Science.gov

Sample records for cutting edge imaging

  1. Root dentine and endodontic instrumentation: cutting edge microscopic imaging.

    PubMed

    Atmeh, Amre R; Watson, Timothy F

    2016-06-01

    Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments. PMID:27274802

  2. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology.

    PubMed

    Longuespée, Rémi; Casadonte, Rita; Kriegsmann, Mark; Pottier, Charles; Picard de Muller, Gaël; Delvenne, Philippe; Kriegsmann, Jörg; De Pauw, Edwin

    2016-07-01

    Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years. PMID:27188927

  3. The cutting edge.

    PubMed

    Hagland, M; Lumsdon, K; Montague, J; Serb, C

    1995-08-01

    With managed care payment becoming the norm, employers actively pursuing keener benefits management, health care markets evolving at warp speed, and clinical and information technologies spawning new capabilities every day, the cutting edge in health care keeps slicing ever-deeper. With that in mind, we at Hospitals & Health Networks have developed a browser's compendium of some of the leading people, places (organizations and programs) and technologies that are helping move the field forward into the next stage. Each entry is unique; what they all share is an innovative quality that others will emulate. PMID:7627230

  4. The Landsat Image Mosaic of Antarctica (LIMA): A Cutting-Edge Way for Students and Teachers to Learn about Antarctica

    ERIC Educational Resources Information Center

    Campbell, Brian; Bindschadler, Robert

    2009-01-01

    By studying Antarctica via satellite and through ground-truthing research, we can learn where the ice is melting and why. The Landsat Image Mosaic of Antarctica (LIMA), a new and cutting-edge way for scientists, researchers, educators, students, and the public to look at Antarctica, supports this research and allows for unprecedented views of our…

  5. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    PubMed

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-01-01

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field. PMID:24913598

  6. Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry

    PubMed Central

    Headland, Sarah E.; Jones, Hefin R.; D'Sa, Adelina S. V.; Perretti, Mauro; Norling, Lucy V.

    2014-01-01

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStreamX Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStreamX could be used effectively to advance this scientific field. PMID:24913598

  7. Cutting Edge Geometry Effect on Plastic Deformation of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Korovin, G. I.; Filippov, A. V.; Proskokov, A. V.; Gorbatenko, V. V.

    2016-04-01

    The paper presents experimental studies of OT4 titanium alloy machining with cutting edges of various geometry parameters. Experiments were performed at a low speed by the scheme of free cutting. Intensity of plastic shear strain was set for defining of cutting edge geometry effect on machining. Images of chip formed are shown. Estimation of strain magnitude was accomplished with digital image correlation method. Effect of rake angle and cutting edge angle has been studied. Depth of deformed layer and the area of the plastic strain is determine. Results showed that increasing the angle of the cutting edge inclination results in a change the mechanism of chip formation.

  8. Cutting a Tapered Edge on Padding Material

    NASA Technical Reports Server (NTRS)

    Mitchell, M. J.

    1982-01-01

    Resilience and flexibility of felt, rubber, or other padding materials allow them to be clamped in form block, cut straight down, and then released to produce straight clean tapered edge. With material held in slanted position, edge can be cut straight down; hence cut depth is minimum.

  9. The Cutting-Edge Challenge

    ERIC Educational Resources Information Center

    Share, Joani

    2005-01-01

    In a time of educational budget cuts, the arts seem to take the major brunt of the financial ax. Fine arts programs are often pitted against one another for survival. The music industry and supporting corporations, such as American Express, campaign to have instruments donated or purchased to keep educational programs alive. The visual arts do not…

  10. The Cutting Edge, 1999-2000.

    ERIC Educational Resources Information Center

    Cutting Edge, 2000

    2000-01-01

    The Cutting Edge is a bimonthly newsletter of the Regional Center for Applied Technology and Training at Danville Community College (DCC) (Virginia) that provides the latest information on a wide range of issues including technology, business, employment trends, and new legislation. Articles from the first five issues discuss: (1) the July 2000…

  11. Features of plastics edge cutting machining

    NASA Astrophysics Data System (ADS)

    Handozhko, A. V.; Shcherbakov, A. N.; Zaharov, L. A.; Gavrilenko, T. V.

    2016-04-01

    This article describes the features of pieces from thermoplastic materials in the form of electrical insulators cut by a disk edge tool. The problems in question are possible defects arising during machining and technological conditions that reduce their quantity. The necessity of required machining conditions matching substantiated in accordance with a specific grade of the material which is treated. Equipment and machining attachments, developed for experimental studies, determine the rational conditions of plastic electrical insulators machining. As a result of experiments the dependences of cut face quality parameters of plastics are obtained by machining conditions. The obtained results allowed us to make valid conclusions and recommendations.

  12. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.

    1995-01-01

    Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.

  13. GSFC Cutting Edge Avionics Technologies for Spacecraft

    NASA Technical Reports Server (NTRS)

    Luers, Philip J.; Culver, Harry L.; Plante, Jeannette

    1998-01-01

    With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.

  14. Material Behavior At The Extreme Cutting Edge In Bandsawing

    NASA Astrophysics Data System (ADS)

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin; Hellbergh, Hâkan

    2011-01-01

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 μm-50 μm) being smaller than or equal to the cutting edge radius (5 μm-15 μm). This situation can lead to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. "High Speed Photography" has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during "High Speed Photography" and "Quick Stop" process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.

  15. Material Behavior At The Extreme Cutting Edge In Bandsawing

    SciTech Connect

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin; Hellbergh, Haakan

    2011-01-17

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can lead to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.

  16. The cutting edge: Sharp biological materials

    NASA Astrophysics Data System (ADS)

    Meyers, M. A.; Lin, A. Y. M.; Lin, Y. S.; Olevsky, E. A.; Georgalis, S.

    2008-03-01

    Through hundreds of millions of years of evolution, organisms have developed a myriad of ingenious solutions to ensure and optimize survival and success. Biological materials that comprise organisms are synthesized at ambient temperature and pressure and mostly in aqueous environments. This process, mediated by proteins, limits the range of materials at the disposal of nature and therefore the design plays a pivotal role. This article focuses on sharp edges and serrations as important survival and predating mechanisms in a number of plants, insects, fishes, and mammals. Some plants have sharp edges covered with serrations. The proboscis of mosquitoes and stinger of bees are examples in insects. Serrations are a prominent feature in many fish teeth, and rodents have teeth that are sharpened continuously, ensuring their sharpness and efficacy. Some current bioinspired applications will also be reviewed.

  17. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.

    1995-10-31

    Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.

  18. Scaling Community College Interventions. Cutting Edge Series. No. 2

    ERIC Educational Resources Information Center

    Public Agenda, 2011

    2011-01-01

    This is the second guide of the Cutting Edge Series and is designed to help colleges apply strategies that will allow successful institutional change and student achievement initiatives to reach more students. Section 1 of this guide lays out the most common obstacles to successful scaling and serves as a sobering reminder of the complexity of the…

  19. Information Commons Features Cutting-Edge Conservation and Technology

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    This article features Richard J. Klarchek Information Commons (IC) at Loyola University Chicago, an all-glass library building on the shore of Chicago's Lake Michigan that is not only a state-of-the-art digital research library and study space--it also runs on cutting-edge energy technology. The building has attracted attention and visitors from…

  20. The Community College Baccalaureate Movement: Cutting-Edge Dissertation Research

    ERIC Educational Resources Information Center

    Hrabak, Michael R.

    2009-01-01

    In this review of dissertations, the researcher presents summaries of 10 of the most recent and cutting-edge dissertations focusing on the ever-growing and complex field of the community college baccalaureate movement. These studies focus on the gamut of specific legislation, case studies of particular programs and schools, financing of such…

  1. 7. View of cut stone apron sitting at edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of cut stone apron sitting at edge of concrete apron. Photograph taken from east side of lower dam. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  2. Spine image fusion via graph cuts.

    PubMed

    Miles, Brandon; Ben Ayed, Ismail; Law, Max W K; Garvin, Greg; Fenster, Aaron; Li, Shuo

    2013-07-01

    This study investigates a novel CT/MR spine image fusion algorithm based on graph cuts. This algorithm allows physicians to visually assess corresponding soft tissue and bony detail on a single image eliminating mental alignment and correlation needed when both CT and MR images are required for diagnosis. We state the problem as a discrete multilabel optimization of an energy functional that balances the contributions of three competing terms: (1) a squared error, which encourages the solution to be similar to the MR input, with a preference to strong MR edges; (2) a squared error, which encourages the solution to be similar to the CT input, with a preference to strong CT edges; and (3) a prior, which favors smooth solutions by encouraging neighboring pixels to have similar fused-image values. We further introduce a transparency-labeling formulation, which significantly reduces the computational load. The proposed graph-cut fusion guarantees nearly global solutions, while avoiding the pix elation artifacts that affect standard wavelet-based methods. We report several quantitative evaluations/comparisons over 40 pairs of CT/MR images acquired from 20 patients, which demonstrate a very competitive performance in comparisons to the existing methods. We further discuss various case studies, and give a representative sample of the results. PMID:23372071

  3. Edge-based image restoration.

    PubMed

    Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan

    2005-10-01

    In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases. PMID:16238052

  4. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    PubMed Central

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature. PMID:25505977

  5. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Ray Conley

    2013-07-17

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  6. Growing Cutting-edge X-ray Optics

    SciTech Connect

    Ray Conley

    2012-11-30

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  7. On the Cutting Edge: Workshops, Online Resources, and Community Development

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Fox, S.; Iverson, E. A. R.; Beane, R. J.; Mcconnell, D. A.; Wiese, K.; Wysession, M. E.

    2014-12-01

    On the Cutting Edge, funded by NSF since 2002, offers a comprehensive professional development program for geoscience faculty. The program includes an annual integrated in-person and virtual workshop series, has developed an extensive collection of peer-reviewed instructional activities and related online resources, and supports continuing community development through sponsorship of webinars, listservs, opportunities for community contributions, and dissemination of resources to keep faculty current in their science and pedagogic practices. On the Cutting Edge (CE) has offered more than 100 face-to-face and virtual workshops, webinars, journal clubs, and other events to more than 3000 participants. The award-winning website has more than 5000 pages including 47 modules on career management, pedagogy, and geoscience topics. It has more than 1800 instructional activities contributed by the community, the majority of which have been peer-reviewed. The website had more than one million visitors last year. We have worked to support a community in which faculty improve their teaching by designing courses using research-based methods to foster higher-order thinking, incorporate geoscience data, and address cognitive and affective aspects of learning as well as a community in which faculty are comfortable and successful in managing their careers. The program addresses the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics that attract different groups of participants. CE workshops are interactive, model best pedagogical practices, emphasize participant learning, provide opportunities for participants to share their knowledge and experience, provide high-quality resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. On the Cutting Edge has had an impact on teaching based on data from national

  8. The Zooniverse: Cutting Edge Scientific Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Borden, K. A.; Whyte, L. F.; Smith, A.; Tarnoff, A.; Schmitt, H.

    2012-12-01

    Increasingly scientists and researchers from a multitude of disciplines are finding themselves inundated with more data than they could possibly interpret in a lifetime. Computers can be used entirely or partially for some data analysis; but there are some tasks that are currently best suited to human eyes, ears and brains. Zooniverse (www.zooniverse.org) invites members of the public to help researchers analyze and interpret data. To date, hundreds of thousands of volunteers have been involved in classifying images, interpreting sounds and transcribing texts. Zooniverse citizen scientists are providing valuable analyses across a variety of fields, from the hunt for exoplanets in Planet Hunters (planethunters.org) to the transcription of Greek papyri in Ancient Lives (ancientlives.org). Multiple academic publications have resulted from the combined efforts of the Zooniverse community and science teams demonstrating that citizen science is more than ever becoming a well-established method of doing research. Unlike most research projects the data, analysis and interactions with the science teams have an established and visible online presence through the project website and related discussion sites and blogs. These in themselves provide a valuable classroom resource, an opportunity for free and easy access to cutting edge scientific research. Anecdotal evidence exists that teacher can and already do use Zooniverse projects. By providing a rich and varied scaffolding to accompany the Zooniverse projects the opportunity exists for bringing citizen scientists to a wider classroom audience. An audience that may include non-specialist teachers, who require additional support to deliver challenging content, or time strapped educators who haven't the time to develop their own accompanying resources to weave Zooniverse projects into their lessons. During the session we will discuss the recent Zooniverse projects specifically designed to support and promote classroom adoption

  9. At the cutting-edge of grape and wine biotechnology.

    PubMed

    Borneman, Anthony R; Schmidt, Simon A; Pretorius, Isak S

    2013-04-01

    Wine is arguably the oldest biotechnological endeavor, with humans having been involved in wine production for at least 7000 years. Despite the artisan nature of its production, work by pioneering scientists such as Antoine-Laurent de Lavoisier and Louis Pasteur placed wine research in a prominent position for the application of cutting-edge biological and chemical sciences, a position it still holds to this day. Technologies such as whole-genome sequencing and systems biology are now revolutionizing winemaking by combining the ability to engineer phenotypes rationally, with a precise understanding of the genetic makeup and key phenotypic drivers of the key organisms that contribute to this age-old industry. PMID:23218459

  10. Pressure blades and total cutting edge: an experiment in lithic technology.

    PubMed

    Sheets, P D; Muto, G R

    1972-02-11

    Pressure techniques were used to remove 83 blades from a preformed obsidian core weighing 820 grams, yielding 17.32 meters of acute cutting edge. The blades represented 91 percent of the original weight (2.1 centimeters of acute cutting edge per gram of original material), thus demonstrating the efficiency of the pressure-blade techniques for the production of acute cutting edges. PMID:17808802

  11. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  12. Cutting-edge issues of core-collapse supernova theory

    SciTech Connect

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-05-02

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

  13. Skype Me! Astronomers, Students, and Cutting-Edge Research

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  14. Cutting-edge issues of core-collapse supernova theory

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-05-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

  15. Development of Image Selection Method Using Graph Cuts

    NASA Astrophysics Data System (ADS)

    Fuse, T.; Harada, R.

    2016-06-01

    3D models have been widely used by spread of many available free-software. Additionally, enormous images can be easily acquired, and images are utilized for creating the 3D models recently. The creation of 3D models by using huge amount of images, however, takes a lot of time and effort, and then efficiency for 3D measurement are required. In the efficient strategy, the accuracy of the measurement is also required. This paper develops an image selection method based on network design that means surveying network construction. The proposed method uses image connectivity graph. The image connectivity graph consists of nodes and edges. The nodes correspond to images to be used. The edges connected between nodes represent image relationships with costs as accuracies of orientation elements. For the efficiency, the image connectivity graph should be constructed with smaller number of edges. Once the image connectivity graph is built, the image selection problem is regarded as combinatorial optimization problem and the graph cuts technique can be applied. In the process of 3D reconstruction, low quality images and similar images are also extracted and removed. Through the experiments, the significance of the proposed method is confirmed. It implies potential to efficient and accurate 3D measurement.

  16. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  17. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides

    NASA Astrophysics Data System (ADS)

    Hou, Haowen; Teng, Jinghua; Palacios, Tomás; Chua, Soojin

    2016-07-01

    Graphene nano-ribbon waveguides with ultra-short plasmon wavelength are a promising candidate for nanoscale photonic applications. Graphene edge plasmons are the fundamental and lowest losses mode. Through finite element method, edge plasmons show large effective refractive index and strong field confinement on nanoscale ribbons. The edge plasmons follow a k1/2 dispersion relation. The wavelengths of the edge plasmons and center plasmons differ by a fixed factor. The width of edge plasmon is inversely proportional to wave vector of edge plasmon kedge. Edge defects associate with graphene nano-ribbon induce extra losses and reduce the propagation length. Cut-off width of edge plasmons reduces with increasing frequency. Cut-off width of center plasmon is enlarged by edge component but the enlargement effect diminishing with the increase of kedge. The results are important for the application of graphene plasmon towards ultra-compact photonic devices.

  18. Extraction of edge feature in cardiovascular image

    NASA Astrophysics Data System (ADS)

    Lu, Jianrong; Chen, Dongqing; Yu, Daoyin; Liu, Xiaojun

    2001-09-01

    Extraction of edge feature and accurate measurement of vascular diameter in cardiovascular image are the bases for labeling the coronary hierarchy, 3D refined reconstruction of the coronary arterial tree and accurate fusion between the calculated 3D vascular trees and other views. In order to extract vessels from the image, the grayscale minimization of the circle template and differential edge detection are put forward. Edge pixels of the coronary artery are set according to maximization of the differential value. The edge lines are determined after the edge pixels are smoothed by B-Spline function. The assessment of feature extraction is demonstrated by the excellent performance in computer simulation and actual application.

  19. Edge detection in microscopy images using curvelets

    PubMed Central

    Gebäck, Tobias; Koumoutsakos, Petros

    2009-01-01

    Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy. PMID:19257905

  20. Durability of Cutting Performance of a Knife and Micro-Structural Change of a Knife Edge

    NASA Astrophysics Data System (ADS)

    Takekoshi, Kunio; Gotoh, Manabu

    The tested knife material here is mainly SUS420J2 (a kind of stainless steel). This kind of knife is very popular for daily use. From SEM observation of the initial state of the knife-edge tip after the burr removal treatment, we find either some burr and/or a micro-groove, or no burr and no micro-groove along the edge-tip. In order to abrade intentionally, the edge of a knife is repeatedly rubbed perpendicularly to the surface of a Japanese cypress woodblock using the durability-testing machine. During this rubbing process, the abrasion and/or crushing of the edge tip are observed by SEM in detail. The frictional load between the knife-edge and the woodblock is measured. Using the cutting-test machine, the cutting performance of the abraded knives is evaluated by the number of cut pieces of paper. It is discovered that the groove evolves and grows on the edge tip with abrading operation. Moreover, it is concluded that both micro-sidewalls of the groove play a role as cutting edges (i. e., the secondary edge) and this secondary edge and the groove width govern the durability of cutting performance of the knife. Especially the groove width governs it most. These conclusions are also valid for the knives made of other materials such as SUS410 and SUP10.

  1. A beveled, conventional cutting edge surgical needle: a new innovation in wound closure.

    PubMed

    Kaulbach, H C; Towler, M A; McClelland, W A; Povinelli, K M; Becker, D G; Cantrell, R W; Edlich, R F

    1990-01-01

    A new beveled, conventional cutting edge needle has been developed with superior performance characteristics over those of other conventional cutting edge needles. It is composed of a unique stainless steel, ASTM 45500, that has been heat-treated after the curving process to enhance its resistance to bending. The angle of presentation of its cutting edges has been decreased to enhance needle sharpness. On the basis of the results of experimental and clinical investigations, this new needle is recommended for closure of lacerations. PMID:2197321

  2. FAST EDGE-FILTERED IMAGE UPSAMPLING

    PubMed Central

    Joshi, Shantanu H.; Marquina, Antonio L.; Osher, Stanley J.; Dinov, Ivo; Toga, Arthur W.; Van Horn, John D.

    2011-01-01

    We present a novel edge preserved interpolation scheme for fast upsampling of natural images. The proposed piecewise hyperbolic operator uses a slope-limiter function that conveniently lends itself to higher-order approximations and is responsible for restricting spatial oscillations arising due to the edges and sharp details in the image. As a consequence the upsampled image not only exhibits enhanced edges, and discontinuities across boundaries, but also preserves smoothly varying features in images. Experimental results show an improvement in the PSNR compared to typical cubic, and spline-based interpolation approaches. PMID:22323066

  3. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  4. Visible imaging of edge turbulence in NSTX

    SciTech Connect

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al

    2000-06-13

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  5. Experimental Analysis for Improvements of Process Efficiency and Cut Edge Quality of Fusion Cutting with 1 μm Laser Radiation

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Zenger, Karsten; Herwig, Patrick; Wetzig, Andreas; Mahrle, Achim; Beyer, Eckhard

    A systematic experimental investigation of fiber laser cutting stainless steel in a wide range of material thicknesses is performed. The achievable maximum cutting speed, the resultant thermal efficiency of the process as well as the surface roughness of the cut edges were determined using different optical setups and beam geometries. In order to find out some reasons for characteristic features of the fiber laser cutting process also the cut kerf geometries were analyzed. The systematic investigation clarifies the most promising procedural possibilities for improvements of cutting performance and cut edge quality in fiber laser cutting of stainless steel.

  6. Edge detection based on gradient ghost imaging.

    PubMed

    Liu, Xue-Feng; Yao, Xu-Ri; Lan, Ruo-Ming; Wang, Chao; Zhai, Guang-Jie

    2015-12-28

    We present an experimental demonstration of edge detection based on ghost imaging (GI) in the gradient domain. Through modification of a random light field, gradient GI (GGI) can directly give the edge of an object without needing the original image. As edges of real objects are usually sparser than the original objects, the signal-to-noise ratio (SNR) of the edge detection result will be dramatically enhanced, especially for large-area, high-transmittance objects. In this study, we experimentally perform one- and two-dimensional edge detection with a double-slit based on GI and GGI. The use of GGI improves the SNR significantly in both cases. Gray-scale objects are also studied by the use of simulation. The special advantages of GI will make the edge detection based on GGI be valuable in real applications. PMID:26832041

  7. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1992-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.

