Science.gov

Sample records for curvula schrad nees

  1. Nutritional and Sensory Evaluation of Injera Prepared from tef and Eragrostis curvula (Schrad.) Nees. Flours with Sorghum Blends

    PubMed Central

    Ghebrehiwot, Habteab M.; Shimelis, Hussein A.; Kirkman, Kevin P.; Laing, Mark D.; Mabhaudhi, Tafadzwanashe

    2016-01-01

    Injera is a fermented, sour bread consumed as a staple food in Eritrea and Ethiopia. The bread can be prepared from various cereals but tef [Eragrostis tef (Zucc.) Trotter] is the most preferred ingredient. This study assessed the acceptability of injera prepared using grains of a closely related but underutilized grass, Eragrostis curvula (Schrad.) Nees. The nutritive value of the grains was compared and the sensory attributes of injera made from flours of tef (control) and E. curvula, each combined with 0, 5, and 10% of sorghum flour, were assessed using a tasting panel. Nutrient analysis showed that E. curvula contains more than double the amount of crude protein found in tef. E. curvula also contains higher fat, dietary fiber and mineral nutrients than tef. Injera made of E. tef and E. curvula flours showed non-significant differences in taste, texture, appearance and overall acceptability. This suggest that E. curvula has the potential to serve as a novel source of gluten-free flour for human consumption. Agronomically viewed, growing E. curvula could be more advantageous for smallholder farmers on marginal lands because the species is a perennial that can produce a seed harvest twice a year, unlike tef, which is annual crop. It also tolerates acidic soils better than tef. PMID:27489554

  2. Nutritional and Sensory Evaluation of Injera Prepared from tef and Eragrostis curvula (Schrad.) Nees. Flours with Sorghum Blends.

    PubMed

    Ghebrehiwot, Habteab M; Shimelis, Hussein A; Kirkman, Kevin P; Laing, Mark D; Mabhaudhi, Tafadzwanashe

    2016-01-01

    Injera is a fermented, sour bread consumed as a staple food in Eritrea and Ethiopia. The bread can be prepared from various cereals but tef [Eragrostis tef (Zucc.) Trotter] is the most preferred ingredient. This study assessed the acceptability of injera prepared using grains of a closely related but underutilized grass, Eragrostis curvula (Schrad.) Nees. The nutritive value of the grains was compared and the sensory attributes of injera made from flours of tef (control) and E. curvula, each combined with 0, 5, and 10% of sorghum flour, were assessed using a tasting panel. Nutrient analysis showed that E. curvula contains more than double the amount of crude protein found in tef. E. curvula also contains higher fat, dietary fiber and mineral nutrients than tef. Injera made of E. tef and E. curvula flours showed non-significant differences in taste, texture, appearance and overall acceptability. This suggest that E. curvula has the potential to serve as a novel source of gluten-free flour for human consumption. Agronomically viewed, growing E. curvula could be more advantageous for smallholder farmers on marginal lands because the species is a perennial that can produce a seed harvest twice a year, unlike tef, which is annual crop. It also tolerates acidic soils better than tef. PMID:27489554

  3. Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula.

    PubMed

    Cervigni, Gerardo D L; Paniego, Norma; Díaz, Marina; Selva, Juan P; Zappacosta, Diego; Zanazzi, Darío; Landerreche, Iñaki; Martelotto, Luciano; Felitti, Silvina; Pessino, Silvina; Spangenberg, Germán; Echenique, Viviana

    2008-05-01

    Eragrostis curvula (Schrad.) Nees is a forage grass native to the semiarid regions of Southern Africa, which reproduces mainly by pseudogamous diplosporous apomixis. A collection of ESTs was generated from four cDNA libraries, three of them obtained from panicles of near-isogenic lines with different ploidy levels and reproductive modes, and one obtained from 12 days-old plant leaves. A total of 12,295 high-quality ESTs were clustered and assembled, rendering 8,864 unigenes, including 1,490 contigs and 7,394 singletons, with a genome coverage of 22%. A total of 7,029 (79.11%) unigenes were functionally categorized by BLASTX analysis against sequences deposited in public databases, but only 37.80% could be classified according to Gene Ontology. Sequence comparison against the cereals genes indexes (GI) revealed 50% significant hits. A total of 254 EST-SSRs were detected from 219 singletons and 35 from contigs. Di- and tri- motifs were similarly represented with percentages of 38.95 and 40.16%, respectively. In addition, 190 SNPs and Indels were detected in 18 contigs generated from 3 to 4 libraries. The ESTs and the molecular markers obtained in this study will provide valuable resources for a wide range of applications including gene identification, genetic mapping, cultivar identification, analysis of genetic diversity, phenotype mapping and marker assisted selection. PMID:18196464

  4. Does weeping lovegrass maintain its crude protein content at the expense of its neighbors?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data would suggest that weeping lovegrass [Eragrostis curvula (Schrad.) Nees] does maintain its crude protein (CP) content at a steady state at the expense of its surrounding neighbors. While studying the combining ability effects of binary mixtures of cool- and warm-season grasses and legumes it w...

  5. Ecological characterisation of supina bluegrass (Poa supina Schrad.) germplasm from the Italian Alps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supina bluegrass (Poa supina Schrad.) is a potential turfgrass species for cool, northern type climates, yet few genetic resources for research and development are very limited. As a result, a field exploration for P. supina was conduction in the Italian Alps in 2008. Altogether, 55 populations of...

  6. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  7. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  8. Effects of cadmium on aquatic hyphomycetes. [Alatospora acuminata; Clavariopsis aquatica; Flagellospora curvula; Heliscus lugdunesis; Tetracladium marchalianum

    SciTech Connect

    Abel, T.H.; Baerlocher, F.

    1984-08-01

    Two kinds of experiments, sporulation and growth experiments, were carried out to demonstrate the effect of cadmium on aquatic hyphomycetes. Oak (Quercus petraea L.) leaves were exposed in a hard-water stream (Luessel, Swiss Jura) and a soft-water stream (Ibach, Black Forest) for 2 months. In the laboratory, fungal sporulation on the leaves in stream water enriched with cadmium (as CdCl/sub 2/) was studied. A measureable effect was found when the cadmium concentration exceeded 0.1 ppm (0.1 mg/liter). Concentrations higher than 100 ppm inhibited conidium production completely. This toxic effect of cadmium was species dependent and much higher in soft water (water with low concentrations of calcium and magnesium) than in hard water. Growth experiments with Alatospora acuminata Ingold, Clavaropsis aquatica De Wildeman, Flagellospora curvula Ingold, Heliscus lugdunensis Saccardo and Therry, and Tetracladium marchalianum De Wildeman showed the same pattern of cadmium sensitivity as that seen in the sporulation experiments. Mycelial growth was less sensitive to cadmium than was fungal sporulation. High concentrations of competing cations (e.g., calcium and zinc) or potential ligands could reduce cadmium toxicity. Calcium content seems to be the most important factor responsible for the different sensitivity of aquatic hyphomycetes in hard and soft water.

  9. Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula.

    PubMed

    Ncanana, Sandile; Brandt, Wolf; Lindsey, George; Farrant, Jill

    2005-08-01

    A tissue culture protocol, suitable for transformation, was established for the pasture grass Eragrostis curvula. Callus was generated in the dark from leaf and seed tissues on a medium comprising MS salts supplemented with 2 mg/l 2,4-D, 0.01 mg/l BAP and 2% sucrose. Plant regeneration occurred via organogenesis on the same medium with 6% and 3% sucrose for shoot and root formation, respectively. Optimal regeneration (50 plantlets per callus) occurred when light of 45 micromol/m2 per s was used. The yeast Saccharomyces cerevisiae Hsp12 gene was cloned into the Sac1 of the pCAMBIAUbeeQ vector and callus was transformed by biolistic bombardment. Best transformation (30%) occurred when the target tissue was bombarded twice at a distance of 70 mm using a bombardment pressure of 9,100 kPa. Although successful transformation and transcription of the Hsp12 gene occurred, no Hsp12 protein was found present in tissue extracts of transformed grass. PMID:15776238

  10. Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula.

    PubMed

    Ochogavía, Ana C; Cervigni, Gerardo; Selva, Juan P; Echenique, Viviana C; Pessino, Silvina C

    2009-05-01

    In many species polyploidization involves rearrangements of the progenitor genomes, at both genetic and epigenetic levels. We analyzed the cytosine methylation status in a 'tetraploid-diploid-tetraploid' series of Eragrostis curvula with a common genetic background by using the MSAP (Methylation-sensitive Amplified Polymorphism) technique. Considerable levels of polymorphisms were detected during ploidy conversions. The total level of methylation observed was lower in the diploid genotype compared to the tetraploid ones. A significant proportion of the epigenetic modifications occurring during the tetraploid-diploid conversion reverted during the diploid-tetraploid one. Genetic and expression data from previous work were used to analyze correlation with methylation variation. All genetic, epigenetic and gene expression variation data correlated significantly when compared by pairs in simple Mantel tests. Dendrograms reflecting genetic, epigenetic and expression distances as well as principal coordinate analysis suggested that plants of identical ploidy levels present similar sets of data. Twelve (12) different genomic fragments displaying different methylation behavior during the ploidy conversions were isolated, sequenced and characterized. PMID:19160057

  11. Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels.

    PubMed

    Cervigni, Gerardo D L; Paniego, Norma; Pessino, Silvina; Selva, Juan P; Díaz, Marina; Spangenberg, Germán; Echenique, Viviana

    2008-05-01

    The molecular nature of gene expression during the initiation and progress of diplosporous apomixis is still unknown. Moreover, the basis of the close correlation between diplospory and polyploidy is not clarified yet. A comparative expression analysis was performed based on expressed sequence tags (ESTs) sequencing and differential display in an Eragrostis curvula diplosporous tetraploid genotype (T, 4x apo), a sexual diploid derivative obtained from tissue culture (D, 2x sex) and an artificial sexual tetraploid obtained from the diploid seeds after colchicine treatment (C, 4x sex). From a total of 8,884 unigenes sequenced from inflorescence-derived libraries, 112 (1.26%) showed significant differential expression in individuals with different ploidy level and/or variable reproductive mode. Independent comparisons between plants with different reproductive mode (same ploidy) or different ploidy level (same reproductive mode) allowed the identification of genes modulated in response to diplosporous development or polyploidization, respectively. Surprisingly, a group of genes (Group 3) were differentially expressed or silenced only in the 4x sex plant, presenting similar levels of expression in the 4x apo and the 2x sex genotypes. A group of randomly selected differential genes was validated by QR-PCR. Differential display analysis showed that in general the 4x apo and 4x sex expression profiles were more related and different from the 2x sex one, but confirmed the existence of Group 3-type genes, in both inflorescences and leaves. The possible biological significance for the occurrence of this particular group of genes is discussed. In silico mapping onto the rice genome was used to identify candidates mapping to the region syntenic to the diplospory locus. PMID:18311543

  12. Microsporogenesis in Paspalum conspersum Schrad. (Virgata group) with different ploidy levels.

    PubMed

    Janke, L; Souza, F H D; Valls, J F M; Pagliarini, M S

    2013-01-01

    Knowledge about the cytology and reproductive behavior of a species is indispensable for hybridization programs. This is especially true for species belonging to the genus Paspalum, among which apomixis and a wide range of ploidy levels are frequently found. Paspalum conspersum Schrad. is a robust and warm-season perennial bunchgrass native to South America. Previous studies have indicated that both tetraploid and hexaploid races exist in this species; however, only information related to tetraploids has been applied to another taxon. In this study, a cytological investigation in two Brazilian accessions collected in different regions revealed tetraploidy in the accession BRA-012823 (2n = 4x = 40), with chromosome pairing in bivalents and normal meiosis and tetrad formation, and pentaploidy (2n = 5x = 50) in the accession BRA-022748, which presented total asynapsis. In this latter accession, 50 univalents could be scored at diakinesis. After alignment at the metaphase plate, sister chromatids segregated to the poles. Only one meiotic division (equational) occurred, and after cytokinesis, 100% of the dyads that formed had 2n microspores. The meiotic behavior during microsporogenesis, which showed 10 delayed univalents to reach the metaphase plate, suggests that this accession is a recent natural hybrid constituted by a parental genome with 40 chromosomes and another with 10 chromosomes. The potential usage of these accessions in Paspalum breeding has been discussed. PMID:24301755

  13. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad.

    PubMed

    Rahuman, A Abdul; Venkatesan, P; Gopalakrishnan, Geetha

    2008-11-01

    In mosquito control programs, botanical origin may have the potential to be used successfully as larvicides. The larvicidal activity of crude acetone, hexane, ethyl acetate, methanol, and petroleum ether extracts of the leaf of Centella asiatica Linn., Datura metal Linn., Mukia scabrella Arn., Toddalia asiatica (Linn.) Lam, extracts of whole plant of Citrullus colocynthis (Linn.) Schrad, and Sphaeranthus indicus Linn. were assayed for their toxicity against the early fourth instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in whole plant petroleum ether extract of C. colocynthis. In the present study, bioassay-guided fractionation of petroleum ether extract led to the separation and identification of fatty acids; oleic acid and linoleic acid were isolated and identified as mosquito larvicidal compounds. Oleic and Linoleic acids were quite potent against fourth instar larvae of Aedes aegypti L. (LC50 8.80, 18.20 and LC90 35.39, 96.33 ppm), Anopheles stephensi Liston (LC50 9.79, 11.49 and LC90 37.42, 47.35 ppm), and Culex quinquefasciatus Say (LC50 7.66, 27.24 and LC90 30.71, 70.38 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance, 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported isolated compounds from C. colocynthis. PMID:18688644

  14. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons.

    PubMed

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M

    2007-01-01

    In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed. PMID:17545229

  15. NeeMDB: Convenient Database for Neem Secondary Metabolites

    PubMed Central

    Hatti, Kaushik S; Muralitharan, Lakshmi; Hegde, Rajendra; Kush, Anil

    2014-01-01

    Indian Neem tree is known for its pesticidal and medicinal properties for centuries. Structure elucidation of large number of secondary metabolites responsible for its diverse properties has been achieved. However, this data is spread over various books, scientific reports and publications and difficult to access. We have compiled and stored structural details of neem metabolites in NeeMDB, a database which can be easily accessed, queried and downloaded. NeeMDB would be central in dissipating structural information of neem secondary metabolites world over. PMID:24966540

  16. A decade of continuous NEE measurements at a Scottish peatland

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Campbell, Claire; Coyle, Mhairi; Anderson, Margaret; Drewer, Julia; Levy, Peter; Famulari, Daniela; Twigg, Marsailidh; Skiba, Ute; Billett, Michael; Dinsmore, Kerry; Nemitz, Eiko; Sutton, Mark

    2013-04-01

    Eddy-covariance measurements of carbon dioxide (CO2) fluxes have been running continuously at the Auchencorth Moss peatland site in Scotland (55o47'32N, 3o14'35W, 267 m a.s.l.) since the spring of 2002 which makes this study one of the longest ones to date on a peatland system. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from <0.5 m to >0.5 m and the site has a mean annual precipitation of 1155 mm. The open moorland site has an extensive uniform fetch of blanket bog to the south, west and north. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The eddy-covariance system consists of a Licor 7000 closed-path infrared gas analyser operating at 10 Hz for the simultaneous measurement of carbon dioxide and water vapour and of a Gill Windmaster Pro ultrasonic anemometer, operating at 20 Hz, and mounted atop a 3 m mast. The effective measurement height is 3.5 m with a vertical separation of 20 cm between the anemometer and the inlet of the sampling line. Air is sampled at 20 litres per minute through a 40 m long Dekabon line (internal diameter 4 mm). In addition to eddy-covariance measurements, the site is equipped with a weather station, soil temperature measurements, total solar radiation and photosynthetically active radiation (PAR) sensors, a tipping bucket for rainfall and, since April 2007, water table depth has been recorded at half-hourly interval. On an annual basis, the peatland at Auchencorth Moss has consistently been a net sink of CO2 in the study period 2002-2012 with a mean net ecosystem exchange (NEE) of - 69.1 ± 33.6 g C-CO2 m-2 yr-1. This value is at the high end of other recent studies as is the inter-annual range of NEE (-31.4 to -135.9 g C-CO2 m-2 yr-1). Inter-annual variations in NEE are significant and strongly correlated to the length of the growing

  17. Is the Interannual Variability of NEE Controlled by Dryness?

    NASA Astrophysics Data System (ADS)

    Yi, C.; Ricciuto, D. M.

    2008-12-01

    The global rate of fossil fuel combustion continues to rise, but the amount of CO2 accumulating in the atmosphere has not increased accordingly. The relative magnitudes of carbon sinks are widely debated. In particular, the locations and mechanisms that drive interannual variability of atmospheric CO2 are highly uncertain. Terrestrial carbon reservoirs are believed to cause more interannual variability of atmospheric CO2 than oceanic carbon reservoirs (Bousquet et al., 2001). Determining controlling factors of interannual variability of terrestrial carbon sequestration is a key to understanding of essential processes of terrestrial carbon sinks and sources. We pose a hypothesis that the interannual variability of the ecosystem-atmosphere exchange (NEE) of CO2 is controlled by dryness. We use the data from the regional and global networks of flux towers to test this hypothesis. The dryness is a dimensionless parameter defined by Budyko (1974) as the ratio of the potential evapotranspiration to precipitation (P), Dryness = Rn/(LP) Where Rn is annual sum of net radiation, and L is the enthalpy of vaporization. Therefore, Rn/L is the potential evapotranspiration. Budyko used the dryness parameter to successfully classify geobotanic zones globally. Our initial analysis demonstrated that the annual NEE numbers are well organized by dryness parameter based on the data from several flux towers in the AmeriFlux network. We are using improved methodologies for filling missing flux, Rn and P data and are extending this analysis to include a larger number of sites. Although this model is oversimplified, dryness may play an important role in determination of annual variability of NEE of CO2 because this parameter has two features: (1) annual water balance (potential evapotranspiration to actual precipitation; and (2) energy balance (available radiation energy to latent heat). The fundamental understanding of the link between dryness and terrestrial carbon sequestration is that

  18. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  19. Central Nervous System Effects of Iso-6-spectaline Isolated from Senna Spectabilis var. Excelsa (Schrad) in Mice.

    PubMed

    Silva, Fo; Silva, Mgv; Cerqueira, Gs; Sabino, Eb; Almeida, Aac; Costa, Jp; Freitas, Rm

    2011-07-01

    The central nervous system (CNS) depressant and anticonvulsant activities of iso-6-spectaline (SPEC) were investigated in animal models. The SPEC from Senna spectabilis var. excelsa (Schrad) (0.1, 0.5 and 1.0 mg/ kg) injected by oral route (p.o.) in mice caused a significant decrease in the motor activity up to 30 days after the administration and in the dose of 1.0 mg/kg significantly reduced the remaining time on the Rota-rod apparatus. Additionally, SPEC (0.1, 0.5 and 1.0 mg/kg, p.o.) was also capable of promoting increase of latency for development of convulsions induced by pentylenetetrazole. This SPEC was also capable of promoting an increase of latency for development of convulsions induced by picrotoxin at highest dose. In the same way, the anticonvulsant effect of SPEC was affected by pretreatment with flumazenil, a selective antagonist of the benzodiazepine site of the GABA(A) receptor. These results suggest possible CNS depressant and anticonvulsant activities in mice that needs further investigation. PMID:21897664

  20. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2013-01-15

    The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils. PMID:23122069

  1. Partitioning components of net ecosystem CO2 exchange (NEE) in a suburban landscape

    NASA Astrophysics Data System (ADS)

    Peters, E. B.; McFadden, J.

    2011-12-01

    Developed land - cities, suburbs, and exurban settlements - is a significant and growing fraction of the land-use in many regions over which we hope to construct carbon budgets. While anthropogenic CO2 fluxes have been estimated using emissions inventories and atmospheric tracers, there is very little data on the net ecosystem CO2 exchange (NEE) of vegetation and soil in developed areas. Quantifying NEE in these areas requires a component-based approach to distinguish ecological CO2 fluxes from anthropogenic emissions as well as to quantify how different components of a developed landscape contribute to the total net CO2 exchange. At the KUOM tower site in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA, we simultaneously measured NEE and its main ecosystem component fluxes using eddy covariance systems on the tall tower and on a turfgrass lawn, heat dissipation sap flux measurements on trees within the tower footprint, and leaf gas exchange measurements. We scaled up our continuous component measurements to the KUOM tower footprint using a 2.4-m resolution satellite vegetation map and the Kljun et al. (2004) model to estimate the flux source area for every 30-minute flux measurement. Over a two-year period, we quantified the relative contribution of plant functional types (evergreen needleleaf tree, deciduous broadleaf tree, cool-season turfgrass) to seasonal and spatial variations in NEE. Evergreen needleleaf trees had the highest growing season (Apr-Nov) sums of carbon uptake on a per canopy area basis (-603 gC m-2), followed by deciduous broadleaf trees (-216 gC m-2), irrigated turfgrass (-215 gC m-2), and non-irrigated turfgrass (-121 gC m-2). The scaled-up component NEE estimates agreed closely with NEE measurements from the tall tower, although the imbalance varied seasonally, due to temporal differences in heating emissions, and by wind sector, due to spatial differences in traffic. In recreational land-use areas, turfgrasses represented

  2. Genome polymorphisms and gene differential expression in a 'back-and-forth' ploidy-altered series of weeping lovegrass (Eragrostis curvula).

    PubMed

    Mecchia, Martín A; Ochogavía, Ana; Pablo Selva, Juan; Laspina, Natalia; Felitti, Silvina; Martelotto, Luciano G; Spangenberg, Germán; Echenique, Viviana; Pessino, Silvina C

    2007-08-01

    Molecular markers were used to analyze the genomic structure of an euploid series of Eragrostis curvula, obtained after a tetraploid dihaploidization procedure followed by chromosome re-doubling with colchicine. Considerable levels of genome polymorphisms were detected between lines. Curiously, a significant number of molecular markers showed a revertant behavior following the successive changes of ploidy, suggesting that genome alterations were specific and conferred genetic structures characteristic of a given ploidy level. Genuine reversion was confirmed by sequencing. Cluster analysis demonstrated grouping of tetraploids while the diploid was more distantly related with respect to the rest of the plants. Polymorphic revertant sequences involved mostly non-coding regions, although some of them displayed sequence homology to known genes. A revertant sequence corresponding to a P-type adenosine triphosphatase was found to be differentially represented in cDNA libraries obtained from the diploid and a colchiploid, but was not found expressed in the original tetraploid. Transcriptome profiling of inflorescence followed by real-time polymerase chain reaction validation showed 0.34% polymorphic bands between apomictic tetraploid and sexual diploid plants. Several of the polymorphic sequences corresponded to known genes. Possible correlation between the results observed here and a recently reported genome-wide non-Mendelian inheritance mechanism in Arabidopsis thaliana are discussed. PMID:16919366

  3. Scaling for Robust Empirical Modeling and Predictions of Net Ecosystem Exchange (NEE) from Diverse Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2014-12-01

    We developed a scaling-based, simple empirical model for spatio-temporally robust prediction of the diurnal cycles of wetland net ecosystem exchange (NEE) by using an extended stochastic harmonic algorithm (ESHA). A reference-time observation from each diurnal cycle was utilized as the scaling parameter to normalize and collapse hourly observed NEE of different days into a single, dimensionless diurnal curve. The modeling concept was tested by parameterizing the unique diurnal curve and predicting hourly NEE of May to October (summer growing and fall seasons) between 2002-12 for diverse wetland ecosystems, as available in the U.S. AmeriFLUX network. As an example, the Taylor Slough short hydroperiod marsh site in the Florida Everglades had data for four consecutive growing seasons from 2009-12; results showed impressive modeling efficiency (coefficient of determination, R2 = 0.66) and accuracy (ratio of root-mean-square-error to the standard deviation of observations, RSR = 0.58). Model validation was performed with an independent year of NEE data, indicating equally impressive performance (R2 = 0.68, RSR = 0.57). The model included a parsimonious set of estimated parameters, which exhibited spatio-temporal robustness by collapsing onto narrow ranges. Model robustness was further investigated by analytically deriving and quantifying parameter sensitivity coefficients and a first-order uncertainty measure. The relatively robust, empirical NEE model can be applied for simulating continuous (e.g., hourly) NEE time-series from a single reference observation (or a set of limited observations) at different wetland sites of comparable hydro-climatology, biogeochemistry, and ecology. The method can also be used for a robust gap-filling of missing data in observed time-series of periodic ecohydrological variables for wetland or other ecosystems.

  4. Seasonal and inter-annual variability in rangeland NEE: Contributions of climatic anomalies and fluctuations in daytime and night-time CO2 fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net ecosystem exchange of CO2 (NEE) of terrestrial ecosystems varies seasonally and inter-annually partly because of climatic variability. If we are to predict climate-driven variation in NEE, we must understand how climatic anomalies at different temporal scales influence NEE and its components, ...

  5. Discerning the cows from the pasture when determining annual NEE and carbon budget

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Felber, Raphael; Neftel, Albrecht

    2015-04-01

    The CO2 exchange of ecosystems and the resulting annual net ecosystem exchange (NEE) and total carbon budget (soil carbon sequestration) is commonly investigated using the eddy covariance (EC) technique. For the carbon budget of managed ecosystems also the import and export of organic carbon has to be taken into account. Grazed pasture systems represent a special challenge because their respiration can considerably contribute to the measured CO2 flux, but this contribution depends on the spatial distribution of the cows relative to the footprint and thus is variable in time. This has implications for the gap filling of CO2 flux time series necessary to determine annual NEE. In few existing studies two procedures have been suggested to determine the NEE of grazed pasture: (a) discarding all cases with cows in the footprint and gap-filling the remaining dataset; (b) treating the cow respiration as part of total ecosystem respiration and gap fill the entire flux dataset including cow contributions. Both approaches rely on idealized assumptions and have limitations. In our study we evaluated and compared the two approaches (for the first time to our knowledge) for a grazed pasture in Switzerland. For this purpose, the grazing cows were equipped with GPS sensors to monitor their position relative to the flux footprint. We found that the resulting annual NEE strongly depends on the flux data selection (e.g. u* filtering) and the applied gap filling procedure. Using an optimized procedure, the annual NEE with approach (b) was several times larger than the result of approach (a), but the difference agreed fairly well with independent estimates of cow respiration. Necessary assumptions and requirements of the two approaches for the determination of the pasture carbon budget will be discussed.

  6. Evaluation of anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) extract in laboratory animals

    PubMed Central

    More, Shraddha K.; Lande, Anirudha A.; Jagdale, Priti G.; Adkar, Prafulla P.; Ambavade, Shirishkumar D.

    2013-01-01

    Context: Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) is a diffuse herb with prickly stem, traditionally used for the treatment of inflammation and one in the group of daśamūla (group of ten herbs) herbs commonly used drug in Ayurveda. Aims: In continuation of search for potent natural anti-inflammatory agents, the present research work was planned to evaluate the anti-inflammatory activity of ethanol extract of S. xanthocarpum whole plant. Settings and Design: The ethanol extract was evaluated at dose 10, 30 and 100 mg/kg p.o. in rats. Materials and Methods: Using pharmacological screening models carrageenan induced rat paw edema, histamine induced rat paw edema and cotton pellet granuloma in rats. Statistical Analysis Used: Data obtained was analyzed statistically using analysis of variance followed by post-hoc Dunnett test, P < 0.05 is considered as statistically significant. Results: Acute treatment didn’t show anti-inflammatory activity against carrageenan and histamine induced paw edema. However, administration of 100 mg/kg p.o for 7 day reduced the granuloma formation in cotton pellet granuloma model. Conclusions: Present results support the traditional use of plant for anti-inflammatory activity. In brief, the results provide scientific pharmacological basis for the therapeutic use of S. xanthocarpum. PMID:24991071

  7. Nucleosynthesis in novae - A source of Ne-E and Al-26

    NASA Technical Reports Server (NTRS)

    Hillebrandt, W.; Thielemann, F.-K.

    1982-01-01

    It is shown upon computation of the nucleosynthesis products of explosive hydrogen burning, in the framework of recent nova models, that nova condensates will probably contain isotopic anomalies in Ne-22, from Na-22 decay, and Mg-26, from Al-26 decay. It is found, for all the models considered, that while too much Ne-20 and -21 is produced relative to Ne-22 to explain the presumably almost pure Ne-22 meteoritic Ne-E component, the Na-22 abundance is high enough to explain Ne-E as its decay product if nova condensates are preserved in Ne samples. It is also determined that while Al-26 is coproduced with Na-22, its total amount strongly depends on the uncertain, Si-27(p, gamma)P-28 reaction rate. The abundances of all nuclides, up to Ar, are computed and found to be clearly nonsolar in many cases.

  8. BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  9. Research Highlights and Recent Enhancements at the NEES@UCSB Permanently Instrumented Field Sites

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Hegarty, P.; Seale, S. H.; Lamere, T.; Stinson, E.; Wojcik, K.

    2012-12-01

    The NEES@UCSB facility consists of experimental facilities and cyber infrastructure for active testing and passive earthquake monitoring at instrumented geotechnical field sites. There have been a number of facility enhancements to both the experimental facilities and the cyber infrastructure for facilitating research at the sites and access to the data they produce. Through both the maintenance and operations and the NEES Research program funding sources, the scope of monitoring at the field sites continues to expand. A permanent cross-hole source and sensor array has been installed at both the Wildlife Liquefaction Array (WLA) and at the Garner Valley Downhole Array (GVDA) field sites. This enhancement provides daily measurements of shear-wave velocity and automated post-earthquake observations of velocity to examine soil modulus reduction and recovery. After a very large event, where nonlinear soil behavior is expected, cross-hole hammer source time intervals are as short as 5 minutes. While waiting for larger earthquakes to occur, the daily cross-hole hammer tests are providing interesting data on shear-wave velocity changes with seasonal water table height. Testing of a small reconfigurable structure at both the WLA and GVDA sites was conducted using the NEES@UCLA mobile shakers. The structure, which is a smaller version of a permanent structure at GVDA, has been left at the GVDA site and can be used for future experiments or site instrumentation enhancements. The large soil-foundation-interaction structure at GVDA has a 1D shaker mounted under its roof slab. This shaker runs nightly and the data provide insight into the influence of environmental conditions on the response of the structure. At WLA, additional sensors have been installed in a dense Shape Accelerometer Array (SAA). Each of the seven arrays contain 24 3-component MEMS accelerometers at approximately 0.3 meter spacing that span the upper 8 meters of the site, from above to below the liquefiable

  10. Anterior Segment Dysgenesis and Early-Onset Glaucoma in nee Mice with Mutation of Sh3pxd2b

    PubMed Central

    Mao, Mao; Hedberg-Buenz, Adam; Koehn, Demelza; John, Simon W. M.

    2011-01-01

    Purpose. Mutations in SH3PXD2B cause Frank-Ter Haar syndrome, a rare condition characterized by congenital glaucoma, as well as craniofacial, skeletal, and cardiac anomalies. The nee strain of mice carries a spontaneously arising mutation in Sh3pxd2b. The purpose of this study was to test whether nee mice develop glaucoma. Methods. Eyes of nee mutants and strain-matched controls were comparatively analyzed at multiple ages by slit lamp examination, intraocular pressure recording, and histologic analysis. Cross sections of the optic nerve were analyzed to confirm glaucomatous progression. Results. Slit lamp examination showed that, from an early age, nee mice uniformly exhibited severe iridocorneal adhesions around the entire circumference of the eye. Presumably as a consequence of aqueous humor outflow blockage, they rapidly developed multiple indices of glaucoma. By 3 to 4 months of age, they exhibited high intraocular pressure (30.8 ± 12.5 mm Hg; mean ± SD), corneal opacity, and enlarged anterior chambers. Although histologic analyses at P17 did not reveal any indices of damage, similar analysis at 3 to 4 months of age revealed a course of progressive retinal ganglion cell loss, optic nerve head excavation, and axon loss. Conclusions. Eyes of nee mice exhibit anterior segment dysgenesis and early-onset glaucoma. Because SH3PXD2B is predicted to be a podosome adaptor protein, these findings implicate podosomes in normal development of the iridocorneal angle and the genes influencing podosomes as candidates in glaucoma. Because of the early-onset, high-penetrance glaucoma, nee mice offer many potential advantages as a new mouse model of the disease. PMID:21282566

  11. Anti-inflammatory activity of the leaf extacts of Gendarussa vulgaris Nees

    PubMed Central

    Saleem, TK Mohamed; Azeem, AK; Dilip, C; Sankar, C; Prasanth, NV; Duraisami, R

    2011-01-01

    Objective To evaluate the anti-inflammatory property of the leaf exacts of Gendarussa vulgaris (G. vulgaris) Nees. Methods G. vulgaris Nees of the family Apocynaceae is a medium sized tree grown in semishade or no shade and is common in the Ernad and Nilambur taluks of Kerala.Various parts of this plant have been used in the treatment of ulcers, sores, inflammation, dyspepsia, healing of wounds, etc. The present study aimed at the evaluation of anti-inflammatory property of the aqueous and alcoholic extracts of the leaves by both in vitro and in vivo methods. In vitro method was estimated by human red blood cell membrane stabilisation (HRBC) method and in vivo method was estimated on the carrageenan induced paw oedima. Results Both the methods showed significant anti-inflammatory property of the different extracts tested. Conclusions The alcoholic extract at a concentration of 300 mg/mL showed potent activity on comparing with the standard drug diclofenac sodium. PMID:23569746

  12. NEE and GPP dynamic evolution at two biomes in the upper Spanish plateau

    NASA Astrophysics Data System (ADS)

    Sánchez, María Luisa; Pardo, Nuria; Pérez, Isidro Alberto; García, Maria de los Angeles

    2014-05-01

    In order to assess the ability of dominant biomes to act as a CO2 sink, two eddy correlation stations close to each other in central Spain have been concurrently operational since March 2008 until the present. The land use of the first station, AC, is a rapeseed rotating crop consisting of annual rotation of non-irrigated rapeseed, barley, peas, rye, and sunflower, respectively. The land use of the second, CIBA, is a mixture of open shrubs/crops, with open shrubs being markedly dominant. The period of measurements covered variable general meteorological conditions. 2009 and 2012 were dominated by drought, whereas 2010 was the rainiest year. Annual rainfall during 2008 and 2009 was close to the historical averaged annual means. This paper presents the dynamic evolution of NEE-8d and GPP-8d observed at the AC station over five years and compares the results with those concurrently observed at the CIBA station. GGP 8-d estimates at both stations were determined using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MODIS, PAR in situ measurements, and a scalar f, varying between 0 and 1, to take account of the reduction in maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. f values were assumed to be dependent on air temperature and evaporative fraction, EF, which was considered a proxy of soil moisture. ɛ0, a key parameter, which depends on land use types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites observed and the LUE concurrent 8-d model estimates. Over the five-year study period, both biomes behaved as CO2 sinks. However, the ratio of the NEE-8d total accumulated at AC and CIBA, respectively, was close to a factor two, revealing the effectiveness of the studied crops as CO2 sinks. On an annual basis, accumulated NEE-8d exhibited major variability in both biomes. At CIBA, the results were largely dominated by the

  13. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers. PMID:25348874

  14. Epichloae infection in a native South African grass, Festuca costata Nees.

    PubMed

    McGranahan, D A; Burgdorf, R; Kirkman, K P

    2015-07-01

    Fungal endophytes have been documented in almost all terrestrial plant groups. Although the endophyte infection syndrome in agronomic cultivars is well studied, relatively little work addresses questions of spatial ecology and fire effects on epichloae endophyte infection in native grasses, and none, to our knowledge, in sub-Saharan Africa. We sampled seven populations of the native Festuca costata Nees along the spline of the Drakensberg range in South Africa at several spatial scales, including both recently burned and unburned stands. We tested epichloae presence and prevalence with immunoblot assays, PCR and genetic sequencing. We found epichloae endophytes were present and prevalent (38-98% infection rates depending on location). Variation in infection rates occurred primarily among locations, but also among bunches. There was little evidence that endophyte infection rates varied with fire. Novel evidence of epichloae infection of a native Festuca in South Africa opens the door to several new research questions, from the phylogenetic relationship between epichloae of sub-Saharan Africa and other continents to the ecological advantages or disadvantages that endophytes confer upon their hosts, especially in a fire-prone ecosystem vulnerable to global environmental change. PMID:25619128

  15. Clara Haber, nee Immerwahr (1870–1915): Life, Work and Legacy

    PubMed Central

    2016-01-01

    Abstract We examine the life, work, and legacy of Clara Haber, nee Immerwahr, who became the first woman to earn a doctorate from the University of Breslau, in 1900. In 1901 she married the chemist Fritz Haber. With no employment available for female scientists, Clara freelanced as an instructor in the continued education of women, mainly housewives, while struggling not to become a housewife herself. Her duties as a designated head of a posh household hardly brought fulfillment to her life. The outbreak of WWI further exacerbated the situation, as Fritz Haber applied himself in extraordinary ways to aid the German war effort. The night that he celebrated the “success” of the first chlorine cloud attack, Clara committed suicide. We found little evidence to support claims that Clara was an outspoken pacifist who took her life because of her disapproval of Fritz Haber's involvement in chemical warfare. We conclude by examining “the myth of Clara Immerwahr” that took root in the 1990s from the perspective offered by the available scholarly sources, including some untapped ones. PMID:27099403

  16. Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae).

    PubMed

    Komala, Ismiarni; Ito, Takuya; Nagashima, Fumihiro; Yagi, Yasuyuki; Asakawa, Yoshinori

    2010-10-01

    A drimane, (+)-drimenol (1), five known herbertanes, (-)-alpha-herbertenol (2), (-)-herbertenediol (3), mastigophorene A (4), (-)-mastigophorene C (5) and (-)-mastigophorene D (6), a pimarane, (-)-ent-pimara-8(14),15-dien-19-oic acid (7), and two eudesmanolides, (-)-diplophyllolide A (8) and (-)-diplophyllin (9) were isolated from the Tahitian Mastigophora diclados (Brid.) Nees. Herbertane sesquiterpenes (2, 3, 5 and 6) showed cytotoxicity against HL-60 and KB cell lines, radical scavenging activity and antimicrobial activity against Bacillus subtilis. (-)-Diplophyllolide A (8) also exhibited cytotoxicity against HL-60 and KB cell lines. PMID:20458547

  17. Potential NEE Budget and Prediction of Future Emissions under Climate Change in an Arctic Wet Sedge Tundra, Barrow, Alaska .

    NASA Astrophysics Data System (ADS)

    Kalhori, A. A. M.; Oechel, W. C.; Burba, G. G.; Gioli, B.; Zona, D.; Murphy, P.; Goodrich, J. P.

    2015-12-01

    Arctic ecosystems are critically affected by climate change and also play an important role in the global carbon budget. Presented here is a 14-year study of growing season CO2 fluxes in an Alaskan wet sedge tundra ecosystem -which is about 2 km south of the Arctic Ocean and is adjacent to the NOAA Climate Monitoring & Diagnostic Laboratory (CMDL)- and the key environmental controls on these fluxes. We have measured net ecosystem exchange of CO2 (NEE) using the eddy covariance technique from 1998 to 2014 in order to quantify the long-term seasonal and inter-annual variability in the CO2 budget over this period. The WPL correction and the surface heating correction were applied to all CO2 flux data from the open-path instrument (Burba et al., 2008). Despite several gaps in measurement years, we found that growing season net CO2 uptake has significantly increased since the 2000s and that NEE is sensitive to dry conditions in tundra. Our data suggest this increase in CO2 uptake (larger than -6 μmol m-2 s-1) occurred during the initial thawing period and during the June-August growing season. However, there is a decreasing trend in total summer uptake beginning in 2011, continuing until the end of 2014. The mean diurnal pattern for the summer period over the course of 14 years (Figure below), indicates inter-annual variability associated with the key environmental controls on these CO2 fluxes. Monthly trends in Photosynthetically Active Radiation (PAR), net radiation, relative humidity as well as air temperature and soil temperature have consistently simultaneous effects on the variation in NEE. More significant effect of PAR than temperature on summer NEE had been observed for the first period of this study, however our ANOVA, multiple regression and t-test results showed a stronger effect of temperature than PAR in the recent years assuming that Arctic warming will be greater than average global warming. Also the diurnal pattern shows that the maximum daily carbon

  18. NEES Tsunami "Product" Example : Standards and Guidelines for Construction of Coastal Structures.

    NASA Astrophysics Data System (ADS)

    Synolakis, C. E.; Eskijian, M.; Borrero, J. C.; McCarthy, D.

    2003-12-01

    heights, as well as impact loads from ships and floating debris. While small scale data on forces on piles and walls have been obtained in collaborative NSF-funded studies (Harry Yeh, pers. comm.), predictions from these data sets at prototype scales have yet to be validated. Also, no predictions for tsunami forces from numerical models have yet been compared with lab data. Large scale laboratory experiments planned under NEES will allow for the validation of numerical predictions for wave velocities and forces, the extrapolation from small scale lab experiments, and the translation of force predictions to construction standards. It is anticipated that the latter will include performance guidelines for the design of seawalls, wharfs, piers, and structures to mitigate both direct and indirect tsunamigenic losses. References Borrero, J.C., 2002, Analysis of Tsunami Hazards in Southern California, PhD thesis, USC, 262p. Eskijian, M.S. Heffron, R.E., Dahlgren, T., 2003.. Engineering Standards for Marine Oil Terminals, in Submarine Landslides and Tsunamis, Yacliner, A. et al (eds), NATO Science Series, Kluwer Academic Publishers. Yeh, H. Liu, P.L-F., Synolakis, Long Wave Runup Models, World Scientific. Marine Oil Terminal Engineering and Maintenance Standards, (MOTEMS), July 2003, published by the California State Lands Commission.

  19. An approach to assess NEE and C-costs associated with an energy-crop production at different erosion-induced transient states in a typical Northeastern Germany landscape using process-based agroecosystem modeling

    NASA Astrophysics Data System (ADS)

    Chatskikh, D.; Nendel, C.; Hagemann, U.; Specka, X.; Augustin, J.; Sommer, M.; Van Oost, K.

    2012-04-01

    Net Ecosystem Exchange (NEE) and C-costs associated with energy-crop production systems which are outside of NEE must be determined to suggest optimal mitigation options. In theory, NEE can be positive, if SOC is building up, neutral or balanced, with no change in SOC, or negative, if SOC is lost as a result of a soil degradation processes. Unclearness in complex multiscale interactions between different processes in the landscape in combination with a well-known wide range of uncertainties around NEE estimations makes these estimations for landscape scale scarce. In this study we used a process-based modeling to assess C-costs associated with soil erosion, assessing NEE at different erosion-induced transient states in the experiment settled Northeastern Germany (near Dedelow) in a representative section of younger landscape of hummocky ground moraine (CarboZALF-D). We used Monica, a soil-crop-atmosphere model, which is well-validated for various crops and soil in Germany. In the model, NEE (=-NEP) refer to NPP minus C losses in heterotrophic respiration, while NBE (=-NBP) refers to the change in SOC stocks after C losses due to regular (e.g. soil erosion) or occasional (e.g. harvest) disturbances. In this study we applied Monica to analyze relationships between past geomorphic processes, landscape position, crop growth and NEE. In this study we were interested in general trends and associated agroecosystem properties, rather than on magnitude of the fluxes. The results showed that past soil redistribution affected NEE at both positions, while the Monica-based scenarios in combination with data-based interpolations helped to interpret the NEE budgets. The model captured the magnitude of differences in the daily NEE values, but also the differences in an accumulated NEE fluxes between different erosion-induced transient states. Thus for both eroded and deposited positions NEE was negative. However absolute values of NEE were smaller for the deposited site compare to

  20. Comparing three methods of NEE-flux partitioning from the same grassland ecosystem: the 13C, 18O isotope approach and using simulated Ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Siegwolf, R.; Bantelmann, E.; Saurer, M.; Eugster, W.; Buchmann, N.

    2007-12-01

    As a change in the global climate occurs with increasing temperatures, the Carbon exchange processes of terrestrial ecosystems will change as well. However, it is difficult to quantify the degree to what ecosystem respiration will change relative to the CO2 uptake by photosynthesis. To estimate the carbon sequestration potential of terrestrial vegetation cover it is essential to know both fluxes: ecosystem respiration and the carbon uptake by the vegetation cover. Therefore the net ecosystem exchange of CO2 (NEE) was measured with the eddy covariance method and separated into assimilation and respiration flux. We applied three different approaches, 1) the conventional method, applying the nighttime relationship between soil temperature and NEE for calculating the respiration flux during the day, 2) the use of stable carbon and 3) oxygen isotopes. We compared the results of the three partitioning exercises for a temperate grassland ecosystem in the pre-Alps of Switzerland for four days in June 2004. The assimilation flux derived with the conventional NEE partitioning approach, was best represented at low PAR and low temperatures, in the morning between 5 and 9 am. With increasing temperature and PAR the assimilation for the whole canopy was underestimated. For partitioning NEE via 18O approach, correlations of temperature and radiation with assimilation and respiration flux were significantly higher for the partitioning approach with 18O than for the 13C NEE partitioning. A sensitivity analysis showed the importance of an accurate determination of the equilibrium term θ between CO2 and leaf water δ18O for the NEE partitioning with 18O. For using 13C to partition NEE, the correct magnitude of the 13C fractionation and for the respiration term is essential. The analysis of the data showed that for low light and low morning temperatures the conventional method delivers reasonably good results. When the temperatures exceeded 21°C the isotope approach provided the

  1. What have we Learned after a Decade of Experiments and Monitoring at the NEES@UCSB Permanently Instrumented Field Sites?

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Civilini, F.; Seale, S. H.; Hegarty, P.

    2013-12-01

    The Wildlife Liquefaction Array (WLA) and Garner Valley Downhole Array (GVDA) located in southern California are facilities that for the last decade have been supported under the National Science Foundations George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES) program. These densely instrumented geotechnical and structural engineering field sites continuously record both acceleration and pore pressure, with accelerometers located on the surface and at various depths below the surface, and pore pressure transducers installed at depth within the liquefiable layers. Permanently instrumented structures for examining soil-foundation-structure interaction and a permanent cross-hole array at the sites have transformed these sites into multi-disciplinary earthquake engineering research facilities. Over the last decade, local and regional seismic activity, including multiple extremely active earthquake swarms, have produced a valuable new data set providing a unique opportunity to observe site response and the evolution of pore pressure generation with time throughout the liquefiable layer at an unprecedented level of detail. In addition to the earthquakes provided by nature, active testing experiments using the mobile shakers from NEES@UTexas and NEES@UCLA have produced an equally valuable data set on both site characterization studies and soil-foundation-structure interaction. The new observations of pore pressure and acceleration with depth are providing in situ empirical evidence documenting the range of ground motion levels at which the onset of nonlinear behavior and excess pore pressure begins, augmenting previous case history data, and laboratory data from cyclic tri-axial and centrifuge testing. The largest static pore pressure increases observed in the 'NEES' decade of monitoring were generated by four events at the WLA site, ranging in magnitude from 4.6 to 5.4 and all at distances less than 10km from the site. The largest peak horizontal

  2. Evaluation of the Allelopathic Potential of Leaf, Stem, and Root Extracts of Ocotea pulchella Nees et Mart.

    PubMed

    Candido, Lafayette P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Gualtieri, Sonia C J; Macías, Francisco A

    2016-08-01

    Despite the increase in recent decades in herbicide research on the potential of native plants, current knowledge is considered to be low. Very few studies have been carried out on the chemical profile or the biological activity of the Brazilian savanna (Cerrado) species. In the study reported here, the allelopathic activity of AcOEt and MeOH extracts of leaves, stems, and roots from Ocotea pulchella Nees was evaluated. The extracts were assayed on etiolated wheat coleoptiles. The AcOEt leaf extract was the most active and this was tested on standard target species (STS). Lycopersicon esculentum and Lactuca sativa were the most sensitive species in this test. A total of eleven compounds have been isolated and characterized. Compounds 1, 2, 4, and 6 have not been identified previously from O. pulchella and ocoteol (9) is reported for the first time in the literature. Eight compounds were tested on wheat coleoptile growth, and spathulenol, benzyl salicylate, and benzyl benzoate showed the highest activities. These compounds showed inhibitory activity on L. esculentum. The values obtained correspond to the activity exhibited by the extract and these compounds may therefore be responsible for the allelopathic activity shown by O. pulchella. PMID:27482860

  3. Protective activity of andrographolide and arabinogalactan proteins from Andrographis paniculata Nees. against ethanol-induced toxicity in mice.

    PubMed

    Singha, Prajjal K; Roy, Somenath; Dey, Satyahari

    2007-04-20

    To find out the active principles against ethanol-induced toxicity in mice, Andrographis paniculata Nees. (Ap) was chosen and isolated andrographolide (ANDRO) and arabinogalactan proteins (AGPs). ANDRO was detected by HPTLC, FTIR and quantified by HPLC (10mg/g of Ap powder). AGPs was detected by beta-glucosyl Yariv staining of SDS-PAGE gel, FTIR and quantified by single radial gel diffusion assay with beta-glucosyl Yariv reagent (0.5mg/g Ap powder). The mice are pretreated intra-peritoneally (i.p.) with different doses (62.5, 125, 250, and 500mg/kg) of body weight of mice] of ANDRO and AGPs for 7 days and then ethanol (7.5g/kg of body weight) was injected, i.p. Besides, silymarin was used as standard hepatoprotective agent for comparative study with ANDRO and AGPs. The ameliorative activity of ANDRO and AGP against hepatic renal alcohol toxicity was measured by assessing GOT, GPT, ACP, ALP and LP levels in liver and kidney. It has been observed that pretreatment of mice with ANDRO and AGPs at 500mg/kg of body weight and 125mg/kg of body weight respectively could able to minimize the toxicity in compare to ethanol treated group as revealed by the different enzymatic assay in liver and kidney tissues and the results were comparable with silymarin. Hence, out of several ill-defined compounds present in Ap, ANDRO and AGPs are the potential bioactive compounds responsible for protection against ethanol-induced toxicity. PMID:17127022

  4. Coupling of Pore Pressure and Ground Motion: Further Studies using Data Recorded at the NEES@UCSB Wildlife Station

    NASA Astrophysics Data System (ADS)

    Seale, S. H.; Lavallee, D.; Archuleta, R. J.; Steidl, J. H.

    2012-12-01

    Pore pressure built up during an earthquake and the hazard associated with soil liquefaction present a major challenge for our society, as has been dramatically illustrated by recent large events (e.g. the 2011 Tohoku-oki, Japan, earthquake). There is consensus among scientists that a better assessment of the liquefaction risk requires a better understanding of the coupling between pore pressure and ground motion time histories. There is a basic need to investigate coupling as a function of the frequency content of the ground motion. The 2010 M7.2 El Mayor-Cucapah event has provided a remarkable opportunity to investigate and model the coupling. The event was well recorded at the NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with three-component strong-motion accelerometers at the surface and in boreholes at various depths and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore pressure and ground motion time histories both have frequency content that is a function of time. We have applied a wavelet decomposition technique to the El Mayor ground motion and pore pressure data, looking for a linear relationship between the signals. The analysis shows that the early P-wave accelerations (vertical component) initiate pore pressure response. However, the pore pressure records contain a low-frequency component that dominates the signal with no corresponding low-frequency component in the ground motion signals recorded near-by. Although uncommon, a similar behavior has been also reported in the literature for pore pressure signals recoded during the 1980 Mammoth Lakes, California, earthquake. We have extended this work to the analysis of 4 other seismic events that have induced an increase in pore pressure at WLA. As the response of pore pressure is potentially a local phenomenon, we have restricted our analysis to recordings from the same site. These events include the M5.8 Ocotillo

  5. Direct Analysis in Real Time by Mass Spectrometric Technique for Determining the Variation in Metabolite Profiles of Cinnamomum tamala Nees and Eberm Genotypes

    PubMed Central

    Singh, Vineeta; Gupta, Atul Kumar; Singh, S. P.; Kumar, Anil

    2012-01-01

    Cinnamomum tamala Nees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda. Several of its medicinal properties have recently been proved. To characterize diversity in terms of metabolite profiles of Cinnamomum tamala Nees and Eberm genotypes, a newly emerging mass spectral ionization technique direct time in real time (DART) is very helpful. The DART ion source has been used to analyze an extremely wide range of phytochemicals present in leaves of Cinnamomum tamala. Ten genotypes were assessed for the presence of different phytochemicals. Phytochemical analysis showed the presence of mainly terpenes and phenols. These constituents vary in the different genotypes of Cinnamomum tamala. Principal component analysis has also been employed to analyze the DART data of these Cinnamomum genotypes. The result shows that the genotype of Cinnamomum tamala could be differentiated using DART MS data. The active components present in Cinnamomum tamala may be contributing significantly to high amount of antioxidant property of leaves and, in turn, conditional effects for diabetic patients. PMID:22701361

  6. Long-term impacts of peatland restoration on the net ecosystem exchange (NEE) of blanket bogs in Northern Scotland.

    NASA Astrophysics Data System (ADS)

    Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit

    2016-04-01

    Unmanaged peatlands represent an important long-term C sink and thus play an important part of the global C cycle. Despite covering only 12 % of the UK land area, peatlands are estimated to store approximately 20 times more carbon than the UK's forests, which cover 13% of the land area. The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK, and one of the biggest in Europe, covering an area in excess of 4000 km2 and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), and water vapour (H2O). However, these peatlands underwent significant afforestation in the 1980s, when over 670 km2 of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole pine (Pinus contorta). This resulted in modifications to hydrology, micro-topography, vegetation and soil properties all of which are known to influence the production, emission and sequestration of key GHGs. Since the late 1990s restoration work has been carried out to remove forest plantations and raise water tables, by drain blocking, to encourage the recolonisation of Sphagnum species and restore ecosystem functioning. Here, we report findings of NEE and its constituent fluxes, GPP and Reco, from a study investigating the impacts of restoration on C dynamics over a chronosequence of restored peatlands. The research explored the role of environmental variables and microtopography in modulating land-atmosphere exchanges, using a multi-scale sampling approach that incorporated eddy covariance measurements with dynamic flux chambers. Key age classes sampled included an undrained peatland; an older restored peatland (17 years old); and a more recently restored site (12 years old). The oldest restored site showed the strongest uptake of C, with an annual assimilation rate of 858 g C m-2 yr-1 compared to assimilation rates of 501g C m-2 yr-1 and 575g C m-2 yr-1 from the younger restored site and

  7. Anti-Infective Metabolites of a Newly Isolated Bacillus thuringiensis KL1 Associated with Kalmegh (Andrographis paniculata Nees.), a Traditional Medicinal Herb

    PubMed Central

    Roy, Sudipta; Yasmin, Sahana; Ghosh, Subhadeep; Bhattacharya, Somesankar; Banerjee, Debdulal

    2016-01-01

    This study was conducted to isolate endophytic bacteria possessing anti-infective property from Kalmegh (Andrographis paniculata Nees.), a well-known medicinal plant. A total of 23 strains were isolated from this plant among which the strain KL1, isolated from surface-sterilized leaf of this medicinal herb, showed broad-spectrum antagonism against an array of Gram-positive and -negative bacterial pathogens. Ethyl acetate extract of KL1-fermented media yielded a greenish amorphous substance retaining anti-infective property. Solvent-extracted crude material was separated by thin-layer chromatography, and the active ingredient was located by autobiogram analysis. The purified anti-infective compound was found as anthracene derivative as analyzed by ultraviolet and Fourier transform infrared spectroscopy. The strain was identified as Bacillus thuringiensis KL1 from cultural, physiochemical, and molecular aspects. The above results indicate the pharmaceutical potential of the candidate isolate. PMID:26997870

  8. Anti-Infective Metabolites of a Newly Isolated Bacillus thuringiensis KL1 Associated with Kalmegh (Andrographis paniculata Nees.), a Traditional Medicinal Herb.

