Science.gov

Sample records for cx43 cx45 glutamate

  1. Cx43 and mechanotransduction in bone

    PubMed Central

    Plotkin, Lilian I.; Speacht, Toni L.; Donahue, Henry J.

    2015-01-01

    Bone adaptation to changes in mechanical stimuli occurs by adjusting bone formation and resorption by osteoblasts and osteoclasts, to maintain optimal bone mass. Osteocytes coordinate the actions of these cells on the bone surface by sensing mechanical forces and producing cytokines that increase or prevent osteoblast and osteoclast differentiation and function. Channels formed by connexins (Cxs) and, in particular, Cx43 in osteoblasts and osteocytes are central part of this mechanism to control bone mass. Cx43 hemichannels are opened by fluid flow and mediate the anti-apoptotic effect of mechanical stimulation in vitro, suggesting that Cx43 participates in mechanotransduction. However, mice lacking Cx43 in osteoblasts and/or osteocytes show an increased anabolic response to loading, and decreased catabolic response to unloading. This evidence suggests that Cx43 channels expressed in osteoblastic cells are not required for the response to mechanical stimulation, but mediate the consequence. The molecular basis of these unexpected responses to mechanical stimulation is currently under investigation. PMID:25616771

  2. Electrophysiology of Single and Aggregate Cx43 Hemichannels

    PubMed Central

    Brokamp, Cole; Todd, Jacob; Montemagno, Carlo; Wendell, David

    2012-01-01

    Connexin43 (Cx43) is the most ubiquitous gap junction protein in the human body and is essential for cell-to-cell communication in a variety of organs and organ systems. As a result, Cx43 is responsible for mediating both electrical and chemical signals, passing dissolved solutes and small signaling molecules between cells in a coordinated fashion. Here, we explore the electrophysiological properties of hemichannels formed from Cx43 and Cx43 fused to eGFP (Cx43eGFP) and their interactions in a planar lipid membrane (BLM). Unlike in vivo patch clamp experiments, Cx43 was purified and isolated from other membrane constituents allowing elucidation of individual protein responses to various electrical and chemical stimuli. Using this system, we examined hemichannel electrophysiology and the roles of several well-known gap junction blockers, namely: lanthanum, heptanol, carbenoxalone and lindane. We also observed a critical number of hemichannels required for an accelerated conductance increase, an emergent electrical signature indicative of plaque formation. PMID:23112846

  3. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice.

    PubMed

    Bivi, Nicoletta; Pacheco-Costa, Rafael; Brun, Lucas R; Murphy, Thomas R; Farlow, Nathan R; Robling, Alexander G; Bellido, Teresita; Plotkin, Lilian I

    2013-07-01

    The osteocyte network is crucial for the response of bone to mechanical force. Within this network, connexin43 (Cx43) is thought to mediate the communication of osteocytes and osteoblasts among themselves and the exchange of small molecules with the extracellular milieu. Despite recent advances in understanding Cx43 role for the response of bone cells to mechanical stimulation, the contribution of Cx43 specifically in osteocytes to mechanotransduction in vivo is not well-known. We examined the anabolic response to ulnar axial loading of mice lacking Cx43 in osteocytes (Cx43(ΔOt)). Loading induced a greater increase in periosteal bone formation rate in Cx43(ΔOt) mice compared to control littermates, resulting from higher mineralizing surface and enhanced mineral apposition rate. Expression of β-catenin protein, a molecule implicated in mechanotransduction, was higher in bones from Cx43(ΔOt) mice, compared to littermate controls. In addition, MLO-Y4 osteocytic cells knocked-down for Cx43 exhibited higher β-catenin protein expression and enhanced response to mechanical stimulation. These findings suggest that osteocytes lacking Cx43 are "primed" to respond to mechanical stimulation and that absence of Cx43 in osteocytes unleashes bone formation, by a mechanism that might involve accumulation of β-catenin. PMID:23483620

  4. Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes.

    PubMed

    Jiang, Shan; Wang, Yong-Qiang; Xu, Cheng-Feng; Li, Ya-Na; Guo, Rong; Li, Ling

    2014-05-01

    Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound. PMID:24634254

  5. The role of the Cx43 C-terminus in GJ plaque formation and internalization

    SciTech Connect

    Wayakanon, Praween; Bhattacharjee, Rajib; Nakahama, Ken-ichi; Morita, Ikuo

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Cx43-GFP or -DsRed fusion proteins were expressed in HeLa cells. Black-Right-Pointing-Pointer Roles of C-terminus were examined using various mutants. Black-Right-Pointing-Pointer Gap junction plaque size was dependent on the length of C-terminus. Black-Right-Pointing-Pointer C-terminus dependent gap junction plaque internalization was observed. -- Abstract: Connexin 43 (Cx43) is a major gap junction (GJ) protein found in many mammalian cell types. The C-terminal (CT) domain of Cx43 has unique characteristics in terms of amino acid (aa) sequence and its length differs from other connexins. This CT domain can be associated with protein partners to regulate GJ assembly and degradation, which results in the direct control of gap junction intercellular communication (GJIC). However, the essential roles of the CT regions involved in these mechanisms have not been fully elucidated. In this study, we aimed to investigate the specific regions of Cx43CT involved in GJ formation and internalization. Wild type Cx43{sub (382aa)} and 10 CT truncated mutants were stably expressed in HeLa cells as GFP or DsRed tagged proteins. First, we found that the deletion of 235-382aa from Cx43 resulted in failure to make GJ and establish GJIC. Second, the Cx43 with 242-382aa CT deletion could form functional GJs and be internalized as annular gap junctions (AGJs). However, the plaques consisting of Cx43 with CT deletions ({Delta}242-382aa to {Delta}271-382aa) were longer than the plaques consisting of Cx43 with CT deletions ({Delta}302-382aa). Third, co-culture experiments of cells expressing wild type Cx43{sub (382)} with cells expressing Cx43CT mutants revealed that the directions of GJ internalization were dependent on the length of the respective CT. Moreover, a specific region, 325-342aa residues of Cx43, played an important role in the direction of GJ internalization. These results showed the important roles of the Cx43 C-terminus in GJ

  6. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  7. Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients.

    PubMed

    Esseltine, Jessica L; Shao, Qing; Huang, Tao; Kelly, John J; Sampson, Jacinda; Laird, Dale W

    2015-11-15

    Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells. PMID:26349540

  8. Association of STAT3 with Cx26 and Cx43 in human uterine endometrioid adenocarcinoma

    PubMed Central

    SULKOWSKA, URSZULA; FEBP, ANDRZEJ WINCEWICZ; SULKOWSKI, STANISLAW

    2016-01-01

    Signal transducer and activator of transcription-3 (STAT3) drives endometrial carcinogenesis, while signaling via gap junctions gets weakened during cancer progression. Connexin 26 (Cx26), Cx43 and STAT3 were immunohistochemically evaluated in 78 endometrioid adenocarcinomas: Nuclear expression of STAT3 positively correlated with cytoplasmic immunoreactivity to Cx43 (P=0.004, r=0.318) and Cx26 (P=0.006, r=0.309). STAT3 correlated with Cx43 (P=0.022, r=0.411) and Cx26 (P=0.008 r=0.466) in G1 tumors. A statistically significant linkage remained in G2 cancers between STAT3 and Cx43 (P=0.061, r=0.262) and Cx26 (P=0.016, r=0.331); however, no correlations were observed in G3 tumors. STAT3 was significantly associated with Cx 43 (p=0.003, r=0.684) and Cx26 (p=0.049, r=0.500) in estrogen receptor (ER) negative adenocarcinomas. STAT3 did not correlate with Cx43 in ER positive adenocarcinomas; however, STAT3 expression remained correlated with Cx26 expression (P=0.035, r=0.268). In progesterone receptor negative tumors STAT3 was significantly associated with Cx43 (P=0.035, r=0.451) and Cx26 (P<0.0001, r=0.707). However, in PgR positive adenocarcinomas STAT3 correlated with Cx43 (P=0.03, r=0.290) but not with Cx26. Thus, it appears that hormone dependent acceleration of cancer growth breaks the association between STAT3 and Cx expression. These associations become weaker as the tumors dedifferentiate from G1 to G3 endometrioid adenocarcinomas. The present study provides evidence that the loss of correlation between STAT3 and selected Cx proteins occurs in tumors with more aggressive behavior. PMID:27313754

  9. Nutrient Starvation Decreases Cx43 Levels and Limits Intercellular Communication in Primary Bovine Corneal Endothelial Cells.

    PubMed

    D'hondt, Catheleyne; Iyyathurai, Jegan; Welkenhuyzen, Kirsten; Himpens, Bernard; Leybaert, Luc; Bultynck, Geert

    2016-06-01

    Connexin (Cx) proteins form large conductance channels which function as regulators of communication between neighboring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signaling, survival and death processes. Connexin 43 (Cx43), a major connexin isoform in brain and heart, is rapidly turned over. Recent studies implicated that autophagy, a lysosomal degradation pathway induced upon nutrient starvation, mediates connexins, including Cx43, degradation. Here, we examined the impact of nutrient starvation on endogenous Cx43-protein levels and endogenous Cx43-driven intercellular communication in primary bovine corneal endothelial cells (BCECs). Hank's Balanced Salt Solution (HBSS) was used as a starvation condition that induces autophagic flux without impacting the survival of the BCECs. Nutrient starvation of BCECs caused a rapid decline in Cx43-protein levels, both as gap junctions and as hemichannels. The time course of the decline in Cx43-protein levels coincided with the time course of the decline in intercellular communication, assessed as intercellular Ca(2+)-wave propagation in BCECs exposed to a single-cell mechanical stimulus. The decline in Cx43-protein levels, both as gap junctions and as hemichannels, could be prevented by the addition of bafilomycin A1, a lysosomal inhibitor, during the complete nutrient starvation period. Consistent with this, bafilomycin A1 significantly alleviated the decrease in intercellular Ca(2+)-wave propagation. This study further underpins the importance of autophagy as an important degradation pathway for Cx43 proteins during periods of nutrient deprivation, thereby impacting the ability of cells to perform intercellular communication. PMID:26873723

  10. Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/drebrin complex.

    PubMed

    Suh, Han Na; Kim, Mi Ok; Han, Ho Jae

    2012-07-20

    Gap junctions within extracellular matrix (ECM)-defined boundaries ensure synchronous activity between cells destined to become functional mediators that regulate cell behavior. However, the role of ECM in connexin (Cx) function in mouse embryonic stem cells (mESCs) has not been elucidated. Therefore, we examined the role of laminin-111 in the control of Cx43 functions and related signal pathways in mESCs. ECM components (laminin-111, fibronectin, and collagen I) increased Cx43 phosphorylation and decreased Lucifer yellow (Ly) diffusion. In addition, laminin-111 increased the proliferation index through reduction of gap junctional intercellular communication (GJIC), which was confirmed by 18α-glycyrrhetinic acid (18α-GA). Laminin-111 increased phosphorylation of focal adhesion kinase (FAK)/Src and protein kinase C (PKC), which were inhibited by integrin β1 antibody (Ab) and laminin receptor-1 (LR-1) Ab, respectively. In addition, inhibition of both FAK/Src and PKC blocked Cx43 phosphorylation. Laminin-111 increased the Ras homolog gene family, member A (RhoA) activation, which was blocked by FAK/Src and PKC inhibitors, suggesting the existence of parallel pathways that merge at RhoA. Inhibition of RhoA reversed the laminin-111-induced increase of Cx43 phosphorylation and reduction of GJIC. Laminin-111 also stimulated the dissociation of Cx43/ZO-1 complex followed by disruption of Cx43/drebrin and Cx43/F-actin complexes, which were reversed by C3 (RhoA inhibitor). ZO-1 small interfering (si) RNA significantly decreased Ly diffusion. Moreover, laminin-111 decreased Cx43 labeling at the intercellular junction, whereas pretreatment with degradation inhibitors (lysosomal protease inhibitor, chloroquine; proteasome inhibitor, lactacystin) increased Cx43 expression, reversely. In conclusion, laminin-111 stimulated mESC proliferation through a reduction of GJIC via RhoA-mediated Cx43 phosphorylation and Cx43/ZO-1/drebrin complex instability-mediated Cx43 degradation

  11. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system?