  8. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility especially when coding medical or scientific images, where edge preservation is of utmost importance. We present a simple, easy to implement differential image coding system with excellent edge preservation properties. The coding system can be used over variable rate channels which makes it especially attractive for use in the packet network environment.

  9. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  10. Improving quality of fresh-cut tomatoes using a cutting edge technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fresh-cut produce industry has experienced a double digit growth rate over the past decade. Fresh-cut tomatoes are in high demand from both the food service and retail sectors. However, the many technical challenges that exist in maintaining the quality and microbial food safety of fresh-cut to...

  11. The Location of the Maximum Temperature on the Cutting Edges of a Drill

    SciTech Connect

    Bono, M J; Ni, J

    2005-01-07

    This study analyzes the temperature profile along the cutting edges of a drill and describes how the temperature on the chisel edge can exceed the temperature on the primary cutting edges. A finite element model predicts the temperature distribution in the drill, where the heat flux loads applied to the finite element model are determined from analytical equations. The model for the heat flux loads considers both the heat generated on the shear plane and the heat generated on the rake face of the tool to determine the amount of heat flowing into the tool on each segment of the cutting edges. Contrary to the conventional belief that the maximum temperature occurs near the outer corner of the drill, the model predicts that the maximum temperature occurs on the chisel edge, which is consistent with experimental measurements of the temperature profile.

  12. Image sharpness function based on edge feature

    NASA Astrophysics Data System (ADS)

    Jun, Ni

    2009-11-01

    Autofocus technique has been widely used in optical tracking and measure system, but it has problem that when the autofocus device should to work. So, no-reference image sharpness assessment has become an important issue. A new Sharpness Function that can estimate current frame image be in focus or not is proposed in this paper. According to current image whether in focus or not and choose the time of auto focus automatism. The algorithm measures object typical edge and edge direction, and then get image local kurtosis information to determine the degree of image sharpness. It firstly select several grads points cross the edge line, secondly calculates edge sharpness value and get the cure of the kurtosis, according the measure precision of optical-equipment, a threshold value will be set beforehand. If edge kurtosis value is more than threshold, it can conclude current frame image is in focus. Otherwise, it is out of focus. If image is out of focus, optics system then takes autofocus program. This algorithm test several thousands of digital images captured from optical tracking and measure system. The results show high correlation with subjective sharpness assessment for s images of sky object.

  13. Controlled chattering—a new 'cutting-edge' technology for nanofabrication

    NASA Astrophysics Data System (ADS)

    Gu, Hongyan; Zhang, Junwei; Faucher, Santiago; Zhu, Shiping

    2010-09-01

    Chatters are unwanted random defects on surfaces often generated in cutting samples via microtome for micrographic analysis. In this work, we demonstrate that chatters can actually be controlled for fabrication of uniform periodic wavy patterns on polymethylmethacrylate surfaces. This control in chattering is achieved based on an oscillation cutting mechanism. Pattern sizes ranging from 30 nm to a few micrometers are obtained by fine-tuning cutting speed and oscillating frequency. This simple one-step non-lithographic 'cutting-edge' technology is simple and robust, with no chemical reactions and by-products involved and ease in scaling up for long-range and large-areas patterns.

  14. Image enhancement based on edge boosting algorithm

    NASA Astrophysics Data System (ADS)

    Ngernplubpla, Jaturon; Chitsobhuk, Orachat

    2015-12-01

    In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.

  15. Rounded cutting edge model for the prediction of bone sawing forces.

    PubMed

    James, Thomas P; Pearlman, John J; Saigal, Anil

    2012-07-01

    A new analytical model to predict bone sawing forces is presented. Development of the model was based on the concept of a single tooth sawing at a depth of cut less than the cutting edge radius. A variable friction model was incorporated as well as elastic Hertzian contact stress to determine a lower bound for the integration limits. A new high speed linear apparatus was developed to simulate cutting edge speeds encountered with sagittal and reciprocating bone saws. Orthogonal cutting experiments in bovine cortical bone were conducted for comparison to the model. A design of the experiment's approach was utilized with linear cutting speeds between 2600 and 6200 mm/s for depths of cut between 2.5 and 10 μm. Resultant forces from the design of experiments were in the range of 8 to 11 N, with higher forces at greater depths of cut. Model predictions for resultant force magnitude were generally within one standard deviation of the measured force. However, the model consistently predicted a thrust to cutting force ratio that was greater than measured. Consequently, resultant force angles predicted by the model were generally 20 deg higher than calculated from experimental thrust and cutting force measurements. PMID:24763623

  16. Circumcision of pacific boys: tradition at the cutting edge.

    PubMed

    Thomson, Robert; Finau, Sitaleki; Finau, Eseta; Ahokovi, Lavili; Tameifuna, Susi

    2006-09-01

    Circumcision of neonates and young boys, is a frequently performed elective surgical procedure, and is one of the oldest known surgical procedures. When properly performed circumcision prevents phimosis, paraphimosis, and balanoposthitis and has been shown to decrease the incidence of penile among men and cervical cancer among the women sexual partners of circumcised men. It may also result in a decreased incidence of urinary tract infection, sexually transmitted infections and HIV infection. Circumcision also has its own inherent risks. The risk are mainly associated with the procedure (pain, bleeding, inflammation) also included post operative infection, poor healing, excess foreskin removed leading to minor or major loss of sensation, accidental cutting of the glan penis, and cross infection if performed with un-sterile instruments especially during ritual circumcision. To make an informed choice, parents should be given accurate and unbiased information and be provided the opportunity to discuss this decision. PMID:18181400

  17. Advantages of Picosecond Laser Machining for Cutting-Edge Technologies

    NASA Astrophysics Data System (ADS)

    Moorhouse, C.

    The demand to reduce the size, weight and material cost of modern electronic devices results in a requirement for precision micromachining to aid product development. Examples include making smaller and more powerful smartphones with brighter displays, eliminating the requirement for post-process cleaning and machining the latest bio- absorbable medical stents. The pace of innovation in high-tech industries has led to ultrafast (picosecond) industrial lasers becoming an important tool for many applications and the high repetition rates now available help to meet industrial throughput levels. This is due to the unique operating regime (megawatts of peak power) enabling clean cutting and patterning of sensitive materials and thin films used in a number of novel devices and allows micromachining of wide bandgap, "difficult" materials such as glass.

  18. STRUCTURAL ANNOTATION OF EM IMAGES BY GRAPH CUT

    SciTech Connect

    Chang, Hang; Auer, Manfred; Parvin, Bahram

    2009-05-08

    Biological images have the potential to reveal complex signatures that may not be amenable to morphological modeling in terms of shape, location, texture, and color. An effective analytical method is to characterize the composition of a specimen based on user-defined patterns of texture and contrast formation. However, such a simple requirement demands an improved model for stability and robustness. Here, an interactive computational model is introduced for learning patterns of interest by example. The learned patterns bound an active contour model in which the traditional gradient descent optimization is replaced by the more efficient optimization of the graph cut methods. First, the energy function is defined according to the curve evolution. Next, a graph is constructed with weighted edges on the energy function and is optimized with the graph cut algorithm. As a result, the method combines the advantages of the level set method and graph cut algorithm, i.e.,"topological" invariance and computational efficiency. The technique is extended to the multi-phase segmentation problem; the method is validated on synthetic images and then applied to specimens imaged by transmission electron microscopy(TEM).

  19. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels

    SciTech Connect

    Worsley, D.A.; Powell, S.M.; McMurray, H.N.

    2000-05-01

    The scanning vibrating electrode technique (SVET) was used to study the influence that accelerating corrosion, by attaching remote stainless steel cathodes, has on the corrosion mechanism occurring at exposed cut edges of 0.7-mm gauge organically coated galvanized steels (OCS). Galvanized steel samples were coated with organic coating layers (200 {micro}m polyvinyl chloride [PVC] on one side and between 5 {micro}m and 36 {micro}m polyester on the other) to produce model cut edges with varying degrees of coating asymmetry. Under green corrosion conditions in 5% aqueous sodium chloride (NaCl) in the absence of polarization, such materials exhibited an asymmetric corrosion profile, which likely was caused by the establishment of differential aeration. Anodic activity was localized proximal to the thicker PVC coating with cathodic activity on the steel and zinc proximal to the thinner polyester coating. SVET testing and electrical impedance spectroscopic (EIS) measurements showed that there was no activity occurring via electrolytic transport through the organic coating, with the exception of the thinnest (5 {micro}m polyester) coatings, which had measurable pore resistance. Attaching a 4-cm{sup 2} remote stainless steel cathode to the 20-mm exposed cut edge caused the anodic currents emanating from the cut edge to increase fifty-fold, accompanied by a dramatic change in observed mechanism. The location of anodic and cathodic activity on the cut edge was altered significantly with both zinc layers acting as focal anodes. Removal of the remote cathode returned the corrosion current to a similar level seen in the unpolarized conditions, but the original mechanism never was recovered, and both zinc layers remained anodic. Cyclic wet and dry testing using a paint-undercutting accelerated test (PUCAT) apparatus was used to demonstrate the influence that this mechanistic change had on the degree of PVC coating delamination away from the exposed cut edge.

  20. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  1. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  2. Remote laser cutting of CFRP: influence of the edge quality on fatigue strength

    NASA Astrophysics Data System (ADS)

    Stock, Johannes W.; Zaeh, Michael F.; Spaeth, Justinian P.

    2014-02-01

    The additional weight of the batteries in electric cars can be compensated by using carbon fiber reinforced plastics (CFRP) for structural parts of the passenger cell. Various machining processes for CFRP are currently subject to investigations. Milling and abrasive waterjet cutting implicate fiber pull out or delamination and, thus, do not thoroughly meet the requirements for mass production. Despite this, laser beam cutting has a great potential in large scale cutting of CFRP and is a predominant research topic. Remote laser beam cutting especially provides a good cut surface quality. Currently, the correlation between cutting parameters and edge quality is not sufficiently known. In particular, studies on the dynamic strength of remote laser cut parts are missing. Therefore, fatigue testing was performed with specimens cut by laser radiation and the results were compared with others made by milling and abrasive waterjet cutting. With these experiments, a comparable study of the different methods of CFRP cutting was achieved. The influence of both the heat affected zone (HAZ) and of defects like micro-fissures on the fatigue strength were evaluated.

  3. Impact of the On the Cutting Edge Professional Development Program on U.S. Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Iverson, E. A.; Czujko, R.; Macdonald, H.; Mogk, D. W.; Tewksbury, B. J.; McLaughlin, J.; Sanford, C.; Greenseid, L.; Luxenberg, M.

    2011-12-01

    Transforming STEM education from a dominantly lecture-based format focused on facts to classrooms where students engage with the process of understanding the world through science is a primary goal of faculty development. On the Cutting Edge seeks to support this transformation by using workshops and a website to build a community of geoscience faculty who learn from one another. In order to assess the impact of the On the Cutting Edge program, we surveyed 5917 U.S. geoscience faculty in 2009 and received 2874 completed responses (49% response rate). We looked at the differences in responses between workshop participants who also use the website, website users who have not attended a Cutting Edge workshop, and survey respondents who had neither attended a Cutting Edge workshop nor used the Cutting Edge website. The number of respondents who had attended a Cutting Edge workshop and had not used the website was too small to analyze. Courses described by Cutting Edge workshop participants make significantly less use of lecture and more use of small group discussion and in-class activities. While all faculty respondents routinely update their courses, workshop participants are more likely to have changed their teaching methods in the two years leading up to the survey. When making changes to their teaching methods, workshop participants are more likely than other populations to seek information about teaching on the web, consult journal articles about teaching, and seek advice from colleagues outside their department and from nationally known leaders in geoscience education. Workshop participants are also more likely to tell a colleague when they do something that is particularly successful in class. End-of-workshop survey and follow-up interview data indicate that participants leave workshops reinvigorated, with a new or renewed commitment to student-centered teaching, and that they make use of the website as they implement ideas for changing their teaching following

  4. Faculty as Filmmakers: On the Cutting Edge of Classroom Technologies

    ERIC Educational Resources Information Center

    Rozensher, Susan G.

    2007-01-01

    Digital video equipment and studios newly available for faculty use can be incorporated into the technological repertoire of college faculty, enabling professors to customize and enhance the learning experience of their students. Today's students are particularly attuned to analyzing visual images and data, so the use of customized films in the…

  5. Kinect, a Novel Cutting Edge Tool in Pavement Data Collection

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh, A.; Firoozi Yeganeh, S.; Golroo, A.

    2015-12-01

    Pavement roughness and surface distress detection is of interest of decision makers due to vehicle safety, user satisfaction, and cost saving. Data collection, as a core of pavement management systems, is required for these detections. There are two major types of data collection: traditional/manual data collection and automated/semi-automated data collection. This paper study different non-destructive tools in detecting cracks and potholes. For this purpose, automated data collection tools, which have been utilized recently are discussed and their applications are criticized. The main issue is the significant amount of money as a capital investment needed to buy the vehicle. The main scope of this paper is to study the approach and related tools that not only are cost-effective but also precise and accurate. The new sensor called Kinect has all of these specifications. It can capture both RGB images and depth which are of significant use in measuring cracks and potholes. This sensor is able to take image of surfaces with adequate resolution to detect cracks along with measurement of distance between sensor and obstacles in front of it which results in depth of defects. This technology has been very recently studied by few researchers in different fields of studies such as project management, biomedical engineering, etc. Pavement management has not paid enough attention to use of Kinect in monitoring and detecting distresses. This paper is aimed at providing a thorough literature review on usage of Kinect in pavement management and finally proposing the best approach which is cost-effective and precise.

  6. Cutting-Edge Technologies and Social Media Use in Higher Education

    ERIC Educational Resources Information Center

    Benson, Vladlena, Ed.; Morgan, Stephanie

    2014-01-01

    The inclusion of social media in higher education has transformed the way instructors teach and students learn. In order to effectively reach their students in this networked world, teachers must learn to utilize the latest technologies in their classrooms. "Cutting-Edge Technologies and Social Media Use in Higher Education" brings…

  7. Pupillometry: Cutting Edge Biometrics for Early Intervention in Increased Intracranial Pressure.

    PubMed

    John, Jennilee St

    2015-10-01

    The pupillometer, a cutting-edge biometric device, is a valuable assessment tool that can aid in the early detection and prompt treatment of neurological abnormalities. Pupil assessment is a critical component of the neurological examination, and manual pupil assessment leaves much room for error. Automated pupillometry improves the quality and reliability of pupillary and neurological assessments, ultimately improving patient outcomes. PMID:26430859

  8. Building Institutional Capacity for Data-Informed Decision Making. Cutting Edge Series. No. 3

    ERIC Educational Resources Information Center

    Public Agenda, 2012

    2012-01-01

    "Building Institutional Capacity for Data-Informed Decision Making" is the third installment of the Cutting Edge series, which aims to help colleges engage faculty, scale successful interventions, and create a strong culture of evidence through use of data to strengthen their institutional change and student success efforts. Though the authors…

  9. What's Your Story?: Dutch Library DOK's New Cutting-Edge Community Tech Projects

    ERIC Educational Resources Information Center

    Boekesteijn, Erik

    2010-01-01

    DOK, the cutting-edge library center in Delft, the Netherlands, has been finding new ways to elaborate on the social networking impulse. A good library unites people from all levels of society, and DOK's unique innovation department focuses specifically on how media can bring people together. It's doing so using technology to inspire and connect…

  10. The Snowmastodon Project: cutting-edge science on the blade of a bulldozer

    USGS Publications Warehouse

    Pigati, Jeffery S.; Miller, Ian M.; Johnson, Kirk R.

    2015-01-01

    Cutting-edge science happens at a variety of scales, from the individual and intimate to the large-scale and collaborative. The publication of a special issue of Quaternary Research in Nov. 2014 dedicated to the scientific findings of the “Snowmastodon Project” highlights what can be done when natural history museums, governmental agencies, and academic institutions work toward a common goal.

  11. Tapping Recent Alumni for the Development of Cutting-Edge, Investigative Teaching Laboratory Experiments

    ERIC Educational Resources Information Center

    Brodl, Mark R.

    2005-01-01

    This project presents a model for the development of an innovative, highly-experimental teaching laboratory course that centers upon collaborative efforts between recent alumni currently enrolled in Ph. D. programs (consultants) and current faculty. Because these consultants are involved in cutting-edge research, their combined talents represent a…

  12. Bearing Abilities and Progressive Damage Analysis of Three Dimensional Four-Directional Braided Composites with Cut-Edge

    NASA Astrophysics Data System (ADS)

    Lei, Bing; Liu, Zhenguo; Ya, Jixuan; Wang, Yibo; Li, Xiaokang

    2016-04-01

    Cut-edge is a kind of damage for the three-dimensional four-directional (3D4d) braided composites which is inevitable because of machining to meet requisite shape and working in the abominable environment. The longitudinal tensile experiment of the 3D4d braided composites with different braiding angles between cut-edge and the ones without cut-edge was conducted. Then representative volume cell (RVC) with interface zones was established to analyze the tensile properties through the fracture and damage mechanics. The periodic boundary conditions under the cut-edge and uncut-edge conditions were imposed to simulate the failure mechanism. Stress-strain distribution and the damage evolution nephogram in cut-edge condition were conducted. Numerical results were coincident with the experimental results. Finally the variation of cut-edge effect with the specimen thickness was simulated by superimposing inner cells. The consequence showed that thickness increase can effectively reduce cut-edge influence on longitudinal strength for 3D4d braided composites. Cut-edge simulation of braided composites has guiding significance on the actual engineering application.

  13. Bearing Abilities and Progressive Damage Analysis of Three Dimensional Four-Directional Braided Composites with Cut-Edge

    NASA Astrophysics Data System (ADS)

    Lei, Bing; Liu, Zhenguo; Ya, Jixuan; Wang, Yibo; Li, Xiaokang

    2016-08-01

    Cut-edge is a kind of damage for the three-dimensional four-directional (3D4d) braided composites which is inevitable because of machining to meet requisite shape and working in the abominable environment. The longitudinal tensile experiment of the 3D4d braided composites with different braiding angles between cut-edge and the ones without cut-edge was conducted. Then representative volume cell (RVC) with interface zones was established to analyze the tensile properties through the fracture and damage mechanics. The periodic boundary conditions under the cut-edge and uncut-edge conditions were imposed to simulate the failure mechanism. Stress-strain distribution and the damage evolution nephogram in cut-edge condition were conducted. Numerical results were coincident with the experimental results. Finally the variation of cut-edge effect with the specimen thickness was simulated by superimposing inner cells. The consequence showed that thickness increase can effectively reduce cut-edge influence on longitudinal strength for 3D4d braided composites. Cut-edge simulation of braided composites has guiding significance on the actual engineering application.

  14. Temporal registration of multispectral digital satellite images using their edge images

    NASA Technical Reports Server (NTRS)

    Nack, M. L.

    1975-01-01

    An algorithm is described which will form an edge image by detecting the edges of features in a particular spectral band of a digital satellite image. It is capable also of forming composite multispectral edge images. In addition, an edge image correlation algorithm is presented which performs rapid automatic registration of the edge images and, consequently, the grey level images.