    PubMed

    Roy, Sudipta; Yasmin, Sahana; Ghosh, Subhadeep; Bhattacharya, Somesankar; Banerjee, Debdulal

    2016-01-01

    This study was conducted to isolate endophytic bacteria possessing anti-infective property from Kalmegh (Andrographis paniculata Nees.), a well-known medicinal plant. A total of 23 strains were isolated from this plant among which the strain KL1, isolated from surface-sterilized leaf of this medicinal herb, showed broad-spectrum antagonism against an array of Gram-positive and -negative bacterial pathogens. Ethyl acetate extract of KL1-fermented media yielded a greenish amorphous substance retaining anti-infective property. Solvent-extracted crude material was separated by thin-layer chromatography, and the active ingredient was located by autobiogram analysis. The purified anti-infective compound was found as anthracene derivative as analyzed by ultraviolet and Fourier transform infrared spectroscopy. The strain was identified as Bacillus thuringiensis KL1 from cultural, physiochemical, and molecular aspects. The above results indicate the pharmaceutical potential of the candidate isolate. PMID:26997870

  9. Does Casing Material Influence Downhole Accelerometer Recordings? a Controlled Study of Earthquake and Experimental Data Recorded at the NEES@UCSB Wildlife Liquefaction Array

    NASA Astrophysics Data System (ADS)

    Huthsing, D. A.; Seale, S. H.; Steidl, J. H.; Ratzesberger, H.; Hegarty, P.; Nees@Ucsb

    2010-12-01

    In 2004, NEES@UCSB outfitted the Wildlife Liquefaction Array (WLA) with new instrumentation and initiated an experiment to test whether casing material influences downhole recordings of strong ground motion. Two 5.5m boreholes were drilled meters apart. One of the boreholes was cased with traditional rigid PVC and the other with flexible Corex® drain pipe. Three-component strong-motion accelerometers were installed in both boreholes. Recently we have obtained a unique set of data at WLA that has allowed us to conduct a controlled study. On 15 June 2010, a Mw 5.7 event occurred near Ocotillo, CA, 57 km SW from WLA. A set of 60 aftershocks with M > 3.0 were recorded at WLA with good signal-to-noise ratio. These data are ideal for our study, as the events are approximately co-located relative to the site and they have similar focal mechanisms. We computed frequency spectra for the three components of motion for these events and we computed average spectral ratios between the data in the two boreholes. The spectral ratios are not flat ( = 1): certain frequencies within the range of engineering interest ( f < 20 Hz) recorded in the flexible borehole show amplification and damping relative to the recordings from the rigid borehole. An amplification factor of 1.4 is the maximum in this frequency range. In May 2010, NEES@UTexas visited WLA with the vibroseis truck T-Rex. We have performed spectral analysis of borehole recordings from 30 T-Rex pulses with frequencies ranging from 3 to 16 Hz. We present these spectral ratios for comparison with the ones computed from earthquake data.

  10. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    PubMed

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  11. Dehydroandrographolide, an iNOS inhibitor, extracted from from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-01-01

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  12. Soil transfers from valley oak (Quercus lobata Nee) stands increase ectomycorrhizal diversity and alter root and shoot growth on valley oak seedlings.

    PubMed

    Berman, J T; Bledsoe, C S

    1998-02-01

    Soils from valley oak (Quercus lobata Nee) riparian areas of the Cosumnes River Nature Conservancy Preserve near Sacramento, California were added to growth medium of valley oak seedlings grown in a greenhouse or in agricultural fields at Cosumnes which probably once supported valley oak trees and are now replanted with native riparian vegetation or allowed to revegetate naturally. Agricultural field soil from the Cosumnes River Preserve was presumed to be low or lacking in ectomycorrhizal inoculum. The study was designed to (1) determine whether valley oak stand soil transfer could cause mycorrhizal infection on valley oak seedlings in an agricultural field and in a greenhouse, (2) describe ectomycorrhizal morphological types formed on valley oak seedlings, and (3) determine whether seedling growth is enhanced more by transfer of natural valley oak stand soil than agricultural field soil. In the field study, transfer of forest soil increased average ectomycorrhizal diversity (2.4 types) more than transfer of agricultural field soil (1.2 types). Valley oak seedlings were responsive to ectomycorrhizal infection in the field study. With increase in mycorrhizal infection there was an increase in shoot growth at the expense of root growth. In the greenhouse study, both percent mycorrhizal infection and mycorrhizal diversity were increased more by transfer of oak forest and woodland soils than agricultural field soil. Eight morphotypes occurred on seedlings in forest and woodland soils but only three morphotypes in agricultural soil. This result strongly suggests that the agricultural field also harbors ectomycorrhizal propagules but forest and woodland soils support a more abundant and diverse ectomycorrhizal flora. PMID:24578047

  13. Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone from Lindera pulcherrima (Nees.) Benth. ex hook. f.

    PubMed Central

    Joshi, Subhash C.; Mathela, Chandra S.

    2012-01-01

    Background: Lindera pulcherrima (Nees.) Benth. ex Hook. f. (Family: Lauraceae), an evergreen shrub, is an important medicinal plant distributed in temperate Himalayan regions. The leaves and bark are used as spice in cold, fever, and cough. Materials and Methods: In this study, the terpenoid composition, antioxidant, and antibacterial activities of the leaf essential oil and its major constituents are being analyzed. Conclusion: The in vitro antioxidant activity showed a potent free radical scavenging activity for the essential oil as evidenced by a low IC50 value for DPPH radical followed by furanodienone (0.087 ± 0.03 and 1.164 ± 0.58 mg/ml respectively) and the inhibition of lipid peroxidation for the oil and furanodienone also followed the same order (IC50 0.74 ± 0.13 and 2.12 ± 0.49 mg/ml, respectively). The oil and the constituents were also tested against three Gram negative (Escherichia coli, Salmonella enterica enterica, and (Pasturella multocida) and one Gram positive (Staphylococcus aureus) bacteria. The essential oil was effective against S. aureus (IZ = 19.0 ± 0.34; MIC 3.90 μl/ml) while furanodienone showed potent activity against E. coli and S. enterica enterica (IZ = 18.0 ± 0.14 and 16.0 ± 0.10 respectively). On the other hand, curzerenone was found to be slightly effective against E. coli (IZ = 10.8 ± 0.52). The MIC value of the essential oil was least against S. aureus (MIC = 3.90 μl/ml) and that of furanodienone against E. coli (MIC = 3.90 μl/ml). PMID:22518079

  14. Hybrid analysis (barcode-high resolution melting) for authentication of Thai herbal products, Andrographis paniculata (Burm.f.) Wall.ex Nees

    PubMed Central

    Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis

    2016-01-01

    Background: Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Materials and Methods: High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. Results: The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. Conclusion: The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. SUMMARY We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily

  15. Coupling of Pore Pressure and Ground Motion Data Recorded During the 2010 El Mayor-Cucapah (Baja California) Earthquake at the NEES@UCSB Wildlife Station

    NASA Astrophysics Data System (ADS)

    Lavallee, D.; Seale, S. H.; Steidl, J. H.

    2011-12-01

    Pore pressure built up during an earthquake and the hazard associated with soil liquefaction present a major challenge for our society, as was dramatically displayed during the 2011 Higashi Nihon Daishinsai (Tohoku-oki, Japan) earthquake. Currently, there is a consensus among scientists that a better assessment of the risk associated with liquefaction requires a better understanding of the coupling between pore pressure time histories and ground motion time histories. Specifically, there is a basic need to investigate the coupling as a function of the frequency content of the ground motion. The 2010 El Mayor-Cucapah (Baja California) earthquake (M 7.2) provides a remarkable opportunity to undertake such an investigation and lay the basis to model the coupling. The event was well recorded at the NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with three-component strong-motion accelerometers at the surface and in boreholes at various depths and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore pressure and ground motion time histories are both characterized by a frequency content that is a function of time. A wavelet representation is a natural approach to investigate non-stationary time histories. To study the coupling between two signals we use the following procedure: We first compute the wavelet coefficients associated with the two signals. Then we compute the correlation between the wavelet coefficients of the two signals as a function of the frequency. Correlation coefficients provide information about the degree of linear dependence between the two signals. To account for the presence of multiplicative constants relating the wavelet coefficients of the first signal to the wavelet coefficients of the second signal, we compare the square norm of the wavelet coefficients of the two signals for the available frequency range. Additionally, investigating the distribution of the square

  16. Ho-Nee-Um Trail.

    ERIC Educational Resources Information Center

    Irwin, Harriet; And Others

    Appreciation and concern for the preservation of our natural resources by all citizens is the primary concern of this teacher's guide for use in the elementary grades. It employes the use of a filmstrip in conjunction with a local nature trail, to guide students in developing awareness - by looking closely, listening, touching, and smelling. Major…

  17. Influence of protein type and level on nitrogen and forage use in cows consuming low-quality forage.

    PubMed

    Sawyer, J E; Mulliniks, J T; Waterman, R C; Petersen, M K

    2012-07-01

    Minimal quantities of ruminally degradable protein from supplements may improve supplement use efficiency of ruminants grazing dormant forages. In Exp. 1, N retention, ruminal NH(3), serum urea N, and NDF digestibility were evaluated for 12 ruminally cannulated cows (Bos spp.) in an incomplete Latin Square design with 3 periods of 42 d each. Cows were fed weeping lovegrass [Eragrostis curvula (Schrad.) Nees] hay (4.1% CP, 75% NDF, OM basis) at 1.3 % BW/d and offered 1 of 3 sources of CP [urea, cottonseed (Gossypium spp.) meal (CSM); or 50% blood meal and 50% feather meal combination (BFM)] fed to supply 0, 40, 80, or 160 g/d of CP. Beginning on d 22 of supplementation, ruminal contents and serum samples were collected at -2, 0, 3, 6, 9, 12, 18, 24, 30, 36, and 48 h relative to the morning offering of hay. On Day 24, feces and urine were collected for 72 h. In Exp. 2, 4 ruminally cannulated steers were used in a replicated 4 by 4 Latin Square to evaluate use of supplements differing in quantity and ruminal CP degradability. Steers were fed 6.8 kg/d chopped sudangrass [Sorghum bicolor (L.) Moench nothosubsp. drummondii (Steud.) de Wet ex Davidse] hay (3.7% CP, 74% NDF on OM basis) and supplemented with 56 g/d of a salt mineral mix (CON); CON + 28 g/d blood meal + 28 g/d feather meal (BFM); CON + 98 g/d CSM (LCS); or CON + 392 g/d CSM (HCS). Treatments provided 0, 40, 40, or 160 g/d of CP for CON, BFM, LCS, and HCS respectively. In Exp. 1, N use and total tract NDF digestibility were not affected by protein sources or amounts (P ≥ 0.18). Ruminal NH(3) concentrations exhibited a quadratic response over time for UREA (P < 0.05) and was greater with increasing inclusion of urea (P < 0.05); whereas BFM or CSM did not differ (P > 0.05) by amount or across time. In Exp. 2, supplementation had a tendency (P = 0.09) to increase DM disappearance. Supplementation also increased (P < 0.01) serum glucose concentrations; however, no difference (P ≥ 0.28) was found between

  18. Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad.

    PubMed

    Chawech, Rachid; Jarraya, Raoudha; Girardi, Cynthia; Vansteelandt, Marieke; Marti, Guillaume; Nasri, Imen; Racaud-Sultan, Claire; Fabre, Nicolas

    2015-01-01

    Two new tetracyclic cucurbitane-type triterpene glycosides were isolated from an ethyl acetate extract of Citrullus colocynthis leaves together with four known cucurbitacins. Their structures were established on the basis of their spectroscopic data (mainly NMR and mass spectrometry). Evaluation of the in vitro cytotoxic activity of the isolated compounds against two human colon cancer cell lines (HT29 and Caco-2) and one normal rat intestine epithelial cell line (IEC6), revealed that one of the isolated compounds presented interesting specific cytotoxic activity towards colorectal cell lines. PMID:26437392

  19. A review on antidiabetic activity of Citrullus colocynthis Schrad.

    PubMed

    Shi, Chenghe; Karim, Sabiha; Wang, Chunyong; Zhao, Mingjing; Murtaza, Ghulam

    2014-01-01

    Current studies have elaborated diabetes mellitus as one of the most prevalent endocrine disorder throughout the world. Citrullus colocynthis (C. colocynthis) is one of the most common traditional plants used as remedy against diabetes mellitus. It is well recognized by its hypoglycemic effect, which is substantiated in current phytotherapy. Its undesired effects include the disturbance of gastrointestinal and urinary tracts. This review article encompasses various blood glucose lowering studies that have been carried out till date. Various parts of plants used in extract preparation were roots, fruits, seeds, rinds and leaves. The nature of these extracts was ethnolic, methanolic, or aqueous and their doses varied from 10 to 500 mg/kg body weight/day. All these published articles elaborate C. colocynthis as a potential antiglycemic medicinal plant. PMID:25265814

  20. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees--a multi-medicinal herb.

    PubMed

    Behera, P R; Nayak, P; Barik, D P; Rautray, T R; Thirunavoukkarasu, M; Chand, P K

    2010-12-01

    The multi-elemental composition of in vitro--proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources. PMID:20637644

  1. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. PMID:25675944

  2. Estimating Seasonal Cycles of Atmospheric CO2 and APO Resulting from Terrestrial NEE and Air-Sea O2 Fluxes using the Transcom T3L2 Pulse-Response Functions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2011-12-01

    We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding annual mean cycles in atmospheric CO2. The method is based on the pulse-response functions from the Transcom 3 atmospheric tracer transport model (ATM) intercomparison. An oceanic version of the method is applied to air-sea O2 fluxes to estimate the corresponding annual mean cycles in atmospheric potential oxygen (APO). The estimated atmospheric seasonal cycles can be evaluated against observed atmospheric CO2 and APO data, which are measured at high precision at a wide range of monitoring sites and reflect the integrated impact of surface CO2 and O2 fluxes, respectively, across broad regions. The pulse-response function method is considerably faster than a full forward ATM simulation, allowing seasonal cycles from 13 different ATMS to be computed in minutes, rather than the days or weeks required for a single forward simulation. We evaluate the method against the results of full forward ATM simulations and examine the uncertainties associated with neglecting additional surface fluxes, e.g., from fossil fuel combustion, that may contribute to the observed seasonal cycles of CO2 and APO.

  3. Fermi (nee GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steve

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  4. Confessions of a Professor, nee Actor.

    ERIC Educational Resources Information Center

    Soenksen, Roger

    Relying on key characteristics of teaching excellence documented by research in higher education, a college professor details how personal undergraduate stage-acting experience helped to develop his teaching. The following comparisons are illuminating: (1) students distinguish professors' interest and enthusiasm toward their subjects as an…

  5. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad

    PubMed Central

    2011-01-01

    Background An increasingly common application is the use of silver nanoparticles for antimicrobial coatings, wound dressings, and biomedical devices. In this present investigation, we report, biomedical potential of silver nanopaticles synthesized from calli extract of Citrullus colocynthis on Human epidermoid larynx carcinoma (HEp -2) cell line. Methods The callus extract react with silver nitrate solution confirmed silver nanoparticles synthesis through the steady change of greenish colour to reddish brown and characterized by using FT-IR, AFM. Toxicity on HEp 2 cell line assessed using MTT assay, caspase -3 assay, Lactate dehydrogenase leakage assay and DNA fragmentation assay. Results The synthesized silver nanoparticles were generally found to be spherical in shape with size 31 nm by AFM. The molar concentration of the silver nanoparticles solution in our present study is 1100 nM/10 mL. The results exhibit that silver nanoparticles mediate a dose-dependent toxicity for the cell tested, and the silver nanoparticles at 500 nM decreased the viability of HEp 2 cells to 50% of the initial level. LDH activities found to be significantly elevated after 48 h of exposure in the medium containing silver nanoparticles when compared to the control and Caspase 3 activation suggested that silver nanoparticles caused cell death through apoptosis, which was further supported by cellular DNA fragmentation, showed that the silver nanoparticles treated HEp2 cells exhibited extensive double strand breaks, thereby yielding a ladder appearance (Lane 2), while the DNA of control HEp2 cells supplemented with 10% serum exhibited minimum breakage (Lane 1). This study revealed completely would eliminate the use of expensive drug for cancer treatment. PMID:21943321

  6. Water uptake, priming, drying and storage effects in Cassia excelsa Schrad seeds.

    PubMed

    Jeller, H; Perez, S C; Raizer, J

    2003-02-01

    The aims of this study were to evaluate the effects of osmotic potential on the water uptake curve in Cassia excelsa seeds and use the results to analyze the effects of dehydration and storage on primed seed germination. Seeds were imbibed in distilled water and polyethylene glicol (PEG 6000) osmotic solutions at -0.2, -0.4, and -0.6 MPa, at 20 degrees C. The radicle emergence and seed moisture content were evaluated at 6-hour intervals during 240 hours. Afterwards, seeds were primed in distilled water and PEG 6000 solutions at -0.2, -0.4, and -0.6 MPa for 48, 72, 96, and 168 hours at 20 degrees C, followed by air drying and storage for 15 days at 5 degrees C. The lower the osmotic potential, the higher the time required for priming. The osmoconditioning yields benefits with PEG solutions at 0.0 and -0.2 MPa; seed improvements were maintained during storage for 15 days at 5 degrees C, but were reverted by seed drying. PMID:12914415

  7. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm. PMID:22540530

  8. Oil and fatty acid content in seed of Citrullus lanatus Schrad.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intact seed of 475 genebank accessions of Citrullus (C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of Citrullus lanatus (30 var. citroides, 33 var. lanatus and 33 egusi), Citrullus colocynthis (n =...

  9. Exploring Ho-Nee-Um in the Spring.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Appreciation and concern for the preservation of our natural resources by all citizens is the primary concern of this teacher's guide for use in grades three and four. It employs the use of a filmstrip in conjunction with a local nature trail, to guide students in developing awareness--by looking closely, listening, touching, and smelling. The…

  10. A Winter Walk at Ho-Nee-Um.

    ERIC Educational Resources Information Center

    Irwin, Harriet; And Others

    Appreciation and concern for the preservation of our natural resources by all citizens is the primary concern of this teacher's guide for use in the lower primary grades. It employs the use of a filmstrip in conjunction with a local nature trail, to guide students in developing awareness - by looking closely, listening, touching, and smelling. The…

  11. Evaluation of central nervous system effects of iso-6-cassine isolated from Senna spectabilis var. excelsa (Schrad) in mice.

    PubMed

    Silva, Fábio de Oliveira; Silva, Maria Goretti de Vasconcelos; Feng, Dejiang; de Freitas, Rivelilson Mendes

    2011-03-01

    The depressant and anticonvulsant activities of iso-6-cassine (ISO) from Senna spectabilis (0.5, 1.0 and 1.5mg/kg) injected by oral route in mice caused a significant decrease in the motor activity of animals when compared with the control group, up to 30 days after the administration and at dose of 1.5mg/kg, it reduced the remaining time of animals on Rota-rod apparatus. Additionally, ISO at doses tested was also capable to promote an increase of latency for development of convulsions induced by pentylenetetrazole and picrotoxin. These results suggest possible depressant and anticonvulsant activities in mice that need further investigation. PMID:20940032

  12. High efficient somatic embryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones.

    PubMed

    Ramakrishna, D; Shasthree, T

    2016-04-01

    We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L(-1) BAP + 1.0 mg L(-1) 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L(-1) BAP + 0.5 mg L(-1) NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot. PMID:27436919

  13. Antiinflammatory, Diuretic and Antimicrobial Activities of Rungia pectinata Linn. and Rungia repens Nees

    PubMed Central

    Swain, S. R.; Sinha, B. N.; Murthy, P. N.

    2008-01-01

    The hydroalcoholic extracts prepared from leaves of Rungia pectinata and Rungia repens were investigated for antiinflammatory and diuretic activity in wistar rats. The results obtained were compared with that of standard drug aspirin and frusemide for their antiinflammatory and diuretic activity respectively. The acute toxicity study was also carried out using adult swiss albino mice of either sex which indicates the safety of the extracts even at a dose of 4000 mg/kg. R. pectinata showed better anti-inflammatory activity than R. repens. In the present study, it was demonstrated that hydroalcoholic extracts of both R. repens and R. pectinata produce diuretic effect by increasing the excretion of Na+, K+ and Cl−. Results showed that R. repens is most effective in increasing urinary electrolyte concentration of Na+ and K+ ions. The antimicrobial potency of the aerial parts of Rungia pectinata and Rungia repens have been studied using the petroleum ether, benzene, chloroform, acetone and ethanol extract against a wide number of bacteria and fungi by disc diffusion method. The ethanol extract at a concentration of 30 to 60 μg/disc showed significant activity against the bacteria and fungus investigated. All the extracts of R. pectinata and R. repens have got moderate action but chloroform and acetone extracts of R. repens and ethanol extract of R. pectinata have got significant activity against Trichophyton mentagrophytes. PMID:21394276

  14. [Principles and Methods for Formulating National Standards of "Regulations of Acupuncture-nee- dle Manipulating techniques"].

    PubMed

    Gang, Wei-juan; Wang, Xin; Wang, Fang; Dong, Guo-feng; Wu, Xiao-dong

    2015-08-01

    The national standard of "Regulations of Acupuncture-needle Manipulating Techniques" is one of the national Criteria of Acupuncturology for which a total of 22 items have been already established. In the process of formulation, a series of common and specific problems have been met. In the present paper, the authors expound these problems from 3 aspects, namely principles for formulation, methods for formulating criteria, and considerations about some problems. The formulating principles include selection and regulations of principles for technique classification and technique-related key factors. The main methods for formulating criteria are 1) taking the literature as the theoretical foundation, 2) taking the clinical practice as the supporting evidence, and 3) taking the expounded suggestions or conclusions through peer review. PMID:26502549

  15. Andrographis paniculata (Burm. f.) Wall. ex Nees: A Review of Ethnobotany, Phytochemistry, and Pharmacology

    PubMed Central

    Sule, Abubakar; Rahman, K. M. Hafizur

    2014-01-01

    As aboriginal sources of medications, medicinal plants are used from the ancient times. Andrographis paniculata is one of the highly used potential medicinal plants in the world. This plant is traditionally used for the treatment of common cold, diarrhoea, fever due to several infective cause, jaundice, as a health tonic for the liver and cardiovascular health, and as an antioxidant. It is also used to improve sexual dysfunctions and serve as a contraceptive. All parts of this plant are used to extract the active phytochemicals, but the compositions of phytoconstituents widely differ from one part to another and with place, season, and time of harvest. Our extensive data mining of the phytoconstituents revealed more than 55 ent-labdane diterpenoids, 30 flavonoids, 8 quinic acids, 4 xanthones, and 5 rare noriridoids. In this review, we selected only those compounds that pharmacology has already reported. Finally we focused on around 46 compounds for further discussion. We also discussed ethnobotany of this plant briefly. Recommendations addressing extraction process, tissue culture, and adventitious rooting techniques and propagation under abiotic stress conditions for improvement of phytoconstituents are discussed concisely in this paper. Further study areas on pharmacology are also proposed where needed. PMID:25950015

  16. Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation, and marker discovery

    PubMed Central

    Singh, Harpal; Rai, Krishan Mohan; Upadhyay, Santosh Kumar; Pant, Poonam; Verma, Praveen Chandra; Singh, Ajit Pratap; Singh, Pradhyumna Kumar

    2015-01-01

    Bryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.5 million reads with ~195 Mb data were generated by sequencing of mRNA using 454 pyrosequencer. De novo assembly of reads yielded 85,240 unigenes (12,439 contigs and 72,801 singletons). BlastX search at NCBI-NR database showed similarity of 33,662 unigenes with 10-10 e-value. A total of 23,685 unigenes were annotated at TAIR10 protein database. The annotated unigenes were further classified using the Gene Ontology. Analysis at Kyoto Encyclopedia of Genes and Genomes pathway database identified 95 pathways with significant scores, among which metabolic and biosynthesis of secondary metabolite were the major ones. Phenylpropanoid pathway was elucidated and selected genes were characterized by real time qPCR. We identified 447 transcription factors belonging to 41 families and 1594 eSSRs in 1479 unigenes. D. hirsuta unigenes showed homology across the taxa from algae to angiosperm indicating their role as the connecting link between aquatic and terrestrial plants. This could be a valuable genomic resource for molecular and evolutionary studies. Further, it sheds light for the isolation and characterization of new genes with unique functions. PMID:26481431

  17. Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) Variant

    PubMed Central

    Li, Hui; Borinskaya, Svetlana; Yoshimura, Kimio; Kal’ina, Nina; Marusin, Andrey; Stepanov, Vadim A.; Qin, Zhendong; Khaliq, Shagufta; Lee, Mi-Young; Yang, Yajun; Mohyuddin, Aisha; Gurwitz, David; Mehdi, Syed Qasim; Rogaev, Evgeny; Jin, Li; Yankovsky, Nikolay K.; Kidd, Judith R.; Kidd, Kenneth K.

    2010-01-01

    Summary Mitochondrial aldehyde dehydrogenase (ALDH2) is one of the most important enzymes in human alcohol metabolism. The oriental ALDH2*504Lys variant functions as a dominant negative greatly reducing activity in heterozygotes and abolishing activity in homozygotes. This allele is associated with serious disorders such as alcohol liver disease, late onset Alzheimer disease, colorectal cancer, and esophageal cancer, and is best known for protection against alcoholism. Many hundreds of papers in various languages have been published on this variant, providing allele frequency data for many different populations. To develop a highly refined global geographic distribution of ALDH2*504Lys, we have collected new data on 4,091 individuals from 86 population samples and assembled published data on a total of 80,691 individuals from 366 population samples. The allele is essentially absent in all parts of the world except East Asia. The ALDH2*504Lys allele has its highest frequency in Southeast China, and occurs in most areas of China, Japan, Korea, Mongolia, and Indochina with frequencies gradually declining radially from Southeast China. As the indigenous populations in South China have much lower frequencies than the southern Han migrants from Central China, we conclude that ALDH2*504Lys was carried by Han Chinese as they spread throughout East Asia. Esophageal cancer, with its highest incidence in East Asia, may be associated with ALDH2*504Lys because of a toxic effect of increased acetaldehyde in the tissue where ingested ethanol has its highest concentration. While the distributions of esophageal cancer and ALDH2*504Lys do not precisely correlate, that does not disprove the hypothesis. In general the study of fine scale geographic distributions of ALDH2*504Lys and diseases may help in understanding the multiple relationships among genes, diseases, environments, and cultures. PMID:19456322

  18. Piptochaetium fuscum (Nees ex Steud.) Barkworth, Ciald., & Gandhi, a new combination replacing Piptochaetium setosum (Trin.) Arechav.

    PubMed Central

    Barkworth, Mary E.; Cialdella, Ana María; Gandhi, Kanchi

    2014-01-01

    Abstract A new name, Piptochaetium fuscum, is provided for a taxon hitherto known as Piptochaetium setosum (Trin.) Arechav. Morphological, anatomical, and molecular studies that argue against including Piptochaetium in Stipa, and hence use of S. purpurata (Phil.) Columbus & J.P. Sm., are cited. PMID:24843286

  19. Ni Zhisinisszi. Nee Nahnah Aideenau (I Speak Cheyenne. I Speak Arapaho).

    ERIC Educational Resources Information Center

    Berlin, William

    This is a primary-level reader to be used in connection with a bilingual education program. The story is preceded by a pronunciation guide, which lists Cheyenne and Arapaho sound symbols and their approximate English equivalents. Each illustrated page contains a Cheyenne and an Arapaho caption with an English translation. (AM)

  20. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    PubMed Central

    Chan, Pui-Mun; Kanagasabapathy, Gowri; Tan, Yee-Shin; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani

    2013-01-01

    Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131) from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE), its hexane (HF), ethyl acetate (EAF), and aqueous (AF) fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders. PMID:24371454

  1. A Classical Genetic Solution to Enhance the Biosynthesis of Anticancer Phytochemicals in Andrographis paniculata Nees

    PubMed Central

    Talei, Daryush; Abdul Kadir, Mihdzar; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides. PMID:24586262

  2. Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation, and marker discovery.

    PubMed

    Singh, Harpal; Rai, Krishan Mohan; Upadhyay, Santosh Kumar; Pant, Poonam; Verma, Praveen Chandra; Singh, Ajit Pratap; Singh, Pradhyumna Kumar

    2015-01-01

    Bryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.5 million reads with ~195 Mb data were generated by sequencing of mRNA using 454 pyrosequencer. De novo assembly of reads yielded 85,240 unigenes (12,439 contigs and 72,801 singletons). BlastX search at NCBI-NR database showed similarity of 33,662 unigenes with 10-(10) e-value. A total of 23,685 unigenes were annotated at TAIR10 protein database. The annotated unigenes were further classified using the Gene Ontology. Analysis at Kyoto Encyclopedia of Genes and Genomes pathway database identified 95 pathways with significant scores, among which metabolic and biosynthesis of secondary metabolite were the major ones. Phenylpropanoid pathway was elucidated and selected genes were characterized by real time qPCR. We identified 447 transcription factors belonging to 41 families and 1594 eSSRs in 1479 unigenes. D. hirsuta unigenes showed homology across the taxa from algae to angiosperm indicating their role as the connecting link between aquatic and terrestrial plants. This could be a valuable genomic resource for molecular and evolutionary studies. Further, it sheds light for the isolation and characterization of new genes with unique functions. PMID:26481431

  3. Revegetation on a coal fine ash disposal site in South Africa

    SciTech Connect

    Van Rensburg, L.; De Sousa Correia, R.I.; Booysen, J.; Ginster, M.

    1998-11-01

    Eight medium amendments were conducted on top of a fine ash coal dump (i) to evaluate a few cost-effective treatments that could determine the minimum fertility status required for the local ash to support the establishment of a viable vegetation cover, and (ii) to select suitable grass species that would establish on the ash and could serve as a foundation for long-term rehabilitation. Degree and success of grass establishment per medium amelioration treatment is expressed in terms of total biomass, percentage basal cover, and in terms of a condition assessment model. Both the chemical and physical nature of the ash medium before and after amendment was characterized, as were the concentrations of some essential and potentially toxic elements in leaf samples. In terms of medium amelioration 5000 kg ha{sup {minus}1} compost, or 500 kg ha{sup {minus}1} kraal manure or 480 kg 2:3:2 ha{sup {minus}1} proved to be most effective. The grass species that occurred with the highest frequency, irrespective of treatment, were the perennials bermudagrass [Cynodon dactylon (L.) pers. var dactylon], weeping lovegrass [Eragrostis curvula (Schrader) Nees], and the annual teff [Eragrostis tef (Zuccagni) Trotter]. Of the potentially toxic extractable metals monitored in the leaves of vegetation on the dump, only Se accumulated to an average level of 4.4 mg kg{sup {minus}1} that could be toxic to livestock.

  4. Na-22, Ne-E, extinct radioactive anomalies and unsupported Ar-40. [in cooling ejecta of explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1975-01-01

    The possibility that the origin of extinct radioactivities depended on their living long enough for grains to form in the expanding nucleosynthetic envelope, rather than on their living long enough for meteorites to form, is examined. As an example, the interpretation of Na-22 as a detectable extinct radioactivity, with a half life of only 2.6 years, is explored and related to Ne-22 occurrence. Similar arguments involving He-4, Ar-40, K-40, K-41, and calcium, titanium, chromium, manganese, iron, nickel, and cobalt isotopes are briefly presented.

  5. BIOASSAY-GUIDED FRACTIONATION AND ANTIHYPERTENSIVE PROPERTIES OF FRACTIONS AND CRUDE EXTRACTS OF PERISTROPHE BICALYCULATA (RETZ) NEES.

    PubMed

    Abdulazeez, Mansurah A; Ibrahim, Sani; Ameh, Danladi A; Ameh, Danladi Amodu; Ayo, Joseph O; Carvalho, Luiz J C B; Manosroi, Jiradej; Ibrahim, Abdulrazak B

    2015-01-01

    Hypertension is an important public health issue in both developed and developing countries due to its high incidence and morbidity. This has motivated researchers especially in developing countries to search for strategies for the treatment using different plant parts. The use of the aqueous decoction of the leaves of Peristiophe bicalyculata in the treatment of hypertension has been documented. This study was designed to carry out a bioassay-guided isolation of the antihypertensive components of the leaves of Peristrophe bicalyculata in L-NAME hypertensive rats, determine the angiotensin-converting enzyme inhibitory activity of the extracts and fractions obtained and identify the constituent(s) present. From our results, L-NAME hypertensive rats given the cold water extract had significantly (p < 0.05) lower mean arterial blood pressure (MABP) with longer duration of action than other extracts. Also, the angiotensin-converting enzyme inhibitory activity of the cold water extract was significantly (p < 0.05) higher than that of other extracts. From the GC-MS analysis of the most effective fraction (fraction 4), P,P,P-triphenyl-imino(triphenyl)phosphorane and andrographolide 2(3H)-furanone were identified among others. The present work demonstrates the hypotensive effect of the cold water extract of Peiistiophe bicalyculata on L-NAME hypertensive rats, which further justifies the folkloric application of extracts of the plant in the management as well as treatment of hypertension. PMID:26642682

  6. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Abiri, Rambod

    2015-01-01

    Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m(-1) led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future. PMID:25384250

  7. Road systems, land use, and related patterns of valley oak (Quercus lobata Nee) populations, seedling recruitment, and herbivory

    NASA Astrophysics Data System (ADS)

    Kuhn, Bill Ahlering

    This research investigates the interactions of road systems and land use on the population dynamics and recruitment of a long-lived tree in Mediterranean climate California. In the case of Valley oak (Quercus lobata), habitat conversion and limited recruitment of new individuals has resulted in widespread declines throughout Santa Barbara County and California. This pattern contrasts with high recruitment rates along roadsides, offering a unique opportunity to examine the effects of roads on the population dynamics of a native species. The pattern of roadside recruits is described, mapped, and a complete survey of the biophysical environment along 109 kilometers of road was conducted. The biophysical factors of the road and road system were of four types: (1) the general roadside environment; (2) the acorn supply; (3) a measure of ungulate deterrence; and, (4) roadside management. Seven individual or aggregate factors were then related to the pattern of seedling and sapling densities along roads. Univariate analysis and regression trees determined that acorn supply and total woody cover within the roadside plots explained 49% of the variation in Valley oak seedling densities. These results support the conclusion that the recruitment pattern is due to the roadsides serving as refugia from browsers (cattle and deer). The change in Valley oak populations within roadsides, croplands, rangelands, and urban/suburban lands over a 59 year period is examined using georeferenced aerial photos from 1938 and 1997. While population per capita growth rates were less than one (declining) within both rangelands and croplands, rates were greater than one (increasing) in urban/suburban populations. While roadside growth rates were even higher than those in urban/suburban areas, high variance resulted in a rate neither positive nor negative. Finally, seedlings were planted along roadsides and within adjacent grazed and ungrazed uplands to test browsing pressure. Seedlings within roadsides experienced significantly less browsing than those within the adjacent lands, lending support to the theory that roadsides provide refugia from browsing for Valley oak. Results are important for a deeper understanding of the causes and consequences of human land use and for assisting in the management of Valley oak and others similarly affected.

  8. Proteomic Analysis of the Salt-Responsive Leaf and Root Proteins in the Anticancer Plant Andrographis paniculata Nees

    PubMed Central

    Rafii, Mohd Yusop; Maziah, Mahmood

    2014-01-01

    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m−1 of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb. PMID:25423252

  9. Polyphenolic Composition and Evaluation of Antioxidant Activity, Osmotic Fragility and Cytotoxic Effects of Raphiodon echinus (Nees & Mart.) Schauer.

    PubMed

    Duarte, Antonia Eliene; Waczuk, Emily Pansera; Roversi, Katiane; da Silva, Maria Arlene Pessoa; Barros, Luiz Marivando; da Cunha, Francisco Assis Bezerra; de Menezes, Irwin Rose Alencar; da Costa, José Galberto Martins; Boligon, Aline Augusti; Ademiluyi, Adedayo Oluwaseun; Kamdem, Jean Paul; Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2015-01-01

    Raphiodon echinus (R. echinus) is used in Brazilian folk medicine for the treatment of inflammation, coughs, and infectious diseases. However, no information is available on the potential antioxidant, cytotoxicity and genotoxicity of this plant. In this study, the polyphenolic constituents, antioxidant capacity and potential toxic effects of aqueous and ethanolic extracts of R. echinus on human erythrocytes and leukocytes were investigated for the first time. R. echinus extracts showed the presence of Gallic, chlorogenic, caffeic and ellagic acids, rutin, quercitrin and quercetin. Aqueous and ethanolic extracts of R. echinus exhibited antioxidant activity in DPPH radical scavenging with IC50 = 111.9 μg/mL (EtOH extract) and IC50 = 227.9 μg/mL (aqueous extract). The extracts inhibited Fe(2+) (10 μM) induced thiobarbituric acid reactive substances (TBARS) formation in rat brain and liver homogenates. The extracts (30-480 μg/mL) did not induce genotoxicity, cytotoxicity or osmotic fragility in human blood cells. The findings of this present study therefore suggest that the therapeutic effect of R. echinus may be, in part, related to its antioxidant potential. Nevertheless, further in vitro and in vivo studies are required to ascertain the safety margin of its use in folk medicine. PMID:26729080

  10. Intra-specific hybridization: generator of genetic diversification and heterosis in Andrographis paniculata Nees. A bridge from extinction to survival.

    PubMed

    Valdiani, Alireza; Kadir, Mihdzar Abdul; Saad, Mohd Said; Talei, Daryush; Tan, Soon-Guan

    2012-08-15

    Andrographis paniculata (AP) has been stated as a low-diverse, endangered and red-listed plant species. Self-pollinated mating system, being an introduced species and experiencing a bottleneck as well as over exploitation cause such a consequence. Inter and intra-specific hybridizations have been suggested as essential techniques for generating genetic diversity. To test the effect of intra-specific hybridization on diversification and heterosis of AP, seven accessions were outcrossed manually in all 21 possible combinations. Three types of markers including morphological, phytochemical and RAPD markers were employed to evaluate the mentioned hypothesis. The results revealed that hybridization acted as a powerful engine for diversification of AP as it caused heterotic expression of the studied traits, simultaneously. Initially, it seems that additive and non-additive gene effects both can be considered as the genetic basis of heterosis in AP for the investigated traits. Agronomic and morphological traits were differentiated from each other, while positive heterosis was recorded mainly for agronomic traits but not for the morphological traits. Intra-specific hybridization increased the genetic diversity in AP population. Nevertheless, a part of this variation could also be attributed to the negative heterosis. The current exploration demonstrated the first ever conducted manual intra-specific hybridization among AP accessions in a mass scale. However, the 17 RAPD primers produced a monomorph pattern, but perhaps increasing the number of markers can feature a new genetic profile in this plant. PMID:22683537

  11. Reproductive biology of Syzygiella rubricaulis (Nees) Steph. (Adelanthaceae, Marchantiophyta), a liverwort disjunctly distributed in high-altitude Neotropical mountains.

    PubMed

    Maciel-Silva, A S; Gaspar, E P; da Conceição, F P; Dias Dos Santos, N; Pinheiro da Costa, D

    2016-07-01

    Syzygiella rubricaulis is a dioecious leafy liverwort disjunctly distributed and restricted to high-altitude mountains in the Neotropics and the Azores. This study is part of a larger project examining the phylogeography of S. rubricaulis in the Neotropics, and our main goals were to understand its reproductive biology, where sex expression occurs, if vegetative propagules are frequently found, how the sexes are distributed in populations, how frequently sporophytes are formed and what environmental conditions influence sexual expression. S. rubricaulis patches are mostly female, but all patches also contain non sex-expressing shoots. Out of 42 patches examined, 29 (69%) were sex-expressing: 25 were unisexual (21 female and four male) and four of mixed sex (two male-biased and two unbiased). At shoot level, out of 4200 shoots 18% were female and 7% male; among sex-expressing shoots, 73% were female, representing a sex ratio of 0.8 (female-biased). We encountered a total of 33 sporophytes in six patches (in Brazil, Venezuela and Ecuador). Leaf regenerants were found in one patch in Mexico. Low rates of sporophytes were likely related to low frequencies of male shoots and large distances between the sexes. As 25% of S. rubricaulis shoots expressed sex (occasionally producing sporophytes), we suggest that short-distance (and rarely long-distance) spore dispersal events occur in mountainous areas on a short-term basis. On a long-term basis, however, these events likely contribute to dynamic exchanges among populations in the Neotropics. PMID:26929143

  12. EBAC-DCC Analysis of World Data of pi N, gamma N, and N(e,e') Reactions

    SciTech Connect

    Hiroyuki Kamano,Tsung-Shung Lee

    2012-04-01

    The development, results, and prospect of the Dynamical Coupled-Channels analysis at Excited Baryon Analysis Center (EBAC-DCC) are reported. In this contribution, we report on the development, results, and prospect of EBAC. The EBAC project has three components, as illustrated in Fig. 1. The first task is to perform a dynamical coupled-channels analysis of the world data of {pi}N, {gamma}*N {yields} {pi}N, {eta}N, {pi}{pi}N, K{Lambda}, K{Sigma}, {omega}N, {hor_ellipsis} to determine the meson-baryon partial-wave amplitudes. The second step is to develop a procedure to extract the N* parameters from the determined partial-wave amplitudes. The third step is to investigate the interpretations of the extracted N* properties in terms of the available hadron models and Lattice QCD.

  13. Amelioratory effect of Andrographis paniculata Nees on liver, kidney, heart, lung and spleen during nicotine induced oxidative stress.

    PubMed

    Neogy, Sreeparna; Das, Subhasis; Mahapatra, Santanu Kar; Mandal, Nirjal; Roy, Somenath

    2008-05-01

    The ameliorative properties of bioactive compound andrographolide (ANDRO), aqueous extract of Andrographis paniculata (AE-AP) and vitamin E (vit.E) were tested against nicotine induced liver, kidney, heart, lung and spleen toxicity. A group of male Wistar rats were intraperitoneally administered vehicle, nicotine (1mg/kg body weight/day), nicotine+ANDRO (250mg/kg body weight/day), nicotine+AE-AP (250mg/kg body weight/day) and nicotine+vit.E (50mg/kg body weight/day) for the period of 7 days. The significantly increased levels of lipid peroxidation, protein oxidation and the decreased antioxidant enzyme status were noted in nicotine treated group as compared to vehicle treated group. ANDRO, AE-AP and vit.E significantly reduced the lipid peroxidation, protein oxidation and increased the antioxidant enzyme status. This indicates A. paniculata and vit.E may act as putative protective agent against nicotine induced tissue injury and may pave a new path to develop suitable drug therapy. PMID:21783869

  14. Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography.

    PubMed

    Kpoviéssi, Dossou Sika Salomé; Gbaguidi, Fernand; Gbénou, Joachim; Accrombessi, Georges; Moudachirou, Mansourou; Rozet, Eric; Hubert, Philippe; Quetin-Leclercq, Joëlle

    2008-12-01

    An accurate and sensitive method, combining soxhlet extraction, solid phase-extraction and capillary gas chromatography is described for the quantitative determination of one triterpene (lupeol) and three sterols (stigmasterol, campesterol and beta-sitosterol) and the detection of another triterpene (alpha-amyrin) from the aerial part of Justicia anselliana. This is the first method allowing the quantification of sterols and triterpenes in this plant. It has been fully validated in order to be able to compare the sterol and triterpene composition of different samples of J. anselliana and therefore help to explain the allelopathic activity due to these compounds. This method showed that the aerial part of J. anselliana contained (292+/-2)mg/kg of lupeol, (206+/-1)mg/kg of stigmasterol, (266+/-2)mg/kg of campesterol and (184+/-9)mg/kg of beta-sitosterol. PMID:18951746

  15. Improving Hatchery Effectiveness as Related to Smoltification: Proceedings of a Workshop held at Kah-Nee-Tah Lodge, Warm Springs, Oregon, May 20-23, 1985.

    SciTech Connect

    Bouck, Gerald R.

    1987-05-01

    The Bonneville Power Administration (BPA) intends to develop a smoltification research effort that would have broad support among the interested parties. BPA sponsored this workshop on smoltification and related research to gather leading technical experts in the field in smoltification, permit them to exchange information about the state of the art of smoltification research, and allow them to identify and rank high-priority projects. This document includes keynote speeches, technical papers, and other sessions that summarize both what is known and what information is needed.

  16. An experimental study of the mechanism of andrographis paniculata nees (APN) in alleviating the Ca(2+)-overloading in the process of myocardial ischemic reperfusion.

    PubMed

    Guo, Z L; Zhao, H Y; Zheng, X H

    1995-01-01

    The aim of this experiment is to study the mechanism of APN in alleviating the Ca(2+)-overloading in dog model during the process of ischemic reperfusion. In comparison with the sustained ischemic group, the parameters in the ischemic reperfusion group demonstrated: Ca(2+) of ischemic region of myocardial cell increased (P < 0.05), Na+ increased remarkably (P < 0.01), the activity of Ca(2+)-ATPase dropped remarkably (P < 0.01), and MDA increased significantly (P < 0.01). Whereas in the group pretreated with APN, the Ca(2+) in the relevant area reduced (P < 0.05), Na+ decreased significantly (P < 0.01), the activity of Ca(2+)-ATPase and Na+-K+ ATPase increased remarkably (P < 0.01), and MDA decreased significantly (P < 0.01). These findings indicate tha APN may improve the activity of sarcolemma ATPase in alleviating the Ca(2+) and Na+ -overloading by decreasing the harmful effect of oxygen free radicals. PMID:8731924

  17. [Verification of the plum pox virus (PPV) using the tray test (author's transl)].

    PubMed

    Kröll, J

    1978-01-01

    A comparison of 6 host plants reacting by local lesion if infected by the Plum Pox Virus (PPV) demonstrated that beside Chenopodium foetidum Schrad. also Nicandra physaloides (L). Gärtner, Nicardra physaloides violacea Bitter and Verbena officinalis L. are pretty well suitable to verify the PPV serving as locally reacting test plants. Using the tray test, the PPV was verifiable by separated leaves of C. foetidum Schrad., N. physaloides violacea Bitter, N. physaloides (L.) Gärtner and V. officinalis L. Applying experimental conditions precisely defined, an abridgement of the period between infections and development of the symptomes by three days was acquired here, compared with the plant test. PMID:664936

  18. Attenuation of Inflammatory Mediators (TNF-α and Nitric Oxide) and Up-Regulation of IL-10 by Wild and Domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-Stimulated RAW264.7 Cells

    PubMed Central

    2015-01-01

    Amauroderma rugosum, commonly known as “Jiǎzī” in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation. PMID:26427053

  19. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  20. Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the leaves of Andrographis lineata.Wall. ex. Nees suppress adipogenesis in 3T3-L1 preadipocytes for type 2 diabetes.

    PubMed

    Deepa, Vijayakumar Sudarshana; Rajaram, Krishnasamy; Sureshkumar, Periyasamy

    2015-03-01

    The present investigation elucidates the isolation and characterization of bioactive compound from the ethanolic leaf extract of Andrographis lineata (EtALL) which suppress the differentiation of 3T3-L1 adipocytes. The ethanolic leaf extract was subjected to bioassay guided fractionation in 3T3-L1 cell lines. Five fractions were isolated from the EtALL extract by column chromatography. All the Fractions (I-V) along with EtALL were screened for adipogenesis activity (Oil-Red-O staining).The fraction which showed maximum adipogenesis activity was purified by thin layer chromatography. The bioactive Fraction IV was found to have maximum adipogenic (96.83%) activity and the activity was comparable to Rosiglitazone. The spectroscopic data analysis reveals that, the isolated bioactive compound was Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate (DTδT), a combination of truxillic and truxinic acid derivative. DTδT showed insulin mimicking (131.2%), sensitizing (810.02%) and adipogenic activity (80.23%). Hence our present study concluded that, Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the ethanolic leaf extract of Andrographis lineata stimulates glucose uptake, potentiates insulin-stimulated glucose in 3T3-L1 adipocytes without increasing adiposity. PMID:25730801

  1. Observations on anatomical aspects of the fruit, leaf and stem tissues of four Citrullus spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morphological characteristics of the fruit, stem and leaf tissues of four species of Citrullus (L.) Schrad. were examined using standard histological methods. Plant materials included the cultivated watermelon (C. lanatus (Thunb.) Matsum. & Nakai) and three of its related species; C. colocynthis (...

  2. Wild Forms of Watermelon and Genomic Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this chapter, we reviewed the characteristics, phylogenetic information of all the species in Citrullus genera, including Citrullus lanatus var. lanatus (Thunb.) Matsum and Nakai., C. lanatus var. citrides (Bailey; Mansf.), C. ecirrhosus Cogn., C. rehmii De Winter., C. colocynthis (L.) Schrad, an...

  3. Notes on Citrullius spp. and Acanthosicyos naudinianus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron and light microscopy were utilized to examine pollen of the currently recognized species (and forms) within the genus Citrullus (Cucurbitaceae). Materials examined included: C. lanatus (Thunb.) Matsum. & Nakai including the citron (C. amarus Schrad.) and egusi (C. lanatus subsp. mu...

  4. Genetic relationships in the desert watermelon citrullus colocynthis as viewed with high-frequency, oligonucleotide–targeting active gene (HFO–TAG) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Plant Introductions (PIs) of Citrullus colocynthis (L.) Schrad. are a viable source for enhancing disease and pest resistance in watermelon cultivars. However, there is information about their genetic diversity and relationships to watermelon cultivars. Genetic diversity and relationships were ...

  5. 'Snowstorm' a new forage kochia cultivar with improved stature, productivity, and nutritional content for enhanced fall and winter grazing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Snowstorm' forage kochia (Bassia prostrata [L.] A.J. Scott) (synonym=Kochia prostrata [L.] Schrad.) (Reg. No. CV-_____, PI _____) was released on March 22, 2012, by the USDA-ARS and the Utah Agricultural Experiment Station. Snowstorm was evaluated as OTVSEL and Otavny-select, and was developed as ...

  6. Climatic regulation of seasonal and inter-annual variability in net ecosystem exchange of CO2 on rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net ecosystem exchange of CO2 (NEE) from terrestrial ecosystems varies seasonally and inter-annually because of temporal variation in climate. If we are predict climate-caused variation in NEE, we must understand how climatic variation influences NEE and its components, CO2 uptake and CO2 loss. ...

  7. Plastic traits of an exotic grass contribute to its abundance but are not always favourable.

    PubMed

    Firn, Jennifer; Prober, Suzanne M; Buckley, Yvonne M

    2012-01-01

    In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4) perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage

  8. A neon-E rich phase in Orgueil - Results of stepwise heating experiments

    NASA Technical Reports Server (NTRS)

    Eberhardt, P.

    1978-01-01

    A Ne-E rich phase was separated from the Orgeuil carbonaceous chondrite. He and Ne were analyzed in this phase and in an Orgueil residual bulk silicate sample using the stepwise heating technique. Ne-E was found to be released from the Ne-E rich phase at temperatures as low as 500 C; however, gas richest in Ne-E is observed at the highest temperatures (1230 C). The following limits for the isotopic composition of Ne-E were obtained: Ne-20/Ne-22 less than 1.52; Ne-21/Ne-22 less than 0.0244.

  9. Contributions to the study of the Ethiopian Lepidoptera. I. The genus Melittia Hübner, 1819 ["1816"] (Lepidoptera: Sesiidae) with description of a new species.