    PubMed Central

    De Bock, Marijke; Kerrebrouck, Marianne; Wang, Nan; Leybaert, Luc

    2013-01-01

    The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell–cell transfer of metabolic and electric signals. GJs are formed by connexins of which Cx43 is most widespread in the human body. In the brain, Cx43 GJs are mostly found in astroglia where they coordinate the propagation of Ca2+ waves, spatial K+ buffering, and distribution of glucose. Beyond its role in direct intercellular communication, Cx43 also forms unapposed, non-junctional hemichannels in the plasma membrane of glial cells. These allow the passage of several neuro- and gliotransmitters that may, combined with downstream paracrine signaling, complement direct GJ communication among glial cells and sustain glial-neuronal signaling. Mutations in the GJA1 gene encoding Cx43 have been identified in a rare, mostly autosomal dominant syndrome called oculodentodigital dysplasia (ODDD). ODDD patients display a pleiotropic phenotype reflected by eye, hand, teeth, and foot abnormalities, as well as craniofacial and bone malformations. Remarkably, neurological symptoms such as dysarthria, neurogenic bladder (manifested as urinary incontinence), spasticity or muscle weakness, ataxia, and epilepsy are other prominent features observed in ODDD patients. Over 10 mutations detected in patients diagnosed with neurological disorders are associated with altered functionality of Cx43 GJs/hemichannels, but the link between ODDD-related abnormal channel activities and neurologic phenotype is still elusive. Here, we present an overview on the nature of the mutants conveying structural and functional changes of Cx43 channels and discuss available evidence for aberrant Cx43 GJ and hemichannel function. In a final step, we examine the possibilities of how channel dysfunction may lead to some of the neurological manifestations of ODDD. PMID:24133447

  12. RhoA GTPase Switch Controls Cx43-Hemichannel Activity through the Contractile System

    PubMed Central

    Hertens, Fréderic; Parys, Jan B.; Leybaert, Luc; Vereecke, Johan; Himpens, Bernard; Bultynck, Geert

    2012-01-01

    ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho)physiological conditions of stress. PMID:22860057

  13. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells

    PubMed Central

    Chen, Xiaoxuan; Kong, Xiangyu; Zhuang, Wenxin; Teng, Bogang; Yu, Xiuyi; Hua, Suhang; Wang, Su; Liang, Fengchao; Ma, Dan; Zhang, Suhui; Zou, Xuan; Dai, Yue; Yang, Wei; Zhang, Yongxing

    2016-01-01

    Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes. PMID:26880274

  14. Intracellular spermine prevents acid-induced uncoupling of Cx43 gap junction channels.

    PubMed

    Skatchkov, Serguei N; Bukauskas, Feliksas F; Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V

    2015-06-17

    Polyamines (PAs), such as spermine and spermidine, modulate the activity of numerous receptors and channels in the central nervous system (CNS) and are stored in glial cells; however, little attention has been paid to their role in the regulation of connexin (Cx)-based gap junction channels. We have previously shown that PAs facilitate diffusion of Lucifer Yellow through astrocytic gap junctions in acute brain slices; therefore, we hypothesized that spermine can regulate Cx43-mediated (as the most abundant Cx in astrocytes) gap junctional communication. We used electrophysiological patch-clamp recording from paired Novikoff cells endogenously expressing Cx43 and HeLaCx43-EGFP transfectants to study pH-dependent modulation of cell-cell coupling in the presence or absence of PAs. Our results showed (i) a higher increase in gap junctional communication at higher concentrations of cytoplasmic spermine, and (ii) that spermine prevented uncoupling of gap junctions at low intracellular pH. Taken together, we conclude that spermine enhances Cx43-mediated gap junctional communication and may preserve neuronal excitability during ischemia and trauma when pH in the brain acidifies. We, therefore, suggest a new role of spermine in the regulation of a Cx43-based network under (patho)physiological conditions. PMID:26011388

  15. Specific functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia.

    PubMed

    Kelly, John J; Esseltine, Jessica L; Shao, Qing; Jabs, Ethylin Wang; Sampson, Jacinda; Auranen, Mari; Bai, Donglin; Laird, Dale W

    2016-07-15

    Oculodentodigital dysplasia (ODDD) is a rare genetic disease that affects the development of multiple organs in the human body. More than 70 mutations in the gap junction connexin43 (Cx43) gene, GJA1, are associated with ODDD, most of which are inherited in an autosomal dominant manner. Many patients exhibit similar clinical presentations. However, there is high intrafamilial and interfamilial phenotypic variability. To better understand this variability, we established primary human dermal fibroblast cultures from several ODDD patients and unaffected controls. In the present study, we characterized three fibroblast lines expressing heterozygous p.L7V, p.G138R, and p.G143S Cx43 variants. All ODDD fibroblasts exhibited slower growth, reduced migration, and defective cell polarization, traits common to all ODDD fibroblasts studied so far. However, we found striking differences in overall expression levels, with p.L7V down-regulated at the mRNA and protein level. Although all of the Cx43 variants could traffic to the cell surface, there were stark differences in gap junction plaque formation, gap junctional intercellular communication, Cx43 phosphorylation, and hemichannel activity among Cx43 variants, as well as subtle differences in myofibroblast differentiation. Together these findings enabled us to discover mutation-specific pathologies that may help to predict future clinical outcomes. PMID:27226478

  16. Intracellular spermine prevents acid-induced uncoupling of Cx43 gap junction channels

    PubMed Central

    Skatchkov, Serguei N.; Bukauskas, Feliksas F.; Benedikt, Jan; Inyushin, Mikhail

    2015-01-01

    Polyamines (PAs), such as spermine and spermidine, modulate the activity of numerous receptors and channels in the central nervous system (CNS) and are stored in glial cells; however, little attention has been paid to their role in the regulation of connexin (Cx)-based gap junction channels. We have previously shown that PAs facilitate diffusion of Lucifer Yellow through astrocytic gap junctions in acute brain slices; therefore, we hypothesized that spermine can regulate Cx43-mediated (as the most abundant Cx in astrocytes) gap junctional communication. We used electrophysiological patch-clamp recording from paired Novikoff cells endogenously expressing Cx43 and HeLaCx43-EGFP transfectants to study pH-dependent modulation of cell–cell coupling in the presence or absence of PAs. Our results showed (i) a higher increase in gap junctional communication at higher concentrations of cytoplasmic spermine, and (ii) that spermine prevented uncoupling of gap junctions at low intracellular pH. Taken together, we conclude that spermine enhances Cx43-mediated gap junctional communication and may preserve neuronal excitability during ischemia and trauma when pH in the brain acidifies. We, therefore, suggest a new role of spermine in the regulation of a Cx43-based network under (patho)physiological conditions. PMID:26011388

  17. Engineered Cx40 variants increased docking and function of heterotypic Cx40/Cx43 gap junction channels.

    PubMed

    Jassim, Arjewan; Aoyama, Hiroshi; Ye, Willy G; Chen, Honghong; Bai, Donglin

    2016-01-01

    Gap junction (GJ) channels provide low resistance passages for rapid action potential propagation in the heart. Both connexin40 (Cx40) and Cx43 are abundantly expressed in and frequently co-localized between atrial myocytes, possibly forming heterotypic GJ channels. However, conflicting results have been obtained on the functional status of heterotypic Cx40/Cx43 GJs. Here we provide experimental evidence that the docking and formation of heterotypic Cx40/Cx43 GJs can be substantially increased by designed Cx40 variants on the extracellular domains (E1 and E2). Specifically, Cx40 D55N and P193Q, substantially increased the probability to form GJ plaque-like structures at the cell-cell interfaces with Cx43 in model cells. More importantly the coupling conductance (Gj) of D55N/Cx43 and P193Q/Cx43 GJ channels are significantly increased from the Gj of Cx40/Cx43 in N2A cells. Our homology models indicate the electrostatic interactions and surface structures at the docking interface are key factors preventing Cx40 from docking to Cx43. Improving heterotypic Gj of these atrial connexins might be potentially useful in improving the coupling and synchronization of atrial myocardium. PMID:26625713

  18. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  19. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. PMID:22330805

  20. Connexin 43 (Cx43) Expression in Laryngeal Squamous Cell Carcinomas: Preliminary Data on Its Possible Prognostic Role.

    PubMed

    Puzzo, Lidia; Caltabiano, Rosario; Parenti, Rosalba; Trapasso, Serena; Allegra, Eugenia

    2016-09-01

    The aim of the report is to evaluate the prognostic and predictive role of Connexin 43 (Cx43) expression in laryngeal squamous cell carcinomas. Eighty-seven previously untreated patients submitted to laryngectomy ± neck dissection ± radiotherapy were enrolled in this retrospective study. The original primary tumor slides were reassessed, tumor grade and stage reviewed, and Cx43 immunohistochemical analysis performed: only cytoplasmic membranous staining of Cx43 has been shown. Neither significant correlation has been showed for clinical T (p = 0.75) and N (p = 0.81), while significant correlation has been found with grading (p < 0.0001) and pathological N (p < 0.0001). Five year overall survival (OS) of the 87 patients was 54 %; 5 year OS was 59.6 % in Cx43 positive patients and 37.1 % in Cx43 negative patients, but also this difference did not reach statistical significance (p = 0.058). Our best findings were: poorly differentiated carcinomas had low or negative Cx43 expression; moderately differentiated tumors without node metastasis and no radiotherapy but with Cx43 expression had a better outcome; moderately differentiated tumors without node metastasis and no radiotherapy but without Cx43 expression had a worse outcome; moderately differentiated tumors with node metastasis and radiotherapy but without Cx43 expression had a better outcome. Interestingly, in G2 head and neck squamous cell carcinomas with lymph node metastasis at the time of diagnosis, Cx43 aberrant overexpression could identify a subset of patients with poor prognosis, far less responsive to radio/chemotherapy. PMID:26748803

  1. Roles of Cx43 and AKAP95 in ovarian cancer tissues in G1/S phase

    PubMed Central

    Liu, Wenzhi; Hua, Suhang; Dai, Yue; Yuan, Yangyang; Yang, Jinghui; Deng, Jiali; Huo, Yunjie; Chen, Xiaoxuan; Teng, Bogang; Yu, Xiuyi; Zhang, Yongxing

    2015-01-01

    Objective: The purpose of this study was to investigate the expression of A-kinase anchor protein 95 (AKAP95), cell cycle protein E1 (cyclinE1) and D1 (cyclinD1), and gap junction protein connexin 43 (Cx43) in ovarian cancer tissues, the relationship between four proteins and clinicopathologic parameters, and the correlation between these proteins. Methods: The expression of proteins in 54 cases of ovarian cancer tissues was detected by immunohistochemical method. Results: The positive expression rates of AKAP95, cyclinD1 and cyclinE1 in ovarian cancer tissues were 72.22%, 66.67% and 79.63%, respectively, which were higher than that of ovarian pericarcinoma tissues expressing as 33.33%, 25% and 8.30% (P<0.05). The positive expression rate of Cx43 in ovarian cancer tissues was 40.74%, which was lower than that of ovarian pericarcinoma tissues expressing as 75%; respectively, and the difference was statistically significant between groups (P<0.05). The expression of cyclinD1 in ovarian cancer tissues was related to the histologic type (P<0.05) while it showed no correlation with the degree of differentiation (P>0.05). Additionally, the expression of AKAP95, Cx43 and cyclinE1 in ovarian cancer tissues showed no correlation with the degree of differentiation or the histologic type (P>0.05). Protein expressions of AKAP95, Cx43 and cyclinE1 were correlated with each other (P<0.05), and the expressions of cyclinD1, cyclinE1 and Cx43 were also correlated with each other (P<0.05). However, AKAP95 and cyclinD1 showed no correlation (P>0.05). Conclusion: AKAP95, cyclinD1 and cyclinE1 play an important role in promoting the process of ovarian cancer formation. The tumor inhibitory effects of Cx43 protein on the pathogenesis of ovarian cancer were weakened. The expression of cyclinD1 in ovarian cancer tissues is related to the histologic type while it shows no correlation with the degree of differentiation. Additionally, the expression of AKAP95, Cx43 and cyclinE1 in ovarian

  2. Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?