  15. Cutting-Edge: Integrating Students with Intellectual and Developmental Disabilities into a 4-Year Liberal Arts College

    ERIC Educational Resources Information Center

    Hafner, Dedra; Moffatt, Courtney; Kisa, Nutullah

    2011-01-01

    Cutting-Edge provides inclusion in college for students with intellectual disabilities (SWID). Cutting-Edge students attended college by taking undergraduate courses, resided in student housing, and engaged in student-life events as well as pursued community service, internships and employment. Undergraduate students were the best means to teach…

  16. Cleaning capacity of hybrid instrumentation technique using reamer with alternating cutting edges system files: Histological analysis

    PubMed Central

    Júnior, Emilio Carlos Sponchiado; da Fonseca, Tiago Silva; da Frota, Matheus Franco; de Carvalho, Fredson Marcio Acris; Marques, André Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2014-01-01

    Aim: The aim of the following study is to evaluate the cleaning capacity of a hybrid instrumentation technique using Reamer with Alternating Cutting Edges (RaCe) system files in the apical third of mesial roots of mandibular molars. Materials and Methods: Twenty teeth were selected and separated into two groups (n = 20) according to instrumentation technique as follows: BioRaCe - chemomechanical preparation with K-type files #10 and #15; and files BioRaCe BR0, BR1, BR2, BR3, and BR4; HybTec - hybrid instrumentation technique with K-type files #10 and #15 in the working length, #20 at 2 mm, #25 at 3 mm, cervical preparation with Largo burs #1 and #2; apical preparation with K-type files #15, #20, and #25 and RaCe files #25.04 and #30.04. The root canals were irrigated with 1 ml of 2.5% sodium hypochlorite at each change of instrument. The specimens were histologically processed and photographed under light optical microscope. The images were inserted onto an integration grid to count the amount of debris present in the root canal. Results: BioRaCe presented the highest percentage of debris in the apical third, however, with no statistically significant difference for HybTec (P > 0.05). Conclusions: The hybrid technique presented similar cleaning capacity as the technique recommended by the manufacturer. PMID:24963247

  17. Unsupervised color image segmentation using graph cuts with multi-components

    NASA Astrophysics Data System (ADS)

    Li, Lei; Jin, Lianghai; Song, Enmin; Dong, Zhuoli

    2013-10-01

    A novel unsupervised color image segmentation method based on graph cuts with multi-components is proposed, which finds an optimal segmentation of an image by regarding it as an energy minimization problem. First, L*a*b* color space is chosen as color feature, and the multi-scale quaternion Gabor filter is employed to extract texture feature of the given image. Then, the segmentation is formulated in terms of energy minimization with an iterative process based on graph cuts, and the connected regions in each segment are considered as the components of the segment in each iteration. In addition, canny edge detector combined with color gradient is used to remove weak edges in segmentation results with the proposed algorithm. In contrast to previous algorithms, our method could greatly reduce computational complexity during inference procedure by graph cuts. Experimental results demonstrate the promising performance of the proposed method.

  18. Gradient cuts and extremal edges in relative depth and figure-ground perception.

    PubMed

    Ghose, Tandra; Palmer, Stephen E

    2016-02-01

    Extremal edges (EEs) are borders consisting of luminance gradients along the projected edge of a partly self-occluding curved surface (e.g., a cylinder), with equiluminant contours (ELCs) that run approximately parallel to that edge. Gradient cuts (GCs) are similar luminance gradients with ELCs that intersect (are "cut" by) an edge that could be due to occlusion. EEs are strongly biased toward being seen as closer/figural surfaces (Palmer & Ghose, Psychological Science, 19(1), 77-83, 2008). Do GCs produce a complementary bias toward being seen as ground? Experiment 1 shows that, with EEs on the opposite side, GCs produce a ground bias that increases with increasing ELC angles between ELCs and the shared edge. Experiment 2 shows that, with flat surfaces on the opposite side, GCs do not produce a ground bias, suggesting that more than one factor may be operating. We suggest that two partially dissociable factors may operate for curved surfaces-ELC angle and 3-D surface convexity-that reinforce each other in the figural cues of EEs but compete with each other in GCs. Moreover, this figural bias is modulated by the presence of EEs and GCs, as specified by the ELC angle between ELCs and the shared contour. PMID:26637235

  19. Cutting Edge Research in Homeopathy: HRI's second international research conference in Rome.

    PubMed

    Tournier, Alexander L; Roberts, E Rachel

    2016-02-01

    Rome, 3rd-5th June 2015, was the setting for the Homeopathy Research Institute's (HRI) second conference with the theme 'Cutting Edge Research in Homeopathy'. Attended by over 250 delegates from 39 countries, this event provided an intense two and a half day programme of presentations and a forum for the sharing of ideas and the creation of international scientific collaborations. With 35 oral presentations from leaders in the field, the scientific calibre of the programme was high and the content diverse. This report summarises the key themes underpinning the cutting edge data presented by the speakers, including six key-note presentations, covering advancements in both basic and clinical research. Given the clear commitment of the global homeopathic community to high quality research, the resounding success of both Barcelona 2013 and Rome 2015 HRI conferences, and the dedicated support of colleagues, the HRI moves confidently forward towards the next biennial conference. PMID:26827995

  20. A method for determining the local magnetic induction near the cut edge of the ferromagnetic strip

    NASA Astrophysics Data System (ADS)

    Gmyrek, Z.

    2016-05-01

    The paper deals with the problem of precise determination of the local magnetic induction. The author proposes a new way of doing the measurements using the classical needle probe method. The proceeding algorithm combined with the proposed approximation of the ΔU voltage drop, contributes to a significant increase in the accuracy of the determination of the magnetic induction distribution in the zone near the cut edge.

  1. Liquid-Crystal Light Valve Enhances Edges In Images

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1991-01-01

    Experiments show liquid-crystal light valve (LCLV) exhibits operating mode in which it enhances edges in images projected on it. Operates in edge-enhancing mode (or in combination of edge-enhancing and normal modes) by suitably adjusting bias voltage and frequency. Enhancement of edges one of most important preprocessing steps in optical pattern-recognition systems. Incorporated into image-processing system to enhance edges without introducing excessive optical noise.

  2. Positive edge effects on forest-interior cryptogams in clear-cuts.

    PubMed

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality

  3. Edge and color preserving single image superresolution

    NASA Astrophysics Data System (ADS)

    Tang, Songze; Xiao, Liang; Liu, Pengfei; Zhang, Jun; Huang, Lili

    2014-05-01

    Most existing superresolution (SR) techniques focus primarily on improving the quality in the luminance component of SR images, while paying less attention to the chrominance component. We present an edge and color preserving image SR approach. First, for the luminance channel, a heavy-tailed gradient distribution of natural images is investigated as an image prior. Then, an efficient optimization algorithm is developed to recover the latent high-resolution (HR) luminance component. Second, for the chrominance channels, we propose a two-stage framework for luminance-guided chrominance SR. In the first stage, since most of the shape and structural information is contained in the luminance channel, a simple Markov random field formulation is introduced to search the optimal direction for color local interpolation guided by HR luminance components. To further improve the quality of the chrominance channels, in the second stage, a nonlocal auto regression model is utilized to refine the initial HR chrominance. Finally, we combine the SR reconstructed luminance components with the generated HR chrominance maps to get the final SR color image. Systematic experimental results demonstrated that our method outperforms some state-of-the-art methods in terms of the peak signal-to-noise ratio, structural similarity, feature similarity, and the mean color errors.

  4. Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.

    PubMed

    Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya

    2016-01-01

    In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework. PMID:27584732

  5. Characterization of the cutting edge of glass knives for ultramicrotomy by scanning force microscopy using cantilevers with a defined tip geometry

    PubMed

    Matzelle; Kruse; Reichelt

    2000-09-01

    The geometry of glass knife edges for ultramicrotomy was studied with nanoscale resolution using scanning force microscopy (SFM) in the contact mode. The local shape of the cutting edge was estimated from single line profiles of the SFM topographic images by taking into account the exact radius of the ultrasharp silicon tip. The tip radius was estimated from secondary electron micrographs recorded at low voltage by field emission scanning electron microscopy (FESEM). The radius of the investigated cutting edges was found to be in range 5-20 nm. The results obtained illustrate that the combination of SFM and high resolution FESEM provides a unique means to determine precisely the radius of glass knives. PMID:10971804

  6. Fuzzy Index to Evaluate Edge Detection in Digital Images

    PubMed Central

    Perez-Ornelas, Felicitas; Mendoza, Olivia; Melin, Patricia; Castro, Juan R.; Rodriguez-Diaz, Antonio; Castillo, Oscar

    2015-01-01

    In literature, we can find different metrics to evaluate the detected edges in digital images, like Pratt's figure of merit (FOM), Jaccard’s index (JI) and Dice’s coefficient (DC). These metrics compare two images, the first one is the reference edges image, and the second one is the detected edges image. It is important to mention that all existing metrics must binarize images before their evaluation. Binarization step causes information to be lost because an incomplete image is being evaluated. In this paper, we propose a fuzzy index (FI) for edge evaluation that does not use a binarization step. In order to process all detected edges, images are represented in their fuzzy form and all calculations are made with fuzzy sets operators and fuzzy Euclidean distance between both images. Our proposed index is compared to the most used metrics using synthetic images, with good results. PMID:26115362

  7. Available Tools and Challenges Classifying Cutting-Edge and Historical Astronomical Documents

    NASA Astrophysics Data System (ADS)

    Lagerstrom, Jill

    2015-08-01

    The STScI Library assists the Science Policies Division in evaluating and choosing scientific keywords and categories for proposals for the Hubble Space Telescope mission and the upcoming James Webb Space Telescope mission. In addition we are often faced with the question “what is the shape of the astronomical literature?” However, subject classification in astronomy in recent times has not been cultivated. This talk will address the available tools and challenges of classifying cutting-edge as well as historical astronomical documents. In at the process, we will give an overview of current and upcoming practices of subject classification in astronomy.

  8. Visible imaging of edge fluctuations in TFTR

    SciTech Connect

    Zweben, S.J.; Medley, S.S.

    1989-03-01

    Images of the visible light emission from the inner wall region of TFTR have been made using a rapidly gated, intensified TV camera. Strong ''filamentation'' of the neutral deuterium D..cap alpha.. light is observed when the camera gating time is <100 ..mu..sec during neutral-beam-heated discharges. These turbulent filaments vary in position randomly vs. time and have a poloidal wavelength of approx.3-5 cm which is much shorter than their parallel wavelength of approx.100 cm. A second and new type of edge fluctuation phenomenon, which we call a ''merfe,'' is also described. Merfes are a regular poloidal pattern of toroidally symmetric, small-scale marfes which move away from the inner midplane during the current decay after neutral beam injection. Some tentative interpretations of these two phenomena are presented. 27 refs., 8 figs.

  9. Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge

    NASA Astrophysics Data System (ADS)

    Kozlov, V.; Gerasimov, A.; Kim, A.

    2016-04-01

    In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm

  10. Sliding mean edge estimation. [in digital image processing

    NASA Technical Reports Server (NTRS)

    Ford, G. E.

    1978-01-01

    A method for determining the locations of the major edges of objects in digital images is presented. The method is based on an algorithm utilizing maximum likelihood concepts. An image line-scan interval is processed to determine if an edge exists within the interval and its location. The proposed algorithm has demonstrated good results even in noisy images.

  11. Blind image deblurring with edge enhancing total variation regularization

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Hong, Hanyu; Song, Jie; Hua, Xia

    2015-04-01

    Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.

  12. Spectral segmentation of polygonized images with normalized cuts

    SciTech Connect

    Matsekh, Anna; Skurikhin, Alexei; Rosten, Edward

    2009-01-01

    We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

  13. Edge mode spectroscopy and imaging for film edge properties in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    McMichael, Robert

    2014-03-01

    Lithography is an act of violence. Often, films are almost entirely obliterated by patterning, leaving only nanostructures behind with film edges that have borne the brunt of the damage, edges that carry with them the scars of energetic ion bombardment, reactive ions, liftoff and exposure to ambient conditions. In this talk, I will present a variation on ferromagnetic resonance force microscopy that can provide insight into the magnetic properties of film edges in magnetic nanostructures. The method relies on the non-uniformity of the magnetic field in patterned-film nanostructures that are magnetized in-plane, specifically, the low-field regions that form near where the magnetization is directed normal to the edge. In these regions, localized precession forms as trapped spin wave modes, and the resonance condition of these modes serves as an indicator of the edge properties. I will present modeling and measurements on a 500 nm diameter, 25 nm thick Permalloy disk to illustrate the method. Micromagnetic modeling of this disk predicts a main mode that is nearly uniform across the sample and three localized edge modes with higher resonance fields. The spectra measured with various tip positions and mode imaging are consistent with the modeling results. In addition to a strong center mode, three distinct edge modes are observed when the tip is near the disk edge. For a symmetric disk, the modeling predicts that the edge mode resonances are identical on the two opposite edges. However, the measured edge mode resonances on opposite edges of the disk are detected at different resonance fields, suggesting inhomogeneity of the edge properties. By rotating the applied field, we control the position of the localized edge mode along the edge of the disk and confirm that the edge mode resonance field has a strong angular dependence, showing that edge mode properties can vary significantly in a nominally circular disk.

  14. Image edge detection based on adaptive lifting scheme

    NASA Astrophysics Data System (ADS)

    Xia, Ping; Xiang, Xuejun; Wan, Junli

    2009-10-01

    Image edge is because the gradation is the result of not continuously, is image's information basic characteristic, is also one of hot topics in image processing. This paper analyzes traditional arithmetic of image edge detection and existing problem, uses adaptive lifting wavelet analysis, adaptive adjusts the predict filter and the update filter according to information's partial characteristic, thus realizes the processing information accurate match; at the same time, improves the wavelet edge detection operator, realizes one kind to be suitable for the adaptive lifting scheme image edge detection's algorithm, and applies this method in the medicine image edge detection. The experiment results show that this paper's algorithm is better than the traditional algorithm effect.

  15. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008

  16. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role

  17. Virtual Workshop Experiences for Faculty: Lessons Learned from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Mogk, D. W.; Bruckner, M. Z.

    2010-12-01

    The On the Cutting Edge professional development program for geoscience faculty has begun offering online workshops as a supplement to its face-to-face workshop series. Following a few initial forays since 2005, Cutting Edge launched a suite of four virtual workshops in 2010: Teaching Geoscience with Service Learning, Understanding the Deep Earth, Designing Effective and Innovative Courses in the Geosciences, and Teaching Geoscience Online. Each workshop was presented over 1-2 weeks and included pre-workshop web postings, synchronous whole-group presentations, live small-group discussions, asynchronous input via threaded discussions or editable web pages, and personal time for reflection and writing. Synchronous sessions were facilitated through the Elluminate software platform which includes tools for viewing presentations, screen sharing, real-time participant response, and an ongoing chat-room discussion. Audio was provided through a separate telephone conference service. In addition, many asynchronous conversations on workshop topics were held via a threaded discussion board on the Cutting Edge website and in Wiki-like, editable web pages designed to support collaborative work. A number of challenges to running online workshops exist, primarily involving participants’ time management. It is difficult for participants to set aside enough time to complete workshop activities when they are still enmeshed in their everyday lives. It also requires new skills for speakers, participants and support staff to prepare web-based materials and navigate the technology required for the online presentations. But there are also a number of opportunities presented by these experiences. With no travel needed, an online workshop is less expensive for participants, which allows Cutting Edge to extend its commitment to providing workshop materials to a wider audience of interested faculty. Also, synchronous sessions can be recorded and posted on the website for broader community

  18. Line Edge Detection and Characterization in SEM Images using Wavelets

    SciTech Connect

    Sun, W; Romagnoli, J A; Tringe, J W; L?tant, S E; Stroeve, P; Palazoglu, A

    2008-10-07

    Edge characterization has become increasingly important in nanotechnology due to the growing demand for precise nanoscale structure fabrication and assembly. Edge detection is often performed by thresholding the spatial information of a top-down image obtained by Scanning Electron Microscopy (SEM) or other surface characterization techniques. Results are highly dependent on an arbitrary threshold value, which makes it difficult to reveal the nature of the real surface and to compare results among images. In this paper, we present an alternative edge boundary detection technique based on the wavelet framework. Our results indicate that the method facilitates nano-scale edge detection and characterization, by providing a systematic threshold determination step.

  19. Tool holder for preparation and inspection of a radiused edge cutting tool

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.

  20. "The Cutting Edge," El Paso Community College's Workplace Education Program. Final Evaluation Report for the 1993-1995 Cycle.

    ERIC Educational Resources Information Center

    Jurmo, Paul

    The report summarizes results of an evaluation of "The Cutting Edge," a workplace education program operated by El Paso Community College (Texas) with funding from the National Workplace Literacy Program. The project had tow main goals: to field test and refine curricula at a number of workplace sites, and to prepare products and services and…

  1. Edge-Based Image Compression with Homogeneous Diffusion

    NASA Astrophysics Data System (ADS)

    Mainberger, Markus; Weickert, Joachim

    It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr-Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

  2. Blind Image Inpainting Based on TV Model and Edge Detection

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Yu; Deng, Liang-Jian

    Blind image inpainting is an approach to estimate the original image, when there is no or little knowledge of the degraded process. In this paper, the algorithm of blind image inpainting is based on edge detection methods to generate one inpainting mask H automatically. And then we combine the inpainting mask H with a TV model to get image blind inpainted. Experiment results demonstrate that the proposed algorithms is effective with application to both the synthetic and real-world images.

  3. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    SciTech Connect

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    2011-12-23

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  4. Misalignment-robust, edge-based image fusion method

    NASA Astrophysics Data System (ADS)

    Xi, Cai; Wei, Zhao

    2012-07-01

    We propose an image fusion method robust to misaligned source images based on their multiscale edge representations. Significant long edge curves at the second scale are selected to decide edge locations at each scale for the multiscale edge representations of source images. Then, processes are only executed on the representations that contain the main spatial structures of the images and also help suppress noise interference. A registration process is embedded in our fusion method. Edge correlation, calculated at the second scale, is involved as a match measure determining the fusion rules and also as a similarity measure quantifying the matching extent between source images, which makes the registration and fusion processes share the same data and hence lessens the computation of our method. Experimental results prove that, no matter whether in a noiseless or noisy condition, the proposed method provides satisfying treatment to misregistered source images and behaves well in terms of visual and objective evaluations on the fusion results, which further verifies the robustness of our edge-based method to misregistration and noise.

  5. Edge detection of noisy images based on cellular neural networks

    NASA Astrophysics Data System (ADS)

    Li, Huaqing; Liao, Xiaofeng; Li, Chuandong; Huang, Hongyu; Li, Chaojie

    2011-09-01

    This paper studies a technique employing both cellular neural networks (CNNs) and linear matrix inequality (LMI) for edge detection of noisy images. Our main work focuses on training templates of noise reduction and edge detection CNNs. Based on the Lyapunov stability theorem, we derive a criterion for global asymptotical stability of a unique equilibrium of the noise reduction CNN. Then we design an approach to train edge detection templates, and this approach can detect the edge precisely and efficiently, i.e., by only one iteration. Finally, we illustrate performance of the proposed methodology from the aspect of peak signal to noise ratio (PSNR) through computer simulations. Moreover, some comparisons are also given to prove that our method outperforms classical operators in gray image edge detection.

  6. Edge detection in medical images using a genetic algorithm.

    PubMed

    Gudmundsson, M; El-Kwae, E A; Kabuka, M R

    1998-06-01

    An algorithm is developed that detects well-localized, unfragmented, thin edges in medical images based on optimization of edge configurations using a genetic algorithm (GA). Several enhancements were added to improve the performance of the algorithm over a traditional GA. The edge map is split into connected subregions to reduce the solution space and simplify the problem. The edge-map is then optimized in parallel using incorporated genetic operators that perform transforms on edge structures. Adaptation is used to control operator probabilities based on their participation. The GA was compared to the simulated annealing (SA) approach using ideal and actual medical images from different modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. Quantitative comparisons were provided based on the Pratt figure of merit and on the cost-function minimization. The detected edges were thin, continuous, and well localized. Most of the basic edge features were detected. Results for different medical image modalities are promising and encourage further investigation to improve the accuracy and experiment with different cost functions and genetic operators. PMID:9735910

  7. Optimal edge detection using multiple operators for image understanding

    NASA Astrophysics Data System (ADS)

    Giannarou, Stamatia; Stathaki, Tania

    2011-12-01

    Extraction of features, such as edges for the understanding of aerial images, has been an important objective since the early days of remote sensing. This work aims at describing a new framework which allows for the quantitative combination of a preselected set of edge detectors based on the correspondence between their outcomes. This is inspired from the problem that despite the enormous amount of literature on edge detection techniques, there is no single technique that performs well in every possible image context. Two approaches are proposed for this purpose. The first approach is the well-known receiver operating characteristics analysis which is introduced for a sound quality evaluation of the edge maps estimated by combining different edge detectors. In the second approach, the so-called kappa statistics are employed in a novel fashion to amalgamate the above-mentioned selected edge maps to form an improved final edge image. This method is unique in the sense that the balance between the false detections (false positives and false negatives) is explicitly determined in advance and incorporated in the proposed method in a mathematical fashion. For the performance evaluation of the proposed techniques, a sample set of the RADIUS/DARPA-IU Fort Hood aerial image database with known ground truth has been used.