    PubMed

    Gorbunov, Oleg G

    2015-01-01

    The genus Melittia Hübner, 1819 ["1816"] (Sesiidae) is reviewed for the country of Ethiopia. Melittia ambo sp. nov. is described from vicinities of Ambo, West Shewa zone, Oromia. Adults, including male and female genitalia, and the larval host plant, Citrullus colocynthis (L.) Schrad. (Cucurbitaceae), are illustrated. Additional, Melittia pyropis Hampson, 1919 is recorded for Ethiopia for the first time, and the holotype of M. abyssiniensis Hampson, 1919 is illustrated. PMID:26624423

  10. Biological and chemical study of paico (Chenopodium chilense, Chenopodiaceae).

    PubMed

    García, R; Lemus, I; Rivera, P; Erazo, S

    1997-07-01

    The methanolic extract of the aerial portion of Chenopodium chilense Schrad., used in Chilean traditional medicine as a remedy for stomach-ache, has been found to exert the major spasmolytic activity in acetylcholine contracted rat ileum. This extract, with a complex flavonoid patterns on thin layer chromatography (TLC) analysis, is practically non-toxic both for rats and brine shrimp Artemia salina in acute toxicity test. PMID:9254110

  11. In situ effects of elevated CO 2 on chlorophyll fluorescences and chloroplast pigments of alpine plant

    NASA Astrophysics Data System (ADS)

    Thron, Ch.; Hahn, K.; Lütz, C.

    Alpine vegetation responds to elevated CO 2 with downward adjustment of photosynthesis. The experiments should show if doubling of ambient CO 2 reduces the maximum quantum yield and the chlorophylls thus altering the pigment composition of the thylakoid membranes in typical species of an alpine grassland ( Caricetum curvulae). The studies were part of a CO 2 enrichment experiment with open-top chambers in the Swiss Central Alps in 2 470 m altitude over a period of four years. The leaves of Carex curvula and Trifolium alpinum were analysed in situ under ambient (355 μl/l) or elevated (680 μl/l) CO 2 and at two different nutrient levels. In each vegetation period both species showed a tendency to lower ratios of variable to maximum fluorescence (F v/F m) in plants with elevated CO 2 treatment compared to the ambient variants. These reductions in F v/F m were statistically different only for Carex curvula in 1993 and 1995. CO 2 enrichment caused reductions of leaf pigment concentrations of 10-30% especially for Trifolium alpinum whereas Carex curvula was less affected. The lower pigment contents per leaf were probably due to reductions of thylakoid membranes. In most cases, the influences of elevated CO 2 or of nutrient treatments on pigment composition and primary photochemistry were very small. This indicates that the downward regulation begins at early stages in the photosynthetic process. Some changes of the photosynthetic apparatus are species-specific and possibly reflect different strategies of protective acclimation processes of alpine vegetation.

  12. Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands.

    PubMed

    Geremia, Roberto A; Pușcaș, Mihai; Zinger, Lucie; Bonneville, Jean-Marc; Choler, Philippe

    2016-02-01

    The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular diversity of soil microbes. We found that bacterial and fungal communities exhibited contrasting regional distributions and that the distribution in each grassland is well discriminated. Beta diversity of microbial communities was much higher in C. curvula grasslands due to a marked regional effect. The composition of grassland-type core microbiomes suggest that C. curvula, and N. stricta to a lesser extent, tend to select a cohort of microbes related to antibiosis/exclusion, pathogenesis and endophytism. We discuss these findings in light of the postglacial history of the studied grasslands, the habitat connectivity and the disturbance regimes. Human-induced disturbance in the subalpine belt of European mountains has led to homogeneous soil microbial communities at large biogeographical scales. Our results confirm the overarching role of the dominant grassland plant species in the distribution of microbial communities and highlight the relevance of biogeographical history. PMID:26443332

  13. Impact of precipitation dynamics on net ecosystem exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured on shortgrass steppe (SGS) vegetation at the USDA Central Plains Experimental Range in northeastern Colorado from 2001-2003. Large year-to-year differences were observed in annual NEE, with > 95% of the net carbon uptake occurring during...

  14. CO2 exchange in Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Anthoni, P. M.; Knohl, A.; Freibauer, A.; Ziegler, W.; Kolle, O.; Schulze, E.-D.

    2003-04-01

    Eddy covariance technique is used to measure the net CO_2 exchange (NEE) over forest and agricultural areas in Thuringia, Germany. Measurements are performed at a managed and unmanaged Beech stand, a managed Spruce stand and an agricultural field with Winter Wheat in 2001 and Potato in 2002. Large contrasts were found in NEE rates between the ecosystems. Though managed and unmanaged Beech had very similar NEE rates, main differences between those two sites arose because of an earlier leaf emergence at the managed beech site. Spruce had higher NEE in spring but substantially lower NEE in summer than the Beech stands. Overall resulting in a substantially lower annual NEE, which is mainly attributable to an almost two times higher ecosystem respiration, despite lower ecosystem temperatures at the Spruce site. Crops had high NEE uptake rates, but growing season length is short compared to the forest ecosystems. Therefore agricultural land had moderate annual NEE uptake rates (1--2tC ha-1), but when harvest is taken into account the agricultural ecosystems are a source for CO_2 (1--3tC ha-1). Forests cover about 30% of the area in Thuringia, 50% is agriculture, and 20% grassland and other land-use types. Agriculture seems to loose carbon and forest gain carbon, indicating that Thuringia would probably be a carbon source, or not be statistically different from being carbon neutral.

  15. Pan-Arctic modelling of net ecosystem exchange of CO2

    PubMed Central

    Shaver, G. R.; Rastetter, E. B.; Salmon, V.; Street, L. E.; van de Weg, M. J.; Rocha, A.; van Wijk, M. T.; Williams, M.

    2013-01-01

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic. PMID:23836790

  16. Pan-Arctic modelling of net ecosystem exchange of CO2.

    PubMed

    Shaver, G R; Rastetter, E B; Salmon, V; Street, L E; van de Weg, M J; Rocha, A; van Wijk, M T; Williams, M

    2013-08-19

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic. PMID:23836790

  17. Biologically-Effective Rainfall Pulses in Mediterranean and Monsoonal Regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semiarid regions rainfall pulses provide intermittent opportunities for biological activity. These pulses have been shown to affect the activity of microbes and plant differently, altering the net ecosystem exchange of carbon dioxide (NEE) from these ecosystems. We examine NEE and its components ...

  18. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Dan; Gao, Zhiqiu; Tang, Jianwu; Guo, Xiaofeng; Wang, Linlin; Wan, Bingcheng

    2015-10-01

    Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.

  19. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis; Ma, Siyan; Law, Beverly E.; Richardson, Andrew D; Chen, Jiquan; Oren, Ram

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration s (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale.We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000 2004 and 2005 2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  20. Observation and modeling of the impact of forestry and CO2 fertilization on the carbon cycle in the Upper Midwest, USA

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Moorcroft, P. R.; Bolstad, P. V.; Davis, K. J.

    2006-05-01

    Forest management is known to be a significant factor in explaining the observed land carbon sink, but improvement is needed in modeling and evaluating its effect on net ecosystem exchange of CO2 (NEE). We applied the Ecosystem Demography (ED) dynamic vegetation model in a forested landscape to test the roles of forestry and CO2 on NEE. The model has multiple plant types, multi-layer canopy structure, stand age variability, disturbance, land use change and management. ED was tuned to observations from the Chequamegon Ecosystem-Atmosphere Study including ecological measurements, forest inventory and records of land cover and use, meteorology and CO2. Model NEE was highly correlated on monthly and annual timescales to 7 yrs of NEE observed at a 396-m tall eddy covariance (EC) tower and to 2 yrs of growing season NEE from 13 stand-scale EC sites of varying cover and age. Jun-Aug NEE was biased high for the tall tower and mature hardwood sites, and correlation to ecosystem respiration at some sites was poor. Exclusion of forestry led to overestimation of plant biomass accumulation by 109% between two inventory cycles (1996-2004), an error smaller than exclusion of natural disturbance and reproduction (171%), but larger than neglecting interannual climate variability (38%). On the long-term (200 yrs), forestry significantly altered ecosystem cover and age and increased NEE by 32%. The increase was due to a shift toward rapidly growing species in younger stands and export of biomass leading to lower respiration and soil carbon input. CO2 fertilization increased NEE by 93% due to a doubling of plant density. While harvest and afforestation had smaller impacts on NEE than CO2 increase, they were still significant and cannot be neglected when making future NEE predictions. Lack of decision-based management, forest product lifecycle tracking and downregulation of CO2 assimilation in ED and other models require further investigation and future refinement.

  1. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  2. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  3. Cropland carbon fluxes in the United States: increasing Geospatial Resolution of Inventory-Based Carbon Accounting

    SciTech Connect

    West, Tristram O.; Brandt, Craig C; Baskaran, Latha Malar; Hellwinckel, Chad M; Marland, Gregg; Nelson, Richard G; De La Torre Ugarte, Daniel G; Post, Wilfred M

    2010-01-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary productivity were estimated and spatially distributed using land cover defined by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by the Cropland Data Layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (~1km2) land cover data were generated for the conterminous US and compared with higher resolution (30m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska. Estimates of NEE using the CDL (30m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil-fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for US croplands were -274 and 7 Tg C yr-1 for 2004, respectively. Use of moderate to high resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics.

  4. Contemporary mire net ecosystem green-house gas balance: controls and susceptibility to change

    NASA Astrophysics Data System (ADS)

    Nilsson, Mats; Eriksson, Tobias; Grelle, Achim; Larsson, Anna; Laudon, Hjalmar; Lindroth, Anders; Ottosson-Löfvenius, Mikaell; Peichl, Matthias; Sagerfors, Jörgen; Ågren, Anneli; Öquist, Mats

    2015-04-01

    In this presentation I will address three main issues: 1 - What is the contemporary carbon sequestration function of high latitude mire ecosystems relative to Holocene average? 2 - The relative importance of the component carbon (C) fluxes for the annual mire Net Ecosystem Carbon Balance (NECB); 3 - The importance of gross primary production (GPP) versus ecosystem respiration (Reco) for the annual Net Ecosystem Exchange (NEE); The annual boreal mire NECB is made up principally by the biosphere-atmosphere exchange of CO2 (NEE) and CH4 and the runoff C-export. One important research issue is to further understand what controls the relative contribution from the component fluxes to the annual mire NECB. A second important major research issue is to reveal the relative importance of gross photosynthesis (GPP) and ecosystem respiration (Reco) respectively for the annual mire NEE. The relative importance of GPP and Reco respectively for the NECB also encounters the effect of changes in the lengths of the growing season and non-growing season respectively. In this presentation we use ten years of data on annual fluxes of NEE, methane and water discharge C export at a nutrient poor minerogenic boreal mire, Degerö Stormyr, in northern Sweden to address the above questions. Winter time NEE together with methane emission and water discharge C export reduces the growing season NEE with approximately 60%, thus substantially controlling the annual boreal mire NEE.

  5. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles.

    PubMed

    Moretto, Ligia Maria; Pepe, Niki; Ugo, Paolo

    2004-04-19

    Gold nanoelectrodes ensembles (NEEs) have been prepared by electroless plating of Au nanoelectrode elements within the pores of a microporous polycarbonate template membrane. Cyclic voltammograms recorded in (ferrocenylmethyl) trimethylammonium hexafluorophosphate (FA(+) PF(6)(-)) solutions showed that these NEEs operate in the "total-overlap" response regime, giving well resolved peak shaped voltammograms. Experimental results show that the faradaic/background currents ratios at the NEE are independent on the total geometric area of the ensemble, so that NEE can be enlarged or miniaturized at pleasure without influencing the very favorable signal/noise ratio. Differential pulse voltammetry (DPV) at the NEE is optimized for direct determinations at trace levels. DPV at NEE allowed the determination (with no preconcentration) of trace amounts of FA(+), with a detection limit of 0.02muM. The use of NEE and DPV in cytochrome c (cyt c) solutions showed the possibility to observe the direct electrochemistry of submicromolar concentration of the protein, even without the need of adding any promoter or mediator. PMID:18969398

  6. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland.

    PubMed

    Potts, D L; Huxman, T E; Cable, J M; English, N B; Ignace, D D; Eilts, J A; Mason, M J; Weltzin, J F; Williams, D G

    2006-01-01

    The influences of prior monsoon-season drought (PMSD) and the seasonal timing of episodic rainfall ('pulses') on carbon and water exchange in water-limited ecosystems are poorly quantified. *In the present study, we estimated net ecosystem exchange of CO(2) (NEE) and evapotranspiration (ET) before, and for 15 d following, experimental irrigation in a semi-arid grassland during June and August 2003. Rainout shelters near Tucson, Arizona, USA, were positioned on contrasting soils (clay and sand) and planted with native (Heteropogon contortus) or non-native invasive (Eragrostis lehmanniana) C4 bunchgrasses. Plots received increased ('wet') or decreased ('dry') monsoon-season (July-September) rainfall during 2002 and 2003. Following a June 2003 39-mm pulse, species treatments had similar NEE and ET dynamics including 15-d integrated NEE (NEE(pulse)). Contrary to predictions, PMSD increased net C uptake during June in plots of both species. Greater flux rates after an August 2003 39-mm pulse reflected biotic activity associated with the North American Monsoon. Furthermore, August NEE(pulse) and ecosystem pulse-use efficiency (PUE(e) = NEE(pulse)/ET(pulse)) was greatest in Heteropogon plots. PMSD and rainfall seasonal timing may interact with bunchgrass invasions to alter NEE and ET dynamics with consequences for PUE(e) in water-limited ecosystems. PMID:16684243

  7. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  8. Neuroepithelial endocrine cells in the lung of the lungfish Protopterus aethiopicus. An electron- and fluorescence-microscopical investigation.

    PubMed

    Adriaensen, D; Scheuermann, D W; Timmermans, J P; De Groodt-Lasseel, M H

    1990-01-01

    The occurrence and distribution of neuroepithelial endocrine (NEE) cells was demonstrated electron- and fluorescence-microscopically in the lungfish Protopterus aethiopicus. They were only found to occur solitarily in the basal part of the cilio-mucous epithelium which is restricted to the pneumatic duct and adjacent parts of the common anterior chamber. The NEE cells show a yellow, formaldehyde-induced fluorescence. Electron-microscopically, all the NEE cells are characterized by membrane-bound electron-dense secretory granules with varying diameters, ranging from 75 to 150 nm. These granules are distributed throughout the cytoplasm with a higher concentration in the basal region. The NEE cells were regularly found to contain paracrystalline inclusions with a tubule-like substructural arrangement. A small part of the NEE cells appeared to reach the luminal surface by means of a long slender process bearing specialized beaded microvilli on its apical pole. Intraepithelial nerve fibres, with the ultrastructural characteristics of afferent fibres, were found running parallel to the airway surface. Nerve profiles, largely resembling the latter, can be seen in the proximity of the basolateral plasma membrane of the NEE cells. In addition, nerve terminals containing an aggregation of small clear vesicles are in close contact with the NEE cells. In conclusion, it appears that, as has so far been assumed in higher vertebrates, the NEE cells in the lung of Protopterus may perceive changes in the airway gases whereupon they could respond by releasing a chemical modulator, influencing contacting afferent nerve terminals or nearby smooth muscle bundles. Furthermore, intraepithelial nerve fibres or NEE cells might be stretch-sensitive. PMID:2288194

  9. Aquatic hyphomycetes as endophytes of riparian plant roots.

    PubMed

    Sati, S C; Belwal, M

    2005-01-01

    Eighteen species of aquatic hyphomycetes were recorded as root endophytes in roots of living plants including grasses and pteridophytes from wet fields near ravine areas. Alatospora acuminata, A. pulchella, Acaulopage tetraceros, Anguillospora crassa, Campylospora chaetocladia, Lemonniera cornuta, L. pseudofloscula, L. terrestris, Pestalotiopsis submersus and Tetrachaetum elegans were found for the first time as root endophytes. A. longissima, Campylospora purvula, Clavariopsis aquatica, Cylindrocarpon aquaticum, Heliscus lugdunensis, Lunulospora curvula, Tetracladium marchalianum and T. setigerum, which were known previously as root endophytes, are reported here on new hosts. Maximum occurrence was found in November and December. PMID:16389955

  10. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange in time and scale

    NASA Astrophysics Data System (ADS)

    yang, Z.; Chen, J.; Becker, R.; Chu, H.; Xie, J.; Shao, C.

    2013-12-01

    Net ecosystem exchange of CO2 (NEE) in temperate forests is modulated by microclimatic factors. The effects of those factors differ at different time scales and during different time periods. Some of them are correlated across a number of time scales, so their effects on NEE are confounded by each other. PAR and air temperature (Ta) are among the two most important drivers of NEE in temperate forests, and among the two most correlated microclimatic factors. PAR and Ta have similar daily, seasonal, and annual cycles. Their influence on NEE is confounded by each other and entangled together especially at those scales. In this study, we tried to disentangle the confounding effects of them on NEE at different time scales and during different time periods. To accomplish this objective, we applied the innovative spectral analysis techniques including Continuous Wavelet Transformation (CWT), Cross Wavelet Transformation (XWT), Wavelet Coherent (WTC), and Partial Wavelet Coherence (PWC) on seven years time series (2004-2010) of PAR, Ta and NEE from the Ohio Oak Openings site (N 41.5545°, W 83.8438°), USA for spectral analysis. We found that PAR is the major driver at short time scales (e.g. semidiurnal and daily) and Ta is the major driver at long time scales (e.g. seasonal and annual). At daily scale during growing seasons, PAR is anti-phase with NEE with no time delay while Ta lagged PAR about 2-3 hours, which could be explained by the strong dependence of photosynthesis on PAR and a 2-3 hours lags of the daily course of Ta to PAR. At daily scale during non-growing season, NEE has little variation and thus neither Ta nor PAR has high common wavelet power and significant coherence with NEE. At annual scale, Ta is anti-phase with NEE and PAR leads NEE about 34 days, which could be explained by the strong dependence of LAI dynamics on Ta and the lag between the LAI/biomass development and the progress of sunlight. We also found that NEE distributes most of its variation

  11. APPLICATIONS OF A CONCEPTUAL MODEL (THE BIOLOGICAL CONDITION GRADIENT) TO DEFINE AQUATIC REFERENCE CONDITIONS

    EPA Science Inventory

    The United States Clean Water Act currently offers no definitions to interpret the Act's objective to "restore and maintain physical, chemical and biological integrity of the Nation's waters". Operative definitions, independent of differences in assessment methodologies, are nee...

  12. A neon-E rich phase in Orgueil - Results obtained on density separates

    NASA Astrophysics Data System (ADS)

    Eberhardt, P.; Jungck, M. H. A.; Meier, F. O.; Niederer, F. R.

    1981-09-01

    A stepwise heating technique was used on eight density separates from the neon-E rich phase G4j of the carbonaceous chondrite Orgueil to measure He, Ne and Ar. The density separation technique was found to further enrich the Ne-E carrier phases, allowing the Ne-E to be identified as virtually pure Ne-22. At least two separable carrier phases exist: (1) the l-carrier phase, which releases its Ne-E at temperatures below 900 C and is heavily enriched in the low-density separate; and (2) the h-carrier phase. The h-carrier is found to be highly retentive, with release temperatures above 900 C, and is associated with higher-density material. It is concluded that Ne-E and its carrier phases are probably of presolar origin.

  13. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  14. What Causes Heart Murmurs?

    MedlinePlus

    ... include fever, anemia (uh-NEE-me-eh), and hyperthyroidism. Anemia is a condition in which the body ... lower than normal number of red blood cells. Hyperthyroidism is a condition in which the body has ...

  15. Host ranges of gregarious muscoid fly parasitoids: Muscidifurax raptorellus (Kogan and Legner) (Hymenoptera:Pteromalidae), Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae), and Trichopria (Hymenoptera: Diapriidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attack rates, progeny production, sex ratios and host utilization efficiency of Muscidifurax raptorellus (Kogan and Legner) (Hymenoptera: Pteromalidae), Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae), and Trichopria nigra (Nees) (Hymenoptera: Diapriidae) were evaluated in laboratory bi...

  16. Pernicious Anemia

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Pernicious Anemia? Pernicious anemia (per-NISH-us uh-NEE-me-uh) is ... nervous system working properly. People who have pernicious anemia can't absorb enough vitamin B12 from food. ...

  17. What Is Aplastic Anemia?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Aplastic Anemia? Aplastic anemia (a-PLAS-tik uh-NEE-me-uh) is ... heart, heart failure , infections, and bleeding. Severe aplastic anemia can even cause death. Overview Aplastic anemia is ...

  18. Hemolytic Anemia

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Hemolytic Anemia? Hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) ... blood cells to replace them. However, in hemolytic anemia, the bone marrow can't make red blood ...

  19. What Are Some of the Basics of Infant Health?

    MedlinePlus

    ... movements usually consist of a thick, black or dark green substance called meconium (pronounced mi-KOH-nee- ... In a healthy child, urine is light to dark yellow in color. (The darker the color, the ...

  20. GROUND WATER SAMPLING - A WORKSHOP SUMMARY

    EPA Science Inventory

    The dissemination review and implementation of new environmental research findings is essential in providing the background information required for practitioners and policy makers working in the areas of environmental protection and restoration. his information is critically nee...

  1. Validation Of DEM Data Dvied From World View 3 Stero Imagery For Low Elevation Majuro Atoll, Marchall Islands

    EPA Science Inventory

    The availability of surface elevation data for the Marshall Islands has been identified as a "massive" data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are nee...

  2. INNOVATIVE METHODS FOR EMISSION-INVENTORY DEVELOPMENT AND EVALUATION: WORKSHOP SUMMARY

    EPA Science Inventory

    Emission inventories are an essential tool for evaluating, managing, and regulating air pollution. Refinements and innovations in instruments that measure air pollutants, models that calculate emissions as well as techniques for data management and uncertainty assessment are nee...

  3. Rh Incompatibility

    MedlinePlus

    ... Blood and Marrow Stem Cell Transplant Heart Failure Hemolytic Anemia Send a link to NHLBI to someone by ... baby's red blood cells. This can lead to hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) ...

  4. Athlete's Foot

    MedlinePlus

    ... type of tinea, athlete's foot. The Basics on Tinea Infections Tinea (pronounced: TIH-nee-uh) is the medical name ... or scalp, including athlete's foot, jock itch , and ringworm (despite its name, ringworm is not a worm). ...

  5. Hamiltonian structures of nonlinear evolution equations connected with a polynomial pencil

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1986-09-10

    For a generalized Zakharov-Shabat system in which the matrix potential is a polynomial in the spectral parameter a generating operator is constructed which makes it possible to compactly write out the nonlinear evolution equations (NEE) connected with the system. The eigenfunctions of the generating operator - the squares of solutions of the original system - are found. The Hamiltonian property of the NEE and the existence of a hierarchy of Hamiltonian structures are established.

  6. Hamiltonian structures of nonlinear evolution equations associated with a polynomial bundle

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1987-05-20

    For the generalized Zakharov-Shabat system with the matrix potential a polynomial in the spectral parameter, they construct a generating operator which leads to a compact representation of the nonlinear evolution equations (NEE) associated with the system. The eigenfunctions of the generating operator are obtained as the squares of the solutions of the original system. The Hamiltonian nature of the NEE and the existence of a hierarchy of Hamiltonian structures is established.

  7. Hamiltonian structures of nonlinear evolution equations connected with a polynomial pencil

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1986-09-01

    For a generalized Zakharov-Shabat system in which the matrix potential is a polynomial in the spectral parameter a generating operator is constructed which makes it possible to compactly write out the nonlinear evolution equations (NEE) connected with the system. The eigenfunctions of the generating operator - the ''squares'' of solutions of the original system - are found. The Hamiltonian property of the NEE and the existence of a hierachy of Hamiltonian structures are established.

  8. Latest results on charmed baryons. xi. /sup +//sub /ital c// and. cap omega. /sup 0//sub /ital c//

    SciTech Connect

    Smith, V. J.

    1989-04-25

    The observation of charmed-strange baryons ..xi../sup +//sub /ital c//(nee /ital A//sup +/)and ..cap omega../sup 0//sub /ital c// (nee T/sup 0/) at the Cern-SPS and Fermilab is discussed.Some questions about the production and decay of these particles are mentioned,and currently proposed experiments to address these questions are brieflypresented.

  9. Relationship Between Ecosystem Productivity and Photosynthetically Active Radiation for Northern Peatlands

    NASA Technical Reports Server (NTRS)

    Frolking, S. E.; Bubier, J. L.; Moore, T. R.; Ball, T.; Bellisario, L. M.; Bhardwaj, A.; Carroll, P.; Crill, P. M.; Lafleur, P. M.; McCaughey, J. H.; Roulet, N. T.; Suyker, A. E.; Verma, S. B.; Waddington, J. M.; Whiting, G. J.

    1998-01-01

    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe, NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = alpha PPFD P(sub max)/(alpha PPFD + P(sub max) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = beta PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = -2.0 micro mol m(exp -2) s(exp -1) for bogs and -2.7 micro mol m(exp -2) s(exp -1)) for fens) and lower NEE at moderate and high light levels (P(sub max)= 5.2 micro mol m(exp -2) s(exp -1) for bogs and 10.8 micro mol m(exp -2) s(exp -1) for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = -2.4 micro mol m(exp -2) s(exp -1)) and NEE rates (alpha = 0.020 and P(sub max)= 9.2 micro mol m(exp -2) s(exp -1)) than the upland ecosystems (closed canopy forest, grassland, and cropland). Despite this low productivity, northern peatland soil carbon pools are generally 5-50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils.

  10. Regional scaling of soil moisture dynamics on the semiarid grasslands of Mexico through remotely sensed vegetation indices

    NASA Astrophysics Data System (ADS)

    Carrera-Hernandez, J. J.; Mata-Martinez, A.; Huber-Sannwald, E.; Arredondo, T.

    2014-12-01

    Soil moisture dynamics for both native (Bouteloa gracilis) and introduced (Eragrostis curvula) species within the semiarid grasslands in Mexico are analyzed. The semiarid grasslands of Mexico are part of the shortgrass steppe ecosystem, which extends from the North American midwest in the north to Llanos de Ojuelos in the south, where the study site is located. Soil moisture dynamics are measured on two homogeneous fields; one dominated by the native species (Bouteloa gracilis), and another with an introduced species (Eragrostis curvula) at three different depths with high temporal resolution along with standard climatological data. These data are related to measured Leaf Area Index (LAI) and spectra at 16 different wavelengths, both of which, in turn, are related to remotely sensed imagery through different vegetation indices (NDVI, SAVI, EVI and Modified Chlorophyll Absorption Ratio Index (MCARI)) for different sensors (LANDSAT, SPOT, Pleiades) at different growth stages. To date, the MCARI exhibits a larger correlation with LAI for all sensors and growing stages for both grass species (ongoing field work will provide additional data). Regionalization of soil moisture dynamics (i.e. recharge) will be done using a numerical model of the vadose zone that will be linked to the temporal variation of MCARI. Financial support by the Mexico's CONACYT (project CB 158370) and UNAM's PAPIIT program (project IA100613) is acknowledged.

  11. Authentication of true cinnamon (Cinnamon verum) utilising direct analysis in real time (DART)-QToF-MS.

    PubMed

    Avula, Bharathi; Smillie, Troy J; Wang, Yan-Hong; Zweigenbaum, Jerry; Khan, Ikhlas A

    2015-01-01

    The use of cinnamon as a spice and flavouring agent is widespread throughout the world. Many different species of plants are commonly referred to as 'cinnamon'. 'True cinnamon' refers to the dried inner bark of Cinnamomum verum J. S. Presl (syn. C. zeylanicum) (Lauraceae). Other 'cinnamon' species, C. cassia (Nees & T. Nees) J. Presl (syn. C. aromaticum Nees) (Chinese cassia), C. loureiroi Nees (Saigon cassia), and C. burmannii (Nees & T. Nees) Blume (Indonesian cassia), commonly known as cassia, are also marketed as cinnamon. Since there is a prevalence of these various types of 'cinnamons' on the market, there is a need to develop a rapid technique that can readily differentiate between true cinnamon (C. verum) and other commonly marketed species. In the present study, coumarin and other marker compounds indicative of 'cinnamon' were analysed using DART-QToF-MS in various samples of cinnamon. This method involved the use of [M + H](+) ions in positive mode in addition to principal component analysis (PCA) using Mass Profiler Professional software to visualise several samples for quality and to discriminate 'true cinnamon' from other Cinnamomum species using the accurate mass capabilities of QToF-MS. PMID:25421162

  12. Regional Eddy Covariance Measurements of CO2 Exchange from a Tall Tower near Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Graham, E. B.; Wolfe, D. E.; Blanken, P.

    2010-12-01

    Many researchers have been able to adequately describe net ecosystem exchange of CO2 (NEE) at small spatial scales from relatively short towers, but regional-scale NEE is still poorly understood, especially in regions with heterogeneous terrain, land cover, and land use. We are investigating the spatial and temporal variability in NEE across a range of land uses and covers at the National Oceanic and Atmospheric Administration’s (NOAA) Boulder Atmospheric Observatory (BAO) in Erie, CO. Continuous measurements of NEE, based on the eddy covariance method (at 300-m above ground) and CO2 concentration profiles (at 22, 100, and 300-m) together with ancillary meteorological data, have been made since February 2010. The surrounding landscape within the turbulent flux footprint of the tower was separated into six major categories based on LandSat 5 TM imagery: fallow fields, crops, roads, water, mountainous regions, and residential areas. Preliminary results indicate slightly positive NEE (net CO2 release) from late February through June of 2010. The site experiences prevailing westerly winds, and storage flux accounts for approximately 1% of NEE. The results of this study have implications for the assessment of top-down regional carbon models and increased understanding of regional-scale carbon dynamics.

  13. Diagnostic outcomes of inpatient video electroencephalography: nonepileptic events in South Carolina.

    PubMed

    Koontz, Elizabeth H; Hanson, Jarom; Pritchard, Paul B

    2013-09-01

    The Epilepsy Monitoring Unit (EMU) was established at the Medical University Hospital to assist in the diagnosis of epilepsy and the evaluation of other paroxysmal neurological symptoms, including non-epileptic events (NEEs), which are often confused with epileptic seizures. Correct diagnosis can prevent inappropriate treatment with antiepileptic drugs, avoid some of the restrictions imposed by epileptic seizures, and facilitate appropriate treatment for NEEs. A retrospective review of patients admitted to the EMU over a two year period showed the percentage of patients diagnosed with NEEs (39%) is greater than those diagnosed with epilepsy alone (36%). This incidence of NEE is higher than in other academic medical centers. The explanations for this disparity are not fully defined, but warrant further study as to patient demographics, risk factors, and referral patterns in South Carolina. The average time from when patients began having events to accurate diagnosis of NEEs was 4.5 years, and 21 patients had NEEs for at least 10 years prior to diagnosis. PMID:24261154

  14. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    NASA Astrophysics Data System (ADS)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from <3% to ca. 25%. Deviation in annual precipitation from the 28-year average (1980-2008) explained 90% of the variation observed in the fraction of C lost annually by LCE. The relationship suggests that an increase in annual precipitation of 10-20% in the boreal region would approximately double the fraction of NEE lost annually from the terrestrial system to surface waters. The correlation between NEE and LCE arises because the annual precipitation is correlated with both NEE (p<0.004) and LCE (p<0.001). Both these strong correlations contribute to an overall correlation between annual NECB and precipitation. The likely mechanism behind decreased NEE in response to increasing precipitation is a reduction in incoming solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio

  15. Effects of biased CO2 flux measurements by open-path sensors on the interpretation of CO2 flux dynamics at contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Helbig, Manuel; Humphreys, Elyn; Bogoev, Ivan; Quinton, William L.; Wischnweski, Karoline; Sonnentag, Oliver

    2015-04-01

    Long-term measurements of net ecosystem exchange of CO2 (NEE) are conducted across a global network of flux tower sites. These sites are characterised by varying climatic and vegetation conditions, but also differ in the type of CO2/H2O gas analyser used to obtain NEE. Several studies have observed a systematic bias in measured NEE when comparing open-path (OP) and closed-path (CP) sensors with consistently more negative daytime NEE measurements when using OP sensors, both during the growing and non-growing season. A surface heating correction has been proposed in the literature, but seems not to be universally applicable. Systematic biases in NEE measurements are particularly problematic for synthesis papers and inter-comparison studies between sites where the 'true' NEE is small compared to the potential instrument bias. For example, NEE estimates for boreal forest sites derived from OP sensors show large, ecologically unreasonable winter CO2 uptake. To better understand the causes and the magnitude of this potential bias, we conducted a sensor inter-comparison study at the Mer Bleue peatland near Ottawa, ON, Canada. An eddy covariance system with a CP (LI7000 & GILL R3-50) and an OP sensor (EC150 & CSAT3A) was used. Measurements were made between September 2012 and January 2013 and covered late summer, fall, and winter conditions. Flux calculations were made as consistently as possible to minimise differences due to differing processing procedures (e.g. spectral corrections). The latent (LE, slope of orthogonal linear regression of LEOP on LECP: 1.02 ± 0.01 & intercept: -0.2 ± 0.6 W m-2 and sensible heat fluxes (H, slope of HCSAT3A on HGILL: 0.96 ± 0.01 & intercept: 0.1 ± 0.03 W m-2) did not show any significant bias. However, a significant bias was apparent in the NEE measurements (slope of NEEOP on NEECP: 1.36 ± 0.02 & intercept: -0.1 ± 0.05). The differences between NEEOP and NEECP were linearly related to the magnitude of HCSAT3A with a slope of -0

  16. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland

    NASA Astrophysics Data System (ADS)

    Helfter, C.; Campbell, C.; Dinsmore, K. J.; Drewer, J.; Coyle, M.; Anderson, M.; Skiba, U.; Nemitz, E.; Billett, M. F.; Sutton, M. A.

    2015-03-01

    Land-atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon (C) sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. Since 2002, NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland. Hence this is one of the longest peatland NEE studies to date. For 11 years, the site was a consistent, yet variable, atmospheric CO2 sink ranging from -5.2 to -135.9 g CO2-C m-2 yr-1 (mean of -64.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating an effect of winter climate on local phenology. Ecosystem respiration (Reco) was enhanced by drought, which also depressed gross primary productivity (GPP). The CO2 uptake rate during the growing season was comparable to three other sites with long-term NEE records; however, the emission rate during the dormant season was significantly higher. To summarise, the NEE of the peatland studied is modulated by two dominant factors: - phenology of the plant community, which is driven by winter air temperature and impacts photosynthetic potential and net CO2 uptake during the growing season (colder winters are linked to lower summer NEE), - water table level, which enhanced soil respiration and decreased GPP during dry spells. Although summer dry spells were sporadic during the study period, the positive effects of the current climatic trend towards milder winters on the site's CO2 sink strength could be offset by changes in precipitation patterns especially during the growing season.

  17. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Peng, Shushi; Ciais, Philippe; Chevallier, Frédéric; Peylin, Philippe; Cadule, Patricia; Sitch, Stephen; Piao, Shilong; Ahlström, Anders; Huntingford, Chris; Levy, Peter; Li, Xiran; Liu, Yongwen; Lomas, Mark; Poulter, Benjamin; Viovy, Nicolas; Wang, Tao; Wang, Xuhui; Zaehle, Sönke; Zeng, Ning; Zhao, Fang; Zhao, Hongfang

    2015-01-01

    We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (XCO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of XCO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.6 ± 0.4 gC m-2 d-1, which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.9 ± 2.0 PgC yr-1.

  18. Tracking CO2 flux: Seasonal Patterns, Net Ecosystem Exchange and Site Comparisons of Environmental Variables at a Boreal Peatland

    NASA Astrophysics Data System (ADS)

    Bhatia, G.; Bubier, J. L.

    2001-05-01

    Peatlands play a significant role in the global carbon cycle sequestering approximately one-third of the global pool of soil carbon. An increased understanding of the carbon cycle in these critical ecosystems is imperative to further our comprehension of the role they play in future global warming. Net ecosystem exchange (NEE) of carbon dioxide was measured at Mer Bleue Bog in Ottawa, Ontario, Canada from May through August 2000. Dominant species at Mer Bleue included Ledum groenlandicum, Chamaedaphne calyculata, Eriophorum vaginatum, Carex oligosperma and Sphagnum species. In order to understand the controls and variability of NEE a range of sites were considered, including a beaver pond, a bog and a poor fen. This study aimed at comparing overall seasonal patterns and ranges of NEE, photosynthesis and respiration and understanding the relationships with photosynthetically active radiation (PAR), water table, temperature, species composition and plant biomass. A clear lexan and teflon film climate-controlled chamber was used to measure the rate of respiration and photosynthesis on a bi-weekly basis in all sites. The chamber was attached to a LI-COR 6200 portable photosynthesis system, which included a LI-6250 infrared gas analyzer, quantum sensor and data logger. Shrouds of different mesh sizes were used to regulate the amount of light entering the chamber in order to measure NEE at a wide range of PAR. An opaque shroud was used to measure ecosystem respiration. Photosynthesis was calculated as the difference between NEE and respiration. Seasonal patterns showed a peak season from June 23rd through July 15th where higher PAR and temperature levels led to increased photosynthesis and respiration measurements. Although NEE rates at the sites varied, during peak season NEE ranged in increasing order: bog hummock and hollow (6 to -6.5 μ mol CO2 m{-2} s{-1}) < beaver pond (6 to -7 μ mol CO2 m{-2} s{-1}) < poor fen (10 to -8 μ mol CO2 m{-2}s {-1}).

  19. A Conceptual model of Ecophysiological Function across the Amazon Basin using a Synthesis of Observed and Model Data.

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Denning, A. S.; Harper, A. B.

    2008-12-01

    Observations of the seasonal cycle of Net Ecosystem Exchange of Carbon (NEE) are variable across the Amazon Basin. NEE has been observed to be nearly uniform through the year at sites such as Cueiras Reserve in Amazonas. A pattern of efflux during the wet season and uptake during seasonal drought has been observed at multiple sites in the Tapajos River National Forest, while the opposite pattern (uptake during wet season, efflux during seasonal drought) has been observed at several sites in Mato Grosso . Using a synthesis of eddy covariance flux observations from multiple sites across vegetation and moisture gradients in the Amazon basin and a biophysical model (Simple Biosphere Model, SiB), we construct a conceptual model of the patterns of ecophysiological function that determine annual cycles and interannual variability in observed NEE across tropical Amazonia. We identify several factors that determine the behavior of Gross Primary Productivity (GPP) and respiration fluxes, while NEE is determined by their sum. We evaluate our conceptual model across a pseudo-latitudinal gradient from extremely wet (more than 2000 mm annual precipitation) in the north to drier cerrado (savanna) regions in the south. In the extremely wet regions near the equator we find little or no stress on photosynthesis and, subsequently, little or no variability in annual cycles of energy or carbon flux. In these regions NEE is determined by vegetation response to high-frequency meteorological events. As precipitation decreases, the flux seasonality increases and phase relationships between GPP and respiration determine annual NEE cycles. As GPP/respiration cycles transition from an out-of-phase relationship in wetter regions to an in-phase pattern in the cerrado, NEE changes from dry to wet season carbon uptake.

  20. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting.

    PubMed

    West, Tristram O; Brandt, Craig C; Baskaran, Latha M; Hellwinckel, Chad M; Mueller, Richard; Bernacchi, Carl J; Bandaru, Varaprasad; Yang, Bai; Wilson, Bradly S; Marland, Gregg; Nelson, Richard G; De la Torre Ugarte, Daniel G; Post, Wilfred M

    2010-06-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary production were estimated and spatially distributed using land cover defined by NASA's moderate resolution imaging spectroradiometer (MODIS) and by the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. The purpose of generating spatial estimates of carbon fluxes, and the primary objective of this research, was to develop a method of carbon accounting that is consistent from field to national scales. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (approximately 1 km2) land cover data were generated for the conterminous United States and compared with higher resolution (30-m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska, USA. Estimates of NEE using the CDL (30-m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for U.S. croplands were -274 and 7 Tg C/yr for 2004, respectively. Use of moderate- to high-resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics. PMID:20597291

  1. Inescapable variation - effects of a non-homogeneous flux tower footprint on diurnal and seasonal carbon fluxes in a temperate forest

    NASA Astrophysics Data System (ADS)

    Arndt, Stefan K.; Griebel, Anne; Bennett, Lauren T.

    2015-04-01

    A homogenous flux tower footprint is an underpinning assumption of the eddy covariance method, typically requiring even terrain and uniform vegetation structure and species composition. However, large tracts of uniform native forests are rare in south-eastern Australia, where variable topography is confounded by local-scale variations in disturbance history (harvesting, prescribed fire, and wildfire). From 2010 to 2014, the Wombat Forest Flux site in central Victoria (south-eastern Australia) was a strong carbon sink compared with other flux sites in Australia, but net ecosystem exchange (NEE) varied widely (e.g. 2013: NEE~4 t C ha-1yr-1, 2012: NEE~12 t C ha-1yr-1), and was not clearly associated with inter-annual climatic variation only. Concomitantly, intra-annual variation was greater in 2014 than 2013, and was highly correlated with air temperature, which also varied with wind direction. We examined the implications of a non-homogenous flux tower footprint on diurnal and seasonal variation in NEE. The approach included characterisation of the variation in topography and forest structure in each of four directional sectors, and analysis of diurnal and seasonal variability in carbon fluxes and associated weather with wind direction. Our results indicate that the S/SE footprint sector (lower relative stem densities, more recent harvesting disturbance) was a seasonally-persistent strong sink (particularly in summer and autumn), while the N/NE sector (higher relative stem densities with numerous resprouts, no recent harvesting or thinning) was a weaker sink. Lower annual NEE in 2013 coincided with predominantly northerly winds, and greater annual NEE in 2014 with a predominance of southerly/south-easterly winds. Our data demonstrate that seasonal and annual variations in main wind directions and therefore also flux tower footprint can have significant implications on the magnitude of seasonal and annual estimates of NEE from flux towers.

  2. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis.

    PubMed

    Stoy, Paul C; Katul, Gabriel G; Siqueira, Mario B S; Juang, Jehn-Yih; McCarthy, Heather R; Kim, Hyun-Seok; Oishi, A Christopher; Oren, Ram

    2005-07-01

    Orthonormal wavelet transformation (OWT) is a computationally efficient technique for quantifying underlying frequencies in nonstationary and gap-infested time series, such as eddy-covariance-measured net ecosystem exchange of CO2 (NEE). We employed OWT to analyze the frequency characteristics of synchronously measured and modeled NEE at adjacent pine (PP) and hardwood (HW) ecosystems. Wavelet cospectral analysis showed that NEE at PP was more correlated to light and vapor pressure deficit at the daily time scale, and NEE at HW was more correlated to leaf area index (LAI) and temperature, especially soil temperature, at seasonal time scales. Models were required to disentangle the impacts of environmental drivers on the components of NEE, ecosystem carbon assimilation (Ac) and ecosystem respiration (RE). Sensitivity analyses revealed that using air temperature rather than soil temperature in RE models improved the modeled wavelet spectral frequency response on time scales longer than 1 day at both ecosystems. Including LAI improved RE model fit on seasonal time scales at HW, and incorporating parameter variability improved the RE model response at annual time scales at both ecosystems. Resolving variability in canopy conductance, rather than leaf-internal CO2, was more important for modeling Ac at both ecosystems. The PP ecosystem was more sensitive to hydrologic variables that regulate canopy conductance: vapor pressure deficit on weekly time scales and soil moisture on seasonal to interannual time scales. The HW ecosystem was sensitive to water limitation on weekly time scales. A combination of intrinsic drought sensitivity and non-conservative water use at PP was the basis for this response. At both ecosystems, incorporating variability in LAI was required for an accurate spectral representation of modeled NEE. However, nonlinearities imposed by canopy light attenuation were of little importance to spectral fit. The OWT revealed similarities and differences in

  3. Reducing uncertainty in model estimates of North American polar net ecosystem exchange by including remote sensing observations of snow cover

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.; Kelly, R. E.

    2012-12-01

    Uncertainty exists in high-latitude estimates of net ecosystem exchange (NEE) due to a variety of factors such as a limited number of high-latitude eddy covariance stations, and challenges in remote sensing of polar CO2 concentrations and land surface properties. Furthermore, although in situ studies have indicated that a substantial portion of annual NEE in polar regions occurs during the snow season, and that the timing and magnitude of photosynthesis and subnivean respiration are influenced by snow cover, previous estimates of NEE have not explicitly represented snow properties. The objective of this study was to examine the uncertainty in simulated estimates of NEE from the Vegetation Photosynthesis and Respiration Model (VPRM) by contrasting values generated with, versus without, an explicit representation of snow cover. VPRM is a biospheric carbon flux model that generates high resolution estimates of NEE from remote sensing observations of temperature, shortwave radiation and a vegetation index (NDVI) using a simple mathematical structure with only four parameters per vegetation class. In the standard VPRM formulation, photosynthesis is limited during the cold season by low air temperatures, diminished shortwave radiation and low NDVI values. Respiration is assumed to be constant below a threshold air temperature and is otherwise calculated as a linear function of air temperature. In this study, MODIS observations of fractional snow cover were incorporated into VPRM in order to represent the influence of snow cover on suppressing photosynthetic uptake by vegetation and allowing subnivean respiration to persist at cold air temperatures by insulating the soil from heat loss. Photosynthesis was first calculated using the standard VPRM formulation, and the rate of photosynthesis was then reduced according to the fractional snow cover such that the rate of photosynthesis on an 80% snow covered pixel would be reduced by 80%. When a pixel's snow cover area was

  4. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Anderson, F.; Barr, J. G.; Graham, S. L.; Botkin, D. B.

    2015-04-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (-900 to -1000 g C m2 yr-1), moderate at the Pine Upland (-650 to -700 g C m2 yr-1) and least at the Dwarf Cypress (-400 to -450 g C m2 yr-1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  5. Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.

    PubMed

    Song, Jian; Wu, Dandan; Shao, Pengshuai; Hui, Dafeng; Wan, Shiqiang

    2015-06-01

    It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change. PMID:25663332

  6. Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions.

    PubMed

    Fernández, José L; Wijesinghe, Manjula; Zoski, Cynthia G

    2015-01-20

    Theoretical and experimental approaches to characterizing nanoelectrode (NE) ensembles of ultramicroelectrode dimensions (UME-NEEs) as a function of fraction of active area and random NE distribution are described. UME-NEEs were fabricated by addressing microregions of a gold-filled polycarbonate membrane through the UMEs of an underlying microfabricated addressable array. Results of Comsol Multiphysics 3D simulations based on randomly spaced NEs of 15 nm radius on a UME disk geometry of radii up to 5 μm are shown for steady-state voltammetry (SSV) and scanning electrochemical microscopy (SECM) experiments. Analytical equations were developed to describe the diffusion-limited steady-state current and steady-state voltammogram at an UME-NEE. These equations are shown to be in good agreement with the simulations and enabled evaluation of experimental SSVs. Comparison of experimental and simulated SECM approach curves, images, and tip voltammograms enabled the fraction of active area and distribution of NEs to be visualized and determined for individual UME-NEEs. Gold UME-NEEs are shown to be unique platforms for electrodeposition in forming nanoparticle electrodes (UME-NPEs). Electrocatalysis results for the oxygen reduction reaction (ORR) on Pt UME-NPEs in 0.1 M H2SO4 are also shown. PMID:25495486

  7. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  8. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    PubMed Central

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios. PMID:25133267

  9. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Anderson, Frank E.; Barr, Jordan G.; Graham, Scott L.; Botkin, Daniel B.

    2015-01-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric–ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (−900 to −1000 g C m2 yr−1), moderate at the Pine Upland (−650 to −700 g C m2 yr−1) and least at the Dwarf Cypress (−400 to −450 g C m2 yr−1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  10. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    PubMed

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios. PMID:25133267

  11. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    PubMed Central

    Wohlfahrt, G.; Pilloni, S.; Hörtnagl, L.; Hammerle, A.

    2013-01-01

    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for. PMID:24339832

  12. Wall Analyses of Lophocolea Seta Cells (Bryophyta) Before and After Elongation 1

    PubMed Central

    Thomas, Robert J.

    1977-01-01

    Lophocolea heterophylla (Schrad.) Dum. (a leafy liverwort) produces sporophytes with seta cells that elongate 50-fold in 3 to 4 days. Wall components of these cells have been characterized by microscopic histochemistry, colorimetry, and gas chromatography of neutral sugars. Seta cell walls are qualitatively similar to primary cell walls of higher plants. The pectic fraction, however, responds differently to standard histochemical staining and extraction. Quantitatively, mannose, fucose, and rhamnose are in higher percentage, and arabinose and xylose are lower than typically found in vascular plants. Hexuronic acids increase on a percentage basis during elongation; pentoses decrease slightly, while hexose levels remain about the same. Increase in total wall carbohydrate after 2,400% elongation of setae was 1.8-fold. Images PMID:16659846

  13. Studies on Kochiae Fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement.

    PubMed

    Matsuda, H; Dai, Y; Ido, Y; Murakami, T; Matsuda, H; Yoshikawa, M; Kubo, M

    1998-11-01

    We examined the antipruritic effects of various oleanolic acid glycosides from natural medicines such as Kochiae Fructus (the fruit of Kochia scoparia SCHRAD.) and Momordicae Radix (the roots of Momordica cochinchinensis SPRENG.) using a compound 48/80-induced pruritic model in mice. Oleanolic acid 3-O-monodesmosides showed an antipruritic effect, while oleanolic acid 3,28-O-bisdesmosides and their common sapogenol oleanolic acid lacked the activity. This evidence indicated that the 3-O-glycoside moiety and the 28-carboxyl group in oleanolic acid glycosides were essential for exhibiting the antipruritic effect. Furthermore, it was found that the 3-O-glucuronides showed more potent activity than the corresponding 3-O-glucosides. PMID:9853421

  14. Morpho-histological studies in the aromatic species of Chenopodium from Argentina.

    PubMed

    Bonzani, N E; Barboza, G E; Bugatti, M A; Ariza Espinar, L

    2003-04-01

    A morpho-histological study of the vegetative organs (stem and leaf) of the aromatic species of Chenopodium L. from Argentina [C. ambrosioides L., C. burkartii (Aellen) Vorosch., C. carinatum R. Br., C. chilense Schrad., C. graveolens Willd. var. bangii (Murr) Aellen, C. haumanii Ulbr., C. multifidum L., C. oblanceolatum (Speg.) Giusti, C. pumilio R. Br., C. retusum (Moq.) Moq., and C. venturii (Aellen) Cabrera] was carried out. Classifications for the glandular and non-glandular trichomes are established and their presence among species is presented. A variant in both the dorsiventral and isobilateral mesophyll is reported; some data are valuable for systematic purposes and for the identification of dried and smashed material used as vegetal drug. PMID:12727484

  15. CO2 Flux Measurement Uncertainty Estimates for NACP

    NASA Astrophysics Data System (ADS)

    Barr, A.; Hollinger, D.; Richardson, A. D.

    2009-12-01

    We evaluated the uncertainties in eddy-covariance net ecosystem exchange NEE, total ecosystem respiration RE and gross primary production GPP associated with (a) random measurement error and (b) uncertainties in the u* (friction velocity) threshold u*Th for all site-years in the NACP site-level synthesis. The analyses required automated evaluation of the u*Th filter used to identify and reject bad NEE measurements during low-turbulence periods at night. The u*Th detection algorithm was adapted from Papale et al. (2006), modified to use a standard change-point detection algorithm. Uncertainty in the u*Th was estimated by bootstrapping, conducted annually with 1,000 draws per site-year, then pooling all years and calculating the lower and upper 95% confidence intervals from the median and 2.5 and 97.5 percentiles of the pooled u*Th values. Random uncertainties in NEE, RE and GPP were estimated following Richardson et al. (2007). The NEE random uncertainty characteristic curve, which characterizes random uncertainty in NEE as a function of NEE, was estimated for each site-year based on the differences between the measured data and the output of a simple and robust gap-filling model. The estimation procedure began with synthetic NEE data generated by the gap-filling model, introduced gaps (as in the measured data after u*Th filtering), added synthetic noise (defined by the NEE random uncertainty characteristic curve using a Monte-Carlo approach), then filled the gaps in the noisy, gappy synthetic data. The process was repeated 1,000 times for each site-year, and the random uncertainty was estimated from median and the 2.5 and 97.5 percentiles of the gap-filled data. The uncertainties in NEE, RE and GPP associated with uncertainties in the u*Th were evaluated by running the gap-filling routine at 1,000 u*Th values, drawn randomly from the pooled annual bootstrapping estimates. This produced 1,000 realizations of the gap-filled NEE, RE and GPP time series. The

  16. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China.

