Science.gov

Sample records for current-driven ion-acoustic instability

  1. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  2. Current-driven dust ion-acoustic instability in a collisional dusty plasma

    SciTech Connect

    Merlino, R.L.

    1997-02-01

    A fluid analysis of the excitation of dust ion-acoustic (DIA) waves in a collisional dusty plasma is presented. The DIA waves are excited by a relative drift of the electrons and ions produced by a steady-state electric field applied to the plasma. The DIA instability is more easily excited if the relative concentration of negatively charged dust is increased. The current interest in dusty plasmas is due to the realization of their importance in various astrophysical and geophysical environments (e.g., interstellar space, comet tails, planetary ring systems, and the polar mesosphere) as well as in industrial plasma processing devices used in semiconductor manufacturing.

  3. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    SciTech Connect

    Trushnikov, D. N.; Mladenov, G. M. Koleva, E. G.; Belenkiy, V. Ya. Varushkin, S. V.

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  4. Ion temperature anisotropy effects on the dispersion relation and threshold conditions of a sheared current-driven electrostatic ion-acoustic instability with applications to the collisional high-latitude F-region

    NASA Astrophysics Data System (ADS)

    Perron, Patrick J. G.; Noël, J.-M.; St-Maurice, J.-P.; Kabin, K.

    2015-01-01

    Plasma instabilities play a important role in producing small-scale irregularities in the ionosphere. In particular, current-driven electrostatic ion-acoustic (CDEIA) instabilities contribute to high-latitude F-region electrodynamics. Ion temperature anisotropies with enhanced perpendicular temperature often exist in the high-latitude F-region. In addition to temperature anisotropies, ion velocity shears are observed near auroral arc edges, sometimes coexisting with thermal ion upflow processes and field-aligned currents (FAC). We investigated whether ion temperature anisotropy lowers the threshold conditions required for the onset of sheared CDEIA instabilities. We generalised a dispersion relation to include ion thermal anisotropy, finite Larmor radius corrections and collisions. We derived new fluid-like analytical expressions for the threshold conditions required for instability that depend explicitly on ion temperature anisotropy. We studied how the instability threshold conditions vary as a function of the wave vector direction in both fluid and kinetic regimes. We found that, despite the dampening effect of collisions on ion-acoustic waves, ion temperature anisotropy lowers in some cases the threshold drift requirements for a large range of oblique wave vector angles. More importantly, realistic ion temperature anisotropies contribute to reducing the instability threshold velocity shears that are associated with small drift thresholds, for modes propagating almost perpendicularly to the geomagnetic field. Small shear thresholds that seem to be sustainable in the ionospheric F-region are obtained for low-frequency waves. Such instabilities could play a role in the direct generation of field-aligned irregularities in the collisional F-region that could be observed with the Super Dual Auroral Radar Network (SuperDARN) array of high-frequency radars. These modes would be very sensitive to the radar probing direction since they are restricted to very narrow

  5. Current driven electrostatic and electromagnetic ion cyclotron instabilities

    NASA Technical Reports Server (NTRS)

    Forslund, D. W.; Kennel, C. F.; Kindel, J. M.

    1971-01-01

    Growth rates and parameter dependences are calculated for the current driven instabilities of electrostatic (with finite-beta corrections) and electromagnetic ion cyclotron waves. For 0.25 (T sub e)/(T sub i) 2.5, ion cyclotron waves have large growth rates, while ion acoustic waves are still stable. In fusion devices, where electrostatic waves may be stable, electromagnetic ion cyclotron waves are unstable for beta sub i 0.001.

  6. Current driven instabilities of an electromagnetically accelerated plasma

    NASA Technical Reports Server (NTRS)

    Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1988-01-01

    A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.

  7. Current driven instability in collisional dusty plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Vladimirov, S. V.; Samarian, A.

    2009-11-01

    The current driven electromagnetic instability in a collisional, magnetized, dusty medium is considered in the present work. It is shown that in the presence of the magnetic field aligned current, the low-frequency waves in the medium can become unstable if the ratio of the current to the ambient field is larger than the light speed times the wave number. The growth rate of the instability depends upon the ratio of the Alfvén to the dust cyclotron frequency as well as on the ratio of the current density J to the dust charge density Zend, where Z is the number of electronic charge on the grain, e is the electron charge, and nd is the dust number density. The typical growth rate of this instability is on the order of Alfvén frequency which compares favorably with the electrostatic, cross-field current driven, Farley-Buneman instability and thus could play an important role in the Earth's ionosphere.

  8. Kinetic instability of ion acoustic mode in permeating plasmas

    SciTech Connect

    Vranjes, J.; Poedts, S.; Ehsan, Zahida

    2009-07-15

    In plasmas with electron drift (current) relative to static ions, the ion acoustic wave is subject to the kinetic instability which takes place if the directed electron speed exceeds the ion acoustic speed. The instability threshold becomes different in the case of one quasineutral electron-ion plasma propagating through another static quasineutral (target) plasma. The threshold velocity of the propagating plasma may be well below the ion acoustic speed of the static plasma. Such a currentless instability may frequently be expected in space and astrophysical plasmas.

  9. Frequency modulation of the ion-acoustic instability.

    PubMed

    Klostermann, H; Pierre, T

    2000-06-01

    In a double-plasma device with a negatively biased grid separating source and target chamber, the ion-acoustic instability is recorded during the injection of an ion beam whose velocity is chosen between the ion-acoustic velocity and twice this value. The observed broad power spectra of the density fluctuations are found to be related to a strong modulation of the frequency inside the bursts of unstable waves. This modulation is interpreted as being a consequence of the existence of propagating strongly nonlinear coherent structures that arise in the course of the nonlinear spatiotemporal evolution of the ion-acoustic instability. PMID:11088398

  10. Gyrokinetic simulation of current-driven instabilities

    NASA Astrophysics Data System (ADS)

    McClenaghan, Joseph

    The gyrokinetic toroidal code(GTC) capability has been extended for simulating current-driven instabilities in magnetized plasmas such as kink and resistive tearing modes with kinetic effects. This new gyrokinetic capability enables first-principles, integrated simulations of macroscopic magnetohydrodynamic(MHD) modes, which limit the performance of burning plasmas and threaten the integrity of fusion devices. The excitation and evolution of macroscopic MHD modes often depend on the kinetic effects at microscopic scales and the nonlinear coupling of multiple physical processes. GTC simulation in the fluid limit of the internal kink modes in cylindrical geometry has been verified by benchmarking with an MHD eigenvalue code. The global simulation domain covers the magnetic axis which is necessary for simulating the macroscopic MHD modes. Gyrokinetic simulations of the internal kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface. This new GTC capability for current-driven instability has now been extended to simulate fishbone instabilities excited by energetic particles and resistive tearing modes. GTC has also been applied to study the internal kink modes in astrophysical jets that are formed around supermassive black holes. Linear simulations find that the internal kink modes in astrophysical jets are unstable with a broad eigenmode. Nonlinear saturation amplitude of these kink modes is observed to be small, suggesting that the jets can remain collimated even in the presence of the internal kink modes. Generation of a mean parallel electric field by the nonlinear dynamics of internal kink modes and the potential implication of this field on particle acceleration in jets has been examined.

  11. Dielectric permittivity tensor and low frequency instabilities of a magnetoactive current-driven plasma with nonextensive distribution

    SciTech Connect

    Niknam, A. R.; Rastbood, E.; Khorashadizadeh, S. M.

    2015-12-15

    The dielectric permittivity tensor of a magnetoactive current-driven plasma is obtained by employing the kinetic theory based on the Vlasov equation and Lorentz transformation formulas with an emphasize on the q-nonextensive statistics. By deriving the q-generalized dispersion relation of the low frequency modes in this plasma system, the possibility and properties of filamentation and ion acoustic instabilities are then studied. It is shown that the occurrence and the growth rate of these instabilities depend strongly on the nonextensive parameters, external magnetic field strength, and drift velocity. It is observed that the growth rate of ion acoustic instability is affected by the magnetic field strength much more than that of the filamentation instability in the low frequency range. The external magnetic field facilitates the development of the ion-acoustic instability. It is also shown that the filamentation is the dominant instability only for the high value of drift velocity.

  12. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect

    Ren, Chuang

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  13. On the Role of Ion-Temperature Anisotropy in the Growth and Propagation of the Shear-Modified Ion-Acoustic Instability

    NASA Astrophysics Data System (ADS)

    Teodorescu, C.; Koepke, M. E.; Reynolds, E. W.

    2002-05-01

    Broadband ion-acoustic waves have been observed in the Earth's ionosphere, where the electron and ion temperatures are equal, propagating obliquely to the magnetic field lines. Explaining these waves with the current-driven ion-acoustic instability in homogeneous plasma requires an unusually large ratio of electron to ion temperature. We investigate in a Q machine oblique ion-acoustic waves, excited by the combination of magnetic-field-aligned (parallel) current and sheared parallel ion flow, at almost equal ion and electron temperatures. Direct measurements of the parallel and perpendicular ion temperatures, parallel and perpendicular ion drift velocities, electron temperature and parallel electron drift velocity, parallel and perpendicular wavevector components, and mode frequency and growth rate are used to elucidate the shear-modified ion-acoustic instability mechanism and document an observed correlation between ion-temperature anisotropy and wave-propagation angle. Experimental measurements show how anisotropy significantly influences this propagation angle. These results may support the ion-acoustic wave interpretation of broadband waves in the auroral energization region where shear and anisotropy are known to exist. Although the results were obtained from an investigation of shear-modified ion-acoustic waves, our conclusions pertain to the general subject of oblique ion-acoustic waves and thus have ramifications for many space plasmas. * Work supported by NSF and NASA.

  14. Current-Driven Kink Instability in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hardee, Philip E.; Lyubarsky, Yuri; Nishikawa, Ken-Ichi

    We have investigated the development of current-driven (CD) kink instability in relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depend moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  15. Current-Driven Kink Instability in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hardee, Philip E.; Lyubarsky, Yuri; Nishikawa, Ken-Ici

    2011-06-01

    We have investigated the development of current-driven (CD) kink instability in relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic field configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  16. Experimental Verification of the Shear-Modified Ion-Acoustic Instability

    NASA Astrophysics Data System (ADS)

    Teodorescu, C.; Reynolds, E. W.; Koepke, M. E.

    2002-05-01

    The predicted shear-induced shift of the wave phase velocity, the essence of the shear-modified ion-acoustic (SMIA) instability mechanism that reduces ion Landau damping for otherwise damped ion-acoustic waves [V. Gavrishchaka et al., 80, 728 (1998)], is verified with direct measurements in a strongly magnetized laboratory plasma. The SMIA growth rate is shown to increase with increasing shear, as predicted. SMIA wave propagation is shown to be possible at both small and large angles to the magnetic field, consistent with space observations of ion-acoustic-like waves.

  17. Evidence for thermal anisotropy effects on shear modified ion acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Spangler, R. S.; Koepke, M. E.; Teodorescu, C.; Reynolds, E. W.

    2002-10-01

    Inclusion of thermal anisotropy effects is shown to be required to describe recently reported experimental measurements as shear-modified, ion acoustic instabilities. For the reported experimental conditions, isotropic theory yields no instability growth that depends on the magnitude of the shear in the parallel flow.

  18. Two-dimensional simulations of the ion/ion acoustic instability and electrostatic shocks

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Omidi, N.; Quest, K. B.

    1991-01-01

    A newly developed 2D electrostatic code with particle ions and Boltzmann electrons is used to investigate the details of the ion/ion acoustic instability and the structure of electrostatic shocks. The simulation results show that, for the parameters relevant to the plasma sheet boundary layer, the saturation mechanism of the ion/ion acoustic instability is ion trapping. It is also shown that the 2D structure of electrostatic shocks is considerably different from that suggested by previous 1D simulations. The main reason for this difference is the presence of shock reflected ions, which through the ion/ion acoustic instability lead to the generation of large amplitude waves in the upstream region propagating obliquely to the shock normal. These waves play an important role in the shock dissipation process.

  19. The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation

    SciTech Connect

    Rapson, Christopher; Grulke, Olaf; Matyash, Konstantin; Klinger, Thomas

    2014-05-15

    The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.

  20. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  1. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  2. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  3. Ion heating in a dusty plasma due to the dust/ion acoustic instability

    SciTech Connect

    Winske, D.; Gary, S.P.; Jones, M.E.

    1995-08-01

    The drift of plasma ions relative to charged grains in a dusty plasma can give rise to a dust/ion acoustic instability. The authors investigate the linear properties of the instability by numerically solving an appropriate linear dispersion equation and examine the nonlinear behavior through one-dimensional electrostatic particle simulations, in which the plasma and dust ions are treated as discrete particles and the electrons are modeled as a Boltzmann fluid. The instability is slightly weaker when the dust particles have a range of sizes, and corresponding range of charges and masses. It is argued that due to dust particles that comprise planetary rings, this process can contribute to ion heating and diffusion observed in the linear magnetosphere of Saturn. 14 refs., 4 figs.

  4. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: Modulational instability and rogue waves

    SciTech Connect

    Guo, Shimin; Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG ; Mei, Liquan; Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 ; Sun, Anbang

    2013-05-15

    The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.

  5. Experimental verification of the shear-modified ion-acoustic instability

    NASA Astrophysics Data System (ADS)

    Reynolds, E. W.; Teodorescu, C.; Koepke, M. E.

    2002-11-01

    The shear-modified ion-acoustic instability has been experimentally verified in double-ended Q-machine barium plasma containing shear in the magnetic-field-aligned (parallel) ion drift. The ion distribution function f(X,Vz) was measured directly and non-perturbatively with laser induced fluorescence. Measurements of the wave frequency (in the lab frame) and the wave-vector components show that, in the presence of shear, the wave phase velocity (in the ion frame) is greater than the ion-acoustic speed and out of the strong ion landau-damping regime. Measurements of the parallel electron drift yield values lower than the excitation threshold predicted by homogeneous theory but large enough for inverse electron landau damping to provide the free energy for the wave. We emphasize the ramifications on the mode properties of positive and negative values of shear. A quantitative comparison between experimental results and theoretical predictions is presented. Work supported by NASA and NSF. Useful discussions with V. Gavrishchaka and E. Scime are acknowledged.

  6. Electrostatic ion-acoustic-like instabilities in the solar wind with a backstreaming alpha particle beam

    SciTech Connect

    Gomberoff, L.; Gomberoff, K.; Deutsch, A.

    2010-06-15

    Nonlinear electrostatic instabilities have been shown to occur frequently and under very different conditions in plasma with two ion beams such as the fast solar wind. These instabilities can be triggered when the phase velocity of electrostatic ion-acoustic waves propagating forward and backward relative to the interplanetary magnetic field overlaps due to the presence of a finite amplitude of circularly polarized wave. The instabilities can be triggered by waves supported by the same ion component, or by waves supported by different ion components. By assuming a beam of alpha particles moving backward relative to the external magnetic field, as observed in some events in the fast solar wind, it is shown that a very small negative drift velocity of the alpha particle beam relative to the core plasma--a few percent of the local Alfven velocity--can trigger a very rich variety of nonlinear electrostatic acousticlike instabilities. Their growth rates can be rather large and they persist for larger negative alpha particles drift velocities and temperatures.

  7. Modulation instability and ion-acoustic rogue waves in a strongly coupled collisional plasma with nonthermal nonextensive electrons

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Ying

    2016-02-01

    The nonlinear propagation of ion-acoustic waves is theoretically reported in a collisional plasma containing strongly coupled ions and nonthermal electrons featuring Tsallis distribution. For this purpose, the nonlinear integro-differential form of the generalized hydrodynamic model is used to investigate the strong-coupling effect. The modified complex Ginzburg-Landau equation with a linear dissipative term is derived for the potential wave amplitude in the hydrodynamic regime, and the modulation instability of ion-acoustic waves is examined. When the dissipative effect is neglected, the modified complex Ginzburg-Landau equation reduces to the nonlinear Schrödinger equation. Within the unstable region, two different types of second-order ion-acoustic rogue waves including single peak type and rogue wave triplets are discussed. The effect of the plasma parameters on the rogue waves is also presented.

  8. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. III. ROTATING RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-09-20

    We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. We find that, in accordance with the linear stability theory, the development of the instability depends on the lateral distribution of the poloidal magnetic field. If the poloidal field significantly decreases outward from the axis, then the initial small perturbations grow strongly, and if multiple wavelengths are excited, then nonlinear interaction eventually disrupts the initial cylindrical configuration. When the profile of the poloidal field is shallow, the instability develops slowly and eventually saturates. We briefly discuss implications of our findings for Poynting-dominated jets.

  9. Current-driven magnetohydrodynamic thermal instabilities in sheared fields. [of solar corona

    NASA Technical Reports Server (NTRS)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.

    1987-01-01

    Approximate analytic solutions are sought for the dispersion relation for the MHD stability of magnetized medium in current-driven filamentation modes such as those observed in the solar atmosphere. The magnetic field is assumed to have a self-consistent sheared equilibrium structure. The analysis is carried out in the small wavenumber regime, where shear length is similar to the mode wavelength. Instability is found to depend on the ratio between the thermal and magnetic diffusivities, i.e., the Prandtl number, which identifies the unstable transverse wavenumbers. The instability conditions are expressed in an algebraic equation amenable to numerical solution. Results are provided from use of the model to determine the maximum growth rate and typical scale lengths of instabilities in a precoronal atmosphere and the lower transition region.

  10. Nonlinear development of strong current-driven instabilities and selective acceleration of ^3He ions

    NASA Astrophysics Data System (ADS)

    Toida, Mieko; Okumura, Hayato

    2003-10-01

    In some solar flares, the abundance of high-energy ^3He ions is extremely increased. As a mechanism for these ^3He rich events, current-driven instabilities are believed to be important. Nonlinear development of the strong current-driven instabilities and associated energy transfer to ^3He ions are studied theoretically and numerically [1]. First, by means of a two-dimensional, electrostatic, particle simulation code, it is demonstrated that ^3He ions are selectively accelerated by fundamental H cyclotron waves with frequencies ω ≃ 2Ω_3He (Ω_3He is the cyclotron frequency of ^3He). Then, from the analysis of the dispersion relation of these waves, it is found that the ω ≃ 2 Ω_ 3He waves have the greatest growth rate, if Te > 10 T_H. Energies of the ^3He ions are also discussed. Theoretical expression for the maximum ^3He energy is presented, which is in good agreement with the simulation results. Based on this theory, it is shown that when the initial electron drift energy is of the order of 10 keV, many ^3He ions can be accelerated to energies of the order of MeV/n. [1] M. Toida and H. Okumura, J. Phys. Soc. Jpn. 72,1098 (2003)

  11. Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.

    1993-12-31

    We have developed an uv collective Thomson scattering system for plasma produced by a short wavelength laser. The Ion Acoustic Decay Instabilities are studied in a large ({approximately}mm) scale, hot ({approximately}keV) plasma, which is relevant to a direct-driven laser fusion plasma. The IADI primary decay process is measured by the CTS. We used a random phase plate to minimize the non uniform irradiation of the interaction laser. Nevertheless, the threshold of the most unstable mode driven by the IADI is quite low. The measured threshold value agrees favorably with the theoretical value of the large scale plasma. We have also shown that the CTS from the IADI can be a good tool for measuring a local electron temperature. The measured results agree reasonably with the SAGE computer calculations. We used the real part of the wave (frequency) to estimate T{sub e}. The real part is, in general, reliable compared to the imaginary part such as the damping, and the growth rates. We have shown that the IADI can be easily excited in a large scale, hot plasma. The IADI has potentially important applications to direct drive laser fusion, and also critical surface diagnostic.

  12. Dust-ion-acoustic envelopes and modulational instability with relativistic degenerate electrons

    NASA Astrophysics Data System (ADS)

    Irfan, M.; Ali, S.; Mirza, Arshad M.

    2015-12-01

    Amplitude modulated unstable nonlinear structures have been studied in a three component dusty plasma consisting of degenerate relativistic electrons, degenerate ions, and negatively charged static dust grains. Following the multiscale reductive perturbation method, a nonlinear Schrödinger equation is derived, which not only admits the modulational instability but also causes the evolution of unstable excitations, namely, bright solitons and rogons. Numerical analysis illustrates that modulationally unstable wave envelopes are obtained in the limit of long wave number for taking cold and nondegenerate ions (the ratio of ion Fermi-to-electron rest mass energy, g = 0); however, the ionic Fermi pressure leads to stable excitations. It is observed that modulationally unstable wave packets are excited even for ultra small wave number ( k ≪ 1 ) when the dust concentration parameter exists in the range μ c 1 < μ < μ c 2 , where μ c 1 and μ c 2 being the critical values. Furthermore, it is revealed that these critical values are quite sensitive to the variation of electron relativistic degeneracy ( η e 0 ) and the carrier wave number. The present results elucidate the important features of localized dust-ion-acoustic excitations due to self interactions in superdense astrophysical plasmas, viz., white dwarf, neutron stars, etc.

  13. The Current-driven Kink Instability of the Poynting Flux Dominated Jets

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Meier, David L.

    2004-11-01

    The spatial stability properties are one of the most important problem in astrophysical jets dynamics. The non-relativistic 3-D MHD simulations of Poynting flux dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic, but sub-Alfvénic flow and on the subsequent development of a current-driven (CD) kink instability. This instability may be responsible for the ``wiggled'' structures seen in sub-parsec scale (VLBI) AGN jets and pulsar jets. Our numerical results show that the PFD jets can develop CD distortions in the trans-Alfvénic flow case. An internal non axisymmetric body mode grows on time scales of order of the Alfvén crossing time and distorts the structure and magnetic configuration of the jet. The kink (m=1) mode of the CD instability, driven by the asymmetrically distribution of hoop-stress, grows faster than other higher order modes (m>1). This could be caused by a sudden loss of kinetic angular momentum to the magnetic field via the reverse slow-mode MHD shock wave. In the jet frame the mode grows locally and expands radially at each axial position where the jet is unstable: the instability, therefore, does not propagate as a wave along the jet length. The wiggled structures saturate and advect with the bulk flow and then, the local plasma flow follows a helical path along the kinked magnetic field backbone. M.N. is supported by a NRC RRA award.

  14. Nonlocal effects on the convective properties of the electrostatic current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The convective behavior of the current-driven ion-cyclotron instability (CDICI) in the presence of nonlocal magnetic-shear and current-channel-width effects is investigated theoretically using the analytical approach of Bakshi et al. (1983). The results are presented in graphs and discussed. Three different CDICI regimes defined by the ratio of the channel width to the shear length are obtained: a purely nonlocal regime with reduced temporal growth rate and group velocity in the z direction going to zero (ratios greater than about 0.1); a regime corresponding to the results of local theory (ratios less than 0.01); and a regime characterized by decreasing temporal growth rate and by z and y group velocities which become negative when the channel width becomes less than the mean ion Larmor radius (ratios 0.001 or less).

  15. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    SciTech Connect

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  16. The current-driven kink instability in magnetically dominated relativistic jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-04-01

    We have investigated the development of current-driven (CD) kink instability in relativistic jets, via 3D relativistic magnetohydrodynamic simulations. For this purpose, a static force-free equilibrium helical magnetic configuration is considered in order to study its influence on the linear and nonlinear stages of the instability. We found that this configuration is strongly distorted but not disrupted by the CD kink instability. Both the linear growth and the nonlinear evolution of this in-stability depend moderately on the radial density profile but are strongly sensitive to the magnetic pitch profile. For decreasing magnetic pitch, kink amplitude growth leads, in the nonlinear regime, to a slender helically twisted column wrapped by magnetic field. Differently, for increasing magnetic pitch, the kink amplitude nearly saturates in the nonlinear regime. We have also investigated the influence of velocity shear on the linear and non-linear development of the instability. We found that helically distorted density structures propagate along the jet with a speed and a flow structure that are dependent on the location of the velocity shear relative to the characteristic radius of the helically twisted force-free magnetic field. At small radius, the plasma flows through the kink. The kink propagation speed increases with the velocity shear radius, and the kink becomes more em-bedded in the plasma flow. Larger velocity shear radius leads to slower linear growth, with a later transition to the nonlinear stage and a larger maximum amplitude than in the case of a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and non-linear developments become more similar to those of a static plasma column.

  17. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    NASA Astrophysics Data System (ADS)

    EL-Shamy, E. F.

    2014-08-01

    The solitary structures of multi-dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  18. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    SciTech Connect

    Bouzit, Omar Tribeche, Mouloud E-mail: mtribeche@usthb.dz; Bains, A. S.

    2015-08-15

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.

  19. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    SciTech Connect

    EL-Shamy, E. F.

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  20. Spatial growth of the current-driven instability in relativistic jets

    SciTech Connect

    Mizuno, Yosuke; Hardee, Philip E.; Nishikawa, Ken-Ichi

    2014-04-01

    We investigated the influence of velocity shear and a radial density profile on the spatial development of the current-driven (CD) kink instability along helically magnetized relativistic jets via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we use a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers growth of the kink instability. If the velocity shear radius is located inside the characteristic radius of the helical magnetic field, a static nonpropagating CD kink is excited as the perturbation propagates down the jet. Temporal growth disrupts the initial flow across the computational grid not too far from the inlet. On the other hand, if the velocity shear radius is outside the characteristic radius of the helical magnetic field, the kink is advected with the flow and grows spatially down the jet. In this case, flow is maintained to much larger distances from the inlet. The effect of different radial density profiles is more subtle. When the density increases with radius, the kink appears to saturate by the end of the simulation without apparent disruption of the helical twist. This behavior suggests that relativistic jets consisting of a tenuous spine surrounded by a denser medium with a velocity shear radius outside the radius of the maximum toroidal magnetic field have a relatively stable configuration.

  1. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. I. Instability of a Static Column

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2009-07-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  2. Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Bains, A. S.; Gill, T. S.; Tribeche, Mouloud

    2011-02-15

    The modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma is investigated in the context of the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schroedinger equation (NLSE) which governs the MI of the IAWs is obtained. The presence of the nonextensive electron distribution is shown to influence the MI of the waves. Three different ranges of the nonextensive q-parameter are considered and in each case the MI sets in under different conditions. Furthermore, the effects of the q-parameter on the growth rate of MI are discussed in detail.

  3. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul M.

    2016-03-01

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.

  4. The effects of nonadiabatic dust charge variation and ultraviolet irradiation on the modulational instability of dust ion acoustic waves

    SciTech Connect

    Wang Yunliang; Guo Chunxia; Ni Xiaodong; Qian Ping; Shen Jiang; Jiang Xiangqian; Zhou Zhongxiang

    2010-11-15

    The effects of nonadiabatic dust charge fluctuation on the nonlinear propagation of the dust ion acoustic (DIA) waves in the dusty plasma with positively charged dust grains have been investigated. By using the reductive perturbation technique, a three-dimensional modified nonlinear Schroedinger equation (mNLSE) governing the nonlinear envelope DIA waves was derived and the approximate solitary wave solution of the mNLSE was also obtained in the weak effect of nonadiabatic dust charge fluctuation limit, which shows that the amplitude of the DIA solitary wave exponentially decreases with time due to the collisionless dissipation caused by the nonadiabatic dust charge variation. The frequency, instability growth rate, and the critical modulational wave number of the small amplitude modulation are all dependent on photoelectron generated by ultraviolet irradiation and time due to the presence of nonadiabatic dust charge variation. The transverse perturbation plays an important role in the modulational instability region.

  5. Multi-dimensional instability of dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Rahman, O.

    2016-07-01

    An attempt has been made to study the multi-dimensional instability of dust-ion-acoustic (DIA) solitary waves (SWs) in magnetized multi-ion plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons. First of all, we have derived Zakharov-Kuznetsov (ZK) equation to study the DIA SWs in this case using reductive perturbation method as well as its solution. Small-k perturbation technique was employed to find out the instability criterion and growth rate of such a wave which can give a guideline in understanding the space and laboratory plasmas, situated in the D-region of the Earth's ionosphere, mesosphere, and solar photosphere, as well as the microelectronics plasma processing reactors.

  6. Modulational instability of ion acoustic wave with warm ions in electron-positron-ion plasmas

    SciTech Connect

    Mahmood, S.; Siddiqui, Sadiya; Jehan, Nusrat

    2011-05-15

    The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schroedinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.

  7. Nonlinear dynamics of filamentation instability and current filament merging in a high density current-driven plasma

    NASA Astrophysics Data System (ADS)

    Khorashadizadeh, S. M.; Taghadosi, M. R.; Niknam, A. R.

    2015-12-01

    The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank-Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.

  8. Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability

    NASA Astrophysics Data System (ADS)

    Masood, W.; Saleem, H.; Saleem

    2013-12-01

    It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.

  9. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  10. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z.

    2014-12-01

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  11. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    SciTech Connect

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z.

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  12. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  13. Particle in cell simulations of Buneman instability of a current-driven plasma with q-nonextensive electron velocity distribution

    SciTech Connect

    Niknam, A. R. Roozbahani, H.; Komaizi, D.; Hashemzadeh, M.

    2014-09-15

    The nonlinear evolution of low frequency Buneman instability in an unmagnetized current-driven plasma with q-nonextensive electron velocity distribution is investigated using particle in cell simulation. Simulation results show that the generation of electron phase space holes and the counter-streaming current induced in the plasma strongly depend on the q-parameter. It is found that by increasing the nonextensive parameter, the distribution of electron density becomes highly peaked. This density steepening or grating-like pattern occurs at the saturation time. In addition, a generalized dispersion relation is obtained using the kinetic theory. Analysis of the dispersion relation and the temporal evolution of the electric field energy density reveal that the growth rate of instability increases by increasing the q-parameter. Finally, the results of Maxwellian and q-nonextensive velocity distributions have been compared and discussed.

  14. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  15. Transverse instability of ion acoustic solitons in a magnetized plasma including -nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; El-Taibany, W. F.; Mahmood, S.; Behery, E. E.; Khan, S. A.; Ali, S.; Hussain, S.

    2015-10-01

    > . The magnetic field has no effect on the amplitude of the IASW, whereas the obliqueness angle of the wave propagation, the ion-to-electron temperature ratio and positron-to-ion density concentration ratio affect both the amplitude and the width of the solitary wave structures. The transverse instability analysis illustrates that the one soliton solution has a constant growth rate, and it suffers from instability in the transverse direction. The relevance of the present study to astrophysical space plasmas is also discussed.

  16. Thomson-Scattering Measurements of Ion-Acoustic Wave Amplitudes Driven by the Two-Plasmon-Decay Instability

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Michel, D. T.; Myatt, J. F.; Hu, S. X.; Yaakobi, B.; Froula, D. H.