    PubMed Central

    De Bock, Marijke; Wang, Nan; Decrock, Elke; Bultynck, Geert; Leybaert, Luc

    2015-01-01

    The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury. PMID:26424967

  3. Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus.

    PubMed

    Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L; Li, Hanjun; Zach, Sydney; Stauch, Kelly L; Grosely, Rosslyn; Sorgen, Paul L

    2016-04-01

    Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1-3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT(283)PPXY(286)sequence. Although Tyr(286)is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)(279)and Ser(P)(282)) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT(276-289)(Ser(P)(279), Ser(P)(282)) complex reveals that coordination of Ser(P)(282)with the end of β-strand 3 enables Ser(P)(279)to interact with the back face of β-strand 3 (Tyr(286)is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)(279)/Ser(P)(282)strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation. PMID:26841867

  4. Modulation of Cx43 and Gap Junctional Intercellular Communication by Androstenedione in Rat Polycystic Ovary and Granulosa Cells in vitro

    PubMed Central

    Talhouk, Rabih; Tarraf, Charbel; Kobrossy, Laila; Shaito, Abdallah; Bazzi, Samer; Bazzoun, Dana; El-Sabban, Marwan

    2012-01-01

    Background Gap-junctional intercellular communication (GJIC) is implicated in physicological processes and it is vitally important for granulosa cell (GC) differentiation and oocyte growth. We investigated the expression of connexin 43 (Cx43), a gap junctional protein, in normal and androstenedione-induced polycystic ovary (PCO), the effects of androstenedione on Cx43 expression, GJIC and progesterone production in granulosa cells in vitro. Methods Isolated GCs from rat ovary were supplemented with FSH and dripped with EHS-matrix (EHS-drip) in culture media, were treated with physiological (10−7 M) or pathological (10−5 M) androstenedione concentrations to induce differentiation. Cx43 protein levels were assessed by Western blotting. Immunohistochemistry was also used to determine the localization of Cx43 in GCs and corpus luteum (CL) of controls and PCOs. Differentiation of GCs was determined by progesterone assay and Lucifer yellow dye transfer for GJIC status. The degree of significance of variations between the results was analyzed by ANOVA using SPSS (version 11.5; 2002). Results Cx43 localized in the GC layer of both the control and PCOs. Its protein levels were upregulated in PCO rat ovaries. GCs in culture with or without androstenedione had a punctate membranous distribution of Cx43. However, androstenedione increased GJIC and upregulated progesterone and Cx43 protein levels. Inhibiting GJIC by 18-α GA in androstenedione-treated GCs caused partial inhibition of progesterone production, suggesting a possible role of GJIC in mediating the action of androstenedione on GC differentiation. Conclusion This study presented a suitable culture model for polycystic ovary syndrome and showed that Cx43 and GJIC might contribute to the pathogenesis of polycystic ovary syndrome. PMID:23926521

  5. The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice

    PubMed Central

    Stewart, Michael K. G.; Gong, Xiang-Qun; Barr, Kevin J.; Bai, Donglin; Fishman, Glenn I.; Laird, Dale W.

    2012-01-01

    Genetically modified mice mimicking ODDD (oculodentodigital dysplasia), a disease characterized by reduced Cx43 (connexin 43)-mediated gap junctional intercellular communication, represent an in vivo model to assess the role of Cx43 in mammary gland development and function. We previously reported that severely compromised Cx43 function delayed mammary gland development and impaired milk ejection in mice that harboured a G60S Cx43 mutant, yet there are no reports of lactation defects in ODDD patients. To address this further, we obtained a second mouse model of ODDD expressing an I130T Cx43 mutant to assess whether a mutant with partial gap junction channel activity would be sufficient to retain mammary gland development and function. The results of the present study show that virgin Cx43I130T/+ mice exhibited a temporary delay in ductal elongation at 4 weeks. In addition, Cx43I130T/+ mice develop smaller mammary glands at parturition due to reduced cell proliferation despite similar overall gland architecture. Distinct from Cx43G60S/+ mice, Cx43I130T/+ mice adequately produce and deliver milk to pups, suggesting that milk ejection is unaffected. Thus the present study suggests that a loss-of-function mutant of Cx43 with partial gap junction channel coupling conductance results in a less severe mammary gland phenotype, which may partially explain the lack of reported lactation defects associated with ODDD patients. PMID:23075222

  6. Syndromic and non-syndromic disease-linked Cx43 mutations.

    PubMed

    Laird, Dale W

    2014-04-17

    There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ-line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43-rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years. PMID:24434540

  7. Levonorgestrel Inhibits Human Endometrial Cell Proliferation through the Upregulation of Gap Junctional Intercellular Communication via the Nuclear Translocation of Ser255 Phosphorylated Cx43

    PubMed Central

    Zhao, Xiaomiao; Tang, Xueliang; Ma, Tingting; Ding, Miao; Bian, Lijuan; Chen, Dongmei; Li, Yangzhi; Wang, Liangan; Zhuang, Yanyan; Xie, Meiqing; Yang, Dongzi

    2015-01-01

    Objects. To assess whether LNG exerts antiproliferation effects on human endometrial cells through changes of GJIC function and the phosphorylated Cx43. Methods. Cell proliferation and apoptosis of human endometrial stromal cells (HESCs) and glandular cells (HEGCs) treated with LNG in a dose- and time-dependent manner. GJIC change and further total Cx43 and serine 368 and 255 phosphorylated Cx43 were measured. Results. 5 × 10−5 mol/L LNG revealed a time-dependent inhibition of cell proliferation and an increase of apoptosis in both HESCs and HEGCs. Furthermore, these cells demonstrated a significant GJIC enhancement upon treatment with 5 × 10−5 mol/L for 48 hours. The effects of LNG were most noticeable in HESCs rather than in HEGCs. Associated with these changes, LNG induced a relative increase in total Cx43 in a time-dependent manner but not Ser368 phosphorylated Cx43. Moreover, laser scanning confocal microscope confirmed the increased expression of total Cx43 in the cytoplasm and, interestingly, the nuclear translocation of Ser255 phosphorylated Cx43. Conclusions. LNG likely inhibits the proliferation and promotes apoptosis in HESCs and HEGCs though an increase in gap junction permeability in vitro, which is achieved through the upregulation of Cx43 expression and the translocation of serine 255 phosphorylated Cx43 from the plasma to the nuclear compartment. PMID:26161412

  8. Sphingosine 1-Phosphate Induces Myoblast Differentiation through Cx43 Protein Expression: A Role for a Gap Junction-dependent and -independent Function

    PubMed Central

    Squecco, R.; Sassoli, C.; Nuti, F.; Martinesi, M.; Chellini, F.; Nosi, D.; Zecchi-Orlandini, S.; Francini, F.; Formigli, L.

    2006-01-01

    Although sphingosine 1-phosphate (S1P) has been considered a potent regulator of skeletal muscle biology, acting as a physiological anti-mitogenic and prodifferentiating agent, its downstream effectors are poorly known. In the present study, we provide experimental evidence for a novel mechanism by which S1P regulates skeletal muscle differentiation through the regulation of gap junctional protein connexin (Cx) 43. Indeed, the treatment with S1P greatly enhanced Cx43 expression and gap junctional intercellular communication during the early phases of myoblast differentiation, whereas the down-regulation of Cx43 by transfection with short interfering RNA blocked myogenesis elicited by S1P. Moreover, calcium and p38 MAPK-dependent pathways were required for S1P-induced increase in Cx43 expression. Interestingly, enforced expression of mutated Cx43Δ130–136 reduced gap junction communication and totally inhibited S1P-induced expression of the myogenic markers, myogenin, myosin heavy chain, caveolin-3, and myotube formation. Notably, in S1P-stimulated myoblasts, endogenous or wild-type Cx43 protein, but not the mutated form, coimmunoprecipitated and colocalized with F-actin and cortactin in a p38 MAPK-dependent manner. These data, together with the known role of actin remodeling in cell differentiation, strongly support the important contribution of gap junctional communication, Cx43 expression and Cx43/cytoskeleton interaction in skeletal myogenesis elicited by S1P. PMID:16957055

  9. Sustained Release of Cx43 Antisense Oligodeoxynucleotides from Coated Collagen Scaffolds Promotes Wound Healing.

    PubMed

    Gilmartin, Daniel J; Soon, Allyson; Thrasivoulou, Christopher; Phillips, Anthony R J; Jayasinghe, Suwan N; Becker, David L

    2016-07-01

    Antisense oligodeoxynucleotides targeting the mRNA of the gap junction protein Cx43 promote tissue repair in a variety of different wounds. Delivery of the antisense drug has most often been achieved by a thermoreversible hydrogel, Pluronic F-127, which is very effective in the short term but does not allow for sustained delivery over several days. For chronic wounds that take a long time to heal, repeated dosing with the drug may be desirable but is not always compatible with conventional treatments such as the weekly changing of compression bandages on venous leg ulcers. Here the coating of collagen scaffolds with antisense oligonucleotides is investigated and a way to provide protection of the oligodeoxynucleotide drug is found in conjunction with sustained release over a 7 d period. This approach significantly reduces the normal foreign body reaction to the scaffold, which induces an increase of Cx43 protein and an inhibition of healing. As a result of the antisense integration into the scaffold, inflammation is reduced with the rate of wound healing and contracture is significantly improved. This coated scaffold approach may be very useful for treating venous leg ulcers and also for providing a sustained release of any other types of oligonucleotide drugs that are being developed. PMID:27253638

  10. Quantitative Analysis of ZO-1 Colocalization with Cx43 Gap Junction Plaques in Cultures of Rat Neonatal Cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Zhu, Ching; Barker, Ralph J.; Hunter, Andrew W.; Zhang, Yuhua; Jourdan, Jane; Gourdie, Robert G.

    2005-06-01

    The gap junction (GJ) is an aggregate of intercellular channels that facilitates cytoplasmic interchange of ions, second messengers, and other molecules of less than 1000 Da between cells. In excitable organs such as heart and brain, GJs configure extended intercellular pathways for stable and long-term propagation of action potential. In a previous study in adult rat heart, we have shown that the Drosophila disks-large related protein ZO-1 shows low to moderate colocalization at myocyte borders with the GJ protein Cx43. In the present study, we detail a protocol for characterizing the pattern and level of colocalization of ZO-1 with Cx43 in cultures of neonatal myocytes at the level of individual GJ plaques. The data indicate that ZO-1 shows on average a partial 26.6% overlap (SD = 11.3%) with Cx43 GJ plaques. There is a strong positive correlation between GJ plaque size and area of ZO-1 colocalization, indicating that the level of associated ZO-1 scales with the area of the GJ plaque. Qualitatively, the most prominent colocalization occurs at the plaque perimeter. These studies may provide insight into the presently unknown biological function of ZO-1 interaction with Cx43.

  11. Expression and cellular distribution of cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) in porcine oocytes before and after in vitro maturation.

    PubMed

    Kempisty, Bartosz; Ziółkowska, Agnieszka; Piotrowska, Hanna; Antosik, Paweł; Bukowska, Dorota; Zawierucha, Piotr; Jaśkowski, Jędrzej M; Brüssow, Klaus-Peter; Nowicki, Michał; Zabel, Maciej

    2014-03-01

    It is recognised that connexin 43 (Cx43) and cyclin-dependent kinase 4 (Cdk4) are involved in the cumulus cell-oocyte communication via gap junctions and the control of cell cycle progress. However, little is known about their mRNA expression pattern and encoded proteins distribution in porcine oocytes during in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were collected from 31 puberal crossbred Landrace gilts and analysed for their Cdk4 and Cx43 mRNA expression using RQ-PCR and for the respective protein expression by confocal microscopic observations. An increased Cdk4 and Cx43 mRNA expression was found in oocytes after IVM (P < 0.001 and P < 0.05, respectively). Confocal microscopic observations revealed a significant increase of Cdk4 protein expression in the cytoplasm of oocytes during the maturation process. The localisation of Cx43 changed from zona pellucida before to cytoplasm of oocytes after IVM. It is supposed that the increased expression of Cdk4 and Cx43 mRNA in oocytes after IVM is linked with the accumulation of a large amount of templates during the process of oocyte maturation. The translocation especially of Cx43 from the zona pellucida into the cytoplasm may be associated with a decrease in gap junction activity in fully grown porcine oocytes. Both Cdk4 and Cx43 can be used as 'checkpoints' of oocyte maturation. PMID:24334079

  12. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart

    PubMed Central

    Palatinus, Joseph A.; Gourdie, Robert G.