  8. A Fast Edge Preserving Bayesian Reconstruction Method for Parallel Imaging Applications in Cardiac MRI

    PubMed Central

    Singh, Gurmeet; Raj, Ashish; Kressler, Bryan; Nguyen, Thanh D.; Spincemaille, Pascal; Zabih, Ramin; Wang, Yi

    2010-01-01

    Among recent parallel MR imaging reconstruction advances, a Bayesian method called Edge-preserving Parallel Imaging with GRAph cut Minimization (EPIGRAM) has been demonstrated to significantly improve signal to noise ratio (SNR) compared to conventional regularized sensitivity encoding (SENSE) method. However, EPIGRAM requires a large number of iterations in proportion to the number of intensity labels in the image, making it computationally expensive for high dynamic range images. The objective of this study is to develop a Fast EPIGRAM reconstruction based on the efficient binary jump move algorithm that provides a logarithmic reduction in reconstruction time while maintaining image quality. Preliminary in vivo validation of the proposed algorithm is presented for 2D cardiac cine MR imaging and 3D coronary MR angiography at acceleration factors of 2-4. Fast EPIGRAM was found to provide similar image quality to EPIGRAM and maintain the previously reported SNR improvement over regularized SENSE, while reducing EPIGRAM reconstruction time by 25-50 times. PMID:20939095

  9. Real-time reprogrammable low-level image processing: edge detection and edge tracking accelerator

    NASA Astrophysics Data System (ADS)

    Meribout, M.; Hou, Kun M.

    1993-10-01

    Currently, in image processing, segmentation algorithms comprise between real time video rate processing and accurate results. In this paper, we present an efficient and not recursive algorithm filter originated from Deriche filter. This algorithm is implemented in hardware by using FPGA technology. Thus, it permits video rate edge detection. In addition, the FPGA board is used as an edge tracking accelerator, it allows us to greatly reduce execution time by avoiding scanning the whole image. We also present the architecture of our vision system dedicated to build 3D scene every 200 ms.

  10. Optimal seamline detection for multiple image mosaicking via graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Jian; Lu, Xiaohu; Tu, Jinge; Shan, Jie

    2016-03-01

    While mosaicking images, especially captured from the scenes of large depth differences with respective to cameras at varying locations, the detection of seamlines within overlap regions is a key issue for creating seamless and pleasant image mosaics. In this paper, we propose a novel algorithm to efficiently detect optimal seamlines for mosaicking aerial images captured from different viewpoints and for mosaicking street-view panoramic images without a precisely common center in a graph cuts energy minimization framework. To effectively ensure that the seamlines are optimally detected in the laterally continuous regions with high image similarity and low object dislocation to magnificently conceal the parallax between images, we fuse the information of image color, gradient magnitude, and texture complexity into the data and smooth energy terms in graph cuts. Different from the traditional frame-to-frame optimization for sequentially detecting seamlines for mosaicking multiple images, our method applies a novel multi-frame joint optimization strategy to find seamlines within multi-overlapped images at one time. In addition, we propose simple but effective strategies to semi-automatically guide the seamlines by exploiting simple human-computer interaction strongly constraining the image regions that the seamlines will or won't pass through, which is often ignored by many existing seamline detection methods. Experimental results on a large set of aerial, oblique and street-view panoramic images show that the proposed method is capable of creating high-quality seamlines for multiple image mosaicking, while not crossing majority of visually obvious foreground objects and most of overlap regions with low image similarity to effectively conceal the image parallax at different extents.

  11. On the Cutting Edge Professional Development Program - An effective model built from years of experience

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.

    2015-12-01

    The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene

  12. Automatic comic page image understanding based on edge segment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  13. Edge passivated charge-coupled device image sensor

    NASA Technical Reports Server (NTRS)

    Kosonocky, Walter F. (Inventor); Elabd, Hammam (Inventor)

    1987-01-01

    A charge-coupled device (CCD) image sensor includes in a substrate of single crystalline silicon of one conductivity type an array of a plurality of spaced, parallel channel regions of the opposite conductivity type extending along one major surface of the substrate. A plurality of parallel conductive gates are over the one major surface of the substrate and extend transversely across the channel regions. The outermost channel regions of the array are positioned adjacent edges of the substrate so that a plurality of the image sensors can be mounted in edge-to-edge relation with the channel regions of the various sensors being close together. The sensor includes passivating means between each outermost channel region and the adjacent edge to prevent charge carriers generated by the edge from being injected into the outermost channel region. The passivating means includes a highly conductive drain region of a conductivity type opposite to that of the substrate within the substrate and extending along the one major surface between the outermost channel region and the edge. Also, a highly conductive region of the same conductivity type as the substrate is on the substrate and extends along the one major surface directly at the edge.

  14. WWBT? What Would Ben Think about Killer Apps, Cutting Edges, and Tipping Points in the History of Weather and Climate?

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2006-12-01

    This paper examines the history of weather and climate since 1706 along three intertwined analytical axes: technology (killer apps), science (cutting edges), and social issues (tipping points). For example, Franklin's best-known killer app, the lightning rod, gains added significance when seen in light of his cutting edge contributions to the science of electricity, his lifelong promotion of useful knowledge, and the societal tipping point his work triggered in our relationship to the sky. Subsequently, other major tipping points and conceptual shifts followed the introduction of telegraphy, radio, television, digital computers, and rocketry into meteorology. Following an analysis of the career and contributions of Benjamin Franklin (1706-1790), the paper examines later historical moments and watersheds, not merely in retrospect, but from the perspective of leading participants at the time. It focuses on technologies of significant promise, especially those involving electro- magnetism, up to and including the dawn of the twenty-first century, and asks playfully, "What would Ben think?"

  15. Liver ultrasound image classification by using fractal dimension of edge

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita

    2012-08-01

    Medical ultrasound image edge detection is an important component in increasing the number of application of segmentation, and hence it has been subject of many studies in the literature. In this study, we have classified the liver ultrasound images (US) combining Canny and Sobel edge detectors with fractal analysis in order to provide an indicator about of the US images roughness. We intend to provide a classification rule of the focal liver lesions as: cirrhotic liver, liver hemangioma and healthy liver. For edges detection the Canny and Sobel operators were used. Fractal analyses have been applied for texture analysis and classification of focal liver lesions according to fractal dimension (FD) determined by using the Box Counting method. To assess the performance and accuracy rate of the proposed method the contrast-to-noise (CNR) is analyzed.

  16. Wavelet domain image restoration with adaptive edge-preserving regularization.

    PubMed

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data. PMID:18255433

  17. An effusion-evaporation model for image edge detection

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Zou, Yaobin; Jin, Renchao

    2011-07-01

    A novel quasi-physical edge detection model is presented. The model, referred to as the effusion-evaporation model (EEM), is inspired by the natural phenomenon that the water effusing from the ground evaporates in the sunshine and leaves a wire like water stain on the ground surface, which reflects the physiognomy of the terrain. Based on the simulation of water effusing and evaporating, an EEM regards the complement of gradient magnitude image as a three-dimensional terrain, and the concave regions, which contain the residual water in the evolution final state, are used to determine the edges. Subjective and objective comparisons are performed on the proposed algorithm and two conventional edge detectors, namely Canny and LoG. The comparison results show that the proposed method outperforms Canny and LoG detectors for the real images and the standard test images with Gaussian noise.

  18. Terahertz time-domain electro-optic measurements by femtosecond laser pulses with an edge-cut spectrum.

    PubMed

    Ilyakov, I E; Kitaeva, G Kh; Shishkin, B V; Akhmedzhanov, R A

    2016-07-01

    Balanced electro-optic detection techniques of terahertz wave radiation are proposed based on variations of the energy and ellipticity of laser pulses with an edge-cut spectrum. The techniques are compared with the standard electro-optic detection scheme utilizing laser pulses with Gaussian spectrum shape. Our calculations and measurements show that the studied schemes have a much better response to the terahertz wave radiation at high frequencies compared with the standard one. PMID:27367085

  19. Edge-Preserving PET Image Reconstruction Using Trust Optimization Transfer

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Iterative image reconstruction for positron emission tomography (PET) can improve image quality by using spatial regularization. The most commonly used quadratic penalty often over-smoothes sharp edges and fine features in reconstructed images, while non-quadratic penalties can preserve edges and achieve higher contrast recovery. Existing optimization algorithms such as the expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work well for the quadratic penalty, but are less efficient for high-curvature or non-smooth edge-preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving image reconstruction by using two strategies: trust surrogate and optimization transfer descent. Trust surrogate approximates the original penalty by a smoother function at each iteration, but guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a conventional optimization transfer algorithm by using conjugate gradient and line search. Results of computer simulations and real 3D data show that the proposed algorithm converges much faster than the conventional EM and PCG for smooth edge-preserving regularization and can also be more efficient than the current state-of-art algorithms for the non-smooth ℓ1 regularization. PMID:25438302

  20. Exemplar-based image inpainting using multiscale graph cuts.

    PubMed

    Liu, Yunqiang; Caselles, Vicent

    2013-05-01

    We present a novel formulation of exemplar-based inpainting as a global energy optimization problem, written in terms of the offset map. The proposed energy function combines a data attachment term that ensures the continuity of reconstruction at the boundary of the inpainting domain with a smoothness term that ensures a visually coherent reconstruction inside the hole. This formulation is adapted to obtain a global minimum using the graph cuts algorithm. To reduce the computational complexity, we propose an efficient multiscale graph cuts algorithm. To compensate the loss of information at low resolution levels, we use a feature representation computed at the original image resolution. This permits alleviation of the ambiguity induced by comparing only color information when the image is represented at low resolution levels. Our experiments show how well the proposed algorithm performs compared with other recent algorithms. PMID:22997270

  1. [JSPS Asian core program on cutting-edge organic chemistry in Asia].

    PubMed

    Isobe, Minoru; Nishikawa, Toshio

    2009-04-01

    The vision to establish this program was to establish and extend cooperative research efforts beyond the intraregional boundaries. The Japan Society for the Promotion of Science (JSPS) has taken an initiative to support an Asian Core Program, which aims to create world-class research hubs within the Asian region and foster the development of the next generation of leading researchers by establishing sustainable collaborative relations among research and educational institutions in Asian countries. Nagoya University strongly supports and is the Core University of this program with Minoru Isobe and Toshio Nishikawa serving as the coordinator. Representing their respective countries/regions, Guo-Qiang Lin and Zhu-Jun Yao (China, Shanghai), Sunggak Kim and Kwan-Soo Kim (Korea), Somsak Ruchirawat (Thailand), and Chun-Chen Liao and Biing-Jiun Uang (China, Taipei) share in the vision to enhance collaborative efforts. As coordinators they have invited many cooperative universities/institutes in their home countries/regions to start the network since 2005. Singapore (Tech-Peng Loh) has joined lately, and Hong Kong is represented by Henry Wong. All cooperating regions also agreed to support this program by acquiring matching funds for the duration of the program, that is, until March 2010. This program is jointly supported by the JSPS (Japan), the NNSFC (China, Beijing), the NSCT (China, Taipei), the KOSEF/CMDS (Korea), the NRCT/CRI (Thailand), and the IUPAC for an East Asian Network Task group project. Pauline Chiu takes the general secretary work. The initiation of the Asian Core Program and the Inauguration Conference (The 0th International Conference on Cutting-Edge Organic Chemistry in Asia; ICCEOCA-0) was held in Nagoya (2006. 3), which was followed by ICCEOCA-1 in Okinawa, Japan (2006. 10), ICCEOCA-2 in Busan, Korea (2007. 9), ICCEOCA-3 in Hangzhou, China (2008. 10). A post symposium of ICCEOCA-1 was held in Hsinchu, Taiwan (2006. 10), and a satellite symposium of

  2. Supporting Faculty Learning About Teaching: The On the Cutting Edge Website

    NASA Astrophysics Data System (ADS)

    Fox, S.; Iverson, E. A.; Manduca, C. A.; Kirk, K. B.; McDaris, J. R.; Ormand, C. J.; Bruckner, M. Z.

    2011-12-01

    The On the Cutting Edge website captures information about teaching geoscience from workshop participants and leaders. Designed to both support workshop participants in making use of ideas developed at the workshop and to allow a broader audience to access these ideas, the site includes more than 4900 pages of content in 39 topical collections with more than 1400 community-contributed teaching activities. The site is well used: in 2010, 850,000 visitors made more than one million visits to the site viewing more than 2.1 million pages. To obtain a more detailed understanding of site use within our target population, we interviewed a sample of 30 geoscience faculty. Five primary uses were described repeatedly and in depth: finding ideas for teaching, understanding what colleagues are doing in specific teaching situations, learning about methods, tools, or topic in education or geoscience, finding visualizations, and networking or career planning. Interviewees could describe particular instances where they made use of teaching materials and could cite reasons why they believed this improved student learning. To understand how these uses are manifest in the weblogs, a sample of 73 sessions that lasted at least 10 minutes, and viewed 10 or more pages were selected from March 2009 logs. Sessions were selected to sample heavy use of one or more topical collections, and to sample the diversity of log characteristics. The sessions were described qualitatively and the resulting descriptions categorized. Four recognizable use patterns emerged: activity browsing in some cases combined with study of a pedagogic method, browsing visualizations and associated topical content, digging deep within a particular topical collection, and cross-site browsing. These patterns seem consistent with the uses reported in the interviews. An analysis of characteristics of all sessions in 2008 viewing 10 or more pages indicate that the major uses described in the interview study by 30 faculty

  3. Teaching Service Learning in the Geosciences: An On the Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Laine, E. P.; Mogk, D. W.; O'Connell, S.; Kirk, K. B.

    2010-12-01

    Service learning is an instructional method that combines community service and academic instruction within the context of an established academic course. It is a particularly effective approach that uses active and experiential learning to develop the academic skills required of a course of study and to simultaneously address authentic community needs. Service learning projects can energize and motivate students by engaging a sense of civic responsibility by working in concert with community partners. The geosciences provide abundant opportunities to develop service learning projects on topics related to natural hazards, resources, land use, water quality, community planning, public policy, and education (K-12 and public outreach). To explore the opportunities of teaching service learning in the geosciences, the On the Cutting Edge program convened an online workshop in February 2010. The goals of the workshop were to: 1) introduce the principles and practices of effective service learning instructional activities; 2) provide examples of successful service learning projects and practical advice about "what works;" 3) provide participants with the opportunity to design, develop, and refine their own service learning courses or projects; 4) develop collections of supporting resources related to the pedagogy of service learning; and 5) support a community of scholars interested in continued work on service learning in the geoscience curriculum. The workshop consisted of a series of web-based synchronous and asynchronous sessions, including presentations from experienced practitioners of service learning, panel discussions, threaded discussions, and editable web pages used to develop new material for the website. Time was also provided for small group and individual work and for participants to peer-review each others' service learning projects and to revise their own activities based on reviewer comments. Insights from the workshop were integrated into new web pages

  4. Edge-preserving ultrasonic strain imaging with uniform precision.

    PubMed

    Khodadadi, Hossein; Aghdam, Amir G; Rivaz, Hassan

    2015-08-01

    Ultrasound elastography involves measuring the mechanical properties of tissue, and has many applications in diagnostics and intervention. A common step in different elastography methods is imaging the tissue while it undergoes deformation and estimating the displacement field from the images. A popular next step is to estimate tissue strain, which gives clues into the underlying tissue elasticity modulus. To estimate the strain, one should compute the gradient of the displacement image, which amplifies the noise. The noise is commonly minimized by least square estimation of the gradient from multiple displacement measurements, which reduces the noise by sacrificing image resolution. In this work, we adaptively adjust the level and orientation of the smoothing using two different mechanisms. First, the precision of the displacement field decreases significantly in the regions with high signal decorrelation, which requires increasing the smoothness. Second, smoothing the strain field at the boundaries between different tissue types blurs the edges, which can render small targets invisible. To minimize blurring and noise, we perform anisotropic smoothing parallel to the direction of edges. The first mechanism ensures that textures/variations in the strain image reflect underlying tissue properties and are not caused by errors in the displacement estimation. The second mechanism keeps the edges between different tissue structures sharp while minimizing the noise. We validate the proposed method using phantom and in-vivo clinical data. PMID:26737130

  5. Improving Climate Science Education by Supporting Faculty: Climate Programs from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    Wiese, K.; Kirk, K. B.; Manduca, C. A.; Shellito, L. J.; Sztein, E.; Bruckner, M. Z.

    2011-12-01

    Students arrive in our classrooms with a wide range of viewpoints on climate change. Some carry misconceptions resulting from media portrayal of the subject; others have strong feelings about the policy of climate change that overshadow their understanding of the science; while some already grasp the basics of climate science and are thirsty for a more in-depth treatment. In any of these cases, the topic of climate change is likely to be of high interest to students and will challenge faculty to be well-versed in the science, the policy, and in effective pedagogic strategies. The On the Cutting Edge project continues its emphasis on climate science, climate change and energy resources with ongoing professional development events. An underlying theme of all of these events is to help faculty be more effective teachers by providing up-to-date science, examples of promising pedagogies and a forum to network with others who teach similar subjects. A monthly webinar and book club series about teaching climate and energy was offered throughout the 2010-2011 academic year. These one-hour events allowed faculty a convenient way to learn about science topics such as carbon capture and storage, nuclear energy, thermohaline circulation, alternative energy, or the energy-water nexus. Some of the webinars focused on pedagogic approaches, including teaching with climate models, dealing with misconceptions, or using local energy issues for a semester-long jigsaw project. Webinar participants reported that they could expand their teaching to include these topics, they increased their comfort level in presenting those subjects and answering student questions, and they learned where to turn for additional references. An online workshop, Teaching about Earth's Climate Using Data and Numerical Models, was held in October 2010. Participants learned about different types of models, the strategies for teaching with models and how to use online datasets. The workshop also provided

  6. Superpixel Cut for Figure-Ground Image Segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Michael Ying; Rosenhahn, Bodo

    2016-06-01

    Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.

  7. Edge adaptive intra field de-interlacing of video images

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Smith, Gregory; Lee, Louie

    2013-02-01

    Expanding image by an arbitrary scale factor and thereby creating an enlarged image is a crucial image processing operation. De-interlacing is an example of such operation where a video field is enlarged in vertical direction with 1 to 2 scale factor. The most advanced de-interlacing algorithms use a few consequent input fields to generate one output frame. In order to save hardware resources in video processors, missing lines in each field may be generated without reference to the other fields. Line doubling, known as "bobbing", is the simplest intra field de-interlacing method. However, it may generate visual artifacts. For example, interpolation of an inserted line from a few neighboring lines by vertical filter may produce such visual artifacts as "jaggies." In this work we present edge adaptive image up-scaling and/or enhancement algorithm, which can produce "jaggies" free video output frames. As a first step, an edge and its parameters in each interpolated pixel are detected from gradient squared tensor based on local signal variances. Then, according to the edge parameters including orientation, anisotropy and variance strength, the algorithm determines footprint and frequency response of two-dimensional interpolation filter for the output pixel. Filter's coefficients are defined by edge parameters, so that quality of the output frame is controlled by local content. The proposed method may be used for image enlargement or enhancement (for example, anti-aliasing without resampling). It has been hardware implemented in video display processor for intra field de-interlacing of video images.

  8. On the acceleration sensitivity and its active reduction by edge electrodes in AT-cut quartz resonators.

    PubMed

    Chen, Jianfeng; Yong, Yook-Kong; Kubena, Randall; Kirby, Deborah; Chang, David

    2015-06-01

    Incremental piezoelectric equations for small vibrations superposed on initial deformations are presented. The equations are implemented in COMSOL finite element models (FEA). Equations are validated by comparing the results for the force sensitivity coefficient Kf of a circular quartz plate subjected to a pair of diametrical forces with measured data. The model results show a consistent trend with the experimental results, and the relative difference between our FEA results and Ballato's measured result is about 13%. A detailed study of the acceleration sensitivity of a rectangular AT-cut quartz plate is presented. The plate resonator is fixed along one edge as a cantilever. For AT-cut quartz resonators with the crystal digonal X-axis perpendicular to plate X-axis, the in-plane acceleration sensitivity is found to be negligible compared with the out-of-plane (Y-axis) acceleration sensitivity. For AT-cut quartz resonators with the crystal digonal X-axis parallel to plate X-axis, the Y-axis acceleration sensitivity is found to be rectified, that is the fractional change in frequency is positive with respect to both positive and negative Y-axis accelerations. The Y-axis acceleration sensitivity is small in comparison with the in-plane acceleration sensitivity for small body forces. However, for large body forces, the Y-axis acceleration sensitivity dominates because it increases nonlinearly with the Y-axis acceleration. The resonator rectified acceleration sensitivity is confirmed by phase noise measurements. For reduced acceleration sensitivity, two pairs of electrodes along the plate edges reduce the bending of the plate resonator and subsequently reduce acceleration sensitivity. We present a new method using these edge electrodes in which a dc bias field is employed to control the resonant frequency of resonator subjected to g body forces. A dc bias field with an appropriate dc bias voltage could potentially yield a reduction of acceleration sensitivity in Y

  9. Detecting Edges in Images by Use of Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2003-01-01

    A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the images

  10. High Speed Imaging of Edge Turbulence in NSTX

    SciTech Connect

    S.J. Zweben; R. Maqueda; D.P. Stotler; A. Keesee; J. Boedo; C. Bush; S. Kaye; B. LeBlanc; J. Lowrance; V. Mastrocola; R. Maingi; N. Nishino; G. Renda; D. Swain; J. Wilgen; the NSTX Team

    2003-03-01

    The two-dimensional radial versus poloidal structure and motion of edge turbulence in NSTX (National Spherical Torus Experiment) were measured by using high-speed imaging of the visible light emission from a localized neutral gas puff. Edge turbulence images are shown and analyzed for Ohmic, L-mode (low-confinement mode) and H-mode (high-confinement mode) plasma conditions. Typical edge turbulence poloidal correlation lengths as measured using this technique are = 4 {+-} 1 cm and autocorrelation times are 40 {+-} 20 {micro}sec in all three regimes. The relative fluctuation level is typically smaller in H-mode than in L-mode, and transitions from H- to L-mode and can occur remarkably quickly (=30 {micro}sec). The two-dimensional images often show localized regions of strong light emission which move both poloidally and radially through the observed region at a typical speed of =10{sup 5} cm/sec, and sometimes show spatially coherent modes.