    2012-10-01

    Thomson scattering was used to measure enhanced ion-acoustic waves (IAW's) driven by the two-plasmon-decay (TPD) instability. The IAW amplitude scales with the 3/2φ emission (a TPD signature). Up to 20 beams with 860-μm-diam laser spots generated by 2-ns-long pulses of 3φ (0.351-μm) light with overlapped intensities up to 4 x 10^14 W/cm^2 were used to produce ˜300-μm density-scale lengths. The IAW amplitudes were measured using 4φ Thomson scattering near 3φ quarter-critical densities. Time-resolved 3/2φ spectroscopy was used to compare the amplitude of 3/2φ emission to the IAW amplitude. QZAKfootnotetext K. Y. Sanbonmatsu et al., Phys. Rev. Lett. 82, 932 (1999).^,footnotetext K. Y. Sanbonmatsu et al., Phys. Plasmas 7, 2824 (2000). modeling shows a similar onset threshold and wave amplitude as the experiments. The model suggests that the source of the IAW growth is from the beating of electron-plasma waves, which drive density perturbations through the ponderomotive force. This conclusion is supported by the experimental geometry. This process is shown to be a saturation mechanism for TPD from simulations.footnotetext R. Yan et al., Phys. Rev. Lett. 103, 175002 (2009). This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  17. Electron heating by ion acoustic turbulence in simulated low Mach number shocks

    NASA Technical Reports Server (NTRS)

    Tokar, Robert L.; Gary, S. Peter; Quest, Kevin B.

    1987-01-01

    Explicit and fully electromagnetic particle-in-cell simulations of perpendicular, collisionless, and nominally subcritical shocks are performed in one and two spatial dimensions using the code wave. Shock parameters are chosen to maximixe the growth rates of the current-driven ion acoustic instability in the shock. Electron heating by ion acoustic turbulence is observed at the shocks, at rates in agreement with second-order Vlasov theory predictions. However, the amount of resistive electron heating is small and ion reflection provides the major source of dissipation. Strictly resistive shocks do not exist for the parameters suitable for explicit particle codes running on today's supercomputers, because the plasma convects through these shocks so quickly that current-driven instabilities have little time to be amplified and to heat the electrons resistively. This effect is primarily a result of the relatively small values of omega(pe)/omega(ce) that can be analyzed.

  18. Subcritical excitation of the current-driven Tayler instability by super-rotation

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Schultz, M.; Gellert, M.; Stefani, F.

    2016-01-01

    It is known that in a hydrodynamic Taylor-Couette system, uniform rotation or a rotation law with positive shear ("super-rotation") is linearly stable. It is also known that a conducting fluid under the presence of a sufficiently strong axial electric-current becomes unstable against nonaxisymmetric disturbances. It is thus suggestive that a cylindrical pinch formed by a homogeneous axial electric-current is stabilized by rotation laws with dΩ/dR ≥ 0. For magnetic Prandtl number Pm ≠ 1 and for slow rotation, however, rigid rotation and super-rotation support the instability by lowering the critical Hartmann numbers. This double-diffusive instability of super-rotation even exists for toroidal magnetic fields with rather arbitrary radial profiles, the current-free profile Bϕ ∝ 1/R included. The sign of the azimuthal drift of the nonaxisymmetric hydromagnetic instability pattern strongly depends on the magnetic Prandtl number. The pattern counterrotates with the flow for Pm ≪ 1 and it corotates for Pm ≫ 1 while for rotation laws with negative shear, the instability pattern migrates in the direction of the basic rotation for all Pm. An axial electric-current of minimal 3.6 kA flowing inside or outside the inner cylinder suffices to realize the double-diffusive instability for super-rotation in experiments using liquid sodium as the conducting fluid between the rotating cylinders. The limit is 11 kA if a gallium alloy is used.

  19. Finite-width currents, magnetic shear, and the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Bakshi, P.; Ganguli, G.; Palmadesso, P.

    1983-01-01

    Our earlier results that non-local effects due to even a small magnetic shear produce a significant reduction of the growth rate of the ion cyclotron instability driven by a uniform current are now generalized to finite width currents. Externally prescribed as well as self-consistent shears are considered. If the current width Lc exceeds the shear length Ls, the previous results are recovered. Shear becomes less effective with reduction of Lc, and for typical parameters, the growth rate attains its (shearless) local value for Lc/Ls approximately less than 10 to the minus 2. Non-local effects of the finite current width itself come into play if Lc is further reduced to a few ion Larmor radii and can quench the instability. Previously announced in STAR as N83-28996

  20. Spatial Growth of Current-driven Instability in Relativistic Rotating Jets and the Search for Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Singh, Chandra B.; Mizuno, Yosuke; de Gouveia Dal Pino, Elisabete M.

    2016-06-01

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.

  1. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVENIC JET: TEMPORAL PROPERTIES

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2011-06-10

    We have investigated the influence of a velocity shear surface on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria in three dimensions. In this study, we follow the temporal development within a periodic computational box and concentrate on flows that are sub-Alfvenic on the cylindrical jet's axis. Displacement of the initial force-free helical magnetic field leads to the growth of CD kink instability. We find that helically distorted density structure propagates along the jet with speed and flow structure dependent on the radius of the velocity shear surface relative to the characteristic radius of the helically twisted force-free magnetic field. At small velocity shear surface radius, the plasma flows through the kink with minimal kink propagation speed. The kink propagation speed increases as the velocity shear radius increases and the kink becomes more embedded in the plasma flow. A decreasing magnetic pitch profile and faster flow enhance the influence of velocity shear. Simulations show continuous transverse growth in the nonlinear phase of the instability. The growth rate of the CD kink instability and the nonlinear behavior also depend on the velocity shear surface radius and flow speed, and the magnetic pitch radial profile. Larger velocity shear radius leads to slower linear growth, makes a later transition to the nonlinear stage, and with larger maximum amplitude than that occuring for a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and nonlinear development can be similar to the development of a static plasma column.

  2. Vlasov simulation of 2D Modulational Instability of Ion Acoustic Waves and Prospects for Modeling such instabilities in Laser Propagation Codes

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.

    2015-11-01

    We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.

  3. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  4. Saddle-node bifurcation and modulational instability associated with the pulse propagation of dust ion-acoustic waves in a viscous dusty plasma: A complex nonlinear Schroedinger equation

    SciTech Connect

    Misra, Amar P.; Roy Chowdhury, K.; Roy Chowdhury, A.

    2007-01-15

    Using the standard reductive perturbation technique, a nonlinear Schroedinger equation (NLSE) with complex coefficients is derived in a dusty plasma consisting of positive ions, nonthermal electrons, and charged dust grains. The effect of ion kinematic viscosity is taken into consideration, which makes the coefficients of NLSE complex. By means of a matching approach, the appearance mechanism of static pulses through a saddle-node bifurcation in the complex nonlinear Schroedinger equation is studied analytically. The analytical results are in good agreement with the direct numerical simulation. The modulational instability analysis is carried out for the dust ion-acoustic envelope solitary waves. The important role of the real part of the complex group velocity in the propagation of the one-dimensional wave packets in homogeneous active medium is predicted.

  5. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  6. Electrostatic ion (hydrogen) cyclotron and ion acoustic wave instabilities in regions of upward field-aligned current and upward ion beams

    NASA Astrophysics Data System (ADS)

    Bergmann, R.

    1984-02-01

    An investigation is made into the stability of electrostatic hydrogen ion cyclotron and ion acoustic waves in a model plasma where an ion beam, population 2, and oppositely directed drifting electrons pass through a stationary ion background, population 1. The excited wave properties are then compared with the characteristics of the unstable modes observed on the S3-3 satellite. Three temperature regimes are studied: (1) Te greater than Ti2 much greater than Ti1, (2) Ti2 greater than Te not less than Ti1, and (3) Te approximately equal to Ti1 greater than Ti2. It is found that the ion beam acts as a free energy source only in regime 1. This regime is also highly unstable to the electrons as a free energy source. Unstable modes in regimes 2 and 3 seem to best satisfy the electrostatic hydrogen cyclotron wave (EHC) properties at 1 earth radius. For these cases the electrons are the free energy source, the beam supplies damping.

  7. Kinetic study of ion-acoustic plasma vortices

    SciTech Connect

    Khan, S. A.; Aman-ur-Rehman; Mendonca, J. T.

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  8. A new electron temperature diagnostic of critical surface based on the ion acoustic decay instability in hot, high density plasma relevant to laser fusion. Semiannual report, April 1--September 29, 1994

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1994-12-31

    The authors made analysis of the IADI experiments previously made using OMEGA laser system. They obtained two important new results: the first direct observation of the epw excited by the Ion Acoustic Decay Instability, and the first study of the IADI in a plasma that approaches laser-fusion conditions, in the sense of having a density scale length of order 1 mm and an electron temperature, T{sub e}, in excess of 1 keV. Previous observations of the epw`s have been based on the second harmonic emission, from which little can be inferred because the emission is produced by unknown pairs of epw`s, integrated in a complicated way over wavenumber space and real space. In contrast, they have directly observed the epw by using the 90{degree}, collective Thomson scattering (CTS) of a UV laser (at the third harmonic of the pump) from the epw`s. Because the ratio of probe frequency to electron plasma frequency is only about three, the scattering is collective (i.e. k{sub epw}{lambda}{sub De} is small, where k{sub epw} is the epw wave number and {lambda}{sub De} is the Debye length),m even though the scattering angle is large. The electron temperature can then be deduced from the ion sound velocity, obtained from the measurement of the frequency at which growth is maximum at the scattering wavenumber.

  9. Formation of ion acoustic solitary waves upstream of the earth's bow shock. [in solar wind

    NASA Technical Reports Server (NTRS)

    Pangia, M. J.; Lee, N. C.; Parks, G. K.

    1985-01-01

    The turbulent plasma development of Lee and Parks is applied to the solar wind approaching the earth's bow shock region. The ponderomotive force contribution is due to ion acoustic waves propagating in the direction of the ambient magnetic field. In this case, the envelope of the ion acoustic wave is shown to satisfy the cubic Schroedinger equation. Modulational instabilities exist for waves in the solar wind, thereby predicting the generation of solitary waves. This analysis further identifies that the ion acoustic waves which exhibit this instability have short wavelengths.

  10. Anomalous resistivity of current-driven isothermal plasmas due to phase space structuring

    SciTech Connect

    Buechner, Joerg; Elkina, Nina

    2006-08-15

    The anomalous electric resistivity of collisionless plasmas is an important issue in the physics of hot plasmas, e.g., in the context of auroral particle acceleration and of reconnection in the solar corona. The linear stability theory of isothermal current driven space plasmas predicts an ion-acoustic instability if the relative drift velocity of the current carrying particles exceeds a certain threshold, which, generally, depends on the plasma parameters. The spectrum of waves, excited by a marginal instability, is very narrow. Hence, the wave power at saturation and the corresponding electric resistivity due to wave-particle interaction cannot be obtained by means of a quasilinear, weak turbulence approach and the nonlinear single mode theory provides too small saturation amplitudes. To solve the nonlinear problem a newly developed unsplit conservative Eulerian Vlasov code is applied to simulate a strongly magnetized current driven plasma, which can be considered in 1D1V (one spatial, one velocity space direction). Instead of periodic boundary conditions, usually used as they are simpler to treat, open boundaries are implemented which allow to maintain a constant current flow. Simulated is a typical almost isothermal (T{sub e}=2T{sub i}) hot ({kappa}T{sub i}=1 keV) space plasma for the real mass ratio m{sub i}/m{sub e}=1836. The initial spontaneous instability is followed by a three-stage nonlinear evolution: First electron trapping leads to the formation of electron phase space holes. Due to a steepening of the leading edges of the potential wells the electron phase space holes gradually become asymmetric, they grow in size and deepen. The phase space holes accelerate until they move much faster than the initial ion-acoustic waves. The interaction of the current carriers with the asymmetric potential wells and causes a nonvanishing net momentum transfer between the particles and the self-generated electric field. After a few ion plasma periods ion trapping

  11. Alternating current driven instability in magnetic junctions.

    PubMed

    Epshtein, E M; Zilberman, P E

    2009-04-01

    An effect is considered of alternating (high-frequency) current on the spin-valve-type magnetic junction configuration. The stability with respect to small fluctuations is investigated in the macrospin approximation. When the current frequency is close to the eigenfrequency (precession frequency) of the free layer, parametric resonance occurs. Both collinear configurations, antiparallel and parallel, can become unstable under resonance conditions. The antiparallel configuration can also become unstable under non-resonant conditions. The threshold current density amplitude is of the order of the dc current density for switching of the magnetic junction. PMID:21825350

  12. Weakly dissipative dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  13. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  14. The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.

    1996-11-01

    It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

  15. Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Grydeland, T.; Samara, M.

    2014-10-01

    Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including spectral shape and altitude extent. We believe that NEIALs occur with a continuum of morphological characteristics, although we find that most NEIALs observed with PFISR fall into two general categories. The first group occurs at fairly low altitudes - F region or below - and have power at, and spread between, the ion-acoustic peaks. The second group contains the type of NEIALs that have previously been observed with the EISCAT radars, those that extend to high altitudes (600 km or more) and often have large asymmetries in the power enhancements between the two ion-acoustic shoulders. We find that there is a correlation between the auroral structures and the type of NEIALs observed, and that the auroral structures present during NEIAL events are consistent with the likely NEIAL generation mechanisms inferred in each case. The first type of NEIAL - low altitude - is the most commonly observed with PFISR and is most often associated with active, structured auroral arcs, such as substorm growth phase, and onset arcs and are likely generated by Langmuir turbulence. The second type of NEIAL - high altitude - occurs less frequently in the PFISR radar and is associated with aurora that contains large fluxes of low-energy electrons, as can happen in poleward boundary intensifications as well as at substorm onset and is likely the result of current-driven instabilities and in some cases Langmuir turbulence as well. In addition, a preliminary auroral photometry analysis revealed that there is an

  16. Tail formation by nonresonant interaction of ions with ion-acoustic turbulence

    NASA Astrophysics Data System (ADS)

    Appert, K.; Vaclavik, J.

    1981-09-01

    The quasilinear evolution of ion-acoustic turbulence induced by a constant current in a two-temperature plasma (with electron temperature much greater than ion temperature) is considered. The pertinent equations, which include both resonant and nonresonant wave-particle interactions, are discretized by a finite element method and solved numerically. If is shown first that the nonresonant interaction provides a powerful mechanism for ion tail formation. It is then shown that linear Landau damping on the high-energy ion tail so formed may quench the ion-acoustic instability as proposed by Dum et al. (1974) when interpreting their particle-in-cell simulation results.

  17. Ion acoustic shock waves in degenerate plasmas

    SciTech Connect

    Akhtar, N.; Hussain, S.

    2011-07-15

    Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

  18. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  19. Ion acoustic solitons in a warm magnetoplasma

    SciTech Connect

    Ghosh, K.K.; Ray, D.

    1987-11-01

    Kalita and Bujarbarua (J. Phys. A: Math. Gen. 16, 439 (1983)) obtained a set of equations to describe the nonlinear propagation of ion acoustic waves in a warm magnetoplasma and made a numerical study of these equations for particular values of the physical parameters. In this paper a rigorous and general analytical study is presented. Some simple necessary and sufficient conditions for solitary wave solutions are derived and it is also shown that cavity solutions are not possible.

  20. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    NASA Astrophysics Data System (ADS)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  1. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  2. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  3. Turbulence in electrostatic ion acoustic shocks

    NASA Technical Reports Server (NTRS)

    Means, R. W.; Coroniti, F. V.; Wong, A. Y.; White, R. B.

    1973-01-01

    Three types of collisionless electrostatic ion acoustic shocks are investigated using a double plasma (DP) device: (1) laminar shocks; (2) small amplitude turbulent shocks in which the turbulence is confined to be upstream of the shock potential jump; and (3) large amplitude turbulent shocks in which the wave turbulence occurs throughout the shock transition. The wave turbulence is generated by ions which are reflected from the shock potential; linear theory spatial growth increments agree with experimental values. The experimental relationship between the shock Mach number and the shock potential is shown to be inconsistent with theoretical shock models which assume that the electrons are isothermal. Theoretical calculations which assume a trapped electron equation of a state and a turbulently flattened velocity distrubution function for the reflected ions yields a Mach number vs potential relationship in agreement with experiment.

  4. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  5. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  6. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Walia, Ritu; Sharma, Kavita

    2012-07-15

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  7. Current-Driven Nanowire Formation on Crystalline Conducting Substrate Surfaces

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    Using a simulation study, we demonstrate a new, driven-assembly-based approach to single-layer nanowire formation on fcc crystalline substrate surfaces. In this approach, we manipulate individual epitaxial islands using an external electric field to drive the formation of single nanowires or arrays of them. We have developed and validated a fully nonlinear model of current-driven island evolution mediated by diffusional mass transport along the island edge and accounting for edge diffusional anisotropy and island coalescence and breakup. Using a linear stability theory, we analyze the morphological stability of islands with equilibrium shapes and predict the occurrence of morphological instability for islands larger than a critical size under the action of an electric field along the slowest edge diffusion direction on { 110 } , { 100 } , and { 111 } substrate surfaces. Consistent with the theoretical prediction, dynamical simulations show that large-size islands undergo a fingering instability which, following finger growth and, depending on the substrate orientation, necking instability, leads to formation of single or multiple nanowires. We find that the nanowires have constant widths, on the order of tens of nanometers, and explain analytically the nanowire dimensions.

  8. Ion-acoustic super rogue waves in ultracold neutral plasmas with nonthermal electrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; El-Labany, S. K.

    2013-07-15

    The ion-acoustic rogue waves in ultracold neutral plasmas consisting of ion fluid and nonthermal electrons are reported. A reductive perturbation method is used to obtain a nonlinear Schrödinger equation for describing the system and the modulation instability of the ion-acoustic wave is analyzed. The critical wave number k{sub c}, which indicates where the modulational instability sets in, has been determined. Moreover, the possible region for the ion-acoustic rogue waves to exist is defined precisely. The effects of the nonthermal parameter β and the ions effective temperature ratio σ{sub *} on the critical wave number k{sub c} are studied. It is found that there are two critical wave numbers in our plasma system. For low wave number, increasing β would lead to cringe k{sub c} until β approaches to its critical value β{sub c}, then further increase of β beyond β{sub c} would enhance the values of k{sub c}. For large wave numbers, the increase of β would lead to a decrease of k{sub c}. However, increasing σ{sub *} would lead to the reduction of k{sub c} for all values of the wave number. The dependence of the rogue waves profile on the plasma parameters is numerically examined. It is found that the rogue wave amplitudes have complex behavior with increasing β. Furthermore, the enhancement of σ{sub *} and the carrier wave number k reduces the rogue wave amplitude. It is noticed that near to the critical wave number, the rogue wave amplitude becomes high, but it shrinks whenever we stepped away from k{sub c}. The implications of our results in laboratory ultracold neutral plasma experiments are briefly discussed.

  9. Dust ion-acoustic rogue waves in a three-species ultracold quantum dusty plasmas

    SciTech Connect

    Sun, Wen-Rong; Tian, Bo Liu, Rong-Xiang; Liu, De-Yin

    2014-10-15

    Dust ion-acoustic (DIA) rogue waves are reported for a three-component ultracold quantum dusty plasma comprised of inertialess electrons, inertial ions, and negatively charged immobile dust particles. The nonlinear Schrödinger (NLS) equation appears for the low frequency limit. Modulation instability (MI) of the DIA waves is analyzed. Influence of the modulation wave number, ion-to-electron Fermi temperature ratio ρ and dust-to-ion background density ratio N{sub d} on the MI growth rate is discussed. The first- and second-order DIA rogue-wave solutions of the NLS equation are examined numerically. It is found that the enhancement of N{sub d} and carrier wave number can increase the envelope rogue-wave amplitudes. However, the increase of ρ reduces the envelope rogue-wave amplitudes. - Highlights: • The nonlinear Schrödinger equation is derived for the low frequency limit. • Modulational instability growth rate is discussed. • The first- and second-order dust ion-acoustic rogue waves are examined numerically.

  10. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Jamil, M.; Shahid, M.; Ali, Waris; Salimullah, M.; Shah, H. A.; Murtaza, G.

    2011-06-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfvén waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfvén waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B0. It is noted that the growth rate is proportional to the unperturbed electron number density noe and is independent of inhomogeneity beyond Le=2 cm. An extraordinary growth rate is observed with the quantum effect.

  11. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-06-15

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B{sub 0}. It is noted that the growth rate is proportional to the unperturbed electron number density n{sub oe} and is independent of inhomogeneity beyond L{sub e}=2 cm. An extraordinary growth rate is observed with the quantum effect.

  12. Ion- and dust-acoustic instabilities in dusty plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.

    1993-01-01

    Dust ion-acoustic and dust-acoustic instabilities in dusty plasmas are investigated using a standard Vlasov approach. Possible applications of these instabilities to various cosmic environments, including protostellar clouds and planetary rings, are briefly discussed.

  13. Experimental Study of Current-Driven Turbulence During Magnetic Reconnection

    SciTech Connect

    Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William

    2010-08-31

    CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, MIT Participation in the Center for Multiscale Plasma Dynamics, which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department,. Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009). In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a spontaneous reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive-potential spikes, which were identified as electron phase-space holes, a class of

  14. Anomalous resistivity and heating in current-driven plasma thrusters

    NASA Astrophysics Data System (ADS)

    Choueiri, E. Y.

    1999-05-01

    A theory is presented of anomalous resistivity and particle heating in current-driven plasma accelerators such as the magnetoplasmadynamic thruster (MPDT). An electromagnetic dielectric tensor is used for a current-carrying, collisional and finite-beta plasma and it is found that an instability akin to the generalized lower hybrid drift instability (GLHDI) exists for electromagnetic modes (i.e., with finite polarization). Weak turbulence theory is then used to develop a second-order description of the heating rates of particles by the waves and the electron-wave momentum exchange rate that controls the anomalous resistivity effect. It is found that the electron Hall parameter strongly scales the level of anomalous dissipation for the case of the MPDT plasma. This scaling has recently been confirmed experimentally [Phys. Plasmas 5, 3581 (1997)]. Polynomial expressions of the relevant transport coefficients cast solely in terms of macroscopic parameters are also obtained for including microturbulence effects in numerical plasma fluid models used for thruster flow simulation.

  15. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    SciTech Connect

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-15

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  16. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-01

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  17. Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons.

    PubMed

    Sabry, R; Moslem, W M; Shukla, P K; Saleem, H

    2009-05-01

    The nonlinear wave modulation of planar and nonplanar (cylindrical and spherical) ion-acoustic envelope solitons in a collisionless unmagnetized electron-positron-ion plasma with two-electron temperature distributions has been studied. The reductive perturbative technique is used to obtain a modified nonlinear Schrödinger equation, which includes a damping term that accounts for the geometrical effect. The critical wave number threshold Kc, which indicates where the modulational instability sets in, has been determined for various regimes. It is found that an increase in the positron concentration (alpha) leads to a decrease in the critical wave number (Kc) until alpha approaches certain value alphac (critical positron concentration), then further increase in alpha beyond alphac increases the value of Kc. Also, it is found that there is a modulation instability period for the cylindrical and spherical wave modulation, which does not exist in the one-dimensional case. PMID:19518571

  18. Current driven asymmetric domain wall propagation

    NASA Astrophysics Data System (ADS)

    Garg, Chirag; Pushp, Aakash; Phung, Timothy; Yang, See-Hun; Hughes, Brian P.; Rettner, Charles; Parkin, Stuart S. P.

    In ultrathin magnetic heterostructures, the presence of spin-orbit coupling gives rise to chiral Neel walls which are stabilized by the Dzyaloshinskii-Moriya Interaction (DMI), and also to a highly efficient chiral spin torque mechanism. In straight nanowires, the current-driven propagation of alternating Néel DWs without the presence of an in-plane field is equivalent, leading to the lock-step motion of several DWs in a nanowire. Here, we show that by engineering the structure in which the domain walls propagate, which in our case is in the shape of a Y-shaped junction, the DW propagation process becomes selective to the polarity of the DWs even in the absence of any externally applied magnetic fields. We remarkably find that after splitting at the Y-shaped junction, the DW velocity in one branch remains largely unaffected compared to its initial velocity whereas simultaneously the DW velocity in the other branch decreases by as much as 10-90%. We show that this large change in the DW velocity in a particular branch depends on the relative angle between the local magnetization of the DW and the spin current emanating from the underlying heavy-metal layer in these nanowires.

  19. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  20. Ion acoustic solitons in Earth's upward current region

    SciTech Connect

    Main, D. S.; Scholz, C.; Newman, D. L.; Ergun, R. E.

    2012-07-15

    The formation and evolution of ion acoustic solitons in Earth's auroral upward current region are studied using one- and two-dimensional (2D) electrostatic particle-in-cell simulations. The one-dimensional simulations are confined to processes that occur in the auroral cavity and include four plasma populations: hot electrons, H{sup +} and O{sup +} anti-earthward ion beams, and a hot H{sup +} background population. Ion acoustic solitons are found to form for auroral-cavity ion beams consistent with acceleration through double-layer (DL) potentials measured by FAST. A simplified one-dimensional model simulation is then presented in order to isolate the mechanisms that lead to the formation of the ion acoustic soliton. Results of a two-dimensional simulation, which include both the ionosphere and the auroral cavity, separated by a low-altitude DL, are then presented in order to confirm that the soliton forms in a more realistic 2D geometry. The 2D simulation is initialized with a U-shaped potential structure that mimics the inferred shape of the low altitude transition region based on observations. In this simulation, a soliton localized perpendicular to the geomagnetic field is observed to form and reside next to the DL. Finally, the 2D simulation results are compared with FAST data and it is found that certain aspects of the data can be explained by assuming the presence of an ion acoustic soliton.

  1. Stability of two-dimensional ion-acoustic wave packets in quantum plasmas

    SciTech Connect

    Misra, A. P.; Marklund, M.; Brodin, G.; Shukla, P. K.

    2011-04-15

    The nonlinear propagation of two-dimensional (2D) quantum ion-acoustic waves (QIAWs) is studied in a quantum electron-ion plasma. By using a 2D quantum hydrodynamic model and the method of multiple scales, a new set of coupled nonlinear partial differential equations is derived which governs the slow modulation of the 2D QIAW packets. The oblique modulational instability (MI) is then studied by means of a corresponding nonlinear Schroedinger equation derived from the coupled nonlinear partial differential equations. It is shown that the quantum parameter H (ratio of the plasmon energy density to Fermi energy) shifts the MI domains around the k{theta} -plane, where k is the carrier wave number and {theta} is the angle of modulation. In particular, the ion-acoustic wave (IAW), previously known to be stable under parallel modulation in classical plasmas, is shown to be unstable in quantum plasmas. The growth rate of the MI is found to be quenched by the obliqueness of modulation. The modulation of 2D QIAW packets along the wave vector k is shown to be described by a set of Davey-Stewartson-like equations. The latter can be studied for the 2D wave collapse in dense plasmas. The predicted results, which could be important to look for stable wave propagation in laboratory experiments as well as in dense astrophysical plasmas, thus generalize the theory of MI of IAW propagations both in classical and quantum electron-ion plasmas.

  2. Observation of second order ion acoustic Peregrine breather in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, S. K.; Nakamura, Y.; Bailung, H.

    2016-02-01

    The experimental observation of second order ion acoustic Peregrine breathers in multicomponent plasma with negative ions is reported. A long wavelength initial perturbation on a continuous carrier frequency ˜0.5 ωpi (where ωpi is the ion plasma frequency) of finite amplitude is found to undergo self-modulation due to the interplay between nonlinear dispersive effect and group velocity dispersion because of modulational instability. Wave energy focusses to a smaller localized and isolated group of waves within the packet with amplitude amplification up to 5 times of the background carrier wave. The experimental results are compared with second order breather solution of nonlinear Schrodinger equation. The wavelet analysis and fast Fourier transform analysis of the experimental time series data indicate strong nonlinear evolution (wave energy focusing and spectral broadening) conforming to the formation of second order Peregrine solitons.

  3. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  4. Drift and ion acoustic wave driven vortices with superthermal electrons

    SciTech Connect

    Ali Shan, S.; Haque, Q.

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  5. Dressed ion-acoustic solitons in magnetized dusty plasmas

    SciTech Connect

    El-Labany, S. K.; El-Shamy, E. F.; El-Warraki, S. A.

    2009-01-15

    In the present research paper, the characteristics of ion acoustic solitary waves are investigated in hot magnetized dusty plasmas consisting of negatively charged dust grains, positively charged ion fluid, and isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. The effects of the external oblique magnetic field, hot ion fluid, and higher-order nonlinearity on the nature of the ion acoustic solitary waves are discussed. The results complement and provide new insights into previously published results on this problem [R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006)].

  6. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  7. Ion acoustic envelope solitons in explosive ionospheric experiments

    NASA Astrophysics Data System (ADS)

    Kovaleva, I. Kh.

    2008-01-01

    The conditions are studied under which stable ion acoustic envelope solitons propagating perpendicular to the magnetic field lines can exist in the ionospheric plasma. The amplitudes, frequencies, and lengths of the waves are determined. The results obtained are compared with the experimental data. It is suggested that such solitons play an important role in both the formation of an ionization front and its motion across the magnetic field and also give rise to a fluctuation precursor in explosive ionospheric experiments.

  8. Ion acoustic envelope solitons in explosive ionospheric experiments

    SciTech Connect

    Kovaleva, I. Kh.

    2008-01-15

    The conditions are studied under which stable ion acoustic envelope solitons propagating perpendicular to the magnetic field lines can exist in the ionospheric plasma. The amplitudes, frequencies, and lengths of the waves are determined. The results obtained are compared with the experimental data. It is suggested that such solitons play an important role in both the formation of an ionization front and its motion across the magnetic field and also give rise to a fluctuation precursor in explosive ionospheric experiments.

  9. Electrostatic heat flux instabilities

    NASA Technical Reports Server (NTRS)

    Morrison, P. J.; Ionson, J. A.

    1980-01-01

    The electrostatic cyclotron and ion acoustic instabilities in a plasma driven by a combined heat flux and current were investigated. The minimum critical heat conduction speed (above which the plasma is unstable) is given as a function of the ratio of electron to ion temperatures.

  10. Experimental observation of linear and nonlinear ion acoustic phenomena in a cylindrical geometry. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Romesser, T. E.

    1974-01-01

    Ion acoustic phenomena are studied in a cylindrical geometry for two distinct cases. A large amplitude compressive pulse is seen to evolve into solitons. The evolution of these solitons and their dependence on initial conditions show a similarity to previous work on one dimensional solitons. Dimensionless scaling arguments are used to distinguish the two cases. In the presence of a steady state uniform cylindrical beam, approximated by a ring in V sub r, V sub phi, an ion-ion beam instability is observed. This instability exists for a limited range of beam velocities and shows a marked similarity to the strictly one dimensional ion-ion beam instability. Solution of the appropriate dispersion relation shows agreement with the observed phenomenon.

  11. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  12. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  13. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas.