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  13. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.

    PubMed

    Palatinus, Joseph A; Gourdie, Robert G

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  14. Absence of connexin43 and connexin45 does not disturb pre- and peri-implantation development.

    PubMed

    Nishii, Kiyomasa; Kobayashi, Yasushi; Shibata, Yosaburo

    2016-06-01

    Gap junctional intercellular communication is assumed to play an important role during pre- and peri-implantation development. In this study, we eliminated connexin43 (Cx43) and connexin45 (Cx45), major gap junctional proteins in the pre- and peri-implantation embryo. We generated Cx43 -/- Cx45 -/- embryos by Cx43 +/- Cx45 +/- intercrossing, because mice deficient in Cx43 (Cx43 -/-) exhibit perinatal lethality and those deficient in Cx45 (Cx45 -/-) exhibit early embryonic lethality. Wild-type, Cx43 -/-, Cx45 -/-, and Cx43 -/- Cx45 -/- blastocysts all showed similar outgrowths in in vitro culture. Moreover, Cx43 -/- Cx45 -/- embryos were obtained at the expected Mendelian ratio up to embryonic day 9.5, when the Cx45 -/- mutation proved lethal. The Cx43 -/- Cx45 -/- embryos seemed to have no additional developmental abnormalities in comparison with the single knockout strains. Thus, pre- and peri-implantation development does not require Cx43 and Cx45. Other gap junctional proteins are expressed around these stages and these may compensate for the lack of Cx43 and Cx45. PMID:27172058

  15. Effects of Cx43 gene modification on the proliferation and migration of the human lung squamous carcinoma cell line NCI-H226.

    PubMed

    Zang, J-P; Wei, R

    2015-01-01

    In this study, the human lung squamous carcinoma cell line NCI-H226 was transfected with the recombinant plasmid pBudCE4.1_Cx43 to explore the role of the Cx43 gene in cell growth, cell cycle, and tumor migration. pBudCE4.1-Cx43 was transfected into human lung squamous carcinoma NCI-H226 cells using Lipofectamine TM2000. The mRNA and protein expressions of Cx43 in the transfected cells were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The cell-cell communication was detected using the scratch dye tracer method and the cell cycle was detected by flow cytometry. The CCK-8 proliferation, scratch healing, and cell invasion assays were performed to evaluate the effect of the Cx43 gene transfection on the proliferation, migration, and invasive abilities of NCI-H226 cells. Cx43 mRNA and protein expressions and the fluorescence intensity in the scratch healing test were significantly higher in the experimental group than those in the control and blank groups (P < 0.05 and < 0.01, respectively). The CCK-8 proliferation assay and the scratch healing experiment revealed significantly inhibited NCI-H226 cell proliferation (especially 72 h after incubation) and cell migration, respectively, in the experimental group, compared to the control and blank groups (P < 0.001 and <0.05, respectively). The transwell chamber test showed a statistically significant decrease in the invasive ability of NCI-H226 cells in the experimental group (P < 0.05). Therefore, Cx43 gene transfection could inhibit the migration of human lung squamous carcinoma cell line NCI-H226, thereby inhibiting tumor cell proliferation. PMID:26535624

  16. Targeting Cx43 and N-Cadherin, Which Are Abnormally Upregulated in Venous Leg Ulcers, Influences Migration, Adhesion and Activation of Rho GTPases

    PubMed Central

    Mendoza-Naranjo, Ariadna; Cormie, Peter; Serrano, Antonio E.; Hu, Rebecca; O'Neill, Shay; Wang, Chiuhui Mary; Thrasivoulou, Christopher; Power, Kieran T.; White, Alexis; Serena, Thomas; Phillips, Anthony R. J.; Becker, David L.

    2012-01-01

    Background Venous leg ulcers can be very hard to heal and represent a significant medical need with no effective therapeutic treatment currently available. Principal Findings In wound edge biopsies from human venous leg ulcers we found a striking upregulation of dermal N-cadherin, Zonula Occludens-1 and the gap junction protein Connexin43 (Cx43) compared to intact skin, and in stark contrast to the down-regulation of Cx43 expression seen in acute, healing wounds. We targeted the expression of these proteins in 3T3 fibroblasts to evaluate their role in venous leg ulcers healing. Knockdown of Cx43 and N-cadherin, but not Zonula Occludens-1, accelerated cell migration in a scratch wound-healing assay. Reducing Cx43 increased Golgi reorientation, whilst decreasing cell adhesion and proliferation. Furthermore, Connexin43 and N-cadherin knockdown led to profound effects on fibroblast cytoskeletal dynamics after scratch-wounding. The cells exhibited longer lamelipodial protrusions lacking the F-actin belt seen at the leading edge in wounded control cells. This phenotype was accompanied by augmented activation of Rac-1 and RhoA GTPases, as revealed by Förster Resonance Energy Transfer and pull down experiments. Conclusions Cx43 and N-cadherin are potential therapeutic targets in the promotion of healing of venous leg ulcers, by acting at least in part through distinct contributions of cell adhesion, migration, proliferation and cytoskeletal dynamics. PMID:22615994

  17. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    PubMed Central

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  18. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells

    PubMed Central

    Wan, Carthur K; O'Carroll, Simon J; Kim, Sue-Ling; Green, Colin R; Nicholson, Louise F B

    2013-01-01

    While connexins (Cxs) are thought to be involved in differentiation, their expression and role has yet to be fully elucidated. We investigated the temporal expression of Cx30, Cx36 and Cx43 in two in vitro models of neuronal differentiation: human NT2/D1 and murine P19 cells, and the spatial localisation of Cx30 and Cx43 in these models. A temporal Cx43 downregulation was confirmed in both cell lines during RA-induced neuronal differentiation using RT-PCR (P < 0.05) preceding an increase in neuronal doublecortin protein. RT-PCR showed Cx36 was upregulated twofold in NT2/D1 cells (P < 0.05) and sixfold in P19 cells (P < 0.001) during neuronal differentiation. Cx30 exhibited a transient peak in expression midway through the timecourse of differentiation increasing threefold in NT2/D1 cells (P < 0.001) and eightfold in P19 cells (P < 0.01). Qualitative immunocytochemistry was used to examine spatiotemporal patterns of Cx protein distribution alongside neuronal differentiation markers. The temporal immunolabelling pattern was similar to that seen using RT-PCR. Cx43 was observed intracellularly and on cell surfaces, while Cx30 was seen as puncta. Spatially Cx43 was seen on doublecortin-negative cells, which may indicate Cx43 downregulation is requisite for differentiation in these models. Conversely, Cx30 puncta were observed on doublecortin-positive and -negative cells in NT2/D1 cells and examination of the Cx30 peak showed puncta also localized to nestin-positive cells, with few puncta on MAP2-positive cells. In P19 cells Cx30 was localized on clusters of cells surrounded by MAP2- and doublecortin-positive processes. The expression pattern of Cx30 indicates a role in neuronal differentiation; the nature of that role warrants future investigation. PMID:25505515

  19. Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy.

    PubMed

    Fontes, Magda S C; Raaijmakers, Antonia J A; van Doorn, Tessa; Kok, Bart; Nieuwenhuis, Sylvia; van der Nagel, Roel; Vos, Marc A; de Boer, Teun P; van Rijen, Harold V M; Bierhuizen, Marti F A

    2014-01-01

    In mice, the calcium-dependent phosphatase calcineurin A (CnA) induces a transcriptional pathway leading to pathological cardiac hypertrophy. Interestingly, induction of CnA has been frequently noticed in human hypertrophic and failing hearts. Independently, the arrhythmia vulnerability of such hearts has been regularly associated with remodeling of parameters determining electrical conduction (expression level of connexin43 (Cx43) and NaV1.5, connective tissue architecture), for which the precise molecular basis and sequence of events is still unknown. Recently, we observed reduced Cx43 and NaV1.5 expression in 4-week old mouse hearts, overexpressing a constitutively active form of CnA (MHC-CnA model), but the order of events is still unknown. Therefore, three key parameters of conduction (Cx43, NaV1.5 and connective tissue expression) were characterized in MHC-CnA ventricles versus wild-type (WT) during postnatal development on a weekly basis. At postnatal week 1, CnA overexpression induced cardiac hypertrophy in MHC-CnA. Moreover, protein and RNA levels of both Cx43 and NaV1.5 were reduced by at least 50% as compared to WT. Cx43 immunoreactive signal was reduced at week 2 in MHC-CnA. At postnatal week 3, Cx43 was less phosphorylated and RNA level of Cx43 normalized to WT values, although the protein level was still reduced. Additionally, MHC-CnA hearts displayed substantial fibrosis relative to WT, which was accompanied by increased RNA levels for genes previously associated with fibrosis such as Col1a1, Col1a2, Col3a1, Tgfb1, Ctgf, Timp1 and microRNA miR-21. In MHC-CnA, reduction in Cx43 and NaV1.5 expression thus coincided with overexpression of CnA and hypertrophy development and preceded significant presence of fibrosis. At postnatal week 4 the alterations in conductional parameters observed in the MHC-CnA model lead to abnormal conduction and arrhythmias, similar to those observed in cardiac remodeling in heart failure patients. The MHC-CnA model, therefore

  20. Engineered Cx26 variants established functional heterotypic Cx26/Cx43 and Cx26/Cx40 gap junction channels.

    PubMed

    Karademir, Levent B; Aoyama, Hiroshi; Yue, Benny; Chen, Honghong; Bai, Donglin

    2016-05-15

    Gap junction (GJ) channels mediate direct intercellular communication and are composed of two docked hemichannels (connexin oligomers). It is well documented that the docking and formation of GJs are possible only between compatible hemichannels (or connexins). The mechanisms of heterotypic docking compatibility are not fully clear. We aligned the protein sequences of docking-compatible and -incompatible connexins with that of connexin26 (Cx26). We found that two docking hydrogen bond (HB)-forming residues on the second extracellular domain (E2) of Cx26 and their equivalent residues are well conserved within docking-compatible connexins, but different between docking-incompatible connexins. Replacing one or both of these residues of Cx26 into the corresponding residues in the docking incompatible connexins (K168V, N176H or K168V-N176H) increased the formation of morphological and functional heterotypic GJs with connexin43 (Cx43) or connexin40 (Cx40), indicating that these two residues are important for docking incompatibility between Cx26 and these connexins. Our homology structure models predict that both HBs and hydrophobic interactions at the E2 docking interface are important docking mechanisms in heterotypic Cx26 K168V-N176H/Cx43 GJs and probably other docking compatible connexins. Revealing the key residues and mechanisms of heterotypic docking compatibility will assist us in understanding why these putative docking residues are hotspots of disease-linked mutants. PMID:26987811

  1. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes.

    PubMed

    Yu, Lu; Yu, Hongmei; Li, Xiaoting; Jin, Chongying; Zhao, Yanbo; Xu, Shengjie; Sheng, Xia

    2016-08-01

    The remodeling of cardiac gap junctions contributes to various arrhythmias in a diabetic heart. We previously reported that Epigallocatechin-3-gallate (EGCG) attenuated connexin43 (Cx43) protein downregulation induced by high glucose (HG) in neonatal rat cardiomyocytes, but Cx43 mRNA expression was not affected. It indicated the possible mechanisms of post-transcriptional regulation, which still remains unclear. As microRNAs (miRNAs) regulate gene expression widely at post-transcriptional level, we measured miR-1/206 in cardiomyocytes treated with HG and EGCG by quantitative RT-PCR and investigated their relationship with signal transduction pathways. The results showed that HG induced miR-1/206 elevation by PKC MAPK pathway. Moreover, we tested the negative regulation effect of miR-1/206 on Cx43 protein by miRNAs transfection. EGCG, however, nearly abolished the HG-induced miR-1 augmentation via P38 MAPK pathway. Therefore, our study suggested that PKC-activated miR-1/206 expression might contribute to Cx43 downregulation in HG-treated cardiomyocytes, and EGCG conferred protective effect by inhibiting miR-1 elevation via P38 MAPK pathway. PMID:27306406

  2. Decreased mRNA levels of cardiac Cx43 and ZO1 in sudden cardiac death related to coronary atherosclerosis: a pilot study.