  11. Refining image segmentation by integration of edge and region data

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Tilton, James C.

    1992-01-01

    An iterative parallel region growing (IPRG) algorithm previously developed by Tilton (1989) produces hierarchical segmentations of images from finer to coarser resolution. An ideal segmentation does not always correspond to one single iteration but to several different ones, each one producing the 'best' result for a separate part of the image. With the goal of finding this ideal segmentation, the results of the IPRG algorithm are refined by utilizing some additional information, such as edge features, and by interpreting the tree of hierarchical regions.

  12. AST Cutting Edge of Transplantation 2013 Meeting Report: a comprehensive look at B cells and antibodies in transplantation.

    PubMed

    Mengel, M; Chong, A; Rothstein, D M; Zorn, E; Maltzman, J S

    2014-03-01

    Antibody-mediated rejection (ABMR) represents a significant clinical challenge for solid organ transplantation. Mechanistic understanding of ABMR is incomplete and diagnostic accuracy for ABMR is limited, and as a result, targeted treatment remains elusive and new treatment modalities are difficult to validate. Three hundred twenty-six participants from 15 countries met for the first Cutting Edge of Transplantation (CEOT) symposium organized by the American Society of Transplantation (AST) in Chandler, Arizona, February 14-16, 2013. During the 3-day interactive symposium, presentations, moderated poster sessions and round table discussions addressed cutting edge knowledge of B and plasma cell biology, mechanisms of antibody-mediated tissue injury, advances and limitations in ABMR diagnostics, as well as current and potential new treatment options for ABMR. The outcome of the meeting identified the following unmet needs for: (a) improved understanding of the regulation of B cell maturation and antibody response to enable targeted therapies; (b) more precise diagnostics of ABMR, including molecular pathology, risk stratification by sensitive antibody testing and monitoring of treatment effects; and (c) innovative multicenter trial designs that enhance observational power, in particular, in assessing synergistic multimodality therapies with reduced toxicities. PMID:24674597

  13. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  14. Joint graph cut and relative fuzzy connectedness image segmentation algorithm.

    PubMed

    Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K

    2013-12-01

    We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC. PMID:23880374

  15. Edge-supressed color clustering for image thresholding

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Uijt de Haag, Maarten

    2000-03-01

    This paper discusses the development of an iterative algorithm for fully automatic (gross or fine) segmentation of color images. The basic idea here is to automate segmentation for on-line operations. This is needed for such critical applications as internet communication, video indexing, target tracking, visual guidance, remote control, and motion detection. The method is composed of an edge-suppressed clustering (learning) and principal component thresholding (classification) step. In the learning phase, image clusters are well formed in the (R,G,B) space by considering only the non-edge points. The unknown number (N) of mutually exclusive image segments is learned in an unsupervised operation mode developed based on the cluster fidelity measure and K-means algorithm. The classification phase is a correlation-based segmentation strategy that operates in the K-L transform domain using the Otsu thresholding principal. It is demonstrated experimentally that the method is effective and efficient for color images of natural scenes with irregular textures and objects of varying sizes and dimension.

  16. Binary adaptive semi-global matching based on image edges

    NASA Astrophysics Data System (ADS)

    Hu, Han; Rzhanov, Yuri; Hatcher, Philip J.; Bergeron, R. D.

    2015-07-01

    Image-based modeling and rendering is currently one of the most challenging topics in Computer Vision and Photogrammetry. The key issue here is building a set of dense correspondence points between two images, namely dense matching or stereo matching. Among all dense matching algorithms, Semi-Global Matching (SGM) is arguably one of the most promising algorithms for real-time stereo vision. Compared with global matching algorithms, SGM aggregates matching cost from several (eight or sixteen) directions rather than only the epipolar line using Dynamic Programming (DP). Thus, SGM eliminates the classical "streaking problem" and greatly improves its accuracy and efficiency. In this paper, we aim at further improvement of SGM accuracy without increasing the computational cost. We propose setting the penalty parameters adaptively according to image edges extracted by edge detectors. We have carried out experiments on the standard Middlebury stereo dataset and evaluated the performance of our modified method with the ground truth. The results have shown a noticeable accuracy improvement compared with the results using fixed penalty parameters while the runtime computational cost was not increased.

  17. Preconditioning for edge-preserving image super resolution.

    PubMed

    Pelletier, Stéphane; Cooperstock, Jeremy R

    2012-01-01

    We propose a simple preconditioning method for accelerating the solution of edge-preserving image super-resolution (SR) problems in which a linear shift-invariant point spread function is employed. Our technique involves reordering the high-resolution (HR) pixels in a similar manner to what is done in preconditioning methods for quadratic SR formulations. However, due to the edge preserving requirements, the Hessian matrix of the cost function varies during the minimization process. We develop an efficient update scheme for the preconditioner in order to cope with this situation. Unlike some other acceleration strategies that round the displacement values between the low-resolution (LR) images on the HR grid, the proposed method does not sacrifice the optimality of the observation model. In addition, we describe a technique for preconditioning SR problems involving rational magnification factors. The use of such factors is motivated in part by the fact that, under certain circumstances, optimal SR zooms are nonintegers. We show that, by reordering the pixels of the LR images, the structure of the problem to solve is modified in such a way that preconditioners based on circulant operators can be used. PMID:21693419

  18. Edge turbulence measurements in NSTX by gas puff imaging

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Wurden, G. A.; Zweben, S.; Roquemore, L.; Kugel, H.; Johnson, D.; Kaye, S.; Sabbagh, S.; Maingi, R.

    2001-01-01

    Turbulent filaments in visible light emission corresponding mainly to density fluctuations at the edge have been observed in large aspect ratio tokamaks: TFTR, ASDEX, Alcator C-Mod, and DIII-D. This article reports on similar turbulent structures observed in the National Spherical Torus Experiment (NSTX) using a fast-framing, intensified, digital visible camera. These filaments were previously detected mainly in high recycling regions, such as at limiters or antennas, where the line emission from neutral atoms was modulated by the fluctuations in local plasma density. However, by introducing controlled edge gas puffs, i.e., gas puff imaging, we have increased the brightness and contrast in the fluctuation images and allowed the turbulent structure to be measured independently of the recycling. A set discrete fiber-optically coupled sight-lines also measured the frequency spectra of these light fluctuations with a 200 kHz bandwidth. Initial results in NSTX show that the turbulent filaments are well aligned with the magnetic field which can be up to 45° from the horizontal at the outer midplane of NSTX. The dominant wavelength perpendicular to the magnetic field is ˜7-11 cm, corresponding to a k⊥ ρs of ˜0.3 at an assumed Te=25 eV, and the frequency spectra has a typical broad shape characteristic of edge turbulence extending to about 100 kHz. By imaging a He gas puff along a magnetic field line the characteristic radial scalelength appears to be in the 3-5 cm range.

  19. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  20. Edge features extraction from 3D laser point cloud based on corresponding images

    NASA Astrophysics Data System (ADS)

    Li, Xin-feng; Zhao, Zi-ming; Xu, Guo-qing; Geng, Yan-long

    2013-09-01

    An extraction method of edge features from 3D laser point cloud based on corresponding images was proposed. After the registration of point cloud and corresponding image, the sub-pixel edge can be extracted from the image using gray moment algorithm. Then project the sub-pixel edge to the point cloud in fitting scan-lines. At last the edge features were achieved by linking the crossing points. The experimental results demonstrate that the method guarantees accurate fine extraction.

  1. Ultraviolet imaging of the anode attachment in transferred-arc plasma cutting

    SciTech Connect

    Bemis, B.L.; Settles, G.S.

    1999-02-01

    The anode phenomena occurring at the location of current transfer from the plasma jet to the plate affects cut quality in plasma cutting of mild steel plate. To understand these phenomena, an ultraviolet imaging technique was used to visualize the anode attachment spot under various cutting conditions. This technique has provided a unique view and fostered a better understanding of the plasma-arc cutting process.

  2. Soft, cutting edge of environmentalism: why and how the appropriate-technology notion is changing the movement

    SciTech Connect

    Morrison, D.E.

    1980-04-01

    The central theme of hard, or centralized, technology versus soft, or small and disperse, technology is traced through two stages of development that the author terms enthusiasm and realism. The overlap between the environmental movement and the soft-technology movement has given the appropriate-technology movement a broad base of ideological support. Soft-technology thinking in environmentalism is broadening its concerns. This trend tends to increase what to date has been environmentalism's rather marginal relevance and legitimacy in the original and still-central domain of the soft-technolgoy movement, namely the developing countries. The small is beautiful concept will force environmentalists to question their commitments to political ideologies as well as environmentalism when faced with achieving environmental reform in the context of achieving greater social equity through redistribution. According to the author, the soft-technology vision of transformation to a soft society is the cutting edge of thought in environmentalism. 45 footnotes, 1 table. (SAC)

  3. Incorporating Cutting Edge Scientific Results from the MARGINS-GeoPRISMS Program into the Undergraduate Curriculum: An Overview

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Costa, A.; Goodliffe, A. M.; Marshall, J. S.; Iverson, E. A. R.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes, organized around four initiatives: (1) chemical cycling in subduction zones (SubFac), (2) seismogenic zone processes at subduction zones (SEIZE), (3) rupturing continental lithosphere (RCL), and (4) source to sink sediment cycling at continental margins (S2S). The outcomes of this research provided critical new observations and insights into fundamental geologic processes along continental margins, and associated geologic hazards and economic resources. The transition to the successor GeoPRISMS Program provided a unique opportunity to identify and synthesize the highlights of MARGINS research, and to disseminate this knowledge to educators and students who will carry out the next phase of cutting-edge scientific research. The NSF TUES Program funded a two-year project entitled: "Bringing NSF MARGINS Continental Margins Research into the Undergraduate Curriculum," enabling development of ~15 mini-lessons drawing on key MARGINS results and data sets. The mini-lesson development team consists of 18 educators and scientists, grouped by initiative, and guided by experts in MARGINS science and current educational research and practices. Webinars and virtual check-ins enable team interactions and exchange of ideas and experiences; in person workshops solidified pedagogical approaches and assessment strategies, as well as initiative frameworks for the mini-lessons. Field testing by team members and outside volunteers during AY 2013-14 identified challenges and opportunities, guiding mini-lesson revision and finalization. The MARGINS mini-lessons define coordinated, data-rich educational resources, easy to access and free to the public, ready to be incorporated into multiple common geoscience course frameworks, taking the first step toward building a community of practice of scientists and curriculum specialists with the shared goal of moving cutting-edge science into undergraduate

  4. An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades.

    PubMed

    Bonney, Heather

    2014-08-01

    Analysis of cut marks in bone is largely limited to two dimensional qualitative description. Development of morphological classification methods using measurements from cut mark cross sections could have multiple uses across palaeoanthropological and archaeological disciplines, where cutting edge types are used to investigate and reconstruct behavioral patterns. An experimental study was undertaken, using porcine bone, to determine the usefulness of discriminant function analysis in classifying cut marks by blade edge type, from a number of measurements taken from their cross-sectional profile. The discriminant analysis correctly classified 86.7% of the experimental cut marks into serrated, non-serrated and bamboo blade types. The technique was then used to investigate a series of cut marks of unknown origin from a collection of trophy skulls from the Torres Strait Islands, to investigate whether they were made by bamboo or metal blades. Nineteen out of twenty of the cut marks investigated were classified as bamboo which supports the non-contemporaneous ethnographic accounts of the knives used for trophy taking and defleshing remains. With further investigation across a variety of blade types, this technique could prove a valuable tool in the interpretation of cut mark evidence from a wide variety of contexts, particularly in forensic anthropology where the requirement for presentation of evidence in a statistical format is becoming increasingly important. PMID:24919872

  5. Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edge-Cutting Transfer and Printing for van der Waals Heterojunctions.

    PubMed

    Guo, Qinglei; Zhang, Miao; Xue, Zhongying; Wang, Gang; Chen, Da; Cao, Ronggen; Huang, Gaoshan; Mei, Yongfeng; Di, Zengfeng; Wang, Xi

    2015-09-01

    As the promising building blocks for flexible electronics and photonics, inorganic semiconductor nanomembranes have attracted considerable attention owing to their excellent mechanical flexibility and electrical/optical properties. To functionalize these building blocks with complex components, transfer and printing methods in a convenient and precise way are urgently demanded. A combined and controllable approach called edge-cutting transfer method to assemble semiconductor nanoribbons with defined width (down to submicrometer) and length (up to millimeter) is proposed. The transfer efficiency can be comprehended by a classical cantilever model, in which the difference of stress distributions between forth and back edges is investigated using finite element method. In addition, the vertical van der Waals PN (p-Si/n-Ge) junction constructed by a two-round process presents a typical rectifying behavior. The proposed technology may provide a practical, reliable, and cost-efficient strategy for transfer and printing routines, and thus expediting its potential applications for roll-to-roll productions for flexible devices. PMID:25966037

  6. [Medical image processing based on wavelet characteristics and edge blur detection].

    PubMed

    Zhu, Baihui; Wan, Zhiping

    2014-06-01

    To solve the problems of noise interference and edge signal weakness for the existing medical image, we used two-dimensional wavelet transform to process medical images. Combined the directivity of the image edges and the correlation of the wavelet coefficients, we proposed a medical image processing algorithm based on wavelet characteristics and edge blur detection. This algorithm improved noise reduction capabilities and the edge effect due to wavelet transformation and edge blur detection. The experimental results showed that directional correlation improved edge based on wavelet transform fuzzy algorithm could effectively reduce the noise signal in the medical image and save the image edge signal. It has the advantage of the high-definition and de-noising ability. PMID:25219221

  7. Edge-preserving smoothing for image decomposition via a hybrid approach

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Liu, Hongzhi; Wu, Zhonghai

    2014-01-01

    Edge-preserving smoothing is crucial for image decomposition to extract the base layer. However, current methods fail to smooth high-contrast details or preserve thin edges due to their single criterion for distinguishing edges and details. In this paper, we present a hybrid definition for salient edges using two properties: intensity amplitude and oscillations density. Based on this definition, we propose an edge-preserving image smoothing algorithm. Firstly local extrema of the input image are located. Then these extrema points are classified into edge or detail points by the two properties. Thirdly, max and min envelops are obtained by an optimizing process with edge points as constrains. Lastly, the smoothing result is obtained by an averaging operation. Experimental results show that the proposed method can preserve salient step edges while smoothing high-contrast details and is useful in many applications such as image enhancement and hatch-to-tone mapping.

  8. Wide bandsaw blade under cutting conditions. Part I: Vibration of a plate moving in its plane while subjected to tangential edge loading

    NASA Astrophysics Data System (ADS)

    Lengoc, L.; McCallion, H.

    1995-09-01

    The cutting span of a bandsaw blade is modelled as a moving plate and a simple, yet powerful, method is presented for analyzing its vibration when subjected to various in-plane stresses, including stresses due to tangential cutting forces. Time-independent tangential edge-loading couples modes of vibration and can lead to divergent buckling. The effects of transport velocity, "back-crowning" and "prestressing" on the vibration of a moving plate under tangential cutting forces are also investigated. Graphical representations of the modes of vibration are presented.

  9. Fuzzy Logic Based Edge Detection in Smooth and Noisy Clinical Images

    PubMed Central

    Haq, Izhar

    2015-01-01

    Edge detection has beneficial applications in the fields such as machine vision, pattern recognition and biomedical imaging etc. Edge detection highlights high frequency components in the image. Edge detection is a challenging task. It becomes more arduous when it comes to noisy images. This study focuses on fuzzy logic based edge detection in smooth and noisy clinical images. The proposed method (in noisy images) employs a 3×3 mask guided by fuzzy rule set. Moreover, in case of smooth clinical images, an extra mask of contrast adjustment is integrated with edge detection mask to intensify the smooth images. The developed method was tested on noise-free, smooth and noisy images. The results were compared with other established edge detection techniques like Sobel, Prewitt, Laplacian of Gaussian (LOG), Roberts and Canny. When the developed edge detection technique was applied to a smooth clinical image of size 270×290 pixels having 24 dB ‘salt and pepper’ noise, it detected very few (22) false edge pixels, compared to Sobel (1931), Prewitt (2741), LOG (3102), Roberts (1451) and Canny (1045) false edge pixels. Therefore it is evident that the developed method offers improved solution to the edge detection problem in smooth and noisy clinical images. PMID:26407133

  10. Remote Sensing Forage Quality for Browsing Herbivores: A Case Study of Cutting Edge Koala Conservation

    NASA Astrophysics Data System (ADS)

    Youngentob, K. N.; Au, J.; Held, A. A.; Foley, W. J.; Possingham, H. P.

    2014-12-01

    Managing landscapes for conservation requires a capacity to measure habitat quality. Although multiple factors are often responsible for the distribution and abundance of herbivores, spatial variations in the quality and quantity of plant forage are known to be important for many species. While we cannot see the chemical complexity of landscapes with our naked-eye, advances in imaging spectroscopy are making it possible to assess the quality of forage on a landscape-scale. Much research in this area has focused on the ability to estimate foliar nitrogen (N), because N is believed to be a limiting nutrient for many leaf eating animals. However, the total quantity of foliar N does not necessarily reflect the amount of N that can be utilized by herbivores. Available nitrogen (AvailN) is an invitro measure of forage quality that integrates the influence of tannins and fibre on the amount of foliar N that is available for digestion by herbivores. This may be a more meaningful measure of forage quality than total N for the many herbivorous species that are sensitive to the effects of tannins. Our previous research has demonstrated that it is possible to estimate this integrated measure of foliar nutritional quality at an individual tree crown level across multiple tree species using imaging spectroscopy (HyMap). Here we present a case study of how this remote sensing data is being used to help inform landscape management and conservation decisions for an iconic Australian species, the koala (Phascolarctos cinereus). We review the methods involved in developing maps of integrated measures of foliar nutritional quality for browsing herbivores with airborne imaging spectroscopy data and discuss their applications for wildlife management.

  11. Edge Turbulence Imaging in the Alcator C-Mod Tokamak

    SciTech Connect

    S.J. Zweben; D.P. Stotler; J.L. Terry; B. LaBombard; M. Greenwald; M. Muterspaugh; C.S. Pitcher; the Alcator C-Mod Group; K. Hallatschek; R.J. Maqueda; B. Rogers; J.L. Lowrance; V.J. Mastrocola; G.F. Renda

    2001-11-26

    The 2-D radial vs. poloidal structure of edge turbulence in the Alcator C-Mod tokamak [I.H. Hutchinson, R. Boivin, P.T. Bonoli et al., Nuclear Fusion 41(2001) 1391] was measured using fast cameras and compared with 3-D numerical simulations of edge plasma turbulence. The main diagnostic is Gas Puff Imaging (GPI), in which the visible D(subscript alpha) emission from a localized D(subscript 2) gas puff is viewed along a local magnetic field line. The observed D(subscript alpha) fluctuations have a typical radial and poloidal scale of approximately 1 cm, and often have strong local maxima (''blobs'') in the scrape-off layer. The motion of this 2-D structure motion has also been measured using an ultra-fast framing camera with 12 frames taken at 250,000 frames/sec. Numerical simulations produce turbulent structures with roughly similar spatial and temporal scales and transport levels as that observed in the experiment; however, some differences are also noted, perhaps requiring diagnostic improvement and/or additional physics in the numerical model.

  12. MIT image reconstruction based on edge-preserving regularization.

    PubMed

    Casanova, R; Silva, A; Borges, A R

    2004-02-01

    Tikhonov regularization has been widely used in electrical tomography to deal with the ill-posedness of the inverse problem. However, due to the fact that discontinuities are strongly penalized, this approach tends to produce blurred images. Recently, a lot of interest has been devoted to methods with edge-preserving properties, such as those related to total variation, wavelets and half-quadratic regularization. In the present work, the performance of an edge-preserving regularization method, called ARTUR, is evaluated in the context of magnetic induction tomography (MIT). ARTUR is a deterministic method based on half-quadratic regularization, where complementary a priori information may be introduced in the reconstruction algorithm by the use of a nonnegativity constraint. The method is first tested using an MIT analytical model that generates projection data given the position, the radius and the magnetic permeability of a single nonconductive cylindrical object. It is shown that even in the presence of strong Gaussian additive noise, it is still able to recover the main features of the object. Secondly, reconstructions based on real data for different configurations of conductive nonmagnetic cylindrical objects are presented and some of their parameters estimated. PMID:15005316

  13. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  14. On the Cutting Edge Workshop on Effective and Innovative Course Design: A Model for Designing Rigorous Introductory Courses

    NASA Astrophysics Data System (ADS)

    Tewksbury, B. J.; MacDonald, R. H.