    PubMed

    Banerjee, S; Misra, A P; Shukla, P K; Rondoni, L

    2010-04-01

    A simulation study is performed to investigate the dynamics of coupled Langmuir waves (LWs) and ion-acoustic waves (IAWs) in an unmagnetized plasma. The effects of dispersion due to charge separation and the density nonlinearity associated with the IAWs are considered to modify the properties of Langmuir solitons, as well as to model the dynamics of relatively large amplitude wave envelopes. It is found that the Langmuir wave electric field, indeed, increases by the effect of ion-wave nonlinearity (IWN). Use of a low-dimensional model, based on three Fourier modes, shows that a transition to temporal chaos is possible, when the length scale of the linearly excited modes is larger than that of the most unstable ones. The chaotic behaviors of the unstable modes are identified by the analysis of Lyapunov exponent spectra. The space-time evolution of the coupled LWs and IAWs shows that the IWN can cause the excitation of many unstable harmonic modes and can lead to strong IAW emission. This occurs when the initial wave field is relatively large or the length scale of IAWs is larger than the soliton characteristic size. Numerical simulation also reveals that many solitary patterns can be excited and generated through the modulational instability of unstable harmonic modes. As time goes on, these solitons are seen to appear in the spatially partial coherence state due to the free ion-acoustic radiation as well as in the state of spatiotemporal chaos due to collision and fusion in the stochastic motion. The latter results in the redistribution of initial wave energy into a few modes with small length scales, which may lead to the onset of Langmuir turbulence in laboratory as well as space plasmas. PMID:20481845

  14. Compressive and rarefactive ion acoustic solitons in a magnetized two-ion component plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.; Aman-ur-Rehman

    2014-10-01

    The formation of compressive (hump) and rarefactive (dip) ion acoustic solitons is studied in magnetized O+- H+- e and O+- H-- e plasmas. The hydrodynamics equations are described for cold heavy (oxygen) ions, warm light (hydrogen) ions and isothermal Boltzmann distributed electrons along with Poisson equations in the presence of a magnetic field. The reductive perturbation method is used to derive the nonlinear Zakharov-Kuznetsov (ZK) equation for an ion acoustic wave in magnetized two-ion component plasma. It is found that two modes of ion acoustic waves with fast and slow speeds can propagate in the linear limit in such a plasma. It is noticed that, in the case of positively charged light hydrogen ions O+- H+- e plasmas, the slow ion acoustic wave solitons formed both potential hump as well as dip structures, while fast ion acoustic wave solitons give only hump structures. However in the case of negatively charged light hydrogen ions O+- H-- e plasmas, the slow ion acoustic wave solitons formed potential hump structures while fast ion acoustic wave solitons produce dip structures. The variations in the amplitude and width of the nonlinear slow and fast ion acoustic wave structures with density, temperature of light ions and magnetic field intensity are obtained in magnetized two-ion component plasmas. The magnetic field has its effect only on the width of the nonlinear ion acoustic wave structures in two-ion component plasmas.

  15. Ion Acoustic Solitons and Double Layers in the Solar Wind Having Kappa Distributed Electrons

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Singh, S. V.

    2015-12-01

    It is shown that two types of, slow and fast, ion-acoustic solitary waves can occur in a solar wind plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having k- distribution. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, U0, between alphas and protons is zero, provided alpha temperature, Ti, is not exactly equal to 4 times the proton temperature, Tp. An increase of the k- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The model can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft in terms of slow ion-acoustic double layers. It is proposed that both slow and fast ion-acoustic solitons may be responsible for the ion- acoustic like wave activity in the solar wind.

  16. Dust-ion-acoustic solitons with transverse perturbation

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.; El-Shewy, E.K.; El-Shamy, E.F.

    2005-05-15

    The ionization source model is considered, for the first time, to study the combined effects of trapped electrons, transverse perturbation, ion streaming velocity, and dust charge fluctuations on the propagation of dust-ion-acoustic solitons in dusty plasmas. The solitary waves are investigated through the derivation of the damped modified Kadomtsev-Petviashivili equation using the reductive perturbation method. Conditions for the formation of solitons as well as their properties are clearly explained. The relevance of our investigation to supernovae shells is also discussed.

  17. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  18. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  19. Large amplitude ion-acoustic solitons in dusty plasmas

    SciTech Connect

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-08-15

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW{sup 2} of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW{sup 2}), are discussed in detail.

  20. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  1. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occurs only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.

  2. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    SciTech Connect

    Saleem, H.; Haque, Q.

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  3. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  4. Arbitrary amplitude quantum dust ion-acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Ghebache, Siham; Aoutou, Kamel; Zerguini, Taha Houssine

    2008-03-15

    The one-dimensional quantum hydrodynamic model for a three-species quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic (DIA) wave. Two cases of physical interest are investigated, namely positive and negative dust charge. It is shown that only rarefactive solitary potentials associated with nonlinear quantum DIA (QDIA) waves involving electron density deeps can exist. The QDIA soliton experiences a spreading and the quantum effects tend to make it wider. Under certain conditions, the soliton enlarges and its pulse shape evolves into a broad central flat-bottomed (or table-bottomed) soliton as a limiting-amplitude member of the QDIA soliton family. Linear stability analysis as well as quasineutral solutions are succinctly outlined. The investigation could be of relevance to astrophysical quantum dusty plasmas.

  5. Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions

    SciTech Connect

    Sharma, Suresh C.; Gahlot, Ajay

    2008-07-15

    An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth rate of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].

  6. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  7. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    SciTech Connect

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the corresponding growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.

  8. Ion acoustic solitons in a solar wind magnetoplasma with Kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Devanandhan, Selvaraj; Singh, Satyavir; Singh Lakhina, Gurbax; Sreeraj, T.

    2016-07-01

    In many space plasma environments, the velocity distribution of particles often deviates from Maxwellian and is well-modelled by a kappa distribution function. We have analyzed the ion acoustic soliton in a magnetized consisting of plasma Protons, Helium ions, an electron beam and superthermal hot electrons following kappa distribution function. Under the assumption of weak nonlinearity, the ion-acoustic solitons are described by the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation. The solution of KdV-ZK equation is used to model the characteristics of the ion acoustic solitary waves in a solar wind magnetoplasma observed at 1 AU. We have found both slow and fast ion acoustic solitons in our study. It is found that the superthermality of hot electrons greatly influence the existence regime of the solitary waves. The numerical results of this study to explain solar wind observations will be discussed in detail.

  9. Weakly Dissipative Dust Ion-Acoustic Solitons in the Presence of Electromagnetic Radiation

    SciTech Connect

    Golub', A. P.; Izvekova, Y. N.; Losseva, T. V.; Popel, S. I.; Shukla, P. K.

    2011-11-29

    We present the model, which describes nonlinear dust ion-acoustic (DIA) perturbations in complex plasmas with electromagnetic radiation. We study time-evolution of the individual DIA soliton and interaction of two DIA solitons.

  10. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  11. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  12. Nonlinear instabilities driven by coherent phase-space structures

    NASA Astrophysics Data System (ADS)

    Lesur, Maxime

    2012-10-01

    Coherent phase-space (PS) structures are an important feature of plasma turbulence. They can drive nonlinear instabilities [1], intermittency in drift-wave turbulence [2], and transport [3]. We aim at a comprehensive understanding of turbulence, not just as an ensemble of waves, as quasilinear theory implies, but as a mixture of coupled waves and localized structures. This work, which focuses on isolated PS structures, is a fundamental advance in this direction. We analyze the effects of self-binding negative fluctuations (PS holes) on stability, intermittency and anomalous resistivity, both analytically and numerically. We present a new theory which describes the growth of a hole or clump [4]. We find that PS holes grow nonlinearly, independently of linear stability. Numerical simulations clarify the physics of nonlinear instabilities in both subcritical and supercritical conditions. When many resonances are unstable, several holes can coalesce into one main macro-scale structure, which survives much longer than a quasilinear diffusion time, suggesting that it may be crucial to resolve phase-space turbulence in analytical and numerical studies of transport. These findings are applied to two fundamental paradigms of plasma physics: bump-on-tail instabilities in 1D electronic plasma and current-driven ion-acoustic instabilities electron-ion plasma. Our results expose important limits of routinely-used linear and quasilinear theories.[4pt] [1] T.H. Dupree, Phys. Fluids 15, 334 (1972); R.H. Berman et al., Phys. Rev. Lett. 48, 1249 (1982).[0pt] [2] P.W. Terry, P.H. Diamond, and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).[0pt] [3] H. Biglari et al., Phys. Fluids 31, 2644 (1988); Y. Kosuga et al., Phys. Plasmas 18, 122305 (2011).[0pt] [4] M. Lesur, P.H. Diamond, submitted to Phys. Rev. Lett.

  13. Excitation of nonlinear ion acoustic waves in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.

    2016-08-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.

  14. A Schamel equation for ion acoustic waves in superthermal plasmas

    SciTech Connect

    Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  15. Ion-acoustic dressed solitons in a dusty plasma

    SciTech Connect

    Tiwari, R.S.; Mishra, M.K.

    2006-06-15

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived.

  16. A Schamel equation for ion acoustic waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Williams, G.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.; Kourakis, I.

    2014-09-01

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  17. Ion Acoustic Waves, A High School Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Buck, R.; Wise, J.; Gibson, N.; Buck, M.; Gekelman, W.; Wetzel, E.; Wetzel, C.; Moynihan, C.

    2001-10-01

    Over the last three the Los Angeles Physics Teachers Alliance Group (LAPTAG) has built a plasma device and designed experiments for high school students to learn about plasma properties and behavior. One of the first experiments performed by small student groups (two to three students at a time) is to create ion acoustic wave tonebursts in an Argon plasma, measure the wavelength and frequency of the wave and thereby calculate the velocity of the wave. A grid antenna immersed in the plasma, which is pulsed by a function generator, creates the waves. Measurements are made using a Langmuir probe and read out on a digital oscilloscope. From this information students calculate values such as the temperature of the plasma, the plasma density and percent ionization of the plasma. In order to do these experiments students must understand what plasma is, how plasma can be created using a helicon source, how to use an oscilloscope and many other aspects of the plasma chamber involved in the experiment. Other experiments are currently being done on the device and still others are being designed. For more information visit the LAPTAG website (http://coke.physics.ucla.edu/laptag).

  18. Nonplanar ion-acoustic solitary waves with superthermal electrons in warm plasma

    SciTech Connect

    Eslami, Parvin; Mottaghizadeh, Marzieh; Pakzad, Hamid Reza

    2011-07-15

    In this paper, we consider an unmagnetized plasma consisting of warm adiabatic ions, superthermal electrons, and thermal positrons. Nonlinear cylindrical and spherical modified Korteweg-de Vries (KdV) equations are derived for ion acoustic waves by using reductive perturbation technique. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, the effects of the superthermal parameter (k) on the ion acoustic waves are found.

  19. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  20. Ion-Acoustic Vortices in Two-Electron-Temperature Magnetoplasma with Cairn's Distributed Electrons and in the Presence of Ion Shear Flow

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Mirza, Arshad M.; Iqbal, Javed

    2016-04-01

    Linear and nonlinear characteristics of electrostatic waves in a multicomponent magnetoplasma comprising of Boltzmann distributed electrons, Cairn's distributed hot electrons, and cold dynamic ions are studied. It is found that the effect of superthermal electrons, ion-neutral collisions, and ion shear flow modifies the propagation of ion-acoustic and drift waves. The growth rate of the ion shear flow instability varies with the addition of Cairn's distributed hot electrons. It is also investigated that the behavior of different type of vortices changes with the inclusion of superthermal hot electrons. The relevance of this investigation in space plasmas such as in auroral region and geomagnetic tail is also pointed out.

  1. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    SciTech Connect

    Chawla, J. K.; Mishra, M. K.

    2010-10-15

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,{sigma}), where p and {sigma} are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  2. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    SciTech Connect

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-15

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli's pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  3. Angular dependence of current-driven chiral walls

    NASA Astrophysics Data System (ADS)

    Martinez, Eduardo; Alejos, Oscar; Auxiliadora Hernandez, Maria; Raposo, Victor; Sanchez-Tejerina, Luis; Moretti, Simone

    2016-06-01

    The current-driven dynamics of chiral domain walls is theoretically studied by means of realistic micromagnetic simulations. Trains of current pulses flowing through the heavy metal underneath the ferromagnetic layer are injected with different directions with respect to the ferromagnetic strip axis. The wall displacement is highly sensitive to the wall configuration and to the angle between the current and the longitudinal axis of the strip. These simulations can account for the experimental behavior at large currents, but preliminary results at lower current density point towards incompatibilities between the model and the experiment that need further experimental and theoretical efforts.

  4. Evidence of Branching Phenomena in Current-Driven Ionization Waves

    NASA Astrophysics Data System (ADS)

    Loebner, Keith T. K.; Underwood, Thomas C.; Cappelli, Mark A.

    2015-10-01

    This Letter reports the first fully consistent experimental observations of current-driven ionization waves conforming to the magnetohydrodynamic Rankine-Hugoniot model for hydromagnetic shocks. Detailed measurements of the thermodynamic and electrodynamic plasma state variables across the ionization region confirm the existence of two types of waves, corresponding to the upper and lower solution branches of the Hugoniot curve. These waves are generated by pulsed currents in a coaxial gas-fed plasma accelerator. The coupling between the state variables of this complex, transient, three-dimensional system shows a remarkable quantitative agreement of less than 8% deviation from the quasisteady, one-dimensional theoretical model.

  5. Current-driven vortex formation in a magnetic multilayer ring

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Ng, B. G.; Castaño, F. J.; Mascaro, M. D.; Ross, C. A.

    2009-02-01

    Current-driven domain wall (DW) motion has been studied in the NiFe layer of a Co/Cu/NiFe thin film ring using giant-magnetoresistance measurements in a four-point contact geometry. The NiFe layer is initially in an onion state configuration with two 180° DWs. An electric current drives the walls around the ring so that they annihilate and the NiFe layer forms a DW-free vortex state. The direction of motion of the two DWs is determined by the current polarity, enabling the vortex chirality to be selected.

  6. Instability-Enhanced Collisional Effects and Langmuir's Paradox

    SciTech Connect

    Baalrud, S. D.; Callen, J. D.; Hegna, C. C.

    2009-06-19

    Anomalously fast equilibration of the electron distribution function to a Maxwellian in gas-discharge plasmas with low temperature and pressure, i.e., Langmuir's paradox, may be explained by electron scattering via an instability-enhanced collective response and hence fluctuations arising from convective ion-acoustic instabilities near the discharge boundaries.

  7. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons. PMID:25871222

  8. Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Bergen, B.

    2016-03-01

    Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering (SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves (IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of Z Te/Ti conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearing as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. A simple analytic model is provided for how spatial "imprinting" from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.

  9. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.; El-Depsy, A.; El-Shamy, E. F.

    2015-12-01

    Properties of nonlinear ion-acoustic travelling waves propagating in a three-dimensional multicomponent magnetoplasma system composed of positive ions, negative ions and superthermal electrons are considered. Using the reductive perturbation technique (RPT), the Zkharov-Kuznetsov (ZK) equation is derived. The bifurcation theory of planar dynamical systems is applied to investigate the existence of the solitary wave solutions and the periodic travelling wave solutions of the resulting ZK equation. It is found that both compressive and rarefactive nonlinear ion-acoustic travelling waves strongly depend on the external magnetic field, the unperturbed positive-to-negative ions density ratio, the direction cosine of the wave propagation vector with the Cartesian coordinates, as well as the superthermal electron parameter. The present model may be useful for describing the formation of nonlinear ion-acoustic travelling wave in certain astrophysical scenarios, such as the D and F-regions of the Earth's ionosphere.

  10. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  11. Ion-acoustic vortices in inhomogeneous and dissipative electron-positron-ion quantum magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida; Ayub, M.

    2009-04-01

    Linear and nonlinear properties of quantum ion-acoustic waves are studied in a nonuniform, dissipative quantum plasma (composed of electrons, positrons, and ions) with sheared ion flow parallel to the ambient magnetic field, using the quantum hydrodynamic model. It is shown that the shear ion flow parallel to the external magnetic field can drive the quantum ion-acoustic wave unstable provided ∣S∣ky>kz. Stationary solutions of the nonlinear equations that govern the quantum ion-acoustic waves are also obtained. It is found that electrostatic monopolar, dipolar, and vortex street-type solutions can appear in such a plasma. It is observed that the inclusion of positron, quantum statistical, and Bohm potential terms significantly modifies the scale lengths of these nonlinear structures. The relevance of the present investigation with regard to the dense astrophysical environments is also pointed out.

  12. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  13. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  14. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  15. Current-driven resistive ballooning modes in axially bounded solar flare plasmas

    NASA Technical Reports Server (NTRS)

    Otani, Niels F.; Strauss, H. R.

    1988-01-01

    The most unstable current-driven resistive modes of an axially bounded coronal loop are found in computer simulations to exhibit the spatial structure of ballooning modes. The observed modes are not confined to mode rational surfaces, but instead have broad radial extent. A theory assuming ballooning mode spatial structure predicts that a minimum current should be required for linear instability, and that, when the mode is unstable, the linear growth rate scales linearly with the resistivity eta below a critical resistivity, and scales as cu root of eta for larger resistivities. Both predictions are borne out by simulation results. Both theory and simulation analyses of the mode suggest that the strong radial structure of the mode near the ends of the system is the primary contributing factor to the instability of the mode. A helical current sheet is formed in the nonlinear evolution of the mode near the edge of the current channel and is accompanied by a strong radial gradient in the current and partial current reversal.

  16. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  17. Landau damping of ion acoustic wave in Lorentzian multi-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.; Mirza, Arshad M.

    2011-09-15

    The Landau damping rates of ion acoustic wave are studied by using Vlasov-Poisson model for unmagnetized Lorentzian or kappa distributed plasma containing electrons, positively and negatively charged ions. It is found that the damping rate of ion acoustic wave is increased with the decrease of kappa (i.e., the spectral index of Lorentzian distribution) value. The damping rates of the electrostatic wave in multi-ion component plasmas are discussed in detail which depends on electron to ion temperature ratio and ions masses and density ratios. The numerical results are also shown by choosing some typical experimental parameters of multi-ion plasmas.

  18. Oblique modulation of ion-acoustic waves and envelope solitons in electron-positron-ion plasma

    SciTech Connect

    Jehan, Nusrat; Salahuddin, M.; Mirza, Arshad M.

    2009-06-15

    The effect of oblique modulation on the amplitude dynamics of ion-acoustic wave propagating in a collisionless electron-positron-ion plasma is investigated. Using Krylov-Bogoliubov-Mitropolsky (KBM) perturbation method, a nonlinear Schroedinger (NLS) equation is derived which governs the evolution of obliquely modulated ion-acoustic envelope excitations. It is found that the presence of positron component significantly modifies the stability domains for small angles of propagation with the direction of modulation. The stationary solutions of NLS equation, i.e., bright and dark envelope solitons, become narrower as the concentration of positron component increases.

  19. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  20. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  1. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  2. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    SciTech Connect

    Rios, L. A.; Galvão, R. M. O.

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  3. Nonconservative current-driven dynamics: beyond the nanoscale.

    PubMed

    Cunningham, Brian; Todorov, Tchavdar N; Dundas, Daniel

    2015-01-01

    Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion. These systems have degenerate vibrational frequencies, clustered about a Kohn anomaly in the dispersion relation, that can couple under current to form nonequilibrium modes of motion growing exponentially in time. Such motion is made possible by nonconservative current-induced forces on atoms, and we refer to it generically as the waterwheel effect. Here the connection between the waterwheel effect and the stimulated directional emission of phonons propagating along the electron flow is discussed in an intuitive manner. Nonadiabatic molecular dynamics show that waterwheel modes self-regulate by reducing the current and by populating modes in nearby frequency, leading to a dynamical steady state in which nonconservative forces are counter-balanced by the electronic friction. The waterwheel effect can be described by an appropriate effective nonequilibrium dynamical response matrix. We show that the current-induced parts of this matrix in metallic systems are long-ranged, especially at low bias. This nonlocality is essential for the characterisation of nonconservative atomic dynamics under current beyond the nanoscale. PMID:26665086

  4. Novel current driven domain wall dynamics in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun

    It was reported that the domain walls in nanowires can be moved efficiently by electrical currents by a new type of torque, chiral spin torque (CST), the combination of spin Hall effect and Dzyaloshinskii-Moriya interaction. Recently we domonstrated that ns-long current pulses can move domain walls at extraordinarily high speeds (up to ~750 m s -1) in synthetic antiferromagnetic (SAF) nanowires that have almost zero net magnetization, which is much more efficient compared with similar nanowires in which the sub-layers are coupled ferromagnetically (SF). This high speed is found to be due to a new type of powerful torque, exchange coupling torque (ECT) that is directly proportional to the strength of the antiferromagnetic exchange coupling between the two sub-layers, showing that the ECT is effective only in SAF not in SF. Moreover, it is found that the dependence of the wall velocity on the magnetic field applied along the nanowire is non-monotonic. Most recently we predict an Walker-breakdown-like domain wall precession in SAF nanowires in the presence of in-plane field based on the model we develop, and this extraordinary precession has been observed. In this talk I will discuss this in details by showing a unique characteristics of SAF sublayers' DW boost-and-drag mechanism along with CST and ECT. Novel current driven domain wall dynamics in synthetic antiferromagnets.

  5. Nonconservative current-driven dynamics: beyond the nanoscale

    PubMed Central

    Todorov, Tchavdar N; Dundas, Daniel

    2015-01-01

    Summary Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion. These systems have degenerate vibrational frequencies, clustered about a Kohn anomaly in the dispersion relation, that can couple under current to form nonequilibrium modes of motion growing exponentially in time. Such motion is made possible by nonconservative current-induced forces on atoms, and we refer to it generically as the waterwheel effect. Here the connection between the waterwheel effect and the stimulated directional emission of phonons propagating along the electron flow is discussed in an intuitive manner. Nonadiabatic molecular dynamics show that waterwheel modes self-regulate by reducing the current and by populating modes in nearby frequency, leading to a dynamical steady state in which nonconservative forces are counter-balanced by the electronic friction. The waterwheel effect can be described by an appropriate effective nonequilibrium dynamical response matrix. We show that the current-induced parts of this matrix in metallic systems are long-ranged, especially at low bias. This nonlocality is essential for the characterisation of nonconservative atomic dynamics under current beyond the nanoscale. PMID:26665086

  6. Graphical analysis of electron inertia induced acoustic instability

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Deka, U.; Dwivedi, C. B.

    2005-03-01

    Recently, the practical significance of the asymptotic limit of me/mi→0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative enegy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented.

  7. Ion acoustic shock waves in electron-positron-ion quantum plasma

    SciTech Connect

    Masood, W.; Mirza, Arshad M.; Hanif, M.

    2008-07-15

    Ion acoustic shock waves (IASWs) are studied in an unmagnetized quantum plasma consisting of electrons, positrons, and ions employing the quantum hydrodynamic (QHD) model. Nonlinear quantum IASWs are investigated by deriving the Korteweg-deVries-Burger equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. The temporal evolution of the shock for a quantum e-p-i plasma in a spherical geometry is also investigated. It is found that the strength and the steepness of the quantum ion acoustic shock wave increases with decreasing stretched time coordinate (representing slow time scale) |{tau}|. It is also found that an increase in the quantum Bohm potential decreases the strength as well as the steepness of the shock. The temporal evolution of the quantum ion acoustic solitons in an e-p-i plasma for cylindrical and spherical geometries is also explored by substituting the dissipative coefficient C equal to zero. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  8. Nonlinear reflection and refraction of planar ion-acoustic plasma solitons

    NASA Astrophysics Data System (ADS)

    Nagasawa, T.; Nishida, Y.

    1986-06-01

    Experimental observations on the reflection and refraction of a planar ion-acoustic soliton from a metallic mesh electrode are performed in a uniform double-plasma device. Reflection and refraction angles are observed to depend on the incident wave amplitude, showing a nonlinear Snell's law.

  9. Obliquely propagating ion acoustic waves in the auroral E region: Further evidence of irregularity production by field-aligned electron streaming

    SciTech Connect

    Villain, J.P. ); Hanuise, C. ); Greenwald, R.A.; Baker, K.B.; Ruohoniemi, J.M. )

    1990-06-01

    Common volume observations of E region high-latitude irregularities at decameter wavelengths have been obtained with the JHU/APL HF radar located at Goose Bay, Labrador, and the SHERPA HF radar located at Schefferville, Quebec. In this paper, the authors analyze an event with characteristics similar to those of a distinctive type of event described by Villain et al. (1987). The experimental configuration, which combines the azimuthal-scanning capability of the Goose Bay radar with the frequency-scanning operation of the Schefferville radar, has provided unambiguous evidence of the existence of two irregularity layers at different altitudes within the E region. The layers, which exhibit different characteristics, can be related to the action of the gradient drift and ion acoustic instability mechanisms. It is shown that the ion acoustic modes have phase velocities in the range of 400 to 550 m/s and are produced in regions of subcritical perpendicular electron Hall drift. They infer that the observed irregularities are produced through a combination of perpendicular and field-aligned relative electron-ion drifts. Features previously observed but no t satisfactorily explained by perpendicular drift excitation alone can be understood in terms of field-aligned drift excitation. They conclude that the role of electron-ion field-aligned drift may be much more important than previously realized.

  10. Doppler velocimetry of a current driven spin helix

    NASA Astrophysics Data System (ADS)

    Yang, Luyi

    2012-02-01

    We present direct observation of the translational motion of spin helices in GaAs quantum wells under the influence of applied electric fields. Previously, the lifetime of such helices was observed by time-resolving the amplitude of light diffracted from the periodic spin polarization [1]. This technique cannot be applied to tracking the motion of current-driven spin helices because diffraction amplitude is insensitive to translation of the center of mass of a periodic structure. In this talk, we describe a new experimental technique, Doppler spin velocimetry, capable of resolving displacements of spin polarization at the level of 1 nm on a picosecond time scale [2]. This is accomplished through the use of heterodyne detection to measure the optical phase of the diffracted light. We discuss experiments in which this technique is used to measure the motion of spin helices as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. Several striking observations will be reported -- for example, the spin helix velocity changes sign as a function of wavevector and is zero at the wavevector that yields the largest spin lifetime. Another important observation is that the velocity of spin polarization packets becomes equal to the drift velocity of the high-mobility electron gas in the limit of small spin helix amplitude. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 10^7 cm-s-1. In collaboration with J. D. Koralek and J. Orenstein, UC Berkeley and LBNL, D. R. Tibbetts, J. L. Reno, and M. P. Lilly, SNL. Supported by DOE under Contract No. DE-AC02-05CH11231 and DE-AC04-94AL85000. [4pt] [1] J. D. Koralek et al., ``Emergency of the persistent spin helix in semiconductor quantum wells,'' Nature 458, 610-613 (2009). [0pt] [2] L. Yang et al, ``Doppler velocimetry of spin propagation in a two-dimensional electron gas,'' to appear

  11. Current-driven non-linear magnetodynamics in exchange-biased spin valves

    SciTech Connect

    Seinige, Heidi; Wang, Cheng; Tsoi, Maxim

    2015-05-07

    This work investigates the excitation of parametric resonance in exchange-biased spin valves (EBSVs). Using a mechanical point contact, high density dc and microwave currents were injected into the EBSV sample. Observing the reflected microwave power and the small rectification voltage that develops across the contact allows detecting the current-driven magnetodynamics not only in the bulk sample but originating exclusively from the small contact region. In addition to ferromagnetic resonance (FMR), parametric resonance at twice the natural FMR frequency was observed. In contrast to FMR, this non-linear resonance was excited only in the vicinity of the point contact where current densities are high. Power-dependent measurements displayed a typical threshold-like behavior of parametric resonance and a broadening of the instability region with increasing power. Parametric resonance showed a linear shift as a function of applied dc bias which is consistent with the field-like spin-transfer torque induced by current on magnetic moments in EBSV.

  12. Effect of nonthermality of electrons on the speed and shape of ion-acoustic solitary waves in a warm plasma

    SciTech Connect

    Abdelwahed, H. G.; El-Shewy, E. K.

    2012-07-15

    Nonlinear ion-acoustic solitary waves in a warm collisionless plasma with nonthermal electrons are investigated by a direct analysis of the field equations. The Sagdeev's potential is obtained in terms of ion acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the ion-acoustic solitons as well as the parametric regime where the solitons can exist are sensitive to the population of energetic non-thermal electrons. The soliton and double layer solutions are obtained as a small amplitude approximation.

  13. Microscale instabilities in stream interaction regions

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Goldstein, M. L.

    1979-01-01

    The microstructure of solar wind stream interaction regions is considered theoretically with emphasis on the role of several electrostatic kinetic instabilities which may be important within the stream interface and the compression region. Inside of 1 AU, the interface is likely to be stable against the electrostatic streaming instabilities considered. Between 1 and 2 AU, the interface will excite the magnetized ion-ion instability. The compression region is also found to be unstable beyond 1 AU where the modified two-stream instability, beam-cyclotron instability, and ion-acoustic instability are important in determining the structure of the compressive pulses as they evolve into forward and reverse shocks. It is concluded that the modified two-stream instability and beam-cyclotron instability predominately play a role in heating the electrons to the threshold for the ion-acoustic instability. Various electrostatic plasma waves, ranging in frequency from the lower-hybrid to harmonics of the electron cyclotron frequency, would be produced by these instabilities. Their signature should also be seen by high time resolution measurements of the temperature of the various plasma species.

  14. Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas

    SciTech Connect

    Rasheed, A.; Tsintsadze, N. L.; Murtaza, G.

    2011-11-15

    The arbitrary and the small amplitude ion-acoustic solitary waves (IASWs) have been studied. The former is studied by using the Sagdeev pseudo-potential approach in a plasma consisting of the degenerate ultrarelativistic electrons, positrons, and the non-relativistic classical ions. It is seen that only compressive solitary waves can propagate through such plasmas. The numerical calculations show that the region of existence of the ion-acoustic solitary waves depends upon the positron (ion) number density and the plasma thermal temperature. This study is appropriate for applications in inertial confinement fusion laboratory research as well as the study of astrophysical dense objects such as white dwarf and dense neutron stars.

  15. Dust-ion-acoustic solitons in plasmas with non-Maxwellian electron distribution function

    SciTech Connect

    Pajouh, H. Hakimi; Abbasi, H.

    2008-10-15

    Stationary dust-ion-acoustic (DIA) solitons in plasma with non-Maxwellian electron distribution function (DF) are studied. This is an important issue in low-pressure electrical gas discharges that the particle DF is generally non-Maxwellian. In the discharge plasmas, the electron temperature is usually much greater than the ion temperature. Thus, neglecting the ions velocity distribution, the electron DF is modeled by the generalized Lorentzian ({kappa})-DF. The formalism is derived near the ion-plasma frequency. In this range of frequency, the ion dynamics is considerable and the dust-ion-acoustic solitons are the stationary solution of the governing equations. Electron trapping is included in the model as the result of nonlinear resonant interaction of the DIA soliton with electrons. The solitons attributes and influence of the non-Maxwellian electrons are studied.

  16. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  17. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  18. Ion acoustic turbulence in a 100-A LaB₆ hollow cathode.

    PubMed

    Jorns, Benjamin A; Mikellides, Ioannis G; Goebel, Dan M

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB(6) hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude. PMID:25615204

  19. Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons

    NASA Astrophysics Data System (ADS)

    Bacha, Mustapha; Tribeche, Mouloud; Shukla, Padma Kant

    2012-05-01

    The dust-modified ion-acoustic waves of Shukla and Silin are revisited within the theoretical framework of the Tsallis statistical mechanics. Nonextensivity may originate from correlation or long-range plasma interactions. Interestingly, we find that owing to electron nonextensivity, dust ion-acoustic (DIA) solitary waves may exhibit either compression or rarefaction. Our analysis is then extended to include self-consistent dust charge fluctuation. In this connection, the correct nonextensive electron charging current is rederived. The Korteweg-de Vries equation, as well as the Korteweg-de Vries-Burgers equation, is obtained, making use of the reductive perturbation method. The DIA waves are then analyzed for parameters corresponding to space dusty plasma situations.