    PubMed

    Xue, Ye; Zhao, Rui; Du, Si-Hao; Zhao, Dong; Li, Dong-Ri; Xu, Jing-Tao; Xie, Xiao-Li; Wang, Qi

    2016-07-01

    Sudden cardiac death (SCD) is the most frequent cause of sudden unexplained death in forensic practice. The most common cause of SCD is coronary artery disease related to coronary atherosclerosis. Previous study suggested the possible application of connexin 43 (Cx43) and zonula occludens-1 (ZO1) immunostaining in the early diagnosis of myocardial ischemia. However, there appears to be insufficient data with regard to their mRNA levels. The present study investigated the cardiac mRNA levels of Cx43 and ZO1, using forensic autopsy materials consisting of 41 control cases without any disease or structural abnormality of the heart (group 1), 32 deaths due to acute ischemic heart disease related to coronary atherosclerosis without apparent myocardial necrosis (group 2), and 29 traumatic deaths with coronary atherosclerosis (group 3). Ten candidate reference genes were evaluated in the left ventricles of 10 forensic autopsy cases. EEF1A1, PPIA, TPT1, and RPL13A were identified as the most stable reference genes. Using these validated reference genes, mRNA levels of Cx43 and ZO1 were examined in the bilateral ventricles and atria of the heart. Relative mRNA quantification demonstrated decreased calibrated normalized relative quantity (CNRQ) values of Cx43 and ZO1 in bilateral ventricles of group 2. When using one conventional reference gene (GAPDH or ACTB) for normalization, nearly no difference was detected among the three groups. These findings indicate that ventricular gap junction remodeling may be a key contributor to rhythm disturbances. Analysis of cardiac Cx43 and ZO1 using real-time PCR is useful in diagnosis of SCD, and validation of reference genes is crucial. PMID:26972693

  3. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43.

    PubMed

    Kempisty, Bartosz; Ziółkowska, Agnieszka; Piotrowska, Hanna; Zawierucha, Piotr; Antosik, Paweł; Bukowska, Dorota; Ciesiółka, Sylwia; Jaśkowski, Jędrzej M; Brüssow, Klaus P; Nowicki, Michał; Zabel, Maciej

    2013-09-01

    The proper maturation of cumulus somatic cells depends on bidirectional communication between the oocyte and the surrounding cumulus cells (CCs). The aim of this study was (i) to investigate maturation markers, such as Cx43 and Cdk4 protein levels, and (ii) to analyze the distribution of these two proteins in CCs cultured for 44, 88, 132, and 164 hours in both separated and cumulus-enclosed oocyte cultures. CCs were isolated from porcine ovarian follicles after the treatment of the recovered COCs with collagenase. Then, the separated CCs were cultured in TCM-199 for 0 to 164 hours, using a real-time cellular analyzer; however, the immunostaining was performed only after 44, 88, and 132 hours. The protein levels and distribution were analyzed using confocal microscopy. After the CCs underwent in vitro cultivation (IVC) for 25 hours, a logarithmically increasing normalized proliferation index was found throughout the entire 164 hours cultivation time. The Cx43 and Cdk4 proteins were observed at higher levels after 44 hours of culture than before IVC. After 88 and 132 hours of IVC, no significant alterations in either mRNA or protein levels of Cx43 and Cdk4 were found. Cx43 and Cdk4 were localized in the cell nucleus before IVC, whereas after 44, 88, and 132 hours of IVC, both proteins translocated to the cytoplasm. In cumulus-enclosed oocyte cultures, Cdk4 was localized both in the nucleus and cytoplasm, whereas Cx43 was only in the cytoplasm. Additionally, only low levels of the cumulus expansion markers MIS and SNAT3 were observed. In summary, we could demonstrate that the in vitro cultivation of CCs was associated with cell proliferation and that Cx43 and Cdk4 gene expression was upregulated after IVC, resulting in significantly higher protein levels. Moreover, the two proteins translocated from the nucleus to the cytoplasm of the CCs during IVC. The protein distribution is presumably related to different protein functions during bidirectional communication via

  4. Effect of FSH and LH hormones on oocyte maturation of buffalo and gene expression analysis of their receptors and Cx43 in maturing oocytes.

    PubMed

    Pandey, Alok; Gupta, S C; Gupta, Neelam

    2010-08-01

    Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are commonly added to maturation media to improve cumulus expansion known to be a predictor of oocyte maturation. Therefore, effects of various concentrations of FSH (1000 ng/ml), LH (1000 ng/ml) and FSH + LH (1000 ng/ml each) in comparison with control (without FSH + LH) cultured oocytes were investigated. FSH and LH (1000 ng/ml each) induced significantly more cumulus expansion and polar body numbers, as compared with control and treatments of 1000 ng/ml FSH and 1000 ng/ml LH alone. Expression of FSH receptor (r), LHr and Cx43 mRNAs was determined by real-time PCR in cumulus-oocyte complexes (COCs) and denuded oocytes at different maturation times. Expression of all three genes was higher in COCs compared with denuded oocytes, confirming the importance of cumulus cells in oocyte maturation. FSHr and connexin 43 (Cx43) mRNA abundance in both COCs and denuded oocytes was highest at 0-6 h of maturation and decreased subsequently. However, LHr mRNA abundance increased from 6 h up to 24 h of maturation. The study concluded that FSH, LH receptors and Cx43 gene expression regulation is an index related to oocyte maturation. PMID:20128947

  5. Cx43-Dependent Skeletal Phenotypes Are Mediated by Interactions between the Hapln1a-ECM and Sema3d during Fin Regeneration

    PubMed Central

    Govindan, Jayalakshmi; Tun, Kyaw Min; Iovine, M. Kathryn

    2016-01-01

    Skeletal development is a tightly regulated process and requires proper communication between the cells for efficient exchange of information. Analysis of fin length mutants has revealed that the gap junction protein Connexin43 (Cx43) coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish caudal fin regeneration. Previous studies have shown that the extra cellular matrix (ECM) protein Hyaluronan and Proteoglycan Link Protein1a (Hapln1a) is molecularly and functionally downstream of Cx43, and that hapln1a knockdown leads to reduction of the glycosaminoglycan hyaluronan. Here we find that the proteoglycan aggrecan is similarly reduced following Hapln1a knockdown. Notably, we demonstrate that both hyaluronan and aggrecan are required for growth and patterning. Moreover, we provide evidence that the Hapln1a-ECM stabilizes the secreted growth factor Semaphorin3d (Sema3d), which has been independently shown to mediate Cx43 dependent phenotypes during regeneration. Double knockdown of hapln1a and sema3d reveal synergistic interactions. Further, hapln1a knockdown phenotypes were rescued by Sema3d overexpression. Therefore, Hapln1a maintains the composition of specific components of the ECM, which appears to be required for the stabilization of at least one growth factor, Sema3d. We propose that the Hapln1a dependent ECM provides the required conditions for Sema3d stabilization and function. Interactions between the ECM and signaling molecules are complex and our study demonstrates the requirement for components of the Hapln1a-ECM for Sema3d signal transduction. PMID:26828861

  6. Ginkgolide B Inhibits JAM-A, Cx43, and VE-Cadherin Expression and Reduces Monocyte Transmigration in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Liu, Xueqing; Sun, Wenjia; Zhao, Yanyang; Chen, Beidong; Wu, Wei; Bao, Li; Qi, Ruomei

    2015-01-01

    Aim. To investigate the effect of ginkgolide B on junction proteins and the reduction of monocyte migration in oxidized low-density lipoprotein- (ox-LDL-) treated endothelial cells. Methods. Human umbilical vein endothelial cells (HUVECs) were used in the present study. Immunofluorescence and Western blot were performed to determine the expression of junctional adhesion molecule-A (JAM-A), connexin 43 (Cx43), and vascular endothelial cadherin (VE-cadherin). Monocyte migration was detected by the Transwell assay. Results. ox-LDL stimulation increased JAM-A expression by 35%, Cx43 expression by 24%, and VE-cadherin expression by 37% in HUVECs. Ginkgolide B (0.2, 0.4, and 0.6 mg/mL) dose-dependently abolished the expression of these junction proteins. The monocyte transmigration experiments showed that the level of monocyte migration was sixfold higher in the ox-LDL-treated group than in the control group. Ginkgolide B (0.6 mg/mL) nearly completely abolished monocyte migration. Both ginkgolide B and LY294002 suppressed Akt phosphorylation and the expression of these junction proteins in ox-LDL-treated endothelial cells. These results suggest that the ginkgolide B-induced inhibition of junction protein expression is associated with blockade of the PI3K/Akt pathway. Conclusion. Ginkgolide B suppressed junction protein expression and reduced monocyte transmigration that was induced by ox-LDL. Ginkgolide B may improve vascular permeability in atherosclerosis. PMID:26246869

  7. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression--a real-time cell proliferation approach.

    PubMed

    Kempisty, Bartosz; Ziółkowska, Agnieszka; Piotrowska, Hanna; Ciesiółka, Sylwia; Antosik, Paweł; Bukowska, Dorota; Zawierucha, Piotr; Woźna, Magdalena; Jaśkowski, Jędrzej M; Brüssow, Klaus P; Nowicki, Michał; Zabel, Maciej

    2013-01-01

    The CC (cumulus cell) proliferation index in relation to the expression and distribution of Cdk4 and Cx43 proteins, which are crucial factors for oocyte maturation, was investigated. Cumulus-oocyte complexes (COCs) were recovered from pubertal crossbred Landrace gilts and treated with collagenase, and separated CCs were cultured in standard TCM199 medium for 44 h. At each step of in vitro cultivation (IVC) of CCs (0, 12, 24 and 44 h), a normalized proliferation index was assessed. Cdk4 and Cx43 protein expression and the CC-specific cellular distribution were analyzed by confocal microscopic observation. The normalized proliferation index (number of cells attached, measured by impedance) was increased in the first 12 h of IVC (P<0.01) and differed between 12 h and 24 h of cultivation (P<0.001). Later, between 24 h-44 h of IVC, the CC proliferation rate was stable, and no significant differences were observed. Based on the confocal microscopic observation, increased expression of both Cdk4 and Cx43 was found after 44 h of IVC compared with the expression of these proteins before IVC. Moreover, after IVC, a substantial translocation of Cdk4 and Cx43 was noted from the nucleus to the cytoplasm of CCs. In conclusion, it was demonstrated for the first time that CCs can be cultured in vitro separately without oocytes and that the proliferation index was significantly increased in the first 12 h of IVC, which may reflect the process of ordinary cumulus cell expansion. Furthermore, the expression of both Cdk4 and Cx43 in CCs suggested that these proteins may be regarded as markers not only of proper oocyte maturation but also of CC differentiation. Translocation of these proteins into the cytoplasm of CCs after 44 h of IVC may be related to the expansion process. PMID:23685568

  8. Short-term Cultivation of Porcine Cumulus Cells Influences the Cyclin-dependent Kinase 4 (Cdk4) and Connexin 43 (Cx43) Protein Expression—A Real-time Cell Proliferation Approach

    PubMed Central

    KEMPISTY, Bartosz; ZIÓŁKOWSKA, Agnieszka; PIOTROWSKA, Hanna; CIESIÓŁKA, Sylwia; ANTOSIK, Paweł; BUKOWSKA, Dorota; ZAWIERUCHA, Piotr; WOŹNA, Magdalena; JAŚKOWSKI, Jędrzej M.; BRÜSSOW, Klaus P.; NOWICKI, Michał; ZABEL, Maciej

    2013-01-01

    Abstract The CC (cumulus cell) proliferation index in relation to the expression and distribution of Cdk4 and Cx43 proteins, which are crucial factors for oocyte maturation, was investigated. Cumulus-oocyte complexes (COCs) were recovered from pubertal crossbred Landrace gilts and treated with collagenase, and separated CCs were cultured in standard TCM199 medium for 44 h. At each step of in vitro cultivation (IVC) of CCs (0, 12, 24 and 44 h), a normalized proliferation index was assessed. Cdk4 and Cx43 protein expression and the CC-specific cellular distribution were analyzed by confocal microscopic observation. The normalized proliferation index (number of cells attached, measured by impedance) was increased in the first 12 h of IVC (P<0.01) and differed between 12 h and 24 h of cultivation (P<0.001). Later, between 24 h–44 h of IVC, the CC proliferation rate was stable, and no significant differences were observed. Based on the confocal microscopic observation, increased expression of both Cdk4 and Cx43 was found after 44 h of IVC compared with the expression of these proteins before IVC. Moreover, after IVC, a substantial translocation of Cdk4 and Cx43 was noted from the nucleus to the cytoplasm of CCs. In conclusion, it was demonstrated for the first time that CCs can be cultured in vitro separately without oocytes and that the proliferation index was significantly increased in the first 12 h of IVC, which may reflect the process of ordinary cumulus cell expansion. Furthermore, the expression of both Cdk4 and Cx43 in CCs suggested that these proteins may be regarded as markers not only of proper oocyte maturation but also of CC differentiation. Translocation of these proteins into the cytoplasm of CCs after 44 h of IVC may be related to the expansion process. PMID:23685568

  9. Connexin45 interacts with zonula occludens-1 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Laing, J. G.; Manley-Markowski, R. N.; Koval, M.; Civitelli, R.; Steinberg, T. H.