    PubMed

    Zhang, Lihua; Song, Changchun; Nkrumah, Philip N

    2013-09-01

    It has widely been documented that nitrogen (N) stimulates plant growth and net primary production. But how N affects net ecosystem CO2 exchange (NEE) is still dispute. We conduct an experimental study to assess the response of NEE to N addition in a freshwater marsh. Experimental treatments involved elevated N and control treatments on triplicate 1 m(2) plots. Gas exchange, air temperature, plant biomass and leaf area as well as N% of leaf were measured from 2004 to 2005. The results indicated that N addition initially decreased the CO2 sequestration but the trend changed in the second year. It was concluded that N addition enhanced the greenhouse effect in marshland as far as global warming potential (GWP) is concerned. This increase was attributed to a substantial increase in CH4 and N2O emissions after N addition. We recommended long-term studies to further clarify the effect of N addition on NEE. PMID:23727568

  17. Reducing uncertainty in model estimates of high-latitude net ecosystem exchange by incorporating remote sensing observations of snow cover area

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; Lin, John; Kelly, Richard

    2013-04-01

    Recent high-latitude studies have indicated that the seasonal timing of initial snow accumulation and final snow melt each year substantially influence net ecosystem exchange (NEE). Previous terrestrial biogeochemical models have either not simulated the influence of snow season processes on NEE, or have used process-based estimates of snow depth or subnivean temperature to estimate snow season NEE. As predictions indicate that the northern carbon balance is likely to be altered by cumulative and interconnected changes in Arctic air temperature, precipitation, and snowpack dynamics, uncertainty in estimates of NEE may be reduced by incorporating independent remote sensing observations of fractional snow cover into terrestrial biogeochemical models. The objective of this study was to examine whether uncertainty in Vegetation Photosynthesis and Respiration Model (VPRM) estimates of North American NEE north of 55°N could be reduced by using remote sensing observations to explicitly represent the influence of fractional snow cover on NEE. VPRM is a biospheric carbon flux model that generates high resolution estimates of NEE from remote sensing observations of air temperature, shortwave radiation and the normalized difference vegetation index (NDVI). In the standard VPRM (VPRM0) formulation, photosynthesis is limited during the cold season by low air temperatures, diminished shortwave radiation and low NDVI values, and respiration is assumed to be constant below a threshold air temperature. Conversely, in the new VRPMsnow formulation, moderate resolution imaging spectroradiometer (MODIS) observations of fractional snow cover are used to simulate the effects snow has on suppressing photosynthetic uptake by vegetation and decoupling soil and air temperatures. Therefore, when MODIS observations indicate that snow is present at a location, the rate of photosynthetic uptake by vegetation is diminished as a function of the fractional snow cover area, and when a region is

  18. Modelling Net Ecosystem Exchange and LUE in Mediterranean Oak Forest by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Papale, Dario

    2011-01-01

    Net Ecosystem Exchange (NEE) is a key factor defining CO2 fluxes between atmosphere and ecosystems and CO2 flux measurements at individual eddy covariance flux sites provide valuable information on the seasonal dynamics of NEE. In this work, we developed and validated a satellite-based Light Use Efficiency (LUE) model to estimate NEE for a typical oak forest located in Central Italy. Satellite data were acquired by Moderate resolution spectroradiometer (MODIS) sensor installed on board Terra satellite. Oak forest studied is coppice managed; 2 eddy-covariance towers are located inside two forests parcels having different ages. We proposed to estimate LUE like function of mean brightness temperature, Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI). Empirical multiple regressions models (MR) and Artificial Neural Network (ANN) were parameterized and validated using subset of data acquired by both the stations. Daily, 8-day and monthly temporal resolutions were investigated and accuracy estimation in space and time was performed.

  19. Using the Minnesota Multiphasic Inventory 2, EEGs, and clinical data to predict nonepileptic events.

    PubMed

    Schramke, Carol J; Valeri, April; Valeriano, James P; Kelly, Kevin M

    2007-11-01

    Minnesota Multiphasic Inventory 2 (MMPI-2) scale 3, duration of illness, and routine EEGs have been used to predict nonepileptic events (NEEs) with a high degree of accuracy in patients referred for video/EEG (vEEG) monitoring. This study tested the Storzbach logistic regression equation in our patients with definitive epileptic seizures (n=57) or NEEs without evidence of epileptiform activity (n=51) during vEEG monitoring, yielding an overall classification accuracy of 81%, sensitivity of 80%, and specificity of 81%. This study also replicated previous findings of significant group differences in duration (years) of spells, number of elevations on the MMPI-2, MMPI-2 elevations on scales 1, 2, 3, and 8, and incidence of the conversion valley on the MMPI-2. Our findings indicated that combined use of the MMPI-2 and clinical variables was most predictive of patients with NEEs. PMID:17904912

  20. An annotated catalogue of the Iranian Euphorinae, Gnamptodontinae, Helconinae, Hormiinae and Rhysipolinae (Hymenoptera: Braconidae).

    PubMed

    Gadallah, Neveen S; Ghahari, Hassan; Achterberg, Kees Van

    2016-01-01

    The Iranian species diversity of five braconid subfamilies, Euphorinae (54 species in 16 genera and 8 tribes), Gnamptodontinae (4 species in 1 genus and 1 tribe), Helconinae (9 species in 5 genera and 2 tribes), Hormiinae (8 species in 4 genera and 2 tribe) and Rhysipolinae (3 species in 2 genera) are summarized in this catalogue. A faunistic list is given comprising both local and global distribution of each species under study as well as host records. In the present study ten new records are added to the Iranian fauna: Centistes (Ancylocentrus) ater (Nees), Centistes cuspidatus (Haliday), Meteorus affinis (Wesmael), Meteorus rufus (DeGeer), Microctonus brevicollis (Haliday), Microctonus falciger Ruthe, Peristenus nitidus (Curtis) (Euphorinae), Aspicolpus carinator (Nees), Diospilus capito (Nees) and Diospilus productus Marshall (Helconinae s.l.). Euphorus pseudomitis Hedwig, 1957 is transferred to the subfamily Hormiinae and Hormisca pseudomitis (Hedwig, 1957) is a new combination. PMID:27395908

  1. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles

    SciTech Connect

    Lin, Yuehe ); Lu, Fang; Tu, Yi; Ren, Zhifeng

    2004-02-12

    This paper describes the development of glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) for the selective detection of glucose. Glucose oxidase was covalently immobilized on CNT NEEs via carbodiimide chemistry by forming amide linkages between their amine residues and carboxylic acid groups on the CNT tips. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon the glucose and oxygen on CNT NEEs leads to the selective detection of glucose. The biosensor effectively performs selective electrochemical analysis of glucose in the presence of common interferents (e.g. acetaminophen, uric and ascorbic acids), avoiding the generation of an overlapping signal from such interferents. Such an operation eliminates the need for permselective membrane barriers or artificial electron mediators, thus greatly simplifying the sensor design and fabrication.

  2. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global

  3. The influence of drought on net ecosystem CO2 exchange in the southeastern US

    NASA Astrophysics Data System (ADS)

    Pingintha, N.; Leclerc, M. Y.; Beasley, J. P.; Zhang, G.; Senthong, C.

    2009-12-01

    The principal mechanisms connecting CO2 fluxes to water relations in an agricultural ecosystem were studied using the eddy-covariance (EC) method in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR) was the primary climatic factor controlling daytime net ecosystem CO2 exchange (NEE), accounting for 67 to 89% of variations in NEE. However, soil water content (SWC) was the dominant factor limiting the NEE-PAR response during the peak growth stage, as NEE was significantly depressed when PAR exceeding 1300 µmol photons m-2 s-1coincided with a very low soil water content (SWC < 0.04 m3 m-3). Pronounced hysteresis in NEE was observed in both non-stress and water stress conditions as a function of PAR. However, the magnitude of hysteresis was larger in the water stress days than the non-water stress days, which is related to the variation of leaf surface conductance (gs) with water stress. It was found that without the limitation of PAR (> 1000 µmol photons m-2 s-1), 95% of variation in gs was explained by the changes in vapor pressure deficit (VPD) during water stressed days. Stomatal sensitivity to VPD increased in the afternoon and therefore the degree of closure increased, causing a reduction in CO2 uptake. These results inferred that the stomatal limitation caused by soil water insufficiency was responsible for a large hysteresis loop. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression ought to take into account the presence of extreme environmental conditions such as drought. This would be valuable in predicting ecosystem responses to climate change.

  4. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland

    NASA Astrophysics Data System (ADS)

    Helfter, C.; Campbell, C.; Dinsmore, K. J.; Drewer, J.; Coyle, M.; Anderson, M.; Skiba, U.; Nemitz, E.; Billett, M. F.; Sutton, M. A.

    2014-10-01

    Land-atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland, since 2002. Hence this is one of the longest peatland NEE studies to date. For 11 yr, the site was a consistent, yet variable, atmospheric CO2 sink ranging from -5.2 to -135.9 g CO2-C m-2 yr-1 (mean of -64.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory-effect. Plant productivity exhibited a marked hysteresis with respect to photosynthetically active radiation (PAR) over the growing season, indicative of two separate growth regimes. Ecosystem respiration (Reco) and gross primary productivity (GPP) were closely correlated (ratio 0.74), suggesting that autotrophic processes were dominant. Whilst the site was wet most of the year (water table depth <5 cm) there were indications that heterotrophic respiration was enhanced by drought, which also depressed GPP. NEE was compared to 5 other peatland sites which have published long-term NEE records. The CO2 uptake rate during the growing season was comparable to 3 other European sites, however the emission rate during the dormant season was significantly higher.

  5. Quantifying Typhoon Impact on Net Carbon Ecosystem Exchange in a Sub-tropical Mangrove Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2011-12-01

    Although typhoon is a natural disturbance for mangrove forests, research of typhoon impact on net carbon ecosystem exchange (NEE) of mangrove wetlands has not reached final conclusion. In this study we investigated possible effects of typhoons with different forces on the NEE of a subtropical mangrove forest in Fujian, China (117°23'E, 23°55'N). In 2010, Typhoon Lionrock, Fanapi and Megi made landfall with a speed of 23, 35 and 38 m s-1 near our mangrove field station in Zhangjiang Estuary National Mangrove Nature Reserve on September 2, September 20 and October 23, respectively. In October 2009, total of 16 litter traps and an eddy covariance system were instated at this field station. Litter production was monitored at the biweekly intervals while the NEE was measured continuously. The litter production and NEE values were compared before and after each typhoon landed. Strong winds and torrential rains from these typhoons caused the amount of litter production more than double over the same period a year before when there was no typhoon landing. Moreover, about 5~25% green leaves and twigs were found in the litter traps after the typhoons, indicating significant defoliation by the typhoons. Typhoon Lionrock and Fanapi did not significantly reduce NEE, while Typhoo Fanapi reduced gross ecosystem production (GEP) by about 12%. However, NEE was increased by Typhoon Megi, which resulted from lower daily ecosystem respiration (Re) following the typhoon. Our results indicate that, although theses typhoons caused significant defoliation, they had little effect on ecosystem carbon exchange over the short periods following the typhoons.

  6. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Wen, X.-F.; Han, S.-J.; Yan, J.-H.

    2010-02-01

    Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE) in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS), based on the flux data obtained during June-August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR) differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max) at CBS under cloudy skies during mid-growing season (from June to August) increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt) ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD) and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP) and greater increase in ecosystem respiration (Re) at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in cloudiness is an important factor that should be included in evaluating regional carbon budgets under climate change

  7. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines. PMID:25168968

  8. Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological "common sense" in a model-data fusion framework

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Williams, M.

    2015-03-01

    Many of the key processes represented in global terrestrial carbon models remain largely unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity, carbon models tend to be underdetermined, and so can produce similar net fluxes with very different parameters and internal dynamics. To address these problems, we propose a series of ecological and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range of conditions on (a) carbon pool turnover and allocation ratios, (b) steady-state proximity, and (c) growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-data fusion framework to determine the added value of these constraints in a data-poor context. Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem exchange (NEE) for (a) 40 synthetic experiments and (b) three AmeriFlux tower sites. For the synthetic experiments, we show that EDCs lead to an overall 34% relative error reduction in model parameters, and a 65% reduction in the 3 yr NEE 90% confidence range. In the application at AmeriFlux sites all NEE estimates were made independently of NEE measurements. Compared to these observations, EDCs resulted in a 69-93% reduction in 3 yr cumulative NEE median biases (-0.26 to +0.08 kg C m-2), in comparison to standard 3 yr median NEE biases (-1.17 to -0.84 kg C m-2). In light of these findings, we advocate the use of EDCs in future model-data fusion analyses of the terrestrial carbon cycle.

  9. Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological "common sense" in a model-data-fusion framework.

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Williams, M.

    2014-08-01

    Many of the key processes represented in global terrestrial carbon models remain largely unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity, carbon models tend to be underdetermined, and so can produce similar net fluxes with very different parameters and internal dynamics. To address these problems, we propose a series of ecological and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range of conditions on (a) carbon pool turnover and allocation ratios, (b) steady state proximity, and (c) growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-data fusion framework to determine the added value of these constraints in a data-poor context. Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem exchange (NEE) for (a) 40 synthetic experiments and (b) three AMERIFLUX tower sites. For the synthetic experiments, we show that EDCs lead to an an overall 34% relative error reduction in model parameters, and a 65% reduction in the 3 yr NEE 90% confidence range. In the application at AMERIFLUX sites all NEE estimates were made independently of NEE measurements. Compared to these observations, EDCs resulted in a 69-93% reduction in 3 yr cumulative NEE median biases (-0.26 to +0.08 kg C m-2), in comparison to standard 3 yr median NEE biases (-1.17 to -0.84 kg C m-2). In light of these findings, we advocate the use of EDCs in future model-data fusion analyses of the terrestrial carbon cycle.

  10. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    SciTech Connect

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  11. Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Moretto, Ligia Maria; Ugo, Paolo

    2015-05-01

    Nanoelectrode ensembles (NEEs) obtained by electroless gold deposition in track-etched poly-carbonate (PC) membranes are functionalized and applied for DNA hybridization detection, using methylene blue (MB) as electroactive probe. To this aim, an amine terminated (ss)DNA probe is immobilized on the PC surface of the NEE by reaction via carbodiimide and N-hydroxysulfosuccinimide. In order to increase the number of carboxylic groups present on PC and suitable for the functionalization, the surface of NEEs is oxidized with potassium permanganate. The presence of carboxylic functionalities is verified by spectrochemical titration with thionin acetate (THA) and the effect of the activation treatment on the electrode performances is evaluated by cyclic voltammetry (CV). After activation and functionalization with the probes, the NEE-based sensor is hybridized with complementary target sequences. The effect of the functionalization of the NEEs both with the (ss)DNA probe alone and after hybridization with the target, is studied by measuring the changes in the MB reduction signal by square wave voltammetry (SWV), after incubation in a suitable MB solution, rinsing and transfer to the measurement cell. It was observed that this peak signal decreases significantly after hybridization of the probe with the complementary target. Experimental evidences suggest that the interaction between MB and the guanines of (ss)DNA and (ds)DNA is at the basis of the development of the here observed analytical signal. The proposed approach allows the easy preparation and testing of NEE-based sensors for the electrochemical DNA hybridization detection. PMID:26504963

  12. Response of carbon dioxide exchange to grazing intensity over typical steppes in a semi-arid area of Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Huizhi; Bernhofer, Christian

    2016-01-01

    The eddy covariance technique was used to measure the CO2 flux over four differently grazed Leymus chinensis steppe ecosystems (ungrazed since 1979 (UG79), winter grazed (WG), continuously grazed (CG), and heavily grazed (HG) sites) during four growing seasons (May to September) from 2005 to 2008, to investigate the response of the net ecosystem exchange (NEE) over grassland ecosystems to meteorological factors and grazing intensity. At UG79, the optimal air temperature for the half-hourly NEE occurred between 17 and 20 °C, which was relatively low for semi-arid grasslands. The saturated NEE (NEEsat) and temperature sensitivity coefficient (Q 10) of ecosystem respiration (RE) exhibited clear seasonal and interannual variations, which increased with canopy development and the soil water content (SWC, at 5 cm). The total NEE values for the growing seasons from 2005 to 2008 were -32.0, -41.5, -66.1, and -89.8 g C m-2, respectively. Both the amounts and distribution of precipitation during the growing season affected the NEE. The effects of grazing on the CO2 flux increased with the grazing intensity. During the peak growth stage, heavy grazing and winter grazing decreased NEEsat and gross primary production (45 % for HG and 34 % for WG) due to leaf area removal. Both RE and Q 10 were clearly reduced by heavy grazing. Heavy grazing changed the ecosystem from a CO2 sink into a CO2 source, and winter grazing reduced the total CO2 uptake by 79 %. In the early growing season, there was no difference in the NEE between CG and UG79. In addition to the grazing intensity, the effects of grazing on the CO2 flux also varied with the vegetation growth stages and SWC.

  13. Recent variations in Amazon carbon balance driven by climate anomalies

    NASA Astrophysics Data System (ADS)

    Miller, J. B.

    2015-12-01

    Understanding tropical rainforest response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net ecosystem exchange of CO2 with the atmosphere (NEE), a metric that represents the total integrated signal of carbon fluxes into and out of ecosystems. Sub-annual and sub-basin NEE estimates have previously been derived from process-based biosphere models, despite often disagreeing with plot-scale observations. Our analysis of airborne CO2 and CO measurements reveals monthly, sub-Basin scale (~106 km2) NEE variations in a framework that is largely independent of bottom-up estimates. As such, our approach provides new insights about tropical forest response to climate. We find acute sensitivity of NEE to daily and monthly climate extremes. In particular, increased central-Amazon NEE was associated with wet-season heat and dry-season drought in 2010. We analyze satellite proxies for photosynthesis and find that suppression of photosynthesis may have contributed to increased carbon loss in the 2010 drought, consistent with recent analysis of plot-scale measurements. In the eastern Amazon, pulses of increased NEE (i.e. net respiration) persisted through 2011, suggesting legacy effects of the drought that occurred in 2010. Regional differences in post-drought recovery in 2011 and 2012 appear related to long-term water availability. These results provide novel evidence of the vulnerability of Amazon carbon stocks to short-term temperature and moisture extremes.

  14. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    PubMed

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted. PMID:26279166

  15. Updated checklist of Iranian Opiinae (Hymenoptera: Braconidae).

    PubMed

    Gadallah, Neveen S; Ghahari, Hassan; Peris-Felipo, Francisco Javier; Fischer, Maximilian

    2016-01-01

    An updated checklist of Opiinae from Iran is provided including 101 species from 11 genera (Atormus van Achterberg, 1997, Biosteres Foerster, 1862, Eurytenes Forster, 1862, Fopius Wharton, 1987, Indiopius Fischer, 1966, Opius Wesmael, 1835, Phaedrotoma Forster, 1862, Pokomandya Fischer, 1959, Psyttalia Walker, 1860, Utetes Forster, 1862 and Xynobius Forster, 1862) belonging to two tribes (Biosterini and Opiini). Moreover, seven species Biosteres (Chilotrichia) punctiscuta (Thomson, 1895), Biosteres (Biosteres) remigii Fischer, 1971, Eurytenes (Eurytenes) abnormis (Wesmael, 1835), Opius (Hypocynodus) ponticus Fischer, 1958, Opius pygmaeator (Nees, 1811), Opius (Nosopoea) speciosus Fischer, 1959 and Phaedrotoma nitidulator (Nees, 1834) are recorded for the first time from Iran. PMID:27395527

  16. Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kim, J.; Hong, J.; Lim, J.-H.

    2010-05-01

    Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ~5) was a weak carbon sink with NEE of -84 gC m-2 y-1. Despite about 20% larger GPP (of 1321 gC m-2y-1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of -58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m-2 y-1). These NEE

  17. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  18. Estimation of Ecosystem Parameters of the Community Land Model with DREAM: Evaluation of the Potential for Upscaling Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.

    2015-12-01

    Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate

  19. Effects of drought - altered seasonality and low rainfall - in net ecosystem carbon exchange of three contrasting Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, J. S.; Mateus, J. A.; Aires, L. M.; Pita, G.; Pio, C.; Andrade, V.; Banza, J.; David, T. S.; Rodrigues, A.; David, J. S.

    2007-06-01

    Droughts cause reductions in gross primary production (GPP) and also in net ecosystem exchange (NEE), contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean) droughts result from reductions in annual rainfall and from changes in rain seasonality. In western Iberia, the hydrological-year (i.e., from October to September) of 2004-2005 was extremely dry, with precipitation 50% below the long-term mean (691 mm in 1961-1990), but 2005-2006 was normal. We compared the carbon fluxes measured by the eddy covariance technique from three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like) with ca. 21% tree cover; a Mediterranean C3/C4 grassland; and a coppiced eucalyptus plantation. During the dry hydrological-year of 2004-2005, NEE was lowest, the highest sink strength was in the eucalypt plantation (NEE = -399 g C m -2 year-1) as compared to the oak woodland (NEE = -88 g C m -2 year-1), and the grassland (NEE = +49 g C m -2 year -1). The latter was a source of carbon dioxide. The NEE values of the dry year were, however, much lower than those for wetter years, e.g. NEE = -861 g C m-2 year -1 in 2002-2003 in the eucalypt plantation. The NEE of the grassland and the oak savannah in the 2005-2006 hydrological-year, with annual precipitation above the long term mean, were -190 and -120 g C m -2 year-1, respectively. All ecosystems studied increased their rain-use efficiency (GPP per unit of rain volume) increased in dry years. In the case of annual vegetation - grassland and low tree density woodland, however &ndash, rain-use efficiency decreased with severe drought. However, this was more pronounced in the eucalypt plantation due to greater GPP and the use of deep soil water resources. Although both calendar years of 2004 and 2005 had equally low rainfall, the effect of drought on the eucalypt plantation was delayed until the second dry year. This suggests that the

  20. Inter-annual variability in Alaskan net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; Lindaas, Jakob; Commane, Roisin; Euskirchen, Eugenie; Oechel, Walter; Zona, Donatella; Chang, Rachel; Kelly, Richard; Miller, Charles; Wofsy, Steven; Lin, John

    2015-04-01

    The high-latitude biospheric carbon cycle's responses to climate change are predicted to have an important role in determining future atmospheric concentrations of CO2. In response to warming soil and air temperatures, Arctic wetlands have been observed to increase rates of both soil C efflux and vegetation C uptake through photosynthesis. However, insights into the regional-scale consequences of these processes for net C uptake have been limited by the large uncertainties existing in process-based model estimates of Arctic net ecosystem CO2 exchange (NEE). The Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM) instead provides data-driven, satellite-based estimates of high-latitude NEE, using a framework which specifically accounts for polar influences on NEE. PolarVPRM calculates NEE as the sum of respiration (R) and gross ecosystem exchange (GEE), where GEE refers to the light-dependent portion of NEE: NEE= -GEE + R. Meteorological inputs for PolarVPRM are provided by the North American Regional Reanalysis (NARR), and land surface inputs are acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS). Growing season R is calculated from air temperature, and subnivean R is calculated according to soil temperature. GEE is calculated according to shortwave radiation, air temperature, and MODIS-derived estimates of soil moisture and vegetation biomass. Previously, model validation has indicated that PolarVPRM showed reasonably good agreement with eddy covariance observations at nine North American Arctic sites, of which three were used for calibration purposes. For this project, PolarVPRM NEE was calculated year-round across Alaska at a three-hourly temporal resolution and a spatial resolution of 1 6°×1 4° (latitude × longitude). The objective of this work was to gain insight into inter-annual variability in Alaskan NEE, R and GEE, and an understanding of which meteorological and land surface drivers account for these observed patterns

  1. Stimulation of Mojave Desert net ecosystem CO2 uptake after winter precipitation with the opposite effect after summer rains based on 7 years of flux data

    NASA Astrophysics Data System (ADS)

    Jasoni, Richard; Arnone, John; Fenstermaker, Lynn; Wohlfahrt, Georg

    2014-05-01

    Eddy covariance measurements of net ecosystem CO2 exchange (NEE) in the Mojave Desert (Jasoni et al. 2005-Global Change Biology 11:749-756; Wohlfahrt et al. 2008-Global Change Biology 14:1475-1487), and in other deserts of the world (e.g., Hastings et al. 2005- Global Change Biology 14:927-939, indicate greater rates of net CO2 uptake (more negative NEE values) and net ecosystem productivity (NEP) than would have been expected for deserts (as high as -120 g C m-2 year-1). We continue to observe high rates of NEE and NEP and seek explanations for these findings at interannual, seasonal, and sub-seasonal time scales. Because moisture availability most strongly constrains biological activity in deserts, responses to rains probably play a significant role in defining components of NEE-namely net primary productivity (NPP, or roughly net photosynthesis by vascular and non-vascular plants) and heterotrophic respiration (Rh, mainly by soil microorganisms). Most precipitation in the Mojave Desert falls from October through April and periodically in the summer as convective storms. The main objective of this study was to quantify the extent to which NEE and the net flux of CO2 from/to biological soil crust (BSC) covered soil surfaces respond to rain pulses occurring during cool/cold and warm/hot times of the year. Flux data from 7 years (2005-2011) of measurements at our shub land desert site (average 150 mm rain per year) located 120 km northwest of Las Vegas showed a range in NEP from -111±34 to -47±28 g C m-2 year-1. Cool season rains usually stimulated NEE (more negative NEE values or net CO2 uptake) while warm season rains reversed this effect and led to positive NEE values (net ecosystem CO2 efflux. Cool season stimulation of NEE often occurred in the absence of green leaves on vascular plants, suggesting that photosynthesis of BSCs (up to 70% of soil surface covered by cyanobacteria, mosses, and lichens) were responsible for this net uptake. At other times during

  2. The EV-1 airborne microwave observatory of subcanopy and subsurface (AirMOSS) investigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AirMOSS is one of the five Earth Venture-1 investigations selected in May 2010, with the goal of improving the estimates of the North American net ecosystem exchange (NEE) through high-resolution observations of root zone soil moisture (RZSM). The 5-year AirMOSS investigation is deigned to overlap w...

  3. A new Gonatocerus (Hymenoptera: Mymaridae) from Argentina, with taxonomic notes and molecular data on the G. tuberculifemur species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new member of the ater species group of Gonatocerus Nees (Mymaridae) is described from the state of Mendoza in Argentina. Specimens of G. deleoni Triapitsyn, Logarzo & Virla sp. n. were first reared in San Rafael from sentinel eggs of the proconiine sharpshooter Tapajosa rubromarginata (Signoret) ...

  4. Collection and seed production of Allium acuminatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a component of Greater Sage-Grouse and Southern Idaho Ground Squirrel habitat, Allium acuminatum Hook. (Taper-tip onion) has been targeted for use in restoration projects and conservation. Before a native plant can be used in large or small projects in the landscape quantities of propagules nee...

  5. Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: application to identify hen's egg yolk in tempera paintings.

    PubMed

    Bottari, Fabio; Oliveri, Paolo; Ugo, Paolo

    2014-02-15

    A nanostructured electrochemical biosensor for detecting proteins of interest in work of art, in particular in tempera paintings, is presented. To determine egg yolk we focus here on the determination of immunoglobulin IgY. The transducers are nanoelectrode ensembles (NEEs), prepared via membrane templated electroless deposition of gold. Because of their geometrical and diffusion characteristics, NEEs are characterized by significantly low detection limits, moreover they display the capability of capturing proteins by interaction with the polycarbonate membrane of the NEE. At first, the proteic component of the paint is extracted by ultrasonication in an aqueous buffer, then IgY is captured by incubation on the NEE. The immunoglobulin is detected by treatment with anti-IgY labeled with horse radish peroxidase (Anti-IgY-HRP). The binding of the Anti-IgY-HRP is detected by recording the electrocatalytic signal caused by addition of H2O2 and methylene blue. The sensor detection capabilities are tested by analyzing both paint models, prepared in the lab, and real samples, from paintings of the XVIII-XX century. Multivariate exploratory analysis is applied to classify the voltammetric patterns, confirming the capability to differentiate egg-yolk tempera from other kind of tempera binders as well as from acrylic or oil paints. PMID:24096186

  6. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    PubMed

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. PMID:26950633

  7. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2014-10-01

    Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai-Tibet Plateau that would affect the ecosystem carbon (C) balance. We conducted a field experiment with six levels of land degradation (D1-D6, degradation aggravates from D1 to D6) to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs), net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB) was significantly higher in slightly degraded (D3 and D6) than in severely degraded land (D1, D2, D4 and D5). Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N) and inorganic nitrogen were associated with root biomass (RB). Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  8. Root expression from a Beta vulgaris promoter in transgenic Arabidopsis plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tighter control of gene expression can be achieved by using promoters for expressing genes in a tissue-specific and temporal manner without imparting deleterious effects on non-target tissue. Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are nee...

  9. Consequences of cool-season drought induced plant mortality to Chihuahuan Desert grassland ecosystem and soil respiration dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is predicted to increase the severity and frequency of cool-season drought across the arid Southwest US. We quantified net ecosystem carbon dioxide exchange (NEE), ecosystem respiration (Reco), and gross ecosystem photosynthesis (GEP) in response to interannual seasonal precip...

  10. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Ugo, Paolo

    2013-02-15

    A novel electrochemical biosensor for DNA hybridization detection based on nanoelectrode ensembles (NEEs) is presented. NEEs are prepared by electroless deposition of gold into the pores of a templating track-etched polycarbonate (PC) membrane. The wide surface of the templating membrane surrounding the nanoelectrodes is exploited to bind the capture DNA probes via amide coupling with the carboxylic groups present on the PC surface. The probes are then hybridized with the complementary target labelled with glucose oxidase (GO(x)). The occurrence of the hybridization event is detected by adding, to the supporting electrolyte, excess glucose as the substrate and the (ferrocenylmethyl) trimethylammonium cation (FA(+)) as suitable redox mediator. In the case of positive hybridization, an electrocatalytic current is detected. In the proposed sensor, the biorecognition event and signal transduction occur in different but neighbouring sites, i.e., the PC surface and the nanoelectrodes, respectively; these sites are separated albeit in close proximity on a nanometer scale. Finally, the possibility to activate the PC surface by treatment with permanganate is demonstrated and the analytical performances of biosensors prepared with KMnO(4)-treated NEEs and native NEEs are compared and critically evaluated. The proposed biosensor displays high selectivity and sensitivity, with the capability to detect few picomoles of target DNA. PMID:22898659

  11. Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular phenotype is the consequence of dynamic metabolic events that occur in a spacially dependent fashion. This spatial and temporal complexity presents challenges for investigating primary metabolism and improved methods to probe biochemical events such as amino acid biosynthesis may be nee...

  12. Linda S. Gottfredson

    ERIC Educational Resources Information Center

    Wainer, Howard; Robinson, Daniel H.

    2009-01-01

    This article presents an interview with Linda Gottfredson (nee Howarth), who obtained her BA (psychology, Phi Beta Kappa) from UC Berkeley in 1969, served in the Peace Corps in the Malaysian Health Service from 1969 to 1972, and received her PhD (sociology) from Johns Hopkins University (JHU) in 1976. She was Research Scientist at JHU's Center for…

  13. CARBON FLUXES ON NORTH AMERICAN RANGELANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal patterns of growth and thus carbon uptake are relevant to both scientists who study ecosystem properties and managers who strive to maintain rangeland productivity. We studied seasonal patterns of net ecosystem exchange of carbon (NEE) on 11 US rangelands over a 6-year period. All sites w...

  14. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  15. Exploring the Adolescent's Creative Pathways: Mindfulness, Role Fluidity, Story, and the Dramatic Curriculum

    ERIC Educational Resources Information Center

    McNees, David

    2015-01-01

    David McNees' deep foray into creativity theory and drama begins with mindfulness as a preparation for adolescent focus. This article discusses role incarnation, the correlation of the three-period lesson to Landy's role theory, the creation and re-creation of personal story and identity, archetypal heroes, and how the adaptability learned in…

  16. Registration of N614, A3N615, N616, and N617 Shattercane Genetic Stocks with cytoplasmic or nuclear male-sterility and juicy or dry midribs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four shattercane [Sorghum bicolor subsp. drummondii (Nees ex Steud) de Wet & Harlan] genetic stocks, N614, A3N615, N616, N617 (Reg. No. XXX, PI 665683 to 665686), with A3 cytoplasmic male-sterility or nuclear male-sterility gene ms3 containing either juicy (dd) or dry (DD) culms were developed joint...

  17. Carbon isotope ratios document that the elytra of western corn rootworm reflects adult versus larval feeding and later instar larvae prefer Bt corn to alternate hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major pest of maize, Zea mays L., worldwide. While exploring conventional approaches to management and more recently bioengineering, extended research has been conducted on ways to manage its root-feeding larvae. The nee...

  18. Polyacetylated labdane-type diterpenoids, ptychantins P-R from Chinese liverwort Ptychanthus striatus.

    PubMed

    Wu, Jing-Yi; Zhang, Jiao-Zhen; Kang, Ya-Qi; Wang, Xiao; Fan, Pei-Hong; Zhou, Jin-Chuan; Lou, Hong-Xiang

    2015-05-01

    Three new polyacetylated labdane diterpenoids ptychantins P-R (1-3) and four known compounds (4-7) were isolated from an EtOH extract of the Chinese liverwort Ptychanthus striatus (Lehm. & Lindenb.) Nees. Their structures were established by extensive analysis of spectroscopic data (IR, UV, HRESIMS, 1D NMR, and 2D NMR). PMID:25677361

  19. Relationship between annual canopy photosynthesis and ecosystem respiration in humid-temperate pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing nitrogen fertilization of a mature cool-season pasture increased annual photosynthetic C uptake (GPP) and forage yield but also increased ecosystem respiration (Re), such that net ecosystem exchange (NEE) and soil C sequestration were not affected by the increased fertility. A nine-year s...

  20. A new Gonatocerus (Hymenoptera:Mymaridae) from Argentina, with taxonomic notes and molecular data on the G. tuberculifemur species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gonatocerus deleoni Triapitsyn, Logarzo & Virla sp. n., reared from sentinel eggs of Tapajosa rubromarginata (Signoret) (Cicadellidae: Cicadellinae: Proconiini) on citrus plants, a new member of the ater species group of Gonatocerus Nees (Mymaridae), is described from the state of Mendoza, Argentina...

  1. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  2. Nutritional Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dramatic growth of infants during the 1st yr of life (a 3-fold increase in weight; a 50% increase in length) and continued growth, albeit at lower rates, from 1 yr of age through adolescence impose unique nutritional needs. The needs for growth are superimposed on relatively high maintenance nee...

  3. OPTIMAL OPERATION OF ELECTRIC ARC FURNACES (EAF) TO MINIMIZE THE GENERATION OF AIR POLLUTANTS AT THE SOURCE

    EPA Science Inventory

    The manufacture of steel by electric arc furnaces (EAF) is continuing to increase in usage in the United States with current production estimated to be over 63 million tons per year. The reduction of emissions from steel producers has been slow for two main reasons: the nee...

  4. Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining MODIS and AmeriFlux Data 1961

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the...

  5. Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model

    PubMed Central

    Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian

    2015-01-01

    Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model. PMID:25849325

  6. MaizeGDB: everything old is new again! [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of genetic, genomic, and breeding research evolves over time, making it necessary to continually redefine the paradigm for data access and data analysis tools. Here we report the reinvention of MaizeGDB, the maize genetics and genomics database, to meet maize researchers’ ever changing nee...

  7. Seasonal variation of carbon dioxide fluxes over irrigated soybean ( Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Şaylan, Levent; Kimura, Reiji; Munkhtsetseg, Erdenebayar; Kamichika, Makio

    2011-08-01

    In this study, variations in carbon dioxide (CO2) fluxes resulting from gross primary production (GPP), net ecosystem exchange (NEE), and respiration ( R e) of soybean ( Glycine max L.) were investigated by the Eddy Covariance method during the growing period from June to November 2005 on an irrigated sand field at the Arid Land Research Center, Tottori University in Tottori, Japan. Although climatic conditions were humid and temperate, the soybeans required frequent irrigation because of the low water holding capacity of the sandy soil at the field site. Finally, it has been found that the accumulated NEE, GPP, and R e fluxes of soybean over 126 days amount to -93, 319, and 226 gC m-2, respectively. Furthermore, the average ratio of GPP to R e was 1.4 and the average ratio of NEE to GPP was about -0.29 for the growth period of soybean. Daily maximum NEE of -3.8 gC m-2 occurred when LAI was 1.1.

  8. Do plant population and planting date make a difference in corn production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One management practice that can positively or negatively impact corn yield is plant population. Yield potential can also be influenced by the date of planting, which is strongly linked to the at-planting and in-season weather and climatic conditions. Even when considering management changes, we nee...

  9. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Han, Guangxuan; Chu, Xiaojing; Xing, Qinghui; Li, Dejun; Yu, Junbao; Luo, Yiqi; Wang, Guangmei; Mao, Peili; Rafique, Rashad

    2015-08-01

    Episodic flooding due to intense rainfall events is characteristic in many wetlands, which may modify wetland-atmosphere exchange of CO2. However, the degree to which episodic flooding affects net ecosystem CO2 exchange (NEE) is poorly documented in supratidal wetlands of coastal zone, where rainfall-driven episodic flooding often occurs. To address this issue, the ecosystem CO2 fluxes were continuously measured using the eddy covariance technique for 4 years (2010-2013) in a supratidal wetland in the Yellow River Delta. Our results showed that over the growing season, the daily average uptake in the supratidal wetland was -1.4, -1.3, -1.0, and -1.3 g C m-2 d-1 for 2010, 2011, 2012, and 2013, respectively. On the annual scale, the supratidal wetland functioned as a strong sink for atmospheric CO2, with the annual NEE of -223, -164, and -247 g C m-2 yr-1 for 2011, 2012, and 2013, respectively. The mean diurnal pattern of NEE exhibited a smaller range of variation before episodic flooding than after it. Episodic flooding reduced the average daytime net CO2 uptake and the maximum rates of photosynthesis. In addition, flooding clearly suppressed the nighttime CO2 release from the wetland but increased its temperature sensitivity. Therefore, effects of episodic flooding on the direction and magnitude of NEE should be considered when predicting the ecosystem responses to future climate change in supratidal wetlands.

  10. The Needs of Tribal Men and the Social Service Providers on or Near the Nez Perce Indian Nation.

    ERIC Educational Resources Information Center

    High Eagle, Gordon; And Others

    This report results from an action research project of the Nee Mee Poom Ha Hum (Men's Coalition), investigating the needs of tribal men in the Nez Perce Indian Nation, as part of planning to improve men's development. Research was directed toward interviewing a stratified random sample of tribal men and interviewing the directors and employees of…

  11. Indigenous Educational Models for Contemporary Practice: In Our Mother's Voice. Sociocultural, Political, and Historical Studies in Education.

    ERIC Educational Resources Information Center

    Nee-Benham, Maenette Kape'ahiokalani Padeken Ah, Ed.

    This book presents a collection of papers on the rights of indigenous students to an equal education. The 15 chapters include: (1) "Gathering Together To Travel to the Source: A Vision for a Language and Culture-Based Educational Model" (Maenette Kape'ahiokalani Padeken Ah Nee-Benham and Joanne Elizabeth Cooper); (2) "Building a Child-Centered…

  12. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  13. 4. Building 15 interior showing sliding doors that open to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Building 15 interior showing sliding doors that open to Building 16, second floor and to the triangular staircase. View looking NEE. - John & James Dobson Carpet Mill (West Parcel), Building No. 15, 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  14. Infection of Guinea Pigs with Vesicular Stomatitis New Jersey Virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interpretive Biting midges,Culicoides sonorensis were shown to be capable of transmitting vesicular stomatitis New Jersey virus (VSNJV) to guinea pigs. Despite seroconversion for VSNJV, none of the guinea pigs developed clinical signs when infected in the abdomen by either infected insects or by nee...

  15. Reply to DJ Millward

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this Letter to the Editor was to clarify the tenets underlying a mathematical model of energy flux characterizing the obesity epidemic. 1. The obesity epidemic is attributed to an increase in energy intake, since the drop in physical activity energy expenditure (PAEE) that would nee...

  16. Estimating Pan Arctic Net Ecosystem Exchange using Functional Relationships with Air temperature, Leaf Area Index and Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Mbufong, H.; Kusbach, A.; Lund, M.; Persson, A.; Christensen, T. R.; Tamstorf, M. P.; Connolly, J.

    2015-12-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) is often attributed to the high spatial heterogeneity of Arctic tundra. Current models of carbon exchange thus handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12 Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship. They describe the saturation flux, dark respiration and initial light use efficiency, respectively. While remotely sensed LAI is readily available as a MODIS Terra product (MCD15A3), air temperature was estimated from a direct relationship with MODIS land surface temperature (MOD11A2, LST). Therefore, no specific knowledge of the vegetation type is required. Preliminary results show the model captures the spatial heterogeneity of the Arctic tundra but so far, overestimates NEE on all 17 test sites which include heaths, bogs, fens, and tussock tundra vegetation. The final updated results and error assessment will be presented at the conference in December.

  17. FACILITATING ADVANCED URBAN METEOROLOGY AND AIR QUALITY MODELING CAPABILITIES WITH HIGH RESOLUTION URBAN DATABASE AND ACCESS PORTAL TOOLS

    EPA Science Inventory

    Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...

  18. Lemongrass productivity oil content and composition as a function of nitrogen sulfur and harvest time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lemongrass [Cymbopogon flexuosus (Steud.) Wats, (syn. Andropogon nardus var. flexuosus Hack; A. flexuosus Nees)] is one of the most widely grown essential oil plants in the world. Field experiments were conducted at Verona and Poplarville, Mississippi, to evaluate the effects of N (0, 40, 80, and 16...

  19. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research

    EPA Science Inventory

    Humans are dependent upon the services provided by nature, and unless we effectively account for the range of values from ecosystems in our efforts to protect the environment, we cannot sustain human well-being. In light of this dependence, a national measure of well-being is nee...

  20. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae.

    PubMed

    Zorzi, Giovanni Konat; Caregnato, Fernanda; Moreira, José Cláudio Fonseca; Teixeira, Helder Ferreira; Carvalho, Edison Luis Santana

    2016-08-01

    Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin. PMID:26361953

  1. Sh3pxd2b mice are a model for craniofacial dysmorphology and otitis media.

    PubMed

    Yang, Bin; Tian, Cong; Zhang, Zhi-guang; Han, Feng-chan; Azem, Rami; Yu, Heping; Zheng, Ye; Jin, Ge; Arnold, James E; Zheng, Qing Y

    2011-01-01

    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2b(nee)) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2b(nee) mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2b(nee) mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2b(nee)) mirrors craniofacial dysmorphology and otitis media in humans. PMID:21818352

  2. Thermal adaptation of net ecosystem exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...

  3. Insect pests and diseases in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane, Saccharum spp., and other grassy crops (e.g., grain sorghum, Sorghum bicolor (L.) Moench, and hybrids involving sugarcane; sorghum; sudangrass, Sorghum bicolor ssp. drummondii (Nees ex Steud.) de Wet and Harlan, and others) with potential for bioenergy production are susceptible...

  4. The soil moisture active passive validation experiment 2012 (SMAPVEX12): pre-launch calibration and validation of the SMAP satellite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in November 2014. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a nee...

  5. Site-Specific Weed Management: Myth or Magic?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific weed management (SSWM) is a potential method to reduce the risks of herbicide use on water quality and public health without impacting crop yield. With site-specific weed management, areas of the field are left untreated where control is not economically justified. Where control is nee...

  6. Spatially distributed evapotranspiration estimation using remote sensing and ground-based radiometers over cotton at Maricopa, Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially distributed estimates of evapotranspiration (ET) over agricultural lands could be valuable for water management in arid environments and for monitoring irrigated croplands. In recent year various ET estimation approaches have been developed that utilize remote sense data to provide the nee...

  7. Women in History--Mary Seacole

    ERIC Educational Resources Information Center

    Harmer, Bonnie

    2005-01-01

    Born in Jamaica in 1805, Mary Seacole (nee Grant), was the daughter of a Black Creole boarding house owner and a Scottish Army officer. Like many Creole doctress women, Seacole was taught African herbal medicine arts from her mother. In addition to understanding traditional herbal medicine, she gleaned an understanding of Western medicine from the…

  8. 76 FR 11821 - Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake Engineering... Investigators on Earthquake Engineering Research Awards Made by the National Science Foundation, 2003-2009. Type... George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES). The purpose of the...

  9. 21 CFR 172.510 - Natural flavoring substances and natural substances used in conjunction with flavors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... root and flowers Althea officinalis L Amyris (West Indian sandalwood) Amyris balsamifera L Angola weed Roccella fuciformis Ach In alcoholic beverages only Arnica flowers Arnica montana L., A. fulgens Pursh, A... Peumus boldus Mol Do. Boronia flowers Boronia megastigma Nees Bryonia root Bryonia alba L., or B....

  10. 21 CFR 172.510 - Natural flavoring substances and natural substances used in conjunction with flavors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Mill. and A. spicata Baker Althea root and flowers Althea officinalis L Amyris (West Indian sandalwood) Amyris balsamifera L Angola weed Roccella fuciformis Ach In alcoholic beverages only Arnica flowers... Eubatus Boldus (boldo) leaves Peumus boldus Mol Do. Boronia flowers Boronia megastigma Nees Bryonia...

  11. Fourier-Transform Infrared Spectroscopy Analysis of Modified Cotton Trash Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a previous study, Fourier transform infrared spectroscopy (FTIR) was utilized in identifying different types of botanical cotton trash as each was subjected to simulations of ginning and textile processing. Changes in the infrared spectra that occurred after heat treatment indicated that the nee...

  12. The utility of the internal transcribed spacer region 2 (ITS2) in confirming species boundaries in the genus Gonatocerus:comparison to the cytochrome oxidase subunit I(COI) gene and taxonomic data: molecular key based on ITS2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced the nuclear ribosomal internal transcribed spacer region 2(ITS2) from several glassy-winged sharpshooter (GWSS) [Homalodisca vitripennis Germar (=H.coagulata Say)] egg parasitoid species (Hymenoptera: Mymaridae) belonging to the genus Gonatocerus Nees to test the utility of this fragmen...

  13. Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The annual carbon (C) budget of grasslands is highly dynamic, dependent on grazing history and on direct and indirect effects of interannual variability (IAV) in climate on carbon dioxide (CO2) fluxes. We measured net ecosystem exchange of CO2 (NEE) and its diurnal components, daytime ecosystem CO2...

  14. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  15. Scaling-up knowledge of growing-season net ecosystem exchange for long-term assessment of North Dakota grasslands under the Conservation Reserve Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scaling-up knowledge of land-atmosphere net ecosystem exchange (NEE) from a single experimental site to numerous perennial grass fields in the Northern Great Plains (NGP) requires appropriate scaling protocols. We addressed this problem using synoptic data available from the Landsat sensor for ten ...

  16. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicting net carbon (C) balance under future global change scenarios requires a comprehensive understanding of photosynthetic (GPP) and ecosystem respiration (Re) responses to atmospheric CO2 concentration and water availability. We measured net ecosystem exchange of CO2 (NEE), GPP and Re prior to...

  17. A new species of Gonatocerus (Hymenoptera: Mymaridae) from Argentina, an egg parasitoid of Tapajosa rubromarginata (Hemiptera: Cleadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species from the ater species group of Gonatocerus Nees (Mymaridae) is described from Argentina. Specimens of G. virlai S. Triapitsyn, Logarzo & de León sp. n. were reared mostly from wild-collected and sentinel eggs of the proconiine sharpshooter Tapajosa rubromarginata (Signoret) (Cicadelli...

  18. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  19. Differences in plant cover and species composition of semiarid grassland communities of central Mexico and its effects on net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Delgado-Balbuena, J.; Arredondo, J. T.; Loescher, H. W.; Huber-Sannwald, E.; Chavez-Aguilar, G.; Luna-Luna, M.; Barretero-Hernandez, R.

    2013-07-01

    Changes in land use across the semiarid grasslands of northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes. Their implications, however, on the carbon (C) cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE) and their biotic and abiotic controls. NEE was measured in five representative plant community types within a semiarid grassland by temporarily enclosing the entire aboveground ecosystem using a chamber method (i.e., geodesic dome). Sites included an oat crop (crop), a moderately grazed grassland (moderate grazing), a 28 yr-old grazing exclosure (exclosure), an overgrazed site with low perennial grass cover (overgrazed), and an overgrazed site presenting shrub encroachment (shrub encroachment). For natural vegetation, rates of standardized daytime NEE for sites with a high plant cover (exclosure and moderate grazing) were similar (P > 0.05) as compared to sites with low plant cover (overgrazed and shrub encroachment). However, yearly total nighttime NEE (carbon loss) was more than double (P < 0.05) for sites with high plant cover compared to sites with low cover, resulting to slight C sinks for the low plant cover sites, and neutral or sources for the high plant cover sites as accounted by daytime and nighttime NEE annual balance. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower photosynthetic photon flux density than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups. Our results allowed the detection of the large variability and contribution of

  20. Turbulence Considerations for Comparing Ecosystem Exchange over Old-Growth and Clear-Cut Stands For Limited Fetch and Complex Canopy Flow Conditions

    SciTech Connect

    Wharton, S; Schroeder, M; Paw U, K T; Falk, M; Bible, K

    2009-01-08

    Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on the ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours

  1. Variation in Factors Regulating Net Greenhouse Gas Exchange Across Different Vegetation Types at Cape Bounty, Melville Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Blaser, A.; Buckley, E.; Humphreys, E.; Treitz, P.

    2015-12-01

    Global-scale climate simulations predict significant changes both in temperature and moisture regimes in the high Arctic. This could lead to changes in vegetation community distribution, as vegetation communities are distributed along moisture gradients often determined by snowfall patterns across the landscape. Furthermore, changes in soil moisture and temperature could alter fluxes of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and the impacts of changes in these controlling factors could vary by vegetation type.We measured both spatial and temporal variation in CO2 fluxes using combinations of eddy covariance, auto-chamber, and static chamber techniques at the Cape Bounty Arctic Watershed Observatory (CBAWO). Measurements were performed in three major plant community types: polar semi-desert (PSD), mid-moisture tundra (MM) and wet sedge meadow (WS). Based on our auto-chamber data collected in all vegetation types, ecosystem respiration (ER) related positively to air temperature, and correlated more strongly with air temperature than soil temperature. Modeled ER based on eddy covariance data and air temperature over MM agreed well with measured ER in the same vegetation type. In the WS community, average net ecosystem exchange (NEE) in 2014 measured by static chambers differed in spectrally separable 'wet' and 'dry' sedge areas (-0.33 and 0.01 µmol m-2 s-1, respectively; p<0.001). Rates of ER also varied across this moisture gradient (p<0.05). Over the entire growing season and multiple years, NEE correlated poorly with air and soil temperature, suggesting that ER is not the dominant processes driving NEE. This can vary, however, over the growing season. In PSD communities measured in 2013, air temperature related positively to NEE early in the growing season, but not during the latter part of the season, when PAR (photosynthesis) became the key factor controlling NEE. Not surprisingly, NEE related strongly (0.93) to

  2. Climate Effects on Carbon and Water Exchange of Young and Intermediate-growth Ponderosa Pine Ecosystems in Central Oregon

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; Irvine, J.; Law, B. E.; Unsworth, M. H.

    2002-12-01

    Carbon and water fluxes were measured continuously by eddy covariance above young- and intermediate-aged ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws.) stands in a seasonally semiarid environment in central Oregon. Ecophysiological measurements of processes contributing to fluxes were also made (soil CO2 effluxes, transpiration). The young stand (YS) is ~17 years old, and has a total LAI of 1.5, with 40% of the leaf area in understory shrubs. The intermediate stand (IS), ~1.5 km from the YS, is ~56 years old, with total LAI ~3.1 (5% in understory shrubs). Our goal was to examine how seasonal weather patterns and age-related site characteristics affect CO2 and H2O exchange at these sites. Throughout the measurement period, water vapor exchange for both sites was similar in magnitude and trend. Net ecosystem exchange (NEE) was similar in magnitude (-1 to +1 mmol m-2 s-1) for both sites from January 2002 through March. As the rainy season ended, carbon uptake at both sites increased in April, and reached a maximum in early June. Early summer daytime mean NEE was greater at the IS (-6 to -8 mmol m-2 s-1) than at the YS (-3 to -4 mmol m-2 s-1). While the YS had higher summer soil CO2 efflux during this period, NEE remained higher at the IS due to higher GEP. Air temperature, vapor pressure deficit (VPD), and incident PAR were similar at both sites, but greater snow cover at the IS resulted in twice the soil moisture of the YS until July, when both sites reached low values (12% and 9%, respectively). A combination of higher leaf area and soil moisture likely accounts for higher early summer carbon uptake at the IS. NEE became strongly correlated with VPD in June as soil moisture levels were rapidly declining. VPD caused lowered NEE at both sites but the IS decreased more substantially than the YS and by mid-July NEE at both sites was -2 to -4 mmol m-2 s-1. Even with the diminished carbon uptake at the IS due to the strong coupling between VPD and NEE, we

  3. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  4. Development of an Implementation Plan for Atmospheric Carbon Monitoring in California

    SciTech Connect

    Fischer, Marc L.; Riley, William J.; Tonse, Shaheen

    2004-10-01

    This report describes the design of atmospheric CO{sub 2} concentration measurements that, in combination with other measurements and models, would be used to quantify regionally distributed CO{sub 2} exchanges from California's terrestrial ecosystems and CO{sub 2} emissions from fossil fuel combustion. Using models of net ecosystem CO{sub 2} exchange (NEE), fossil fuel CO{sub 2} emissions, and regional meteorology, we predict CO{sub 2} concentration ''signals'' in the atmosphere. The predictions of NEE exhibit spatial and temporal variations that are controlled by land cover and climate. Fossil fuel CO{sub 2} emissions from metropolitan areas are the strongest localized sources of CO{sub 2} while weaker but spatially extensive fossil emissions are present throughout the Central Valley. We subdivide the CO{sub 2} sources into four components: NEE inside and outside CA, and fossil fuel CO{sub 2} inside and outside CA. Maps of predicted atmospheric CO{sub 2} concentration signals from these four sources largely mirror the instantaneous emissions near strong sources but plumes of CO{sub 2} enriched or depleted air are predicted to advect far from their sources. We then identify a baseline set of observing stations from existing and possible future sites that could be used to characterize in-state and out-of-state ecosystem and fossil fuel contributions to atmospheric CO{sub 2} concentrations. For each of the stations we calculate mean midday concentration signals with standard deviation for each month and source. We also calculate the covariance of the signal due to NEE inside CA with each of the other signals to quantify how much of the signal from NEE inside CA might be readily separable from the other signals. On the basis of these predictions, we identify new observing stations and a measurement protocol that, in combination with existing stations, would provide data to estimate NEE within CA. Although beyond the scope of this project, future work should estimate

  5. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    NASA Astrophysics Data System (ADS)

    Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.