  20. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Ferdousi, M.; S., Yasmin; Ashraf, S.; A. Mamun, A.

    2015-01-01

    A rigorous theoretical investigation is made of ion-acoustic shock structures in an unmagnetized three-component plasma whose constituents are nonextensive electrons, nonextensive positrons, and inertial ions. The Burgers equation is derived by employing the reductive perturbation method. The effects of electron and positron nonextensivity and ion kinematic viscosity on the properties of these ion-acoustic shock waves are briefly discussed. It is found that shock waves with positive and negative potentials are obtained to depend on the plasma parameters. The entailment of our results may be useful to understand some astrophysical and cosmological scenarios including stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc., where effects of nonextensivity can play significant roles.

  1. Nonlinear structure of ion-acoustic waves in completely degenerate electron-positron and ion plasma

    SciTech Connect

    Rasheed, A.; Tsintsadze, N. L.; Murtaza, G.

    2010-07-15

    A rigorous theoretical investigation has been made of fully nonlinear ion-acoustic waves in nonrelativistic and ultrarelativistic, collisionless, unmagnetized plasma containing of degenerate electrons and positrons, and classical cold ions. In both (nonrelativistic and ultrarelativistic) regimes the electrons and positrons are assumed to follow the corresponding Fermi distribution while the ions are described by the hydrodynamic equations. An energy balancelike equation involving a Sagdeev-type pseudopotential is derived separately for both the regimes. In addition, stationary periodic and solitary waves are also investigated for the two cases. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in a degenerate plasma such as in superdense white dwarfs.

  2. Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution

    SciTech Connect

    Shalini, Saini, N. S.

    2014-10-15

    The propagation properties of large amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Employing Sagdeev pseudopotential method, an energy balance equation has been derived and from the expression for Sagdeev potential function, ion acoustic solitary waves and double layers are investigated numerically. The Mach number (lower and upper limits) for the existence of solitary structures is determined. Positive as well as negative polarity solitary structures are observed. Further, conditions for the existence of ion acoustic double layers (IADLs) are also determined numerically in the form of the critical values of q{sub c}, f and the Mach number (M). It is observed that the nonextensivity of electrons (via q{sub c,h}), concentration of electrons (via f) and temperature ratio of cold to hot electrons (via β) significantly influence the characteristics of ion acoustic solitary waves as well as double layers.

  3. Observed Dependence of Stimulated Raman Scattering on Ion-Acoustic Damping in Hohlraum Plasmas

    SciTech Connect

    Fernandez, J.C.; Cobble, J.A.; Failor, B.H.; DuBois, D.F.; Montgomery, D.S.; Rose, H.A.; Vu, H.X.; Wilde, B.H.; Wilke, M.D.; Chrien, R.E. ||

    1996-09-01

    The reflectivity of a laser due to stimulated Raman scattering (SRS) from long scale-length hohlraum plasmas is shown to depend on the damping of ion-acoustic waves. This dependence is observed in plasmas with either low or high ionization states. Since the SRS process itself is unrelated to acoustic waves, these data are evidence of a nonlinear coupling of SRS to other parametric processes involving daughter acoustic waves. {copyright} {ital 1996 The American Physical Society.}

  4. Dust ion-acoustic solitary and shock waves due to dust charge fluctuation with vortexlike electrons

    SciTech Connect

    Duha, S. S.; Anowar, M. G. M.; Mamun, A. A.

    2010-10-15

    A rigorous theoretical investigation has been made of the dust ion-acoustic (DIA) solitary and shock waves in an unmagnetized dusty plasma (containing vortexlike electrons, mobile ions, and charge fluctuating static dust) by reductive perturbation method. The effects of dust grain charge fluctuation and vortexlike (trapped) electron are found to modify the properties of the DIA solitary and shock waves significantly. The implications of these results for some space and astrophysical dusty plasma systems, especially planetary ring systems, are briefly mentioned.

  5. Dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Haider, M. M.

    2016-02-01

    The propagation of dust-ion-acoustic solitary waves in magnetized plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons has been studied. The fluid equations in the system are reduced to a Korteweg-de Vries equation in the limit of small amplitude perturbation. The effect of non-thermal electrons and the opposite polarity of ions and dusts in the solitary waves are presented graphically and numerically.

  6. Simulations of Edge Current Driven Kink Modes with BOUT + + code

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.; Ma, C. H.; Xi, P. W.

    2013-10-01

    Edge kink modes (or peeling modes) play a key role in the ELMs. The edge kink modes are driven by peak edge current, which comes from the bootstrap current. We calculated sequences of equilibria with different edge current using CORSICA by keeping total current and pressure profile fixed. Based on these equilibria, with the 3-field BOUT + + code, we calculated the MHD instabilities driven by edge current. For linear low-n ideal MHD modes, BOUT + + results agree with GATO results. With the edge current increasing, the dominant modes are changed from high-n ballooning modes to low-n kink modes. The edge current provides also stabilizing effects on high-n ballooning modes. Furthermore, for edge current scan without keeping total current fixed, the increasing edge current can stabilize the high-n ballooning modes and cannot drive kink modes. The diamagnetic effect can stabilize the high-n ballooning modes, but has no effect on the low-n kink modes. Also, the nonlinear behavior of kink modes is analyzed. Work supported by China MOST grant 2013GB111000 and by China NSF grant 10975161. Also performed for USDOE by LLNL under DE-AC52-07NA27344.

  7. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    SciTech Connect

    Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D; Glenzer, S H; Rousseaux, C

    2005-09-20

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  8. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  9. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  10. Dynamic Motions of Ion Acoustic Waves in Plasmas with Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta; Wong, C. S.

    2015-12-01

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal ( q-nonextensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the nonextensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of nonextensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v.

  11. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  12. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  13. Topics in Lagrangian and Hamiltonian fluid dynamics: Relabeling symmetry and ion-acoustic wave stability

    NASA Astrophysics Data System (ADS)

    Padhye, Nikhil Subhash

    1998-12-01

    Relabeling symmetries of the Lagranian action are found for the ideal, compressible fluid and magnetohydrodynamics (MHD). These give rise to conservation laws of potential vorticity (Ertel's theorem) and helicity in the ideal fluid, cross helicity in MHD, and a conservation law for an ideal fluid with three thermodynamic variables. The symmetry that gives rise to Ertel's theorem is generated by an infinite parameter group, and leads to a generalized Bianchi identity. The existence of a more general symmetry is also shown, with dependence on time and space derivatives of the fields, and corresponds to a family of conservation laws associated with the potential vorticity. In the Hamiltonian formalism, Casimir invariants of the noncanonical formulation are directly constructed from the symmetries of the reduction map from Lagrangian to Eulerian variables. Casimir invariants of MHD include a gauge-dependent family of invariants that incorporates magnetic helicity as a special case. Novel examples of finite dimensional, noncanonical Hamiltonian dynamics are also presented: the equations for a magnetic field line flow with a symmetry direction, and Frenet formulas that describe a curve in 3-space. In the study of Lyapunov stability of ion-acoustic waves, existence of negative energy perturbations is found at short wavelengths. The effect of adiabatic, ionic pressure on ion-acoustic waves is investigated, leading to explicit solitary and nonlinear periodic wave solutions for the adiabatic exponent γ = 3. In particular, solitary waves are found to exist at any wave speed above Mach number one, without an upper cutoff speed. Negative energy perturbations are found to exist despite the addition of pressure, which prevents the establishment of Lyapunov stability, however the stability of ion-acoustic waves is established in the KdV limit, in a manner far simpler than the proof of KdV soliton stability. It is also shown that the KdV free energy (Benjamin, 1972) is recovered

  14. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    SciTech Connect

    Bhattacharjee, Saurav Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.

  15. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Saurav; Das, Nilakshi

    2015-10-01

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.

  16. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  17. Stimulated scattering of space-charge waves in a relativistic electron beam by the ion acoustic wave of a plasma waveguide

    SciTech Connect

    Balakirev, V.A.; Buts, V.A.

    1982-05-01

    The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2..gamma../sup 2/ times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found.

  18. Dust ion acoustic solitary structures in presence of nonthermal electrons and isothermal positrons

    NASA Astrophysics Data System (ADS)

    Paul, Ashesh; Bandyopadhyay, Anup

    2016-05-01

    Arbitrary amplitude dust ion acoustic solitary structures have been investigated in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons and isothermal positrons. A computational scheme has been developed to draw the qualitatively different existence domains or compositional parameter spaces showing the nature of existence of different solitary structures with respect to any parameter of the present plasma system. The present system supports both positive and negative potential double layers, coexistence of solitary waves of both polarities and positive potential supersolitons.

  19. Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2008-12-15

    The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.

  20. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  1. Interaction of dust-ion acoustic solitary waves in nonplanar geometry with electrons featuring Tsallis distribution

    SciTech Connect

    Narayan Ghosh, Uday; Chatterjee, Prasanta; Tribeche, Mouloud

    2012-11-15

    The head-on collisions between nonplanar dust-ion acoustic solitary waves are dealt with by an extended version of Poincare-Lighthill-Kuo perturbation method, for a plasma having stationary dust grains, inertial ions, and nonextensive electrons. The nonplanar geometry modified analytical phase-shift after a head-on collision is derived. It is found that as the nonextensive character of the electrons becomes important, the phase-shift decreases monotonically before levelling-off at a constant value. This leads us to think that nonextensivity may have a stabilizing effect on the phase-shift.

  2. Weakly nonlinear dust ion-acoustic shock waves in a dusty plasma with nonthermal electrons

    SciTech Connect

    Berbri, Abderrezak; Tribeche, Mouloud

    2009-05-15

    Weakly nonlinear dust ion-acoustic (DIA) shock waves are investigated in a dusty plasma with nonthermal electrons. A modified Korteweg-de Vries equation with a cubic nonlinearity is derived. Due to the net negative dust charge {mu}Z{sub d} and electron nonthermality, the present plasma model can admit compressive and rarefactive weak DIA shock waves. The effect of increasing {mu}Z{sub d} is to lower the critical nonthermal parameter {beta}{sub c} above which only rarefactive DIA shock waves are admitted. Our investigation may help to understand the nonlinear structures observed in the auroral acceleration regions.

  3. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  4. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Astrophysics Data System (ADS)

    Bergmann, R.; Hudson, M. K.

    1987-03-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  5. Arbitrary amplitude ion-acoustic waves in a multicomponent plasma with superthermal species

    SciTech Connect

    El-Tantawy, S. A.; Moslem, W. M.

    2011-11-15

    Properties of fully nonlinear ion-acoustic waves in a multicomponent plasma consisting of warm positive ions, superthermal electrons, as well as positrons, and dust impurities have been investigated. By using the hydrodynamic model for ions and superthermal electron/positron distribution, a Sagdeev potential has been derived. Existence conditions for large amplitude solitary and shock waves are presented. In order to show that the characteristics of the solitary and shock waves are influenced by the plasma parameters, the relevant numerical analysis of the Sagdeev potential is presented. The nonlinear structures, as predicted here, may be associated with the electrostatic perturbations in interstellar medium.

  6. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas

    SciTech Connect

    Seadawy, A. R.

    2014-05-15

    The quantum hydrodynamic model is applied to two-dimensional ion-acoustic waves in quantum plasmas. The two-dimensional quantum hydrodynamic model is used to obtain a deformed Kortewegde Vries (dKdV) equation by reductive perturbation method. By using the solution of auxiliary ordinary equations, a extended direct algebraic method is described to construct the exact solutions for nonlinear quantum dKdV equation. The present results are describing the generation and evolution of such waves, their interactions, and their stability.

  7. Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species

    SciTech Connect

    Olivier, C. P. Maharaj, S. K.; Bharuthram, R.

    2015-08-15

    The polarity of ion-acoustic solitons that arise in a plasma with two (same mass, different temperature) ion species and two (different temperature) electron species is investigated. Two different fluid models are compared. The first model treats all species as adiabatic fluids, while the second model treats the ion species as adiabatic, and the electron species as isothermal. Nonlinear structures are analysed via the reductive perturbation analysis and pseudo-potential analysis. Each model supports both slow and fast ion-acoustic solitons, associated with the two (slow and fast) ion-acoustic speeds. The models support both positive and negative polarity solitons associated with the slow ion-acoustic speed. Moreover, results are in good agreement, and both models support positive and negative polarity double layers. For the fast ion-acoustic speed, the first model supports only positive polarity solitons, while the second model supports solitons of both polarity, coexistence of positive and negative polarity solitons, double layers and supersolitons. A novel feature of our analysis is the evaluation of nonlinear structures at critical number densities where polarity changes occur. This analysis shows that solitons that occur at the acoustic speed are neither a necessary nor a sufficient condition for the phenomenon of coexistence. The relationship between the existence regions of supersolitons and soliton polarity is also discussed.

  8. Radiative heat transport instability in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  9. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  10. First measurement of backscatter dependence on ion acoustic damping in a high density helium/hydrogen laser-plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Williams, E. A.; Lours, L.; Sanchez, J. J.; Berger, R. L.; Collins, G. A.; Decker, C. B.; Divol, L.; Glenzer, S. H.; Hammel, B. A.; Jones, R.; Kirkwood, R. K.; Kruer, W. L.; MacGowan, B. J.; Pipes, J.; Suter, L. J.; Thoe, R.; Unites, W.; Young, P. E.

    2004-05-01

    The dependence of stimulated backward and forward scattered light on ion acoustic damping (νi) is measured for the first time in a long scale length He/H2 composition plasma at a density of 0.08 critical for 351-nm laser light. Both the stimulated Raman and Brillouin backscattering decrease with increasing ion acoustic damping. Modeling of the backward scattering agrees with the measurements when the Langmuir and ion acoustic fluctuations saturate at δn/n=0.01 and 0.001, respectively. These low saturation levels cannot be explained using standard nonlinear wave decay saturation mechanisms and may indicate that other saturation mechanisms are active in this plasma. Modeling of the forward scattering agrees qualitatively with the measurements and provides an estimate of the density fluctuations in the plasma.

  11. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    SciTech Connect

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K.

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  12. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Kaladze, T.; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  13. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    SciTech Connect

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-04-15

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.

  14. Dust ion-acoustic shocks in quantum dusty pair-ion plasmas

    SciTech Connect

    Misra, A. P.

    2009-03-15

    The formation of dust ion-acoustic shocks in a four-component quantum plasma whose constituents are electrons, both positive and negative ions, and immobile charged dust grains, is studied. The effects of both the dissipation due to kinematic viscosity and the dispersion caused by the charge separation as well as the quantum tunneling associated with the Bohm potential are taken into account. The propagation of small but finite amplitude dust ion-acoustic waves is governed by the Korteweg-de Vries-Burger equation, which exhibits both oscillatory and monotonic shocks depending not only on the viscosity parameters {eta}{sub {+-}}={mu}{sub {+-}}{omega}{sub p-}/c{sub s}{sup 2} (where {mu}{sub {+-}} are the coefficients of kinematic viscosity, {omega}{sub p-} is the plasma frequency for negative ions, and c{sub s} is the ion-sound speed), but also on the quantum parameter H (the ratio of the electron plasmon to the electron Fermi energy) and the positive to negative ion density ratio {beta}. Large amplitude stationary shocks are recovered for a Mach number (M) exceeding its critical value (M{sub c}). Unlike the small amplitude shocks, quite a smaller value of {eta}{sub +}, {eta}{sub -}, H and {beta} may lead to the large amplitude monotonic shock structures. The results could be of importance in astrophysical and laser produced plasmas.

  15. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  16. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    SciTech Connect

    Masood, W.; Siddiq, M.; Karim, S.; Shah, H. A.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation of shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  17. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  18. Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping

    NASA Astrophysics Data System (ADS)

    Myatt, J. F.; Vu, H. X.; DuBois, D. F.; Russell, D. A.; Zhang, J.; Short, R. W.; Maximov, A. V.

    2013-05-01

    The extended Zakharov model of the two-plasmon decay instability in an inhomogeneous plasma [D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001)] is further generalized to include the evolution of the electron distribution function in the quasi-linear approximation [cf., e.g., K. Y. Sanbonmatsu et al. Phys. Plasmas 7, 2824 (2000); D. A. Russell et al., paper presented at the Workshop on SRS/SBS Saturation, Wente Vineyards, Livermore, CA, 2-5 April 2002]. This makes it possible to investigate anomalous absorption of laser light and hot electron production due to the two-plasmon decay instability of multiple overlapping electromagnetic waves. Scalings of hot-electron production in the (stationary) nonlinearly saturated regime relevant to recent experiments [B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012)] have been obtained. They indicate a sensitivity to ion-acoustic wave (IAW) damping and to the collisional absorption of Langmuir waves. Such a sensitivity might be exploited in inertial confinement fusion target design by the use of mid-Z ablators.

  19. Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping

    SciTech Connect

    Myatt, J. F.; Short, R. W.; Maximov, A. V.; Vu, H. X.; DuBois, D. F.; Russell, D. A.; Zhang, J.

    2013-05-15

    The extended Zakharov model of the two-plasmon decay instability in an inhomogeneous plasma [D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001)] is further generalized to include the evolution of the electron distribution function in the quasi-linear approximation [cf., e.g., K. Y. Sanbonmatsu et al. Phys. Plasmas 7, 2824 (2000); D. A. Russell et al., paper presented at the Workshop on SRS/SBS Saturation, Wente Vineyards, Livermore, CA, 2–5 April 2002]. This makes it possible to investigate anomalous absorption of laser light and hot electron production due to the two-plasmon decay instability of multiple overlapping electromagnetic waves. Scalings of hot-electron production in the (stationary) nonlinearly saturated regime relevant to recent experiments [B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012)] have been obtained. They indicate a sensitivity to ion-acoustic wave (IAW) damping and to the collisional absorption of Langmuir waves. Such a sensitivity might be exploited in inertial confinement fusion target design by the use of mid-Z ablators.

  20. The effect of q-distributed electrons on the head-on collision of ion acoustic solitary waves

    SciTech Connect

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2012-01-15

    The head-on collision of ion acoustic solitary waves (IASWs) in two component plasma comprising nonextensive distributed electrons is investigated. Two opposite directional Kortewg-de-vries (KdV) equations are derived and the phase shift due to collision is obtained using the extended version of Poincare-Lighthill-Kuo method. Different ranges of nonextensive parameter q are considered and their effects on phase shifts are observed. It is found that the presence of nonextensive distributed electrons plays a significant role on the nature of collision of ion acoustic solitary waves.

  1. Dust-ion acoustic shock waves in a dusty multi-ion plasma with negatively dust-charge fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Zhang, Kaibiao

    2015-01-01

    The nonlinear propagation of dust-ion acoustic shock waves in a collisionless, unmagnetized multi-ion dusty plasma contains Botlzemann-distributed electrons, negative and positive ions with extremely massive and stationary negative charge dust grains with dust charge fluctuations is investigated. By employing the reductive perturbation method, we obtain a Burgers equation that describes the two-ion fluid dynamics. The dust charge variation is found to play an important role in the formation of such dust-ion acoustic shock structures. The viscosity only affects the thickness of the shock waves. The dependences of the shock wave's velocity, height and thickness on the system parameters are investigated.

  2. Nonlinear theory of ion-acoustic waves in an electron-positron-ion plasma

    SciTech Connect

    Dubinov, A. E.; Sazonkin, M. A.

    2009-01-15

    An analytical nonlinear gasdynamic theory of ion-acoustic waves in an e-p-i plasma is developed for the case in which all the plasma components in the wave undergo polytropic compression and rarefaction. An exact solution to the basic equations is found and analyzed by the Bernoulli pseudopotential method. The parameter range in which periodic waves can propagate and the range in which solitary waves (solitons) exist are determined. It is shown that the propagation velocity of a solitary is always higher than the linear ion sound velocity. The profiles of all the physical quantities in both subsonic and supersonic waves are calculated. The results obtained agree well with both the data from other papers and particular limiting cases.

  3. Propagation of ion acoustic shock waves in negative ion plasmas with nonextensive electrons

    SciTech Connect

    Hussain, S.; Akhtar, N.; Mahmood, S.

    2013-09-15

    Nonlinear ion acoustic shocks (monotonic as well as oscillatory) waves in negative ion plasmas are investigated. The inertialess electron species are assumed to be nonthermal and follow Tsallis distribution. The dissipation in the plasma is considered via kinematic viscosities of both positive and negative ion species. The Korteweg-de Vries Burgers (KdVB) equation is derived using small amplitude reductive perturbation technique and its analytical solution is presented. The effects of variation of density and temperature of negative ions and nonthermal parameter q of electrons on the strength of the shock structures are plotted for illustration. The numerical solutions of KdVB equation using Runge Kutta method are obtained, and transition from oscillatory to monotonic shock structures is also discussed in detail for negative ions nonthermal plasmas.

  4. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    SciTech Connect

    Hossen, M. A. Mamun, A. A.

    2015-10-15

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  5. Ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2011-04-01

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi: 10.1007/s10509-010-0363-5, 2010).

  6. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan; Yang, Lei

    2016-08-01

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.

  7. Effect of ion viscosity on dust ion-acoustic shock waves in a nonextensive magnetoplasma

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.

    2016-08-01

    The nonlinear features of dust ion-acoustic shock waves (DIASWs) in a magnetoplasma containing cold positive ions, nonextensive electrons, and immobile negatively charged dust grains taking into account the cold ion kinematic viscosity are investigated. The reductive perturbation technique is used to derive a Zakharov-Kuznetsov-Burgers (ZK-Burgers). It is found that the fundamental properties of the DIASWs are significantly modified by the different system parameters such as the nonextensive parameter, the ion gyrofrequency, the dust concentration, the viscosity parameter, and the direction cosines. Also, the polarities (positive and negative shocks) of the potential are found to exist in the plasma under consideration. The implications of our results may be used in understanding the acoustic shock waves propagation in laboratory and space plasmas.

  8. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    SciTech Connect

    R.L. Berger; E.J. Valeo

    2004-08-18

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  9. Numerical study of ion acoustic shock waves in dense quantum plasma

    SciTech Connect

    Hanif, M.; Mirza, Arshad M.; Ali, S.; Mukhtar, Q.

    2014-03-15

    Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.

  10. Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma

    SciTech Connect

    Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.

    2010-10-15

    Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.

  11. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    SciTech Connect

    Ata-ur-Rahman; Ali, S.; Moslem, W. M.; Mushtaq, A.

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  12. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    SciTech Connect

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  13. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  14. Ion-acoustic compressive and rarefactive solitons in an electron-beam plasma system

    SciTech Connect

    Yadav, L.L.; Tiwari, R.S.; Sharma, S.R. )

    1994-03-01

    Using the general formulation of reductive perturbation method, the Korteweg--de Vries (KdV) equation is derived for an electron-beam plasma with hot isothermal beam and plasma electrons and warm ions. The soliton solution of the KdV equation is discussed in detail. It is found that above a critical velocity of electron-beam two additional ion-acoustic soliton branches appear. It is found that corresponding to two linear modes, the system supports the existence of compressive as well as rarefactive solitons depending upon the plasma parameters, while corresponding to other two wave modes, the system supports only rarefactive solitons. The effect of different parameters on the characteristics of solitons have been investigated in detail.

  15. Dust ion acoustic solitons in a plasma with kappa-distributed electrons

    SciTech Connect

    Baluku, T. K.; Hellberg, M. A.; Kourakis, I.; Saini, N. S.

    2010-05-15

    Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa>3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f{sub c}, the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found.

  16. Two dimensional investigation of ion acoustic waves reflection from the sheath

    SciTech Connect

    Cartwright, K.L.; Birdsall, C.K.

    1995-12-31

    Preliminary results show that oblique ion waves propagate from the bulk plasma into and all the way through the sheath in both 1D and 2D simulation. These waves are launched from one side of the system with a AC voltage or a current source with a frequency less than the ion plasma frequency. The one and initial two dimensional PIC simulations show the details of densities, potentials, fields, particle moments and time-distance plots of the average density minus the instantaneous density. From the time-distance plot the direction and magnitude of the ion acoustic wave is measured. From this the coefficients of reflection and transmission as a function of the incident angle is calculated. The observations are compared with laboratory experiments and theory.

  17. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2015-10-01

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  18. Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.

  19. Ion-Acoustic Shock Waves in Nonextensive Multi-Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2015-10-01

    The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.

  20. Nonlinear ion-acoustic double-layers in electronegative plasmas with electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Ghebache, Siham; Tribeche, Mouloud

    2016-04-01

    Weakly nonlinear ion-acoustic (IA) double-layers (DLs), which accompany electronegative plasmas composed of positive ions, negative ions, and nonextensive electrons are investigated. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived using a reductive perturbation method. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. It is shown that the IA wave phase velocity, in different mixtures of negative and positive ions, decreases as the nonextensive parameter q increases, before levelling-off at a constant value for larger q. Moreover, a relative increase of Q involves an enhancement of the IA phase velocity. Existence domains of either solitary waves or double-layers are then presented and their parametric dependence is determined. Owing to the electron nonextensivity, our present plasma model can admit compressive as well as rarefactive IA-DLs.

  1. Arbitrary amplitude dust ion acoustic solitary waves in a magnetized suprathermal dusty plasma

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2012-12-15

    The linear and nonlinear dust-ion-acoustic (DIA) wave propagating obliquely with respect to an external magnetic field is studied in a magnetized complex plasma which consists of a cold ion fluid, superthermal electrons, and static dust particles. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron suprathermality and the electron population decrease the phase velocities of both modes, while obliqueness leads to increase of separation between two modes. An energy-like equation derived to describe the nonlinear evolution of DIA solitary waves. The influences of electron suprathermality, obliqueness, and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the DIA soliton and its profile are significantly depending on the deviation of electrons from thermodynamic equilibrium, electrons population, and obliqueness. It is also found that the suprathermal plasma supports the DIA solitons with larger amplitude.

  2. Compressive and rarefactive dust ion-acoustic solitary waves with degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Mukta, K. N.; Zobaer, M. S.; Roy, N.; Mamun, A. A.

    2015-06-01

    The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.

  3. Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions

    SciTech Connect

    Sayed, F.; Haider, M. M.; Mamun, A. A.; Shukla, P. K.; Eliasson, B.; Adhikary, N.

    2008-06-15

    Properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves in a dusty plasma composed of inertialess electrons, positive and negative inertial ions, and immobile negative/positive charged dust grains are investigated. By using the multifluid dusty plasma model, the Kortweg-de Vries equation and energy integral for small and large amplitude solitary pulses, are derived. It is found that the presence of the negative ions modifies the properties of the solitary DIA waves, and provides the possibility of positive and negative solitary potential structures to coexist. The present results may be useful for understanding the salient features of localized DIA excitations that may appear in data from forthcoming laboratory experiments and space observations.

  4. Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma

    SciTech Connect

    Yasmin, S.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    There are three different types of nonlinear equations, namely, Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed modified K-dV (mixed mK-dV) equations, for the nonlinear propagation of the dust ion-acoustic (DIA) waves. The effects of electron nonextensivity on DIA solitary waves propagating in a dusty plasma (containing negatively charged stationary dust, inertial ions, and nonextensive q distributed electrons) are examined by solving these nonlinear equations. The basic features of mixed mK-dV (higher order nonlinear equation) solitons are found to exist beyond the K-dV limit. The properties of mK-dV solitons are compared with those of mixed mK-dV solitons. It is found that both positive and negative solitons are obtained depending on the q (nonextensive parameter).

  5. Role of nonthermal electrons on dust ion acoustic double layer with variable dust charge

    NASA Astrophysics Data System (ADS)

    Borah, Prathana; Gogoi, Deepshikha; Das, Nilakshi

    2016-01-01

    The presence of nonthermal electron may play an important role in the formation of nonlinear structures in plasma. On the other hand, fluctuation of dust charge is an important and unique feature of complex plasma and it gives rise to a dissipative effect in the system leading to the formation of nonlinear structures due to the balance between nonlinearity and dissipation. In this paper, the propagation of nonlinear dust ion acoustic (DIA) wave in unmagnetized collisionless dusty plasma consisting of ions, nonthermal electrons and dust grains with variable negative charge has been investigated using the Sagdeev potential method. The existence domain of rarefactive double layer (DL) in the DIA wave has been investigated for the range of plasma parameters. The real potential has been obtained by numerically solving the Poisson equation and dust charging equation. It is observed that the presence of nonthermal electrons strengthens the DIA DL.

  6. Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma

    NASA Astrophysics Data System (ADS)

    Baluku, T. K.; Hellberg, M. A.

    2015-08-01

    Using a kinetic theory approach, dust ion acoustic (DIA) waves are investigated in an unmagnetized collisionless plasma with kappa-distributed electrons and ions, and Maxwellian dust grains of constant charge. Both analytical and numerical results, the latter following from the full solution of the associated dispersion relation, are presented, and a comparison is made. The effects of the ion and electron spectral indices, as well as the species' density ( ne/ni ) and temperature ( Te/Ti ) ratios, on the dispersion and damping of the waves are considered. In the long wavelength regime, increases in both the electron spectral index (κe) and the dust density fraction (reduced f =ne/ni ) lead to an increase in phase velocity. The range in wavelength over which modes are weakly damped increases with an increase in Te/Ti . However, the ion spectral index, κi, does not have a significant effect on the dispersion or damping of DIA waves.

  7. Ion-acoustic shocks in quantum electron-positron-ion plasmas

    SciTech Connect

    Roy, K.; Misra, A. P.; Chatterjee, P.

    2008-03-15

    Nonlinear propagation of quantum ion-acoustic waves (QIAWs) in a dense quantum plasma whose constituents are electrons, positrons, and positive ions is investigated using a quantum hydrodynamic model. The standard reductive perturbation technique is used to derive the Korteweg-de Vries-Burger (KdVB) equation for QIAWs. It is shown by numerical simulation that the KdVB equation has either oscillatory or monotonic shock wave solutions depending on the system parameters H proportional to quantum diffraction, {mu}{sub i} the effect of ion kinematic viscosity, and {mu} the equilibrium electron to ion density ratio. The results may have relevance in dense astrophysical plasmas (such as neutron stars) as well as in intense laser solid density plasma experiments where the particle density is about 10{sup 25}-10{sup 28} m{sup -3}.

  8. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  9. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  10. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    PubMed

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included. PMID:26986431

  11. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  12. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-01

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  13. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    SciTech Connect

    Behjat, E.; Aminmansoor, F.; Abbasi, H.

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  14. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  15. Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Moslem, W. M.

    2011-05-15

    Nonlinear ion-acoustic structures are investigated in an unmagnetized, four-component plasma consisting of warm ions, superthermal electrons and positrons, as well as stationary charged dust impurities. The basic set of fluid equations is reduced to modified Korteweg-de Vries equation. The latter admits both solitary waves and double layers solutions. Numerical calculations indicate that these nonlinear structures cannot exist for all physical parameters. Therefore, the existence regions for both solitary and double layers excitations have been defined precisely. Furthermore, the effects of temperature ratios of ions-to-electrons and electrons-to-positrons, positrons and dust concentrations, as well as superthermal parameters on the profiles of the nonlinear structures are investigated. Also, the acceleration and deceleration of plasma species have been highlight. It is emphasized that the present investigation may be helpful in better understanding of nonlinear structures which propagate in astrophysical environments, such as in interstellar medium.