    2001-01-01

    Connexin43 (Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.

  10. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.

    PubMed

    Munger, Stephanie J; Geng, Xin; Srinivasan, R Sathish; Witte, Marlys H; Paul, David L; Simon, Alexander M

    2016-04-15

    Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development. PMID:26953188

  11. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels.

    PubMed

    Cea, Luis A; Balboa, Elisa; Puebla, Carlos; Vargas, Aníbal A; Cisterna, Bruno A; Escamilla, Rosalba; Regueira, Tomás; Sáez, Juan C

    2016-10-01

    Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker. PMID:27437607

  12. Relating specific connexin co-expression ratio to connexon composition and gap junction function.

    PubMed

    Desplantez, T; Grikscheit, K; Thomas, N M; Peters, N S; Severs, N J; Dupont, E

    2015-12-01

    Cardiac connexin 43 (Cx43), Cx40 and Cx45 are co-expressed at distinct ratios in myocytes. This pattern is considered a key factor in regulating the gap junction channels composition, properties and function and remains poorly understood. This work aims to correlate gap junction function with the connexin composition of the channels at accurate ratios Cx43:Cx40 and Cx43:Cx45. Rat liver epithelial cells that endogenously express Cx43 were stably transfected to induce expression of accurate levels of Cx40 or Cx45 that may be present in various areas of the heart (e.g. atria and ventricular conduction system). Induction of Cx40 does not increase the amounts of junctional connexins (Cx43 and Cx40), whereas induction of Cx45 increases the amounts of junctional connexins (Cx43 and Cx45). Interestingly, the non-junctional fraction of Cx43 remains unaffected upon induction of Cx40 and Cx45. Co-immunoprecipitation studies show low level of Cx40/Cx43 heteromerisation and undetectable Cx45/Cx43 heteromerisation. Functional characterisation shows that induction of Cx40 and Cx45 decreases Lucifer Yellow transfer. Electrical coupling is decreased by Cx45 induction, whereas it is decreased at low induction of Cx40 and increased at high induction. These data indicate a fine regulation of the gap junction channel make-up in function of the type and the ratio of co-expressed Cxs that specifically regulates chemical and electrical coupling. This reflects specific gap junction function in regulating impulse propagation in the healthy heart, and a pro-arrhythmic potential of connexin remodelling in the diseased heart. PMID:26550940

  13. Disorders of glutamate metabolism.

    PubMed

    Kelly, A; Stanley, C A

    2001-01-01

    The significant role the amino acid glutamate assumes in a number of fundamental metabolic pathways is becoming better understood. As a central junction for interchange of amino nitrogen, glutamate facilitates both amino acid synthesis and degradation. In the liver, glutamate is the terminus for release of ammonia from amino acids, and the intrahepatic concentration of glutamate modulates the rate of ammonia detoxification into urea. In pancreatic beta-cells, oxidation of glutamate mediates amino acid-stimulated insulin secretion. In the central nervous system, glutamate serves as an excitatory neurotransmittor. Glutamate is also the precursor of the inhibitory neurotransmittor GABA, as well as glutamine, a potential mediator of hyperammonemic neurotoxicity. The recent identification of a novel form of congenital hyperinsulinism associated with asymptomatic hyperammonemia assigns glutamate oxidation by glutamate dehydrogenase a more important role than previously recognized in beta-cell insulin secretion and hepatic and CNS ammonia detoxification. Disruptions of glutamate metabolism have been implicated in other clinical disorders, such as pyridoxine-dependent seizures, confirming the importance of intact glutamate metabolism. This article will review glutamate metabolism and clinical disorders associated with disrupted glutamate metabolism. PMID:11754524

  14. Metabotropic glutamate receptors inhibit microglial glutamate release

    PubMed Central

    McMullan, Stephen M; Phanavanh, Bounleut; Guo Li, Gary; Barger, Steven W

    2012-01-01

    Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide). Agonists of group-II and -III mGluR ACPD [(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+)-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide); the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid) was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S)-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA)] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase) inhibitor IBMX (isobutylmethylxanthine) or the cAMP mimetic dbcAMP (dibutyryl cAMP). These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action. PMID:22770428

  15. SLC1 Glutamate Transporters

    PubMed Central

    Grewer, Christof; Gameiro, Armanda; Rauen, Thomas

    2014-01-01

    The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions. PMID:24240778

  16. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  17. Glutamate release from platelets: exocytosis versus glutamate transporter reversal.

    PubMed

    Kasatkina, Ludmila A; Borisova, Tatiana A

    2013-11-01

    Platelets express neuronal and glial glutamate transporters EAAT 1-3 in the plasma membrane and vesicular glutamate transporters VGLUT 1,2 in the membrane of secretory granules. This study is focused on the assessment of non-exocytotic glutamate release, that is, the unstimulated release, heteroexchange and glutamate transporter reversal in platelets. Using the glutamate dehydrogenase assay, the absence of unstimulated release of endogenous glutamate from platelets was demonstrated, even after inhibition of glutamate transporters and cytoplasmic enzyme glutamine synthetase by dl-threo-β-benzyloxyaspartate and methionine sulfoximine, respectively. Depolarization of the plasma membrane by exposure to elevated [K(+)] did not induce the release of glutamate from platelets that was shown using the glutamate dehydrogenase assay and radiolabeled l-[(14)C]glutamate. Glutamate efflux by means of heteroexchange with transportable inhibitor of glutamate transporters dl-threo-β-hydroxyaspartate (dl-THA) was not observed. Furthermore, the protonophore cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) and inhibitor of V-type H(+)-ATPase bafilomycin A1 also failed to stimulate the release of glutamate from platelets. However, exocytotic release of glutamate from secretory granules in response to thrombin stimulation was not prevented by elevated [K(+)], dl-THA, FCCP and bafilomycin A1. In contrast to nerve terminals, platelets cannot release glutamate in a non-exocytotic manner. Heteroexchange, transporter-mediated and unstimulated release of glutamate are not inherent to platelets. Therefore, platelets may be used as a peripheral marker/model for the analysis of glutamate uptake by brain nerve terminals only (direct function of transporters), whereas the mechanisms of glutamate release are different in platelets and nerve terminals. Glutamate is released by platelets exclusively by means of exocytosis. Also, reverse function of vesicular glutamate transporters of platelets is

  18. Metabotropic Glutamate Receptors

    PubMed Central

    Dillon, James; Franks, Christopher J.; Murray, Caitriona; Edwards, Richard J.; Calahorro, Fernando; Ishihara, Takeshi; Katsura, Isao; Holden-Dye, Lindy; O'Connor, Vincent

    2015-01-01

    Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior. PMID:25869139

  19. Pivotal Enzyme in Glutamate Metabolism of Poly-γ-Glutamate-Producing Microbes

    PubMed Central

    Ashiuchi, Makoto; Yamamoto, Takashi; Kamei, Tohru

    2013-01-01

    The extremely halophilic archaeon Natrialba aegyptiaca secretes the L-homo type of poly-γ-glutamate (PGA) as an extremolyte. We examined the enzymes involved in glutamate metabolism and verified the presence of L-glutamate dehydrogenases, L-aspartate aminotransferase, and L-glutamate synthase. However, neither glutamate racemase nor D-amino acid aminotransferase activity was detected, suggesting the absence of sources of D-glutamate. In contrast, D-glutamate-rich PGA producers mostly possess such intracellular sources of D-glutamate. The results of our present study indicate that the D-glutamate-anabolic enzyme “glutamate racemase” is pivotal in the biosynthesis of PGA. PMID:25371338

  20. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  1. Computational Studies of Glutamate Transporters

    PubMed Central

    Setiadi, Jeffry; Heinzelmann, Germano; Kuyucak, Serdar

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review. PMID:26569328

  2. Genotoxicity of monosodium glutamate.

    PubMed

    Ataseven, Nazmiye; Yüzbaşıoğlu, Deniz; Keskin, Ayten Çelebi; Ünal, Fatma

    2016-05-01

    Monosodium glutamate (MSG) is one of the most widely used flavor enhancers throughout the world. The aim of this study is to investigate the genotoxic potential of MSG by using chromosome aberrations (CAs), sister-chromatid exchanges (SCEs), cytokinesis-blocked micronucleus (CBMN), and random amplified polymorphic DNA-polimerase chain reaction (RAPD-PCR) in cultured human lymphocytes and alkaline comet assays in isolated human lymphocytes, which were incubated with six concentrations (250, 500, 1000, 2000, 4000 and 8000 μg/mL) of MSG. The result of this study indicated that MSG significantly and dose dependently increased the frequencies of CAs, SCE and MN in all treatments and times, compared with control. However, the replication (RI) and nuclear division indices (NDI) were not affected. In this paper, in vitro genotoxic effects of the MSG was also investigated on human peripheral lymphocytes by analysing the RAPD-PCR with arbitrary 10-mer primers. The changes occurring in RAPD profiles after MSG treatment include increase or decrease in band intensity and gain or loss of bands. In the comet assay, this additive caused DNA damage at all concentrations in isolated human lymphocytes after 1-h in vitro exposure. Our results demonstrate that MSG is genotoxic to the human peripheral blood lymphocytes in vitro. PMID:26929995

  3. The Dynamics of Connexin Expression, Degradation and Localisation Are Regulated by Gonadotropins during the Early Stages of In Vitro Maturation of Swine Oocytes

    PubMed Central

    Santiquet, Nicolas; Robert, Claude; Richard, François J.

    2013-01-01

    Gap junctional communication (GJC) plays a primordial role in oocyte maturation and meiotic resumption in mammals by directing the transfer of numerous molecules between cumulus cells and the oocyte. Gap junctions are made of connexins (Cx), proteins that regulate GJC in numerous ways. Understanding the dynamic regulation of connexin arrangements during in vitro maturation (IVM) could provide a powerful tool for controlling meiotic resumption and consequently in vitro development of fully competent oocytes. However, physiological events happening during the early hours of IVM may still be elucidated. The present study reports the dynamic regulation of connexin expression, degradation and localization during this stage. Cx43, Cx45 and Cx60 were identified as the main connexins expressed in swine COC. Cx43 and Cx45 transcripts were judged too static to be a regulator of GJC, while Cx43 protein expression was highly responsive to gonadotropins, suggesting that it might be the principal regulator of GJC. In addition, the degradation of Cx43 expressed after 4.5 h of IVM in response to equine chorionic gonadotropin appeared to involve the proteasomal complex. Cx43 localisation appeared to be associated with GJC. Taken together, these results show for the first time that gonadotropins regulate Cx43 protein expression, degradation and localisation in porcine COC during the first several hours of IVM. Regulation of Cx43 may in turn, via GJC, participate in the development of fully competent oocytes. PMID:23861906

  4. Glutamate receptors at atomic resolution

    SciTech Connect

    Mayer, Mark L.

    2010-12-03

    At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.