    2015-07-01

    Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in

  6. Interannual Variability in Net Ecosystem Exchange in United States Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wylie, Bruce; Ji, Lei; Gilmanov, Tagir; Howard, Danny

    2010-05-01

    The grasslands in the United States Great Plains occupy about 1.5 million km2 and span considerable moisture and temperature gradients. The grasslands are characterized by different photosynthetic pathways, from C3 dominance in the north to C4 dominance in the south. The contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for these extensive and diverse grassland ecosystems and local variances in climate variability, land use changes, and varying land management practices. There are limited studies on the seasonal, spatial, and interannual variabilities in carbon exchange as well as responses to climatic change across the Great Plains. Our objective was to quantify how the grassland ecosystems will respond to climate under a variety of environmental conditions. Net ecosystem exchange (NEE) was measured at 15 flux towers distributed throughout the Great Plains. These sites represent the wide spatial, ecological, and climatological ranges of grasslands found in this region. We developed a remote sensing-based piecewise regression (PWR) model to estimate grassland carbon fluxes from 2000 to 2008 using flux-tower data and remotely sensed data (250-m resolution) input at 7-day intervals. The model integrated MODIS-derived vegetation indices, weather data, and phenological parameters with the observed NEE data. The correlation coefficient (r) for the independent tests between tower-measured NEE and PWR-estimated NEE were 0.61 to 0.98 for the individual tower sites withheld and 0.81 to 0.92 for the individual years withheld. We mapped 7-day interval NEE at 250-m resolution for the years 2000 to 2008 and evaluated the interannual variability of NEE and its response to climatic variation. NEE varied in space and time across the 9 years (from 0.3 in 2002 to 47.7 g C • m-2 • yr-1 in 2005) with an average annual NEE of 24 ± 14 g C • m-2 • yr-1 and a cumulative flux of 214 g C • m-2. On average, the

  7. Detecting Disturbance and its Impact on Ecosystem Carbon Balance from Global to Regional Scales

    NASA Astrophysics Data System (ADS)

    Ballantyne, A.; Jacobson, A. R.; Anderegg, W.; Poulter, B.; Cooper, L. A.; Smith, W. K.; Miller, J. B.

    2015-12-01

    One of the most vital ecosystem services currently provided by the terrestrial biosphere is the removal of approximately one quarter of the anthropogenic CO2 emitted to the atmosphere. However, as patterns of temperature and precipitation change so is the frequency and intensity of ecosystem disturbance. Despite evidence that ecosystem disturbance regimes have shifted leading to widespread forest mortality, the net effect of disturbance on the carbon (C) balance of forest ecosystems remains uncertain. We will use satellite and atmospheric observations to deconvolve net carbon exchange (NEE) into its component fluxes of gross primary productivity and total respiration (e.g. NEE= GPP - R) at global to regional scales. At the global scale we find that NEE has increased over the last 50 years and appears to have accelerated as a result of diminished R over the last 15 years. However the variance in global NEE has also increased perhaps due to inter-annual variability in R, especially within semi-arid ecosystems. These global trends are not necessarily consistent with regional patterns in the net carbon balance, especially across the western US. Atmospheric mass balance suggests that ecosystems of North America have shifted from a net C sink to a net C source. While prolonged drought across the Western US has likely caused this shift in continental scale NEE, attributing this shift in the net C balance to any one mechanism of disturbance (e.g. drought, insect infestation, and fire) or their interactions is challenging. Lastly, we will evaluate existing observing networks, such as NOAA/ESRL and Ameriflux, and how they can be combined with nascent networks, such as NEON, EarthNetworks, and OCO-2, to identify regional disturbance processes that may be causing increasing variance in the global C cycle.

  8. Differences in plant cover and species composition of semiarid grassland communities of Central Mexico and its effects on net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Delgado-Balbuena, J.; Arredondo, J. T.; Loescher, H. W.; Huber-Sannwald, E.; Chavez-Aguilar, G.; Luna-Luna, M.; Barretero-Hernandez, R.

    2012-12-01

    Changes in land use across the semiarid grasslands of Northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes, however, their implications on the carbon cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE) and their biotic and abiotic controls. Five typical plant community types were examined in the semiarid grassland by encasing the entire above-ground ecosystem using the geodesic dome method. Sites included an oat crop (crop), a moderately grazed grassland (moderate grazing), a 28 yr-old grazing exclosure (exclosure), an overgrazed site with low perennial grass cover (overgrazed), and an overgrazed site presenting shrub encroachment (shrub encroachment). For natural vegetation, rates of daytime NEE for sites with a high plant cover (exclosure and moderate grazing) were similar (P>0.05) as compared to sites with low plant cover (overgrazed and shrub encroachment). However, night time NEE (carbon loss) was more than double (P<0.05) for sites with high plant cover compared to sites with low cover, resulting into slight C sinks for the low plant cover sites and neutral or sources for the high plant cover sites on an annual basis. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower PPFD values than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups.

  9. Assessment of Pan-Arctic Soil Moisture, Surface Temperature, and Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Nirala, M. L.; Kimball, J.; Njoku, E.; McDonald, K.; Chan, S.; Jones, L.; Oechel, W.; Running, S.

    2006-05-01

    In this paper, we discuss the application of Moderate Resolution Imaging Spectroradiometer (MODIS), Leaf Area Index (LAI), Gross Primary Production (GPP), and Advanced Microwave Scanning Radiometer - EOS (AMSR-E) brightness temperature and soil moisture to derived Net Ecosystem Carbon Exchange (NEE). We also compare the satellite-derived results with ground-based tower CO2 eddy flux observations and Biome- BGC ecosystem process model simulations using site meteorology. We found that AMSR-E brightness temperature-derived surface temperatures compare favorably with site-based temperatures and that sensitivity to air and soil temperatures depend on wavelength, snow cover, freeze-thaw conditions, and the sub-grid scale extent of open water. The surface temperature estimations using the emissivity lookup table approach showed good agreement, as compared to observations on most sites. AMSR-E L3 soil moisture data showed large discrepancies relative to site-based ecosystem model simulations and limited site observations. The soil moisture differences were larger in winter than summer. Satellite-derived carbon model results were consistent with site-based CO2 flux tower observations and detailed ecosystem process model (BIOME-BGC) simulations. The carbon model represents NEE seasonal variability and regional patterns, and the NEE is highly sensitive to LAI, which determines the optimal soil decomposition rate. NEE is a residual of two fluxes: GPP and respiration. Small changes in component fluxes yielded large changes in annual NEE and predicted carbon source/sink behavior, especially for relatively low productivity sites, such as tundra. This work was performed at The University of Montana and the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2015-03-01

    The widespread land degradation in an alpine meadow ecosystem would affect ecosystem carbon (C) balance. Biomass, soil chemical properties and carbon dioxide (CO2) of six levels of degraded lands (D1-D6, according to the number of rodent holes and coverage) were investigated to examine the effects of rodent-induced land degradation on an alpine meadow ecosystem. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange (NEE) and ecosystem respiration (ER) were measured by a Li-Cor 6400XT. Gross ecosystem production (GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with coverage and plant height as independent variables. Root biomass (RB) was obtained by using a core method. Soil respiration, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than in severely degraded land (D1, D2, D4 and D5, group II). Positive values of NEE average indicate that the alpine meadow ecosystem is a weak C sink during the growing season. The only significant difference was in ER among different degradation levels. Rs, ER and GEP were 38.2, 44.3 and 46.5% higher in group I than in group II, respectively. Similar difference of ER and GEP between the two groups resulted in an insignificant difference of NEE. Positive correlations of AGB with ER, NEE and GEP, and relatively small AGB and lower CO2 fluxes in group II, suggest the control of AGB on ecosystem CO2 fluxes. Correlations of RB with SOC, LC, TN and inorganic N indicate the regulation of RB on soil C and N with increasing number of rodent holes in an alpine meadow ecosystem in the permafrost region of the Qinghai-Tibet Plateau (QTP).

  11. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites

    NASA Astrophysics Data System (ADS)

    Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Wang, T.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; Lehuger, S.; Bernhofer, C.

    2011-06-01

    This paper is a modelling study of crop management impacts on carbon and water fluxes at a range of European sites. The model is a crop growth model (STICS) coupled with a process-based land surface model (ORCHIDEE). The data are online eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that the ORCHIDEE-STICS model explains up to 75 % of the observed daily net CO2 ecosystem exchange (NEE) variance, and up to 79 % of the latent heat flux (LE) variance at five sites. The model is better able to reproduce gross primary production (GPP) variations than terrestrial ecosystem respiration (TER) variations. We conclude that structural deficiencies in the model parameterizations of leaf area index (LAI) and TER are the main sources of error in simulating CO2 and H2O fluxes. A number of sensitivity tests, with variable crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these management factors is able to change NEE by more than 15 %, but that the response of NEE to management parameters is highly site-dependent. Changes in management parameters are found to impact not only the daily values of NEE and LE, but also the cumulative yearly values. In addition, LE is shown to be less sensitive to management parameters than NEE. Multi-site model evaluations, coupled with sensitivity analysis to management parameters, thus provide important information about model errors, which helps to improve the simulation of CO2 and H2O fluxes across European croplands.

  12. The Polar Vegetation Photosynthesis and Respiration Model: a parsimonious, satellite-data-driven model of high-latitude CO2 exchange

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.

    2015-08-01

    We introduce the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), a remote-sensing-based approach for generating accurate, high-resolution (≥ 1 km2, 3 hourly) estimates of net ecosystem CO2 exchange (NEE). PolarVPRM simulates NEE using polar-specific vegetation classes, and by representing high-latitude influences on NEE, such as the influence of soil temperature on subnivean respiration. We present a description, validation and error analysis (first-order Taylor expansion) of PolarVPRM, followed by an examination of per-pixel trends (2001-2012) in model output for the North American terrestrial region north of 55° N. PolarVPRM was validated against eddy covariance (EC) observations from nine North American sites, of which three were used in model calibration. Comparisons of EC NEE to NEE from three models indicated that PolarVPRM displayed similar or better statistical agreement with eddy covariance observations than existing models showed. Trend analysis (2001-2012) indicated that warming air temperatures and drought stress in forests increased growing season rates of respiration, and decreased rates of net carbon uptake by vegetation when air temperatures exceeded optimal temperatures for photosynthesis. Concurrent increases in growing season length at Arctic tundra sites allowed for increases in photosynthetic uptake over time by tundra vegetation. PolarVPRM estimated that the North American high-latitude region changed from a carbon source (2001-2004) to a carbon sink (2005-2010) to again a source (2011-2012) in response to changing environmental conditions.

  13. Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands

    PubMed Central

    Schmitt, M.; Bahn, M.; Wohlfahrt, G.; Tappeiner, U.; Cernusca, A.

    2011-01-01

    Changes in land use and management have been strongly affecting mountain grassland, however, their effects on the net ecosystem exchange of CO2 (NEE) and its components have not yet been well documented. We analysed chamber-based estimates of NEE, gross primary productivity (GPP), ecosystem respiration (R) and light use efficiency (LUE) of six mountain grasslands differing in land use and management, and thus site fertility, for the growing seasons of 2002 to 2008. The main findings of the study are that: (1) land use and management affected seasonal NEE, GPP and R, which all decreased from managed to unmanaged grasslands; (2) these changes were explained by differences in leaf area index (LAI), biomass and leaf-area-independent changes that were likely related to photosynthetic physiology; (3) diurnal variations of NEE were primarily controlled by photosynthetically active photon flux density and soil and air temperature; seasonal variations were associated with changes in LAI; (4) parameters of light response curves were generally closely related to each other, and the ratio of R at a reference temperature/ maximum GPP was nearly constant across the sites; (5) similarly to our study, maximum GPP and R for other grasslands on the globe decreased with decreasing land use intensity, while their ratio remained remarkably constant. We conclude that decreasing intensity of management and, in particular, abandonment of mountain grassland lead to a decrease in NEE and its component processes. While GPP and R are generally closely coupled during most of the growing season, GPP is more immediately and strongly affected by land management (mowing, grazing) and season. This suggests that management and growing season length, as well as their possible future changes, may play an important role for the annual C balance of mountain grassland. PMID:23293657

  14. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    NASA Astrophysics Data System (ADS)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  15. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    PubMed

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with air temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively. PMID:26995905

  16. Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang

    NASA Astrophysics Data System (ADS)

    Jia, Binghao; Xie, Zhenghui; Zeng, Yujin; Wang, Linying; Wang, Yuanyuan; Xie, Jinbo; Xie, Zhipeng

    2015-04-01

    In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2 exchange (NEE), ecosystem respiration (RE), and gross ecosystem productivity (GEP) of -428.8, 1534.8 and 1963.6 g C m-2yr-1, respectively. The net carbon uptake (i.e. the -NEE), RE and GEP showed obvious seasonal variability, and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on 12 June (-7.4 g C m-2 d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August (9 g C m-2 month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.

  17. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

    PubMed Central

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-01-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665

  18. Using Airborne Microwave Remotely Sensed Root-Zone Soil Moisture and Flux Measurements to Improve Regional Predictions of Carbon Fluxes in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Antonarakis, A. S.; Medvigy, D.; Burgin, M. S.; Crow, W. T.; Milak, S.; Jaruwatanadilok, S.; Truong-Loi, M.; Moghaddam, M.; Saatchi, S. S.; Cuenca, R. H.; Moorcroft, P. R.

    2013-12-01

    North American ecosystems are critical components of the global carbon cycle, exchanging large amounts of carbon dioxide and other gases with the atmosphere. Net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystems quantifies these carbon fluxes, but current continental-scale estimates contain high levels of uncertainty. Root-zone soil moisture (RZSM) and its spatial and temporal heterogeneity influences NEE and improved estimates can help reduce uncertainty in NEE estimates. We used the RZSM measurements from the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and the carbon, water and energy fluxes observed by the eddy-covariance flux towers to constrain the Ecosystem Demography Model 2.2 (ED2.2) to improve its predictions of carbon fluxes. The parameters of the ED2.2 model were first optimized at seven flux tower sites in North America, which represent six different biomes, by constraining the model against a suite of flux measurements and forest inventory measurements through a Bayesian Markov-Chain Monte Carlo framework. We further applied the AirMOSS RZSM products to constrain the ED2.2 model to achieve better estimates of regional NEE. Evaluation against flux tower measurements and forest dynamics measurements shows that the constrained ED2.2 model produces improved predictions of monthly to annual carbon fluxes. The remote sensing based RZSM can further help improve the spatial patterns and temporal variations of model NEE. The results demonstrate that model-data fusion can substantially improve model performance and highlight the important role of RZSM in regulating the spatial and temporal heterogeneities of carbon fluxes.

  19. Does Terrestrial Drought Explain Global CO2 Flux Anomalies Induced by El Nino?

    NASA Technical Reports Server (NTRS)

    Schwalm. C. R.; Williams, C. A.; Schaefer, K.; Baker, I.; Collatz, G. J.; Roedenbeck, C.

    2011-01-01

    The El Nino Southern Oscillation is the dominant year-to-year mode of global climate variability. El Nino effects on terrestrial carbon cycling are mediated by associated climate anomalies, primarily drought, influencing fire emissions and biotic net ecosystem exchange (NEE). Here we evaluate whether El Nino produces a consistent response from the global carbon cycle. We apply a novel bottom-up approach to estimating global NEE anomalies based on FLUXNET data using land cover maps and weather reanalysis. We analyze 13 years (1997-2009) of globally gridded observational NEE anomalies derived from eddy covariance flux data, remotely-sensed fire emissions at the monthly time step, and NEE estimated from an atmospheric transport inversion. We evaluate the overall consistency of biospheric response to El Nino and, more generally, the link between global CO2 flux anomalies and El Nino-induced drought. Our findings, which are robust relative to uncertainty in both methods and time-lags in response, indicate that each event has a different spatial signature with only limited spatial coherence in Amazonia, Australia and southern Africa. For most regions, the sign of response changed across El Nino events. Biotic NEE anomalies, across 5 El Nino events, ranged from -1.34 to +0.98 Pg Cyr(exp -1, whereas fire emissions anomalies were generally smaller in magnitude (ranging from -0.49 to +0.53 Pg C yr(exp -1). Overall drought does not appear to impose consistent terrestrial CO2 flux anomalies during El Ninos, finding large variation in globally integrated responses from 11.15 to +0.49 Pg Cyr(exp -1). Despite the significant correlation between the CO2 flux and El Nino indices, we find that El Nino events have, when globally integrated, both enhanced and weakened terrestrial sink strength, with no consistent response across events

  20. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China

    NASA Astrophysics Data System (ADS)

    Jia, X.; Zha, T. S.; Wu, B.; Zhang, Y. Q.; Gong, J. N.; Qin, S. G.; Chen, G. P.; Kellomäki, S.; Peltola, H.

    2014-03-01

    The carbon (C) cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration potential of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE) over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1) quantify NEE and its components, (2) examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP) of 456 ± 8 g C m-2 yr-1 and an ecosystem respiration (Re) of 379 ± 3 g C m-2 yr-1, resulting in a net C sink of 77 ± 7 g C m-2 yr-1. The maximum daily NEE, GEP and Re were -4.7, 6.8 and 3.3 g C m-2 day-1, respectively. Both the maximum C assimilation rate (i.e., at optimum light intensity) and the quantum yield varied strongly over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water stress exerted a major control over daytime NEE, and interacted with heat stress and photoinhibition in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10). At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1-2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.

  1. Competition is constitutional: Four fallacies in the argument that transmission access constitutes a taking

    SciTech Connect

    Schotland, S.D.

    1996-11-01

    New transmission regulations may cause a change in property value or property access, however, this alone does not constitute a regulatory taking. In an industry with a long history of regulation and some degree of shared transmission access, the utilities are going to be hard pressed to show that recent open access mandates are in violation of the Takings Clause of the Fifth Amendment. In a recent article, John Rowe and Paige Graening of the NEES Companies argued that transmission access is the twentieth century equivalent of {open_quotes}piracy{close_quotes} - forcing utilities to provide transmission access to third parties violates the Taking Clause of the Fifth Amendment. The authors stated that transmission access represents a permanent physical invasion of property - which is unconstitutional without {open_quotes}just compensation.{close_quotes} The same arguments have been raised by Michigan utilities in a pending court challenge to the retail wheeling experiment ordered by the Michigan Public Service Commission. Rowe and Graening complain that {open_quotes}under the Jolly Roger of open competition{close_quotes} regulators will limit utilities to {open_quotes}mere embedded costs,{close_quotes} thereby committing an act of {open_quotes}piracy.{close_quotes} Contrary to Rowe and Graening`s claim, the flag of competition is better represented by the Stars and Stripes, since orders to provide transmission access at the cost of service do not result in a regulatory taking. Four fallacies led NEES down the gangplank: (1) The authors argued that reductions in the value of an investment are necessarily takings. Regulatory impairment of property value is a fact of life. (2) Contrary to NEES, transmission access does not effect a permanent physical invasion of property. (3) NEES claimed that transmission access defeats reasonable investment expectations. (4) NEES relied on case law that affords utilities the opportunity to realize a profit.

  2. Biophysical Controls on Light Response of Net CO2 Exchange in a Winter Wheat Field in the North China Plain

    PubMed Central

    Tong, Xiaojuan; Li, Jun; Yu, Qiang; Lin, Zhonghui

    2014-01-01

    To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (Pmax) was 46.6±4.0 µmol CO2 m−2 s−1 and initial light use efficiency (α) 0.059±0.006 µmol µmol−1 in April−May, two or three times as high as those in March. Stepwise multiple linear regressions showed that Pmax increased with the increase in leaf area index (LAI), canopy conductance (gc) and air temperature (Ta) but declined with increasing vapor pressure deficit (VPD) (P<0.001). The factors influencing Pmax were sorted as LAI, gc, Ta and VPD. α was proportional to ln(LAI), gc, Ta and VPD (P<0.001). The effects of LAI, gc and Ta on α were larger than that of VPD. When Ta>25°C or VPD>1.1−1.3 kPa, NEE residual increased with the increase in Ta and VPD (P<0.001), indicating that temperature and water stress occurred. When gc was more than 14 mm s−1 in March and May and 26 mm s−1 in April, the NEE residuals decline disappeared, or even turned into an increase in gc (P<0.01), implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003−2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales. PMID:24586800

  3. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  4. Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change

    NASA Astrophysics Data System (ADS)

    Scott, Russell L.; Hamerlynck, Erik P.; Jenerette, G. Darrel; Moran, M. Susan; Barron-Gafford, Greg A.

    2010-09-01

    Global warming may intensify the hydrological cycle and lead to increased drought severity and duration, which could alter plant community structure and subsequent ecosystem water and carbon dioxide cycling. We report on the net ecosystem exchange of carbon dioxide (NEE) of a semidesert grassland through a severe drought which drove succession from native bunchgrasses to forbs and to eventual dominance by an exotic bunchgrass. We monitored NEE and energy fluxes using eddy covariance coupled with meteorological and soil moisture variables for 6 years at a grassland site in southeastern Arizona, USA. Seasonal NEE typically showed a springtime carbon uptake after winter-spring periods of average rainfall followed by much stronger sink activity during the summer rainy season. The two severe drought years (2004 and 2005) resulted in a net release of carbon dioxide (25 g C m-2) and widespread mortality of native perennial bunchgrasses. Above average summer rains in 2006 alleviated drought conditions, resulting in a large flush of broad-leaved forbs and negative total NEE (-55 g C m-2 year-1). Starting in 2007 and continuing through 2009, the ecosystem became increasingly dominated by the exotic grass, Eragrostis lehmanniana, and was a net carbon sink (-47 to -98 g C m-2 year-1) but with distinct annual patterns in NEE. Rainfall mediated by soils was the key driver to water and carbon fluxes. Seasonal respiration and photosynthesis were strongly dependent on precipitation, but photosynthesis was more sensitive to rainfall variation. Respiration normalized by evapotranspiration showed no interannual variation, while normalized gross ecosystem production (i.e., water use efficiency) was low during drought years and then increased as the rains returned and the E. lehmanniana invasion progressed. Thus, when dry summer conditions returned in 2009, the potential for ecosystem carbon accumulation was increased and the ecosystem remained a net sink unlike similar dry years when

  5. CO_{2} and CH_{4} emission patterns of alpine peatland on the eastern Qinghai-Tibet Plateau and their controlling factors

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Hong, Bing

    2016-04-01

    Though covering only 3% of the Earth's land surface, peatlands contain more than 600 Pg C, which is equivalent to one third of the world's soil organic carbon pool. Peatlands are sensitive to climate change, and remain an important carbon sink and CH4 source. There were 4.6×109 m2 peatlands developed in the eastern Qinghai-Tibet Plateau (average 3400 m above sea level), while 69% of them are intact peatlands. These peatlands climatologically located in the overlapping area of East Asian summer monsoon and Indian Ocean summer monsoon, thus are more sensitive to the global change. However, little is known about the carbon emission patterns of those peatlands and how they react to climate change. For assessing the magnitude of diurnal, seasonal and inter-annual variations in CH4 flux, Net Ecosystem CO2 Exchange (NEE) and Ecosystem Respiration (ER), and identifying the dependence of these fluxes on environmental factors, from August 2012 to May 2015, an eddy covariance tower with open-path CH4 and CO2 analyzer, and a LI-8100 automated soil flux system were established in Hongyuan Peatland, which is a typical intact alpine peatland in the eastern Qinghai-Tibet Plateau region. During growing season, there was a clear sinusoid-like diurnal pattern in ER with peaks occurred at 14:00 and valleys occurred at 10:00, the NEE peak values occurred between 12:00-15:00, and the diurnal peaks and valleys in CH4 fluxes appeared at approximately 17:00 and 1:00, respectively. Daily mean NEE were negetive values and daily mean ER were above 1 μmol CO2/m2/s, the lowest NEE is -4.65 μmol CO2/m2/s, and the largest ER was 5.78 μmol CO2/m2/s, and they all appeared in July; daily mean CH4 fluxes varied between 0.05-0.25 μmol CH4/m2/s with peak value appeared in June and July. While during non-growing season, NEE, ER and CH4 fluxes varied at a relatively low level and showed no clear diurnal patterns, daily mean NEE and ER are between 0 to 1 μmol CO2/m2/s, and daily mean CH4 fluxes are

  6. Analysis of the influence of climatic and physiological parameters on the net ecosystem carbon exchange of an apple orchard

    NASA Astrophysics Data System (ADS)

    Zanotelli, Damiano; Montagnani, Leonardo; Scandellari, Francesca; Tagliavini, Massimo

    2013-04-01

    Net ecosystem carbon exchange (NEE) of an apple orchard located in South Tyrol (Caldaro, Bolzano, Italy) was monitored continuously since March 2009 via eddy covariance technique. Contemporary measurements of the main environmental parameters (temperature, photosynthetic active photon flux density, soil water content, vapor pressure deficit) were taken at the same field site. Leaf Area Index was also determined biometrically starting from spring 2010. Objectives of this work were (i) to assess the influence of these environmental and physiological parameters on NEE, (ii) to set up a model capable to fill large gap occurring in the dataset and (iii) predict inter-annual variability of fluxes based on the measurements of the selected explanatory variables. Daily cumulated values of the response variable (NEE, g C d-1) and mean daily value of the five explanatory variables considered (air T, ° C; SWC, m3m-3; PPFD, μmol m-2s-1; VPD, hPa, LAI m2m-2) were used in this analysis. The complex interactions between the explanatory variables and NEE were analyzed with the tree model approach which draws a picture of the complexity of data structure and highlights the explanatory variable that explain the greater amount of deviance of the response variable. NEE variability was mostly explained by LAI and PPFD. The most positive values of NEE occurred below the LAI threshold of 1.16 m2m-2 while above that LAI threshold and with an average daily PPFD above 13.2 μmol m-2s-1, the orchard resulted always a sink of carbon (negative daily NEE). On half of the available data (only alternate months of the considered period were considered), a stepwise multiple regression approach was used to model NEE using the variables indicated above. Simplification by deletion of the non-significant terms was carried out until all parameters where highly significant (p < 0.05) and a significant increase in deviance was observed when deleting further variables. Since heteroscedasticity and non

  7. The behavior of multiple independent managers and ecological traits interact to determine prevalence of weeds.

    PubMed

    Coutts, Shaun R; Yokomizo, Hiroyuki; Buckley, Yvonne M

    2013-04-01

    Management of damaging invasive plants is often undertaken by multiple decision makers, each managing only a small part of the invader's population. As weeds can move between properties and re-infest eradicated sites from unmanaged sources, the dynamics of multiple decision makers plays a significant role in weed prevalence and invasion risk at the landscape scale. We used a spatially explicit agent-based simulation to determine how individual agent behavior, in concert with weed population ecology, determined weed prevalence. We compared two invasive grass species that differ in ecology, control methods, and costs: Nassella trichotoma (serrated tussock) and Eragrostis curvula (African love grass). The way decision makers reacted to the benefit of management had a large effect on the extent of a weed. If benefits of weed control outweighed the costs, and either net benefit was very large or all agents were very sensitive to net benefits, then agents tended to act synchronously, reducing the pool of infested agents available to spread the weed. As N. trichotoma was more damaging than E. curvula and had more effective control methods, agents chose to manage it more often, which resulted in lower prevalence of N. trichotoma. A relatively low number of agents who were intrinsically less motivated to control weeds led to increased prevalence of both species. This was particularly apparent when long-distance dispersal meant each infested agent increased the invasion risk for a large portion of the landscape. In this case, a small proportion of land mangers reluctant to control, regardless of costs and benefits, could lead to the whole landscape being infested, even when local control stopped new infestations. Social pressure was important, but only if it was independent of weed prevalence, suggesting that early access to information, and incentives to act on that information, may be crucial in stopping a weed from infesting large areas. The response of our model to both

  8. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net

  9. Temporal patterns of net CO2 exchange for a tropical semideciduous forest of the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Vourlitis, George L.; de Almeida Lobo, Francisco; Zeilhofer, Peter; de Souza Nogueira, José

    2011-09-01

    The carbon cycling of tropical ecosystems has received considerable attention over the last 1-2 decades; however, interactions between climate variation and tropical forest net ecosystem CO2 exchange (NEE) are still uncertain. To reduce this uncertainty, and assess the biophysical controls on NEE, we used the eddy covariance method over a 3 year period (2005-2008) to measure the CO2 flux and energy balance for a 25-28 m tall, mature tropical semideciduous forest located near Sinop Mato Grosso, Brazil. The study period encompassed warm-dry, cool-wet, and cool-dry climate conditions, and based on previous research, we hypothesized that the net CO2 accumulation of the semideciduous forest would be lower during periods of drought. Using time series of the enhanced vegetation index (EVI), a NEE-light-use model, and path analysis, we found that the estimated quantum yield (a', μmol CO2μmol photons-1) was directly affected by temporal variations in the EVI, precipitation, and photosynthetically active radiation (PAR), while the optimal rate of gross primary production (FGPP,opt, μmol m-2 s-1) was directly affected by the EVI and PAR. However, indirect effects of precipitation on the a' and FGPP,opt were stronger than direct effects because variations in precipitation also lead to variations in the EVI and the atmospheric vapor pressure deficit (VPD). Daytime ecosystem respiration (FRE,day, μmol m-2 s-1) was directly affected by temporal variations in temperature and VPD and indirect effects of other variables were of lesser importance. Net ecosystem CO2 uptake was often higher in the dry season than the wet season, not because of a dry season "green-up" but because rates of ecosystem respiration declined relatively more than rates of canopy photosynthesis. Over interannual timescales, average daily NEE increased over the 3 year study period and was highest in 2007-2008, which was also the driest year in terms of rainfall. However, 2007-2008 was also the coolest year

  10. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    NASA Astrophysics Data System (ADS)

    Dang, Xuerui; Lai, Chun-Ta; Hollinger, David Y.; Schauer, Andrew J.; Xiao, Jingfeng; Munger, J. William; Owensby, Clenton; Ehleringer, James R.

    2011-09-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling approach builds on a mixed-layer model to infer monthly average net CO2 fluxes using high-precision mixing ratio measurements taken on flux towers. We compared BL model net ecosystem exchange (NEE) with estimates from two independent approaches. First, we compared modeled NEE with tower eddy covariance measurements. The second approach (EC-MOD) was a data-driven method that upscaled EC fluxes from towers to regions using MODIS data streams. Comparisons between modeled CO2 and tower NEE fluxes showed that modeled regional CO2 fluxes displayed interannual and intra-annual variations similar to the tower NEE fluxes at the Rannells Prairie and Wind River Forest sites, but model predictions were frequently different from NEE observations at the Harvard Forest and Howland Forest sites. At the Howland Forest site, modeled CO2 fluxes showed a lag in the onset of growing season uptake by 2 months behind that of tower measurements. At the Harvard Forest site, modeled CO2 fluxes agreed with the timing of growing season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This modeling inconsistency among sites can be partially attributed to the likely misrepresentation of atmospheric transport and/or CO2 gradients between ABL and the free troposphere in the idealized BL model. EC-MOD fluxes showed that spatial heterogeneity in land use and cover very likely explained the majority of the data-model inconsistency. We show a site-dependent atmospheric rectifier effect that appears to have had the largest impact on ABL CO2 inversion in the North American Great Plains. We conclude that a systematic BL modeling approach

  11. Simultaneous Flux Measurements of CO2, its Stable Isotope Ratios and Trace Gases Based on Eddy Accumulation Technique for Flux Partitioning

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hirata, R.

    2007-12-01

    For the purpose of determining the CO2 uptake by terrestrial ecosystem, eddy covariance method (EC) is commonly used in the tower-flux measurements. The flux measured by this method is called 'enet ecosystem exchange (NEE)'. NEE has the meaning of difference between two component fluxes, photosynthetic uptake and respiratory release of CO2. Magnitude of both the component fluxes is far larger than NEE. Both the component fluxes have difference in response function against changes in environmental factors, such as temperature and water. Therefore it is important to evaluate the characteristics of variations in the comporent fluxes individually in the future prediction of CO2 uptake by terrestrial ecosystem. Separation of NEE into the componet fluxes is usually done by using an approximate temperature expression of respiratory flux. This approximate expression is based on the assumption that the NEE observed at nighttime equals to the respiratory flux. The photosynthetic uptake of CO2 is defined as difference between the observed NEE and 'respiration' approximated as a temperature-function. Because of its technical simplicity, this approach has provided useful information about climatology of the gross CO2 fluxes. However, the temperature expression of respiratory flux has several limitations in its application. We are now developing a flux-partitioning method using chemical tracers (e.g. stable isotopes of CO2 and carbonyl sulfide) as additional constraints. The flux partitioning using stable isotopes of CO2 is based on the imbalance of net flux of the CO2 isotopes between 'respiration' and 'photosynthesis'. On the other hand, because of this similarity in the control factors for uptake ratio, the net flux of carbonyl sulfide (COS) is regarded as a possible constraint for the functioning of variations in photosynthetic CO2 uptake by terrestrial ecosystem. Field observation of fluxes of those chemical tracers by EC method is difficult due to stringent requirements

  12. Weed-cover versus weed-removal management in olive orchards: influence on the carbon balance at the ecosystem scale

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Vicente-Vicente, José Luis; Sánchez-Cañete, Enrique P.; López-Ballesteros, Ana; Kowalski, Andrew S.

    2016-04-01

    Agriculture plays an important role in the C budget at the global scale. Traditional practices based on soil tillage and applying herbicides to remove weeds have caused damage to soils and led to important losses of soil organic C and increased CO2 emissions to the atmosphere. Changing trends from traditional agriculture to conservation agriculture practices may have an important role in both C and water budgets and the transformation of agriculture from C source to C sink. The objective of this study was to analyse the effect of two treatments, weed removal by herbicides versus weed cover conservation, on the C balance in an irrigated olive orchard in SE Spain. Measurements of CO2 exchange were made from October 2014 to September 2015 using two eddy covariance towers, one for each olive crop treatment. Results show that CO2 fluxes at the ecosystem scale were similar in the two treatments during initial conditions, prior to weed growth in the soils without herbicide application (October). During the first week, daily net ecosystem exchange (NEE) was close to zero in both treatments, with values ranging from 1.06 to -0.41 g C m-2 in the weed cover treatment, and from 0.76 to -0.69 g C m-2 in the weed removal treatment. As weed growth increased, higher net CO2 assimilation was found in the treatment with weed cover. In both treatments, maximum net CO2 assimilation was found in March, with a monthly NEE of -72 and -28 g C m-2 in the treatment with and without weed cover, respectively. In May, after the weeds were cut and left on the soil, a strong increase was observed in NEE in the treatment with weed cover due to decreased CO2 assimilation and increased respiration compared to the treatment without weed cover. Therefore, soil chamber measurements showed average respiration rates of 2.57 and 1.57 μmol m-2 s-2 in the weed cover and weed removal treatment, respectively. Finally, the highest monthly NEE was registered during July, with both treatments showing a similar

  13. Measurement of advection of CO2 over grasslands in complex terrain in the Alps

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Hammerle, Albin; Wohlfahrt, Georg

    2015-04-01

    The role of advection is often ignored in the estimation of net ecosystem exchange (NEE) of CO2 in ecosystems. However, some studies reported that more realistic estimates of night-time NEE could be gathered if horizontal and vertical advections are included. While most of previous advection experiments have been conducted in forest ecosystems, grassland ecosystems have a great advantage as measurements of advection can be realised with smaller infrastructure and thus less experimental effort. In a preliminary simplified study, advection showed an important contribution to NEE during night time at a sub-alpine grassland site. This three-year program is focused on the role of advection for NEE of grassland ecosystems in complex terrain in the Alps. We are going to carry out field campaigns at four sites which cover a range of terrain types typical for mountains with varying degrees of complexity, including a valley-bottom site, a steep-slope site, a mixed-terrain site, and an undulating-terrain site. Observations will take place in a notional control volume with a length varying from 50 m to 5 m at each site in order to quantify the effects of horizontal spatial scale on advection estimates. The observations at each site include vertical flux of CO2 measured by eddy-covariance technique, horizontal and vertical advections of CO2 calculated from the measurement of wind components and CO2 gradients, and NEE measured by chambers. Among all, the measurement of the horizontal advection of CO2 needs many efforts because of small-scale variability in sources/sinks of CO2. We are going to use tubes with multiple inlets, which allows sampling at multiple positions across the faces at three heights of the control volume. Thus, we would be able to quantify the contribution of advection to NEE at different grassland sites situated in complex terrain in the Alps, and to quantify the effect of spatial scale of advection measurements with a given experimental setup and accuracy on

  14. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  15. Invasive C4 Perennial Grass Alters Net Ecosystem Exchange in Mixed C3/C4 Savanna Grassland

    NASA Astrophysics Data System (ADS)

    Basham, T. S.; Litvak, M.

    2006-12-01

    The invasion of ecosystems by non-native plants that differ from native plants in physiological characteristics and phenology has the potential to alter ecosystem function. In Texas and other regions of the southern central plains of the United States, the introduced C4 perennial grass, Bothriochloa ischaemum, invades C3/C4 mixed grasslands and savannas, resulting in decreased plant community diversity (Gabbard 2003; Harmoney et al 2004). The objective of this study was to quantify how the conversion of these mixed grass communities to C4 dominated, B. ischaemum monocultures impacts carbon cycling and sequestration. Seasonal measurements of Net Ecosystem Exchange (NEE) of CO2, leaf level gas exchange and soil respiration were compared between savanna grassland plots composed of either naturally occurring B. ischaemum monocultures or native mixed grasses (n=16). NEE was measured using a closed system chamber that attached to permanently installed stainless steel bases. Temperature, soil moisture, aerial percent species cover and leaf area index were also monitored in plots to explain variability in measured responses. Results showed that NEE differed seasonally between invaded and native plots due to 1) greater leaf surface area per unit ground area in invaded plots, 2) differences in phenological patterns of plant activity and 3) differences in responses to water limitation between invaded and native plots. Cold season and summer drought NEE were driven primarily by belowground respiration in both plot types, however spring uptake activity commenced two months later in invaded plots. This later start in invaded plots was compensated for by greater uptake throughout the growing season and in particular during the drier summer months. Differences in NEE between plot types were not due to differences in soil respiration nor were they due to greater leaf level photosynthetic capabilities of B. ischaemum relative to the dominant native grasses. NEE, soil respiration and

  16. Reflex Project: Using Model-Data Fusion to Characterize Confidence in Analyzes and Forecasts of Terrestrial C Dynamics

    NASA Astrophysics Data System (ADS)

    Fox, A. M.; Williams, M.; Richardson, A.; Cameron, D.; Gove, J. H.; Ricciuto, D. M.; Tomalleri, E.; Trudinger, C.; van Wijk, M.; Quaife, T.; Li, Z.

    2008-12-01

    The Regional Flux Estimation Experiment, REFLEX, is a model-data fusion inter-comparison project, aimed at comparing the strengths and weaknesses of various model-data fusion techniques for estimating carbon model parameters and predicting carbon fluxes and states. The key question addressed here is: what are the confidence intervals on (a) model parameters calibrated from eddy covariance (EC) and leaf area index (LAI) data and (b) on model analyses and predictions of net ecosystem C exchange (NEE) and carbon stocks? The experiment has an explicit focus on how different algorithms and protocols quantify the confidence intervals on parameter estimates and model forecasts, given the same model and data. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. Both observed daily NEE data from FluxNet sites and synthetic NEE data, generated by a model, were used to estimate the parameters and states of a simple C dynamics model. The results of the analyses supported the hypothesis that parameters linked to fast-response processes that mostly determine net ecosystem exchange of CO2 (NEE) were well constrained and well characterised. Parameters associated with turnover of wood and allocation to roots, only indirectly related to NEE, were poorly characterised. There was only weak agreement on estimations of uncertainty on NEE and its components, photosynthesis and ecosystem respiration, with some algorithms successfully locating the true values of these fluxes from synthetic experiments within relatively narrow 90% confidence intervals. This exercise has demonstrated that a range of techniques exist that can generate useful estimates of parameter probability density functions for C models from eddy covariance time series data. When these parameter PDFs are propagated to generate estimates of annual C fluxes there was a wide variation in size of the 90% confidence intervals. However, some algorithms were able to make

  17. Early Season Goose Grazing Has a Greater Effect Than Advancement of the Growing Season on Net Ecosystem Exchange in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Choi, R. T.; Beard, K. H.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change. Growing seasons now begin earlier but geese have not advanced their breeding enough to match the advancement of spring. Consequently, geese enter a greener system that may be less nutritious than in the past because grasses and sedges have highest nutrient density shortly following emergence. One consequence of this changing phenology is that vegetation consumed by geese and returned as feces may have a different carbon to nitrogen ratio than in the past, which may influence net ecosystem exchange (NEE). We examine the effect of the advancement of the growing season and different arrival times by Brant Geese on NEE. Our study consists of six experimental blocks, each with nine plots. Half of the plots are warmed to advance the growing season. Two plots each receive early, mid, and late season grazing; the remaining two plots are not grazed and there is one control plot. In one block, we monitor NEE hourly with an automatic gas exchange system. In the other blocks, survey measurements of NEE and ecosystem respiration (ER) are made periodically with a portable system. Geese remove considerable vegetation from the system and maintain "grazing lawns" <1 cm tall of high quality forage. Plots grazed in the early summer were net sources of C to the atmosphere, releasing ca. 2-4 g m-2 d-1. Non-grazed plots were C sinks of similar magnitude. Grazing had little effect on ER but an advanced growing season enhanced ER in the plots by ca. 0.5 μmol m-2 s-1. We observed a similar advanced growing season effect on NEE that we attribute to enhanced ER. Consequently, the larger influence on NEE in the system is grazing and this influence is through removal of photosynthetic tissue. Grazing by Brant Geese shifts large areas of this coastal wetland to a C source while advanced growing season only reduces the strength of the C sink.

  18. Uncertainty Analysis of Gross Primary Production Separated from Net Ecosystem Exchange Measurements at Speulderbos Forest, The Netherlands

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2015-04-01

    Gross primary production (GPP), separated from the flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time scales. Proper implementation of validation requires knowledge of the uncertainty associated with the separated GPP at different time scales so that the propagated uncertainty can be determined. We estimate the uncertainty in GPP at half-hourly to yearly time scales. Flux tower measurements of NEE results from two major fluxes GPP and ecosystem respiration (Reco) as NEE = GPP - Reco and therefore GPP can be separated from NEE. We used a non-rectangular hyperbola (NRH) model to separate half-hourly GPP from the three years of continuous flux tower measurements of half-hourly NEE at the Speulderbos forest site, The Netherlands. NRH includes the variables that influence GPP, in particular radiation, vapor pressure deficit, and temperature. In addition, NRH model provides a robust empirical relationship between radiation and GPP by including the degree of curvature of light response curve. NRH was fitted to the measured NEE data on a daily basis. Variation in the parameters of this model was studied within each year. We did not obtain a single optimized value of each parameter of NRH model, instead we defined the prior distribution of each parameters based on literature search. We adopted a Bayesian approach, which was implemented using Markov chain Monte Carlo (MCMC) simulation to update the prior distribution of each parameter on a daily basis. This allowed us to estimate the uncertainty in the separated GPP at the half-hourly time scale. The results of this approach generated the empirical distribution of GPP at each half-hour, which are a measure of uncertainty. The time series of empirical distributions of half-hourly GPP values also allowed us to estimate the uncertainty at daily, monthly and yearly time scales. Our research

  19. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    NASA Astrophysics Data System (ADS)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p < 0.001) at the 12 sites used in the calibration of the model. Further, the model effectively estimates NEE in three disparate Alaskan ecosystems (heath, tussock and fen) with an estimation ranging between 10 - 36% of the measured fluxes. We suggest that the poor agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated

  20. Individual rain events decrease long-term boreal peatland net CO2 uptake through reduced light availability

    NASA Astrophysics Data System (ADS)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B.; van der Zee, Sjoerd; Berendse, Frank

    2016-04-01

    Northern peatlands sequester enormous quantities of carbon, suggesting these wetland ecosystems are of fundamental importance for the global carbon cycle. The long-term carbon storage of these wetland ecosystems depends on wet surface conditions, and is prone to drought. Future climate predictions indicate that most of the northern hemisphere is projected to become wetter, but that precipitation will fall in less frequent but more intense events. How such fine-scale climatic changes will affect long-term future net ecosystem exchange (NEE) of northern peatlands remains unknown. In this study we explored the short-term peatland NEE response to day time rain events during the growing season, how timing and characteristics of individual events and environmental conditions modify this response, and the impact of NEE responses to individual rain events for the longer-term (annual) carbon uptake. We used an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a peatland in northern Sweden. Our study shows daytime precipitation events systematically decreased the sink strength for atmospheric CO2. An individual daytime precipitation event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m-2 on average. This reduction was best explained by the reduction in light associated with precipitation events, rather than by precipitation characteristics, timing of events, or drought length. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that accounting for the short-term response of NEE to individual rain events is crucial in determining climate change impacts on long-term sink strength of peatlands to atmospheric CO2. Moreover, reduced light availability associated with rain events is more important in explaining the NEE response to rain events than

  1. Ecohydrological and Biophysical Controls on Carbon Cycling in Two Seasonally Snow-covered Forests

    NASA Astrophysics Data System (ADS)

    Chan, A. M.; Brooks, P. D.; Burns, S. P.; Litvak, M. E.; Blanken, P.; Bowling, D. R.

    2014-12-01

    In many seasonally snow-covered forests, the snowpack is the primary water resource. The snowpack also serves as an insulating layer over the soil, warming soil throughout the winter and preserving moisture conditions from the preceding fall. Therefore, the total amount of water in the snowpack as well as the timing and duration of the snow-covered season are likely to have a strong influence on forest productivity through the regulation of the biophysical environment. We investigated how interannual variation in the amount and timing of seasonal snow cover affect winter carbon efflux and growing season carbon uptake at the Niwot Ridge AmeriFlux site (NWT) in Colorado (3050m a.s.l.; 40˚N) and the Valles Caldera Mixed-Conifer AmeriFlux site (VC) in New Mexico (3003m a.s.l.; 36˚N). The tree species composition at NWT is dominated by Abies lasiocarpa, Picea engelmannii, and Pinus contorta. At VC, the dominant tree species are Pseudotsuga menziesii, Abies concolor, Picea pungens, Pinus strobiformis, Pinus flexilis, Pinus ponderosa, and Populus tremuloides. We used net ecosystem exchange (NEE) and climate data from 1999-2012 at NWT and 2007-2012 at VC to divide each year into the growing season, when NEE is negative, and the winter, when NEE is positive. Snow water equivalent (SWE), precipitation, and duration of snow cover data were obtained from USDA/NRCS SNOTEL sites near each forest. At both sites, the start of the growing season was strongly controlled by air temperature, but growing season NEE was not dependent on the length of the growing season. At NWT, total winter carbon efflux was strongly influenced by both the amount and duration of the snowpack, measured as SWE integrated over time. Years with higher integrated SWE had higher winter carbon efflux and also had warmer soil under the snowpack. These patterns were not seen at VC. However, peak SWE amount was positively correlated with growing season NEE at VC, but not at NWT. These results suggest that

  2. The Aquatic Communities Inhabiting Internodes of Two Sympatric Bamboos in Argentinean Subtropical Forest

    PubMed Central

    Campos, Raúl E.

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  3. New species of Solanum (Solanaceae) from Peru and Ecuador

    PubMed Central

    Knapp, Sandra

    2010-01-01

    Abstract Three new species of “non-spiny" Solanum are described from Peru and Ecuador, and a revised description for Solanum verecundum M. Nee is presented. Solanum kulliwaita S. Knapp, sp. nov. (Dulcamaroid clade) is endemic to the Department of Cuzco in southern Peru, and is most similar to the recently described Solanum sanchez-vegae S. Knapp of northern Peru. Solanum dillonii S. Knapp, sp. nov. (Brevantherum clade) is found in southern Ecuador and northern Peru in the Amotape-Huancabamba phytogeographic zone, and is morphologically similar to the widespread Solanum riparium Ruiz & Pav. Solanum oxapampense S. Knapp, sp. nov., (also of the Brevantherum clade) is endemic to the Oxapampa region (Department of Pasco) of central Peru, and is similar to and segregated from Solanum verecundum M. Nee of Peru and Ecuador. Complete descriptions, distributions and preliminary conservation assessments of all new species are given. PMID:22171167

  4. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe

    NASA Astrophysics Data System (ADS)

    Kadygrov, N.; Broquet, G.; Chevallier, F.; Rivier, L.; Gerbig, C.; Ciais, P.

    2015-11-01

    We present a performance assessment of the European Integrated Carbon Observing System (ICOS) atmospheric network for constraining European biogenic CO2 fluxes (hereafter net ecosystem exchange, NEE). The performance of the network is assessed in terms of uncertainty in the fluxes, using a state-of-the-art mesoscale variational atmospheric inversion system assimilating hourly averages of atmospheric data to solve for NEE at 6 h and 0.5° resolution. The performance of the ICOS atmospheric network is also assessed in terms of uncertainty reduction compared to typical uncertainties in the flux estimates from ecosystem models, which are used as prior information by the inversion. The uncertainty in inverted fluxes is computed for two typical periods representative of northern summer and winter conditions in July and in December 2007, respectively. These computations are based on a observing system simulation experiment (OSSE) framework. We analyzed the uncertainty in a 2-week-mean NEE as a function of the spatial scale with a focus on the model native grid scale (0.5°), the country scale and the European scale (including western Russia and Turkey). Several network configurations, going from 23 to 66 sites, and different configurations of the prior uncertainties and atmospheric model transport errors are tested in order to assess and compare the improvements that can be expected in the future from the extension of the network, from improved prior information or transport models. Assimilating data from 23 sites (a network comparable to present-day capability) with errors estimated from the present prior information and transport models, the uncertainty reduction on a 2-week-mean NEE should range between 20 and 50 % for 0.5° resolution grid cells in the best sampled area encompassing eastern France and western Germany. At the European scale, the prior uncertainty in a 2-week-mean NEE is reduced by 50 % (66 %), down to ~ 43 Tg C month-1 (26 Tg C month-1) in July

  5. Two new non-spiny Solanum species from the Bolivian Andes (Morelloid Clade).

    PubMed

    Särkinen, Tiina; Knapp, Sandra; Nee, Michael

    2015-01-01

    Two new Bolivian species are described from the Morelloid clade of Solanum (section Solanum in the traditional sense). Solanumalliariifolium M.Nee & Särkinen, sp. nov. is found in montane forests between 1,900 and 3,200 m and is morphologically most similar to Solanumleptocaulon Van Heurck & Müll.Arg., also from montane forests in southern Peru and Bolivia. Solanumrhizomatum Särkinen & M.Nee, sp. nov. is found in seasonally dry forests and matorral vegetation in lower elevations between 1,300 and 2,900 m and is most similar to Solanumpygmaeum Cav., a species native to sub-tropical Argentina but introduced in subtropical and temperate areas worldwide. PMID:25878556

  6. Modeling surface roughness scattering in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  7. The aquatic communities inhabiting internodes of two sympatric bamboos in Argentinean subtropical forest.

    PubMed

    Campos, Raúl E

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  8. Two new non-spiny Solanum species from the Bolivian Andes (Morelloid Clade)

    PubMed Central

    Särkinen, Tiina; Knapp, Sandra; Nee, Michael

    2015-01-01

    Abstract Two new Bolivian species are described from the Morelloid clade of Solanum (section Solanum in the traditional sense). Solanum alliariifolium M.Nee & Särkinen, sp. nov. is found in montane forests between 1,900 and 3,200 m and is morphologically most similar to Solanum leptocaulon Van Heurck & Müll.Arg., also from montane forests in southern Peru and Bolivia. Solanum rhizomatum Särkinen & M.Nee, sp. nov. is found in seasonally dry forests and matorral vegetation in lower elevations between 1,300 and 2,900 m and is most similar to Solanum pygmaeum Cav., a species native to sub-tropical Argentina but introduced in subtropical and temperate areas worldwide. PMID:25878556

  9. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  10. Comparing the Net Ecosystem Exchange of Two Cropping Systems for Dairy Feed Production

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. F.; Wagner-Riddle, C.; Brown, S. E.

    2015-12-01

    A three-year study was conducted from 2012 to 2014 to determine the net CO2 fluxes from corn and hay, the two main feed crops used in dairy production. The aim of this study is to better understand the net ecosystem exchange (NEE) in annual and perennial cropping systems used in dairy production to benefit greenhouse gas emission model developments and the life cycle analysis of dairy production. The study was conducted on two 4-ha plots where one plot was a 5-year old hayfield and the other plot was planted in a continuous cycle corn. All plots were continuously monitored using the flux-gradient method deployed with a tunable diode laser trace gas analyzer and sonic anemometers. All plots received dairy manure as fertilizer applied according to common practice. The cumulative NEE for the three years of the study was -873.15 g C m-2 for corn and -409.36 g C m-2 for hay. Differences in respiration between the two cropping systems was found to be the larger factor compared to differences in gross ecosystem production (GEP) that resulted in the contrasting cumulative NEE where cumulative respiration for the three years for hay was 3094.23 g C m-2 as opposed to 2078.11 g C m-2 for corn. Cumulative GEP for the three years was 3503.60 and 2951.31 g C m-2 for hay and corn respectively. Inter-annual and inter-crop variability of the NEE, GEP and respiration will be discussed in relation to biomass production, climatic conditions and crop physiological characteristics.

  11. Stellar condensates in meteorites - Isotopic evidence from noble gases

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Alaerts, L.; Matsuda, J.-I.; Anders, E.

    1979-01-01

    The Murchison carbonaceous chondrite contains three isotopically anomalous noble-gas components of apparently presolar origin: two kinds of Ne-E, (Ne-20)/(Ne-22) less than 0.6, and s-process Kr + Xe (enriched in the even isotopes 82, 84, 86, 128, 130, 132). Their carriers are tentatively identified as spinel and two carbonaceous phases, the principal high-temperature stellar condensates at low and high C/O ratios, respectively.

  12. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-11-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of net ecosystem CO2 exchange (NEE) from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of 10 years, and the average yearly NEE for the 10 years was -25.00 ± 12.70 g C m-2 year-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it does not necessarily mean that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found "hidden" underground.