  16. Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.

    2015-10-01

    > Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  17. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    SciTech Connect

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  18. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  19. Current-driven Langmuir oscillations and amplitude modulations—Another view on electron beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Sauer, K.; Sydora, R. D.

    2015-01-01

    origin of Langmuir amplitude modulations and harmonic waves observed in the solar wind and in planetary foreshock regions is investigated in beam plasmas where the saturation process of the beam instability is accompanied with the formation of a plateau distribution. This saturated state represents a current which is shown to drive homogeneous electric field oscillations at the plasma frequency. This simple mechanism has been ignored in most numerical studies based on Vlasov or particle-in-cell simulations because of the use of the Poisson equation which is not suitable to describe the mechanism of current drive in plasmas with immobile ions; instead, Ampere's law must be used. A simple fluid description of stable plateau plasmas, coupled with Ampere's law, is applied to illustrate the basic elements of current-driven Langmuir oscillations. If beam-generated Langmuir/electron-acoustic waves with frequencies above or below the plasma frequency are simultaneously present, beating of both wave modes leads to Langmuir amplitude modulations, thus providing an alternative to parametric decay. Furthermore, very important implications of our studies (presented separately) concern the electrostatic and electromagnetic second harmonic generation by nonlinear interaction of Langmuir oscillations with finite wave number modes which are driven by the plateau current as well.

  20. Three-dimensional dust-ion-acoustic rogue waves in a magnetized dusty pair-ion plasma with nonthermal nonextensive electrons and opposite polarity dust grains

    SciTech Connect

    Guo, Shimin Mei, Liquan

    2014-08-15

    Dust-ion-acoustic (DIA) rogue waves are investigated in a three-dimensional magnetized plasma containing nonthermal electrons featuring Tsallis distribution, both positive and negative ions, and immobile dust grains having both positive and negative charges. Via the reductive perturbation method, a (3 + 1)-dimensional nonlinear Schrödinger (NLS) equation is derived to govern the dynamics of the DIA wave packets. The modulation instability of DIA waves described by the (3 + 1)-dimensional NLS equation is investigated. By means of the similarity transformation and symbolic computation, both the first- and second-order rogue wave solutions of the (3 + 1)-dimensional NLS equation are constructed in terms of rational functions. Moreover, the dynamics properties and the effects of plasma parameters on the nonlinear structures of rogue waves are discussed in detail. The results could be useful for understanding the physical mechanism of rogue waves in laboratory experiments where pair-ion plasmas with electrons and dust grains can be found.

  1. Current-Driven Drift Wave Turbulence and Electron Thermal Transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Lee, C.; Diamond, P. H.; Porkolab, M.

    2009-11-01

    Recent analyses (Y. Lin, M. Porkolab; 2009) have indicated that the ``usual suspects'' for the mechanism of electron thermal transport, such as ITG, ETG, CTEM modes, etc, cannot explain results from modest density, Te>Ti plasmas, in either OH or ECH heating regimes. Interestingly, such plasmas exhibit very large toroidal current drift parameters vd/cs, thus naturally suggesting a re-visitation of current driven drift waves. In this paper, we discuss the linear, quasilinear and non-linear theory of current driven drift waves in tokamaks. Parallel electron velocity scattering, a critical effect beyond the capacity of most, gyrokinetic codes is a major focus of investigations. The coupled transport of current density and heat are considered. Work is ongoing and results will be presented.

  2. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  3. The acoustic instabilities in magnetized collisional dusty plasmas

    SciTech Connect

    Pandey, B. P.; Vladimirov, S. V.; Dwivedi, C. B.

    2014-09-15

    The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.

  4. The characteristics of ion acoustic shock waves in non-Maxwellian plasmas with ( G'/ G)-expansion method

    NASA Astrophysics Data System (ADS)

    Mehdipoor, M.

    2012-03-01

    Korteweg-de-Vries-Burger (K-dVB) equation is derived for ion acoustic shock waves in electron-positron-ion plasmas. Electrons and positrons are considered superthermal and are effectively modeled by a kappa distribution in which ions are as cold fluid. The analytical traveling wave solutions of the K-dVB equation investigated, through the ( G'/ G)-expansion method. These traveling wave solutions are expressed by hyperbolic function, trigonometric functions are rational functions. When the parameters are taken special values, the shock waves are derived from the traveling waves. It is observed that the amplitude ion acoustic shock waves increase as spectral index κ and kinematic viscosity η i,0 increases in which with increasing positron density β and electron temperature σ the shock amplitude decreases. Also, numerically the effect different parameters on the nonlinearity A and dispersive B terms and wave velocity V investigated.

  5. Ion-acoustic shock waves in a plasma with weakly relativistic warm ions, thermal positrons and a background electron nonextensivity

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Pakzad, Hamid Reza

    2012-06-01

    A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burgers-like equation for small, but finite amplitude, ion-acoustic waves in a dissipative plasma consisting of weakly relativistic ions, thermal positrons and nonextensive electrons. The travelling wave solution has been acquired by employing the tangent hyperbolic method. Our results show that in a such plasma, ion-acoustic shock waves, the strength and steepness of which are significantly modified by relativistic, nonextensive and dissipative effects, may exist. Interestingly, we found that because of ion kinematic viscosity, an initial solitonic profile develops into a shock wave. This later evolves towards a monotonic profile (dissipation-dominant case) as the electrons deviate from their Maxwellian equilibrium. Our investigation may help to understand the dissipative structures that may occur in high-energy astrophysical plasmas.

  6. Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation

    NASA Astrophysics Data System (ADS)

    Nazari-Golshan, A.

    2016-08-01

    Ion-acoustic (IA) solitary wave propagation is investigated by solving the fractional Schamel equation (FSE) in a homogenous system of unmagnetized plasma. This plasma consists of the nonextensive trapped electrons and cold fluid ions. The effects of the nonextensive q-parameter, electron trapping, and fractional parameter have been studied. The FSE is derived by using the semi-inverse and Agrawal's methods. The analytical results show that an increase in the amount of electron trapping and nonextensive q-parameter increases the soliton ion-acoustic amplitude in agreement with the previously obtained results. However, it is vice-versa for the fractional parameter. This feature leads to the fact that the fractional parameter may be used to increase the IA soliton amplitude instead of increasing electron trapping and nonextensive parameters.

  7. On the role of ion-temperature anisotropy on the propagation of shear-modified ion-acoustic waves

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Teodorescu, C.; Reynolds, E. W.

    2002-11-01

    Oblique ion-acoustic waves, excited by the combination of magnetic-field-aligned (parallel) electron drift and sheared parallel ion flow, are investigated in magnetized laboratory plasma that is characterized by ion-temperature anisotropy. Direct measurements of the parallel and perpendicular ion temperatures, parallel and perpendicular ion drift velocities, electron temperature and parallel electron drift velocity, parallel and perpendicular wavevector components, and mode frequency and growth rate are used to document an observed correlation between ion-temperature anisotropy and wave-propagation angle. Experimental measurements show that anisotropy significantly influences the propagation angle. These results support the ion-acoustic wave interpretation of broadband waves in the auroral energization region where shear and anisotropy are known to exist and may have ramifications for many space plasmas in which anisotropy exists in the electron-temperature or ion-temperature.

  8. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Mayout, Saliha; Sahu, Biswajit; Tribeche, Mouloud

    2015-12-01

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  9. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    SciTech Connect

    Mayout, Saliha; Tribeche, Mouloud; Sahu, Biswajit

    2015-12-15

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  10. Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Masud, M. M.; Mamun, A. A.

    2013-11-01

    The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investigated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.

  11. Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.

    2005-12-15

    Propagation of three-dimensional dust-ion-acoustic solitons is investigated in a dusty plasma consisting of positive ions, negatively variable-charged dust particles, and two-temperature trapped electrons. We use the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation called damped modified Kadontsev-Petviashivili equation. Exact solution of this equation is not possible, so we obtain the time evolution solitary wave form approximate solution. It is found that only compressive soliton can propagate in this system. We develop a theoretical estimate condition under which the solitons can propagate. It is found that this condition is satisfied for Saturn's F ring. It is found also that low electron temperature has a role on the behavior of the soliton width, i.e., for lower (higher) range of low electron temperature the soliton width decreases (increases). However, high electron temperature decreases the width. The trapped electrons have no effect on the soliton width. The ratio of free low (high) to trapped low (high) electron temperatures increases the soliton amplitude. Also, the amplitude increases with free low and free high electron temperatures. To investigate the stabilty of the waves, we used a method based on energy consideration to obtain a condition for stable solitons. It is found that this condition depends on dust charge variation, streaming velocity, directional cosine of the wave vector k along the x axis, and temperatures of dust particles, ions, and free electrons.

  12. Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.

    2010-12-01

    Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.

  13. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    SciTech Connect

    Ema, S. A. Mamun, A. A.; Hossen, M. R.

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  14. Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons

    SciTech Connect

    Rouhani, M. R.; Ebne Abbasi, Z.

    2012-11-15

    The behavior of ion acoustic solitons in a plasma including positive and negative ions and kappa distributed electrons is studied, using both small amplitude and arbitrary amplitude approaches. The existence regions of compressive and rarefactive solitons will depend on negative to positive ion density ratio ({nu}) and kappa parameter as well as positive to negative ion mass ratio (Q). The numerical analysis of Sagdeev potential shows that for a chosen plasma with fixed Q, the existence regime of compressive solitons is decreased (increased) by increasing density ratio (kappa parameter), while for rarefactive solitons these conditions are quite opposite. Additionally, the possibility of propagation of both compressive and rarefactive subsonic solitons is investigated. It is found that by increasing negative ions, the existence domains of subsonic solitons are decreased, so that in excess of negative ions subsonic solitons will not propagate even at the presence of superthermal electrons. Indeed, there is a critical negative ion density ratio for all values of kappa, above that only supersonic solitons are observed. Furthermore, in addition to the previous results based on Cairns-distributed electrons [R. A. Cairns et al., Geophys. Res. Lett. 22, 2709 (1995)], which predicted that both compressive and rarefactive solitons can coexist simultaneously, we have also found the regions of {nu} and {kappa} in which either positive or negative potentials are permitted (i.e., not together). This research will be helpful in understanding the properties of space and laboratory plasmas containing negative ions with energetic electrons.

  15. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    SciTech Connect

    Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati

    2013-06-15

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  16. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    SciTech Connect

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-15

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  17. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-07-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg-deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  18. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    SciTech Connect

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-08-15

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r{sub c}, has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0r{sub c} have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r{sub c}. A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results.

  19. Nonlinear interaction of kinetic Alfvén waves and ion acoustic waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2016-05-01

    Over the years, coronal heating has been the most fascinating question among the scientific community. In the present article, a heating mechanism has been proposed based on the wave-wave interaction. Under this wave-wave interaction, the high frequency kinetic Alfvén wave interacts with the low frequency ion acoustic wave. These waves are three dimensionally propagating and nonlinearly coupled through ponderomotive nonlinearity. A numerical code based on pseudo-spectral technique has been developed for solving these normalized dynamical equations. Localization of kinetic Alfvén wave field has been examined, and magnetic power spectrum has also been analyzed which shows the cascading of energy to higher wavenumbers, and this cascading has been found to have Kolmogorov scaling, i.e., k-5 /3 . A breakpoint appears after Kolmogorov scaling and next to this spectral break; a steeper scaling has been obtained. The presented nonlinear interaction for coronal loops plasmas is suggested to generate turbulent spectrum having Kolmogorov scaling in the inertial range and steepened scaling in the dissipation range. Since Kolmogorov turbulence is considered as the main source for coronal heating; therefore, the suggested mechanism will be a useful tool to understand the mystery of coronal loop heating through Kolmogorov turbulence and dissipation.

  20. Multidimensional ion-acoustic solitary waves and shocks in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Sahu, Biswajit

    2015-03-01

    The nonlinear theory of two-dimensional ion-acoustic (IA) solitary waves and shocks (SWS) is revisited in a dissipative quantum plasma. The effects of dispersion, caused by the charge separation of electrons and ions and the quantum force associated with the Bohm potential for degenerate electrons, as well as, the dissipation due to the ion kinematic viscosity are considered. Using the reductive perturbation technique, a Kadomtsev-Petviashvili-Burgers (KPB)-type equation, which governs the evolution of small-amplitude SWS in quantum plasmas, is derived, and its different solutions are obtained and analyzed. It is shown that the KPB equation can admit either compressive or rarefactive SWS according to when H ≶ 2 / 3, or the particle number density satisfies n0 ≷ 1.3 ×1031cm-3, where H is the ratio of the electron plasmon energy to the Fermi energy densities. Furthermore, the properties of large-amplitude stationary shocks are studied numerically in the case when the wave dispersion due to charge separation is negligible. It is also shown that a transition from monotonic to oscillatory shocks occurs by the effects of the quantum parameter H.

  1. Dust-ion-acoustic Gardner solitons in a dusty plasma with bi-Maxwellian electrons

    SciTech Connect

    Masud, M. M.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    The nonlinear propagation of dust-ion-acoustic (DIA) waves in a dusty plasma with bi-Maxwellian electrons, namely, lower and higher temperature electrons (composed of negatively charged stationary dust, inertial ions, and non-inertial two-temperature-electrons) is investigated by deriving the Gardner equation using the reductive perturbation technique. The basic features (amplitude, width, etc.) of the hump (positive potential) and dip (negative potential) shaped DIA solitons (Gardner solitons, i.e., GSs) are found to exist beyond the Korteweg-de Vries (K-dV) limit. These DIA-GSs are qualitatively different from the K-dV and modified K-dV solitons. It is also shown that depending on the parameter {sigma} (where {sigma}=T{sub e1}/T{sub e2}, T{sub e1} and T{sub e2} being the temperatures of two distinct electrons and T{sub e1} Much-Less-Than T{sub e2}), the DIA-GSs exhibit hump and dip shape solitary structures. The implications of our results in understanding the localized nonlinear electrostatic perturbations observed in double-plasma machines, rf discharge plasma, noctilucent cloud region in Earths atmosphere, etc., where population of two thermal electrons can significantly dominate the wave dynamics, are also briefly addressed.

  2. Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-01

    A theoretical and numerical analysis of dust-ion-acoustic (DIA) shock waves has been carried out in an unmagnetized dusty multi-ion plasma containing nonextensive electrons, inertial negatively charged heavy ions, positively charged Maxwellian light ions, and negatively charged stationary dusts. The normal mode analysis is used to examine the linear properties of DIA waves (DIAWs). The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers type equation (which describes the shock waves properties). The basic features ( viz. polarity, amplitude, width, etc.) of the DIA shock waves are investigated. It is found that the basic features of DIA shock waves are significantly modified depending on the intrinsic parameters ( viz. electron nonextensivity, heavy ions kinematic viscosity, heavy-to-light ion number density ratio, electron-to-light ion temperature ratio, etc.) of the considered plasma system. Both polarities (positive and negative potential) are also found to exist in the plasma under consideration in this paper. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas.

  3. Two dimensional planar and nonplanar ion acoustic shock waves in electron-positron-ion plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2009-09-15

    Two dimensional ion acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons, and adiabatically hot positive ions. This is done by deriving the nonplanar Kadomstev-Petviashvili-Burgers (KPB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The limiting cases of the nonplanar KPB equation are also discussed. The analytical solution of the planar KPB equation is obtained using the tangent hyperbolic method that is used as the initial profile to numerically solve the nonplanar KPB equation. It is found that the strength of IASW is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration and the plasma kinematic viscosity significantly modify the shock structure. Finally, the temporal evolution of the nonplanar IASW is investigated and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of small amplitude localized electrostatic shock structures in electron-positron-ion plasmas.

  4. Vlasov Simulations of Electron Plasma and Ion Acoustic Waves: self-focusing and harmonics

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, R.; Cohen, B.; Hittinger, J.; Brunner, S.

    2011-10-01

    Vlasov simulations of nonlinear electron plasma (EPW) and ion acoustic waves (IAW) are presented in one and two dimensions. In 2D simulations with LOKI (Banks et al., 18, 052102 (2011)) the waves are created with an external traveling wave potential with a transverse envelope of width Δy such that thermal electrons transit the wave in a ``sideloss'' time, tsl ~ Δ y/ve where ve is the electron thermal velocity. The quasi-steady distribution of trapped electrons and its self-consistent plasma wave are studied after the external field is turned off. For sufficiently short times and large enough wave amplitudes, the magnitude of the negative frequency shift from trapped electrons is a local function of electrostatic potential. Analysis and simulations are presented of the damping and trapped-electron-induced self-focusing (H. Rose PoP 12, 012318 (2005)) of the finite-amplitude EPW. In 1D simulations with SAPRISTI (Brunner and Valeo, PRL 93, 145003 (2004)), IAWs are created with an external traveling wave potential with full electron dynamics. For large IAW amplitudes, the contribution from IAW harmonics to the frequency shift is significant and larger than fluid theory predicts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    SciTech Connect

    Panwar, A. Ryu, C. M.; Bains, A. S.

    2014-12-15

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ{sub c},κ{sub h}, cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω{sub ci} have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.

  6. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    SciTech Connect

    Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  7. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati

    2013-06-01

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  8. A proposal for dust-ion-acoustic soliton excitation in a discharge plasma

    SciTech Connect

    Abbasi, H.; Pajouh, H. Hakimi

    2009-03-15

    Nonlinear dynamics of disintegration process of a localized perturbation into dust-ion-acoustic (DIA) solitons is studied. The present paper is a theoretical attempt to propose and model the experimental DIA soliton excitation [Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001)] in the presence of both superthermal and trapped electrons. The proposal is designed for low-pressure electrical gas discharges that are in nonequilibrium state. In the discharge plasmas, the electron temperature is usually much greater than ion temperature. Thus, the electron distribution function (DF) that in low-pressure discharges is generally non-Maxwellian has to be modeled. For this purpose, the generalized Lorentzian ({kappa})-DF is used to simulate the electron DF. The formalism is derived near the ion-plasma frequency. In this range of frequency, the ion dynamics is considerable and the DIA solitons are the outcome of the disintegration process. Electron trapping is included in the model as the result of positive polarity of the initial potential. A Gaussian initial perturbation is used to model the localized perturbation. It is shown that a slowly varying dynamics of the order of ion motions causes an initial Gaussian perturbation to be, adiabatically, disintegrated to a number of DIA solitons. The disintegration attributes and influence of both trapped and superthermal electrons on this process, are studied.

  9. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    SciTech Connect

    Adnan, Muhammad; Qamar, Anisa; Mahmood, S.

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  10. Ion-acoustic shocks with self-regulated ion reflection and acceleration

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.; Liseykina, T. V.; Diamond, P. H.; Papadopoulos, K.; Liu, C.-S.; Su, J. J.

    2016-04-01

    An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M ≈1.6 (no ion reflection) to M ≈1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M ≈3.1 to M ≈4.5 . The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically.

  11. Equation-free Modeling of Ion Acoustic Wave with Particle Trapping

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Recently, Shay et al.[1] have successfully implemented equation-free projective integraion methods to simulate the propagation and steepening of a 1D ion acoustic wave. For the forward extrapolation step they have been using only a small number of lower moments of the probability density function (PDF) based on the assumption that the distribution would remain Maxwellian at all times. This however is no longer valid in many interesting situations, in particular for the case of particle trapping. To solve this problem we propose a generalization of Shay's algorithm to allow for tracking of an arbitrary PDF. We estimate the PDF at each micro-time step using statistical wavelet analysis. The resulting vectors of wavelet coefficents are used for forward extrapolation in time to obtain a multi-scale representation of the projected PDF after a coarse time step. An optimal wavelet basis is selected through adaptive refinement at the beginning of each microscopic simulation sequence. We discuss the application of this technique to the 1D acoustic wave problem with particle trapping. [1] M. Shay, J. Drake, W. Dorland, Multiscale modeling of plasmas via equation-free projective integration, in preparation

  12. Characteristic of ion acoustic shock waves in a dissipative quantum pair plasma with dust particulates

    NASA Astrophysics Data System (ADS)

    Rouhani, M. R.; Mohammadi, Z.; Akbarian, A.

    2014-01-01

    The behavior of quantum dust ion-acoustic (QDIA) shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied, using a quantum hydrodynamic model (QHD). The effect of dissipation due to the viscosity of ions is taken into account. The propagation of small but finite amplitude QDIA shocks is governed by the Kortoweg-de Vries-Burgers (KdVB) equation. The existence regions of oscillatory and monotonic shocks will depend on the quantum diffraction parameter ( H) and dust density ( d) as well as dissipation parameter ( η 0). The effect of plasma parameters ( d, H, η 0), on these structures is investigated. Results indicate that the thickness and height of monotonic shocks; oscillation amplitude of the oscillatory shock wave and it's wavelength effectively are affected by these parameters. Additionally, the possibility of propagation of both compressive and rarefactive shocks is investigated. It is found that depending on some critical value of dust density ( d c ), which is a function of H, compressive and rarefactive shock waves can't propagate in model plasma. The present theory is applicable to analyze the formation of nonlinear structures at quantum scales in dense astrophysical objects.

  13. Zakharov-Kuznestov-Burger Equation for Ion-Acoustic Waves in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Mandal, Pankaj Kumar; Ghosh, Uday Narayan; Chaterjee, Prasanta

    2015-07-01

    The nonlinear wave structures of ion acoustic waves in magnetized plasma comprising ions, non-extensive distributed electrons and kinematic viscosity are investigated through dynamical study. In a bounded cylindrical geometry Zakharov-Kuznestov-Burger (ZKB) equation is derived, for the first time, using reductive perturbation technic. System of coupled nonlinear ordinary differential equations is derived from ZKB equation and is solved numerically using fourth order Runge-kutta method. Equilibrium points are obtained and the features are studied dynamically in the neighbourhood of these points. With the variation of the non-extensive parameter and the kinematic viscosity parameter some important features in the nonlinear waves like oscillatory shocks to steady state propagation and vis-a-vis steady state propagation to oscillatory shocks emerge. When the values of the non-extensive parameter decrease, the phase portrait of the system shows that the change from stable spiral to stable closed and stable to unstable equilibrium happens . When the effect of dissipative term i.e. kinematic viscosity is considered some other significant features also evolve .The reduction of the value of kinematic viscosity results the change in nature of the waves from oscillatory shocks to periodic one.

  14. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2015-09-01

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  15. Coupled nonlinear drift and ion acoustic waves in dense dissipative electron-positron-ion magnetoplasmas

    SciTech Connect

    Masood, W.; Siddiq, M.; Karim, S.; Shah, H. A.

    2009-11-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous electron-positron-ion (e-p-i) quantum magnetoplasma with neutrals in the background using the well known quantum hydrodynamic model. In this regard, Korteweg-de Vries-Burgers (KdVB) and Kadomtsev-Petviashvili-Burgers (KPB) equations are obtained. Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent hyperbolic (tanh) method. The variation in the shock profile with the quantum Bohm potential, collision frequency, and the ratio of drift to shock velocity in the comoving frame, v{sub *}/u, is also investigated. It is found that increasing the positron concentration and collision frequency decreases the strength of the shock. It is also shown that when the localized structure propagates with velocity greater than the diamagnetic drift velocity (i.e., u>v{sub *}), the shock strength decreases. However, the shock strength is observed to increase when the localized structure propagates with velocity less than that of drift velocity (i.e., u

  16. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  17. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple-wavelength Thomson scattering.

    PubMed

    Froula, D H; Davis, P; Divol, L; Ross, J S; Meezan, N; Price, D; Glenzer, S H; Rousseaux, C

    2005-11-01

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas. PMID:16383991

  18. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect

    Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  19. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  20. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    SciTech Connect

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature. The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.

  1. Current-driven antivortex core resonance measured by the rectifying effect

    NASA Astrophysics Data System (ADS)

    Goto, Minori; Nozaki, Yukio

    2016-02-01

    We demonstrate the current-driven resonance of a single antivortex core confined in a cross-shaped Ni81Fe19 wire. The antivortex core dynamics can be excited purely by spin transfer torque; therefore, it is significant to understand the current-induced magnetization dynamics. The antivortex core resonance can be measured from the frequency dependence of a rectified voltage generated by an alternating current application. We found that the resonance frequency and peak amplitude greatly depend on the external magnetic field. This result is in good agreement with micromagnetic simulation.

  2. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    NASA Astrophysics Data System (ADS)

    Liu, Dongjian; Bao, Jian; Han, Tao; Wang, Jiaqi; Lin, Zhihong

    2016-02-01

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas.

  3. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    SciTech Connect

    Rao, N.N.

    1998-01-01

    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known H{acute e}non{endash}Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. {copyright} {ital 1998 American Institute of Physics.}

  4. Naturally Enhanced Ion Acoustic Lines with the Poker Flat AMISR radar.

    NASA Astrophysics Data System (ADS)

    Stromme, A.; Semeter, J.; Zettergren, M.

    2007-12-01

    The study of Naturally Enhanced Ion Acoustic Lines (NEIALs) have become one of the key studies for EISCAT both in the polar cusp using the EISCAT Svalbard Radar (ESR), and in the auroral zone, using the EISCAT UHF and VHF systems. Still many questions regarding the temporal and spatial extent of the NEIAL events remain unanswered. The new Advanced Modular Incoherent Scatter Radar (AMISR) in Poker Flat, Alaska is the first phased array Incoherent Scatter Radar at high latitudes, and by taking advantage of its possibility of (almost) simultaneous looking directions, we can resolve some of the space time ambiguity associated with NEIALs. During the night of the 23. March 2007, a period of NEIALs occurred. The radar ran in a 10 position mode with 9 beams in a narrow quadratic grid spaced by 3 degrees, plus a 10th position up B - slightly offset from the grid. Raw voltage data were sampled to allow for very high time resolution ACFs and spectra. Combining high time resolution data from multiple positions, we have the opportunity for the first time to look at the space-time ambiguity in the development of NEIALs. During the campaign a narrow field of view imager from university of Boston were operational at the Davis science center close by the AMISR array. The night of the 23. March, the imager was pointed field aligned, and at around 11:20 UT - at the time of the radar NEIALs - a field of dynamic rays occurred at and near the zenith. High time resolution multi position data from AMISR will be shown to follow the space and time development of the NEIAL event. This will also be correlated with high time resolution data from the imager.

  5. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  6. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  7. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  8. Ion-Acoustic Double-Layers in Plasmas with Nonthermal Electrons

    NASA Astrophysics Data System (ADS)

    Rios, L. A.; Galvão, R. M. O.

    2014-12-01

    A double layer (DL) consists of a positive/negative Debye sheath, connecting two quasineutral regions of a plasma. These nonlinear structures can be found in a variety of plasmas, from discharge tubes to space plasmas. It has applications to plasma processing and space propulsion, and its concept is also important for areas such as applied geophysics. In the present work we investigate the ion-acoustic double-layers (IADLs). It is believed that these structures are responsible for the acceleration of auroral electrons, for example. The plasma distributions near a DL are usually non-Maxwellian and can be modeled via a κ distribution function. In its reduced form, the standard κ distribution is equivalent to the distribution function obtained from the maximization of the Tsallis entropy, the q distribution. The parameters κ and q measure the deviation from the Maxwellian equilibrium ("nonthermality"), with -κ=1/(1-q) (in the limit κ → ∞ (q → 1) the Maxwellian distribution is recovered). The existence of obliquely propagating IADLs in magnetized two-electron plasmas is investigated, with the hot electron population modeled via a κ distribution function [1]. Our analysis shows that only subsonic and rarefactive DLs exist for the entire range of parameters investigated. The small amplitude DLs exist only for τ=Th/Tc greater than a critical value, which grows as κ decreases. We also observe that these structures exist only for large values of δ=Nh0/N0, but never for δ=1. In our model, which assumes a quasineutral condition, the Mach number M grows as θ decreases (θ is the angle between the directions of the external magnetic field and wave propagation). However, M as well as the DL amplitude are reduced as a consequence of nonthermality. The relation of the quasineutral condition and the functional form of the distribution function with the nonexistence of IADLs has also been analyzed and some interesting results have been obtained. A more detailed

  9. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  10. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  11. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  12. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  13. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; Zhang, Zhengqiang

    2015-05-01

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  14. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    NASA Astrophysics Data System (ADS)

    Sardar, Sankirtan; Bandyopadhyay, Anup; Das, K. P.

    2016-07-01

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KP and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.

  15. Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model

    SciTech Connect

    Aminmansoor, F.; Abbasi, H.

    2015-08-15

    The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.

  16. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    SciTech Connect

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2014-08-15

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  17. Existence and stability of alternative ion-acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized nonthermal plasma consisting of warm adiabatic ions

    SciTech Connect

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    2007-09-15

    The purpose of this paper is to present the recent work of Das et al. [J. Plasma Phys. 72, 587 (2006)] on the existence and stability of the alternative solitary wave solution of fixed width of the combined MKdV-KdV-ZK (Modified Korteweg-de Vries-Korteweg-de Vries-Zakharov-Kuznetsov) equation for the ion-acoustic wave in a magnetized nonthermal plasma consisting of warm adiabatic ions in a more generalized form. Here we derive the alternative solitary wave solution of variable width instead of fixed width of the combined MKdV-KdV-ZK equation along with the condition for its existence and find that this solution assumes the sech profile of the MKdV-ZK (Modified Korteweg-de Vries-Zakharov-Kuznetsov) equation, when the coefficient of the nonlinear term of the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation tends to zero. The three-dimensional stability analysis of the alternative solitary wave solution of variable width of the combined MKdV-KdV-ZK equation shows that the instability condition and the first order growth rate of instability are exactly the same as those of the solitary wave solution (the sech profile) of the MKdV-ZK equation, when the coefficient of the nonlinear term of the KdV-ZK equation tends to zero.

  18. Shear flow instability in a partially-ionized plasma sheath around a fast-moving vehicle

    SciTech Connect

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T. C.; Rose, D. V.; Oliver, B. V.; Mehlhorn, T. A.

    2011-06-15

    The stability of ion acoustic waves in a sheared-flow, partially-ionized compressible plasma sheath around a fast-moving vehicle in the upper atmosphere, is described and evaluated for different flow profiles. In a compressible plasma with shear flow, instability occurs for any velocity profile, not just for profiles with an inflection point. A second-order differential equation for the electrostatic potential of excited ion acoustic waves in the presence of electron and ion collisions with neutrals is derived and solved numerically using a shooting method with boundary conditions appropriate for a finite thickness sheath in contact with the vehicle. We consider three different velocity flow profiles and find that in all cases that neutral collisions can completely suppress the instability.

  19. Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary wave

    SciTech Connect

    Mushtaq, A.; Shah, H.A.

    2006-01-15

    By using the generalized (r,q) distribution function, the effect of particle trapping on the linear and nonlinear evolution of an ion-acoustic wave in an electron-ion plasma has been discussed. The spectral indices q and r contribute to the high-energy tails and flatness on top of the distribution function respectively. The generalized Korteweg-de Vries equations with associated solitary wave solutions for different ranges of parameter r are derived by employing a reductive perturbation technique. It is shown that spectral indices r and q affect the trapping of electrons and subsequently the dynamics of the ion acoustic solitary wave significantly.