  5. Glutamate in peripheral organs: Biology and pharmacology.

    PubMed

    Du, Jie; Li, Xiao-Hui; Li, Yuan-Jian

    2016-08-01

    Glutamate is a versatile molecule existing in both the central nervous system and peripheral organs. Previous studies have mainly focussed on the biological effect of glutamate in the brain. Recently, abundant evidence has demonstrated that glutamate also participates in the regulation of physiopathological functions in peripheral tissues, including the lung, kidney, liver, heart, stomach and immune system, where the glutamate/glutamate receptor/glutamate transporter system plays an important role in the pathogenesis of certain diseases, such as myocardial ischaemia/reperfusion injury and acute gastric mucosa injury. All these findings provide new insight into the biology and pharmacology of glutamate and suggest a potential therapeutic role of glutamate in non-neurological diseases. PMID:27164423

  6. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  7. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  8. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  9. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  10. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation. This substance is generally recognized...

  11. Modes of glutamate receptor gating

    PubMed Central

    Popescu, Gabriela K

    2012-01-01

    Abstract The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission. PMID:22106181

  12. Fluorescence imaging of glutamate release in neurons

    SciTech Connect

    Wang, Ziqiang; Yeung, Edward S.

    1999-12-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to {mu}M levels of glutamate with reasonable response time ({approx}30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from {mu}M to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy.

  13. Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo

    PubMed Central

    Augustin, Hrvoje; Grosjean, Yael; Chen, Kaiyun; Sheng, Qi; Featherstone, David E.

    2008-01-01

    We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses. PMID:17202478

  14. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  15. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis.

    PubMed

    Cea, Luis A; Puebla, Carlos; Cisterna, Bruno A; Escamilla, Rosalba; Vargas, Aníbal A; Frank, Marina; Martínez-Montero, Paloma; Prior, Carmen; Molano, Jesús; Esteban-Rodríguez, Isabel; Pascual, Ignacio; Gallano, Pía; Lorenzo, Gustavo; Pian, Héctor; Barrio, Luis C; Willecke, Klaus; Sáez, Juan C

    2016-07-01

    Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD. PMID:26803842

  16. The glutamate homeostasis hypothesis of addiction.

    PubMed

    Kalivas, Peter W

    2009-08-01

    Addiction is associated with neuroplasticity in the corticostriatal brain circuitry that is important for guiding adaptive behaviour. The hierarchy of corticostriatal information processing that normally permits the prefrontal cortex to regulate reinforcement-seeking behaviours is impaired by chronic drug use. A failure of the prefrontal cortex to control drug-seeking behaviours can be linked to an enduring imbalance between synaptic and non-synaptic glutamate, termed glutamate homeostasis. The imbalance in glutamate homeostasis engenders changes in neuroplasticity that impair communication between the prefrontal cortex and the nucleus accumbens. Some of these pathological changes are amenable to new glutamate- and neuroplasticity-based pharmacotherapies for treating addiction. PMID:19571793

  17. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  18. Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate.

    PubMed

    Hawkins, R A; DeJoseph, M R; Hawkins, P A

    1995-08-01

    The permeability of the blood-brain barrier to glutamate was measured by quantitative autoradiography in brains of control rats (average plasma glutamate concentration of 95 microns) and rats infused with glutamate (average plasma glutamate concentration of 837 microns). Measurements of glutamate permeability were initiated by the injection of [14C]glutamate and stopped at 1 min to avoid the accumulation of [14C]glutamate metabolites. Glutamate entered the brain at a slow rate, with an average permeability-surface area product of 7 microliters.min-g-1, except in those areas known to have fenestrated capillaries. Glutamate accumulated in the choroid plexus of ventricles, but did not seem to enter the cerebrospinal fluid in detectable amounts regardless of the circulating concentration. Glutamate accumulated in circumventricular organs, such as the median eminence, where the radioactivity was localized without detectable spread. Infusion of glutamate to create high plasma concentrations did not result in greater spread of [14C]glutamate beyond the immediate vicinity of the circumventricular organs. PMID:7648616

  19. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. PMID:27422519

  20. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  1. Glutamate Racemase Mutants of Bacillus anthracis

    PubMed Central

    Oh, So-Young; Richter, Stefan G.; Missiakas, Dominique M.

    2015-01-01

    ABSTRACT d-Glutamate is an essential component of bacterial peptidoglycan and a building block of the poly-γ-d-glutamic acid (PDGA) capsule of Bacillus anthracis, the causative agent of anthrax. Earlier work suggested that two glutamate racemases, encoded by racE1 and racE2, are each essential for growth of B. anthracis, supplying d-glutamic acid for the synthesis of peptidoglycan and PDGA capsule. Earlier work could not explain, however, why two enzymes that catalyze the same reaction may be needed for bacterial growth. Here, we report that deletion of racE1 or racE2 did not prevent growth of B. anthracis Sterne (pXO1+ pXO2−), the noncapsulating vaccine strain, or of B. anthracis Ames (pXO1+ pXO2+), a fully virulent, capsulating isolate. While mutants with deletions in racE1 and racE2 were not viable, racE2 deletion delayed vegetative growth of B. anthracis following spore germination and caused aberrant cell shapes, phenotypes that were partially restored by exogenous d-glutamate. Deletion of racE1 or racE2 from B. anthracis Ames did not affect the production or stereochemical composition of the PDGA capsule. A model is presented whereby B. anthracis, similar to Bacillus subtilis, utilizes two functionally redundant racemase enzymes to synthesize d-glutamic acid for peptidoglycan synthesis. IMPORTANCE Glutamate racemases, enzymes that convert l-glutamate to d-glutamate, are targeted for antibiotic development. Glutamate racemase inhibitors may be useful for the treatment of bacterial infections such as anthrax, where the causative agent, B. anthracis, requires d-glutamate for the synthesis of peptidoglycan and poly-γ-d-glutamic acid (PDGA) capsule. Here we show that B. anthracis possesses two glutamate racemase genes that can be deleted without abolishing either bacterial growth or PDGA synthesis. These data indicate that drug candidates must inhibit both glutamate racemases, RacE1 and RacE2, in order to block B. anthracis growth and achieve therapeutic

  2. Glutamate-gated Chloride Channels*

    PubMed Central

    Wolstenholme, Adrian J.

    2012-01-01

    Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily. PMID:23038250

  3. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus

    PubMed Central

    Yang, Yang

    2015-01-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  4. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus.

    PubMed

    Yang, Yang; Xu-Friedman, Matthew A

    2015-06-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  5. Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo

    PubMed Central

    Hnasko, Thomas S.; Chuhma, Nao; Zhang, Hui; Goh, Germaine Y.; Sulzer, David; Palmiter, Richard D.; Rayport, Stephen; Edwards, Robert H.

    2010-01-01

    SUMMARY Dopamine neurons in the ventral tegmental area (VTA) play an important role in the motivational systems underlying drug addiction, and recent work has suggested that they also release the excitatory neurotransmitter glutamate. To assess a physiological role for glutamate corelease, we disrupted the expression of vesicular glutamate transporter 2 selectively in dopamine neurons. The conditional knockout abolishes glutamate release from midbrain dopamine neurons in culture and severely reduces their excitatory synaptic output in mesoaccumbens slices. Baseline motor behavior is not affected, but stimulation of locomotor activity by cocaine is impaired, apparently through a selective reduction of dopamine stores in the projection of VTA neurons to ventral striatum. Glutamate co-entry promotes monoamine storage by increasing the pH gradient that drives vesicular monoamine transport. Remarkably, low concentrations of glutamate acidify synaptic vesicles more slowly but to a greater extent than equimolar Cl−, indicating a distinct, presynaptic mechanism to regulate quantal size. PMID:20223200

  6. Metabolic fate and function of dietary glutamate in the gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  7. Emerging aspects of dietary glutamate metabolism in the developing gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  8. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells.

    PubMed

    López-Colomé, Ana María; López, Edith; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-07-01

    Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na(+)-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [(3)H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function. PMID:27017513

  9. Glutamate Receptor Dynamics in Dendritic Microdomains

    PubMed Central

    Newpher, Thomas M.; Ehlers, Michael D.

    2008-01-01

    Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity. PMID:18498731

  10. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  11. [Glutamate transporter dysfunction and major mental illnesses].

    PubMed

    Tanaka, Kohichi

    2016-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system and plays an important role in most aspects of normal brain function. In spite of its importance as a neurotransmitter, excess glutamate is toxic to neurons. Clearance of extracellular glutamate is critical for maintenance of low extracellular glutamate concentration, and occurs in large part through the activity of GLT1 (EAAT2) and GLAST (EAAT1), which are primarily expressed by astrocytes. Rare variants and down-regulation of GLT1 and GLAST, in psychiatric disorders have been reported. In this review, we demonstrate that various kinds of GLT1 and/or GLAST knockout mice replicate many aspects of the behavioral abnormalities seen in major mental illnesses including schizophrenia, depression, obsessive -compulsive disorders, autism, epilepsy and addiction. PMID:26793898

  12. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  13. Glutamic Acid Decarboxylation in Chlorella12

    PubMed Central

    Lane, T. R.; Stiller, Mary

    1970-01-01

    The decarboxylation of endogenous free glutamic acid by Chlorella pyrenoidosa, Marburg strain, was induced by a variety of metabolic poisons, by anaerobic conditions, and by freezing and thawing the cells. The rate of decarboxylation was proportional to the concentration of inhibitor present. Possible mechanisms which relate the effects of the various conditions on glutamate decarboxylation and oxygen consumption by Chlorella are discussed. Images PMID:5429350

  14. [Glutamate neurotransmission, stress and hormone secretion].

    PubMed

    Jezová, D; Juránková, E; Vigas, M

    1995-11-01

    Glutamate neurotransmission has been investigated in relation to several physiological processes (learning, memory) as well as to neurodegenerative and other disorders. Little attention has been paid to its involvement in neuroendocrine response during stress. Penetration of excitatory amino acids from blood to the brain is limited by the blood-brain barrier. As a consequence, several toxic effects but also bioavailability for therapeutic purposes are reduced. A free access to circulating glutamate is possible only in brain structures lacking the blood-brain barrier or under conditions of its increased permeability. Excitatory amino acids were shown to stimulate the pituitary hormone release, though the mechanism of their action is still not fully understood. Stress exposure in experimental animals induced specific changes in mRNA levels coding the glutamate receptor subunits in the hippocampus and hypothalamus. The results obtained with the use of glutamate receptor antagonists indicate that a number of specific receptor subtypes contribute to the stimulation of ACTH release during stress. The authors provided also data on the role of NMDA receptors in the control of catecholamine release, particularly in stress-induced secretion of epinephrine. These results were the first piece of evidence on the involvement of endogenous excitatory amino acids in neuroendocrine activation during stress. Neurotoxic effects of glutamate in animals are well described, especially after its administration in the neonatal period. In men, glutamate toxicity and its use as a food additive are a continuous subject of discussions. The authors found an increase in plasma cortisol and norepinephrine, but not epinephrine and prolactin, in response to the administration of a high dose of glutamate. It cannot be excluded that these effects might be induced even by lower doses in situations with increased vulnerability to glutamate action (age, individual variability). (Tab. 1, Fig. 6, Ref. 44

  15. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  16. Therapeutic Potential of Metabotropic Glutamate Receptor Modulators

    PubMed Central

    Hovelsø, N; Sotty, F; Montezinho, L.P; Pinheiro, P.S; Herrik, K.F; Mørk, A

    2012-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain. PMID:22942876

  17. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  18. Glutamate receptor ligands as anxiolytics.