  13. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a~light response curve parameterization

    NASA Astrophysics Data System (ADS)

    Mbufong, H. N.; Lund, M.; Aurela, M.; Christensen, T. R.; Eugster, W.; Friborg, T.; Hansen, B. U.; Humphreys, E. R.; Jackowicz-Korczynski, M.; Kutzbach, L.; Lafleur, P. M.; Oechel, W. C.; Parmentier, F. J. W.; Rasse, D. P.; Rocha, A. V.; Sachs, T.; van der Molen, M. M.; Tamstorf, M. P.

    2014-05-01

    This paper aims to assess the functional and spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Data was collected using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64-74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE -irradiance model. Parameters from LRCs represent site specific traits and characteristics describing: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m-2 s-1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. Yet we did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, LAI and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat), thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than was assimilation parameters. Thus, indicating the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  14. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization

    NASA Astrophysics Data System (ADS)

    Mbufong, H. N.; Lund, M.; Aurela, M.; Christensen, T. R.; Eugster, W.; Friborg, T.; Hansen, B. U.; Humphreys, E. R.; Jackowicz-Korczynski, M.; Kutzbach, L.; Lafleur, P. M.; Oechel, W. C.; Parmentier, F. J. W.; Rasse, D. P.; Rocha, A. V.; Sachs, T.; van der Molen, M. K.; Tamstorf, M. P.

    2014-09-01

    This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64-74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE-irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m-2 s-1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  15. A Web-Based Borehole Strong-motion Data Dissemination Portal

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Seale, S.; Ratzesberger, H.; Civilini, F.; Vaughan, N.

    2009-12-01

    Accelerometric and pore pressure data from instrumented boreholes in southern California are producing very interesting observations from a large data set that includes 100’s of earthquake observations each month. While the majority of these are very small events, they provide the control data that represents the linear behavior of the site. In addition, the largest motions recorded to date, ~10%g, are getting to the regime where nonlinear soil behavior effects become important. In order to make these data more accessible to the seismology and earthquake engineering research community, software development of a web-based data dissemination portal has taken place under the George E. Brown Jr., Network for Earthquake Engineering (NEES) program. This development includes processing and analysis tools, and web-based data dissemination available through the NEES@UCSB website [http://nees.ucsb.edu]. Of interest to the research community are the tools developed to provide search, waveform viewing, and download capabilities for access to data acquired through the various borehole-monitoring programs at UC Santa Barbara. Researchers interested in obtaining data recorded at the various field sites can use the map-based search tool to select a particular station and instrument(s). The user is then provided another map-based interface that allows the user to select events with choice of magnitude, distance, and time period. Once the user has selected an event of interest, the ability to view the data is provided, along with some waveform parameters like peak velocity and acceleration. The records can then be downloaded in a number of common formats, including MSEED, SAC, and an ASCII text-based real-time data viewer (RDV) format. The last format allows the data to be viewed in the NEES RDV tool, a platform independent JAVA program developed to display both real-time streaming data, or playback data that has been downloaded through the web-based event search tool.

  16. Force-free electromagnetic pulses in a laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  17. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, R.; Hamm, N. A. S.; van der Tol, C.; Stein, A.

    2015-08-01

    Gross primary production (GPP), separated from flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time steps. Proper validation should include the uncertainty associated with this separation at different time steps. This can be achieved by using a Bayesian framework. In this study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-rectangular hyperbola (NRH) model to separate GPP from flux tower measurements of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the variables that influence GPP, in particular radiation, and temperature. In addition, the NRH model provided a robust empirical relationship between radiation and GPP by including the degree of curvature of the light response curve. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. Adopting a Bayesian approach, we defined the prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC) simulation was used to update the prior distribution of each NRH parameter. This allowed us to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded the posterior distribution of GPP at each half hour and allowed the quantification of uncertainty. The time series of posterior distributions thus obtained allowed us to estimate the uncertainty at daily time steps. We compared the informative with non-informative prior distributions of the NRH parameters. The results showed that both choices of prior produced similar posterior distributions GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  18. Chemical evidence for the liverwort complex, Chiloscyphus concavus and C. horizontalis.

    PubMed

    Cuvertino-Santoni, Jorge; Asakawa, Yoshinori; Peralta, Denilson F; Montenegro, Gloria

    2014-07-01

    During the phytochemical study of Chilean liverworts from Tierra del Fuego, two species were collected, Chiloscyphus concavus (Steph.) Hässel and C. horizontalis (Hook.) Nees. Their crude extracts, when analyzed by TLC and GC-MS, showed identical phytochemical profiles. In view of the macro- and micro-morphological differences used for the separation of both species, and the chemical evidence here presented, we conclude that variety is the more appropriate status for C. concavus. PMID:25230488

  19. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    USGS Publications Warehouse

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  20. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-03-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected five years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in Northern California. The vegetation at both sites exhibited dynamic phenology, with significant inter-annual variability in the timing of seasonal patterns that propagated into inter-annual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire continuous canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly-integrated flux. With the PLSR models developed from this large dataset we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation dataset ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at the daily- through monthly-integrated flux timescales. The high level of predictability achieved by PLSR regression in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE measurements into its component fluxes, GPP and ecosystem respiration, and for using continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  1. [Carbon exchange of Chinese boreal forest during its growth season and related regulation mechanisms].

    PubMed

    Zhou, Li-yan; Jia, Bing-rui; Zhou, Guang-sheng; Zeng, Wei; Wang, Yu

    2010-10-01

    Based on the two-year continuous observation on the carbon exchange of Chinese boreal forest during its growth seasons in 2007 and 2008 by the method of open path eddy covariance, this paper analyzed the seasonal dynamics of the gross ecosystem productivity (GEP), ecosystem respiration (Re), and net ecosystem carbon exchange (NEE) of the forest, with related regulation mechanisms approached. The GEP, Re, and NEE of the forest reached to their maximum in the vigorous growth period from late June to mid August, but the dates of the maximum appeared differed. The mean daily GEP, Re, and NEE were 19.45, 15.15, and -1.45 g CO2 x m(-2) x d(-1) in 2007, and 17.67, 14.11, and -1.37 g CO2 x m(-2) x d(-1) in 2008, respectively. The intensity of the carbon exchange during growth season was obviously stronger in 2007 than in 2008, possibly due to the higher mean air temperature (12.46 degrees C in 2007 vs. 11.04 degrees C in 2008) and the higher mean photosynthetically active radiation (PAR) (697 micromol x m(-2) x s(-1) in 2007 vs. 639 micromol x m(-2) x s(-1) in 2008). The GEP had close linear relationships with air temperature and PAR, and the correlation coefficient of GEP and air temperature was around 0.55 (P<0.01). The Re was mainly controlled by air temperature, with the correlation coefficient being 0.66-0.72 (P<0.01), and the NEE was mainly controlled by PAR, with the correlation coefficient being 0.59-0.63 (P<0.01). PMID:21328928

  2. Chemical composition of essential oil from the root bark of Sassafras albidum.

    PubMed

    Kamdem, D P; Gage, D A

    1995-12-01

    The root bark of Sassafras albidum (Nuttall) Nees (Lauraceae) was extracted at room temperature with hexane and chloroform as solvents. The isolated essential oils were analyzed with GC and GC/MS. Thirty compounds were identified, nine of which have not been previously reported from this species. The major compounds were safrole (85%), camphor (3.25%), and methyleugenol (1.10%). Ten sesquiterpenes were also identified. PMID:8824955

  3. Ocotea quixos, American cinnamon.

    PubMed

    Naranjo, P; Kijjoa, A; Giesbrecht, A M; Gottlieb, O R

    1981-09-01

    Among the three South American Lauraceae with cinnamon odours, Ocotea quixos Lam. is distinguished with the richest historical legacy. Cinnamaldehyde, its odoriferous principle, occurs besides o-methoxycinnamaldehyde, cinnamic acid and methyl cinnamate in the fruit calyx. In contradistinction, 1-nitro-2-phenylethane is responsible for the cinnamon odour of bark and leaves of Aniba canelilla (H..B.K.) Mez and Ocotea pretiosa (Nees) Mez. PMID:7311599

  4. kwayask e-ki-pe-kiskinowapahtihicik = Their Example Showed Me the Way: A Cree Woman's Life Shaped by Two Cultures.

    ERIC Educational Resources Information Center

    Minde, Emma; Ahenakew, Freda, Ed.; Wolfart, H. C., Ed.

    Emma Minde (nee Memnook)was born in 1907 in Saddle Lake, Alberta. In 1927 she was given by her father in an arranged marriage to Joe Minde, who lived in Hobbema, Alberta. In this recorded autobiography taped in 1988 when she was 81 years old, little is said about her parents and her life as a child other than that she spent 7 years at a…

  5. Carbon dynamics of two adjacent temperate forests under similar climatic conditions

    NASA Astrophysics Data System (ADS)

    Malla Thakuri, B.; Kim, J.

    2012-12-01

    The proximity (< 1.5 km) of the two KoFlux towers (i.e., Gwangneung coniferous forest site, GCK and deciduous forest site, GDK) provides an excellent opportunity to study carbon dynamics of the two different plant functional types under similar climate and environmental conditions. We have analyzed the CO2 flux data measured by eddy covariance from 2007 to 2010 at GCK and GDK sites. Our objectives were (1) to compare and contrast the seasonality and inter-annual variability in net ecosystem CO2 exchange (NEE) of the two adjacent forests and (2) to interpret their carbon dynamics in the framework of resilience concept. The multi-year measurements of CO2 fluxes at both sites showed contrasting inter-annual trends. Overall, both the annual gross primary productivity (GPP) and ecosystem respiration (RE) were higher for GCK site with an average NEE of -220 (±137) g C m-2 yr-1 while that of GDK was -67 (±58) g C m-2 yr-1. The GCK showed a continuous, threefold increase in NEE with lower water use efficiency whereas the GDK fluctuated between carbon source and weak to moderate carbon sink. Each year, both sites manifested a mid-season depression in GPP (and thus NEE), which was more pronounced at GCK. On a seasonal basis, summer was the most productive for GDK while spring for GCK. The results are interpreted in terms of phenology and different stages of adaptive cycles. Acknowledgment This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3030.

  6. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling

  7. Intra-seasonal mapping of CO2 flux in rangelands of northern Kazakhstan at one-kilometer resolution

    USGS Publications Warehouse

    Wylie, B.K.; Gilmanov, T.G.; Johnson, D.A.; Saliendra, Nicanor Z.; Akshalov, K.; Tieszen, L.L.; Reed, B.C.; Laca, Emilio

    2004-01-01

    Algorithms that establish relationships between variables obtained through remote sensing and geographic information system (GIS) technologies are needed to allow the scaling up of site-specific CO2 flux measurements to regional levels. We obtained Bowen ratio-energy balance (BREB) flux tower measurements during the growing seasons of 1998-2000 above a grassland steppe in Kazakhstan. These BREB data were analyzed using ecosystem light-curve equations to quantify 10-day CO2 fluxes associated with gross primary production (GPP) and total respiration (R). Remotely sensed, temporally smoothed normalized difference vegetation index (NDVIsm) and environmental variables were used to develop multiple regression models for the mapping of 10-day CO2 fluxes for the Kazakh steppe. Ten-day GPP was estimated (R 2 = 0.72) by day of year (DOY) and NDVIsm, and 10-day R was estimated (R2 = 0.48) with the estimated GPP and estimated 10-day photosynthetically active radiation (PAR). Regression tree analysis estimated 10-day PAR from latitude, NDVIsm, DOY, and precipitation (R2 = 0.81). Fivefold cross-validation indicated that these algorithms were reasonably robust. GPP, R, and resulting net ecosystem exchange (NEE) were mapped for the Kazakh steppe grassland every 10 days and summed to produce regional growing season estimates of GPP, R, and NEE. Estimates of 10-day NEE agreed well with BREB observations in 2000, showing a slight underestimation in the late summer. Growing season (May to October) mean NEE for Kazakh steppe grasslands was 1.27 Mg C/ha in 2000. Winter flux data were collected during the winter of 2001-2002 and are being analyzed to close the annual carbon budget for the Kazakh steppe. ?? 2004 Springer-Verlag New York, LLC.

  8. Effects of grazing on ecosystem CO₂ exchange in a meadow grassland on the Tibetan Plateau during the growing season.

    PubMed

    Chen, Ji; Shi, Weiyu; Cao, Junji

    2015-02-01

    Effects of human activity on ecosystem carbon fluxes (e.g., net ecosystem exchange (NEE), ecosystem respiration (R(eco)), and gross ecosystem exchange (GEE)) are crucial for projecting future uptake of CO2 in terrestrial ecosystems. However, how ecosystem that carbon fluxes respond to grazing exclusion is still under debate. In this study, a field experiment was conducted to study the effects of grazing exclusion on R(eco), NEE, and GEE with three treatments (free-range grazing (FG) and grazing exclusion for 3 and 5 years (GE3 and GE5, respectively)) in a meadow grassland on the Tibetan Plateau. Our results show that grazing exclusion significantly increased NEE by 47.37 and 15.84%, and R eco by 33.14 and 4.29% under GE3 and GE5 plots, respectively, although carbon sinks occurred in all plots during the growing season, with values of 192.11, 283.12, and 222.54 g C m(-2) for FG, GE3, and GE5, respectively. Interestingly, grazing exclusion increased temperature sensitivity (Q10) of R eco with larger increases at the beginning and end of growing season (i.e., May and October, respectively). Soil temperature and soil moisture were key factors on controlling the diurnal and seasonal variations of R(eco), NEE, and GEE, with soil temperature having a stronger influence. Therefore, the combined effects of grazing and temperature suggest that grazing should be taken into consideration in assessing global warming effects on grassland ecosystem CO2 exchange. PMID:25355630

  9. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-07-01

    The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  10. Anatomy of a disruption in MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Hooper, E.B.; Casper, T.A.; Lasnier, C.J.; Makowski, M.A.; Meyer, W.H.; Moller, J.M.; Oasa, K.; Rice, B.W.; Wood, R.D.

    1990-10-15

    Disruptions are observed in the Microwave Tokamak Experiment, MTX (nee Alcator C), over a wide range of plasma parameters. Indeed, disruptions often occur far from the boundaries of the operating space as defined by Hugill and l{sub i}-q plots. Despite this, the general behavior during the disruptive process is generally similar whatever the operating parameters. This report will describe one disruption in detail in order to provide a detailed anatomy of the event.

  11. Effects of Grazing on Ecosystem CO2 Exchange in a Meadow Grassland on the Tibetan Plateau During the Growing Season

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Shi, Weiyu; Cao, Junji

    2015-02-01

    Effects of human activity on ecosystem carbon fluxes (e.g., net ecosystem exchange (NEE), ecosystem respiration ( R eco), and gross ecosystem exchange (GEE)) are crucial for projecting future uptake of CO2 in terrestrial ecosystems. However, how ecosystem that carbon fluxes respond to grazing exclusion is still under debate. In this study, a field experiment was conducted to study the effects of grazing exclusion on R eco, NEE, and GEE with three treatments (free-range grazing (FG) and grazing exclusion for 3 and 5 years (GE3 and GE5, respectively)) in a meadow grassland on the Tibetan Plateau. Our results show that grazing exclusion significantly increased NEE by 47.37 and 15.84 %, and R eco by 33.14 and 4.29 % under GE3 and GE5 plots, respectively, although carbon sinks occurred in all plots during the growing season, with values of 192.11, 283.12, and 222.54 g C m-2 for FG, GE3, and GE5, respectively. Interestingly, grazing exclusion increased temperature sensitivity ( Q 10) of R eco with larger increases at the beginning and end of growing season (i.e., May and October, respectively). Soil temperature and soil moisture were key factors on controlling the diurnal and seasonal variations of R eco, NEE, and GEE, with soil temperature having a stronger influence. Therefore, the combined effects of grazing and temperature suggest that grazing should be taken into consideration in assessing global warming effects on grassland ecosystem CO2 exchange.

  12. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, Daniel J; Turner, David P; Stinson, Graham; Mcguire, David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; De Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andrew; Huntzinger, Deborah; Pan, Yude; Post, Wilfred M; Cook, Robert B

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  13. Influence of Vegetation and Seasonal Forcing on Carbon Dioxide Fluxes Across the Upper Midwest, USA: Implications for Regional Scaling

    SciTech Connect

    Desai, Ankur R; Noormets, Asko; Bolstad, Paul V; Chen, Jiquan; Cook, Bruce D; Davis, Kenneth J; Euskirchen, Eugenie S; Gough, Christopher; Martin, Jonathan G; Ricciuto, Daniel M; Schmid, Hans P; Tang, Jianwu; Wang, Weiguo

    2008-02-13

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in the Upper Midwest (USA) to assess spatial variability of ecosystem–atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens, and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km2 regional flux estimate found June to August 2003 NEE, ER, and GEP to be -290 ± 89, 408 ± 48, and 698 ± 73 gC m-2, respectively. Aggregated NEE, ER, and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER, and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error, and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA.

  14. Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration

    SciTech Connect

    Ricciuto, Daniel M; Butler, Martha; Davis, Kenneth; Cook, Bruce D

    2008-01-01

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem-atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km(2) regional flux estimate found June to August 2003 NEE, ER and GEP to be -290 +/- 89, 408 +/- 48, and 698 +/- 73 gC m(-2), respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA. (C) 2007 Elsevier B.V. All rights reserved.

  15. Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling

    SciTech Connect

    Desai, Desai Ankur R.; Noormets, Asko; Bolstad, Paul V; Chen, Jiquan; Cook, Bruce D; Davis, Kenneth; Euskirchen, Eugenie S; Gough, Christopher M; Martin, Jonathan G; Ricciuto, Daniel M; Schmid, Hans Peter; Tang, Jianwu; Wang, Weiguo

    2008-01-01

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km2 regional flux estimate found June to August 2003 NEE, ER and GEP to be 290 89, 408, 48, and 698, 73 gC m-2, respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then reaggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA.

  16. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Michalak, Anna M.

    2015-05-01

    Understanding the response of the terrestrial biospheric carbon cycle to variability in enviroclimatic drivers is critical for predicting climate-carbon interactions. Here we apply an atmospheric-inversion-based framework to assess the relationships between the spatiotemporal patterns of net ecosystem CO2 exchange (NEE) and those of enviroclimatic drivers. We show that those relationships can be directly observed at 1° × 1° 3-hourly resolution from atmospheric CO2 measurements for four of seven large biomes in North America, namely, (i) boreal forests and taiga; (ii) temperate coniferous forests; (iii) temperate grasslands, savannas, and shrublands; and (iv) temperate broadleaf and mixed forests. We find that shortwave radiation plays a dominant role during the growing season over all four biomes. Specific humidity and precipitation also play key roles and are associated with decreased CO2 uptake (or increased release). The explanatory power of specific humidity is especially strong during transition seasons, while that of precipitation appears during both the growing and dormant seasons. We further find that the ability of four prototypical terrestrial biospheric models (TBMs) to represent the spatiotemporal variability of NEE improves as the influence of radiation becomes more dominant, implying that TBMs have a better skill in representing the impact of radiation relative to other drivers. Even so, we show that TBMs underestimate the strength of the relationship to radiation and do not fully capture its seasonality. Furthermore, the TBMs appear to misrepresent the relationship to precipitation and specific humidity at the examined scales, with relationships that are not consistent in terms of sign, seasonality, or significance relative to observations. More broadly, we demonstrate the feasibility of directly probing relationships between NEE and enviroclimatic drivers at scales with no direct measurements of NEE, opening the door to the study of emergent

  17. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  18. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Fuentes, Jose D.; Zieman, Joseph C.; O'Halloran, Thomas L.; Smith, Thomas J., III; Anderson, Gordon H.

    2010-01-01

    We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from -20 to -25 μmol (CO2) m-2 s-1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 μmol (CO2) m-2 s-1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (d by ~0.9 μmol (CO2) m-2 s-1 and nighttime Rd by ~0.5 μmol (CO2) m-2 s-1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m-2 during 2004. This unusually high NEP was attributed to year-round productivity and low ecosystem respiration which reached a maximum of only 3 g C m-2 d-1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change.

  19. Spaceport Command and Control System User Interface Testing

    NASA Technical Reports Server (NTRS)

    Huesman, Jacob

    2016-01-01

    The Spaceport Command and Control System will be the National Aeronautics and Space Administration's newest system for launching commercial and government owned spacecraft. It's a large system with many parts all in need of testing. To improve upon testing already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of Kennedy Space Center has hired a group of interns each of the last few semesters to develop novel ways of improving the testing process.

  20. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    PubMed

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  1. Carbon Flux Partitioning in an Old-Growth Forest: Study of Seasonal and Interannual Variation

    NASA Astrophysics Data System (ADS)

    Paw U, K.; Falk, M.

    2003-12-01

    We investigate the decompostion of eddy flux measurements of net ecosystem exchange (NEE) into gross primary productivity (GPP), ecosystem respiration (Reco) and the temporal dynamics of component fluxes for 4 « years of data from long-term measurements of carbon fluxes above and within Old-growth Forest at the Wind River Canopy Crane AMERIFLUX site. Trees at the site are up to 500 years old and 65 meters tall. The forest structure at the site is complex for a temperate conifer stand with seven gymnosperm and two angiosperm tree species in the 2.3 ha crane circle, large standing biomass and large amounts of woody debris on the forest floor. Soil respiration is a major contributor to the carbon budget at the site with roughly 75% of total respiration on average. The annual estimates of net ecosystem exchange (NEE) of carbon range from a strong sink (2.1 tC/ha per year) to a source (-0.5 tC/ha per year). Summers are usually warm and dry (1998, 2001) but relatively wet and cool ones have been observed (1999). Precipitation levels throughout the observation period varied from 1600 to 2600 mm with the latter close to the 25-year average. The main period of maximum carbon uptake is limited to the months March through May when ecosystem respiration and water stress are low. Stand-level light response functions show optima for low temperatures and diffuse light conditions. Reco also shows a clear seasonal pattern but lags significantly behind NEE with a maximum in late summer and has a range of 13 - 16 tC/ha per year. GPP shows a similar lag against NEE but is relatively invariant on an annual basis (16 tC/ha).

  2. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-08-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected 5 years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in northern California. The vegetation at both sites exhibited dynamic phenology, with significant interannual variability in the timing of seasonal patterns that propagated into interannual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly integrated flux. With the PLSR models developed from this large data set we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation data set ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at daily to monthly integrated flux timescales. The high level of predictability achieved by PLSR in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  3. Grazing alters the biophysical regulation of carbon fluxes in a desert steppe

    NASA Astrophysics Data System (ADS)

    Shao, Changliang; Chen, Jiquan; Li, Linghao

    2013-06-01

    To determine the role of grazing on CO2 fluxes in a desert steppe, we used paired eddy-covariance systems to measure the net ecosystem exchange (NEE) and microclimate on adjacent pastures of grazed (GS) and ungrazed (FS) steppes on the Mongolian Plateau from 2010 to 2011. The first year was an average precipitation year, while the second year was a dry year. In 2010, there was 91% greater growing seasonal gross ecosystem production (GEP) and 55% greater ecosystem respiration (Re) in the GS than in the FS. As a result, the GS acted as a net carbon uptake of -20 g C m-2 while the FS was a small net carbon release of 10 g C m-2. The greater GEP was mainly caused by the greater photosynthetic capacity due to the suitable environmental conditions and longer growing time in a day and in the growing period accompanied by the enhanced Re that seemed to be responsible for the increased NEE, which compensated for the lower leaf area in the GS. However, an inverse trend was detected in 2011. The seasonal cumulative GEP, Re and NEE were characterized with 92% greater GEP and similar Re in the FS compared with the GS. As a result, the FS acted as a small net carbon uptake of -5 g C m-2, while the GS was a net carbon release of 59 g C m-2. Although the GS had greater carbon uptake in 2010, the variation of daily NEE from both years was lower in the FS, suggesting that the FS has a greater resistance to the changing climate. This also means that future modeling effort should consider year-to-year differences in the carbon balance because relationships between fluxes and climatic regulators change annually in different land use change scenarios.

  4. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J.; Juutinen, S.; Larmola, T.

    2015-01-01

    Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  5. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J. L.; Juutinen, S.; Larmola, T.

    2014-07-01

    Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to analyze impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behavior. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to high tolerance of Sphagnum to N deposition in the model. Model performance regarding the 8 year response of GEP and NEE to N was improved by introducing an N content threshold shifting the response of photosynthesis capacity to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modeling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  6. A novel mechanism for momordin Ic-induced HepG2 apoptosis: involvement of PI3K- and MAPK-dependent PPARγ activation.

    PubMed

    Wang, Jing; Yuan, Li; Xiao, Haifang; Wang, Chan; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2014-05-01

    Momordin Ic is a natural triterpenoid saponin found in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Momordin Ic has been previously demonstrated to induce HepG2 cell apoptosis in a ROS-mediated PI3K and MAPK pathway-dependent manner. In the present study, the underlying mechanisms of PI3K and MAPK pathway-mediated PPARγ, and PGC-1α co-regulator activation, as well as the effects of downstream proteins, COX-2 and FoxO4, on cell apoptosis were investigated. The results demonstrated that momordin Ic activated PPARγ and inhibited COX-2. PGC-1α and FoxO4 expressions were increased by the PI3K or MAPK pathways. Furthermore, PPARγ inhibition decreased p-p38 and FoxO4 expression, and restored COX-2 expression. ROS inhibition exerted little effect on PPARγ, COX-2 and FoxO4 expression but affected PGC-1α expression. These results revealed the involvement of PI3K and MAPK-dependent PPARγ activation in momordin Ic-induced apoptosis, providing more detailed information underlying the pro-apoptotic mechanism of momordin Ic in HepG2 cell apoptosis. PMID:24584198

  7. Phytotherapy of hypertension and diabetes in oriental Morocco.

    PubMed

    Ziyyat, A; Legssyer, A; Mekhfi, H; Dassouli, A; Serhrouchni, M; Benjelloun, W

    1997-09-01

    In order to select the main medicinal plants used in folk medicine to treat arterial hypertension and/or diabetes, a survey was undertaken in different areas of oriental Morocco. The patients (370 women and 256 men) were divided into three groups: diabetics (61%), hypertensives (23%) and hypertensive diabetic persons (16%). On average, 67.51% of patients regularly use medicinal plants. This proportion is perceptibly the same in all groups and does not depend on sex, age and socio-cultural level. This result shows that phytotherapy is widely adopted in northeastern Morocco. For diabetes, 41 plants were cited, of which the most used were Trigonella foenum-graecum L. (Leguminosae), Globularia alypum L. (Globulariaceae), Artemisia herba-alba Asso. (Compositae), Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) and Tetraclinis articulata Benth. (Cupressaceae). In the hypertension's therapy 18 vegetal species were reported, of which the most used were Allium sativum L. (Liliaceae), Olea europea L. (Oleaceae), Arbutus unedo L. (Ericaceae), Urtica dioica L. (Urticaceae) and Petroselinum crispum A.W. Hill (Apiaceae). Among the 18 species used for hypertension, 14 were also employed for diabetes. Moreover, these two diseases were associated in 41% of hypertensives. These findings suggest that hypertension observed in this region would be in a large part related to diabetes. PMID:9324004

  8. Plant uptake of depleted uranium from manure-amended and citrate treated soil.

    PubMed

    Sevostianova, Elena; Lindemann, William C; Ulery, April L; Remmenga, Marta D

    2010-08-01

    Six plant species were tested for their ability to accumulate depleted uranium in their above-ground biomass from deployed munitions contaminated soil in New Mexico. In greenhouse experiments, Kochia (Kochia scoparia L. Schrad.) and pigweed (Amaranthus retroflexus L) were grown with steer manure added at rates of 22.4, 44.8, and 89.6 Mg ha(-1). Citric acid and glyphosate (N-(phosphonomethyl) glycine) applied at the end of the growing season increased DU concentrations from 2.5 to 17 times. Leaf and stem DU concentrations in kochia increased from 17.0 to 41.9 mg kg(-1) and from 3.5 to 18.0 mg kg(-1), respectively. In pigweed, leaf and stem DU concentrations increased from 1.0 to 17.3 and from 1.0 to 4.7 mg kg(-1), respectively. Manure generally decreased or had no effect on DU uptake. The effect of citric acid and ammonium citrate on DU uptake by kochia, sunflower (Helianthus annuus L), and sweet corn (Zea mays L) was also studied. Ammonium citrate was just as effective in enhancing DU uptake as citric acid. This implies that the citrate ion is more important in DU uptake and translocation than the solubilization of DU through acidification. In both experiments, leaves had higher DU concentrations than stems. PMID:21166280

  9. Determination of citrulline in watermelon rind.

    PubMed

    Rimando, Agnes M; Perkins-Veazie, Penelope M

    2005-06-17

    Watermelon (Citrullus vulgaris Schrad.) is a natural and rich source of the non-essential amino acid citrulline. Citrulline is used in the nitric oxide system in humans and has potential antioxidant and vasodilatation roles. A method using gas chromatography-mass spectrometry (GC-MS) was developed to separate citrulline from glutamic acid, which co-elute when analyzed by high performance liquid chromatography. Watermelons were analyzed by GC-MS to determine the citrulline content among varieties, types, flesh colors, and tissues. Citrulline content ranged from 3.9 to 28.5 mg/g dry weight (dwt) and was similar between seeded and seedless types (16.6 and 20.3 mg/g dwt, respectively). Red flesh watermelons had slightly less citrulline than the yellow or orange flesh watermelons (7.4, 28.5 and 14.2 mg/g dwt, respectively). Rind contained more citrulline than flesh on a dry weight basis (24.7 and 16.7 mg/g dwt, respectively) but a little less on a fresh weight (fwt) basis (1.3 and 1.9 mg/g fwt, respectively). These results indicate that watermelon rind, an underutilized agricultural waste, offers a source of natural citrulline. PMID:16007998

  10. Evaluation of 5α-reductase inhibitory activity of certain herbs useful as antiandrogens.

    PubMed

    Nahata, A; Dixit, V K

    2014-08-01

    This study demonstrates 5α-reductase inhibitory activity of certain herbs useful in the management of androgenic disorders. Ganoderma lucidum (Curtis) P. Karst (GL), Urtica dioica Linn. (UD), Caesalpinia bonducella Fleming. (CB), Tribulus terrestris Linn. (TT), Pedalium murex Linn. (PM), Sphaeranthus indicus Linn. (SI), Cuscuta reflexa Roxb. (CR), Citrullus colocynthis Schrad. (CC), Benincasa hispida Cogn. (BH), Phyllanthus niruri Linn. (PN) and Echinops echinatus Linn. (EE) were included in the study. Petroleum ether, ethanol and aqueous extracts of these herbs were tested for their 5α-reductase inhibitory activity against the standard 5α-reductase inhibitor, finasteride. A biochemical method to determine the activity of 5α-reductase was used to evaluate the inhibition of different extracts to the enzyme. The optical density (OD) value of each sample was measured continuously with ultraviolet spectrophotometer for the reason that the substrate NADPH has a specific absorbance at 340 nm. As the enzyme 5α-reductase uses NADPH as a substrate, so in the presence of 5α-reductase inhibitor, the NADPH concentration will increase with the function of time. This method thus implicates the activity of 5α-reductase. The method proved to be extremely useful to screen the herbs for their 5α-reductase inhibitory potential. GL, UD, BH, SI and CR came out to be promising candidates for further exploring their antiandrogenic properties. PMID:23710567

  11. Sod-seeding to modify coastal bermuda grass on reclaimed lignite overburden in Texas

    SciTech Connect

    Skousen, J.G.

    1986-01-01

    This study was conducted to investigate the ability of nine low-maintenance species to establish and persist with Coastal bermuda grass (Cynodon dactylon (L.) Pers.) established on reclaimed lignite overburden; to evaluate the establishment and persistence of seventeen low-maintenance species seeded in overburden with no vegetation cover; and to examine seeding mixtures and rates for establishing low-maintenance species into three cover types (bermuda grass, oats, (Avena fatua L.) and no cover). Seventeen low-maintenance species established and persisted in overburden without fertilization during years of low precipitation. Several seeded grasses showed sufficient stand development in monoculture for erosion control. Most of the other seeded species were slower in establishment, yet persisted on the site and promoted multiple use of the reclaimed area. Recommended seeding rates were generally adequate for seedling establishment in oat, bermuda grass, and no vegetation cover types. Sod-seeding into bermuda grass resulted in higher seedling densities than those in oats and no cover because of stored moisture beneath the sod during bermuda grass dormancy. Using /sup 15/N-labelled fertilizer, Coastal bermuda grass demonstrated the ability to rapidly recovery applied N. Maximilian sunflower (Helianthus maximiliani Schrad.) was suppressed by Coastal bermuda grass in mixture at all fertilizer N rates.

  12. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    PubMed

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings. PMID:25789769

  13. Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings. PMID:25789769

  14. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus.

    PubMed

    Varsani, Arvind; Navas-Castillo, Jesús; Moriones, Enrique; Hernández-Zepeda, Cecilia; Idris, Ali; Brown, Judith K; Murilo Zerbini, F; Martin, Darren P

    2014-08-01

    The family Geminiviridae includes plant-infecting circular single-stranded DNA viruses that have geminate particle morphology. Members of this family infect both monocotyledonous and dicotyledonous plants and have a nearly global distribution. With the advent of new molecular tools and low-cost sequencing, there has been a significant increase in the discovery of new geminiviruses in various cultivated and non-cultivated plants. In this communication, we highlight the establishment of three new genera (Becurtovirus, Eragrovirus and Turncurtovirus) to accommodate various recently discovered geminiviruses that are highly divergent and, in some cases, have unique genome architectures. The genus Becurtovirus has two viral species, Beet curly top Iran virus (28 isolates; leafhopper vector Circulifer haematoceps) and Spinach curly top Arizona virus (1 isolate; unknown vector), whereas the genera Eragrovirus and Turncurtovirus each have a single assigned species: Eragrostis curvula streak virus (6 isolates; unknown vector) and Turnip curly top virus (20 isolates; leafhopper vector Circulifer haematoceps), respectively. Based on analysis of all of the genome sequences available in public databases for each of the three new genera, we provide guidelines and protocols for species and strain classification within these three new genera. PMID:24658781

  15. Germination characteristics of Andropogon virginicus L

    SciTech Connect

    Farmer, R.E. Jr.; Cunningham, M.; Brown, J.E.

    1980-12-01

    The natural occurrence of broomsedge (Andropogon virginicus L.) as a pioneer species on orphan strip mines with acid soils (pH 3.0-4.0) and other areas of low fertility suggests that it may have value in revegetation systems for disturbed sites. This study was conducted to delineate seed dormancy and germination characteristics important to developing seeding procedures. Freshly collected seed from east Tennessee germinated to about 50 percent under light at 20-30/sup 0/C, but did not germinate at lower temperatures. If stored in a low-humidity, low-temperature environment, seed developed a deeper dormancy, which was broken by moist chilling. This chilling first enabled germination at high temperatures and in light; as chilling time increased, seed developed a capability for germination in the dark and at low temperatures. In a preliminary seeding trial on an acid (pH 4.0) minesoil, broomsedge survived and grew better than commonly used species such as Festuca arundinacea and Eragrostis curvula.

  16. Coprophilous fungi of the horse.

    PubMed

    Pointelli, E; Santa-maria, M A; Caretta, G

    1981-05-01

    A total of 1267 microfungi, including 35 Myxomycetes, were recorded from the fecal samples of the 60 horses; of these 395 were found on 20 saddle-horse feces, 363 on 20 race-horses and 509 on 20 working horses. Eighty two species representing 53 genera were recorded; of these 7 were Zygomycetes, 18 Ascomycetes, 1 Basidiomycetes and 25 Fungi Imperfecti: 2 Myxomycetes. Common coprophilous fungi are in decreasing order Pilobolus kleinii, Saccobolus depauperatus, Mucor hiemalis, Lasiobolus ciliatus, Podospora curvula, Petriella guttulata, M. circinelloides, Coprinus radiatus, Dictyostelium mucoroides, Sordaria fimicola, C. miser, C. stercorariusm, Acremonium sp., Coprotus granuliformis, Graphium putredinis, Iodophanus carneus, Chaetomium murorum, Podospora communis, P. inaequalis, P. setosa, Saccobolus versicolor and Cladosporium cucumerinum. Species of Myrothecium verrucaria, Actinomucor elegans, Kernia nitida, Spiculostilbella dendritica and Mucor parvispora were found exclusively in working-horses feces. Badhamia sp., Anixiopsis stercoraria, Echinobotryum state of D. stemonitis, Geotrichum candidum and Oidiodendron sp. were found only in saddle-horses feces. Chlamidomyces palmarum, Philocopra sp. were found exclusively in race-horses feces. Notes on infrequent or interesting fungi include Thamnostylum piriforme, Phialocephala dimorphospora, Rhopalomyces elegans and Spiculostilbella dendritica. PMID:7242651

  17. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.

    PubMed

    Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara

    2010-04-01

    Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice. PMID:20435900

  18. Classifying increaser species as an indicator of different levels of rangeland degradation using WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Mansour, Khalid; Mutanga, Onisimo

    2012-01-01

    The development of new multispectral sensors with unique band settings is critical for mapping the spatial distribution of increaser vegetation species in disturbed rangelands. The objective of this study was to evaluate the potential of WorldView-2 imagery for spectral classification of four increaser species, namely Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus, and Aristida diffusa, in the Okhombe communal rangelands of South Africa. The 8-bands were extracted from the WorldView-2 image, and 24 of the most widely used vegetation indices in estimating grassland biophysical parameters were calculated. The random forest algorithm and forward variable method were applied to identify the optimal variables (WorldView-2 spectral bands, vegetation indices, and a combination of bands and indices) for classifying the species. The random forest algorithm could classify species with an overall accuracy of 82.6% (KHAT[an estimate of κ]=0.76) using six of the WorldView-2 spectral bands and an overall accuracy of 90% (KHAT=0.87) using a subset of vegetation indices (n=9). Three bands selected were located at the new WorldView-2 spectral regions of coastal blue, yellow, and the red-edge. There was no significant improvement in increaser species classification by using a combination of bands and indices. Overall, the study demonstrated the potential of the WorldView-2 data for improving increaser separability at species level.

  19. WASHOUT CONDITION OF CLUMP-TYPE GRASS CONSIDERING THE CHANGE OF THE REFERENCE VELOCITY AND SHEAR STRESS IN THE VEGETATED AREA

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuaki; Tanaka, Norio

    Threshold shear stress for removing grasses by flood is important but is not well understood quantitatively for clump-type vegetation, Eragrostis curvula. New model for calculating the velocities in the vegetated layer and the surface layer was proposed and the model was validated with flume experiments. The bed shear stress in vegetation was calculated by the momentum balance in the vegetated layer, and was applied for evaluating the wash-out conditions of the grass. The threshold value for removing the clump-type vegetation was evaluated as a rate of shear stress of d90, grain diameter at which 90% volume passed through the sieve, and the critical shear stress of d90, WOI. The critical WOI for removing the grass is 1.9-2.1, and 1.8-1.9 for one layer analysis, and two layer analysis, respectively. The critical shear stress inside the vegetated region does not decrease much because there is bare land between each clump-type grass, and the flow is accelerated in the region by the momentum exchange.

  20. Putative Aspergillus niger-induced oxalate nephrosis in sheep.

    PubMed

    Botha, C J; Truter, M; Bredell, T; Lange, L; Mülders, M S G

    2009-03-01

    A sheep farmer provided a maize-based brewer's grain (mieliemaroek) and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC). Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy. PMID:19653520

  1. Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution

    NASA Astrophysics Data System (ADS)

    Mansour, Khalid; Mutanga, Onisimo; Everson, Terry; Adam, Elhadi

    2012-06-01

    The development of techniques to estimate and map increaser grass species is critical for better understanding the condition of the rangeland and levels of rangeland degradation. This paper investigates whether canopy reflectance spectra, resampled to AISA Eagle resolution can discriminate among four increaser species representing different levels of rangeland degradation. Canopy spectral measurements were taken from the four indicator species: Hyparrhenia hirta (HH), Eragrostis curvula (EC), Sporobolus africanus (SA), and Aristida diffusa (AD). The random forest algorithm and a forward variable selection technique were used to identify optimal wavelengths for discriminating the species. Results revealed that the optimal number of wavelengths (n = 8) that yielded the lowest OOB error (11.36%) in discriminating among the four increaser species are located in 966.7, 877.6, 691.9, 718.7, 902.7, 854.8, 674.1 and 703 nm. These wavelengths are located in the visible, red-edge and near-infrared regions of the electromagnetic spectrum. The random forest algorithm can accurately discriminate species with an overall accuracy of 88.64% and a KHAT value of 0.85. The study demonstrated the possibility to upscale the method to airborne sensors such as AISA Eagle for mapping indicator species of rangeland degradation. A rotational grazing management plan should be considered as a way to create sustainable rangeland management in degraded areas.

  2. The carbon balance of European croplands: a Trans-European, cross-site, multi model simulation study

    NASA Astrophysics Data System (ADS)

    Wattenbach, Martin; Sus, Oliver; Vuichard, Nicolas; Lehuger, Simon; Leip, Adrian; Gottschalk, Pia; Smith, Pete

    2010-05-01

    Croplands cover approximately 45% of Europe and play a significant role in the overall carbon budget of the continent. However, the estimation of the regional carbon balance is still uncertain. Here, we present a multi-site model comparison for four cropland ecosystem models namely the DNDC, ORCHIDEE-STICS, CERES-EGC and SPA model. We compare the accuracy of the models in predicting net ecosystem exchange (NEE), gross primary production (GPP), ecosystem respiration (Reco) as well as actual evapo-transpiration (ETa) for winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.) and maize (Zea mays L.) derived from eddy covariance measurements on five sites of the CarboEurope IP network. The models are all able to simulate mean daily GPP. The simulation results for mean daily ETa and Reco are, however, less accurate. The resulting simulation of daily NEE is adequate beside some cases where models fail due to a lack in phase and amplitude alignment. ORCHIDEE-STICS and the SPA demonstrate the best performance, nevertheless, they are not able to simulate full crop rotations under consideration of multiple management. CERES-EGC and especially DNDC although exhibiting a lower level of model accuracy are able to simulate such conditions resulting in more accurate annual cumulative NEE.

  3. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    PubMed Central

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  4. Effects of Elevated CO2 and Nitrogen Deposition on Ecosystem Carbon Fluxes on the Sanjiang Plain Wetland in Northeast China

    PubMed Central

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng

    2013-01-01

    Background Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Methodology/Principal Findings Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. Conclusion/Significance In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition. PMID:23818943

  5. Mediterranean savanna of Acacia caven (Mol) is still a sink of CO2 in spite of severe hydrological drought conditions

    NASA Astrophysics Data System (ADS)

    Bravo-Martínez, F.; Meza, F. J.

    2012-12-01

    An eddy covariance tower was set up to monitor net ecosystem exchange (NEE) on a mediterranean shrubland of Acacia caven (Mol) in October 2010. This ecosystem (commonly referred as "espinal") is one of the most abundant land covers of Chile's central valley (2.000.000 ha). The last two years (2010-2011) were characterized by the occurrence of a severe drought (rainfall deficit 56%) and a small increase in temperature evaluated using a climatic change index (Peterson, 2005). We also detected a strong reduction in vegetation index during this period (evaluated using MODIS imagery). The historical analysis of the enhanced vegetation index (EVI) and leaf area index (LAI) showed that water status of the acacia savanna were at a minimum during this period (record of 14 years of data). The annual balance of NEE of 2011 was -54gC m-2 y-1, which means that the espinal is a sink of atmospheric CO2 notwithstanding the many stressors on photosynthesis. Monthly analysis of NEE shows the strong dependence of ecosystem fluxes on phenological state. Maximum rates of assimilation are a consequence of grassland activity, whereas secondary picks during the year (late spring and early autumn) are attributed to the semideciduos leaf of A. caven. Climatic conditions during the study season, confirm the tremendous plasticity of Acacia caven and its role as a colonizer of degraded sclerophyll forest because it adaptation to water and thermal stress.

  6. Plant functional types define magnitude of drought response in peatland CO2 exchange.

    PubMed

    Kuiper, Jan J; Mooij, Wolf M; Bragazza, Luca; Robroek, Bjorn J M

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during (i.e., resistance) and after (i.e., recovery) an experimental drought. The removal of PFTs caused a decrease of NEE, but the rate differed between microhabitats (i.e., hummocks and lawns) and the type of PFTs. Ericoid removal had a large effect on NEE in hummocks, while the graminoids played a major role in the lawns. The removal of PFTs did not affect the resistance or the recovery after the experimental drought. We argue that the response of Sphagnum mosses (the only PFT present in all treatments) to drought is dominant over that of coexisting PFTs. However, we observed that the moment in time when the system switched from C sink to C source during the drought was controlled by the vascular PFTs. In the light of climate change, the shifts in species composition or even the loss of certain PFTs are expected to strongly affect the future C dynamics in response to environmental stress. PMID:24649652

  7. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  8. The Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM): a parsimonious, satellite data-driven model of high-latitude CO2 exchange

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.

    2015-02-01

    We introduce the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), a remote-sensing based approach for generating accurate, high resolution (≥1 km2, three-hourly) estimates of net ecosystem CO2 exchange (NEE). PolarVPRM simulates NEE using polar-specific vegetation classes, and by representing high-latitude influences on NEE. We present a description, validation, and error analysis (first-order Taylor expansion) of PolarVPRM, followed by an examination of per-pixel trends (2001-2012) in model output for the North American terrestrial region north of 55° N. PolarVPRM was validated against eddy covariance observations from nine North American sites, of which three were used in model calibration. PolarVPRM performed well over all sites. Model intercomparisons indicated that PolarVPRM showed slightly better agreement with eddy covariance observations relative to existing models. Trend analysis (2001-2012) indicated that warming air temperatures and drought stress in forests increased growing season rates of respiration, and decreased rates of net carbon uptake by vegetation when air temperatures exceeded optimal temperatures for photosynthesis. Concurrent increases in growing season length at Arctic tundra sites allowed increases in photosynthetic uptake over time by tundra vegetation. PolarVPRM estimated that the North American high-latitude region changed from a carbon source (2001-2004) to sink (2005-2010) to source (2011-2012) in response to changing environmental conditions.

  9. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought.

    PubMed

    Roman, D T; Novick, K A; Brzostek, E R; Dragoni, D; Rahman, F; Phillips, R P

    2015-11-01

    Ongoing shifts in the species composition of Eastern US forests necessitate the development of frameworks to explore how species-specific water-use strategies influence ecosystem-scale carbon (C) cycling during drought. Here, we develop a diagnostic framework to classify plant drought-response strategies along a continuum of isohydric to anisohydric regulation of leaf water potential (Ψ(L)). The framework is applied to a 3-year record of weekly leaf-level gas exchange and Ψ measurements collected in the Morgan-Monroe State Forest (Indiana, USA), where continuous observations of the net ecosystem exchange of CO2 (NEE) have been ongoing since 1999. A severe drought that occurred in the middle of the study period reduced the absolute magnitude of NEE by 55%, though species-specific responses to drought conditions varied. Oak species were characterized by anisohydric regulation of Ψ(L) that promoted static gas exchange throughout the study period. In contrast, Ψ(L) of the other canopy dominant species was more isohydric, which limited gas exchange during the drought. Ecosystem-scale estimates of NEE and gross ecosystem productivity derived by upscaling the leaf-level data agreed well with tower-based observations, and highlight how the fraction of isohydric and anisohydric species in forests can mediate net ecosystem C balance. PMID:26130023

  10. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  11. Cryogenic disturbance and its impact on carbon fluxes in a subarctic heathland

    NASA Astrophysics Data System (ADS)

    Becher, Marina; Olofsson, Johan; Klaminder, Jonatan

    2015-11-01

    Differential frost heave, along with the associated cryogenic disturbance that accompanies it, is an almost universal feature of arctic landscapes that potentially influences the fate of the soil carbon (C) stored in arctic soils. In this study, we quantify how gross ecosystem photosynthesis (GEP), soil respiration (Re) and the resulting net ecosystem exchange (NEE) vary in a patterned ground system (non-sorted circles) at plot-scale and whole-patterned ground scales in response to cryogenic disturbances (differential heave and soil surface disruption). We found that: (i) all studied non-sorted circles (n = 15) acted as net CO2 sources (positive NEE); (ii) GEP showed a weaker decrease than Re in response to increased cryogenic disturbance/decreased humus cover, indicating that undisturbed humus-covered sites are currently the main source of atmospheric CO2 in the studied system. Interestingly, Re fluxes normalized to C pools indicated that C is currently respired more rapidly at sites exposed to cryogenic disturbances; hence, higher NEE fluxes at less disturbed sites are likely an effect of a more slowly degrading but larger total pool that was built up in the past. Our results highlight the complex effects of cryogenic processes on the C cycle at various time scales.

  12. Enhancement of the net CO2 release of a semiarid grassland in SE Spain by rain pulses

    NASA Astrophysics Data System (ADS)

    López-Ballesteros, Ana; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Oyonarte, Cecilio; Kowalski, Andrew S.; Pérez-Priego, Ã.`scar; Domingo, Francisco

    2016-01-01

    Occasional rain events occur over the dry season in semiarid ecosystems and cause immediate, large increases in the net CO2 efflux which gradually decrease over a few days following the rain event. In a semiarid grassland located in SE Spain, these precipitation pulses represent only 7% of dry season length but provoked approximately 40% of the carbon emitted during the dry seasons over 2009-2013. We performed a manipulation experiment to decompose the net ecosystem pulse response into its biological processes in order to quantify how much of a role photosynthesis and aboveground respiration play compared to soil respiration. Experimental results showed that while soil respiration was the dominant component of the net CO2 flux (net ecosystem CO2 exchange, NEE) over the irrigation day and the day after (80% of NEE), plant photosynthesis remained inactive until 2 days after the pulse, when it appeared to become as prevalent as soil respiration (approximately 40% of NEE). Additionally, aboveground respiration was generally secondary to soil respiration over the whole experiment. However, statistical results showed that aboveground carbon exchange was not significantly affected by the rain pulse, with soil respiration being the only component significantly affected by the rain pulse.

  13. Typhoons exert significant but differential impact on net carbon ecosystem exchange of subtropical mangrove ecosystems in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-06-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.

  14. Net ecosystem exchange, gross primary production, and ecosystem respiration of carbon dioxide during barley growing season in rice-barley paddy field of Korea

    NASA Astrophysics Data System (ADS)

    Jung, M.; Shim, K.; Min, S.; Kim, Y.; Kim, S.; So, K.

    2013-12-01

    This study was conducted to measure carbon dioxide exchange between customarily cultivated rice-barley double cropping paddy field and the atmosphere during barley growing season (October 2012 and June 2013) and to estimate carbon dioxide fluxes using agro-meteorological factors (temperature, net radiation etc. ) and barley biomass. The carbon dioxide fluxes were quantified by eddy covariance technique in paddy fields with rice-barley double cropping system, located at the Gimje flux site in the southwestern coast of Korea. The total values of net ecosystem carbon dioxide exchange (NEE), gross primary production (GPP), and ecosystem respiration (Re) were -100.6, 782.7, and 682.5 g C m-2 during barley growing season, respectively. The NEE was tended to keep between 0 and 5 g C m-2 d-1 from sowing date (Oct. 21, 2012) to winter rest stage (Dec. 3, 2012 to Feb. 22, 2013), and gradually decreased in tillering stage (Feb. 23, 2013 to May 5, 2013) with its maximum around heading date, and then started to increase in ripening stage (May 6, 2013 to Jun. 8, 2013). The soil temperature was strongly correlated with the Re (r2=0.86), while the net radiation showed the weak relationship with the GPP during the emergence, seedling, and winter rest stage. The aboveground biomass of barley was significantly correlated with the values of NEE (r2=0.79), GPP (r2=0.83), and Re (r2=0.77), respectively.

  15. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  16. Nanocrystalline diamond nanoelectrode arrays and ensembles.

    PubMed

    Hees, Jakob; Hoffmann, René; Kriele, Armin; Smirnov, Waldemar; Obloh, Harald; Glorer, Karlheinz; Raynor, Brian; Driad, Rachid; Yang, Nianjun; Williams, Oliver A; Nebel, Christoph E

    2011-04-26

    In this report, the fabrication of all-nanocrystalline diamond (NCD) nanoelectrode arrays (NEAs) by e-beam lithography as well as of all-diamond nanoelectrode ensembles (NEEs) using nanosphere lithography is presented. In this way, nanostructuring techniques are combined with the excellent properties of diamond that are desirable for electrochemical sensor devices. Arrays and ensembles of recessed disk electrodes with radii ranging from 150 to 250 nm and a spacing of 10 μm have been fabricated. Electrochemical impedance spectroscopy as well as cyclic voltammetry was conducted to characterize arrays and ensembles with respect to different diffusion regimes. One outstanding advantage of diamond as an electrode material is the stability of specific surface terminations influencing the electron transfer kinetics. On changing the termination from hydrogen- to oxygen-terminated diamond electrode surface, we observe a dependence of the electron transfer rate constant on the charge of the analyte molecule. Ru(NH(3))(6)(+2/+3) shows faster electron transfer on oxygen than on hydrogen-terminated surfaces, while the anion IrCl(6)(-2/-3) exhibits faster electron transfer on hydrogen-terminated surfaces correlating with the surface dipole layer. This effect cannot be observed on macroscopic planar diamond electrodes and emphasizes the sensitivity of the all-diamond NEAs and NEEs. Thus, the NEAs and NEEs in combination with the efficiency and suitability of the selective electrochemical surface termination offer a new versatile system for electrochemical sensing. PMID:21413786

  17. The effects of grazing and watering on ecosystem CO2 fluxes vary by community phenology.

    PubMed

    Han, Juanjuan; Li, Linghao; Chu, Housen; Miao, Yuan; Chen, Shiping; Chen, Jiquan

    2016-01-01

    Grazing profoundly influences vegetation and the subsequent carbon fluxes in various ecosystems. However, little effort has been made to explore the underlying mechanisms for phenological changes and their consequences on carbon fluxes at ecosystem level, especially under the coupled influences of human disturbances and climate change. Here, a manipulative experiment (2012-2013) was conducted to examine both the independent and interactive effects of grazing and watering on carbon fluxes across phenological phases in a desert steppe. Grazing advanced or delayed phenological timing, leading to a shortened green-up phase (GrP: 23.60 days) in 2013 and browning phase (BrP: 12.48 days) in 2012 from high grazing, and insignificant effects on the reproductive phase (ReP) in either year. High grazing significantly enhance carbon uptake, while light grazing reduce carbon uptake in ReP. Watering only delayed the browning time by 5.01 days in 2013, producing no significant effects on any phenophase. Watering promoted the net ecosystem exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) only in the GrP. When calculating the yearly differences in phenophases and the corresponding carbon fluxes, we found that an extended GrP greatly enhanced NEE, but a prolonged ReP distinctly reduced it. The extended GrP also significantly promote GEP. Increases in growing season length appeared promoting ER, regardless of any phenophase. Additionally, the shifts in NEE appeared dependent of the variations in leaf area index (LAI). PMID:26386629

  18. Evaluating the carbon balance estimate from an automated ground-level flux chamber system in artificial grass mesocosms.