  20. The electromagnetic ion beam instability upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Gosling, J. T.; Forslund, D. W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient magnetic field B, but this instability also displays significant growth at wave-vectors oblique to B. Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with the 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities.

  1. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  2. Current-driven vortex domain wall motion in wire-tube nanostructures

    NASA Astrophysics Data System (ADS)

    Espejo, A. P.; Vidal-Silva, N.; López-López, J. A.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2015-03-01

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  3. Current-driven vortex domain wall motion in wire-tube nanostructures

    SciTech Connect

    Espejo, A. P.; Vidal-Silva, N.; López-López, J. A.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  4. Instability due to trapped electrons in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Ferdous, T.; Duha, S. S.

    2015-05-01

    An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.

  5. Kinetic theory of instability-enhanced collisional effects

    SciTech Connect

    Baalrud, S. D.; Callen, J. D.; Hegna, C. C.

    2010-05-15

    The Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is used to derive a generalization of the Lenard-Balescu plasma kinetic equation that accounts for wave-particle scattering due to instabilities that originate from discrete particle motion. Application to convective instabilities is emphasized for which the growing waves either propagate out of the domain of interest or modify the particle distribution to reduce the instability amplitude before nonlinear amplitudes are reached. Two such applications are discussed: Langmuir's paradox and determining the Bohm criterion for multiple ion species plasmas. In these applications, collisions are enhanced by ion-acoustic and ion-ion two-stream instabilities, respectively. The relationship between this kinetic theory and quasilinear theory is discussed.

  6. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  7. Low intensity dust ion-acoustic shock waves due to dust charge fluctuation in a nonextensive dusty plasma

    SciTech Connect

    Alinejad, H.; Shahmansory, M.

    2012-08-15

    The properties of low intensity dust ion acoustic shock waves are studied in a charge varying dusty plasma with nonextensive electrons. Owing to the departure from the Maxwellian electron distribution to a nonextensive one, the modified electrostatic charging of a spherical dust particle in plasma with ion streaming speed is considered. Based on the weakly nonlinear analysis, a new relationship between the low intensity localized disturbances and nonextensive electrons is derived. It is found that both strength and steepness of shock structures arise as the electrons evolve far from their thermodynamic equilibrium in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the ion temperature and population of electrons reduce the possibility of the formation of the shock profile.

  8. Properties of cylindrical and spherical heavy ion-acoustic solitary and shock structures in a multispecies plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Shah, M. G.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2016-02-01

    A theoretical investigation on heavy ion-acoustic (HIA) solitary and shock structures has been accomplished in an unmagnetized multispecies plasma consisting of inertialess kappa-distributed superthermal electrons, Boltzmann light ions, and adiabatic positively charged inertial heavy ions. Using the reductive perturbation technique, the nonplanar (cylindrical and spherical) Kortewg-de Vries (KdV) and Burgers equations have been derived. The solitary and shock wave solutions of the KdV and Burgers equations, respectively, have been numerically analyzed. The effects of superthermality of electrons, adiabaticity of heavy ions, and nonplanar geometry, which noticeably modify the basic features (viz. polarity, amplitude, phase speed, etc.) of small but finite amplitude HIA solitary and shock structures, have been carefully investigated. The HIA solitary and shock structures in nonplanar geometry have been found to distinctly differ from those in planar geometry. Novel features of our present attempt may contribute to the physics of nonlinear electrostatic perturbation in astrophysical and laboratory plasmas.

  9. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  10. Ion wake field effects on the dust-ion-acoustic surface mode in a semi-bounded Lorentzian dusty plasma

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-03-01

    The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermal plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.

  11. Kadomtsev—Petviashvili (KP) Burgers Equation in Dusty Negative Ion Plasmas: Evolution of Dust-Ion Acoustic Shocks

    NASA Astrophysics Data System (ADS)

    A. N., Dev; Sarma, J.; M. K., Deka; A. P., Misra; N. C., Adhikary

    2014-12-01

    We study the nonlinear propagation of dust-ion acoustic (DIA) shock waves in an un-magnetized dusty plasma which consists of electrons, both positive and negative ions and negatively charged immobile dust grains. Starting from a set of hydrodynamic equations with the ion thermal pressures and ion kinematic viscosities included, and using a standard reductive perturbation method, the Kadomtsev—Petviashivili—Burgers (K-P-Burgers) equation is derived, which governs the evolution of DIA shocks. A stationary solution of the K-P-Burgers equation is obtained and its properties are analysed with different plasma number densities, ion temperatures and masses. It is shown that a transition from shocks with negative potential to positive one occurs depending on the negative ion concentration in the plasma and the obliqueness of propagation of DIA waves.

  12. Arbitrary amplitude dust ion-acoustic shock waves in a dusty plasma with positive and negative ions

    SciTech Connect

    Mamun, A. A.; Shukla, P. K.; Eliasson, B.

    2009-11-15

    Arbitrary amplitude dust ion-acoustic shock waves in a multi-ion dusty plasma (composed of electrons, light positive ions, heavy negative ions, and stationary massive dust grains) has been studied. For this purpose, the coupled Poisson and dust-charging equations, which accounts for the fluctuation of charges on static dust, have been numerically solved. The large amplitude shocks are associated with a sudden decrease in the electrostatic potential and of the dust grain charge. It is found that in the lower speed limit small amplitude shocks are formed, while in the larger speed limit large amplitude shocks are formed. It is anticipated that the profiles and amplitudes of the DIA shocks predicted here will be observed in forthcoming laboratory and space experiments.

  13. Nonlinear propagation of dust-ion-acoustic solitary waves in an unmagnetized dusty plasma with trapped particle distribution

    NASA Astrophysics Data System (ADS)

    Rahman, O.

    2015-12-01

    The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg-de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.

  14. Dust-ion-acoustic solitary waves in dusty plasma with arbitrarily charged dust and vortex-like electron distribution

    SciTech Connect

    Rahman, O.; Mamun, A. A.

    2011-08-15

    The nonlinear propagation of dust-ion-acoustic (DIA) waves in a dusty plasma containing trapped electrons following vortex-like distribution, cold mobile ions, and arbitrarily charged static dust is theoretically investigated. The properties of small but finite amplitude DIA solitary waves (SWs) are studied by employing the reductive perturbation technique. It is found that owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of such DIA SWs is governed by a modified Korteweg-de Vries equation. The basic features (amplitude, width, speed, etc.) of such DIA SWs, which are found to be significantly modified by the vortex-like electron distribution and dust polarity, are also examined. The implications of our results to space and laboratory dusty plasmas are briefly discussed.

  15. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  16. Ion acoustic wave velocity measurement of the concentration of two ion species in a multi-dipole plasma

    SciTech Connect

    Hala, A. M.; Hershkowitz, N.

    2001-05-01

    The concentration of two species in a multi-dipole plasma was determined by measuring the ion acoustic wave group velocity and the electron temperature. The wave was launched from a grid immersed in the plasma and was detected by a Langmuir probe. Electron temperature was found separately from an I--V characteristic trace. The measurements were performed in helium/xenon and argon/xenon plasmas. Typical parameters of the plasma were T{sub e}{approx}0.5--3eV, density 10{sup 10}cm{sup -3}, plasma potential of 3--5 V, and pressure range from 1 to 20 mTorr. The accuracy of the measurement was from 2% to 4% depending on the mass difference between the two species and how accurately the group velocity and electron temperature are measured.

  17. Dust ion-acoustic shock waves in charge varying dusty plasmas with electrons having vortexlike velocity distribution

    SciTech Connect

    Alinejad, H.; Tribeche, M.

    2010-12-15

    A weakly nonlinear analysis is carried out to investigate the properties of dust ion-acoustic shock waves in a charge varying dusty plasma with vortexlike electron distribution. We use the ionization model, hot ions with equilibrium streaming speed and a trapped electron charging current derived from the well-known orbit limited motion theory. A new modified Burger equation is derived. Besides nonlinear trapping, this equation involves two kinds of dissipation (the anomalous one inherent to nonadiabatic dust charge fluctuation and the one due to the particle loss and ionization). These two kinds of dissipation can act concurrently. The traveling wave solution has been acquired by employing the modified extended tanh-function method. The shocklike solution is numerically analyzed based on the typical numerical data from laboratory dusty plasma devices. It is found that ion temperature, trapped particles, and weak dissipations significantly modify the shock structures.

  18. Nonplanar ion-acoustic shock waves in a multi-ion plasma with nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2015-08-01

    The basic features of ion-acoustic shock waves (IASHWs) in a multi-ion nonextensive plasma (containing positive light ions, negative heavy ions, as well as nonextensive electrons and positrons) have been rigorously investigated in a nonplanar geometry. The standard reductive perturbation method has been employed to derive the Modified Burgers (MB) equation. The combined effects of the electron and positron nonextensivity, and the ion kinematic viscosity significantly have been found to modify the basic properties of these electrostatic shock structures. The properties of the cylindrical and the spherical IASHWs are observed to differ significantly from those of onedimensional planar waves. The findings obtained from this theoretical investigation may be useful in understanding the characteristics of IASHWs both in space and laboratory plasmas.

  19. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-10-01

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  20. COSMIC-RAY CURRENT-DRIVEN TURBULENCE AND MEAN-FIELD DYNAMO EFFECT

    SciTech Connect

    Rogachevskii, Igor; Kleeorin, Nathan; Brandenburg, Axel; Eichler, David

    2012-07-01

    We show that an {alpha} effect is driven by the cosmic-ray (CR) Bell instability exciting left-right asymmetric turbulence. Alfven waves of a preferred polarization have maximally helical motion, because the transverse motion of each mode is parallel to its curl. We show how large-scale Alfven modes, when rendered unstable by CR streaming, can create new net flux over any finite region, in the direction of the original large-scale field. We perform direct numerical simulations (DNSs) of a magnetohydrodynamic fluid with a forced CR current and use the test-field method to determine the {alpha} effect and the turbulent magnetic diffusivity. As follows from DNS, the dynamics of the instability has the following stages: (1) in the early stage, the small-scale Bell instability that results in the production of small-scale turbulence is excited; (2) in the intermediate stage, there is formation of larger-scale magnetic structures; (3) finally, quasi-stationary large-scale turbulence is formed at a growth rate that is comparable to that expected from the dynamo instability, but its amplitude over much longer timescales remains unclear. The results of DNS are in good agreement with the theoretical estimates. It is suggested that this dynamo is what gives weakly magnetized relativistic shocks such as those from gamma-ray bursts (GRBs) a macroscopic correlation length. It may also be important for large-scale magnetic field amplification associated with CR production and diffusive shock acceleration in supernova remnants (SNRs) and blast waves from GRBs. Magnetic field amplification by Bell turbulence in SNRs is found to be significant, but it is limited owing to the finite time available to the super-Alfvenicly expanding remnant. The effectiveness of the mechanisms is shown to be dependent on the shock velocity. Limits on magnetic field growth in longer-lived systems, such as the Galaxy and unconfined intergalactic CRs, are also discussed.

  1. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    NASA Astrophysics Data System (ADS)

    McKerr, M.; Haas, F.; Kourakis, I.

    2016-05-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  2. Observations of the parametric decay instability of nonlinear magnetohydrodynamic waves

    SciTech Connect

    Spangler, S.R.; Leckband, J.A.; Cairns, I.H.

    1997-03-01

    One of the most important nonlinear processes for Alfven and fast magnetosonic waves is the decay instability, in which a forward propagating magnetohydrodynamic (MHD) wave is converted into a forward propagating ion acoustic wave and a backward propagating MHD wave. Despite an extensive theoretical literature and numerous computer simulations of the process, there is minimal experimental or observational evidence for its existence. In this paper we report an extensive search for evidence of the decay instability in the MHD wave field upstream of the Earth`s bow shock. Twenty intervals of spacecraft magnetometer and density data with durations between 21 and 168 min were examined. The observational signature of the decay instability sought was a quasi-monochromatic feature in the density power spectrum, attributable to the daughter ion acoustic wave, at a frequency higher than the main wave features in the magnetic power spectra. Such a feature was in fact observed for the interval in which the theoretically predicted instability growth rate was highest, as well as in a second interval for which the instability was permitted with a slower growth rate. However, the data set also contains three long intervals of data in which the {open_quotes}decay line{close_quotes} signature is not seen, although theoretically permitted. The decay line is also absent in four shorter intervals in which the plasma {beta} is less than unity, and the instability accordingly facilitated. Possible reasons for the absence of the instability in these intervals are discussed, such as a finite bandwidth for the parent wave field and plasma kinetic effects. {copyright} {ital 1997 American Institute of Physics.}

  3. Observations of the parametric decay instability of nonlinear magnetohydrodynamic waves

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Leckband, James A.; Cairns, Iver H.

    1997-03-01

    One of the most important nonlinear processes for Alfvén and fast magnetosonic waves is the decay instability, in which a forward propagating magnetohydrodynamic (MHD) wave is converted into a forward propagating ion acoustic wave and a backward propagating MHD wave. Despite an extensive theoretical literature and numerous computer simulations of the process, there is minimal experimental or observational evidence for its existence. In this paper we report an extensive search for evidence of the decay instability in the MHD wave field upstream of the Earth's bow shock. Twenty intervals of spacecraft magnetometer and density data with durations between 21 and 168 min were examined. The observational signature of the decay instability sought was a quasi-monochromatic feature in the density power spectrum, attributable to the daughter ion acoustic wave, at a frequency higher than the main wave features in the magnetic power spectra. Such a feature was in fact observed for the interval in which the theoretically predicted instability growth rate was highest, as well as in a second interval for which the instability was permitted with a slower growth rate. However, the data set also contains three long intervals of data in which the "decay line'' signature is not seen, although theoretically permitted. The decay line is also absent in four shorter intervals in which the plasma β is less than unity, and the instability accordingly facilitated. Possible reasons for the absence of the instability in these intervals are discussed, such as a finite bandwidth for the parent wave field and plasma kinetic effects.

  4. Current-driven nanowire formation on surfaces of crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Dimitrakopoulos, Christos; Maroudas, Dimitrios

    2016-05-01

    The formation and precise manipulation of nanoscale features by controlling macroscopic forces is essential to advancing nanotechnology. Toward this end, we report here a theoretical study on formation of nanowires with precisely controlled widths, starting from single-layer conducting islands on crystalline conducting substrates under the controlled action of macroscopic forcing provided by an externally applied electric field that drives island edge electromigration. Numerical simulations based on an experimentally validated model and supported by linear stability theory show that large-size islands undergo a current-induced fingering instability, leading to nanowire formation after finger growth. Depending on the substrate surface crystallographic orientation, necking instabilities after fingering lead to the formation of multiple parallel nanowires per island. In all cases, the axis of the formed nanowires is aligned with the direction of the externally applied electric field. The nanowires have constant widths, on the order of 10 nm, which can be tuned by controlling the externally applied electric field strength. Our findings have important implications for developing future lithography-free nanofabrication and nanoelectronic patterning techniques.

  5. Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic

    NASA Astrophysics Data System (ADS)

    Awano, Hiroyuki

    2015-06-01

    Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×106 A/cm2. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×105 A/cm2. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.

  6. Suppression of stimulated Brillouin instability of a beat-wave of two lasers in multiple-ion-species plasmas

    NASA Astrophysics Data System (ADS)

    Yadav, Pinki; Gupta, D. N.; Avinash, K.

    2016-01-01

    Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.

  7. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-09-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15-30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108-109 A m-2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies.

  8. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  9. On the generation of double layers from ion- and electron-acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  10. Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability

    NASA Astrophysics Data System (ADS)

    Neukirch, S.

    2001-03-01

    We study a dissipative dynamical system that models a parametric instability in a plasma. This instability is due to the interaction of a whistler with the ion acoustic wave and a plasma oscillation near the lower hybrid resonance. The amplitude of these three oscillations obey a three-dimensional system of ordinary differential equations which exhibits chaos for certain parameter values. By using certain ``integrability informations'' we have on the system, we get geometrical bounds for its chaotic attractor, leading to an upper bound for its Lyapunov dimension. On the other hand, we also obtain ranges of values of the system's parameters for which there is no chaotic motion.

  11. Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability.

    PubMed

    Neukirch, S

    2001-03-01

    We study a dissipative dynamical system that models a parametric instability in a plasma. This instability is due to the interaction of a whistler with the ion acoustic wave and a plasma oscillation near the lower hybrid resonance. The amplitude of these three oscillations obey a three-dimensional system of ordinary differential equations which exhibits chaos for certain parameter values. By using certain "integrability informations" we have on the system, we get geometrical bounds for its chaotic attractor, leading to an upper bound for its Lyapunov dimension. On the other hand, we also obtain ranges of values of the system's parameters for which there is no chaotic motion. PMID:11308736

  12. Action of an electromagnetic pulse on a plasma with a high level of ion-acoustic turbulence. Field diffusion and subdiffusion

    SciTech Connect

    Ovchinnikov, K. N.; Uryupin, S. A.

    2013-09-15

    Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.

  13. Ion-acoustic solitons, double layers and rogue waves in plasma having superthermal electrons

    NASA Astrophysics Data System (ADS)

    Singh Saini, Nareshpal

    2016-07-01

    Most of the space and astrophysical plasmas contain different type of charged particles with non-Maxwellian velocity distributions (e.g., nonthermal, superthermal, Tsallis ). These distributions are commonly found in the auroral region of the Earth's magnetosphere, planetary magnetosphere, solar and stellar coronas, solar wind, etc. The observations from various satellite missions have confirmed the presence of superthermal particles in space and astrophysical environments. Over the last many years, there have been a much interest in studying the different kind of properties of the electrostatic nonlinear excitations (solitons, double layers, rogue waves etc.) in a multi-component plasmas in the presence of superthermal particles. It has been analyzed that superthermal distributions are more appropriate than Maxwellian distribution for the modeling of space data. It is interesting to study the dynamics of various kinds of solitary waves, Double layers, Shocks etc. in varieties of plasma systems containing different kind of species obeying Lorentzian (kappa-type)/Tsallis distribution. In this talk, I have focused on the study of large amplitude IA solitary structures (bipolar solitary structures, double layers etc.), modulational instability and rogue waves in multicomponent plasmas. The Sagdeev potential method has been employed to setup an energy balance equation, from which we have studied the characteristics of large amplitude solitary waves under the influence of superthermality of charged particles and other plasma parameters. The critical Mach number has been determined, above which solitary structures are observed and its variation with superthermality of electrons and other parameters has also been discussed. Double layers have also been discussed. Multiple scale reductive perturbation method has been employed to derive NLS equation. From the different kind of solutions of this equation, amplitude modulation of envelope solitons and rogue waves have been

  14. Linear calculations of edge current driven kink modes with BOUT++ code

    SciTech Connect

    Li, G. Q. Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.

    2014-10-15

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  15. Linear calculations of edge current driven kink modes with BOUT++ code

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.; Ma, C. H.; Xi, P. W.

    2014-10-01

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  16. Effect of ion temperature on ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Roy, Kaushik; Saha, Taraknath; Chatterjee, Prasanta

    2012-10-15

    The effect of ion temperature on the existence of arbitrary amplitude ion-acoustic solitary waves is studied in a two component plasma in presence of a q-nonextensive velocity distributed electrons by using Sagdeev's pseudo potential technique. The range of relevent parameters for which solitons may exist is discussed. It is observed that both q, the nonextensive parameter and the ion temperature {sigma}, play significant roles in the formation and existence of solitons.

  17. Sagdeev's approach to study the effect of the kinematic viscosity on the dust ion-acoustic solitary waves in dusty plasma

    SciTech Connect

    Maitra, Sarit; Roychoudhury, Rajkumar

    2005-05-15

    Sagdeev's technique is used to study the dust ion-acoustic solitary waves (DIASWs) in a dusty plasma comprising ions, electrons, and charged dust grains taking into account the ion kinematic viscosity. Exact analytical results for the solitary wave solutions were obtained for small amplitude DIASW. The effects of the ion kinematic viscosity and the ion temperature on the feature of DIASW have been investigated.

  18. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  19. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  20. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams.

    PubMed

    Kirkwood, R K; Michel, P; London, R A; Callahan, D; Meezan, N; Williams, E; Seka, W; Suter, L; Haynam, C; Landen, O

    2011-08-01

    Experiments demonstrate the amplification of 351 nm laser light in a hot dense plasma similar to those in inertial confinement fusion ignition experiments. A seed beam interacts with one or two counter-propagating pump beams, each with an intensity of 1.2×10(15) W/cm2 at 351 nm, crossing the seed at 24.8° at the position where the flow is Mach 1, allowing resonant stimulation of ion acoustic waves. Results show that the energy and power transferred to the seed are increased with two pumps beyond the level that occurs with a single pump, demonstrating that, under conditions similar to ignition experiments where each beam has a low gain exponent, the total scatter produced by the multiple beams can be significantly larger than that of the individual beams. It is further demonstrated that the amplification is greatly reduced when the pump polarization is orthogonal to the seed, as expected from models of stimulated scatter. PMID:21929115

  1. Effect of dust charge fluctuation on the propagation of dust-ion acoustic waves in inhomogeneous mesospheric dusty plasma

    SciTech Connect

    Mowafy, A. E.; El-Shewy, E. K.; Zahran, M. A.; Moslem, W. M.

    2008-07-15

    Investigation of positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg-de Varies (KdV) equation. At the critical ion density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified variable coefficients KdV equation. It is found that the presence of positively charged dust grains does not only significantly modify the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical ion density, neither KdV nor the modified KdV equation is appropriate for describing the DIAWs. Therefore, a further modified KdV equation is derived, which admits both soliton and double layer solutions.

  2. Ion-acoustic Gardner Solitons in electron-positron-ion plasma with two-electron temperature distributions

    NASA Astrophysics Data System (ADS)

    Rehman, Momin A.; Mishra, M. K.

    2016-01-01

    The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.

  3. Cylindrical and spherical dust-ion-acoustic modified Gardner solitons in dusty plasmas with two-temperature superthermal electrons

    SciTech Connect

    Alam, M. S.; Masud, M. M.; Mamun, A. A.

    2013-12-15

    A rigorous theoretical investigation has been performed on the propagation of cylindrical and spherical Gardner solitons (GSs) associated with dust-ion-acoustic (DIA) waves in a dusty plasma consisting of inertial ions, negatively charged immobile dust, and two populations of kappa distributed electrons having two distinct temperatures. The well-known reductive perturbation method has been used to derive the modified Gardner (mG) equation. The basic features (amplitude, width, polarity, etc.) of nonplanar DIA modified Gardner solitons (mGSs) have been thoroughly examined by the numerical analysis of the mG equation. It has been found that the characteristics of the nonplanar DIA mGSs significantly differ from those of planar ones. It has been also observed that kappa distributed electrons with two distinct temperatures significantly modify the basic properties of the DIA solitary waves and that the plasma system under consideration supports both compressive and rarefactive DIA mGSs. The present investigation should play an important role for understanding localized electrostatic disturbances in space and laboratory dusty plasmas where stationary negatively charged dust, inertial ions, and superthermal electrons with two distinct temperatures are omnipresent ingredients.

  4. Roles of negatively-charged heavy ions and nonextensivity in cylindrical and spherical dust-ion-acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-06-01

    A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-ion-acoustic (DIA) waves in an unmagnetized dusty multi-ion plasma system containing nonextensive electrons, inertial negatively-charged heavy ions, positively-charged Maxwellian light ions, and negatively-charged stationary dust. The well-known reductive perturbation technique has been used to derive the modified Burgers-type equation (which describes the shock wave's properties), and its numerical solution is obtained. The basic features (viz. polarity, amplitude, width, etc.) of the cylindrical and the spherical DIA shock waves are investigated. The basic features of the cylindrical and the spherical DIA shock waves are found to have been significantly modified in a way that depends on the intrinsic parameters (viz. electron nonextensivity, heavy-ion's kinematic viscosity, heavy-to-light-ion number density ratio, electron-to-light-ion temperature ratio, etc.) of the considered plasma system. The characteristics of the cylindrical and the spherical DIA shock waves are observed to be qualitatively different from those of planar ones.

  5. Higher-order corrections to nonlinear dust-ion-acoustic shock waves in a degenerate dense space plasma

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2014-12-01

    A reductive perturbation technique is employed to investigate the contribution of higher-order nonlinearity and dissipation to nonlinear dust-ion-acoustic (DIA) shock waves in a three-component degenerate dense space plasma. The model consists of degenerate electron (being either ultrarelativistic or nonrelativistic), nonrelativistic ion fluid and stationary heavy dust grains. A nonlinear Burger equation and a linear inhomogeneous Burger-type equation are derived. The present model admits only compressive DIA shocks. Including these higher-order corrections results in creating new solitary wave structures " humped DIA shock" waves. For the case of ultrarelativistic (nonrelativistic) electrons, one (two) humped DIA shock is (are) created. The DIA shock wave amplitude and velocity is larger in case of ultrarelativistic electrons than of nonrelativistic electrons. It is shown that the effects of kinematic viscosity, heavy dust grains number density, and equilibrium ion number density have important roles in the basic features of the produced DIA shocks and the associated electric fields. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  6. Modeling solar flare conduction fronts. I - Homogeneous plasmas and ion-acoustic turbulence. II - Inhomogeneous plasmas and ambipolar electric fields

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Winglee, R. M.; Dulk, G. A.

    1990-01-01

    A one-dimensional, electrostatic, particle-in-cell simulation is used here to model the expansion of a heated electron population in a coronal loop during a solar flare and the characteristics of the associated X-ray emissions. The hot electrons expand outward from the localized region, creating an ambipolar electric field which accelerates a return current of cooler, ambient electrons. Ion-acoustic waves are generated by the return currents as proposed by Brown et al. (1979), but they play little or no role in containing energetic electrons and the conduction front proposed by Brown et al. does not form. The X-ray emission efficiency of the electrons is too low in the corona for them to be the source of hard X-ray bursts. The particle dynamics changes dramatically if the heated plasma is at low altitudes and expands upward into the more tenuous plasma at higher altitudes. Two important applications of this finding are the radio-frequency heating of the corona and the collisional heating of the chromosphere by precipitating energetic electrons. In both cases, the overlying plasma has a density that is too low to supply a balancing return current to the expanding hot electrons. As a result, an ambipolar electric field develops that tends to confine the energetic electrons behind a front that propagate outward at about the speed of sound.

  7. Head-on collision of two ion-acoustic solitary waves in plasmas with electrons described by Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Merriche, Abderrzak; Ait Gougam, Leila; Tribeche, Mouloud

    2016-01-01

    The problem of the head-on collision of two ion-acoustic solitary waves (IASWs) is addressed in electronegative plasmas with a nonextensive electron velocity distribution. Our plasma model is inspired from the experimental studies of Ichiki et al. (2001). Using the extended Poincare-Lighthill-Kuo (PLK) perturbation method, the phase shifts of the head-on collision are obtained. Analytical and numerical results reveal that the magnitude of the phase shift of the IASWs depends sensitively on the number density ratios μ and υ, the mass ratio σ as well as the nonextensive parameter q. For a given mass ratio σ ≃ 0.27 (Ar+ - SF6-), the magnitude of the phase shift increases with an increase of the nonextensive parameter q. An increase of the electron-to-positive ion density ratio μ lowers the phase shift, a trend which is much perceptible for q > 1. As σ increases [ σ ≃ 0.89 (Xe+ - SF6-) ], the phase shift becomes larger.

  8. Stability Dust-Ion-Acoustic Wave In Dusty Plasmas With Stream -Influence Of Charge Fluctuation Of Dust Grains

    SciTech Connect

    Atamaniuk, Barbara; Zuchowski, Krzysztof

    2006-01-15

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In case considering here, when temperature of electrons is much greater then the temperature of the ions and temperature of electrons is not great enough for further ionization of the ions, we show that stability of the acoustic wave depends only one phenomenological coefficient.

  9. High and low frequency instabilities driven by counter-streaming electron beams in space plasmas

    SciTech Connect

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.

    2014-05-15

    A four-component plasma composed of a drifting (parallel to ambient magnetic field) population of warm electrons, drifting (anti-parallel to ambient magnetic field) cool electrons, stationary hot electrons, and thermal ions is studied in an attempt to further our understanding of the excitation mechanisms of broadband electrostatic noise (BEN) in the Earth's magnetospheric regions such as the magnetosheath, plasmasphere, and plasma sheet boundary layer (PSBL). Using kinetic theory, beam-driven electrostatic instabilities such as the ion-acoustic, electron-acoustic instabilities are found to be supported in our multi-component model. The dependence of the instability growth rates and real frequencies on various plasma parameters such as beam speed, number density, temperature, and temperature anisotropy of the counter-streaming (relative to ambient magnetic field) cool electron beam are investigated. It is found that the number density of the anti-field aligned cool electron beam and drift speed play a central role in determining which instability is excited. Using plasma parameters which are closely correlated with the measurements made by the Cluster satellites in the PSBL region, we find that the electron-acoustic and ion-acoustic instabilities could account for the generation of BEN in this region.

  10. Current-Driven Dynamics of Skyrmions Stabilized in MnSi Nanowires Revealed by Topological Hall Effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song

    2015-03-01

    Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.

  11. Experimental Studies of the Stimulated Brillouin Scattering Instability in the Saturated Regime

    SciTech Connect

    Froula, D

    2002-10-29

    An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I < 1.5 x 10{sup 15} W cm{sup -2}, the SBS instability is moderated primarily by velocity gradients, and for intensities above this threshold, nonlinear trapping is invoked to saturate the instability. We report direct evidence of detuning of SBS by a velocity gradient which was achieved by directly measuring the frequency shift of the SBS driven acoustic wave relative to the local resonant acoustic frequency. Furthermore, a novel use of Thomson scattering has allowed us to gather direct evidence of kinetic effects associated with the SBS process. Specifically, a measured two-fold increase of the ion temperature has been linked with laser beam excitation of ion-acoustic waves to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2{omega} 1.2-ns long interaction beam with intensities up to 5 x 10{sup 15} W cm{sup -2}. The local frequency, amplitude, and spatial range of these waves were measured with a 3{omega} 200ps Thomson-scattering probe beam. These detailed and accurate measurements in well-characterized plasma conditions allow for the first time a direct test of non-linear models of the saturation of SBS. The measured two-fold increase of the ion temperature and its correlation with SBS reactivity measurements is the first quantitative evidence of hot ions created by ion trapping in laser plasmas.

  12. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    SciTech Connect

    Misra, A. P. E-mail: apmisra@gmail.com; Barman, Arnab

    2014-07-15

    We investigate the propagation characteristics of electrostatic waves in a magnetized pair-ion plasma with immobile charged dusts. It is shown that obliquely propagating (OP) low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength “slow” and “fast” modes can propagate, respectively, as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are studied with the effects of obliqueness of propagation (θ), the static magnetic field, the ratios of the negative to positive ion masses (m), and temperatures (T) as well as the dust to negative-ion number density ratio (δ). Using the standard reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of small-amplitude OP DIA waves. It is found that the KdV equation admits only rarefactive solitons in plasmas with m well below its critical value m{sub c} (≫ 1) which typically depends on T and δ. It is shown that the nonlinear coefficient of the KdV equation vanishes at m = m{sub c}, i.e., for plasmas with much heavier negative ions, and the evolution of the DIA waves is then described by a modified KdV (mKdV) equation. The latter is shown to have only compressive soliton solution. The properties of both the KdV and mKdV solitons are studied with the system parameters as above, and possible applications of our results to laboratory and space plasmas are briefly discussed.