    2004-12-01

    As part of a professional development program for faculty in the geosciences, the NSF-funded program On the Cutting Edge (http://serc.carleton.edu/NAGTWorkshops/) has developed and offered workshops for geoscience faculty that guide participants through a stimulating process designed to help faculty members articulate goals and design effective and innovative courses that both meet those goals and assess outcomes. Of approximately 150 faculty members who have participated in the workshops, more than 120 have designed introductory courses in topics ranging from physical geology to Earth systems to historical geology to oceanography. The method of course design taught through these workshops leads to the development of rigorous, student-centered introductory courses. Our method of course design begins, not with a list of content items, but with setting goals by answering the question, "What do I want my students to be able to do on their own when they are done with my class?", rather than the question, "What do I want my students to know in this subject?" Focusing on what faculty members want students to be able to do, rather than on what topics should be covered by the faculty member, promotes designing courses in which students are actively engaged in doing geoscience. This course design method emphasizes setting goals for students involving higher order thinking skills (e.g., analysis, synthesis, design, formulation, prediction, interpretation, evaluation), rather than lower order thinking skills (e.g., identification, description, recognition, classification). For example, the goal of having students be able to evaluate the geologic hazards in an unfamiliar region involves higher order thinking skills and engages the student in deeper analysis than simply asking students to recall and describe examples of geologic hazards covered in class. This goal also has imbedded in it many lower order thinking skills tasks (e.g., identification, description). Rigor comes in

  15. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies

    PubMed Central

    Glide-Hurst, Carri K.

    2014-01-01

    In the United States, more than half of all new invasive cancers diagnosed are non-small cell lung cancer, with a significant number of these cases presenting at locally advanced stages, resulting in about one-third of all cancer deaths. While the advent of stereotactic ablative radiation therapy (SABR, also known as stereotactic body radiotherapy, or SBRT) for early-staged patients has improved local tumor control to >90%, survival results for locally advanced stage lung cancer remain grim. Significant challenges exist in lung cancer radiation therapy including tumor motion, accurate dose calculation in low density media, limiting dose to nearby organs at risk, and changing anatomy over the treatment course. However, many recent technological advancements have been introduced that can meet these challenges, including four-dimensional computed tomography (4DCT) and volumetric cone-beam computed tomography (CBCT) to enable more accurate target definition and precise tumor localization during radiation, respectively. In addition, advances in dose calculation algorithms have allowed for more accurate dosimetry in heterogeneous media, and intensity modulated and arc delivery techniques can help spare organs at risk. New delivery approaches, such as tumor tracking and gating, offer additional potential for further reducing target margins. Image-guided adaptive radiation therapy (IGART) introduces the potential for individualized plan adaptation based on imaging feedback, including bulky residual disease, tumor progression, and physiological changes that occur during the treatment course. This review provides an overview of the current state of the art technology for lung cancer volume definition, treatment planning, localization, and treatment plan adaptation. PMID:24688775

  16. Gattini 2010: cutting edge science at the bottom of the world

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Ahmed, Sara; Ashley, Michael C. B.; Barreto, Max K.; Cui, Xiangqun; Delacroix, Alex; Feng, Longlong; Gong, Xuefei; Lawrence, Jon; Luong-van, Daniel M.; Martin, D. Christopher; Riddle, Reed; Rowley, Nicole; Shang, Zhaohui; Storey, John W. V.; Tothill, Nick F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhengxi

    2010-07-01

    The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical Observatories. The Gattini project was created to measure the optical sky brightness, large area cloud cover and aurora of the winter-time sky above such high altitude Antarctic sites. The Gattini- DomeA camera was installed on the PLATO instrument module as part of the Chinese-led traverse to the highest point on the Antarctic plateau in January 2008. This single automated wide field camera contains a suite of Bessel photometric filters (B, V, R) and a long-pass red filter for the detection and monitoring of OH emission. We have in hand one complete winter-time dataset (2009) from the camera that was recently returned in April 2010. The Gattini-South Pole UV camera is a wide-field optical camera that in 2011 will measure for the first time the UV properties of the winter-time sky above the South Pole dark sector. This unique dataset will consist of frequent images taken in both broadband U and B filters in addition to high resolution (R~5000) long slit spectroscopy over a narrow bandwidth of the central field. The camera is a proof of concept for the 2m-class Antarctic Cosmic Web Imager telescope, a dedicated experiment to directly detect and map the redshifted lyman alpha fluorescence or Cosmic Web emission we believe possible due to the unique geographical qualities of the site. We present the current status of both projects.

  17. Characterization of the cutting edge of glass and diamond knives for ultramicrotomy by scanning force microscopy using cantilevers with a defined tip geometry. Part II.

    PubMed

    Matzelle, T R; Gnaegi, H; Ricker, A; Reichelt, R

    2003-02-01

    The cutting edge of glass as well as diamond knives was studied at high resolution using a scanning force microscope (SFM). The local shape of the cutting edge was estimated from single line profiles of the SFM topographs taking into account the exact shape of the probing tip estimated by a high-resolution field emission scanning electron microscope (FESEM). The glass knives were prepared by 'balanced breaking'. The radius of the investigated cutting edges was found to be 3.2-4.4 nm and 4.3-6.0 nm for the 35 degrees and 45 degrees diamond knife, respectively, and 3.4-4.3 nm for the glass knives. Besides the opening angle and the cutting edge radius, the friction of a knife during sectioning represents a significant factor influencing the quality of sections. Thus, the roughness of both the diamond clearance angle side and the back side was characterized as well. Corresponding RMS values of the roughness were found to be smaller on the back side (approximately 0.14 nm) than on the clearance angle side (approximately 0.26 nm). PMID:12588528

  18. Studies on estimating the performance of impellers with cut-down of the blade edge of the centrifugal pump by the surface singularity method

    NASA Astrophysics Data System (ADS)

    Furukawa, Akinori; Cheng, Ci-Chang; Takamatsu, Yasuo

    1990-08-01

    Pump performance depends on the outlet flow of the impeller. A method of surface singularities for core flow in the centrifugal impeller, combined with an integral method for a boundary layer, would explain the mechanism of the performance change caused by cutting the outlet edge of the impeller blades down. This method is applied to flows in the impellers with various cut-downs of the blade edge, and then the calculated results are compared with the experimental ones. Both results are shown to be quantitatively in good agreement. On the influence of cutting the blade edge on the outlet flow, it is indicated that the cut of the pressure surface results in the decrease of relative flow angle with the decrease of radial velocity in the core flow, while that of the suction surface results only in a decrease in radial velocity. The change in the flow separation region due to the cut on the suction surface, however, contributes to the deterioration of pump performance.

  19. MGDS: Free, on-line, cutting-edge tools to enable the democratisation of geoscience data

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W. B.; O'Hara, S.; Ferrini, V.; Arko, R. A.; Coplan, J.; Chan, S.; Carbotte, S. M.; Nitsche, F. O.; Bonczkowski, J.; Morton, J. J.; Weissel, R.; Leung, A.

    2010-12-01

    The availability of user-friendly, effective cyber-information resources for accessing and manipulating geoscience data has grown rapidly in recent years. Based at Lamont-Doherty Earth Observatory the MGDS group has developed a number of free tools that have wide application across the geosciences for both educators and researchers. A simple web page (http://www.marine-geo.org/) allows users to search for and download many types of data by key word, geographical region, or published citation. The popular Create Maps and Grids function and the downloadable Google Earth-compatible KML files appeal to a wide user base. MGDS MediaBank galleries (http://media.marine-geo.org/) enable users to view and download compelling images that are purposefully selected for their educational value from NSF-funded field programs. GeoMapApp (http://www.geomapapp.org), a free map-based interactive tool that works on any machine, is increasingly being adopted across a broad suite of users from middle school students to university researchers. GeoMapApp allows users to plot, manipulate and present data in an intuitive geographical reference frame. GeoMapApp offers a convenient way to explore the wide range of built-in data sets, to quickly generate maps and images that aid visualisation and, when importing their own gridded and tabular data sets, to access the same rich built-in functionality. A user guide, short multi-media tutorials, and webinar are available on-line. The regularly-updated Global Multi-Resolution Topography (GMRT) Synthesis is used as the default GeoMapApp base map and is an increasingly popular means to rapidly create location maps. Additionally, the layer manager offers a fast way to overlay and compare multiple data sets and is augmented by the ability to alter layer transparency so that underlying layers become visible. Examples of GeoMapApp built-in data sets include high-resolution land topography and ocean floor bathymetry derived from satellite and multi

  20. Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Mogk, D. W.; McDaris, J. R.

    2010-12-01

    Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and

  1. GeoMapApp, Virtual Ocean and Other Cutting-Edge Resources for Representing Geoscience Data

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W. B.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; O'Hara, S.; Ferrini, V.; Bonczkowski, J.; Chan, S.; Weissel, R.; Morton, J. J.; de Leonardo, S.; Leung, A.

    2009-12-01

    bathymetry and high-resolution grids in the oceans, with highly-detailed land elevations to produce a seamless physiographic earth representation. The use of the GMRT base map provides a high visual impact. These tools are being developed by the Marine Geoscience Data System group, http://www.marine-geo.org/ . Other resources for enhancing the representation of data include a suite of KML files created to allow users to view a number of MGDS-related data sets using Google Earth™ (http://www.marine-geo.org/tools/kmls.php). MediaBank (http://media.marine-geo.org/), an on-line image and video gallery, contains many images - life forms around hydrothermal vents, for example - purposefully selected for use in education and communication with the general public. Examples will be shown of using these resources to effectively represent and analyse data.

  2. Picasso at the Nanoscale: The Art of Using Cutting-Edge Science to Understand Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Rose, Volker

    2015-03-01

    Scientists are using high-energy X-ray instruments to solve mysteries behind art masterpieces, including artwork by Picasso. Learn how Argonne National Laboratory is working with major art institutions, such as The Art Institute of Chicago and Smithsonian Institute, to unlock groundbreaking information about art, the artist, and our cultural heritage. A deep connection to our past and shared cultural heritage must be preserved to foster a balanced society where all humanity can thrive. This talk will describe analysis of paint materials used by Pablo Picasso at the nanoscale, as only possible at the brightest synchrotron sources. It will highlight how new imaging techniques can reveal the invisible, bringing to light underlying compositions of old masters' paintings. This in turn enables the writing of new art history and provides important material clues that can assist with attribution and authentication. We will explain how the use of new technology can lead to new discoveries, which, in turn, can change the public's and the specialists' perception of great works of art. In collaboration with scientists from The Art Institute of Chicago we have teamed up to study the chemical make up of zinc oxide pigments used in artworks by Pablo Picasso. We will show how highly focused X-ray beams with nanoscale spatial resolution and trace element sensitivity have helped to determine that Picasso has used conventional house paint in some of his paintings. Surprisingly, the study gives also new insights into the pigment material zinc oxide, which has also great potential in a variety of applications such as in spintronics or as transparent electrodes in solar panels. Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DEAC02-06CH11357.

  3. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging

    PubMed Central

    Ahmad, R; Ding, Y; Simonetti, OP

    2015-01-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications. PMID:26755895

  4. GeoMapApp and MARGINS Mini-Lessons: Cutting-Edge Resources for Modern Educators

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W. B.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; O'Hara, S.; Ferrini, V.; Bonczkowski, J.; Chan, S.; Weissel, R.; Morton, J. J.; de Leonardo, S.; Leung, A.

    2009-12-01

    are available and contain examples of using these resources in MARGINS mini-lessons. MARGINS MediaBank (http://media.marine-geo.org/album/margins), an on-line gallery, uses web technology to serve a number of downloadable, searchable images from the NSF MARGINS project. Examples of MARGINS mini-lessons, GeoMapApp and MARGINS MediaBank will be shown.

  5. Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

    SciTech Connect

    Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.

    2014-08-31

    Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologies Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.

  6. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  7. Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT

    NASA Astrophysics Data System (ADS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Schirra, Carsten O.

    2014-05-01

    The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and experimental phantom studies are conducted to quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.

  8. Cytoplasm segmentation on cervical cell images using graph cut-based approach.

    PubMed

    Zhang, Ling; Kong, Hui; Chin, Chien Ting; Wang, Tianfu; Chen, Siping

    2014-01-01

    This paper proposes a method to segment the cytoplasm in cervical cell images using graph cut-based algorithm. First, the A* channel in CIE LAB color space is extracted for contrast enhancement. Then, in order to effectively extract cytoplasm boundaries when image histograms present non-bimodal distribution, Otsu multiple thresholding is performed on the contrast enhanced image to generate initial segments, based on which the segments are refined by the multi-way graph cut method. We use 21 cervical cell images with non-ideal imaging condition to evaluate cytoplasm segmentation performance. The proposed method achieved a 93% accuracy which outperformed state-of-the-art works. PMID:24212005

  9. Cutting Edge Cable Management.

    ERIC Educational Resources Information Center

    Peach, Roger

    1997-01-01

    Describes how one school district was able to efficiently install fragile telecommunication cabling throughout its high school and save thousands of dollars. Discusses solutions to some common cable-management problems. (GR)

  10. Cutting Edge EDU. @ USC.

    ERIC Educational Resources Information Center

    Mosher, Diana

    2000-01-01

    Discusses the principles and components of the University of Southern California's "smart building": the Marshall School of Business. The building's design, learning environment, use of high-tech learning tools, audio/video teleconferencing, and more than 1,100 data/power hookups, making it the most technologically advanced in the country, are…

  11. Riding the Cutting Edge

    ERIC Educational Resources Information Center

    Freit-Hammes, Lori

    2007-01-01

    When Western Wisconsin Technical College created the Health Benefits Improvement Team, they had no experience with the complexity and ever-changing demands of health care and its associated costs. See how they've embraced their mission and are changing the way business is done in their community.

  12. Iterative edge- and wavelet-based image registration of AVHRR and GOES satellite imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; El-Saleous, Nazmi; Vermote, Eric

    1997-01-01

    Most automatic registration methods are either correlation-based, feature-based, or a combination of both. Examples of features which can be utilized for automatic image registration are edges, regions, corners, or wavelet-extracted features. In this paper, we describe two proposed approaches, based on edge or edge-like features, which are very appropriate to highlight regions of interest such as coastlines. The two iterative methods utilize the Normalized Cross-Correlation of edge and wavelet features and are applied to such problems as image-to-map registration, landmarking, and channel-to-channel co-registration, utilizing test data, AVHRR data, as well as GOES image data.

  13. Getting Started in Academic Careers: On the Cutting Edge Resources for Graduate Students, Postdoctoral Fellows, and Early Career Faculty

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Ormand, C.; Manduca, C. A.; Wright-Dunbar, R.; Allen-King, R.

    2007-12-01

    The professional development program,'On the Cutting Edge', offers on-line resources and annual multi-day workshops for graduate students and post-doctoral fellows interested in pursuing academic careers. Pre- workshop surveys reveal that early career faculty, post-docs, and graduate students have many questions about teaching (e.g., what are effective teaching strategies, how to design a course, how to prepare a syllabus, how to teach large courses), research (e.g., initiate and fund future research, set up and manage a lab, obtain equipment), and career management (e.g., understand tenure requirements, balance all it all). The graduate students and post-docs also have questions about jobs and the job search process. Their questions show a lack of familiarity with the nature of academic positions at different kinds of educational institutions (two-year colleges, primarily undergraduate institutions, and research universities). In particular, they are uncertain about what educational setting will best fit their values and career goals and how teaching loads and research expectations vary by institution. Common questions related to the job search process include where to find job listings (the most common question in recent years), when to start the job search process, how to stand out as an applicant, and how to prepare for interviews. Both groups have questions about how to develop new skills: how to develop, plan and prepare a new course (without it taking all of their time), how to expand beyond their PhD (or postdoc) research projects, how to develop a research plan, and where to apply for funding. These are important topics for advisors to discuss with all of their students and postdocs who are planning on careers in academia. On the Cutting Edge offers workshops and web resources to help current and future faculty navigate these critical stages of their careers. The four-day workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your

  14. Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

    DOE PAGESBeta

    Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.

    2014-08-31

    Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologiesmore » Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.« less

  15. Enhancing your Teaching and Developing New Leadership: Impact of the On the Cutting Edge Professional Development Program

    NASA Astrophysics Data System (ADS)

    Iverson, E.; Manduca, C.; McLaughlin, J. A.; MacDonald, H.

    2005-12-01

    The goal of the On the Cutting Edge faculty professional development program is to improve geoscience education by keeping geoscience faculty up to date with changes in content and teaching methods. Six workshops each year focus on emerging themes in pedagogy and content; teaching upper division courses in the major; course design; teaching, research and career management for early career faculty; and preparing for an academic career. To date over 500 faculty, post-docs, and graduate students have participated in one or more workshops. To determine the impact of the workshops and associated websites, evaluators interviewed 54 of the program's participants and conducted an online survey for which nearly 50% of all participants responded. The interviews and related survey indicate four major areas of impact: 1) a change in participants' focus from "what do I teach" to "what are they learning"; 2) introduction of new teaching methods into courses; 3) increased emphasis in course content on emerging geoscience research (emerging theme workshop participants) and connections between geoscience and humans; 4) increased confidence, new skills, and new connections that enable participants to expand their sphere of influence and take on leadership positions in a wide range of venues (e.g. campus, regional, national, international) and in new professional areas (e.g. geoscience education, teacher preparation). Both the workshops and the associated websites are viewed as important resources in enabling these changes. The websites have played an important role in allowing participants to share what they have learned with colleagues both on campus and beyond. In sum, most participants believe that the workshops are of high value and can articulate important changes in their professional work that resulted from their participation.

  16. Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images.

    PubMed

    Yue, Yong; Croitoru, Mihai M; Bidani, Akhil; Zwischenberger, Joseph B; Clark, John W

    2006-03-01

    This paper introduces a novel nonlinear multiscale wavelet diffusion method for ultrasound speckle suppression and edge enhancement. This method is designed to utilize the favorable denoising properties of two frequently used techniques: the sparsity and multiresolution properties of the wavelet, and the iterative edge enhancement feature of nonlinear diffusion. With fully exploited knowledge of speckle image models, the edges of images are detected using normalized wavelet modulus. Relying on this feature, both the envelope-detected speckle image and the log-compressed ultrasonic image can be directly processed by the algorithm without need for additional preprocessing. Speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients. With a tuning diffusion threshold strategy, the proposed method can improve the image quality for both visualization and auto-segmentation applications. We validate our method using synthetic speckle images and real ultrasonic images. Performance improvement over other despeckling filters is quantified in terms of noise suppression and edge preservation indices. PMID:16524086

  17. Edge extraction of CT medical image based on wavelet transform algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Li, Xinzheng; Lai, Weidong

    2011-06-01

    Since computer tomography (CT) image has been widely applied in clinic diagnostics, while for many applications the information directly provided by CT images is incomplete corrupted by noise or instrument defect, there has great demand to further the processing methods for improving the CT image quality. Among all image features, the edge profile of clinic focus has obvious influence on accurately translating CT image. In this paper, the wavelet filtering algorithm based on modulus maximum method is put forward to extract and enhance the CT image edges. Edges in the brain lobe CT image can be outlined after wavelet transform, during which the wavelet assigned as the first order derivative of Gauss function. Further manipulation through maximum threshold checking to the modulus have been attenuated the pseudo-edges. After segmented with the original CT image, the edge structure has been distinctly enhanced, and high contrast is achieved between the brain lobe microstructure and the artificially established edges. The proposed algorithm is more efficient than the common first order differential operator, for the latter it even deteriorates the edge features. The algorithm proposed in this article can be integrated in medical image analyzing software to obtain higher accuracy for symptom interpretation.

  18. Edge detection based on genetic algorithm and sobel operator in image

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Ren, Aifeng; Zhang, Haifeng; Ruan, Hang; Luo, Ming

    2011-10-01

    Genetic algorithm (GA) is widely used as the optimization problems using techniques inspired by natural evolution. In this paper we present a new edge detection technique based on GA and sobel operator. The sobel edge detection built in DSP Builder is first used to determine the boundaries of objects within an image. Then the genetic algorithm using SOPC Builder proposes a new threshold algorithm for the image processing. Finally, the performance of the new edge detection technique-based the best threshold approaches in DSP Builder and Quartus II software is compared both qualitatively and quantitatively with the single sobel operator. The new edge detection technique is shown to perform very well in terms of robustness to noise, edge search capability and quality of the final edge image.