    PubMed

    Heinemeyer, Andreas; Gornall, Jemma; Baxter, Robert; Huntley, Brian; Ineson, Phil

    2013-12-01

    Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (R eco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments. PMID:24455131

  19. Climate control of terrestrial carbon exchange across biomes and continents

    SciTech Connect

    Ricciuto, Daniel M; Gu, Lianhong

    2010-07-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

  20. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    PubMed

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. PMID:27000955

  1. Model-data assimilation of multiple phenological observations to constrain and predict leaf area index.

    PubMed

    Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C

    2015-03-01

    Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE. PMID:26263674

  2. Anther and pollen development in some species of Poaceae (Poales).

    PubMed

    Nakamura, A T; Longhi-Wagner, H M; Scatena, V L

    2010-05-01

    Anther and pollen development were studied in Olyra humilis Nees, Sucrea monophylla Soderstr, (Bambusoideae), Axonopus aureus P. Beauv., Paspalum polyphyllum Nees ex Trin. (Panicoideae), Eragrostis solida Nees, and Chloris elata Desv. (Chloridoideae). The objective of this study was to characterise, embryologically, these species of subfamilies which are considered basal, intermediate and derivate, respectively. The species are similar to each other and to other Poaceae. They present the following characters: tetrasporangiate anthers; monocotyledonous-type anther wall development, endothecium showing annular thickenings, secretory tapetum; successive microsporogenesis; isobilateral tetrads; spheroidal, tricellular, monoporate pollen grains with annulus and operculum. Nevertheless, the exine patterns of the species studied are distinct. Olyra humilis and Sucrea monophylla (Bambusoideae) show a granulose pattern, whereas in the other species, it is insular. In addition, Axonopus aureus and Paspalum polyphyllum (Panicoideae) have a compactly insular spinule pattern, while Chloris elata and Eragrostis solida (Chloridoideae) show a sparsely insular spinule pattern. The exine ornamentation may be considered an important feature at the infrafamiliar level. PMID:20552147

  3. Evaluating the carbon balance estimate from an automated ground-level flux chamber system in artificial grass mesocosms

    PubMed Central

    Heinemeyer, Andreas; Gornall, Jemma; Baxter, Robert; Huntley, Brian; Ineson, Phil

    2013-01-01

    Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (Reco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments. PMID:24455131

  4. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  5. Automated modeling of ecosystem CO2 fluxes based on closed chamber measurements: A standardized conceptual and practical approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Albiac Borraz, Elisa; Hagemann, Ulrike; Sommer, Michael; Augustin, Jürgen

    2015-04-01

    Closed chamber measurements are widely used for determining the CO2 exchange of small-scale or heterogeneous ecosystems. Among the chamber design and operational handling, the data processing procedure is a considerable source of uncertainty of obtained results. We developed a standardized automatic data processing algorithm, based on the language and statistical computing environment R© to (i) calculate measured CO2 flux rates, (ii) parameterize ecosystem respiration (Reco) and gross primary production (GPP) models, (iii) optionally compute an adaptive temperature model, (iv) model Reco, GPP and net ecosystem exchange (NEE), and (v) evaluate model uncertainty (calibration, validation and uncertainty prediction). The algorithm was tested for different manual and automatic chamber measurement systems (such as e.g. automated NEE-chambers and the LI-8100A soil CO2 Flux system) and ecosystems. Our study shows that even minor changes within the modelling approach may result in considerable differences of calculated flux rates, derived photosynthetic active radiation and temperature dependencies and subsequently modeled Reco, GPP and NEE balance of up to 25%. Thus, certain modeling implications will be given, since automated and standardized data processing procedures, based on clearly defined criteria, such as statistical parameters and thresholds are a prerequisite and highly desirable to guarantee the reproducibility, traceability of modelling results and encourage a better comparability between closed chamber based CO2 measurements.

  6. Within-Site Variation at a Boreal Peatland Fertilization Study

    NASA Astrophysics Data System (ADS)

    Neal, E. M.; Bubier, J. L.; Moore, T.

    2001-05-01

    Due to the importance of northern peatlands as a sink for atmospheric CO2, there is concern over the possible effects of increased nutrient input in such ecosystems. Changes in CO2 fluxes caused by nutrient inputs may result in peatlands becoming a net source of atmospheric CO2 due to increased rates of decomposition. Alternatively, such fertilization of nutrient limited environments may enhance current conditions to maintain peatlands as a net sink of CO2 by increasing rates of photosynthesis or inhibiting decomposition. However, such effects may only become apparent after an extended period of increased nutrient loading. Net Ecosystem Exchange (NEE) of atmospheric CO2 was measured over the course of the growing season (May-August 2000) at Mer Bleue, a raised, ombrotrophic bog in Ontario, Canada using a LI-COR 6200 infrared gas analyzer and climate-controlled chambers. Dominant plant communities were composed of Sphagnum species and ericaceous shrubs. The site was treated every three weeks with varying levels of Nitrogen (N) and Phosphorous (P). Treatments were based on the ecosystem's ambient nutrient load of approximately 0.26 g N/m2/year of NH4 and 0.40 g N/m2/year of NO3 due to wet atmospheric deposition. Collars were grouped into triplicates according to treatment levels: distilled water, PK (no N), 5 times ambient N, 5 times ambient N plus PK, 10 times ambient N plus PK, and 20 times ambient N plus PK. NEE ranged from -4.88 to 5.12 μ mol CO2/m2 in the control collars and from -7.99 to 7.66 μ mol CO2/m2 in the nutrient addition collars. Preliminary data analysis indicates that although there has been a slight response from the nutrient additions, subtle differences in micro topography at the fertilization site (which creates slight variation in water table and temperature) have had a stronger initial effect on NEE. When collars are compared according to treatment triplicates, the effects of water table and temperature have the strongest effect on NEE. In

  7. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Volkova, E.; Karataeva, T.; Novenko, E.

    2013-09-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2/H2O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere. NEE reached maximal values in June-July (-6.8 ± 4.2 μmol m-2 s-1). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO2 for the atmosphere in June-July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h-1) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July-August from -1.1 ± 1.1 mgC g-1 of dry weight (DW) per hour in the peripheral zone of the mire to -0.6 ± 0.2 mgC g-1 DW h-1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0.25 ± 0.10 mm h-1) and the herbaceous

  8. Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.; Martin, J.; Law, B. E.

    2012-12-01

    We sought to improve net ecosystem exchange (NEE) estimates for a tall, dense, mature Douglas-Fir forest in the Oregon Coast range located in moderately complex terrain and characterized by weak flows, directional shear, and limited turbulent mixing throughout the diurnal period. We used eddy covariance (EC) observations at two levels and concurrent biological measurements of carbon and water fluxes collected over a period of 6 years (2006-2011) to develop and test a conceptual framework with the goal of i) reducing uncertainty by retaining more measurements for the computation of annual NEE estimates, and ii) producing defendable and biologically meaningful NEE estimates by accounting for the missing sub-canopy respiration due to the weak turbulence. The framework assumes that the scalar exchange between vertical layers can be categorized into discrete canopy coupling regimes, and that advection leads to a systematic loss of scalar from the observational volume that can indirectly be estimated and accounted for as sub-canopy respiration flux when canopy layers are decoupled. The standard deviation of the vertical velocity variance was the most adequate proxy for turbulent mixing strength. It allowed for straight-forward estimation of thresholds used to delineate the exchange regimes and was more sensitive to directional shear and other mechanisms enhancing the mixing. Periods with a decoupled sub-canopy layer dominated and occupied 65 and 88 % of the day- and nighttime periods, respectively. Annual NEE derived from the new framework was estimated as 480 gC m-2 yr-1, which was reduced by 620 gC m-2 yr-1 compared to traditional estimates from single-level EC data filtered using a critical friction velocity. The reduction in NEE was caused by an enhanced ecosystem respiration (ER), while gross ecosystem productivity remained unchanged. Improved ER estimates agreed well with those from independent biological estimates including soil, stem, and foliage respiration

  9. The impact of extreme drought on the biofuel feedstock production

    NASA Astrophysics Data System (ADS)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  10. Contrasting effects of invasive insects and fire on ecosystem water use efficiency

    NASA Astrophysics Data System (ADS)

    Clark, K. L.; Skowronski, N. S.; Gallagher, M. R.; Renninger, H.; Schäfer, K. V. R.

    2014-12-01

    We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy moth (Lymantria dispar L.) or burned using prescribed fire. Before disturbance, half-hourly daytime NEE during full sunlight conditions, daily GEP, and daily WUEe during the summer months were greater at the oak-dominated stand compared to the mixed or pine-dominated stands. Both defoliation by gypsy moth and prescribed burning reduced stand leaf area and nitrogen mass in foliage. During complete defoliation in 2007 at the oak stand, NEE during full sunlight conditions and daily GEP during the summer averaged only 14 and 35% of pre-disturbance values. Midday NEE and daily GEP then averaged 58 and 85%, and 71 and 78% of pre-defoliation values 1 and 2 years following complete defoliation, respectively. Prescribed fires conducted in the dormant season at the mixed and pine-dominated stands reduced NEE during full sunlight conditions and daily GEP during the following summer to 57 and 68%, and 79 and 82% of pre-disturbance values, respectively. Daily GEP during the summer was a strong function of N mass in foliage at the oak and mixed stands, but a weaker function of N in foliage at the pine-dominated stand. Ecosystem WUEe during the summer at the oak and mixed stands during defoliation by gypsy moth averaged 1.6 and 1.1 g C kg H2O-1, representing 60 and 46% of pre-disturbance values. In contrast, prescribed fires at the mixed and pine-dominated stands had little effect on WUEe. Two years following complete defoliation by gypsy moth, WUEe during the summer averaged 2.1 g C kg H2O-1, 80% of pre-disturbance values. WUEe was correlated with canopy N content only at the oak-dominated stand. Overall, our results indicate that WUEe

  11. Isotopic partitioning of net ecosystem CO2 exchange reveals the importance of methane oxidation in a boreal peatland

    NASA Astrophysics Data System (ADS)

    Hasselquist, Niles; Peichl, Matthias; Öquist, Mats; Crill, Patrick; Nilsson, Mats

    2016-04-01

    Partitioning net ecosystem CO2 exchange (NEE) into its different flux components is crucial as it provides a mechanistic framework to better assess how the terrestrial carbon cycle may respond to projected environmental change. This is especially important for northern boreal peatlands, which store approximately one-quarter of the world's soil carbon and yet at the same time are projected to experience some of the greatest environmental changes in the future. Using an experimental setup with automated chambers for measuring NEE (transparent chambers), ecosystem respiration (Reco; opaque chambers) and heterotrophic respiration (Rh; opaque chambers on vegetation-free trenched plots) in combination with continuous measurements of δ13C using near-infrared, diode-laser-based cavity-ring down spectroscopy (Picarro G1101-i analyzer), we partitioned NEE of CO2 into gross primary productivity (GPP), ecosystem respiration (Reco), heterotrophic respiration (Rh) and autotrophic respiration (Ra) using two different approaches (i.e., chamber- and isotope-based methods) in a boreal peatland in northern Sweden (Degerö). Given that δ13C was continuously measured in each chamber, we were also able to further partition Rh into soil organic matter (SOM) mineralization by saprotrophic microbes and the oxidation of methane (CH4) by methanotrophic bacteria. During the ten day measurement period (in late July 2014), the average daily NEE flux at the mire was -0.6 g C m-2 d-1. Overall, the two partitioning approaches yielded similar estimates for the different NEE component fluxes. Average daily fluxes of Rh and Ra were similar in magnitude, yet these two flux components showed contrasting diurnal responses: Ra was greatest during the day whereas there was little diurnal variation in Rh. In general, average 13C signature of CO2 efflux from the Rh chambers (-41.1 ± 0.6 ‰) was between the 13C signature of SOM (-25.8 ± 0.6 ‰) and CH4 in pore water (-69.0 ± 0.8 ‰). Assuming that

  12. Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling

    NASA Astrophysics Data System (ADS)

    Jenerette, D.

    2011-12-01

    Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic

  13. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China

    NASA Astrophysics Data System (ADS)

    Jia, X.; Zha, T. S.; Wu, B.; Zhang, Y. Q.; Gong, J. N.; Qin, S. G.; Chen, G. P.; Qian, D.; Kellomäki, S.; Peltola, H.

    2014-09-01

    The carbon (C) cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration capacity of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE) over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1) quantify NEE and its components and to (2) examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP) of 456 g C m-2 yr-1 (with a 90% prediction interval of 449-463 g C m-2 yr-1) and an ecosystem respiration (Re) of 379 g C m-2 yr-1 (with a 90% prediction interval of 370-389 g C m-2 yr-1), resulting in a net C sink of 77 g C m-2 yr-1 (with a 90% prediction interval of 68-87 g C m-2 yr-1). The maximum daily NEE, GEP and Re were -4.7, 6.8 and 3.3 g C m-2 day-1, respectively. Both the maximum C assimilation rate (i.e., at the optimum light intensity) and the quantum yield varied over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water deficit exerted a major control over daytime NEE, and interacted with other stresses (e.g., heat and photoinhibition) in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10). At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1-2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme

  14. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    PubMed

    Tong, Xiaojuan; Li, Jun; Yu, Qiang; Lin, Zhonghui

    2014-01-01

    To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max) was 46.6 ± 4.0 µmol CO2 m(-2) s(-1) and initial light use efficiency (α) 0.059 ± 0.006 µmol µmol(-1) in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI), canopy conductance (g c) and air temperature (T a) but declined with increasing vapor pressure deficit (VPD) (P<0.001). The factors influencing P max were sorted as LAI, g c, T a and VPD. α was proportional to ln(LAI), g c, T a and VPD (P<0.001). The effects of LAI, g c and T a on α were larger than that of VPD. When T a>25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001), indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1) in March and May and 26 mm s(-1) in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01), implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales. PMID:24586800

  15. [Characteristics of CO₂ flux in an old growth mixed forest in Tianmu Mountain, Zhejiang, China].

    PubMed

    Niu, Xiao-dong; Jiang, Hong; Zhang, Jin-meng; Fang, Cheng-yuan; Chen, Xiao-feng; Sun, Heng

    2016-01-01

    The old-growth, multiple ages, multispecies natural forest has played an important role in terrestrial ecosystem dynamics model and the global carbon budget. However, carbon fluxes of old forests in subtropical regions are rarely reported in China. In the present study, the CO₂ flux of an old-growth subtropical evergreen and deciduous broad-leaved mixed forest was observed using eddy covariance technique in Tianmu Mountain of Zhejiang Province. Based on the data sets which were observed from July 2013 to June 2014, the variations of net ecosystem exchange (NEE), eco-system respiration (Re), and gross ecosystem exchange (GEE) were analyzed. The results showed that during the study period, the monthly NEE all had a negative value (acted as a carbon sink) except for December and February (acted as a carbon source). The average monthly NEE was -61.52 g C · m⁻², the monthly carbon sequestration showed a double-peak curve and the maximum carbon sink was -149.40 g C · m⁻², which occurred in June while the maximum carbon source was 23.45 g C · m⁻², which occurred in February. The maximum of monthly mean CO₂ flux occurred in June with a value of -0.98 mg · m⁻² · s⁻¹, while the minimum value occurred in December with a value of -0.35 mg · m⁻² · s⁻¹. The NEE at the time point of positive and negative conversion had typical seasonal characteristics. The yearly NEE, Re, and GEE were -738.18, 931.05 and -1669.23 g C · m⁻², respectively. Compared with other forest ecosystems located at the similar latitude, the carbon fixation of the old-growth forest was larger, likely due to its complicated structure within the canopy and the presence of young-growth regeneration and successional stands. This showed that other than in carbon neutral, old-growth forests of Tianmu Mountain in subtropical China had a strong capability in carbon sequestration. PMID:27228586

  16. Towards a consistent approach of measuring and modelling CO2 exchange with manual chambers

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Vaidya, Shrijana; Hoffmann, Mathias; Jurisch, Nicole; Günther, Anke; Gundlach, Laura; Hagemann, Ulrike; Elsgaard, Lars; Augustin, Jürgen

    2016-04-01

    Determining ecosystem CO2 exchange with the manual closed chamber method has been applied in the past for e.g. plant, soil or treatment on a wide range of terrestrial ecosystems. Its major limitation is the discontinuous data acquisation challenging any gap-filling procedures. In addition, both data acquisition and gap-filling of closed chamber data have been carried out in different ways in the past. The reliability and comparability of the derived results from different closed chamber studies has therefore remained unclear. Hence, this study compares two different approaches of obtaining fluxes of gross primary production (GPP) either via sunrise to noon or via gradually-shaded mid-day measurements of transparent chamber fluxes (i.e. net ecosystem exchange, NEE) and opaque chamber fluxes (i.e., ecosystem respiration, RECO) on a field experiment plot in NE Germany cropped with a lucerne-clover-grass mix. Additionally, we compare three approaches of pooling RECO data for consecutive modelling of annual balances of NEE, i.e. campaign-wise (single measurement day RECO models), seasonal-wise (one RECO model for the entire study period), and cluster-wise (two RECO models representing low-/high-vegetation-stage data) modelling. The annual NEE balances of the sunrise to noon measurements are insensitive towards differing RECO modelling approaches (-101 to -131 g C m‑2), whereas the choice of modelling annual NEE balances with the shaded mid-day measurements must be taken carefully (-200 to 425 g C m‑2). In addition, the campaign-wise RECO modelling approach is very sensitive to daily data pooling (sunrise vs. mid-day) and only advisable when the diurnal variability of CO2 fluxes and environmental parameters (i.e. photosynthetically active radiation, temperature) is sufficiently covered. The seasonal- and cluster-wise approaches lead to robust NEE balances with only little variation in terms of daily data collection. We therefore recommend sunrise to noon measurements

  17. Carbon Fluxes in a sub-arctic tundra undergoing permafrost degradation

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Webb, E.; Mauritz, M.; Schuur, E. A. G.

    2014-12-01

    As an effect of climate change, temperatures in high latitude regions are increasing faster than in the rest of the world and future projections indicate it will increase between 7°C and 8°C by the end of the 21st century. Permafrost soils store around 1700 Pg of Carbon (C), which is approximately the amount of C stored in terrestrial vegetation and in the atmosphere combined. Sustained warming induces permafrost thaw, leads to a thicker seasonal active layer, and creates subsided patches in the landscape. Carbon that was previously inaccessible to decomposition is thus exposed, increasing the likelihood of positive feedback of CO2 to the atmosphere. We measured C fluxes (Net ecosystem carbon flux, NEE, and Ecosystem respiration, Re) using the eddy covariance approach in a tundra landscape (Eight Mile Lake Watershed, Alaska) undergoing permafrost degradation from the beginning of the growing season in 2008 and throughout most winters until May 2014. This interval encompassed a range of climatic variability that included a deviation of ± 50% from the long term average in growing season precipitation. Active layer depth (thaw depth at the end of the growing season) and subsidence in the footprint were used as indicators of permafrost degradation. Results indicate that annual NEE ranged from a sink of 0.76 MgC ha-1 yr-1 to a source of 0.55 MgC ha-1 yr-1. NEE during the growing seasons fluctuated from 1.1 to 1.8 MgC ha-1 season-1 in net C uptake. Annual NEE was strongly affected by winter Re, which represented between 33% and 45% of the annual value regardless of of the large drop in both air and soil temperature. Parameters from the light response curve (optimum NEE, NEEopt and quantum yield, α) showed a seasonal and interannual variability and were different between the most and least degraded sites in the footprint, which affected the magnitude of the carbon cycle and may have implications for landscape C balance in sub-arctic tundra.

  18. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data

    SciTech Connect

    Fox, Andrew; Williams, Mathew; Richardson, Andrew D.; Cameron, David; Gove, Jeffrey H.; Quaife, Tristan; Ricciuto, Daniel M; Reichstein, Markus; Tomelleri, Enrico; Trudinger, Cathy; Van Wijk, Mark T.

    2009-10-01

    We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) ofCO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration,were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving>80% success rate and mean NEE confidence intervals <110 gCm-2 year-1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence

  19. Spatiotemporal Variability in Water-carbon Flux and Water Use Efficiency Over an Agro-Ecosystem in the Changwu Tableland of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Han, X.; Liu, W.; Ning, T.

    2015-12-01

    Study on the characteristics and coupling relationship of water and carbon fluxes in agro-ecosystem, will contribute to maintaining and improving agricultural productivity, and is also important for understanding the material circulation of terrestrial ecosystem. In this study, a 30 m-high tower was erected for mounting flux instruments in the Changwu Tableland of the Loess Plateau. Two sets of eddy covariance system on the tower representing for ecosystems with different spatial scales, one is the cropland ecosystem (2m height, the underlying is winter wheat mono-cropping cropland) and the other is agro-fruit ecosystem (30m height, including both cropland and apple orchard). Seasonal and interannual variations in evapotranspiration (ET), net ecosystem exchange (NEE) and ecosystem water use efficiency (WUE) for the two ecosystems were continuously measured from September 2004 to June 2010. Mean while, the relationship between actual ET and potential evapotranspiration (ET0) was discussed. The results showed that, 1) Seasonally, ET of the cropland ecosystem was bimodal, peaked in May (Jointing and heading stage of winter wheat) and August (summer fallow period), respectively. The trend of NEE was consistent with the growth period of winter wheat, and the minimum occurred between April and May, the maximum WUE value also appeared that time. Seasonal ET of the agro-fruit ecosystem showed unimodal trend, which peaked in July. The lowest NEE occurred in July. The seasonal variation of WUE was smaller than that of the cropland ecosystem, and it got the highest in May. 2) Both of the annual ET in the cropland and the agro-fruit ecosystem fluctuated in these years, and the annual average ET were 437.12 and 417.41 mm, respectively. Because of the underestimated of latent heat flux caused by the energy imclosure, the observed ET was less than the results of the water balance calculation. The trend in NEE was similar, and the annual average NEE were -325.88 and -440.74 gC/m2

  20. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby

  1. Modeling net ecosystem exchange of carbon dioxide in a beetle-attacked subalpine forest using a data-constrained ecosystem model

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Ryan, M. G.; Scott, H.; Pendall, E.

    2012-12-01

    The mountain pine and spruce bark beetles and associated blue-stain fungi have caused widespread mortality in the forests of the western U.S. during the past decade, impacting over 1.6 Mha in Northern Colorado and Southeast Wyoming alone. Both the beetles and fungi they carry block tree xylem and eventually cause mortality due to hydraulic failure. Previous studies of bark beetle mortality in Canadian forests have suggested a net loss of carbon following beetle attack. This study aimed to determine if forests in the southern Rocky Mountains showed a similar response. We simulated carbon fluxes over a time period of six years (2005-2010) at the Glacier Lakes Ecosystem Experiment sites (GLEES) Ameriflux site using the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. This time period included a beetle infestation during the last three years that resulted in mortality of 51% of the spruce trees that accounted for 90% of the spruce basal area. Model estimates of net ecosystem exchange of CO2 (NEE) were compared to eddy-covariance measurements before, during, and after beetle attack. Model predictions of NEE were generated two ways, 1) using the standard set of maintenance respiration coefficients, and 2) constraining modeled respiration using equations derived from field measurements of stem, leaf, and soil respiration at GLEES, and were compared to NEE observations before, during, and after the presence of bark beetles. Model changes included both simple modification of the exponential temperature response curve (Q10) and adding new equations based on both temperature and live tissue nitrogen content. Pre-beetle observed growing season mean NEE averaged -1.49 μmol C m-2 s-1 and simulation means ranged from -4.10 to 0.64 μmol C m-2 s-1. Changing the model's computation of maintenance respiration to incorporate site-specific temperature response (Q10) resulted in an over-prediction of nighttime NEE by up to 100%, but a 10-30% improvement during the day

  2. A preliminary evaluation of an O2/CO2 based eddy covariance theory at Missouri AmeriFlux site

    NASA Astrophysics Data System (ADS)

    Yan, B.; Gu, L.

    2013-12-01

    The eddy covariance (EC) technique has been widely used at flux sites on every continent, across most ecosystem types and climates to monitor exchanges of momentum, mass and energy between land surface and atmosphere. In an attempt to develop a self-consistent theory for the EC technique, Gu et al. (2012) reformulated the fundamental equations for EC by introducing the concept of constraining gas that has no net ecosystem sink/source. Gu (2013) expanded the theory of Gu et al. (2012) to include paired gases whose ecosystem exchange ratios are stable over an averaging period (e.g. 30 min) and therefore can be used to constrain EC flux measurements of any gases. He proposed that O2 and CO2 are an ideal pair of gases as their biological processes are coupled and their ecosystem exchange ratio (also known as oxidative ratio) is close to 1. Advantages of this new O2/CO2 based EC theory include: 1) avoidance of covariance loss in calculating dry air density induced by spatial separation of measuring instruments and use of multiple indirectly derived variables, 2) the minimum number of assumptions adopted for the derivation of the equation, and 3) avoidance of errors related to linearization of ideal gas law. In this study, we conducted a preliminary evaluation for the basic principle of Gu (2013) EC theory. We crosschecked net ecosystem exchange (NEE) estimations from different, independent methods by using CO2 and H2O as paired constraining gases. Using CO2 and H2O instead of CO2 and O2 as paired constraining gases is not ideal in the framework of Gu (2013); however, no fast response O2 analyzer is currently available. CO2 and H2O are both transported between the inside of plants and canopy air through stomata on leaves in the processes of photosynthesis and transpiration which are known to be closely coupled. However, this close coupling is contaminated by other ecosystem sinks/sources, e.g. respiration of plants and soil for CO2 and evaporation of intercepted and soil

  3. A comparison of coupled biogeophysical and biogeochemical dynamics across a precipitation gradient in Oregon using data assimilation

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoekli, R.; Thornton, P. E.; Thomas, C. K.; Hudiburg, T. W.; Martin, J.

    2010-12-01

    We present results from our coupled biophysical - biochemical model data fusion (MDF) analysis across a climatic gradient in Oregon, USA, using data from a coast-range Douglas-fir (US-Fir; 2006-2008) and a semi-arid ponderosa pine (US-Me2; 2002-2008) AmeriFlux site. Our MDF scheme couples the Ensemble Kalman Filter (EnKF) with the National Center for Atmospheric Research (NCAR) Community Land Model with Carbon-Nitrogen coupling (CLM-CN, version 3.5). Assimilated data includes continuous eddy covariance measurements of forest-atmosphere CO2 (NEE, net ecosystem exchange) and water vapor fluxes (λE, latent heat flux), chamber-based soil respiratory flux, soil moisture and temperature, snow depth (US-Me2), MODIS-derived 8 day LAI, and carbon and nitrogen pools. We quantify the ecosystem carbon and nitrogen budgets, partition NEE and λE fluxes, and thus increase confidence in multi-scale controls on CO2 and water vapor exchange. The MDF did a better job predicting NEE than λE at both sites (r2 = 0.86 for NEE at both sites; λE r2 = 0.65 and 0.63 at the US-ME2 and US-Fir sites, respectively) partly due to a weighting scheme we prescribed for NEE. The distribution of carbon and nitrogen differed significantly between sites, with total ecosystem carbon (vegetation, detritus, soil) of the US-Fir site being about 1.4 times higher than the US-Me2 site (35 kg C m-2 vs. 25 kg C m-2). Mean NEE over overlapping water years ‘07-‘08 was -495 gC m-2 at the US-Me2 site as opposed to -809 gC m-2 at the US-Fir site, nearly a two-fold difference in C uptake across this precipitation gradient. Average GPP and ecosystem respiration (Re) over these two water years were both ~1.7x greater at the US-Fir site, with 1712 gC m^-2 and 1217 gC m-2, respectively, at the US-Me2 site vs. 2841 gC m-2 and 2032 gC m-2 at the US-Fir. Autotrophic respiration contributed 79% and 72% to the Re flux at the US-Me2 and US-Fir sites, respectively, with total soil respiration contributing 53% and 58% to

  4. Modelling Temporal Variability in the Carbon Balance of a Spruce/Moss Boreal Forest

    NASA Technical Reports Server (NTRS)

    Frolking, S.; Goulden, M. L.; Wofsy, S. C.; Fan, S.-M.; Sutton, D. J.; Munger, J. W.; Bazzaz, A. M.; Daube, B. C.; Crill, P. M.; Aber, J. D.; Band, L. E.; Wang, X.; Savages, K.; Moore, T.; Harriss, R. C.

    1996-01-01

    A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m

  5. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  6. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: a review of folkloric practice vs. evidence-based pharmacology.

    PubMed

    Akour, Amal; Kasabri, Violet; Afifi, Fatma U; Bulatova, Nailya

    2016-09-01

    Context National statistical reports in Jordan indicate a decrease in the total fertility rate along with a parallel increase in contraceptive use. The folkloric use of medicinal herbs in gynecological disorders has been growing in Jordan, despite of deficient reports on the evidence-based safety and efficacy of these practices. Objective The aim of this comprehensive article is to review medicinal plants with claimed ethnonpharmacological usage in various gynecological and pregnancy-related issues in Jordan, and to assess their evidence-based pharmacological studies as well as their phytochemistry. Methods The published literature was surveyed using Google Scholar entering the terms "ethnopharmacology AND Jordan AND infertility AND gynecology OR gestation". We included ethnopharmacological surveys in Jordan with available full-text. Results Twelve articles were reviewed. Plant species which are commonly used for female gynecological issues such as Artemisia monosperma Del. and A. herba-alba Asso. (Asteraceae) have been found to exert an antifertility effect. Ricinus communis L. (Euphorbiaceae) and Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) had antifertility effects in male rats, but Nigella sativa oil L. (Ranunculaceae) and Cinnamon zeylanicum J. Presl (Lauraceae) were found to enhance it. Conclusion Using plants for gynecological disorders is a common practice in Jordan. Many of them, whether utilised for gynecological or non-gynecological conditions equally, were found to have detrimental effects on female or male fertility. Thus, couples planning pregnancy should be discouraged from the consumption of these herbs. Further local studies are warranted to confirm the appreciable beneficial pharmacological effects and safety of these plants. PMID:26911517

  7. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  8. Consequences and feedbacks on CO2 fluxes of climate change impacts on alpine vegetation

    NASA Astrophysics Data System (ADS)

    Cannone, N.; Guglielmin, M.

    2009-04-01

    The vegetation in a high alpine site of the European Alps experienced changes in area between 1953 and 2003 as a result of climate change (Cannone et al. 2007). Shrubs showed rapid expansion rates of 5.6% per decade at altitudes between 2400 m and 2500 m. Above 2500 m, vegetation coverage exhibited unexpected patterns of regression associated with increased precipitation and permafrost degradation. The warming of air temperature induced a cascade effect, with changes in the all ecological series (from the shrubland to the nival snowbed vegetation), with the arrival of the alpine shrubland and upward displacement of the alpine grassland (especially between 2230 and 2500 m). During the growing season 2008 (since the late-spring snowmelt to the start of the continuous snow cover in fall) we analyzed and measured the CO2 fluxes associated to the vegetation types exhibiting the highest changes since 1953 until today. In particular, we monitored two different ecological types of shrubland vegetations (the chionophilous alpine shrubs dominated by Rhododendron ferrugineum and the wind-swept community of dwarf shrubs dominated by Loiseleuria procumbens), the climax alpine grassland (dominated by Carex curvula), the pioneer discontinuous alpine vegetation, the snowbed vegetation (dominated by Salix herbacea) and the barren ground. CO2 fluxes (i.e. net ecosystem exchange, ecosystem photosynthesis and ecosystem respiration), biomass, soil C and N were measured for all these vegetation types. Implications of the changes occurred to the CO2 fluxes above 2200 m a.s.l. in response to the areal changes of spatial distribution of the investigated vegetation types and their potential feedbacks are discussed. Nicoletta Cannone, Sergio Sgorbati, and Mauro Guglielmin 2007. Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 2007; 5(7): 360-364

  9. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    SciTech Connect

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-08-07

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs{sup +} (and K{sup +}) using electrophysiological techniques. Although the {sup 137}Cs soil inventory ranged between 328-730 Bq m{sup -2} in this region, no {sup 137}Cs activity was detected in these plants. However, all the species, submitted previously to K{sup +} starvation, showed the uptake of both Cs{sup +} and K{sup +} when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K{sub M} values were smaller for K{sup +} than for Cs{sup +}, indicating a higher affinity for the first cation. The presence of increasing K{sup +} concentrations in the assay medium inhibited Cs{sup +} uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs{sup +} is smaller than K{sup +} concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  10. Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)

    PubMed Central

    Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto

    2008-01-01

    Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736

  11. Restoration of drastically eroded land using coal fly ash and poultry biosolid.

    PubMed

    Punshon, Tracy; Adriano, Domy C; Weber, John T

    2002-09-16

    A 3-year field study was conducted at a 12 ha soil-borrow area adjacent to the Columbia Metropolitan Airport, South Carolina to investigate the restorative effects of co-application of coal fly ash (FA) and a poultry biosolid (PB). FA was applied at 0, 22, 280, 560 and 1120 Mg (tonne) ha(-1), and PB at 5 and 10 Mg ha(-1). The area was seeded with erosion-control species Atlantic Coastal panic grass (Panicum amarum var amarum L.), sericea (Lespedeza cuneata var. appalow [Dumont] G. Don.) and weeping love grass (Eragrostis curvula Wolf.). Plant biomass and elemental composition were analyzed in sequential harvests. Soil and groundwater quality characteristics including pH, EC and elemental composition were also monitored throughout the study. In addition, the effect of amendments on the water holding capacity and bulk density of the soil was investigated. Amendment addition significantly increased plant biomass production by a maximum of 26% using 1120 Mg ha(-1) FA and 10 Mg ha(-1) PB. Application of the highest rate of FA significantly increased the plant tissue concentrations of Mn, As, Se and B. Soil pH was initially increased from 4.6 to 6.1 by amendments. Soil salinity was increased in the initial year only. Amended soils had higher concentrations of Ca, Mg, P and K, higher organic matter content and water holding capacity than unamended soil. Concentrations of plant-essential trace elements (B, Cu and Zn) that were marginally deficient in the unamended eroded soil increased to within typical soil concentrations following amendment with FA and PB. Groundwater quality was unaffected throughout the study. The co-application of FA and PB successfully promoted the revegetation of the eroded borrow area with no apparent adverse environmental side effects. PMID:12398338

  12. Perennial species for optimum production of herbaceous biomass in the Piedmont (Management study, 1987--1991). Final report

    SciTech Connect

    Parrish, D.J.; Wolf, D.D.; Daniels, W.L.

    1993-04-01

    The authors have investigated cutting and N management strategies for two biofuel feedstock candidate species -- switchgrass (Panicum virgatum) and weeping lovegrass (Eragrostis curvula). Each was no-till planted in 1987 at three sites underlain by Davidson or Cecil soils. Three N levels (0, 50, or 100 kg/ha) were applied, and the plots fertilized at each level were harvested either twice (early-September and early-November) or only in early-November. The results with lovegrass suggest 50 kg N/ha is nearly optimal and that two cuttings provide more biomass than one. For switchgrass, when averaged across sites and years, 50 kg N/ha produced a slight yield advantage over no added N, but 50 kg was not different from 100 kg. In 1989 and 1990, more biomass was available in early-September harvests (9.6 Mg/ha) than in early-November (8.3 Mg/ha). Apparently the plants translocated significant portions of their biomass below ground during the last few weeks of the season. In 1991, we harvested only in early-November. Plots that had been cut in early-September in the previous three years had lower yields (7.6 Mg/ha) than those that had been cut only in early-November (9.4 Mg/ha). The delayed cutting permitted more growth on a sustained basis -- presumably because of conservation of translocatable materials. This poses an interesting dilemma for the producer of biomass. In additional studies, the authors found no advantage in double-cropping rye (Secale cereale) with switchgrass; at low input levels, rye yields were low, and rye lowered switchgrass yields. Other studies showed double-cropping with winter-annual legumes such as crimson clover (Trifolium incarnatum) may have potential. The timing of herbicide treatment of the legume is critical.

  13. Perennial species for optimum production of herbaceous biomass in the Piedmont (Management study, 1987--1991)

    SciTech Connect

    Parrish, D.J.; Wolf, D.D.; Daniels, W.L. . Dept. of Crop and Soil Environmental Sciences)

    1993-04-01

    The authors have investigated cutting and N management strategies for two biofuel feedstock candidate species -- switchgrass (Panicum virgatum) and weeping lovegrass (Eragrostis curvula). Each was no-till planted in 1987 at three sites underlain by Davidson or Cecil soils. Three N levels (0, 50, or 100 kg/ha) were applied, and the plots fertilized at each level were harvested either twice (early-September and early-November) or only in early-November. The results with lovegrass suggest 50 kg N/ha is nearly optimal and that two cuttings provide more biomass than one. For switchgrass, when averaged across sites and years, 50 kg N/ha produced a slight yield advantage over no added N, but 50 kg was not different from 100 kg. In 1989 and 1990, more biomass was available in early-September harvests (9.6 Mg/ha) than in early-November (8.3 Mg/ha). Apparently the plants translocated significant portions of their biomass below ground during the last few weeks of the season. In 1991, we harvested only in early-November. Plots that had been cut in early-September in the previous three years had lower yields (7.6 Mg/ha) than those that had been cut only in early-November (9.4 Mg/ha). The delayed cutting permitted more growth on a sustained basis -- presumably because of conservation of translocatable materials. This poses an interesting dilemma for the producer of biomass. In additional studies, the authors found no advantage in double-cropping rye (Secale cereale) with switchgrass; at low input levels, rye yields were low, and rye lowered switchgrass yields. Other studies showed double-cropping with winter-annual legumes such as crimson clover (Trifolium incarnatum) may have potential. The timing of herbicide treatment of the legume is critical.

  14. A Comparison of Conservation Reserve Program Habitat Plantings with Respect to Arthropod Prey for Grassland Birds

    USGS Publications Warehouse

    McIntyre, N.E.; Thompson, Thomas R.

    2003-01-01

    The Conservation Reserve Program (CRP) was designed to reduce soil erosion and curb agricultural overproduction by converting highly erodible agricultural land to various forms of perennial habitat. It has had an incidental benefit of providing habitat for wildlife and has been beneficial in reversing population declines of several grassland bird species. However, the mechanisms behind these reversals remain unknown. One such mechanism may be differences in food availability on CRP vs. non-CRP land or between different types of CRP. The influence of CRP habitat type on the abundance of arthropod prey used by grassland birds has not been previously explored. We compared the abundance and diversity of arthropods among four CRP habitat types in Texas [replicated plots of exotic lovegrass (Eragrostis curvula), Old World bluestem (Bothriochloa ischaemum), mixed native grasses with buffalograss (Buchloe?? dactyloides) and mixed native grasses without buffalograss] and native shortgrass prairie. Attention was focused on adult and juvenile spiders (Order Araneae), beetles (Coleoptera), orthopterans (Orthroptera: grasshoppers and crickets) and lepidopterans (Lepidoptera: butterflies and moths), as these taxa are the primary prey items of grassland birds during the breeding season. Arthropod diversity and abundance were higher on indigenous prairie compared to CRP, reflecting differences in vegetative diversity and structure, but there were no differences in arthropod richness or abundance among CRP types. These results indicate that, although CRP is not equivalent to native prairie in terms of vegetation or arthropod diversity, CRP lands do support arthropod prey for grassland birds. More direct assays of the survivorship and fitness of birds on CRP compared to native shortgrass prairie are clearly warranted.

  15. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    NASA Astrophysics Data System (ADS)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  16. Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea.

    PubMed

    Schneider, D R S; Saraiva, A M; Azzoni, A R; Miranda, H R C A N; de Toledo, M A S; Pelloso, A C; Souza, A P

    2010-11-01

    The rice blast disease caused by the ascomycete Magnaporthe grisea continues to cause a tremendous impact in rice (Oryza sativa) cultures around the world. Elucidating the molecular basis of the fungus interactions with its host might help increase the general understanding of the pathogen-host relationship. At the moment of invasion, the fungus secretes effectors that modify host defenses and cellular processes as they successively invade living rice cells. PWL2, an effector protein, is a known AVR (avirulence) gene product. The PWL2 gene prevents the fungus from infecting weeping lovegrass (Eragrostis curvula). In this study, we identified a PWL2 allele gene (which we termed PWL2D) in a strain of M. grisea. The sequence of PWL2D has only two bases different from that of PWL2, producing alterations in residue 90 and residue 142. However, the alteration of residue 90 (from D(90) to N(90)) is critical to gene function. Here, we cloned the gene PWL2D in a pET System vector, expressed the gene product in Escherichia coli and evaluated by spectroscopic techniques some aspects of the PWL2D structure. While TRX-tagged PWL2D is prone to aggregation, the solubility of PWL2D is improved when it is overexpressed without its original signal peptide. Expression and purification procedures for these constructs are described. Finally, we found out that the protein seems to be an intrinsically disordered protein. Results from these studies will facilitate structural analysis of PWL2D and might contribute to understanding the gene's function and of fungal/plant interactions. PMID:20438845

  17. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Barr, J. G.; Botkin, D. B.; Graham, S. L.

    2014-11-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for one year. Links between water and C cycles are examined at these three sites, and methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake (retained in the soil and biomass or transported laterally via overland flow) from the atmosphere monthly and annually. Net ecosystem exchange (NEE) of carbon dioxide (CO2) (difference between photosynthesis and respiration, with negative values representing net ecosystem uptake) was greatest at the Cypress Swamp (-1000 g C m-2 year-1), moderate at the Pine Upland (-900 g C m-2 year-1), and least at the Dwarf Cypress (-500 g C m-2 year-1). Methane emission was a negligible part of the C (12 g C m-2 year-1) budget when compared to NEE. However, methane (CH4) production was considerable in terms of global warming potential, as about 20 g CH4 emitted per m2 year was equivalent to about 500 g CO2 emitted per m2 year}. Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and water availability from rainfall. We also note that changes in the satellite-derived enhanced-vegetation index (EVI) served as a useful surrogate for changes in net and gross atmospheric-ecosystem C exchange at these forested wetland sites.

  18. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  19. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  20. Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Peylin, P.; MacBean, N.; Rayner, P. J.; Delage, F.; Chevallier, F.; Weiss, M.; Demarty, J.; Santaren, D.; Baret, F.; Berveiller, D.; Dufrêne, E.; Prunet, P.

    2015-09-01

    We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically active radiation (FAPAR) relative to eddy covariance flux measurements for the optimization of parameters of the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau (deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour l'Observation de la Terre)) and medium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions. We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a degradation of the model-data agreement with respect to NEE at the two sites. It is caused by the change in leaf area required to fit the magnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however, has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems, which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads to a model-data improvement across all variables similar to when each data stream is used independently, corresponding, however, to different and likely improved parameter values.

  1. Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.

    PubMed

    Xu, Xia; Shi, Zheng; Chen, Xuecheng; Lin, Yang; Niu, Shuli; Jiang, Lifen; Luo, Ruiseng; Luo, Yiqi

    2016-05-01

    Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed-grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period. PMID:26668117

  2. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2016-03-01

    Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  3. Nanoelectrochemical Immunosensors for Protein Detection

    NASA Astrophysics Data System (ADS)

    Carpentiero, Alessandro; de Leo, Manuela; Garcia Romero, Ivan; Pozzi Mucelli, Stefano; Reuther, Freimut; Stanta, Giorgio; Tormen, Massimo; Ugo, Paolo; Zamuner, Martina

    Nanoelectrochemical immunosensors fabricated by templated electrodeposition of gold nanoelectrodes inside the pores of polycarbonate (PC) track-etched membranes, followed by the immobilization of the biorecognition elements on the surrounding PC, have proven high sensitivity and specificity for protein detection. The signal transduction scheme involves a suitable redox mediator added to the sample solution to shuttle electrons from the gold nanoelectrodes to the biorecognition layer, both elements being in strict spatial proximity. Highly improved signal-to-background current ratio, which are peculiar of NEEs with respect to other electrochemical transducers, can be exploited in this way. Two detection schemes were tested: one based on the direct immobilization of the target protein on the PC of the NEE (approach A) and the other based on the immobilisation on PC of an antibody to capture the target protein (approach B). The biorecognition process was completed by adding a primary antibody and a secondary antibody with horse radish peroxidase (HRP) as enzyme label; methylene blue was the redox mediator added to the electrolyte solution. Typical target analytes were single chain fragment variable proteins, for approach A, and trastuzumab (also known as Herceptin®), for approach B. NEE-based capture sensors were tested successfully to detect small amounts of the receptor protein HER2 in biological samples. Finally, motivated by the target of a better control of the geometrical characteristics of ensembles of nanoelectrodes (size, density, geometrical arrangement, and degree of recession), and by the positive results obtained with track-etch membranes of PC from the standpoint of protein immobilization, we demonstrated the fabrication of nanobiosensors by patterning ordered arrays of nanoelectrodes (NEAs) by electron beam lithography (EBL) on polycarbonate. EBL results perfectly suitable for the top-down fabrication of arrays of nanobiosensors on thin PC films

  4. Simulating Climate, Fire, and Management Influences on Forest Carbon Dynamics in Single- and Multi-Species Forests of the Southwestern and Southeastern US

    NASA Astrophysics Data System (ADS)

    Hurteau, M. D.

    2014-12-01

    The interaction of climate, disturbance, and management on forest structure and composition can alter carbon dynamics. Understanding how these factors influence forest carbon dynamics individually and in combination is necessary for making forest projections under altered climatic conditions. Model and emission scenario uncertainty in climate projections presents one challenge. When simulating disturbance, such as fire, projected climate influences both fire behavior and post-wildfire regeneration. The outcome of management actions implemented to alter forest conditions can be influenced by both climate and disturbance. Simulation results in both single- and multi-species forests occupying different future climate space indicate the importance of between climate model variation and variation between emission scenarios. The variation in projected biomass as a function of climate model input is as much as 40%. Response to emission scenario varies as a function of climate space, with increased late-century divergence in net ecosystem exchange (NEE) and biomass. When fire is simulated, climate model influence on biomass ranged from 0-27 Mg ha-1, while the effect on NEE ranged from -279 to 238 g m-2. Management implemented to reduce fire risk or provide wildlife habitat influences near- and long-term carbon dynamics as a function of projected climate, with the difference between no management and management for fire risk yielding a range in biomass of 0.6 to 10.78 Mg ha-1 and relatively little change in NEE (-8 to 21 g m-2). Given the range of results, including a suite of models and emission scenarios allow for bracketing the range of future forest conditions. However, the mismatch in scales between climate projections and the microclimatic influences on regeneration and the influence of projected climate on wildfire frequency and type add sources of uncertainty to these projections that require additional investigation.

  5. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species

    PubMed Central

    Breza, Lauren C; Souza, Lara; Sanders, Nathan J; Classen, Aimée T

    2012-01-01

    Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO2 exchange (GEE) and net ecosystem CO2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations. PMID:22833791

  6. Multi-Year Estimates of Regional Alaskan Net CO2 Exchange: Constraining a Remote-Sensing Based Model with Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2014-12-01

    The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.

  7. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-07-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of CO2 exchange from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of the 10 years, and average yearly net ecosystem exchange of carbon (NEE) for the 10 years was -25.00 ± 12.70 g C m-2yr-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it should not be concluded that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found that are "hidden" underground.

  8. On the relationship between ecosystem-scale hyperspectral reflectance and CO2 exchange in European mountain grasslands

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Vescovo, L.; Hammerle, A.; Gianelle, D.; Papale, D.; Wohlfahrt, G.

    2014-07-01

    In this paper we explore the use of hyperspectral reflectance measurements and vegetation indices (VIs) derived therefrom in estimating carbon dioxide (CO2) fluxes (net ecosystem exchange - NEE; gross primary production - GPP), and some key ecophysiological variables related to NEE and GPP (light use efficiency - ɛ; initial quantum yield - α; and GPP at saturating light - GPPmax) for grasslands. Hyperspectral reflectance data (400-1000 nm), CO2 fluxes and biophysical parameters were measured at three grassland sites located in European mountain regions. The relationships between CO2 fluxes, ecophysiological variables and VIs derived using all two-band combinations of wavelengths available from the whole hyperspectral data space were analysed. We found that hyperspectral VIs generally explained a large fraction of the variability in the investigated dependent variables and that they generally exhibited more skill in estimating midday and daily average GPP and NEE, as well as GPPmax, than α and ɛ. Relationships between VIs and CO2 fluxes and ecophysiological parameters were site-specific, likely due to differences in soils, vegetation parameters and environmental conditions. Chlorophyll and water content related VIs (e.g. CI, NPCI, WI), reflecting seasonal changes in biophysical parameters controlling the photosynthesis process, explained the largest fraction of variability in most of the dependent variables. A limitation of the hyperspectral sensors is that their cost is still high and the use laborious. At the eddy covariance with a limited budget and without technical support, we suggest to use at least dual or four channels low cost sensors in the the following spectral regions: 400-420 nm; 500-530 nm; 750-770 nm; 780-800 nm and 880-900 nm. In addition, our findings have major implications for up-scaling terrestrial CO2 fluxes to larger regions and for remote and proximal sensing sampling and analysis strategies and call for more cross-site synthesis studies

  9. Summer drought leads to reduced net CO2 uptake and CH4 fluxes in a New Zealand peatland

    NASA Astrophysics Data System (ADS)

    Goodrich, J. P.; Campbell, D.; Schipper, L. A.; Clearwater, M.

    2013-12-01

    Global climate change is likely to influence the frequency and severity of drought events in many regions. This has implications for changing carbon (C) storage in peatland ecosystems, which provide an important global sink for atmospheric C. However, the relative impacts on ecosystem respiration (ER), gross primary productivity (GPP), and CH4 efflux are not well understood and may alter the C balance differently depending on peatland type, vegetation, and timing of drought. We measured CO2 and CH4 fluxes using eddy covariance in a New Zealand peatland during two contrasting years capturing the impact of an historically extreme drought on these two major components of the net ecosystem C balance. Kopuatai bog is a 96 km2 ombrotrophic raised bog dominated by the endemic peat-forming rush species, Empodisma robustum. The drought impacted the growing season period from January to May, 2013. Net ecosystem exchange of CO2 (NEE) during the drought was approximately half that of the previous relatively wet summer. From January 1 to May 1, cumulative NEE was -133.3 gC m-2 in 2012 and -66.7 gC m-2 in 2013. Increases in ER during the drought were responsible for up to 88% of the difference in NEE, while differences in GPP were comparatively small. For April, mean daily CH4 fluxes during the drought (25 mgCH4 m-2 day-1) reduced to approximately one third of the mean flux measured in April 2012 (80 mgCH4 m-2 day-1). CH4 fluxes remained low for several months following water table recharge, suggesting a substantial lag in the recovery of the methanogenic population. Despite the magnitude of respiration enhancement, the relatively consistent GPP and reduced CH4 flux led to net storage of C during drought, albeit significantly smaller than the previous wet year.

  10. Linking Rainfall Variability and Carbon Cycling in a Green Roof Ecosystem

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Warren, R. J., II; Ivancic, T. A.

    2015-12-01

    Whereas green roof hydrology is well-studied, these systems present a novel opportunity to examine plant-mediated linkages between rainfall and carbon cycling. For example, green roofs experience dramatic fluctuations in soil moisture because they have limited soil water holding capacity and high rates of evaporation. Stonecrop (Sedum spp.) is widely planted in green roofs and its traits reflect an overall strategy of water conservation. In addition to succulent leaves and a slow growth rate, several stonecrop species possess inducible CAM photosynthesis. We made continuous measurements of ecosystem CO2 exchange, soil temperature (T), and volumetric soil moisture (θ) using a chamber-based automated monitoring system installed on a 3-year old green roof located in Buffalo, New York. Concurrent measurements of net ecosystem CO2 exchange (NEE) and ecosystem respiration (Re) allowed us to estimate gross ecosystem CO2 exchange (GEE). We predicted that CAM photosynthesis by stonecrop would be induced by high T and low θ and would manifest at the ecosystem scale by a reductions in both reduced midday CO2 uptake associated with stomatal closure and nighttime net CO2 efflux as CAM-driven assimilation offset respiratory losses. Not surprisingly, increased T and decreased θ negatively influenced GEE while Re increased in response to increased T and θ. During a period of unusually hot, dry conditions the responses of GEE and Re were reflected in a decline in daytime NEE. However, this decline in NEE was not associated with a similar reduction in nighttime Re suggesting that these conditions were insufficient to induce CAM photosynthesis. Future ecohydrological investigations of green roofs may provide new insights into how rainfall variability interacts with plant traits, community diversity, and edaphic factors to shape ecosystem function.

  11. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2

  12. Land surface phenology, hydrology and CO2 fluxes of forests and grasslands in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Li, C.; Kurbatova, J.; Varlagin, A.; Zhang, J.; Wu, J.; Wu, W.; Biradar, C.; Chen, J.