  13. Shear-flow-driven ion cyclotron and ion sound-drift instabilities of cylindrical inhomogeneous plasma

    SciTech Connect

    Mikhailenko, V. S.; Chibisov, D. V.

    2007-08-15

    The effects of the shear flow along the magnetic field on the development of the ion cyclotron, ion sound, and drift instabilities in the radially inhomogeneous cylindrical plasma are studied on the ground of a kinetic approach. It is shown that flow shear not only modifies the frequencies and growth rates of known current driven electrostatic ion cyclotron, ion sound, and drift instabilities, but is the source of the development of specific shear-flow-driven ion cyclotron, ion sound, and drift instabilities. These instabilities are excited at the levels of current along the ambient magnetic field which is below the critical value for the development of the modified by flow shear current driven ion cyclotron, ion sound, and drift instabilities.

  14. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    SciTech Connect

    Guo, Shimin Mei, Liquan

    2014-11-15

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numerically investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.

  15. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin; Im, Mi-Young; Caretta, Lucas; Richter, Kornel; Mann, Maxwell; Krone, Andrea; Reeve, Robert M.; Weigand, Markus; Agrawal, Parnika; Lemesh, Ivan; Mawass, Mohamad-Assaad; Fischer, Peter; Kläui, Mathias; Beach, Geoffrey S. D.

    2016-05-01

    Magnetic skyrmions are topologically protected spin textures that exhibit fascinating physical behaviours and large potential in highly energy-efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and fast current-driven motion of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack at speeds exceeding 100 m s-1 as required for applications. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures.

  16. Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes

    NASA Astrophysics Data System (ADS)

    Bernard, Y.; Gonon, P.; Jousseaume, V.

    2010-05-01

    Resistance switching in Cu/SiO2-based conductive-bridging random access memories is studied under voltage and current-driven modes. These two modes are used to study memory cycling and time-dependent switching. Voltage-current (V-I) cycles (logarithmic current ramp) are compared to I-V cycles (linear voltage ramp). The Off-On transition in V-I cycles is governed by device capacitance. The Off-On switching time (in the 10-1-103 s range) was studied under constant voltage and constant current stresses. The switching time varies as exp(V0/V) and as 1/I. Switching kinetics is discussed considering a Fowler-Nordheim tunneling injection law and a field-induced nucleation theory.

  17. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets.

    PubMed

    Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin; Im, Mi-Young; Caretta, Lucas; Richter, Kornel; Mann, Maxwell; Krone, Andrea; Reeve, Robert M; Weigand, Markus; Agrawal, Parnika; Lemesh, Ivan; Mawass, Mohamad-Assaad; Fischer, Peter; Kläui, Mathias; Beach, Geoffrey S D

    2016-05-01

    Magnetic skyrmions are topologically protected spin textures that exhibit fascinating physical behaviours and large potential in highly energy-efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and fast current-driven motion of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack at speeds exceeding 100 m s(-1) as required for applications. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures. PMID:26928640

  18. Magnetic dipole discharges. III. Instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  19. Shoulder Instability

    MedlinePlus

    ... Risk Factors Is shoulder instability the same as shoulder dislocation? No. The signs of dislocation and instability might ... the same to you--weakness and pain. However, dislocation occurs when your shoulder goes completely out of place. The shoulder ligaments ...

  20. Effects of ion-temperature on propagation of the large-amplitude ion-acoustic solitons in degenerate electron-positron-ion plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2010-08-15

    Large-amplitude ion-acoustic solitary wave (IASW) propagation and matching criteria of existence of such waves are investigated in a degenerate dense electron-positron-ion plasma considering the ion-temperature as well as electron/positron degeneracy effects. It is shown that the ion-temperature effects play an important role in the existence criteria and allowed Mach-number range in such plasmas. Furthermore, a fundamental difference is remarked in the existence of supersonic IASW propagations between degenerate plasmas with nonrelativistic and ultrarelativistic electrons and positrons. Current study may be helpful in astrophysical as well as the laboratory inertial confinement fusion-research.

  1. The effect of trapped electrons on the three-dimensional ion-acoustic shock wave in magnetized ionic-pair plasma

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Ya-Ling; Guo, Huaqi; Zhao, Yanjun

    2016-04-01

    The effect of trapped electrons featuring vortex-like distribution on the nonlinear behavior of a three-dimensional ion-acoustic shock wave is investigated in a magnetized ionic-pair plasma. In the long-wave approximation, the dynamics of the shock wave is governed by the (3{+}1) -dimensional Schamel-Zakharov-Kuznetsov-Burgers' equation due to the presence of trapped electrons and ion kinematic viscosity. By using the homogeneous balance principle and tanh function method, we obtain a novel exact shock wave solution of the equation. It is found for the first time that the trapped electrons can support a shock wave with only positive polarity.

  2. Propagation of arbitrary amplitude dust-ion acoustic waves in the collisional magnetized dusty plasma in the presence of non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Sayyar, M.; Zahed, H.; Pestehe, S. J.; Sobhanian, S.

    2016-07-01

    Using the Sagdeev pseudo-potential method, the oblique propagation of dust-ion acoustic solitary waves is studied in a magnetized dusty plasma. By considering non-thermal distribution of electrons, the related pseudo-potential is obtained using the Poisson equation. The behavior of the wave is investigated for some ranges of parameters. It is demonstrated that the increase in ion density, lz, β, and also δ1 can lead to the increases in the width and amplitude of the pseudo-potential, while any increase of a2, the coefficient that describes the first nonlinear term in the G ( ϕ ) , increases the amplitude of the V ( ϕ ) .

  3. Two dimensional ion acoustic shocks in electron-positron-ion plasmas with warm ions, and q-nonextensive distributed electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Ur-Rehman, Hafeez; Mahmood, S.

    2014-06-01

    Two dimensional ion acoustic shocks in electron-positron-ion (e-p-i) plasma with warm ions, and nonthermal electrons and positrons following the q-nonextensive velocity distribution are studied in the presence of weak transverse perturbations. The kinematic viscosity of warm ions is included for the dissipation in the plasma system. Kadomtsev-Petviashvili-Burgers (KPB) equation is derived by using reductive perturbation method in small amplitude limit and its analytical solution is also presented. The effects of variations of positrons concentration, q-indices of electrons and positrons, ion temperature and kinematic viscosity of ions, on the propagation characteristic of two dimensional shock profile are also discussed.

  4. Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron

    SciTech Connect

    Kumar Samanta, Utpal; Saha, Asit; Chatterjee, Prasanta

    2013-05-15

    Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas.

  5. A New Approach to Energy Integral for Investigation of Dust—Ion Acoustic (DIA) Waves in Multi-Component Plasmas with Quantum Effects in Inertia Less Electrons

    NASA Astrophysics Data System (ADS)

    Kalita, B. C.; Kalita, R.

    2015-06-01

    Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zd and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.

  6. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-03-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK-dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  7. The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic traveling waves in magnetized dusty plasma

    SciTech Connect

    Narayan Ghosh, Uday; Kumar Mandal, Pankaj Chatterjee, Prasanta

    2014-03-15

    Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior of the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.

  8. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  9. The CD Kink Instability in Magnetically Dominated Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.; Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.

    2010-03-01

    The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with footpoints threading the black hole ergosphere and the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.

  10. The CD Kink Instability in Magnetically Dominated Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Lyubarsky, Yuri; Hardee, Phil

    The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with foot-points threading the black hole ergosphere and/or the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends mod-erately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.

  11. Hip instability.

    PubMed

    Smith, Matthew V; Sekiya, Jon K

    2010-06-01

    Hip instability is becoming a more commonly recognized source of pain and disability in patients. Traumatic causes of hip instability are often clear. Appropriate treatment includes immediate reduction, early surgery for acetabular rim fractures greater than 25% or incarcerated fragments in the joint, and close follow-up to monitor for avascular necrosis. Late surgical intervention may be necessary for residual symptomatic hip instability. Atraumatic causes of hip instability include repetitive external rotation with axial loading, generalized ligamentous laxity, and collagen disorders like Ehlers-Danlos. Symptoms caused by atraumatic hip instability often have an insidious onset. Patients may have a wide array of hip symptoms while demonstrating only subtle findings suggestive of capsular laxity. Traction views of the affected hip can be helpful in diagnosing hip instability. Open and arthroscopic techniques can be used to treat capsular laxity. We describe an arthroscopic anterior hip capsular plication using a suture technique. PMID:20473129

  12. Collective instabilities

    SciTech Connect

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  13. Time-fractional Schamel-KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Yibao

    2016-03-01

    Nonlinear propagation of dust-ion-acoustic (DIA) waves is investigated in a one-dimensional, unmagnetized plasma containing positive ions, negative ions, trapped electrons featuring vortex-like distribution, and immobile dust grains having both positive and negative charges. Via reductive perturbation method, Agrawal's method, and Euler-Lagrange equation, the time-fractional Schamel-KdV equation under the sense of Riesz fractional derivative is derived to describe nonlinear behavior of DIA waves. The approximate solution of the time-fractional Schamel-KdV equation is constructed in terms of Jacobi elliptic functions by variational iteration method. The effect of the plasma parameters on the DIA solitary waves is also discussed in detail.

  14. Small amplitude dust ion-acoustic solitary waves and double layers in a dusty plasma with flat-topped electron distribution

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2010-12-15

    The properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves (SWs) as well double layers (DLs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust are studied. The effects of ion-temperature, resonant electrons, and dust number density are found to significantly modify the criteria for the existence of the DIA SWs and DLs, as well as significantly modify their basic features. It is also shown that the ion-temperature reduces the possibility for the formation of these localized structures, and that their amplitude decreases (increases) with the increase in the negative (positive) dust number density.

  15. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    SciTech Connect

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-10-15

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v{sub 0}, and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously.

  16. Alternative dust-ion acoustic waves in a magnetized charge varying dusty plasma with nonthermal electrons having a vortex-like velocity distribution

    NASA Astrophysics Data System (ADS)

    Hadjaz, Idir; Tribeche, Mouloud

    2014-06-01

    Alternative localized dust-ion acoustic waves are investigated in a magnetized charge varying dusty plasma with nonthermal electrons having a vortex-like velocity distribution. The correct non-Maxwellian charging currents are obtained based on the well-known orbit limited motion theory. Following the standard reductive perturbation technique, a Schamel-Zakharov Kuznetsov Burgers (S-ZKB) equation is derived. It is shown that due to an interplay between trapping and nonthermality, our dusty plasma model may support solitary as well as shock waves the main quantities (phase velocity, amplitude and width) of which are drastically influenced by trapping, nonthermality and charge variation. Due to the flexibility provided by the outlined distribution function (two concepts of non isothermality), we stress that our model should provide a good fit of the space observations.

  17. Higher-order contributions to ion-acoustic solitary waves in a multicomponent plasma consisting of warm ions and two-component nonisothermal electrons

    SciTech Connect

    Das, K.P.; Majumdar, S.R.; Paul, S.N. ||

    1995-05-01

    An integrated form of the governing equations in terms of pseudopotential higher-order nonlinear and dispersive effects is obtained by applying the reductive perturbation method for ion-acoustic solitary waves in a collisionless unmagnetized multicomponent plasma having warm ions and two-component nonisothermal electrons. The present method is advantageous because instead of solving an inhomogeneous second-order differential equation at each order, as in the standard procedure, we solve a first-order inhomogeneous equation at each order except at the lowest. The expressions of both Mach number and width of the solitary wave are obtained as a function of the amplitude of the wave for third-order nonlinear and dispersive effects. The variations of potential, width, and Mach number against soliton amplitude are shown graphically, taking into consideration the nonisothermality of two-component electrons in the plasma.

  18. Comment on "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)

    NASA Astrophysics Data System (ADS)

    Olivier, C. P.; Maharaj, S. K.; Bharuthram, R.

    2016-06-01

    In a series of papers by Maharaj et al., including "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)], incorrect expressions for the Sagdeev potential are presented. In this paper, we provide the correct expression of the Sagdeev potential. The correct expression was used to generate the numerical results for the above-mentioned series of papers, so that all results and conclusions are correct, despite the wrong Sagdeev potential expressions printed in the papers. The correct expression of the Sagdeev potential presented here is a very useful generic expression in the sense that a single expression can be used to study nonlinear structures associated with any acoustic mode, despite the fact that the supersonic and subsonic species would vary if solitons associated with different linear modes are studied.

  19. A Korteweg-de Vries Burgers-like equation for weakly nonlinear dust ion-acoustic waves in a charge-varying dusty plasma with nonthermal electrons

    SciTech Connect

    Berbri, Abderrezak; Tribeche, Mouloud

    2009-05-15

    A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries Burgers-like equation for small but finite amplitude dust ion-acoustic (DIA) waves in a charge varying dusty plasma with non thermally distributed electrons. The correct expression for the nonthermal electron charging current is used. Interestingly, it may be noted that due to electron nonthermality and finite equilibrium ion streaming velocity, the present dusty plasma model can admit compressive as well as rarefactive DIA solitary waves. Furthermore, there may exist DIA shocks which have either monotonic or oscillatory behavior and the properties of which depend sensitively on the number of fast nonthermal electrons. Our results should be useful to understand the properties of localized DIA waves that may occur in space dusty plasmas.

  20. Modified Ion-Acoustic Shock Waves and Double Layers in a Degenerate Electron-Positron-Ion Plasma in Presence of Heavy Negative Ions

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Hossen, M. R.; Mamun, A. A.

    2014-12-01

    A general theory for nonlinear propagation of one dimensional modified ion-acoustic waves in an unmagnetized electron-positron-ion (e-p-i) degenerate plasma is investigated. This plasma system is assumed to contain relativistic electron and positron fluids, non-degenerate viscous positive ions, and negatively charged static heavy ions. The modified Burgers and Gardner equations have been derived by employing the reductive perturbation method and analyzed in order to identify the basic features (polarity, width, speed, etc.) of shock and double layer (DL) structures. It is observed that the basic features of these shock and DL structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers equations. The implications of these results in space and interstellar compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are also briefly mentioned.

  1. Nonlinear Zakharov-Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma

    SciTech Connect

    Mushtaq, A.; Shah, H.A.

    2005-07-15

    The purpose of this work is to investigate the linear and nonlinear properties of the ion-acoustic waves (IAW), propagating obliquely to an external magnetic field in a weakly relativistic, rotating, and magnetized electron-positron-ion plasma. The Zakharov-Kuznetsov equation is derived by employing the reductive perturbation technique for this wave in the nonlinear regime. This equation admits the solitary wave solution. The amplitude and width of this solitary wave have been discussed with the effects of obliqueness, relativity, ion temperature, positron concentration, magnetic field, and rotation of the plasma and it is observed that for IAW these parameters affect the propagation properties of solitary waves and these plasmas behave differently from the simple electron-ion plasmas. Likewise, the current density and electric field of these waves are investigated for their dependence on the above-mentioned parameters.

  2. Ion dynamics during the parametric instabilities of a left-hand polarized Alfvén wave in a proton-electron-alpha plasma

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Hao, Yufei; Tao, Xin; Wang, Shui; Li, Xing

    2014-01-01

    The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of the backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.

  3. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    NASA Astrophysics Data System (ADS)

    Saarelma, S.; Günter, S.; Kurki-Suonio, T.; Zehrfeld, H.-P.

    2000-05-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments.

  4. Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif

    2010-03-01

    The nonlinear propagation of ion acoustic waves in electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries-Burger equation has been derived by reductive perturbation technique, and its shock like solution is determined analytically through tangent hyperbolic method. The effect of various plasma parameters on strength and structure of shock wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that strength and steepness of the shock wave enervate with an increase in the ion temperature, relativistic streaming factor, positron concentrations, electron temperature and they accrue with an increase in coefficient of kinematic viscosity. The convective, dispersive, and dissipative properties of the plasma are also discussed. It is determined that the electron temperature has remarkable influence on the propagation and structure of nonlinear wave in such relativistic plasmas. The numerical analysis has been done based on the typical numerical data from a pulsar magnetosphere.

  5. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large. PMID:27627405

  6. Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions

    SciTech Connect

    Saeed, R.; Shah, Asif

    2010-03-15

    The nonlinear propagation of ion acoustic waves in electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries-Burger equation has been derived by reductive perturbation technique, and its shock like solution is determined analytically through tangent hyperbolic method. The effect of various plasma parameters on strength and structure of shock wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that strength and steepness of the shock wave enervate with an increase in the ion temperature, relativistic streaming factor, positron concentrations, electron temperature and they accrue with an increase in coefficient of kinematic viscosity. The convective, dispersive, and dissipative properties of the plasma are also discussed. It is determined that the electron temperature has remarkable influence on the propagation and structure of nonlinear wave in such relativistic plasmas. The numerical analysis has been done based on the typical numerical data from a pulsar magnetosphere.

  7. Modeling of modified ion-acoustic shock waves in a relativistic electron degenerate multi-ion plasma for higher order nonlinearity

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Hossen, M. A.; Sultana, S.; Mamun, A. A.

    2015-05-01

    A nonlinear propagation of modified ion-acoustic (mIA) shock waves in a relativistic degenerate plasma (containing inertial viscous positive and negative ion fluids, relativistic electron fluids, and negatively charged immobile heavy ions) has been investigated theoretically. The modified Burgers (mB) and further modified Burgers (FmB) equations have been derived by adopting reductive perturbation technique. The solutions of both mB and FmB equations have been numerically analyzed to characterize the basic features of mIA shock waves. The basic properties (speed, amplitude, width, etc.) of these electrostatic shock waves are found to be significantly modified by the effects of negatively charged static heavy ions and the plasma particle number densities. It is found that the properties of these shock waves obtained from this analysis are significantly different from those obtained from the analysis of standard Burgers equation. The implications of our results in space and interstellar compact objects like non-rotating white dwarfs, neutron stars, etc. are briefly discussed.

  8. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect

    Saberian, E.; Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M.

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  9. Dust ion acoustic travelling waves in the framework of a modified Kadomtsev-Petviashvili equation in a magnetized dusty plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta

    2014-02-01

    For the critical values of the parameters q and V, the work (Samanta et al. in Phys. Plasma 20:022111, 2013b) is unable to describe the nonlinear wave features in magnetized dusty plasma with superthermal electrons. To describe the nonlinear wave features for critical values of the parameters q and V, we extend the work (Samanta et al. in Phys. Plasma 20:022111, 2013b). To extend the work, we derive the modified Kadomtsev-Petviashvili (MKP) equation for dust ion acoustic waves in a magnetized dusty plasma with q-nonextensive velocity distributed electrons by considering higher order coefficients of ɛ. By applying the bifurcation theory of planar dynamical systems to this MKP equation, the existence of solitary wave solutions of both types rarefactive and compressive, periodic travelling wave solutions and kink and anti-kink wave solutions is proved. Three exact solutions of these above waves are determined. The present study could be helpful for understanding the nonlinear travelling waves propagating in mercury, solar wind, Saturn and in magnetosphere of the Earth.

  10. The Role of Macroscopic and Microscopic Jet Instabilities

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.

    2013-12-01

    Relativistic jets, be they Poynting flux or kinetic flux dominated, are current driven (CD) and/or Kelvin-Helmholtz (KH) velocity shear driven unstable. These macroscopic MHD instabilities may be responsible for some of the observed larger scale twisted jet structures and typically do not disrupt jets on less than kiloparsec scales. Here I review our understanding of the jet properties that will lead to the observed relative stability of astrophysical jets. In addition, I review the progress made on the microscopic scale plasma instabilities in shocks and velocity shears that may lead to magnetic field generation and that does lead to the particle acceleration required to produce the observed emission from radio wavelengths to TeV energies. Finally, I discuss these instabilities in the context of the jet in M87.

  11. Hybrid rocket instability

    NASA Technical Reports Server (NTRS)

    Greiner, B.; Frederick, R. A., Jr.

    1993-01-01

    The paper provides a brief review of theoretical and experimental studies concerned with hybrid rocket instability. The instabilities discussed include atomization and mixing instabilities, chuffing instabilities, pressure coupled combustion instabilities, and vortex shedding. It is emphasized that the future use of hybrid motor systems as viable design alternatives will depend on a better understanding of hybrid instability.

  12. Hybrid rocket instability

    NASA Astrophysics Data System (ADS)

    Greiner, B.; Frederick, R. A., Jr.

    1993-06-01

    The paper provides a brief review of theoretical and experimental studies concerned with hybrid rocket instability. The instabilities discussed include atomization and mixing instabilities, chuffing instabilities, pressure coupled combustion instabilities, and vortex shedding. It is emphasized that the future use of hybrid motor systems as viable design alternatives will depend on a better understanding of hybrid instability.

  13. Current driven vortex-antivortex pair breaking and vortex explosion in the Bi2Te3/FeTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Dean, C. L.; Kunchur, M. N.; He, Q. L.; Liu, H.; Wang, J.; Lortz, R.; Sou, I. K.

    2016-08-01

    We investigated the dissipative regime of the Bi2Te3/FeTe topological insulator-chalcogenide interface superconductor at temperatures well below the Berezinski-Kosterlitz-Thouless transition. We observe a transition in the current-resistance and temperature-resistance curves that quantitatively agrees with the Likharev vortex-explosion phenomenon. In the limit of low temperatures and high current densities, we were able to demonstrate the regime of complete vortex-antivortex dissociation arising from current driven vortex-antivortex pair breaking.

  14. Magnetohydrodynamic instability

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.

    1986-01-01

    There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.

  15. Magnetohydrodynamic thermal instabilities in cool inhomogeneous atmospheres

    NASA Technical Reports Server (NTRS)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.; Vaiana, G. S.

    1985-01-01

    The stability of magnetic loops to current-driven filamentation instabilities is investigated. The unperturbed atmosphere is assumed to be composed of an (upper) isothermal optically thin low-density portion and a (lower) higher-density portion which is in radiative equilibrium; in both cases, the atmosphere is in hydrostatic equilibrium, so that gravitational stratification is taken into account. In order to provide specific equilibrium conditions for evaluation of the dispersion relation, conditions appropriate for the surface of a solar-type star are adopted; i.e., a fairly low temperature (T = 5000 K) appropriate for a 'precoronal' state associated, for example, with magnetic flux emerging from photospheric levels under the action of magnetic buoyancy. A linear stability analysis is performed, and numerical results show that physically plausible current densities, which would be generated by typical loop-footpoint motions, are effective in driving MHD instabilities in such a plasma. The instability growth rates are strongly dependent on the assumed current density distribution and on the density scale height.

  16. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    SciTech Connect

    Huang, J.; Chen, S. Y. Tang, C. J.

    2014-01-15

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.

  17. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  18. Nonlinear instability and chaos in plasma wave-wave interactions, I., Introduction

    SciTech Connect

    Kueny, C.S.; Morrison, P.J.

    1994-11-01

    Conventional linear stability analyses may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, leading to explosive growth. In the dissipationless case, it is conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach resonance by diffusion in phase space. In this and a companion paper [submitted to Physics of Plasmas], this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. The system is described in the fluid approximation by a Hamiltonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or explosive instability via three-wave interactions. These instabilities are described for various (integrable) systems of waves interacting via single nonlinear terms. This discussion provides the foundation for the treatment of nonintegrable systems in the companion paper.

  19. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    SciTech Connect

    Dubois, D.F.; Rose, H.A.; Russell, D.

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.

  20. Current-driven atomic waterwheels

    NASA Astrophysics Data System (ADS)

    Dundas, Daniel; McEniry, Eunan J.; Todorov, Tchavdar N.

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force-it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel.

  1. Current-driven atomic waterwheels.

    PubMed

    Dundas, Daniel; McEniry, Eunan J; Todorov, Tchavdar N

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force--it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel. PMID:19197311

  2. Modeling the Parker instability in a rotating plasma screw pinch

    NASA Astrophysics Data System (ADS)

    Khalzov, I. V.; Brown, B. P.; Katz, N.; Forest, C. B.

    2012-02-01

    We analytically and numerically study the analogue of the Parker (magnetic buoyancy) instability in a uniformly rotating plasma screw pinch confined in a cylinder. Uniform plasma rotation is imposed to create a centrifugal acceleration, which mimics the gravity required for the classical Parker instability. The goal of this study is to determine how the Parker instability could be unambiguously identified in a weakly magnetized, rapidly rotating screw pinch, in which the rotation provides an effective gravity and a radially varying azimuthal field is controlled to give conditions for which the plasma is magnetically buoyant to inward motion. We show that an axial magnetic field is also required to circumvent conventional current driven magnetohydrodynamic (MHD) instabilities such as the sausage and kink modes that would obscure the Parker instability. These conditions can be realized in the Madison plasma Couette experiment (MPCX). Simulations are performed using the extended MHD code NIMROD for an isothermal compressible plasma model. Both linear and nonlinear regimes of the instability are studied, and the results obtained for the linear regime are compared with analytical results from a slab geometry. Based on this comparison, it is found that in a cylindrical pinch, the magnetic buoyancy mechanism dominates at relatively large Mach numbers (M > 5), while at low Mach numbers (M < 1), the instability is due to the curvature of magnetic field lines. At intermediate values of Mach number (1 < M < 5), the Coriolis force has a strong stabilizing effect on the plasma. A possible scenario for experimental demonstration of the Parker instability in MPCX is discussed.

  3. Three-dimensional magnetic reconnection under coupling of tearing and lower-hybrid-drift instabilities

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro

    2016-07-01

    Understanding of the particle acceleration and plasma heating in a current sheet is an important problem in space and astrophysical plasmas. So far the inertia resistivity associated with tearing instability and the current driven instability such as the lower hybrid drift instability (LHDI) have been discussed as possible candidates for the origin of microscopic process of magnetic energy dissipation. It is known that the inertia resistivity effectively works at the neutral sheet, while the LHDI is mainly excited in the plasma sheet boundary. Then it is commonly understood that the role of the LHDI to the magnetic field dissipation is less important than that of the inertia resistivity. However, the heated electrons together with the activity of lower hybrid drift waves are often observed in the plasma sheet boundary by modern satellite observations, and their impact on the magnetic field dissipation at the neutral sheet might not be necessarily neglected. In addition, the nonlinear coupling between them is not theoretically understood yet. In this talk, we study the coupling of the collisionless reconnection and the LHDI by using a three-dimensional PIC simulation, and discuss that the current driven instabilities dynamically play an important role on magnetic reconnection.

  4. Dynamic coupling-decoupling crossover in the current-driven vortex-state in Tl[sub 2]Ba[sub 2]CaCu[sub 2]O[sub 8]studied using terahertz time-domain spectroscopy

    SciTech Connect

    Thorsmølle, V. K.; Averitt, R. D.; Aranson, I. S.; Maley, M. P.; Bulaevskiĭ, L. N.; Taylor, Antoinette J.,

    2004-01-01

    Employing terahertz time-domain spectroscopy in transmission, they have measured the Josephson plasma resonance in Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} high-T{sub c} thin films, and studied the current-driven coupling-decoupling crossover in the driven vortex lattice.

  5. TRANSVERSE INSTABILITIES IN RHIC.

    SciTech Connect

    Blaskiewicz, M; Cameron, P; Catalan-Lasheras, N; Dawson, C; Degen, C; Drees, K; Fischer, W; Koropsak, E; Michnoff, R; Montag, C; Roser, T

    2003-05-12

    The beam quality in RHIC can be significantly impacted by a transverse instability which can occur just after transition [1]. Data characterizing the instability are presented and analyzed. Techniques for ameliorating the situation are considered.

  6. Turbine instabilities: Case histories

    NASA Technical Reports Server (NTRS)

    Laws, C. W.

    1985-01-01

    Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.

  7. Instability of a current-carrying finite-beta collisional plasma.

    PubMed

    Choueiri, E Y

    2001-12-01

    The microinstability of a cross-field current-carrying plasma in which the electron collisions are important on the time scale of the oscillations and can be modeled with a Bhatnagar-Gross-Krook operator is studied using linearized kinetic theory under conditions of finite electron beta. The finiteness of beta allows for coupling between electrostatic and electromagnetic modes and necessitates dealing with the entire dispersion tensor. Fundamental features of the resulting instability are identified and contrasted with those found in previous studies of the lower hybrid current-driven instability in which either collisions or finite-beta effects were neglected. As beta increases, collisions play a more important role in destabilization, alter the character and extent of electromagnetic coupling, shift the instability to more perpendicular modes, and lead to a recapturing of some of the fluidlike properties the modes have in the electrostatic limit in contrast with their highly kinetic character in the collisionless limit. PMID:11736288

  8. Laser Burnt-through Cone for the Control of Plasma Instabilities in Fast Ignition Thermonuclear Fusion Pellets

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-11-01

    I propose a laser burnt-through cone for the suppression, (elimination), of plasma instabilities in fast ignition pellets.ootnotetextM. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M.D. Perry, Phys. Plasmas 1 (5), 1626 (1994).^,ootnotetextV. Alexander Stefan, Bulletin APS-DPP, 2006;2007. Laser-REB, relativistic electron beam, hybridootnotetextV. Alexander Stefan, Nonlinear Electromagnetic Radiation Plasma Interactions, (S-U-Press, 2008). may prove to be, (if the burnt-through laser intensity is 20% of the total intensity), an effective tool for the control of variety of plasma instabilities, in particular for instabilities leading to the generation of colossal B-fields: Weibel instabilities and filamentation of the REB. In the latter case, (B-fields due to ∇n x ∇T mechanism), laser radiation, (φo, ko), ``breaks'' the unstable waves, k ˜ k0 (φpe/φo), through the Kolmogorovootnotetext A. N. Kolmogorov, Doklady Academii. Nauk SSSR, 30, 301, (1941). cascades into shorter wavelengths, transferring the energy into a nonlinear Landau damping domain. The stabilization take place on the time scale ˜REB propagation length/ion acoustic velocity.

  9. Linear Beam-Plasma Instabilities in the Presence of Finite Amplitude Backward Propagating Waves

    NASA Astrophysics Data System (ADS)

    Hoyos, J. H.; Gomberoff, L.