  19. Lung vessel segmentation in CT images using graph-cuts

    NASA Astrophysics Data System (ADS)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  20. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I. J.; George, G. N.; Gupta, M.; Chapman, D.

    2008-09-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a "background" image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor.

  1. Postmortem Magnetic Resonance Imaging to Guide the Pathological Cut: Individualized, 3D-Printed Cutting Boxes for Fixed Brains

    PubMed Central

    Absinta, Martina; Nair, Govind; Filippi, Massimo; Ray-Chaudhury, Abhik; Reyes-Mantilla, Maria I.; Pardo, Carlos A.; Reich, Daniel S.

    2014-01-01

    Interfacing magnetic resonance imaging (MRI) and pathology is critically important for understanding the pathological basis of MRI signal changes in vivo and for clinicopathological correlations. Postmortem MRI is an intermediate step in this process; unfortunately, however, relating the data to standard pathological sections, which are relatively thick and often non-parallel, is both time consuming and insufficiently accurate. The aim of this project was to develop technology to integrate postmortem, high-resolution, whole-brain MRI into the planning and execution of the pathological analysis through precise localization of the target and coordinates of cut. Compared to standard pathological sectioning, the use of an individualized 3D-printed cutting-box, designed based on postmortem MRI of formalin-fixed whole brains, improved the speed, quality, and accuracy of radiological-pathological correlation and, specifically, the histopathological localization of imaging findings. The technology described herein is easily implemented, applicable to any brain disorder, and potentially extendable to other organs. From the point of view of the pathologist this technique can improve localization of small or subtle abnormalities, whereas from the point of view of the radiologist it has the potential to improve understanding of MRI signal changes observed in disease. PMID:25007244

  2. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  3. On the Cutting Edge Professional Development Program: Workshop and Web Resources for Current and Future Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    Recognizing that many college and university faculty receive little formal training in teaching, are largely unaware of advances in research on teaching and learning, and face a variety of challenges in advancing in academic careers, the National Science Foundation-funded program On the Cutting Edge provides professional development for current and future faculty in the geosciences at various stages in their careers. The program includes a series of six multi-day workshops, sessions and one-day workshops at professional meetings, and a website with information about workshop opportunities and a variety of resources that bring workshop content to faculty (http://serc.carleton.edu/NAGTWorkshops). The program helps faculty improve their teaching and their job satisfaction by providing resources on instructional methods, geoscience content, and strategies for career planning. Workshop and website resources address innovative and effective practices in teaching, course design, delivery of instructional materials, and career planning, as well as approaches for teaching particular topics and strategies for starting and maintaining a research program in various institutional settings. Each year, special workshops for graduate students and post-doctoral fellows interested in academic careers and for early career faculty complement offerings on course design and emerging topics that are open to the full geoscience community. These special workshops include sessions on topics such as dual careers, gender issues, family-work balance, interviewing and negotiating strategies. The workshops serve as opportunities for networking and community building, with participants building connections with other participants as well as workshop leaders. Workshop participants reflect the full range of institutional diversity as well as ethnic and racial diversity beyond that of the geoscience faculty workforce. More than 40 percent of the faculty participants are female. Of the faculty

  4. On the Cutting Edge: Face-to-Face and Virtual Professional Development for Current and Future Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.; Iverson, E. A.; Kirk, K. B.; Beane, R. J.; McConnell, D.; Wiese, K.; Wysession, M. E.

    2011-12-01

    On the Cutting Edge, a comprehensive, discipline-wide professional development program for current and future geoscience faculty, aims to develop a geoscience professoriate committed to high-quality instruction based on currency in scientific knowledge, good pedagogic practice, and research on learning. Our program provides an integrated workshop series and online teaching resources. Since 2002, we have offered more than 80 face-to-face workshops, virtual workshops and webinars, and hybrid events. Participants come from two-year colleges and four-year colleges and universities. The workshop series is designed to address the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics and create opportunities of interest to faculty. We offer workshops on course design, new geoscience research and pedagogical topics, core geoscience curriculum topics, and introductory courses as well as workshops for early career faculty and for future faculty. Our workshops are designed to model good teaching practice. We set workshop goals that guide workshop planning and evaluation. Workshops are interactive, emphasize participant learning, provide opportunities for participants to interact and share experience/knowledge, provide good resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. We emphasize the importance of adaptation in the context of their specific situations. For virtual workshops and webinars we use icebreakers and other structured interactions to build a comfortable workshop community; promote interaction through features on webinar software, chat-aided question and answer, small-group synchronous interactions, and/or discussion boards; plan detailed schedules for workshop events; use asynchronous discussions and recordings of synchronous events given that participants are busy with their

  5. Impact of the REVEL Project: How Do Science Teachers Change by Doing Cutting-Edge Oceanographic Research?

    NASA Astrophysics Data System (ADS)

    Windschitl, M. A.; Robigou, V.

    2005-12-01

    high-tech, high-communication, fast-paced, collaborative, cutting-edge research on teachers' ability to transfer today's scientific process to students and how this might spark students' interest in science or improve their confidence or their reasoning skills are poorly understood.

  6. Device for cutting protrusions

    DOEpatents

    Bzorgi, Fariborz M.

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  7. Adaptive detection of microvascular edge in microcirculatory images for auto-tracking measurement of spontaneous vasomotion

    NASA Astrophysics Data System (ADS)

    Ying, Xiaoyou; Bao, Yongjian; Xiu, Rui-juan; Karras, Matti

    1994-05-01

    We developed a dynamic microvascular edge detection method which is based on an adaptive thresholding and multijudgmental criteria. To realize the on-line measurement with video rate, we first set changeable measuring lines which are perpendicular to a microvessel axis and cover the possible edge location at a cross- section of the microvessel as a sampling window. A dynamic threshold, which can frame-by-frame automatically adapt to the change of light intensity in the sampling window, will be generated based on the on-line analysis of light intensity distribution along the measuring lines. The judgment of microvascular edges is based on the pattern characteristics of the light intensity distribution curve in the microvascular edge areas and the possible range of the microvascular diameters. Multiple criteria for the edge detection were set for accurately detecting the edges and skipping the non-edge zones to speed the edge recognizing procedure. To further improve reliability of this edge detection, a dynamic graphic indicator can be generated according to the detected vessel edge location, and simultaneously displayed with the original image. This algorithm has been successfully applied for autotracking measurement of spontaneous vasomotion in microcirculation, even when the microcirculatory image had complex background and low contrast.

  8. BgCut: Automatic Ship Detection from UAV Images

    PubMed Central

    Zhang, Zhengning; Feng, Zhiyong

    2014-01-01

    Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches. PMID:24977182

  9. BgCut: automatic ship detection from UAV images.

    PubMed

    Xu, Chao; Zhang, Dongping; Zhang, Zhengning; Feng, Zhiyong

    2014-01-01

    Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches. PMID:24977182

  10. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  11. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  12. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  13. Multidirectional edge-directed interpolation with region division for natural images

    NASA Astrophysics Data System (ADS)

    Yun, Yujin; Bae, Jonghyun; Kim, Jaeseok

    2012-04-01

    A multidirectional edge-directed interpolation algorithm that features a region division method is proposed. In the proposed method, an interpolation pixel is newly modeled as a weighted sum of 12 neighboring pixels representing 12 different directions. Each weight is estimated by Wiener filter theory using geometric duality. The proposed method for dividing the interpolation region reduces the heavy computational complexity of the proposed model. Analyzing edge continuities, the model divides an image into three regions, and only strong edge regions are interpolated. Simulation results show that several directional edges are restored clearly in a subjective test, with fair performance in an objective test.

  14. An Improved Edge Detection Method for Image Corrupted by Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Xue, Hui

    Due to the difficulty with extracting edge points and eliminating noise points from images, an improved maximizing objective function algorithm was proposed. More directions were added to relocate the edge points, at the same time, edge and noise characteristics were analyzed to separate and the noise points were eliminated by a proper threshold T. The comparison based on principle of the improved method, classical methods and the references methods is done, the simulation results indicated that the performance of the improved edge detection method was better than that of other compared algorithms.

  15. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    ERIC Educational Resources Information Center

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  16. Hybrid image processing for robust extraction of lean tissue on beef cut surface

    NASA Astrophysics Data System (ADS)

    Hwang, Heon; Park, Bosoon; Nguyen, Minh D.; Chen, Yud-Ren

    1996-02-01

    A hybrid image processing system which automatically separates lean tissues from the beef cut surface image and generates the lean tissue contour has been developed. Because of the inhomogeneous distribution and fuzzy pattern of fat and lean tissues on the beef cut, conventional image segmentation and contour generation algorithms suffer from heavy computing, algorithm complexness, and even poor robustness. The proposed system utilizes an artificial neural network to enhance the robustness of processing. The system is composed of three procedures such as pre-network, network based lean tissue segmentation and post- network procedure. At the pre-network stage, gray level images of beef cuts were segmented and resized appropriate to the network inputs. Features such as fat and bone were enhanced and the enhanced input image was converted to the grid pattern image, whose grid was formed as 4 by 4 pixel size. At the network stage, the normalized gray value of each grid image was taken as the network input. Pre-trained network generated the grid image output of the isolated lean tissue. A sequence of post-network processing was followed to obtain the detailed contour of the lean tissue. The training scheme of the network and separating performance were presented and analyzed. The developed hybrid system shows the feasibility of the human like robust object segmentation and contour generation for the complex fuzzy and irregular image.

  17. MTF measurement and imaging quality evaluation of digital camera with slanted-edge method

    NASA Astrophysics Data System (ADS)

    Xiang, Chunchang; Chen, Xinhua; Chen, Yuheng; Zhou, Jiankang; Shen, Weimin

    2010-11-01

    Modulation Transfer Function (MTF) is the spatial frequency response of imaging systems and now develops as an objective merit performance for evaluating both quality of lens and camera. Slanted-edge method and its principle for measuring MTF of digital camera are introduced in this paper. The setup and software for testing digital camera is respectively established and developed. Measurement results with different tilt angle of the knife edge are compared to discuss the influence of the tilt angle. Also carefully denoise of the knife edge image is performed to decrease the noise sensitivity of knife edge measurement. Comparisons have been made between the testing results gained by slanted-edge method and grating target technique, and their deviation is analyzed.

  18. Rank-ordered filter for edge enhancement of cellular images using interval type II fuzzy set.

    PubMed

    Chaira, Tamalika

    2015-10-01

    An edge-enhancement technique using an interval type II fuzzy set that uses rank-ordered filter to enhance the edges of cellular images is proposed. When cellular images from any laboratory are digitized, scanned, and stored, some kind of degradation occurs, and directly using a rank-ordered filter may not produce clear edges. These images contain uncertainties, present in edges or boundaries of the image. Fuzzy sets that take into account these uncertainties may be a good tool to process these images. However, a fuzzy set sometimes does not produce better results. We used an interval type II fuzzy set, which considers the uncertainty in a different way. It considers the membership function in the fuzzy set as "fuzzy," so the membership values lie within an interval range. A type II fuzzy set has upper and lower membership levels, and with the two levels, a new membership function is computed using Hamacher t-conorm. A new fuzzy image is formed. A rank-ordered filter is applied to the image to obtain an edge-enhanced image. The proposed method is compared with the existing methods visually and quantitatively using entropic method. Entropy of the proposed method is higher (0.4418) than the morphology method (0.2275), crisp method (0.3599), and Sobel method (0.2669), implying that the proposed method is better. PMID:26702406

  19. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    PubMed

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. PMID:24759696

  20. Image analysis tools to quantify cell shape and protein dynamics near the leading edge.

    PubMed

    Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-01

    We present a set of flexible image analysis tools to analyze dynamics of cell shape and protein concentrations near the leading edge of cells adhered to glass coverslips. Plugins for ImageJ streamline common analyses of microscopic images of cells, including the calculation of leading edge speeds, total and average intensities of fluorescent markers, and retrograde flow rate measurements of fluorescent single-molecule speckles. We also provide automated calculations of auto- and cross-correlation functions between velocity and intensity measurements. The application of the methods is illustrated on images of XTC cells. PMID:23165752

  1. Evaluation of edge effect due to phase contrast imaging for mammography

    SciTech Connect

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-15

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as micro-calcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  2. Direct imaging of topological edge states at a bilayer graphene domain wall.

    PubMed

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-01-01

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation. PMID:27312315

  3. Direct imaging of topological edge states at a bilayer graphene domain wall

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-06-01

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation.

  4. The registration of dual-modality ship target images based on edge extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Wang, Risheng; Zhou, Fugen

    2014-11-01

    In this paper, we study the problem of visible and IR(infrared) ship target image registration with scale changes. We mainly focus on the infrared and visible image feature extraction and matching method. A method based on Force Field Transformation is used to determine the ship target contour area. Canny edge detection method is applied to obtain the edge features. During the process of image registration, we take the cross-correlation as the similarity measure and propose an improved Powell algorithm based on multi-scale searching to optimize the registration parameters. Through the edge fusion results, we can see the corresponding edges are almost overlapped, indicating that the method could achieve satisfying results. Also the average error distance of match is less than one pixel.

  5. Direct imaging of topological edge states at a bilayer graphene domain wall

    PubMed Central

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-01-01

    The AB–BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation. PMID:27312315

  6. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  7. Reconstruction of static line images with reduced speckle using interlaced holograms for holographic laser cutting

    NASA Astrophysics Data System (ADS)

    Lee, Hwihyeong; Park, Sangwoo; Jeon, Byoung Goo; Kong, Hong Jin

    2016-07-01

    A hologram can be used for high-power laser processing applications such as cutting, drilling, patterning, or welding. However, not much progress has been made in cutting application compared to the others, because it requires optical reconstruction of static and uniform line images using holograms which have a high damage threshold. These static and uniform line images are difficult to be reconstructed with a single hologram, since they usually suffer from speckle between neighboring spots. We propose a method to reconstruct reduced-speckle static line images using two interlaced holograms which reconstruct odd and even pixel line images, corresponding to two orthogonal polarizations. Then, the two orthogonally polarized line images are superposed for interlacing in the image plane. The proposed method was studied by numerical simulations and demonstrated experimentally. The experimental results show that speckle contrast decreased by about one-third, compared to that of a non-interlaced hologram. This method can be applied also for complex-shaped images which include curved lines as well as straight lines, and we have a plan for laser cutting with this method in the near future.

  8. Edge Detection and Shape Recognition in Neutron Transmission Images

    SciTech Connect

    Sword, Eric D; McConchie, Seth M

    2012-01-01

    Neutron transmission measurements are a valuable tool for nondestructively imaging special nuclear materials. Analysis of these images, however, tends to require significant user interaction to determine the sizes, shapes, and likely compositions of measured objects. Computer vision (CV) techniques can be a useful approach to automatically extracting important information from either neutron transmission images or fission-site-mapping images. An automatable approach has been developed that processes an input image and, through recursive application of CV techniques, produces a set of basic shapes that define surfaces observed in the image. These shapes can then be compared to a library of known shape configurations to determine if the measured object matches its expected configuration, as could be done behind an information barrier for arms control treaty verification inspections.

  9. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  10. Fragmentary area repairing on the edge of 3D laser point cloud based on edge extracting of images and LS-SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Ziming; Hao, Xiangyang; Liu, Songlin; Zhao, Song

    2011-06-01

    In the process of hole-repairing in point cloud, it's difficult to repair by the indeterminate boundary of fragmentary area in the edge of point cloud. In view of this condition, the article advances a method of Fragmentary area repairing on the edge of point cloud based on edge extracting of image and LS-SVM. After the registration of point cloud and corresponding image, the sub-pixel edge can be extracted from the image. Then project the training points and sub-pixel edge to the characteristic plane that has being constructed to confirm the bound and position for re-sampling. At last get the equation of fragmentary area to accomplish the repairing by Least-Squares Support Vector Machines. The experimental results demonstrate that the method guarantees accurate fine repairing.

  11. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  12. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging. PMID:26831392

  13. Edge detection and image segmentation of space scenes using fractal analyses

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Fuller, J. J.

    1992-01-01

    A method was developed for segmenting images of space scenes into manmade and natural components, using fractal dimensions and lacunarities. Calculations of these parameters are presented. Results are presented for a variety of aerospace images, showing that it is possible to perform edge detections of manmade objects against natural background such as those seen in an aerospace environment.

  14. Sensitivity of edge illumination X-ray phase-contrast imaging

    PubMed Central

    Diemoz, P. C.; Endrizzi, M.; Bravin, A.; Robinson, I. K.; Olivo, A.

    2014-01-01

    Recently, we developed a theoretical model that can predict the signal-to-noise ratio for edge-like features in phase-contrast images. This model was then applied for the estimation of the sensitivity of three different X-ray phase-contrast techniques: propagation-based imaging, analyser-based imaging and grating interferometry. We show here how the same formalism can be used also in the case of the edge illumination (EI) technique, providing results that are consistent with those of a recently developed method for the estimation of noise in the retrieved refraction image. The new model is then applied to calculate, in the case of a given synchrotron radiation set-up, the optimum positions of the pre-sample aperture and detector edge to maximize the sensitivity. Finally, an example of the extremely high angular resolution achievable with the EI technique is presented. PMID:24470420

  15. Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    PubMed Central

    Chang, Joshua C.; Chou, Tom

    2013-01-01

    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts. PMID:24678141

  16. Combining volumetric edge display and multiview display for expression of natural 3D images

    NASA Astrophysics Data System (ADS)

    Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki

    2006-02-01

    In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.

  17. A filtering approach to edge preserving MAP estimation of images.

    PubMed

    Humphrey, David; Taubman, David

    2011-05-01

    The authors present a computationally efficient technique for maximum a posteriori (MAP) estimation of images in the presence of both blur and noise. The image is divided into statistically independent regions. Each region is modelled with a WSS Gaussian prior. Classical Wiener filter theory is used to generate a set of convex sets in the solution space, with the solution to the MAP estimation problem lying at the intersection of these sets. The proposed algorithm uses an underlying segmentation of the image, and a means of determining the segmentation and refining it are described. The algorithm is suitable for a range of image restoration problems, as it provides a computationally efficient means to deal with the shortcomings of Wiener filtering without sacrificing the computational simplicity of the filtering approach. The algorithm is also of interest from a theoretical viewpoint as it provides a continuum of solutions between Wiener filtering and Inverse filtering depending upon the segmentation used. We do not attempt to show here that the proposed method is the best general approach to the image reconstruction problem. However, related work referenced herein shows excellent performance in the specific problem of demosaicing. PMID:21078580

  18. Lossless compression of hyperspectral images using adaptive edge-based prediction

    NASA Astrophysics Data System (ADS)

    Wang, Keyan; Wang, Liping; Liao, Huilin; Song, Juan; Li, Yunsong

    2013-09-01

    By fully exploiting the high correlation of the pixels along an edge, a new lossless compression algorithm for hyperspectral images using adaptive edge-based prediction is presented in order to improve compression performance. The proposed algorithm contains three modes in prediction: intraband prediction, interband prediction, and no prediction. An improved median predictor (IMP) with diagonal edge detection is adopted in the intraband mode. And in the interband mode, an adaptive edge-based predictor (AEP) is utilized to exploit the spectral redundancy. The AEP, which is driven by the strong interband structural similarity, applies an edge detection first to the reference band, and performs a local edge analysis to adaptively determine the optimal prediction context of the pixel to be predicted in the current band, and then calculates the prediction coefficients by least-squares optimization. After intra/inter prediction, all predicted residuals are finally entropy coded. For a band with no prediction mode, all the pixels are directly entropy coded. Experimental results show that the proposed algorithm improves the lossless compression ratio for both standard AVIRIS 1997 hyperspectral images and the newer CCSDS test images.

  19. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  20. Edge-on illumination photon-counting for medical imaging

    NASA Astrophysics Data System (ADS)

    Doni, M.; Visser, J.; Koffeman, E.; Herrmann, C.

    2015-08-01

    In medical X-ray Computed Tomography (CT) a silicon based sensor (300-1000 μm) in face-on configuration does not collect the incoming X-rays effectively because of their high energy (40-140 keV). For example, only 2% of the incoming photons at 100 keV are stopped by a 500 μm thick silicon layer. To increase the efficiency, one possibility is to use materials with higher Z (e.g. GaAs, CZT), which have some drawbacks compared to silicon, such as short carrier lifetime or low mobility. Therefore, we investigate whether illuminating silicon edge-on instead of face-on is a solution. Aim of the project is to find and take advantage of the benefits of this new geometry when used for a pixel detector. In particular, we employ a silicon hybrid pixel detector, which is read out by a chip from the Medipix family. Its capabilities to be energy selective will be a notable advantage in energy resolved (spectral) X-ray CT.