    2008-12-01

    Land surface phenology (LSP) is a key indicator of ecosystem dynamics under a changing environment. Changes in phenology of plants affect the carbon cycle, water cycle, climate through photosynthesis and evapotranspiration. We have combined satellite observations, CO2 eddy flux tower sites and process-based biogeochemical model to improve our understanding of the effect of land surface phenology and hydrology on gross primary production (GPP), ecosystem respiration and net ecosystem exchange of CO2 (NEE) from a variety of ecosystem types. In this paper, we will present case studies from two spruce forest sites (wet spruce forest and dry spruce forest) in Russia, a deciduous broadleaf forest site and a grassland site in Northern China. Among the three vegetation indices (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), both LSWI and EVI agreed well with the photosynthetically active period (as defined by estimated GPP data from CO2 eddy flux tower sites) than NDVI does. The Vegetation Photosynthesis Model (VPM), which uses EVI and LSWI data as input, provides improved prediction of GPP for various types of terrestrial ecosystems. NEE is the difference between GPP and ecosystem respiration. Simulations of processed-based DNDC model for two spruce forests (wet and dry spruce forests) suggested that ecosystem respiration (and consequently NEE) fluxes are highly sensitive to water table depth at the sites. Because Northern Eurasia has a large area of wetlands and underwent significant climate change, potential change in water table due to hydrological processes could have significant implication to the carbon fluxes and carbon balance (carbon sink or source) in the region.

  13. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  14. Forecasting net ecosystem CO2 exchange in a subalpine forest using model data assimilation combined with simulated climate and weather generation

    NASA Astrophysics Data System (ADS)

    Scott-Denton, Laura E.; Moore, David J. P.; Rosenbloom, Nan A.; Kittel, Timothy G. F.; Burns, Sean P.; Schimel, David S.; Monson, Russell K.

    2013-06-01

    Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future climate change has proven challenging. Process models, which have been increasingly used to study ecosystem-atmosphere carbon and water exchanges when conditioned with tower-based eddy covariance data, have the potential to inform us about biogeochemical processes in future climate regimes, but only if we can reconcile the spatial and temporal scales used for observed fluxes and projected climate. Here, we used weather generator and ecosystem process models conditioned on observed weather dynamics and carbon/water fluxes, and embedded them within climate projections from a suite of six Earth Systems Models. Using this combination of models, we studied carbon cycle processes in a subalpine forest within the context of future (2080-2099) climate regimes. The assimilation of daily averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that was similar to that following the assimilation of half-daily averaged observations; the assimilation of 30 min averaged fluxes or monthly averaged fluxes caused degradation in the model's capacity to accurately simulate seasonal patterns in observed NEE. Using daily averaged flux data with daily averaged weather data projected for the period 2080-2099, we predicted greater forest net CO2 uptake in response to a lengthening of the growing season. These results contradict our previous observations of reduced CO2 uptake in response to longer growing seasons in the current (1999-2008) climate regime. The difference between these analyses is due to a projected increase in the frequency of rain versus snow during warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to local variation in meteorology, which is often left unresolved in traditional approaches to earth systems modeling, and the

  15. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-10-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

  16. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland

    NASA Astrophysics Data System (ADS)

    Deng, Jia; Li, Changsheng; Frolking, Steve

    2015-07-01

    Northern peatlands have accumulated a large amount of organic carbon (C) in their thick peat profile. Climate change and associated variations in soil environments are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is still highly uncertain. Verifying and understanding the influences of changes in environmental factors on C gas fluxes in biogeochemical models are essential for forecasting feedbacks between C gas fluxes and climate change. In this study, we applied a biogeochemical model, DeNitrification-DeComposition (DNDC), to assess impacts of air temperature (TA) and water table (WT) on C gas fluxes in an Alaskan peatland. DNDC was validated against field measurements of net ecosystem exchange of CO2 (NEE) and CH4 fluxes under manipulated surface soil temperature and WT conditions in a moderate rich fen. The validation demonstrates that DNDC was able to capture the observed impacts of the manipulations in soil environments on C gas fluxes. To investigate responses of C gas fluxes to changes in TA and soil water condition, we conducted a series of simulations with varying TA and WT. The results demonstrate that (1) uptake rates of CO2 at the site were reduced by either too colder or warmer temperatures and generally increased with increasing soil moisture; (2) CH4 emissions showed an increasing trend as TA increased or WT rose toward the peat surface; and (3) the site could shift from a net greenhouse gas (GHG) sink into a net GHG source under some warm and/or dry conditions. A sensitivity analysis evaluated the relative importance of TA and WT to C gas fluxes. The results indicate that both TA and WT played important roles in regulating NEE and CH4 emissions and that within the investigated ranges of the variations in TA and WT, changes in WT showed a greater impact than changes in TA on NEE, CH4 fluxes, and net C gas fluxes at the study fen.

  17. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh.

    PubMed

    Malone, Sparkle L; Starr, Gregory; Staudhammer, Christina L; Ryan, Michael G

    2013-08-01

    Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4 . Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short-hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22-week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco ), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco . As a result of drought-induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100-year greenhouse warming compensation point for CH4 (0.04). Drought-induced diebacks of sawgrass (C3 ) led to the establishment of the invasive species torpedograss (C4 ) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water

  18. How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.

    2009-12-01

    Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.

  19. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  20. Climate indices strongly influence old-growth forest carbon exchange

    NASA Astrophysics Data System (ADS)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was ‑32 ± 84 g C m‑2 yr‑1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m‑2 yr‑1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = ‑90 g C m‑2 yr‑1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m‑2 yr‑1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  1. Marsh-atmosphere CO2 exchange in a New England salt marsh

    NASA Astrophysics Data System (ADS)

    Forbrich, Inke; Giblin, Anne E.

    2015-09-01

    We studied marsh-atmosphere exchange of carbon dioxide in a high marsh dominated salt marsh during the months of May to October in 2012-2014. Tidal inundation at the site occurred only during biweekly spring tides, during which we observed a reduction in fluxes during day and night. We estimated net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) using a modified PLIRTLE model, which requires photosynthetically active radiation, temperature, and normalized difference vegetation index (NDVI) as control variables. NDVI decreased during inundation, when the marsh canopy was submerged. Two-time series of NDVI, including and excluding effects of tidal inundation, allowed us to quantify the flux reduction during inundation. The effect of the flux reduction was small (2-4%) at our site, but is likely higher for marshes at a lower elevation. From May to October, GPP averaged -863 g C m-2, Reco averaged 591 g C m-2, and NEE averaged -291 g C m-2. In 2012, which was an exceptionally warm year, we observed an early start of net carbon uptake but higher respiration than in 2013 and 2014 due to higher-air temperature in August. This resulted in the lowest NEE during the study period (-255.9±6.9 g C m-2). The highest seasonal net uptake (-336.5±6.3 g C m-2) was observed in 2013, which was linked to higher rainfall and temperature in July. Mean sea level was very similar during all 3 years which allowed us to isolate the importance of climatic factors.

  2. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-01-01

    The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.

  3. On Extrapolating Nighttime Ecosystem Respiration To Daytime Conditions and Implications for Gross Primary Productivity Estimation

    NASA Astrophysics Data System (ADS)

    Galvagno, M.; Wohlfahrt, G.

    2015-12-01

    Gross primary productivity (GPP) is a key term in the carbon cycle science. Being difficult or even impossible, at the ecosystem scale to directly quantify, various methods are used to estimate GPP, such as: eddy covariance CO2 flux partitioning, carbonyl sulfide exchange, sun-induced fluorescence, isotopes of CO2, and the photochemical reflectance index. The primary source of global GPP estimates is the FLUXNET project within which GPP is estimated in a consistent fashion through eddy covariance flux partitioning at more than 700 sites globally. Since the net ecosystem CO2 exchange (NEE) reflects net uptake during daytime, when photosynthesis exceeds respiration, and net emission during nighttime due to ecosystem respiration (RECO), the eddy covariance flux partitioning is based on the idea that daytime RECO may be inferred from nighttime NEE direct measurements, and consequently GPP can be obtained by subtracting RECO from NEE. However, the main assumption underlying this approach, which is that a temperature-dependent model of RECO parametrised based on nighttime temperatures may be extrapolated to daytime temperatures, has not been conclusively tested. This study investigates whether nighttime measurements of RECO provide unbiased estimates of daytime RECO. To this end we used ecosystem respiration chambers in a mountain grassland which, by keeping the vegetation in the dark during the measurement, allowed us to directly quantify RECO during both day and night. These data, pooled by day, night or day and night, were then used to parametrise temperature dependent models of RECO. Results show that day and night RECO do not follow the same relationship with temperature and that RECO inferred by using the nighttime parametrisation overestimates the true respiration. Potential reasons of this observed bias, like the overestimation of daytime mitochondrial respiration and implications for the quantification of GPP are discussed.

  4. The strength of contributions from topography mismatch and measurement filtering to simulated net ecosystem exchange in complex terrain

    NASA Astrophysics Data System (ADS)

    Brooks, B.; Desai, A. R.; Stephens, B. B.; Jacobson, A. R.

    2011-12-01

    Global scale carbon cycle inverse models provide invaluable information for the construction of empirically based carbon budgets based on in situ measurements. In landscapes of predominantly smooth topography inverse carbon cycle models are useful for diagnosing the magnitude and climate sensitivity of different regional carbon sinks. However, in landscapes of predominately complex topography inversion model results come with strong caveats for two reasons: 1) Coarse gridding of model topography can lead the model to sample observations at elevations far above the model surface, and 2) Transport wind fields over smoothed model representations of mountain regions are not always sufficiently resolved to inform the model about the source region for assimilated measurements. The uncertainty contributed by incorrect winds and topography mismatches (e.g., differences between the actual measurement elevation and model surface on the order of 1,000 m) is thought to be smaller for higher resolution regional inversion models (e.g., Gockede et al., 2010; Schuh et al. 2010), but these uncertainties are not well constrained for larger scale inversion systems (e.g., Peters et al., 2010), which are one of few ways for determining the relative priority of regional sinks. In this work we examine the effects on net ecosystem exchange (NEE) for a global scale inversion system when 1) topography mismatches are ameliorated, and 2) subset observations consistent with model resolution are used rather than observation-based subsets. Our focus is to use an example inversion model system, CarbonTracker (Peters et al., 2007; 2010), driven by CO2 mixing ratio measurements, including the RACCOON Network in the United States Mountain West (raccoon.ucar.edu), to quantify and compare the contribution to NEE from tower elevation mismatches and filtering strategies across biomes and and in terms of forecast skill (model data mismatch). We further compare our results to the differences in NEE over

  5. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  6. Assimilating Multiple Data Types in the Community Land Model (CLM) for Deciduous Forests in North America

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Hoar, T. J.; Arellano, A. F.; Liu, Y.; Moreno, G.; Quaife, T. L.; Richardson, A. D.; Trouet, V.; Alexander, M. R.; Chen, M.; Hollinger, D. Y.; Moore, D. J.

    2014-12-01

    Networks of eddy covariance towers like AmeriFlux provide the infrastructure necessary to study relationships between ecosystem processes and environmental forcing across a range of spatial and temporal scales. Recent syntheses of comparisons between observations from eddy covariance tower sites in North America and output from several Land Surface Models showed that the characterization of phenology was not accurate in most of the models. In order to improve phenological models, a continental-scale phenological observatory, the PhenoCam network, provides high-frequency observations of vegetation phenology, which can be used to derive a greenness index, the green chromatic coordinate (gcc). In this study we run the Community Land Model (CLM4.5) for 10 deciduous forests sites in North America, included in the AmeriFlux and PhenoCam networks, to assimilate multiple data types including one of the key variables in most ecosystem models, fPAR, the radiometric equivalent of Leaf Area Index (LAI). fPAR characterizes vegetation canopy function and energy absorption capacity and therefore it is important for estimating canopy photosynthesis. We use fPAR data from Moderate Resolution Imaging Spectroradiometer (MODIS), with a pixel resolution of 1 km x 1 km and a temporal resolution of 8 days. Data is assimilated in CLM with an Ensemble Kalman Filter, a sequential data assimilation technique, within the Data Assimilation Research Testbed (DART). In our study, we also compare observations available for Harvard Forest (LAI, NEE and gcc) with model output. The CLM output for LAI and NEE is sometimes located out of the observation space delimited by LAI and NEE measurements for Harvard Forest. After assimilating data, we compare observations and mean CLM model output from all the sites for a free run, an assimilation run and an assimilation run with inflation. We investigate the impact of assimilating these observations and the resultant model state updates on ecosystem carbon

  7. Effects of management thinning on CO2 exchange by a plantation oak woodland in south-eastern England

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Crow, P.; Eaton, E. L.; Morison, J. I. L.

    2015-10-01

    Forest thinning, which removes some individual trees from a forest stand at intermediate stages of the rotation, is commonly used as a silvicultural technique and is a management practice that can substantially alter both forest canopy structure and carbon storage. Whilst a proportion of the standing biomass is removed through harvested timber, thinning also removes some of the photosynthetic leaf area and introduces a large pulse of woody residue (brash) to the soil surface which potentially can alter the balance of autotrophic and heterotrophic respiration. Using a combination of eddy covariance (EC) and aerial light detection and ranging (LiDAR) data, this study investigated the effects of management thinning on the carbon balance and canopy structure in a commercially managed oak plantation in the south-east of England. Whilst thinning had a large effect on the canopy structure, increasing canopy complexity and gap fraction, the effects of thinning on the carbon balance were not as evident. In the first year post thinning, Net Ecosystem Exchange (NEE) was unaffected by the thinning, suggesting that the better illuminated ground vegetation and shrub layer partially compensated for the removed trees. NEE was reduced in the thinned area but not until two years after the thinning had been completed (2009); initially this was associated with an increase in ecosystem respiration (Reco). In subsequent years, NEE remained lower with reduced carbon sequestration in fluxes from the thinned area, which we suggest was in part due to heavy defoliation by caterpillars in 2010 reducing GPP in both sectors of the forest, but particularly in the east.

  8. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Torn, Margaret S.; Biraud, Sebastien C.; Still, Christopher J.; Riley, William J.; Berry, Joe A.

    2011-04-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO2 concentration and δ13C-CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. δbio had a large and consistent seasonal cycle of 6-8‰. Ensemble monthly mean δbio ranged from -25.8 ± 0.4‰ (±SE) in March to -20.1 ± 0.4‰ in July. Thus, C3 vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil δ13C values were about -15‰, indicating that historically the region was dominated by C4 vegetation and had more positive δbio values. Based on a land-surface model, isofluxes (δbio× NEE) in this region have large seasonal amplitude because δbio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in δbio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO2 and CO2 fluxes.

  9. Isotopic Disequilibrium Between Carbon Fixed and Released in a Rice Paddy Ecosystem as Influenced by Methanogenesis From CO2 Under Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Han, G. H.; Yoshikoshi, H.; Nagai, H.; Yamada, T.; Ono, K.; Miyata, A.; Harazono, Y.

    2004-12-01

    Stable carbon isotope ratios of various ecosystem components and ecosystem respiration (\\deltaR) were measured in a Japanese rice paddy. An automated air sampling system was used to collect nighttime air samples to estimate \\deltaR by means of Keeling plot. Throughout the growing season in 2003, significantly (3\\permil to 4\\permil) higher \\delta13C values were observed in \\deltaR than those observed in plant tissue samples, indicating a strong decoupling process for carbon assimilated and respired in the ecosystem. It is well known that production of methane from CO2 exhibits a larger isotope fractionation than that can be found in equilibration of CO2 with soil water. CO2 entrapped in soil showed 5.5\\permil to 7.5\\permil higher \\delta13C values than \\deltaR. Given these isotopic differences, we partitioned total ecosystem respiration into plant respiration and soil (including root) respiration components with an assumption that there is no isotope fractionation associated with respiratory processes of rice plant. The estimated proportion of soil respiration to total ecosystem respiration was about 30% under flooded conditions, but increased to about 40% by floodwater drainage. The partitioned respiratory fluxes from soil contributed to reducing the discrepancy between measured plant biomass increase and accumulated net ecosystem exchange (NEE) for the entire growing season. Partitioning NEE into photosynthetic assimilation and ecosystem respiration based on the isoflux approach revealed that floodwater drainage increased daytime respiratory fluxes greater than the estimated respiratory fluxes from an exponential relationship between nocturnal NEE and air temperature.

  10. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  11. Comparison of net ecosystem carbon exchange estimation in a mixed temperate forest using field eddy covariance and MODIS data.

    PubMed

    Wang, Yuandong; Tang, Xuguang; Yu, Lianfang; Hou, Xiyong; Munger, J William

    2016-01-01

    Quantification of net ecosystem carbon exchange (NEE) between the atmosphere and vegetation is of great importance for regional and global studies of carbon balance. The eddy covariance technique can quantify carbon budgets and the effects of environmental controls for many forest types across the continent but it only provides integrated CO2 flux measurements within tower footprints and need to be scaled up to large areas in combination with remote sensing observations. In this study we compare a multiple-linear regression (MR) model which relates enhanced vegetation index and land surface temperature derived from the moderate resolution imaging spectroradiometer (MODIS), and photosynthetically active radiation with the site-level NEE, for estimating carbon flux exchange between the ecosystem and the environment at the deciduous-dominated Harvard Forest to three other methods proposed in the literature. Six years (2001-2006) of eddy covariance and MODIS data are used and results show that the MR model has the best performance for both training (2001-2004, R (2) = 0.84, RMSE = 1.33 g Cm(-2) day(-1)) and validation (2005-2006, R (2) = 0.76, RMSE = 1.54 g Cm(-2) day(-1)) datasets comparing to the other ones. It provides the potential to estimate carbon flux exchange across different ecosystems at various time intervals for scaling up plot-level NEE of CO2 to large spatial areas. PMID:27186455

  12. How does wind-throw disturbance affect the carbon budget of an upland spruce forest ecosystem?

    NASA Astrophysics Data System (ADS)

    Lindauer, Matthias; Schmid, Hans Peter; Grote, Rüdiger; Mauder, Matthias; Wolpert, Benjamin; Steinbrecher, Rainer

    2014-05-01

    Forests, especially in mid-latitudes are generally designated as large carbon sinks. However, stand-replacing disturbance events like fires, insect-infestations, or severe wind-storms can shift an ecosystem from carbon sink to carbon source within short time and keep it as this for a long time. In Addition, extreme weather situations which promote the occurrence of ecosystem disturbances are likely to increase in the future due to climate change. The development and competition of different vegetation types (spruce vs. grass) as well as soil organic matter (SOM), and their contribution to the net ecosystem exchange (NEE), in such disturbed forest ecosystems are largely unknown. In a large wind-throw area (ca. 600 m diameter, due to cyclone Kyrill in January 2007) within a mature upland spruce forest, where dead-wood has not been removed, in the Bavarian Forest National Park (Lackenberg, 1308 m a.s.l., Bavaria, Germany), fluxes of CO2, water vapor and energy have been measured with the Eddy Covariance (EC) method since 2009. Model simulations (MoBiLE) were used to estimate the GPP components from trees and grassland as well as to differentiate between soil and plant respiration, and to get an idea about the long term behavior of the ecosystems carbon exchange. For 2009, 2010, 2011, 2012, and 2013 estimates of annual Net Ecosystem Exchange (NEE) showed that the wind-throw was a marked carbon source. However, the few remaining trees and newly emerging vegetation (grass, sparse young spruce, etc.) lead to an already strong Gross Ecosystem Production (GEP). Model simulations conformed well with the measurements. To our knowledge, we present the worldwide first long-term measurements of NEE within a non-cleared wind-throw-disturbed forest ecosystem.

  13. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    SciTech Connect

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  14. Carbon and Water Fluxes of Crops Exposed to the Sequence of Naturally Occurring Heat Stress, Drought and Freezing

    NASA Astrophysics Data System (ADS)

    Joo, E.; Miller, J. N.; Bernacchi, C.

    2015-12-01

    As a consequence of global climate change the occurrence of extreme weather events (heat waves, cold spells, drought, etc) are predicted to become more frequent and/or intense, which will likely have a large impact on crop production. In the winter of 2013/2014 several polar vortexes were experienced in Illinois, US, resulting in periods of extreme low temperatures between -20°C and -35°C. Prior to the extreme cold winter of 2013/2014 the region experienced drought over a hot summer in 2012. Four established fields of three perennial biofuel crops (Miscanthus x giganteus, Panicum virgatum L., and a mixture of native prairie species) and Zea mays/Glycine max agroecosystem have been studied since 2009 in order to investigate the effect of climate change and land-use change on carbon and water fluxes using the eddy covariance technique, as well as biomass production of these species. The combined effect of the heat and drought stress in 2012 resulted in severe water deficit of all species (up to -360 mm for miscanthus), which resulted in reduced net ecosystem exchange (NEE) during the drought for all species other than miscanthus. In the following year, during the recovery of these species from drought, miscanthus showed decreased NEE but the other species did not appear to be negatively influenced. As a consequence of the environmental stresses (heat and drought stress followed by extreme freezing), the water and carbon exchanges (such as ET, NEE, GPP, Reco) as well as growth parameters (LAI, biomass production) are shown to vary based on the stress tolerance of these species.

  15. Greenhouse gas fluxes in mountain grassland differing in land use

    NASA Astrophysics Data System (ADS)

    Ladreiter-Knauss, Thomas; Schmitt, Michael; Butterbach-Bahl, Klaus; Kienzl, Sandra; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael

    2013-04-01

    Mountain grassland covers large areas, thus influences the global greenhouse gas (GHG) balance and is strongly affected by changes in land use. Effects of such changes on the GHG-balance have so far not been well documented. As a contribution to the EU-project GHG Europe we are studying the net ecosystem exchange (NEE) of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) on a mountain meadow, an adjacent and an abandoned pasture at 1820-1970m a.s.l. in the Austrian Central Alps. The GHG balance is estimated from manual and auto-chamber measurements, combined with already published CO2-NEE over almost a decade. Winter CO2-fluxes, primarily soil respiration underneath the snowpack, are estimated with solid state CO2-sensors using a validated diffusion model. We found that abandon the management decreases the NEE of CO2 while its component, soil respiration (Rs), increases. The decrease is explained by differences in leaf area index, biomass and leaf-area-independent changes that were likely related to photosynthetic physiology. The increase in Rs can be explained by higher belowground carbon input due to missing grazing or mowing. The abandoned pasture showed the highest uptake rates of CH4 and a slight uptake of N2O, possibly due to better soil aeration. Spring freeze-thaw events caused slight CH4 emissions in the managed grassland. The meadow and pasture had just low emission rates of N2O even at freeze-thaw cycles and organic fertilization. These results suggest that in mountain grassland the main contributor to the GHG balance are CO2 fluxes that can largely be influenced by land use changes.

  16. The European species of Foersterella Dalla Torre (Hymenoptera: Tetracampidae), including the description of two new species.

    PubMed

    Hansson, Christer

    2016-01-01

    The European species of Foersterella Dalla Torre 1897 (Hymenoptera: Tetracampidae) are treated, including two previously described species, F. erdoesi Bouček and F. reptans (Nees), and two new species, F. angusticornis sp. nov. and F. fuscicornis sp. nov. Morphological concepts of the species are based mainly on characters in the male antenna, which females lack, and with the exception of F. erdoesi females are currently not possible to identify to species. A key for the identification of species is included, as well as illustrations to facilitate the identification. PMID:27470745

  17. Canopy Spectral Imaging (NDVI) As A Proxy For Shrub Biomass And Ecosystem Carbon Fluxes Across Arctic Tundra Habitats

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Welker, J. M.; Gonzalez-Meler, M. A.

    2015-12-01

    There is widespread consensus that climate change is contributing to rapid vegetation shifts in the ecologically sensitive Arctic tundra. These tussock grass dominated systems are shifting to tussock/woody shrub communities leading to likely alterations in carbon (C) sequestration and ecosystem productivity, which in turn can manifest in "greening" and changes in normalized difference vegetation index values (NDVI). While the expansion of woody vegetation is well established, our understanding of the ecosystem dynamics associated with this new habitat remain largely unknown. To untangle how the Arctic tundra may be impacted by these vegetation shifts we paired vegetation measurements (i.e. shrub biomass, leaf area, and shrub canopy area) and ecosystem C fluxes (e.g. net ecosystem exchange, NEE, and ecosystem respiration) with ground-level measurements of NDVI. Measurements were conducted at the Toolik Field Station in dry heath and moist acidic tundra habitats which are two primary habitat types on the North Slope of Alaska. We found strong positive relationships between shrub leaf area and biomass as well as shrub canopy area and biomass, relationships that were corroborated with NDVI measurements. This lends support for the use of NDVI as a proxy measurement of leaf area and shrub biomass. Additionally, NDVI was negatively correlated with ecosystem respiration across habitats, with respiratory fluxes consistently higher in the moist acidic relative to the dry heath tundra. Finally, we observed a significant positive nonlinear relationship between NEE and NDVI (R2~0.8; P<0.01). Shrub removal revealed that NEE was strongly controlled by woody shrubs. The positive relationship between NDVI and NEE highlights the potential shifts in the C balance of the Arctic tundra associated with woody encroachment. This increased plant productivity may offset greenhouse gas losses from permafrost degradation contributing some resilience to this system otherwise considered a

  18. Summertime CO2 fluxes and ecosystem respiration from marine animal colony tundra in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua; Liu, Yashu

    2014-12-01

    Net ecosystem CO2 exchange (NEE) and ecosystem respiration (ER) were investigated at penguin, seal and skua colony tundra and the adjacent animal-lacking tundra sites in maritime Antarctica. Net CO2 fluxes showed a large difference between marine animal colonies and animal-lacking tundra sites. The mean NEE from penguin, seal and skua colony tundra sites ranged from -37.2 to 5.2 mg CO2 m-2 h-1, whereas animal-lacking tundra sites experienced a larger net gain of CO2 with the mean flux range from -85.6 to -23.9 mg CO2 m-2 h-1. Ecosystem respiration rates at penguin colony tundra sites (mean 201.3 ± 31.4 mg CO2 m-2 h-1) were significantly higher (P < 0.01) than those at penguin-lacking tundra sites (64.0-87.1 mg CO2 m-2 h-1). The gross photosynthesis (Pg) showed a consistent trend to ER with the highest mean Pg (219.7 ± 34.5 mg CO2 m-2 h-1) at penguin colony tundra sites. When all the data were combined from different types of tundra ecosystems, summertime tundra NEE showed a weak or strong positive correlation with air temperature, 0-10 cm soil temperature or precipitation. The NEE from marine animal colony and animal-lacking tundra was significantly positively correlated (P < 0.001) with soil organic carbon (SOC), total nitrogen (TN) contents and C:N ratios. The ER showed a significant exponential correlation (P < 0.01) with mean 0-15 cm soil temperature, and much higher Q10 value (9.97) was obtained compared with other terrestrial ecosystems, indicating greater temperature sensitivity of tundra ecosystem respiration. Our results indicate that marine animals and the deposition of their excreta might have an important effect on tundra CO2 exchanges and ecosystem respiration, and current climate warming will further decrease tundra CO2 sink in maritime Antarctica.

  19. Combining direct and remote observations with modeling to understand the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Churkina, G.

    2002-06-01

    Explaining observed regional-scale variability of carbon fluxes is critical for increasing the credibility of predictions of future ecosystem changes. Combining direct and remote observations is not straightforward because the observations are taken at different spatial and temporal scales and previous land satellite missions have not been designed for use together with existing measuring networks. Although ecosystem models, which estimate relevant components of the carbon cycle at different spatial and temporal scale, can serve as an integrative tool, their estimates of the state variables have uncertainties related to the poorly understood processes. Nevertheless, our first attempts to combine the three tools show interesting relationships between satellite indices and flux measurements as well as outline some issues, which can be resolve by the type of data provided by SPECTRA. A new technique of CO2 and energy fluxes measurements on tall (200-600 m) towers allows studying ecosystem-atmosphere interactions at the regional scale using a combination of CO2 observations, ecosystem modeling, and remote sensing. Signal measured at a tall tower integrates both daily biogeochemical cycles and small-scale heterogeneity of the land surface. For 1997-99 we compared the "preferred" annual net ecosystem exchange (NEE) measured at the tall tower in Wisconsin to the simulated annual NEE (BIOME-BGC model) and to adjusted normalized difference vegetation index (NDVI) aggregated over each year. Most of the differences between measured and modeled fluxes occurred in the beginning and the end of growing season. The length of the carbon uptake period defined by CO2 exchange observations was better captured by remote observations (NDVI) than by the model. Small deviations in growing season length resulted in significantly different annual NEE from measurements and model simulations. Analysis of the carbon uptake period by terrestrial vegetation and the annual net ecosystem exchange

  20. Impact of Fire Disturbance on Regional Net Ecosystem Exchange for a Sub-Humid Woodland and Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Yao, J.; White, J. D.

    2010-12-01

    Wildland fire is a major disturbance in many ecosystems and increases flux of CO2 and CO to the atmosphere. These emission episodes cause short term atmospheric carbon concentration variation as vegetation and soil processes are perturbed. The Tall Tower Network, developed to monitor regional long-term carbon flux and related-gas in the continental boundary layer by National Oceanic and Atmospheric Administration (NOAA), detects these emissions. For this study, we used the CO2 mixing ratio data from the WKT Tall Tower site in Moody, Texas to study the impact of fire disturbance on immediate and long term regional Net Ecosystem Exchange (NEE) from 2001 to 2009. To detect individual potential fire events, we used products from the MODIS Active Fire Mapping Program to identify point locations of fires and Landsat data to estimate area burned based on spectral indices within the footprint of the Tall Tower. Next, we quantified carbon emission derived from fires by identifying daily NEE variations that exceeded threshold values based on seasonal averages from the Tall Tower data for each major fire event. Carbon emission from fires were also estimated based on total area burned, pre-fire biomass, and fire severity derived from the remote sensing data. We found that that the size and severity of individual fire were highly correlated with the amount of short-term regional NEE variation. Regional NEE showed a short term flux of carbon to the atmosphere following fire disturbance, but reverted to a carbon sink due to the removal of excess fuel load and increased primary productivity. The total fire-derived carbon emission calculated from ground and remote sensing data was slightly more than that estimated from the detected elevated carbon signals by the Tall Tower. This is explained by charcoal formation which remained on site. Wildland fires were expected to increase regional carbon storage by transforming biomass into more decay-resistant charcoal. This study potentially

  1. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites

    NASA Astrophysics Data System (ADS)

    Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; Lehuger, S.; Bernhofer, C.

    2011-03-01

    Crop varieties and management practices such as planting and harvest dates, irrigation, and fertilization have important effects on the water and carbon fluxes over croplands, and lack or inaccuracy of this information may cause large uncertainties in hydraulic and carbon modeling. Yet the magnitude of uncertainties has not been investigated in detail. This paper provides a comprehensive assessment of the performances of a process-based ecosystem model called ORCHIDEE-STICS (a coupled model between generic ecosystem model ORCHIDEE and the crop growth model STICS), against eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that ORCHIDEE-STICS has a good potential to simulate energy, water vapor and carbon dioxide fluxes from maize croplands on a daily basis. The model explains 23-75% of the observed daily net ecosystem exchange (NEE) variance at five sites, and 26-79% of the latent heat flux (LE) variance. Similarly, 34-83% of the variance in observed gross primary productivity (GPP) is accounted for by the model. However, only 3-81% of the variance of observed terrestrial ecosystem respiration (TER) is explained. Therefore, simulating TER is shown to be much more difficult than GPP. We conclude that structural deficiencies of the model in the determination of LAI and TER are the main sources of errors in simulating carbon dioxide and water vapor fluxes. A group of sensitivity analyses, by setting different crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these factors is able to cause more than 15% change in simulated NEE although the response of these fluxes to management parameters is site-dependent. Varying management practice in the model is shown to affect not only the daily values of NEE and LE, but also the total seasonal cumulative values, and therefore the annual carbon and water budgets. However, LE is found to be less sensitive to management practices than

  2. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet

    2016-08-01

    In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).

  3. Estimation of terrestrial carbon fluxes over East Asia through AsiaFlux and improved MODIS gross primary production data

    NASA Astrophysics Data System (ADS)

    Kim, Miae; Im, Jungho; Lee, Junghee; Shin, Minso; Lee, Sanggyun

    2014-05-01

    The accurate estimation of carbon fluxes over terrestrial ecosystems provides useful information in studying the global carbon cycle. Estimates of carbon fluxes such as gross primary production (GPP) and net ecosystem exchanges (NEE) have been commonly used as indicators of the global carbon budgets. Eddy covariance (EC) flux towers are operating all over the world, networking each other. The towers provide temporally continuous measurements of carbon, water and energy over terrestrial ecosystems as being the best way to estimate ecosystem fluxes up to date. However, the EC flux towers only cover the scale of footprint, having difficulty in representing fluxes at the regional or continental scale. For upscaling flux tower data, satellite products that cover vast areas at high temporal resolution can be used. While many studies were conducted to estimate carbon fluxes from satellite products using process-based modeling and empirical modeling approaches, there are still great uncertainties in carbon flux estimation due to biases and errors associated with in-situ measurements, spatio-temporal discrepancy between satellite products and in-situ measurements, and relatively less accurate satellite products. In this paper, NEE and GPP were estimated using machine learning techniques including random forest, Cubist, and support vector regression. Various satellite products were used as independent variables such as land surface temperature, normalized difference vegetation index, enhanced vegetation index, leaf area index, fraction of photosynthetically active radiation, GPP, evapotranspiration, rainfall, normalized difference water index obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM). However, MODIS GPP based on the light use efficiency (LUE) model has some uncertainties derived from input data used in this model such as coarse spatial resolution of the Data Assimilation Office (DAO) meteorological

  4. Long-Term Release of Carbon Dioxide from Arctic Tundra Ecosystems in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Bret-Harte, M. S.; Edgar, C.; Shaver, G. R.

    2014-12-01

    Recent data syntheses and modeling studies of arctic tundra carbon dioxide (CO2) balance have suggested that the tundra is a CO2 sink, a source or neutral. Much of this uncertainty arises from a lack of data pertaining to winter CO2 flux, as well as how these ecosystems have responded to recent warming trends. Due to a harsh, remote environment, long-term, continuous measurements of arctic tundra CO2 fluxes over the full annual cycle have been non-existent. In September 2007, we began eddy covariance measurements of net ecosystem exchange (NEE, where a negative value denotes a sink) of CO2 in northern Alaska at two ecosystems, heath and wet sedge tundra. These measurements continue to the present, and represent the longest continuous record of arctic tundra NEE currently available. From January 2008 - December 2013, the ecosystems were annual sources of CO2, with the wet sedge tundra acting as a greater source (mean ± standard deviation of 50 ± 30 g C m-2 y-1) than the heath tundra (16 ± 6 g C m-2 y-1). During these same years, the ecosystems were sinks of CO2 in the summer (June - August), with less variability between the ecosystems, -77 ± 15 g C m-2 in the wet sedge tundra, and -70 ± 12 g C m-2 in the heath. Environmental controls over NEE differed between ecosystems and seasons, with the wet sedge tundra acting particularly responsive in terms of CO2 release during periods with warm air temperatures from fall to early winter. During cold winter periods, CO2 release from the snowpack in both ecosystems was related to increases in wind speed and drops in atmospheric pressure. Overall, the measured differences in the annual versus summer NEE illustrate how the sink strength of the tundra can be overestimated if data are only collected during the growing season. Furthermore, eddy covariance measurements of methane (CH4) in the wet sedge tundra during late spring to early fall from 2012 to present show that this ecosystem releases 0.34 ± 11 mg CH4 m-2 d-1

  5. Simulating stand-level water and carbon fluxes in beetle-attacked conifer forests in the Western U.S

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Pendall, E. G.; Frank, J. M.; Massman, W. J.

    2013-12-01

    In recent decades, forest mortality due to bark beetle infestation in conifer forests of western North America has reached epidemic levels, which may have profound effects on both present and future water and carbon cycling. The responses of evaporation, transpiration, and net photosynthesis to changing climate and disturbance are a major concern as they control the carbon balance of forests and the hydrologic cycle in a region that relies on water from montane and subalpine forest systems. Tree mortality during bark beetle infestation in this region is due to hydraulic failure resulting from fungal infection spread by the beetles. We modified the terrestrial regional ecosystem exchange simulator (TREES) model to incorporate xylem-occlusion effects on hydraulic conductance to simulate beetle attack over the period 2005-2012 in a subalpine conifer forest at the Glacier Lakes Ecosystem Experiment Site (GLEES) and over 2008-2012 at a lodgepole pine dominated site in southeast Wyoming. Model simulations with and without beetle effects were compared to eddy-covariance and sap-flux data measured at the sites. The simulations were run at a 30-minute time step and covered the pre- to post-beetle infestation period. Simulated NEE at GLEES ranged from 200 to -625 g C m-2 yr-1, annual ET ranged from 250 to 800 mm yr-1 over the seven years and standard error in predicted half-hourly NEE was <3 μmol CO2 m-2 s-1 and <2e-05 mm s-1 for ET. The stand transitioned from a C sink to C source during the beetle attack and our modified model captured this dynamic, while simulations without the beetle effect did not (i.e. continued C sink). However, simulated NEE was underestimated compared to flux data later in the infestation period (2011) by over 100 g C m-2 yr-1. ET decreased during beetle attack in both the observed and simulated data, but the modified model underestimated ET in the later phase of attack (2010-2011). These results suggest that ET and NEE in these conifer forests may

  6. A Constructed Freshwater Wetland Shows Signs of Declining Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Anderson, F. E.; Bergamaschi, B. A.; Windham-Myers, L.; Byrd, K. B.; Drexler, J. Z.; Fujii, R.

    2014-12-01

    The USGS constructed a freshwater-wetland complex on Twitchell Island in the Sacramento-San Joaquin Delta (Delta), California, USA, in 1997 and maintained it until 2012 to investigate strategies for biomass accretion and reduction of oxidative soil loss. We studied an area of the wetland complex covered mainly by dense patches of hardstem bulrush (Schoenoplectus acutus) and cattails (Typha spp.), with smaller areas of floating and submerged vegetation, that was maintained at an average depth of 55 cm. Using eddy covariance measurements of carbon and energy fluxes, we found that the combination of water management and the region's Mediterranean climate created conditions where peak growing season daily means of net ecosystem exchange (NEE) reached -45 gCO2 m-2 d-1 and averaged around -30 gCO2 m-2 d-1 between 2002 through 2004. However, when measurements resumed in 2010, NEE rates were a fraction of the rates previously measured, approximately -6 gCO2 m-2 d-1. Interestingly, NEE rates in 2011 doubled compared to 2010 (-13 gCO2 m-2 d-1). Methane fluxes, collected in 2010 to assess a complete atmospheric carbon budget, were positive throughout the year, with daily mean flux values ranging from 50 to 300 mg CH4 m-2 d-1. As a result, methane flux reduced NEE values by approximately one-third, and when the global warming potential was considered, the wetland became a net global warming potential source. We found that carbon cycling in a constructed wetland is complex and can change over annual and decadal timescales. We investigated possible reasons for differences between flux measurements from 2002 to 2004 and those from 2010 and 2011: (1) changes in methodology, (2) differences in weather conditions, (3) differences in gross primary productivity relative to respiration rates, and (4) the amount of living plant tissue relative to brown accumulations of senesced plant litter. We hypothesize that large mats of senesced material within the flux footprint could have

  7. Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt

    PubMed Central

    Zaki, Ahmed A.; Shaaban, Mona I.; Hashish, Nadia E.; Amer, Mohamed A.; Lahloub, Mohamed-Farid

    2013-01-01

    This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

  8. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes

    PubMed Central

    Filipowicz, Natalia; Nee, Michael H.; Renner, Susanne S.

    2012-01-01

    Abstract Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic Brunfelsia uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and Brunfelsia uniflora, the type locality of which is in the state of São Paulo, Brazil. PMID:22461731

  9. Estimating carbon and energy fluxes in arctic tundra

    NASA Astrophysics Data System (ADS)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  10. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.

  11. Rogue Waves and New Multi-wave Solutions of the (2+1)-Dimensional Ito Equation

    NASA Astrophysics Data System (ADS)

    Tian, Ying-hui; Dai, Zheng-de

    2015-06-01

    A three-soliton limit method (TSLM) for seeking rogue wave solutions to nonlinear evolution equation (NEE) is proposed. The (2+1)-dimensional Ito equation is used as an example to illustrate the effectiveness of the method. As a result, two rogue waves and a family of new multi-wave solutions are obtained. The result shows that rogue wave can be obtained not only from extreme form of breather solitary wave but also from extreme form of double-breather solitary wave. This is a new and interesting discovery.

  12. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain)

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.

    2015-04-01

    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  13. [Responses of ecosystem carbon budget to increasing nitrogen deposition in differently degraded Leymus chinensis steppes in Inner Mongolia, China].

    PubMed

    Qi, Yu-Chun; Peng, Qin; Dong, Yun-She; Xiao, Sheng-Sheng; Jia, Jun-Qiang; Quo, Shu-Fang; He, Yun-Long; Yan, Zhong-Qing; Wang, Li-Qin

    2015-02-01

    Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the plant biomass and net primary productivity (NPP), soil respiration (Rs) and net ecosystem exchange (NEE) were investigated respectively in 2009 and 2010 in two differently degraded Leymus chinensis steppes in Inner Mongolia of China, and the difference in the response of NEE to equal amount of N addition [10 g x (M2 x a)(-1), MN] between the two steppes was also discussed. The results indicated that for the light degraded Leymus chinensis steppe (site A) , the average plant aboveground biomass (AGB) in MN treatment were 21.5% and 46.8% higher than those of CK in these two years. But for the moderate degraded Leymus chinensis steppe (site B), the N addition decreased the plant AGB and ANPP in 2009, while showed positive effects in 2010. N addition increased the belowground biomass (BGB) of the both sites and belowground NPP (BNPP) of site B in both years, but decreased the BNPP of site A in 2010. The increase of N input in the two steppes did not change the seasonal variation of Rs. The cumulative annual soil C emissions in MN treatment in site A showed an increase of about 14.6% and 25.7% of those in the CK respectively for these two years, while were decreased by about 10.4% and 11.3%, respectively in site B. The NEE of MN treatments, expressed by C, for the two steppes were 59.22 g x (m2 x a)(1) and 166.68 g x (m2 x a)(-1), as well as 83.27 g x (m2 x a)(-1) and 117.47 g x (m2 x a)(-1), respectively in these two years. The increments in NEE originated from N addition for these two years were 15.79 g x (M2 x a)(-1) and 82.94 g x (M2 x a)(-1) in site A and 74.54 g x (M2 x a)(-1) and 101.23 g x (M2 x a)(-1) in site B. The N input per unit could obtain greater C sink effect in the steppe with lower initial N level. PMID:26031092

  14. Carbon balance at represenative agroecosystems of Central European Russia with different crops assessed by eddy covariance method

    NASA Astrophysics Data System (ADS)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya

    2016-04-01

    Despite the fact that in Russia cropland's soils carbon loses 9 time higher than forest's soils ones (Stolbovoi, 2002), agroecosystems were not given sufficient attention and most of the papers are devoted to forestry and natural ecosystems. Carbon balance was calculated at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia, for two agroecosystems with different crops from the same crop rotation studied for 2 years. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Vertical fluxes of carbon dioxide were measured with eddy covariance technique, statistical method to measure and calculate turbulent fluxes within atmospheric boundary layers (Burba, 2013). Crop rotation included potato, winter wheat, barley and vetch and oat mix. Two fields of the same crop rotation were studied in 2013-2014. One of the fields (A) was used in 2013 for barley planting (Hordeum vulgare L.). The field B was in 2013 used for planting together vetch (Vicia sativa L.) and oats (Avena sativa L.). Inversely oats and vetch grass mixt was sown in 2014 on field A. Winter wheat was sown on field A in the very beginning of September. On the second field (B) in 2014 winter wheat occurred from under the snow in the phase of tillering, after harvesting it in mid of July, white mustard (Sinapis alba) was sown for green manure. Carbon uptake (NEE negative values) was registered only for the field with winter wheat and white mustard; perhaps because the two crops were cultivated on the field within one growing season. Three other cases showed CO2 emission. Great difference in 82 g C m‑2 per year in NEE between two fields with vetch and oat mix was related to higher difference in grass yields. NEE for barley field was positive during the whole year; considering only the growing season, NEE for barley was 100 g C m‑2 lower and was negative

  15. Linking water and carbon fluxes in a Mediterranean oak woodland using a combined flux and ?18O partitioning approach

    NASA Astrophysics Data System (ADS)

    Dubbert, M.; Piayda, A.; Costa e Silva, F.; Correia, A.; Pereira, J. S.; Cuntz, M.; Werner, C.

    2013-12-01

    Water is one of the key factors driving ecosystem productivity, especially in water-limited ecosystems, where global climate change is expected to intensify drought and alter precipitation patterns. One such ecosystem is the ';Montado', where two vegetation layers respond differently to drought: oak trees avoid drought due to their access to deeper soil layers and ground water while herbaceous plants, surviving the summer in the form of seeds. We aimed at 1) quantifying the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year, 2) determining the driving environmental factors for evapotranspiration (ET) and net ecosystem exchange (NEE) and 3) disentangling how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data set comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of evaporation (Dubbert et al. 2013). Partitioning ecosystem ET and NEE into its three sources revealed a strong contribution of soil evaporation (E) and herbaceous transpiration (T) to ecosystem ET during spring and fall. In contrast, soil respiration (R) and herbaceous net carbon gain contributed to a lesser amount to ecosystem NEE during spring and fall, leading to consistently smaller water use efficiencies (WUE) of the herbaceous understory compared to the cork-oaks. Here, we demonstrate that the ability to assess ET, NEE and WUE independent of soil evaporation dynamics enables the understanding of the mechanisms of the coupling between water and carbon fluxes and their responses to drought. Dubbert, M., Cuntz, M., Piayda, A., Maguas, C., Werner, C., 2013: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol. a) Oxygen isotope signatures of soil evaporation on bare soil plots calculated

  16. Elevated Nitrogen Deposition Enhances the Net CO2 Sink Strength in Alberta Bogs along a Post-fire Chronosequence

    NASA Astrophysics Data System (ADS)

    Wieder, R. K.; Vile, M. A.; Albright, C. M.; Scott, K. D.

    2014-12-01

    About 30% of the landscape of northern Alberta, Canada is occupied by peatlands, which persist at the low end range of both mean annual precipitation (<500 mm/yr) and mean annual atmospheric nitrogen (N) deposition (< 1 kg/ha/yr) across which peatlands are found globally. Ombrotrophic bogs in this region function as a net sink for atmospheric CO2 of over 75 g/m2/yr, taking into consideration changes in CO2 sink strength as a function of time since fire. In addition to fire, a new disturbance is emerging in the Athabasca Oil Sands Region (AOSR) of northern Alberta, where development of the oil sands resource has increased atmospheric N deposition to as much as 2.5 kg/ha/yr. To examine the effects of elevated N deposition on bog C cycling, we experimentally applied N (as NH4NO3 solutions) to replicated plots at levels equivalent to 0 (water added with no N), 10, and 20 kg/ha/yr, and controls (no waher, no N added) at five bog sites, aged at 2, 12, 32, 73, and 113 years since fire in 2013 (6 plots per N treatment per site). Understory net ecosystem exchange of CO2 (NEE) was measured repeatedly throughout the 2013 and 2014 growing season (and in 2011 and 2012 at the most recently burned site) using the closed chamber approach. Using a rectangular hyperbola equation to characterize NEE as a function of photosynthetically active radiation (PAR) and near-surface air temperature (T), monthly and annual NEE was estimated based on hourly measurements of PAR and T at each site. Across all sites, a general pattern emerged that N additions enhanced the net CO2 sink strength of the bogs, with no effect on ecosystem respiration. Net primary production of Sphagnum fuscum, the dominant peat-forming moss, was not affected by N addition, suggesting that the overall response of NEE to N addition is the result of enhanced growth of ericaceous shrubs. These findings suggest that while elevated N deposition in the AOSR may enhance the strength of the overall CO2 sink of bogs in the short

  17. Omar field discovery confirms Syria as exploration hot spot

    SciTech Connect

    Not Available

    1988-06-20

    Syria is proving to be one of the Mediterranean's exploration hot spots. The discovery of Omar field by a Shell-led exploration group earlier this year confirmed Syria as a prime exploration prospect. For years Syria produced small volumes of heavy, high-sulfur crude mainly for refining and use in the domestic market and found it difficult to attract foreign explorers. Industry sources say there is now no shortage of outside industry interest in taking new exploration concessions. Over the last 6 months much of the available prospective acreage has been taken up as industry interest in Syria reached nee heights.

  18. Leopold Fellows meet

    NASA Astrophysics Data System (ADS)

    Hartmann, Dennis L.

    Communicating the results of environmental science research to nonscientists was the focus of a week-long meeting of fellows of the Aldo Leopold Leadership Program (ALLP) in June. Participating were 20 mid-career university facultymembers, the first group of ALLP fellows to be selected.Discussions were held on the role of scientists in society, techniques for effective leadership, improving communications skills, and working productively with news media. The training program considers both print and broadcast media as well as other outreach vehicles. The meeting was held at Kah Nee Ta Resort on the Warm Springs Indian Reservation, Warm Springs, Oregon, June 15-21, 1999.

  19. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes.

    PubMed

    Filipowicz, Natalia; Nee, Michael H; Renner, Susanne S

    2012-01-01

    Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic Brunfelsia uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and Brunfelsia uniflora, the type locality of which is in the state of São Paulo, Brazil. PMID:22461731

  20. Final Technical Report Interannual Variations in the Rate of Carbon Storage by a Mid-Latitude Forest

    SciTech Connect

    Wofsy, Steven; Munger, J W

    2012-07-31

    The time series of Net Ecosystem Exchange (NEE) of carbon by an entire forest ecosystem on time scales from hourly to decadal was measured by eddy-covariance supplemented with plot-level measurements of biomass and tree demography. The results demonstrate the response of forest carbon fluxes and long-term budgets to climatic factors and to successional change. The data from this project have been extensively used worldwide by the carbon cycle science community in support of model development and validation of remote sensing observations.

  1. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  2. Effects of pollution and urbanization on diversity of frit flies (Diptera: Chloropidae)

    NASA Astrophysics Data System (ADS)

    Kozlov, M. V.; Zvereva, E. L.

    Frit flies were investigated during the summer of 1989 in 30 sites situated in two polluted areas, ≈120 km NEE of St. Petersburg, Russia. Both urban lawns and semi-natural grasslands were sampled around Volkhov aluminum smelter and Syasskij pulp and paper mill. Fluorine- and sulphur-containing aerial emissions did not affect species richness, diversity, or composition of species assemblages of Chloropidae, whereas habitat deterioration during the course of urbanization caused changes in species composition and a decline in species richness and diversity of frit flies.

  3. A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning.

    PubMed

    Turner, David P; Jacobson, Andrew R; Ritts, William D; Wang, Weile L; Nemani, Ramakrishna

    2013-11-01

    Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite-based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom-up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere-based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr(-1) (a carbon sink). Harvested product emissions (316 ± 80 TgC yr(-1) ), river/stream evasion (158 ± 50 TgC yr(-1) ), and fire emissions (142 ± 45 TgC yr(-1) ) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation - as well as the fate of the carbon it

  4. Study on THz spectra of the active ingredients in the TCM

    NASA Astrophysics Data System (ADS)

    Ma, ShiHua; Wang, WenFeng; Liu, GuiFeng; Ge, Min; Zhu, ZhiYong

    2008-03-01

    Terahertz spectroscopy has tremendous potential for applications to evaluate the quality of the drugs including the TCM. In this paper, the Terahertz Time-Domain Spectroscopy investigated two active ingredients: Andrographolide and Dehydroandrographoline, isolated from Andrographis paniculata (Burm. f.) Nees. We also measured the mixtures of two active ingredients at the different ratio and the quantitative analysis is also applied to determine the contents of compound. The Terahertz spectroscopy is a potential and promising technique in identifying the components, evaluating the drugs sanitation and inspecting the quality of medicine including TCM.

  5. Anywhere the Wind Blows does Really Matter

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Oren, Ram

    2014-05-01

    The variation of net ecosystem carbon exchange (NEE) has been explained at coarse scales with variation of forcing variables among climate regions and associated biomes, at the intermediate, mesoscale, with differences among dominating vegetation types and conditions, and at the misoscale with heterogeneity of the eddy covariance footprint properties. Wind is rarely considered in analysis of surface fluxes for its effects on periodic budgets of water and carbon. In many regions conditions change frequently between maritime and continental depending on wind velocity (VW) and direction. In these regions, water and carbon fluxes may respond to mesoscale weather patterns extending maritime influences far inland. Using eddy-covariance data from Sardinia, we show that daytime net carbon exchange (NEE) of a mixed pasture-woodland (grass-wild olive) ecosystem (Detto et al., 2006; Montaldo et al., 2008) increased with VW, especially during summer-dry conditions. As VW increased, the air, humidified over sea, remains relatively moist and cool to a greater distance inland, reaching only ~50 km during slow Saharan Sirocco wind but >160 km during mostly Mistral wind (4 m/s) from Continental Europe. A 30% lower vapor pressure deficit (D) associated with high VW (average 2 kPa at 4 m/s), allowed a 50% higher canopy stomatal conductance (gc) and, thus, photosynthesis. However, because gc and D have opposite effects on evapotranspiration (Ee), Ee was unaffected by VW. Thus, higher NEE during summertime Mistral reflects increased ecosystem water-use efficiency (We) and a departure from a costly carbon-water tradeoff. Yet many regions often experience high velocity winds, attention is typically focused on the capacity of strong winds to fan regional fires, threatening human habitation and natural habitats, and reducing Carbon storage (C), NEE and latent heat flux. However, depending on their origin, high velocity winds can bring continental air to the coast (e.g., Santa Ana winds