    2004-12-01

    In previous works finite amplitude circularly polarized waves propagating forward relative to the background magnetic field were shown to affect the behavior of linear proton beam-plasma instabilities [1-4]. We now study the behavior of these instabilities in the presence of finite amplitude circularly polarized backward propagating waves. We find that the presence of both right-hand and left-hand polarized backward propagating waves stabilize linear beam-plasma right-hand instabilities when their amplitude is above a treshold value. It has been shown than forward propagating waves can stabilize right-hand instabilities [1-3]. Here we show that the threshold wave amplitude required to stabilize the right-hand instabilty is larger for forward propagating waves than the amplitude threshold for backward propagating waves. Thus, backward propagating waves can be in some physical conditions a more efficient mechanism to stabilize linear right-hand instabilities. Also we find that the presence backward propagating waves can produce electrostatic instabilities by making the phase velocities of the linear ion acoustic waves become equal above a treshold amplitude value. These results can be relevant in various space plasma enviroments. špace{12pt} indent=0pt References [1] L. Gomberoff, Stabilization of linear ion beam right-hand polarized instabilities by nonlinear Alfvén/ion-cyclotron waves, J.Geophys.Res., 108 (A6), 1261, doi: 10.1029/2003JA009387, 2003. [2] L. Gomberoff, J. Hoyos, and A. L. Brinca, Effect of a large amplitude circularly polarized wave on linear beam-plasma electromagnetic instabilities, J. Geophys. Res., 108 (A12), 1472, doi: 10.1029/2003JA010144, 2003. [3] J. Araneda and L. Gomberoff, Stabilization of right-hand beam plasma instabilities due to a large amplitude left-hand polarized wave: A simulation study, J. Geophys. Res., 109, A01106, doi: 10.1029/2003JA010189, 2003. [4] L. Gomberoff, J. Hoyos, A. L. Brinca and R. Ferrer, Electrostatic

  10. Laser-Plasma Instabilities by Avoiding the Strong Ion Landau Damping Limit: The Central Role of Statistical, Ultrafast, Nonlinear Optical Laser Techniques (SUNOL)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Hüller, Stefan; Montgomery, David; Moody, John; Froula, Dustin; Hammer, James; Jones, Oggie; Amendt, Peter

    2014-10-01

    In mid-Z and high-Z plasmas, it is possible to control crossed bean energy transfer (CBET) and subsequently occurring single or multiple beam instabilities such as Stimulated Raman Scattering (SRS) by novel means. These new techniques are inoperative when the ion acoustic waves are in their strong damping limit, such as occurs in low Z plasmas with comparable electron and ion temperatures. For mid-Z plasmas, such as Z = 10, and near the Mach 1 surface, the strong coupling regime (SCR) can be exploited for LPI mitigation. While at higher Z values, it is thermal filamentation in conjunction with nonlocal heat transport that are useful to exploit. In both these settings, the strategy is to induce laser hot spot intensity dependent, and thus spatially dependent, frequency shifts to the ion acoustic waves in the transient response of wave-wave interactions. The latter is achieved by the on-off nature of spike trains of uneven duration and delay, STUD pulses. The least taxing use of STUD pulses is to modulate the beams at the 10 ps time scale and to choose which crossing beams are overlapping in time and which are not. Work supported by a grant from the DOE NNSA-OFES joint program on HEDP

  11. Excitation of an electrostatic wave by a cold electron current sheet of finite thickness

    NASA Technical Reports Server (NTRS)

    Hwang, K. S.; Fontheim, E. G.; Ong, R. S. B.

    1983-01-01

    Calculations for the threshold of current-driven instabilities and the growth rates of ion acoustic and electrostatic ion cyclotron instabilities in a magnetized plasma driven a current sheet with a finite width are presented. Maxwellian equations are employed to model the velocity distributions of electrons and ions in a direction perpendicular to the sheet. A dispersion relation is defined for the regions of instability, and boundary conditions are characterized in order to obtain a set of eigenvalue equations. Thresholds are delineated for various regions, including ducted mode solutions where only ion-acoustic waves are excited in areas where the frequency range significantly exceeds the ion cyclotron frequency. When a constant electron drift velocity is present, a thick current sheet is more unstable than a thin one. Fewer modes become unstable with a thinner sheet.

  12. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  13. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  14. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  15. Nonlocal magnetorotational instability

    SciTech Connect

    Mikhailovskii, A. B.; Erokhin, N. N.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Kharshiladze, O. A.; Amador, C. H. S.

    2008-05-15

    An analytical theory of the nonlocal magnetorotational instability (MRI) is developed for the simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike character, so that there are two regions in which it has constant different values, separated by a narrow transition layer. The surface wave approach is employed to investigate the MRI in this configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in nonmagnetized plasma is predicted.

  16. Turbulent resistivity, diffusion and heating

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.

    1971-01-01

    Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.

  17. High and low frequency instabilities driven by a single electron beam in two-electron temperature space plasmas

    SciTech Connect

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.

    2013-12-15

    In an attempt to understand the excitation mechanisms of broadband electrostatic noise, beam-generated electrostatic instabilities are investigated using kinetic theory in a four-component magnetised plasma model composed of beam electrons (magnetic field-aligned), background hot and cool electrons and ions. All species are fully magnetised and considered to be Maxwellian. The dependence of the instability growth rates and real frequencies on various plasma parameters such as beam speed, particle densities and temperatures, magnetic field strength, wave propagation angle, and temperature anisotropy of the beam are examined. In this study we have found that the electron-acoustic, electron beam-resonant and ion-acoustic instabilities are excited. Our studies have focused on three velocity regimes, namely, the low (v{sub dbz}2 C{sub h}) regimes, where v{sub dbz} (C{sub h}) is the electron beam drift speed (thermal speed of the hot electrons). Plasma parameters from satellite measurements are used where applicable to provide realistic predictions.

  18. Magnetic field-related heating instabilities in the surface layers of the sun and stars

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Rosner, R.; Vaiana, G. S.

    1982-01-01

    The stability of a magnetized low-density plasma to current-driven filamentation instabilities is investigated and the results are applied to the surface layers of stars. Unlike previous studies, the initial (i.e., precoronal) state of the stellar surface atmosphere is taken to be a low-density, optically thin magnetized plasma in radiative equilibrium. The linear analysis shows that the surface layers of main-sequence stars (including the sun) which are threaded by magnetic fields are unstable; the instabilities considered lead to structuring perpendicular to the ambient magnetic fields. These results suggest that relatively modest surface motions, in conjunction with the presence of magnetic fields, suffice to account for the presence of inhomogeneous chromospheric and coronal plasma overlying a star's surface.

  19. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  20. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  1. Chiral plasma instabilities.

    PubMed

    Akamatsu, Yukinao; Yamamoto, Naoki

    2013-08-01

    We study the collective modes in relativistic electromagnetic or quark-gluon plasmas with an asymmetry between left- and right-handed chiral fermions, based on the recently formulated kinetic theory with Berry curvature corrections. We find that there exists an unstable mode, signaling the presence of a plasma instability. We argue the fate of this "chiral plasma instability" including the effect of collisions, and briefly discuss its relevance in heavy ion collisions and compact stars. PMID:23952387

  2. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  3. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  4. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    SciTech Connect

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.

    2009-05-15

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  5. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pincha)

    NASA Astrophysics Data System (ADS)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Brower, D. L.; Ding, W. X.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.

    2009-05-01

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  6. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  7. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  8. Hall thruster plasma fluctuations identified as the E×B electron drift instability: Modeling and fitting on experimental data

    SciTech Connect

    Cavalier, J.; Lemoine, N.; Bonhomme, G.; Tsikata, S.; Honoré, C.; Grésillon, D.

    2013-08-15

    Microturbulence has been implicated in anomalous transport at the exit of the Hall thruster, and recent simulations have shown the presence of an azimuthal wave which is believed to contribute to the electron axial mobility. In this paper, the 3D dispersion relation of this E×B electron drift instability is numerically solved. The mode is found to resemble an ion acoustic mode for low values of the magnetic field, as long as a non-vanishing component of the wave vector along the magnetic field is considered, and as long as the drift velocity is small compared to the electron thermal velocity. In these conditions, an analytical model of the dispersion relation for the instability is obtained and is shown to adequately describe the mode obtained numerically. This model is then fitted on the experimental dispersion relation obtained from the plasma of a Hall thruster by the collective light scattering diagnostic. The observed frequency-wave vector dependences are found to be similar to the dispersion relation of linear theory, and the fit provides a non-invasive measurement of the electron temperature and density.

  9. Investigation of Stimulated Raman Scattering Using Short-Pulse Diffraction Limited Laser Beam near the Instability Threshold

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Montgomery, D. S.; Yin, L.; Flippo, K. A.; Albright, B. J.; Johnson, R. P.; Shimada, T.; Rose, H. A.; Rousseaux, C.; Tassin, V.; Baton, S. D.; Amiranoff, F.; Hardin, R. A.

    2008-11-01

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman (SRS) and Stimulated Brillouin (SBS) Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and > 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using PIC codes to validate our understanding. Experiments have been conducted at the Trident laser and the LULI to investigate SRS near the threshold of the instability using 527 and 1064 nm laser light respectively with 1.5 -- 3 ps pulses. In the case of both experiments, the interaction beam was focused into a pre-ionized He gasjet plasma. Measurements of the reflectivity as a function of intensity and k?D were completed at the Trident laser. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Details of the experimental results will be presented.

  10. Buckling instability in arteries.

    PubMed

    Vandiver, Rebecca M

    2015-04-21

    Arteries can become tortuous in response to abnormal growth stimuli, genetic defects and aging. It is suggested that a buckling instability is a mechanism that might lead to artery tortuosity. Here, the buckling instability in arteries is studied by examining asymmetric modes of bifurcation of two-layer cylindrical structures that are residually stressed. These structures are loaded by an axial force, internal pressure and have nonlinear, anisotropic, hyperelastic responses to stresses. Strain-softening and reduced opening angle are shown to lower the critical internal pressure leading to buckling. In addition, the ratio of the media thickness to the adventitia thickness is shown to have a dramatic impact on arterial instability. PMID:25661070

  11. Electrokinetic instability in microchannels

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Demekhin, Evgeny A.; Ganchenko, Georgy

    2012-05-01

    The effect of geometric confinement on electroconvective instability due to nonequilibrium electro-osmotic slip at the interface of an electrolytic fluid and charge-selective solid is studied. It is shown that the topology of the marginal stability curves and the behavior of the critical parameters depend strongly on both channel geometry and dimensionless Debye length at low voltages for sufficiently deep channels, corresponding to the Rubinstein-Zaltzman instability mechanism, but that stability is governed almost entirely by channel depth for narrow channels at higher voltages. For shallow channels, it is shown that above a transition threshold, determined by both channel depth and Debye length, the low-voltage instability is completely suppressed.

  12. Experimental test of instability enhanced collisional friction for determining ion loss in two ion species plasmas

    SciTech Connect

    Hershkowitz, N.; Yip, C.-S.; Severn, G. D.

    2011-05-15

    Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities approximately reach a common velocity at the sheath edge equal to the bulk plasma ion sound velocity. A recent theory [S. D. Baalrud, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 103, 205002 (2009)] suggests that this is a consequence of collisional friction between the two ion species enhanced by the two stream instability. The theory finds that the difference in velocities at the sheath edge depends on the relative concentrations of the two ions. The difference in velocities is small, with both species approaching to the bulk sound velocity, when the concentrations are comparable, and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, drift velocities of Ar and Xe ions were measured with laser-induced fluorescence in Ar-Xe and He-Xe plasmas and combined with ion acoustic wave and plasma potential data. In addition, electron temperature was varied by a Maxwell demon [K. R. MacKenzie et al., App. Phys. Lett. 18, 529 (1971)]. The predictions were found to be in excellent agreement with the experimental data. The generalized Bohm criterion in two ion species plasmas is also verified in a wider variety of relative ion concentrations.

  13. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  14. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  15. Varus Posteromedial Instability.

    PubMed

    Ramirez, Miguel A; Stein, Jason A; Murthi, Anand M

    2015-11-01

    Varus posteromedial instability of the elbow is a result of traumatic injury to the medial facet of the coronoid and usually the lateral collateral ligament. Treatment of these fractures is usually surgical; poor outcomes have been described with nonoperative treatment. Surgical management consists of coronoid fracture fixation with plates, screws, or sutures and radial collateral ligament repair. Outcomes of these injuries are mixed, but most series report fair to good objective scores. The purpose of this article is to describe the pathophysiology of varus posteromedial instability, discuss the management of this injury, and report the outcomes of treatment. PMID:26498545

  16. INSTABILITIES IN THE SNS.

    SciTech Connect

    BLASKIEWICZ,M.

    1999-03-29

    The 2MW Spallation Neutron Source (SNS) will have a D.C. beam current of 40 A at extraction, making it one of the worlds most intense accelerators. Coherent instabilities are a major concern and efforts to predict beam behavior are described.

  17. Two-fluid instability

    SciTech Connect

    Stewart, H.B.

    1984-01-01

    The ability of interpenetrating flow models to represent multidimensional instabilities is probed by numerical experiments with an L-shaped two-fluid jet. Periodic and nonperiodic oscillations of various types are observed, and a partial phase portrait is constructed. The numerical experiments suggest new approaches to verifying transient interpenetrating flow models. 18 references.

  18. Global Linear Instability

    NASA Astrophysics Data System (ADS)

    Theofilis, Vassilios

    2011-01-01

    This article reviews linear instability analysis of flows over or through complex two-dimensional (2D) and 3D geometries. In the three decades since it first appeared in the literature, global instability analysis, based on the solution of the multidimensional eigenvalue and/or initial value problem, is continuously broadening both in scope and in depth. To date it has dealt successfully with a wide range of applications arising in aerospace engineering, physiological flows, food processing, and nuclear-reactor safety. In recent years, nonmodal analysis has complemented the more traditional modal approach and increased knowledge of flow instability physics. Recent highlights delivered by the application of either modal or nonmodal global analysis are briefly discussed. A conscious effort is made to demystify both the tools currently utilized and the jargon employed to describe them, demonstrating the simplicity of the analysis. Hopefully this will provide new impulses for the creation of next-generation algorithms capable of coping with the main open research areas in which step-change progress can be expected by the application of the theory: instability analysis of fully inhomogeneous, 3D flows and control thereof.

  19. Tracking Code for Microwave Instability

    SciTech Connect

    Heifets, S.; /SLAC

    2006-09-21

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability.

  20. The ionization instability and resonant acoustic modes suppression by charge space effects in a dusty plasma

    SciTech Connect

    Conde, L.

    2006-03-15

    The large wavenumber suppression of unstable modes by space charge effects of the ionization instability in a weakly ionized and unmagnetized dusty plasma is investigated. The charge losses in the initial equilibrium state are balanced by electron impact ionizations originated by both the thermal electron populations and an additional monoenergetic electron beam. The multifluid dimensionless equations are deduced by using the time and length scales for elastic collisions between ions and neutral atoms and the Poisson equation relates the plasma potential fluctuations with charged particle densities instead of the quasineutral approximation. A general dimensionless dispersion relation is obtained from the linearized transport equations, where the ratios between the characteristic velocities, as the dust ion acoustic (IA), dust acoustic (DA), ion sound, and thermal speeds permits us to evaluate the weight of the different terms. In the long wavelength limit the results obtained using the quasineutral approximation are recovered. The differences found between roots of both dispersion equations are discussed, as well as those of previous models. The unstable mode of the linear ionization instability is originated by the imbalance between ion and electron densities in the rest state caused by the negative charging of dust grains. Contrary to dust free plasmas, the unstable mode exists, even in the absence of the ionizing electron beam. The numerical calculations of the roots of the full dispersion equation present a maximum unstable wavenumber not predicted by the quasineutral approximation, which is related with the minimum allowed length for space charge fluctuations within a fluid model. This upper limit of unstable wave numbers hinders the predicted resonant coupling in the long wavenumber regime between the DA and DIA waves.

  1. Ion-cyclotron instability in current-carrying Lorentzian (kappa) and Maxwellian plasmas with anisotropic temperatures: A comparative study

    SciTech Connect

    Basu, B.; Grossbard, N. J.

    2011-09-15

    Current-driven electrostatic ion-cyclotron instability has so far been studied for Maxwellian plasma with isotropic and anisotropic temperatures. Since satellite-measured particle velocity distributions in space are often better modeled by the generalized Lorentzian (kappa) distributions and since temperature anisotropy is quite common in space plasmas, theoretical analysis of the current-driven, electrostatic ion-cyclotron instability is carried out in this paper for electron-proton plasma with anisotropic temperatures, where the particle parallel velocity distributions are modeled by kappa distributions and the perpendicular velocity distributions are modeled by Maxwellian distributions. Stability properties of the excited ion cyclotron modes and, in particular, their dependence on electron to ion temperature ratio and ion temperature anisotropy are presented in more detail. For comparison, the corresponding results for bi-Maxwellian plasma are also presented. Although the stability properties of the ion cyclotron modes in the two types of plasmas are qualitatively similar, significant quantitative differences can arise depending on the values of {kappa}{sub e} and {kappa}{sub i}. The comparative study is based on the numerical solutions of the respective linear dispersion relations. Quasilinear estimates of the resonant ion heating rates due to ion-cyclotron turbulence in the two types of plasma are also presented for comparison.

  2. Observations of ion-acoustic cylindrical solitons

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Romesser, T.

    1974-01-01

    Experimental observations of cylindrical solitons in a collisionless plasma are presented. The data obtained show that cylindrical solitonlike objects exist and that their properties are consistent with those of one- and three-dimensional solitons. It is found that compressive density perturbations evolve into solitons. The number of the solitons is determined by the width and amplitude of the applied pulse.

  3. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  4. Open field lines instabilities

    SciTech Connect

    Pozzoli, R. |

    1995-09-01

    The results of some recent theoretical papers dealing with flute-like instabilities in the scrape-off layer of a tokamak with limiter configuration, where the magnetic field intersects conducting walls, are briefly recalled. Attention is then paid to the instability driven by the electron temperature gradient across the field in conjunction with the formation of the Debye sheath at the boundary, and to the effects due to the inclination of the end walls with respect to the magnetic field. When a divertor configuration is considered, important modifications are found owing to the strong deformations of the flux tubes passing near the {ital x}-point, which contrast the onset of flute-like perturbations, and to the stochasticity of field lines that can be excited by magnetic field perturbations. {copyright} {ital 1995 American Institute of Physics.}

  5. Beam-beam instability

    SciTech Connect

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  6. Whistler modulational instability.

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1973-01-01

    Derivation of the modulational instability characteristics of whistlers in cold and hot plasmas. The cold-plasma analysis considers both ion motion and relativistic effects; the unstable band, with a growth rate proportional to (B/B sub zero)squared, is contiguous to Omega sub e/4 and, depending on the plasma density, lies above or below that frequency (Omega sub e is the electron cyclotron frequency of the static magnetic field; B and B sub zero are the whistler and static magnetic fields). In hot plasmas, stability occurs between Omega sub e/4 and Omega prime (less than Omega sub e), with Omega prime depending mainly on the mean energy and anisotropy of the energetic electron population; the complementary unstable band has a growth rate proportional to (B/B sub zero) to the 1/2 power. The relevance of the instability to whistlers in the magnetosphere is discussed.

  7. Robust dynamic mitigation of instabilities

    SciTech Connect

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.

  8. Combustion instability analysis

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1990-01-01

    A theory and computer program for combustion instability analysis are presented. The basic theoretical foundation resides in the concept of entropy-controlled energy growth or decay. Third order perturbation expansion is performed on the entropy-controlled acoustic energy equation to obtain the first order integrodifferential equation for the energy growth factor in terms of the linear, second, and third order energy growth parameters. These parameters are calculated from Navier-Stokes solutions with time averages performed on as many Navier-Stokes time steps as required to cover at least one peak wave period. Applications are made for a 1-D Navier-Stokes solution for the Space Shuttle Main Engine (SSME) thrust chamber with cross section area variations taken into account. It is shown that instability occurs when the mean pressure is set at 2000 psi with 30 percent disturbances. Instability also arises when the mean pressure is set at 2935 psi with 20 percent disturbances. The system with mean pressures and disturbances more adverse that these cases were shown to be unstable.

  9. A current-driven nanometer water pump.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices. PMID:26822782

  10. A current-driven nanometer water pump

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices.

  11. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  12. Genome instability and aging.

    PubMed

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  13. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.

    fields generated by beam-plasma instabilities can be responsible for defocusing and distorting beams propagating in background plasma. This can be problematic in inertial fusion applications where the beam is intended to propagate ballistically as the background plasma neutralizes the beam space charge and current. We used particle-in-cell (PIC) code LSP to numerically investigate the defocusing effects in an ion beam propagating in background plasma experiences as it is exposed to the non-linear fields generated by Two-Stream instability between beam ions and plasma electrons. Supported by theory and benchmarked by the numerical solutions of governing E&M equations, the simulations were used to find and check scaling laws for the defocusing forces in the parameter space of beam and plasma density as well as the beam ion mass. A transition region where the defocusing fields peak has been identified, which should be avoided in the design of experimental devices. We further proposed a diagnostic tool to identify the presence of the two-stream instability in a system with parameters similar to the National Drift Compression Experiment II (NDCX-II) and conducted proof-of concept simulations. In the case of electron beam propagating in background plasma instability driven collisionless scattering and plasma heating is observed. 1-D simulations conducted in EDIPIC were benchmarked in LSP to study the excitation and time-evolution of electron-electron Two-Stream instability. Coupling of electron dynamics via non-linear ponderomotive force created by instability generated fields with ion cavities and Ion-Acoustic mode excitation was observed. Furthermore 2-D simulations of an electron-beam in a background plasma was performed. Many of the effects in observed in 1-D simulations were replicated. Morever generation of oblique modes with transverse wave numbers were observed in the simulations, which resulted in significant transverse scattering of beam electrons and the time

  14. Gas turbine combustion instability

    SciTech Connect

    Richards, G.A.; Lee, G.T.

    1996-09-01

    Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

  15. Surface instabilities and nuclear multifragmentation

    SciTech Connect

    Moretto, L.G.; Tso, K.; Colonna, N.; Wozniak, G.J.

    1992-03-01

    Central heavy-ion collisions, as described by a Boltzman-Nordheim-Vlasov calculation, form nuclear disks that break up into several fragments due to surface instabilities of the Rayleigh-Taylor kind. We demonstrate that a sheet of liquid, nuclear or otherwise, stable in the limit of infinitely sharp surfaces, becomes unstable due to surface-surface interactions. The onset of this instability is determined analytically. The relevance of these instabilities to nuclear multifragmentation is discussed.

  16. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  17. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  18. Editorial Commentary: Multidirectional Shoulder Instability.

    PubMed

    Lubowitz, James H

    2015-12-01

    Multidirectional shoulder instability responds to physical therapy and rehabilitation. For patients who fail rehabilitation, arthroscopic capsular plication seems the treatment of choice. PMID:26652151

  19. PARTIAL TORUS INSTABILITY

    SciTech Connect

    Olmedo, Oscar; Zhang Jie

    2010-07-20

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  20. Instability characteristics of fluidelastic instability of tube rows in crossflow

    SciTech Connect

    Chen, S.S.; Jendrzejczyk, J.A.

    1986-04-01

    An experimental study is reported to investigate the jump phenomenon in critical flow velocities for tube rows with different pitch-to-diameter ratios and the excited and intrinsic instabilities for a tube row with a pitch-to-diameter ratio of 1.75. The experimental data provide additional insights into the instability phenomena of tube arrays in crossflow. 9 refs., 10 figs.

  1. Instability vaccination: A structural design to reduce Rayleigh Taylor instability

    NASA Astrophysics Data System (ADS)

    Esmaeili, Amin

    2013-10-01

    Instability vaccination can be defined as designing a structure to stimulate the system in order to develop immunity against its instability. In this work we have tried to do this stabilization by a new technique. Previously some suppression of R-M instability was done by insertion of magnetic field, but in this work we have tried to do this suppression by proposing a configuration similar to the shape of instability, we call it instability vaccination. This design will reduce the rotations (mostly rotations of Rayleigh Taylor instability) in the fluids that cause more mixing and instabilities. In this paper, we consider the evolution of the interface between two ideal semi-infinite fluid surfaces, using two-dimensional Riemann solver, to solve the Euler equations. First, we performed evolution of a rectangular disorder between the 2 surfaces using two-dimensional Riemann problem for the equations of Euler. Next, the interface was replaced with a perturbation that was part rectangular and part semi-circular (like a mushroom). The simulation was continued till some time steps using the HLL method. We have seen that the rotations of Rayleigh Taylor (R-T) instability were decreased in the second case. Email: amin@cavelab.cs.tsukuba.ac.jp

  2. Cohabitation and Children's Family Instability

    ERIC Educational Resources Information Center

    Kelly Raley, R.; Wildsmith, Elizabeth

    2004-01-01

    This study estimates how much children's family instability is missed when we do not count transitions into and out of cohabitation, and examines early life course trajectories of children to see whether children who experience maternal cohabitation face more family instability than children who do not. Using data from the 1995 National Survey of…

  3. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  4. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  5. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1983-01-01

    The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  6. Neurocardiovascular Instability and Cognition

    PubMed Central

    O’Callaghan, Susan; Kenny, Rose Anne

    2016-01-01

    Neurocardiovascular instability (NCVI) refers to abnormal neural control of the cardiovascular system affecting blood pressure and heart rate behavior. Autonomic dysfunction and impaired cerebral autoregulation in aging contribute to this phenomenon characterized by hypotension and bradyarrhythmia. Ultimately, this increases the risk of falls and syncope in older people. NCVI is common in patients with neurodegenerative disorders including dementia. This review discusses the various syndromes that characterize NCVI icluding hypotension, carotid sinus hypersensitivity, postprandial hypotension and vasovagal syncope and how they may contribute to the aetiology of cognitive decline. Conversely, they may also be a consequence of a common neurodegenerative process. Regardless, recognition of their association is paramount in optimizing management of these patients. PMID:27505017

  7. Plateau Rayleigh instability simulation.

    PubMed

    Mead-Hunter, Ryan; King, Andrew J C; Mullins, Benjamin J

    2012-05-01

    The well-known phenomena of Plateau-Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy. The existence of unrealistically large films is precluded. Droplet spacing was found to show reasonable agreement with theory. Droplet motion and displacement under fluid flow was also examined and compared to that in previous studies. It was found that the presence of air flow around the droplet does not influence the stable film thickness; however, it reduces the time required for droplet formation. Novel relationships for droplet displacement were derived from the results. PMID:22512475

  8. Combustion Instabilities Modeled

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.

  9. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  10. Temperature anisotropy and beam type whistler instabilities

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Matsumoto, H.

    1976-01-01

    Whistler instabilities have been investigated for two different types; i.e., a temperature-anisotropy type instability and a beam-type instability. A comparison between the two types of whistler instabilities is made within the framework of linear theory. A transition from one type to the other is also discussed, which is an extension of the work on electrostatic beam and Landau instabilities performed by O'Neil and Malmberg (1968) for electromagnetic whistler instabilities. It is clarified that the essential source of the whistler instability is not beam kinetic energy but a temperature anisotropy, even for the beam-type whistler instability.

  11. ROTATIONAL INSTABILITIES AND CENTRIFUGAL HANGUP

    SciTech Connect

    K. NEW; J. CENTRELLA

    2000-12-01

    One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An n=1.5 polytrope with the Maclaurin rotation law will encounter the m=2 bar instability at T/{vert_bar}W{vert_bar} {ge} 0.27. Our results indicate that the remnant of this in-stability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in n=3.33 polytropes with the j-constant rotation law at T/{vert_bar}W{vert_bar} {ge} 0:14. In this case, the dominant mode of instability is m=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.

  12. Yet another instability in glasma

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shoichiro; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira

    2014-09-01

    In relativistic heavy ion collisions (HIC), hydrodynamic models can describe many experimental data and suggest that the quark-gluon plasma formed at RHIC and LHC is almost perfect fluid. We need very short thermalization time and far-from-equilibrium dynamics may be important in thermalization processes of HIC. In the earliest stages of HIC, classical gluon dynamics is dominant and many types of instabilities emerge there. These instabilities may strongly affect the later stages of dynamics; realization of chaoticity and field-particle conversions. We investigate instabilities of classical gluon fields under the homogeneous, but time dependent background color magnetic fields. The background field become periodic function of time and we can analyze the stability of fluctuations based on the Floquet theory which consists the basis of the Bloch theory. As a result, we get the complete structure of instability bands for physical degrees of freedom appearing from parametric resonance. We also find that the parametric instabilities considered here have different natures from the several known instabilities; Weibel and Nielsen-Olesen instabilities. We also discuss some implications of parametric resonance to the particle productions in HIC.

  13. New instability of Saturn's ring

    SciTech Connect

    Goertz, C.K.; Morfill, G.

    1988-05-01

    Perturbations in the Saturn ring's mass density are noted to be prone to instabilities through the sporadic elevation of submicron-size dust particles above the rings, which furnishes an effective angular momentum exchange between the rings and Saturn. The dust thus elevated from the ring settles back onto it at a different radial distance. The range of wavelength instability is determinable in light of the dust charge, the average radial displacement of the dust, and the fluctuation of these quantities. It is suggested that at least some of the B-ring's ringlets may arise from the instability.

  14. Microbunching Instability in Velocity Bunching

    SciTech Connect

    Xiang, D; Wu, J.; /SLAC

    2009-05-26

    Microbunching instability is one of the most challenging threats to FEL performances. The most effective ways to cure the microbunching instability include suppression of the density modulation sources and suppression of the amplification process. In this paper we study the microbunching instability in velocity bunching. Our simulations show that the initial current and energy modulations are suppressed in velocity bunching process, which may be attributed to the strong plasma oscillation and Landau damping from the relatively low beam energy and large relative slice energy spread. A heating effect that may be present in a long solenoid is also preliminarily analyzed.

  15. Shock-induced crystalline instabilities

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon; Holian, Brad Lee; Germann, Timothy C.

    2007-03-01

    Uniaxial deformations of single crystals such as those produced under planar shock loading can produce structural instabilities which compete with defect nucleation mechanisms. In fcc single crystals under (110) shock loading, the resulting body-centered orthorhombic crystal structure develops a long-wavelength dynamical instability associated with tetragonal shear distortions, which occurs at lower strains (pressures) than those predicted by the vanishing of the elastic constants at finite pressure (stiffness coefficients). The criterion for these instabilities is derived and verified by equilibrium and non-equilibrium molecular dynamics simulations [2]J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)

  16. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  17. Sheared Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  18. Instabilities in the aether

    SciTech Connect

    Carroll, Sean M.; Dulaney, Timothy R.; Gresham, Moira I.; Tam, Heywood

    2009-03-15

    We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector 'aether' fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model ({partial_derivative}{sub {mu}}A{sub {nu}}){sup 2}, the Maxwell Lagrangian F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}}, and a scalar Lagrangian ({partial_derivative}{sub {mu}}A{sup {mu}}){sup 2}. The timelike sigma-model case is well defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.

  19. Instability mechanisms in swirling flows

    NASA Astrophysics Data System (ADS)

    Gallaire, F.; Chomaz, J.-M.

    2003-09-01

    We investigate the stability of the screened Rankine vortex with added plug flow where the azimuthal velocity decreases abruptly outside the core of the vortex. The jump in circulation is known to induce centrifugal and azimuthal Kelvin-Helmholtz instabilities. Their effect on the stability of the different azimuthal wave number m is discussed using physical considerations associated with asymptotic expansions and numerical computations of the dispersion relation. It is shown that the axial shear and centrifugal instability are active for all m, and that modes with |m|⩾2 are also destabilized by azimuthal shear. In contrast, the bending modes m=±1 are stabilized by a coupling with Kelvin waves in the core. Effects of rotation on the absolute/convective transition are also discussed. The absolute instability of positive helical modes is seen to be promoted by centrifugal instability and azimuthal shear.

  20. Microwave instability near transition energy

    SciTech Connect

    Wei, J.; Lee, S.Y.

    1989-01-01

    Monte Carlo simulation for the microwave instability agrees with analytic calculation solving the Vlasov equation, provided that bunch shape distortion due to coupling is taken into account. 9 refs., 2 figs.