  1. Assessment of transmitral flow after mitral valve edge-to-edge repair using High-speed particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.

  2. [Using extraction of red edge position to validate consistency of hyperspectral imaging and non-imaging data].

    PubMed

    Wang, Da-Cheng; Zhang, Dong-Yan; Zhao, Jin-Ling; Li, Cun-Jun; Zhu, Da-Zhou; Huang, Wen-Jiang; Li, Yu-Fei; Yang, Xiao-Dong

    2011-09-01

    Using Pushbroom imaging spectrometer (PIS) and FieldSpec ProFR2500 (ASD), spectral reflectances of winter wheat and maize at different stages were collected synchronously. In order to validate the reliability of imaging spectral data, the red edge position of hyperspectral data for PIS and ASD were extracted by different algorithms, respectively. The following results were obtained: (1) The original spectrum of both instruments had high inosculation in red light region (670-740 nm); (2) With the spectra collected under laboratory condition (maize leaf), the extracted red edge position was is concentrated between 700 and 720 nm for the two instruments; (3) With the spectra collected undre field condition (wheat leaf), the extracted red edge position for PIS and ASD were different, the red edge position of PIS data was in 760 nm, while it was in 720 nm for ASD data. The main reason might be that the imaging spectral data were influenced by oxygen absorbtion; (4) the red edge rangeability of PIS and ASD were different, but the trends were the same. The above results could provide some references for hyperspectral imaging data's extensive application. PMID:22097847

  3. Face recognition via edge-based Gabor feature representation for plastic surgery-altered images

    NASA Astrophysics Data System (ADS)

    Chude-Olisah, Chollette C.; Sulong, Ghazali; Chude-Okonkwo, Uche A. K.; Hashim, Siti Z. M.

    2014-12-01

    Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature.

  4. Real-time wavelet denoising with edge enhancement for medical x-ray imaging

    NASA Astrophysics Data System (ADS)

    Luo, Gaoyong; Osypiw, David; Hudson, Chris

    2006-02-01

    X-ray image visualized in real-time plays an important role in clinical applications. The real-time system design requires that images with the highest perceptual quality be acquired while minimizing the x-ray dose to the patient, which can result in severe noise that must be reduced. The approach based on the wavelet transform has been widely used for noise reduction. However, by removing noise, high frequency components belonging to edges that hold important structural information of an image are also removed, which leads to blurring the features. This paper presents a new method of x-ray image denoising based on fast lifting wavelet thresholding for general noise reduction and spatial filtering for further denoising by using a derivative model to preserve edges. General denoising is achieved by estimating the level of the contaminating noise and employing an adaptive thresholding scheme with variance analysis. The soft thresholding scheme is to remove the overall noise including that attached to edges. A new edge identification method of using approximation of spatial gradient at each pixel location is developed together with a spatial filter to smooth noise in the homogeneous areas but preserve important structures. Fine noise reduction is only applied to the non-edge parts, such that edges are preserved and enhanced. Experimental results demonstrate that the method performs well both visually and in terms of quantitative performance measures for clinical x-ray images contaminated by natural and artificial noise. The proposed algorithm with fast computation and low complexity provides a potential solution for real-time applications.

  5. Performance of an edge block used in a configuration detector: Image quality measurements

    NASA Astrophysics Data System (ADS)

    Min, Jung-Whan; Kim, Ki-Won; Seoung, Youl-Hun; Kim, Jung-Min; Choi, In-Seok; Jeong, Hoi-Woun; Son, Soon-Yong; Kim, Sang-Young; Lee, Do-Wan; Choe, Bo-Young

    2014-03-01

    In megavoltage X-ray imaging (MVI), computed radiography (CR) has required a very simple and general quality assurance (QA) method based on a radiotherapy imaging technique. The purpose of this study was to develop a general QA method for evaluating the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) for MVI. Thus, a simple and compact edge block made of tungsten, with dimensions of 19 × 10 × 1 cm3, was efficiently designed and developed. The pre-sampling MTF was evaluated with the following settings: a 6 megavoltage (MV) energy, four different types of detectors, CR-IP (image plate: photo-stimulable phosphor screen), CR-IP-Lead (image plate + lead screen), CR-IP-Regular (fast front screen + image plate + fast front screen) and CR-IP-Fast (fast back screen + image plate + fast front screen). The MTF values at 1 mm-1 for CR-IP-Regular showed the highest resolution of 0.18. The best noise distribution was observed in the measurement of the NPS with CR-IP-Regular. With increasing spatial frequency, our results showed that value of the DQE for the four types of detectors was approximately 1.0 mm-1, which is comparable to the values reported in the literature. In this report, measurements for megavoltage imaging based on line-pair modulations by using an edge block are presented. When the wide side of the tungsten block was reduced, the accuracy of the edge measurement was improved to match those offered by edge techniques. The present study demonstrates that the QA method with our home-made edge block can be used to evaluate the MTF, NPS and DQE for MVI.

  6. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    NASA Astrophysics Data System (ADS)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  7. Edge detection and image segmentation based on K-means and watershed techniques

    NASA Astrophysics Data System (ADS)

    Salman, Nassir H.; Liu, Chongqing

    2001-09-01

    In this paper, we present a method that incorporates k-means and watershed segmentation techniques for performing image segmentation and edge detection tasks. Firstly we used k-means techniques to examine each pixel in the image and assigns it to one of the clusters depending on the minimum distance to obtain primary segmented image into different intensity regions. We then employ a watershed transformation technique works on that image. This includes: First, Gradient of the segmented image. Second, Divide the image into markers. Third, Check the Marker Image to see if it has zero points (watershed lines) then delete the watershed lines in the Marker Image created by watershed algorithm. Fourth, Create Region Adjacency Graph (RAG) and the Region Adjacency Boundary (RAB) between two regions from Marker Image and finally; Fifth, Region Merging according to region average intensity and edge strength (T1, T2), where all the regions with the same merged label belong to one region. Our approach was tested on remote sensing and brain MR medical images and the final segmentation is one closed boundary per actual region in the image.

  8. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  9. The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images

    SciTech Connect

    Korsager, Anne Sofie Østergaard, Lasse Riis; Fortunati, Valerio; Lijn, Fedde van der; Niessen, Wiro; Walsum, Theo van; Carl, Jesper

    2015-04-15

    Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas and intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.

  10. A quantitative study of the orientation bias of some edge detector schemes. [in ERTS satellite image processing

    NASA Technical Reports Server (NTRS)

    Deutsch, E. S.; Fram, J. R.

    1978-01-01

    The article discusses the orientational biases of various edge detection methods. On the basis of ERTS satellite images, three methods are compared: (1) Heuckel's local visual operator (1973), (2) Macleod's Gaussian edge mask detector (1972), and (3) Rosenfeld's local difference calculations (1971). The results yielded by these techniques are compared to the method for quantifying edge detector performance developed by Herskovits (1970).

  11. Determination of line edge roughness in low dose top-down scanning electron microscopy images

    NASA Astrophysics Data System (ADS)

    Verduin, T.; Kruit, P.; Hagen, C. W.

    2014-04-01

    We investigated off-line metrology for LER determination in low-dose SEM images to reduce the acquisition time and the risk of shrinkage. Our first attempts are based on filtering noisy (experimental) SEM images and use peak detection to measure the edge displacements and calculating the discrete PSD. However, the result of the filtering is that the power spectrum of the filter leaks into the PSD. So it is better to avoid a filter at all. We subsequently developed a method to detect edge displacements without the use of a filter. This method considers the signal profile of a SEM by integrating an experimental image of lines in the direction of the edges. The signal profile of an isolated edge is modeled as two merged Gaussians. This signal profile is then fitted against the raw (unfiltered) data of the edge pattern using an interior trust-region-reflective minimization procedure. This gives the edge displacements without the use of a filter and a filter-free version of the discrete PSD is obtained. The determination of edge displacements without the use of a filter, enables us to study how much noise is acceptable and still determine LER. To answer this question we generate random lines using the model of Palasantzas and the algorithm of Thorsos. This gives random generated edge displacements for typical values of experimental lines for the parameters of the model: 2 μm long lines (256 pixels), a correlation length ξ of 25 nm and a roughness exponent of 0.75. A noise-free top-down SEM-like image of lines is created by shifting the profile signal according to the random generated edge displacements. The image is further processed by adding Poisson-distributed noise. We consider three noise cases where the average electron density is about 2, 20 and 200 electrons per pixel. This corresponds to a charge density of (in respective order) 10 μC/cm2, 100 μC/cm2 and 1000 μC/cm2. The edge displacements of the random generated images are determined using our new

  12. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  13. Direct imaging of topological edge states in cold-atom systems

    PubMed Central

    Goldman, Nathan; Dalibard, Jean; Dauphin, Alexandre; Gerbier, Fabrice; Lewenstein, Maciej; Zoller, Peter; Spielman, Ian B.

    2013-01-01

    Detecting topological order in cold-atom experiments is an ongoing challenge, the resolution of which offers novel perspectives on topological matter. In material systems, unambiguous signatures of topological order exist for topological insulators and quantum Hall devices. In quantum Hall systems, the quantized conductivity and the associated robust propagating edge modes—guaranteed by the existence of nontrivial topological invariants—have been observed through transport and spectroscopy measurements. Here, we show that optical-lattice-based experiments can be tailored to directly visualize the propagation of topological edge modes. Our method is rooted in the unique capability for initially shaping the atomic gas and imaging its time evolution after suddenly removing the shaping potentials. Our scheme, applicable to an assortment of atomic topological phases, provides a method for imaging the dynamics of topological edge modes, directly revealing their angular velocity and spin structure. PMID:23569266

  14. Direct imaging of topological edge states in cold-atom systems.

    PubMed

    Goldman, Nathan; Dalibard, Jean; Dauphin, Alexandre; Gerbier, Fabrice; Lewenstein, Maciej; Zoller, Peter; Spielman, Ian B

    2013-04-23

    Detecting topological order in cold-atom experiments is an ongoing challenge, the resolution of which offers novel perspectives on topological matter. In material systems, unambiguous signatures of topological order exist for topological insulators and quantum Hall devices. In quantum Hall systems, the quantized conductivity and the associated robust propagating edge modes--guaranteed by the existence of nontrivial topological invariants--have been observed through transport and spectroscopy measurements. Here, we show that optical-lattice-based experiments can be tailored to directly visualize the propagation of topological edge modes. Our method is rooted in the unique capability for initially shaping the atomic gas and imaging its time evolution after suddenly removing the shaping potentials. Our scheme, applicable to an assortment of atomic topological phases, provides a method for imaging the dynamics of topological edge modes, directly revealing their angular velocity and spin structure. PMID:23569266

  15. Automatic CME front edge detection from STEREO white-light coronagraph images

    NASA Astrophysics Data System (ADS)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2015-08-01

    The coronagraph images captured by a Solar Terrestrial Relations Observatory (STEREO) Ahead/Behind (A/B) spacecraft allow tracking of a coronal mass ejection (CME) from two different viewpoints and reconstructing its propagation in three-dimensional space. The reconstruction can be done using a triangulation technique that requires a CME front edge location. There are currently no robust automatic CME front edge detection methods that can be integrated with the triangulation technique. In this paper, we propose a novel automatic method to detect the front edge of the CME using STEREO coronagraph 2 red-colored Red, Green, Blue color model images. Our method consists of two modules: preprocessing and classification. The preprocessing module decomposes each coronagraph image into its three channels and uses only the red channel image for CME segmentation. The output of the preprocessing module is a set of segmented running-difference binary images which is fed into the classification module. These images are then transformed into polar coordinates followed by CME front edge detection based on the distance that CME travels in the field of view. The proposed method was validated against a manual method using total 56 CME events, 28 from STEREO A and 28 from STEREO B, captured in the period from 1 January 2008 to 16 August 2009. The results show that the proposed method is effective for CME front edge detection. The proposed method is useful in quantitative CME processing and analysis and will be immediately applicable to assist automatic triangulation method for real-time space weather forecasting.

  16. Phase-shifter edge effects on attenuated phase-shifting mask image quality

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Ferguson, Richard A.; Neureuther, Andrew R.

    1994-05-01

    Edge effects of space, line, and linespace patterns in attenuated phase-shifting masks are studied using experimentally measured aerial images from the IBM AIMS tool, the scalar and thin mask approximations in SPLAT, and the rigorous electromagnetic simulator TEMPEST. The inadequacy of the thin mask approximation cannot be anticipated from comparisons of in- focus images of isolated line features as the experimentally measured image and the predictions from SPLAT and TEMPEST agree well. However, the scalar and thin mask approximations are not suitable for out of focus image prediction for all pattern types because the presence of the glass edges causes a focus shift of about 0.1 micrometers . Printing small isolated spaces and dense linespace patterns is more robust than isolated lines in the attenuated PSM technology.

  17. Construction of panoramic image mosaics based on affine transform and graph cut

    NASA Astrophysics Data System (ADS)

    Wang, Haiying; Qin, Kaihuai

    2010-08-01

    Image-based rendering has been a popular technique to simulate a visually rich telepresence and virtual reality experience. The construction of panoramic image mosaics is an indispensable step in image-based rendering systems like QuickTime VR and Surround Video. The conventional methods for creating panoramic image mosaics with regular photographic or video images use geometrical feature points and optimization to the overlapped areas of the two consecutive images, and then align and mosaic the corresponding areas using the blending or stitching algorithm. This paper introduces a novel and efficient method to build panoramic image mosaics. The proposed method divides the overlapped areas of the consecutive images into several sub-areas. The feature point, whose gradient value of intensity is the maximum in the sub-area can be found easily. After selecting these feature points, we warp the images using an affine transformation based on point set matching. Then the graph cut algorithm is used to build the seamless image mosaic which makes the overlapped areas containing no visible ghosting or blurred details. It is shown by the experiments that the new method can obtain mosaics of high quality and reduce the computing time.

  18. X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Park, Yong-Sung

    2012-04-01

    A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.

  19. Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source.

    PubMed

    Weise, Fabian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2012-11-19

    Element-specific contrast enhancement in tabletop coherent diffractive imaging (CDI) is demonstrated by employing an ultrafast extreme ultraviolet (XUV) light source with tunable photon energy. By combining two measurements performed at energies below and above the Al L(2,3) absorption edge, the spatial autocorrelation function of a micron-scale double pinhole in a 300 nm thick aluminum foil is retrieved despite a dominant background signal from directly transmitted light across the entire range of detectable diffraction angles. The fringe visibility in the diffraction patterns is 0 below the Al L(2,3) edge, 0.53 ± 0.06 above the edge, and 0.73 ± 0.08 in the differential image that combines the two measurements. The proof-of-principle experiment demonstrates that the variations of XUV optical constants in the vicinity of an inner-shell absorption edge can be utilized to improve the chemical sensitivity and image reconstruction quality of laboratory-based ultrafast imaging experiments. PMID:23187472

  20. Extraction of target specimens from bioholographic images using interactive graph cuts

    PubMed Central

    Yi, Faliu; Lee, Yeon H.

    2013-01-01

    Abstract. It is necessary to extract target specimens from bioholographic images for high-level analysis such as object identification, recognition, and tracking with the advent of application of digital holographic microscopy to transparent or semi-transparent biological specimens. We present an interactive graph cuts approach to segment the needed target specimens in the reconstructed bioholographic images. This method combines both regional and boundary information and is robust to extract targets with weak boundaries. Moreover, this technique can achieve globally optimal results while minimizing an energy function. We provide a convenient user interface, which can easily differentiate the foreground/background for various types of holographic images, as well as a dynamically modified coefficient, which specifies the importance of the regional and boundary information. The extracted results from our scheme have been compared with those from an advanced level-set-based segmentation method using an unbiased comparison algorithm. Experimental results show that this interactive graph cut technique can not only extract different kinds of target specimens in bioholographic images, but also yield good results when there are multiple similar objects in the holographic image or when the object boundaries are very weak. PMID:24352691

  1. Edge detection and reduction of brightness of students' bubble form images

    NASA Astrophysics Data System (ADS)

    Ilkin, Sümeyya; Şahin, Suhap

    2015-03-01

    Optical Mark Recognition (OMR) is a traditional data input technique and an important human computer interaction technique which is widely used in education testing. This paper proposes a new idea for grading multiple-choice test which is based on a camera on smartphone. The system key techniques and relevant implementations, which include the image scan, edge detection and reduction of brightness on colorful bubble form images, are presented.

  2. X-ray imaging with ``edge-on'' microchannel plate detector: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Molloi, Sabee

    2003-09-01

    A novel scanning slit X-ray imaging system based on an "edge-on" microchannel plate detector was developed and tested. Images were acquired at 50 kV(p) X-ray tube voltage with a limiting spatial resolution of 7 lp/mm. The pixel noise was measured to be 0.3 count/pixel/s for a 50×70 μm 2 pixel size. This photon counting detector can be considered to be virtually noise free.

  3. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    NASA Astrophysics Data System (ADS)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  4. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    SciTech Connect

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios; Skouroliakou, Aikaterini; Hazle, John D.; Kagadis, George C. E-mail: George.Kagadis@med.upatras.gr

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet

  5. No-Reference Depth Assessment Based on Edge Misalignment Errors for T+D Images.

    PubMed

    Xiang, Sen; Yu, Li; Chen, Chang Wen

    2016-03-01

    The quality of depth is crucial in all depth-based applications. Unfortunately, the error-free ground truth is often unattainable for depth. Therefore, no-reference quality assessment is very much desired. This paper presents a novel depth quality assessment scheme that is completely different from conventional approaches. In particular, this scheme focuses on depth edge misalignment errors in texture-plus-depth (T + D) images and develops a robust method to detect them. Based on the detected misalignments, a no-reference metric is calculated to evaluate the quality of depth maps. In the proposed scheme, misalignments are detected by matching texture and depth edges through three constraints: 1) spatial similarity; 2) edge orientation similarity; and 3) segment length similarity. Furthermore, the matching is performed on edge segments instead of individual pixels, which enables robust edge matching. Experimental results demonstrate that the proposed scheme can detect misalignment errors accurately. The proposed no-reference depth quality metric is highly consistent with the full-reference metric, and is also well-correlated with the quality of synthesized virtual views. Moreover, the proposed scheme can also use the detected edge misalignments to facilitate depth enhancement in various practical texture-plus-depth-based applications. PMID:26841393

  6. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  7. Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts.

    PubMed

    Wu, Weiwei; Zhou, Zhuhuang; Wu, Shuicai; Zhang, Yanhua

    2016-01-01

    Accurate segmentation of liver from abdominal CT scans is critical for computer-assisted diagnosis and therapy. Despite many years of research, automatic liver segmentation remains a challenging task. In this paper, a novel method was proposed for automatic delineation of liver on CT volume images using supervoxel-based graph cuts. To extract the liver volume of interest (VOI), the region of abdomen was firstly determined based on maximum intensity projection (MIP) and thresholding methods. Then, the patient-specific liver VOI was extracted from the region of abdomen by using a histogram-based adaptive thresholding method and morphological operations. The supervoxels of the liver VOI were generated using the simple linear iterative clustering (SLIC) method. The foreground/background seeds for graph cuts were generated on the largest liver slice, and the graph cuts algorithm was applied to the VOI supervoxels. Thirty abdominal CT images were used to evaluate the accuracy and efficiency of the proposed algorithm. Experimental results show that the proposed method can detect the liver accurately with significant reduction of processing time, especially when dealing with diseased liver cases. PMID:27127536

  8. Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts

    PubMed Central

    Wu, Weiwei; Zhou, Zhuhuang; Wu, Shuicai; Zhang, Yanhua

    2016-01-01

    Accurate segmentation of liver from abdominal CT scans is critical for computer-assisted diagnosis and therapy. Despite many years of research, automatic liver segmentation remains a challenging task. In this paper, a novel method was proposed for automatic delineation of liver on CT volume images using supervoxel-based graph cuts. To extract the liver volume of interest (VOI), the region of abdomen was firstly determined based on maximum intensity projection (MIP) and thresholding methods. Then, the patient-specific liver VOI was extracted from the region of abdomen by using a histogram-based adaptive thresholding method and morphological operations. The supervoxels of the liver VOI were generated using the simple linear iterative clustering (SLIC) method. The foreground/background seeds for graph cuts were generated on the largest liver slice, and the graph cuts algorithm was applied to the VOI supervoxels. Thirty abdominal CT images were used to evaluate the accuracy and efficiency of the proposed algorithm. Experimental results show that the proposed method can detect the liver accurately with significant reduction of processing time, especially when dealing with diseased liver cases. PMID:27127536

  9. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  10. Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh-cut lettuce sold in modified atmosphere packaging (MAP) is a desirable, but highly perishable product. Decay of tissue can start a few days after processing and may be difficult to detect by quick visual observation. A system for early detection of decay and gradual evaluation of its progress ...