickness of which is comparable with the ion gyroradius. The main objective of this work is to examine how the TCS structure depends on the parameters characterizing the particle dynamics and magnetic field geometry. A numerical hybrid self-consistent TCS model in which the tension of magnetic field lines is counterbalanced by the inertia of ions moving through the sheet is constructed. The ion dynamics is considered in the quasi-adiabatic approximation, while the electron motion, in the conductive fluid approximation. Depending on the values of the adiabaticity parameter κ (which determines the character of plasma particle motion) and the dimensionless normal component of the magnetic field b{sub z}, the following two scenarios are considered: (A) the adiabaticity parameter is proportional to the particle energy and b{sub z} = const and (B) the particle energy is fixed and the adiabaticity parameter is proportional to b{sub z}. The structure of the current sheet and particle dynamics in it

  12. The effect of coronal mass ejections on the structure of the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1994-01-01

    The existence of a stable heliospheric current sheet (HCS) structure near solar cycle maximum was questioned since the recognition that coronal mass ejections (CME's) occur in coronal helmet streamers. Evidence is presented suggesting that pre-existing helmet streamers disrupted or blown out by CME's reform in a time interval much shorter than the life time of the HCS, and that the concept of the HCS has a meaning at any time of thesolar cycle. It appears that the HCS, the current layer that separates adjacent interplanetary magnetic field regions with opposite magnetic polarity, exists throughout the solar cycle, though not always as a thin disk-like sheet. The sheet may be thickened by embedded magnetic ropes formed by CME's, especially near sunspot maximum. The HCS may be used as timing mark in identifying or predicting CME's in the interplanetary medium.

  13. Fe, O, and C Charge States Associated with Quiescent Versus Active Current Sheets in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Ko, Y.-K.; vonSteiger, R.

    2008-01-01

    Ulysses MAG data were used to locate the heliospheric current sheet in data from 1991 through 2006. The purpose was to characterize typical charge states for Fe, O, and C in the vicinity of the current sheet and provide insight into the physical sources for these charge states in the corona. A study of He/H around the current sheets has led to a clear distinction between quiescent current sheets at times of low solar activity and active current sheets associated with magnetic clouds (and, presumably, ICMES). It has been shown that high ionization state Fe is produced in the corona in current sheets associated with CMEs through spectroscopic observations of the corona and through in situ detection at Ulysses. Here we show that the ionization state of Fe is typically only enhanced around active current sheets while the ionization states of O and C are commonly enhanced around both quiescent and active current sheets. This is consistent with UV coronal spectroscopy, which has shown that reconnection in current sheets behind CMEs leads to high temperatures not typically seen above quiet streamers.

  14. Analysis of the heliospheric current sheet at Earth's orbit and model comparisons

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Szabo, A.; Peredo, M.; Hoeksema, T.

    1995-01-01

    IMP 8 magnetic field data for the first half of the year 1994, i.e., for about 6 solar rotations, are analyzed around regions of sector boundary crossings with the purpose of obtaining both gross- and fine-scale characteristics of the related heliospheric current sheets separating the observed sectors. For purposes of estimating the attitudes of the normals to the sector boundaries. analysis intervals (sometimes 30 min or more in length) allowing the field to fully complete an excursion of about 180 deg were used in the study, which consisted of variance analyses of the field within those intervals. The resulting boundary normals were analyzed and compared to known (generic) models of projected heliospheric current sheets and to a coronal field model for the same time period. One of the most outstanding features of the resulting ensemble of estimated boundary normals for this period is that they strongly prefer low inclinations, indicating that the observations do not support a 1 AU model that predicts a current sheet whose surface is approximately parallel with the sun's equator, such as the 'sombrero' model. They instead support a model that predicts a relatively high inclination current sheet at 1 AU. Also the normals assume a surprisingly large range of longitudes, somewhat favoring those consistent with a Parker model (45 deg and 225 deg) and/or radial alignment (0 deg and 180 deg). These boundary structures, as defined, are shown typically to be as broad as several hundred proton gyroradii, but having embedded within them very thin structures associated with stronger currents. Such thin structures have normals usually differing markedly from the gross boundary. For some crossings there are indications of a wave-like structure in the current sheet as it passed the spacecraft.

  15. The Self-Consistent Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory

    2014-10-01

    In space and astrophysical plasma turbulence, it has long been recognized that dissipation occurs predominantly in intermittent current sheets, with vigorous activity in the past few years focused on obtaining observational evidence for such localized dissipation in the near-Earth solar wind. The nature of these magnetic discontinuities and their associated current sheets measured in the solar wind remains unclear--are these discontinuities due to filamentary magnetic structure in the solar wind, or do they arise dynamically from turbulent interactions? Recent analytical solution, numerical validation, and experimental verification of the nonlinear energy transfer in Alfven wave collisions, the nonlinear interactions between counterpropagating Alfven waves, has established this interaction as the fundamental building block of astrophysical plasma turbulence. Here I will present first-principles analytical calculations and supporting numerical simulations that Alfven wave collisions in the strong turbulence limit naturally produce current sheets, providing the first theoretical unification of models of plasma turbulence mediated by Alfven waves with ideas on localized dissipation in current sheets. Supported by NSF CAREER Award AGS-1054061, NSF Grant PHY-10033446, and NASA Grant NNX10AC91G.

  16. Instability of current sheets with a localized accumulation of magnetic flux

    SciTech Connect

    Pritchett, P. L.

    2015-06-15

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small “normal” B{sub z} component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing B{sub z} profile and the other with a localized B{sub z} “hump.” The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no B{sub z} accumulation even in the presence of open boundary conditions.

  17. Evidence for two separate heliospheric current sheets of cylindrical shape during MID-2012

    SciTech Connect

    Wang, Y.-M.; Young, P. R.; Muglach, K. E-mail: pyoung@ssd5.nrl.navy.mil

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180°; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  18. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2013-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  19. Tearing mode in a neutral current sheet in a plasma flow

    NASA Astrophysics Data System (ADS)

    Gubchenko, V. M.

    1982-09-01

    The linear stage of the tearing mode is analyzed for a diffuse neutral current sheet in a plasma flow along the magnetic field. It follows from the dispersion characteristics derived that the flow tends to stabilize the tearing mode and gives rise to a drift phase velocity.

  20. MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES

    SciTech Connect

    Gosling, J. T.; Phan, T. D.

    2013-02-01

    Using Wind 3 s plasma and magnetic field data, we have identified nine reconnection exhausts within a solar wind disturbance on 1998 October 18-20 driven by a moderately fast interplanetary coronal mass ejection (ICME). Three of the exhausts within the ICME were associated with current sheets having local field shear angles, {theta}, ranging from 4 Degree-Sign to 9 Degree-Sign , the smallest reported values of {theta} yet associated with reconnection exhausts in a space plasma. They were observed in plasma characterized by extremely low (0.02-0.04) plasma {beta}, and very high (281-383 km s{sup -1}) Alfven speed, V{sub A}. Low {beta} allows reconnection to occur at small {theta} and high V{sub A} leads to exhaust jets that are fast enough relative to the surrounding solar wind to be readily identified. Very small-{theta} current sheets are common in the solar wind at 1 AU, but typically are not associated with particularly low plasma {beta} or high V{sub A}. On the other hand, small-{theta} current sheets should be common in the lower solar corona, a plasma regime of extremely low {beta} and extremely high V{sub A}. Our observations lend credence to models that predict that reconnection at small-{theta} current sheets is primarily responsible for coronal heating.

  1. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  2. MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS

    SciTech Connect

    Yu Cong

    2013-07-10

    We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when current sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.

  3. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  4. Global and local current sheet thickness estimates during the late growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, Robert L.; Huang, C. Y.; Frank, L. A.

    1992-01-01

    The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.

  5. Numerical study of the current sheet and PSBL in a magnetotail model

    NASA Technical Reports Server (NTRS)

    Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.

    1989-01-01

    The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.

  6. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection

  7. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    SciTech Connect

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-07-20

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  8. Current sheet in plasma as a system with a controlling parameter

    NASA Astrophysics Data System (ADS)

    Fridman, Yu. A.; Chukbar, K. V.

    2015-08-01

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein-Greene-Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  9. Current sheet in plasma as a system with a controlling parameter

    SciTech Connect

    Fridman, Yu. A. Chukbar, K. V.

    2015-08-15

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  10. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.