    PubMed

    Chojnacka-Wójcik, E; Kłodzinska, A; Pilc, A

    2001-08-01

    The glutamatergic system has received considerable attention over recent years as a potential target for anxiolytic drugs. In spite of the pronounced anxiolytic-like effects of competitive and non-competitive antagonists of NMDA receptors in animal models of anxiety, these substances can not be regarded as potential anxiolytic drugs, mainly due to their side-effect profiles (eg, ataxia, myorelaxation, impairment of learning and memory processes and psychotomimetic effects). Antagonists and partial agonists of the glycine, receptor inhibit function of the NMDA receptor complex and evoke in animals an anxiolytic-like response. Although data concerning anti-anxiety-like effects of glycine, receptor antagonists are not very promising, studies are underway to develop new, brain-penetrating agents devoid of side effects. Further developments are necessary to more fully elucidate the possible involvement of AMPA/kainate receptors in anxiety. The recent discovery of metabotropic glutamate receptors, which modulate the function of the glutamatergic system, offers new hope for discovery of a new generation of anxiolytics. MPEP, a highly selective, brain penetrable, noncompetitive mGlu5 receptor antagonist, evokes anxiolytic-like effects in several animal models of anxiety, remaining remarkably free of side effects. LY-354740, a selective brain-penetrable group II mGlu receptor agonist, evokes marked anxiolytic-like effects in animal models of anxiety. LY-354740 causes mild sedation in mice, does not disturb motor coordination and has no potential to cause dependence. Therefore mGlu receptor ligands may become the anxiolytics of the future, free from the side effects characteristic of benzodiazepines. PMID:11892923

  19. Glutamate Metabolism in Major Depressive Disorder

    PubMed Central

    Abdallah, Chadi G.; Jiang, Lihong; De Feyter, Henk M.; Fasula, Madonna; Krystal, John H.; Rothman, Douglas L.; Mason, Graeme F.; Sanacora, Gerard

    2015-01-01

    Objective Emerging evidence suggests abnormalities in amino acid neurotransmitter function and impaired energy metabolism contribute to the underlying pathophysiology of Major Depressive Disorder (MDD). To test whether impairments in energetics and glutamate neurotransmitter cycling are present in MDD we used in vivo 13C magnetic resonance spectroscopy (13C MRS) to measure these fluxes in individuals diagnosed with MDD relative to non-depressed subjects. Method 1H MRS and 13C MRS data were collected on 23 medication-free MDD and 17 healthy subjects. 1H MRS provided total glutamate and GABA concentrations, and 13C MRS, coupled with intravenous infusion of [1-13C]-glucose, provided measures of the neuronal tricarboxylic acid cycle (VTCAN) for mitochondrial energy production, GABA synthesis, and glutamate/glutamine cycling, from voxels placed in the occipital cortex. Results Our main finding was that mitochondrial energy production of glutamatergic neurons was reduced by 26% in MDD subjects (t = 2.57, p = 0.01). Paradoxically we found no difference in the rate of glutamate/glutamine cycle (Vcycle). We also found a significant correlation between glutamate concentrations and Vcycle considering the total sample. Conclusions We interpret the reduction in mitochondrial energy production as being due to either mitochondrial dysfunction or a reduction in proper neuronal input or synaptic strength. Future MRS studies could help distinguish these possibilities. PMID:25073688

  20. Flavor Preferences Conditioned by Dietary Glutamate.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2016-07-01

    Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study. PMID:27422522

  1. Single channel kinetics of a glutamate receptor.

    PubMed Central

    Kerry, C J; Kits, K S; Ramsey, R L; Sansom, M S; Usherwood, P N

    1987-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:2436676

  2. Single Channel Kinetics of a Glutamate Receptor

    PubMed Central

    Kerry, Cathryn J.; Kits, Karel S.; Ramsey, Robert L.; Sansom, Mark S. P.; Usherwood, Peter N. R.

    1986-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:19431683

  3. GLT-1: The elusive presynaptic glutamate transporter.

    PubMed

    Rimmele, Theresa S; Rosenberg, Paul A

    2016-09-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  4. The safety evaluation of monosodium glutamate.

    PubMed

    Walker, R; Lupien, J R

    2000-04-01

    L-Glutamic acid and its ammonium, calcium, monosodium and potassium salts were evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1988. The Committee noted that intestinal and hepatic metabolism results in elevation of levels in systemic circulation only after extremely high doses given by gavage (>30mg/kg body weight). Ingestion of monosodium glutamate (MSG) was not associated with elevated levels in maternal milk, and glutamate did not readily pass the placental barrier. Human infants metabolized glutamate similarly to adults. Conventional toxicity studies using dietary administration of MSG in several species did not reveal any specific toxic or carcinogenic effects nor were there any adverse outcomes in reproduction and teratology studies. Attention was paid to central nervous system lesions produced in several species after parenteral administration of MSG or as a consequence of very high doses by gavage. Comparative studies indicated that the neonatal mouse was most sensitive to neuronal injury; older animals and other species (including primates) were less so. Blood levels of glutamate associated with lesions of the hypothalamus in the neonatal mouse were not approached in humans even after bolus doses of 10 g MSG in drinking water. Because human studies failed to confirm an involvement of MSG in "Chinese Restaurant Syndrome" or other idiosyncratic intolerance, the JECFA allocated an "acceptable daily intake (ADI) not specified" to glutamic acid and its salts. No additional risk to infants was indicated. The Scientific Committee for Food (SCF) of the European Commission reached a similar evaluation in 1991. The conclusions of a subsequent review by the Federation of American Societies for Experimental Biology (FASEB) and the Federal Drug Administration (FDA) did not discount the existence of a sensitive subpopulation but otherwise concurred with the safety evaluation of JECFA and the SCF. PMID:10736380

  5. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  6. Circuit Mapping by UV Uncaging of Glutamate

    PubMed Central

    Shepherd, Gordon M. G.

    2014-01-01

    In laser photostimulation, small clusters of neurons in brain slices are induced to fire action potentials by focal glutamate uncaging, and synaptic connectivity between photoexcited presynaptic neurons and individual postsynaptic neurons is assessed by intracellular recording of synaptic events. With a scanner, this process can be repeated sequentially across a patterned array of stimulus locations, generating maps of neurons’ local sources of synaptic inputs. Laser scanning photostimulation (LSPS) based on patterned glutamate uncaging offers an efficient, quantitative, optical-electrophysiological way to map synaptic circuits in brain slices. PMID:22949715

  7. Molecular physiology of vesicular glutamate transporters in the digestive system

    PubMed Central

    Li, Tao; Ghishan, Fayez K.; Bai, Liqun

    2005-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs. PMID:15793854

  8. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  9. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  10. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  11. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b) (c) Limitations, restrictions, or explanation....

  12. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  13. GLUTAMATE NEUROTOXICITY IN RAT AUDITORY SYSTEM: COCHLEAR NUCLEAR COMPLEX

    EPA Science Inventory

    In other systems such as the hypothalamus and hippocampus, it has been shown that cells postsynaptic with respect to glutamatergic inputs degenerate when exposed to large doses of glutamate ("glutamate neurotoxicity"). e have shown that large doses of glutamate administered intra...

  14. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose...

  15. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose...

  16. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose...

  17. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose...

  18. Circuit mapping by ultraviolet uncaging of glutamate.

    PubMed

    Shepherd, Gordon M G

    2012-09-01

    In laser photostimulation, small clusters of neurons in brain slices are induced to fire action potentials by focal glutamate uncaging, and synaptic connectivity between photoexcited presynaptic neurons and individual postsynaptic neurons is assessed by intracellular recording of synaptic events. With a scanner, this process can be repeated sequentially across a patterned array of stimulus locations, generating maps of neurons' local sources of synaptic inputs. Laser scanning photostimulation (LSPS) based on patterned glutamate uncaging offers an efficient, quantitative, optical-electrophysiological way to map synaptic circuits in brain slices. The efficacy of glutamate-based photostimulation for circuit mapping (in contrast to electrical stimulation) derives from the ability to stimulate neurons with high precision and speed, and without stimulating axons of passage. This protocol describes the components, assembly, and operation of a laser scanning microscope for ultraviolet (UV) uncaging, along with experimental methods for circuit mapping in brain slices. It presents a general approach and a set of guidelines for quantitative circuit mapping using "standard" LSPS methods based on single-photon glutamate uncaging using a UV laser, a pair of scanning mirror galvanometers, a patch-clamp setup, and open-source data acquisition software. PMID:22949715

  19. L-glutamate Receptor In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  20. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  1. Miniaturized thin film glutamate and glutamine biosensors.

    PubMed

    Moser, I; Jobst, G; Aschauer, E; Svasek, P; Varahram, M; Urban, G; Zanin, V A; Tjoutrina, G Y; Zharikova, A V; Berezov, T T

    1995-01-01

    Integrated thin film biosensors were developed for the simultaneous measurement of L-glutamine and L-glutamate in a mu-flow cell. Due to a novel glutaminase with an activity optimum in the neutral pH range, direct monitoring of glutamine in a mammalian cell culture medium could be performed. The glutamine bienzyme sensor was prepared by co-immobilization of glutaminase with glutamate oxidase within a photopatterned poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel membrane. The sensor response was linear in the concentration range of 50 mumol to 10 mmol glutamine/l. Additionally, a glutamate biosensor was integrated on the sensor chip for difference measurement of possible glutamate interferences. The sensor-chip could be used for at least 300 measurements without any alteration in the performance of its sensors. A new sensor-chip with an integrated flow cell provided the possibility of simultaneous measurement of four different parameters at a cell volume of 1 microliter. In order to complete the microsystem, and in order to obtain a "lab on chip", a battery operated surface mounted device (SMD) potentiostat was developed. PMID:7612205

  2. Amphetamine stimulates movement through thalamocortical glutamate release

    PubMed Central

    Mabrouk, Omar S; Semaan, Daniel Z; Mikelman, Sarah; Gnegy, Margaret E; Kennedy, Robert T

    2014-01-01

    The ventrolateral thalamus (VL) is a primary relay point between the basal ganglia and the primary motor cortex (M1). Using dual probe microdialysis and locomotor behavior monitoring, we investigated the contribution of VL input into M1 during amphetamine (AMPH)-stimulated monoamine release and hyperlocomotion in rats. Tetrodotoxin (TTX) (10 uM) perfusion into the VL significantly lowered hyperactivity induced by AMPH (1 mg/kg i.p.). This behavioral response corresponded to reduced cortical glutamate and monoamine release. To determine which glutamate receptors the thalamocortical projections acted upon, we perfused either the AMPA/kainate receptor antagonist NBQX (10 μM) or the NMDA receptor antagonist (MK-801) intracortically followed by systemic AMPH. The results show that AMPA/kainate, and to a lesser extent NMDA receptors, mediated the observed effects. Since glutamate-monoamine interactions could possibly occur through local or circuit-based mechanisms, we isolated and perfused M1 tissue ex vivo to determine the extent of local glutamate-dopamine interactions. Taken together, these results demonstrate that AMPH generates hyperlocomotive states via thalamocortical signaling and that cortical AMPA receptors are an important mediator of these effects. PMID:23889359

  3. Structural Features of the Glutamate Transporter Family

    PubMed Central

    Slotboom, Dirk Jan; Konings, Wil N.; Lolkema, Juke S.

    1999-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary

  4. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

    PubMed

    Xie, Wenjie; Dolder, Silvia; Siegrist, Mark; Wetterwald, Antoinette; Hofstetter, Willy

    2016-08-01

    Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response

  5. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters

    PubMed Central

    Hires, Samuel Andrew; Zhu, Yongling; Tsien, Roger Y.

    2008-01-01

    Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication. PMID:18332427

  6. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. PMID:26073813

  7. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P < 0.05), while not affecting cell viability and total protein, in the embryonic chick cardiomyocyte micromass culture system. The effects of caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26304238

  8. Glutamate Neurocircuitry: Theoretical Underpinnings in Schizophrenia

    PubMed Central

    Schwartz, Thomas L.; Sachdeva, Shilpa; Stahl, Stephen M.

    2012-01-01

    The Dopamine Hypothesis of Schizophrenia is actively being challenged by the NMDA Receptor Hypofunctioning Hypothesis of Schizophrenia. The latter hypothesis may actually be the starting point in neuronal pathways that ultimately modifies dopamine pathways involved in generating both positive and negative symptoms of schizophrenia postulated by the former hypothesis. The authors suggest that even this latter, NMDA receptor-based, hypothesis is likely too narrow and offer a review of typical glutamate and dopamine-based neurocircuitry, propose genetic vulnerabilities impacting glutamate neurocircuitry, and provide a broad interpretation of a possible etiology of schizophrenia. In conclusion, there is a brief review of potential schizophrenia treatments that rely on the etiologic theory provided in the body of the paper. PMID:23189055

  9. Glutamate neurotoxicity, oxidative stress and mitochondria.

    PubMed

    Atlante, A; Calissano, P; Bobba, A; Giannattasio, S; Marra, E; Passarella, S

    2001-05-18

    The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as 'glutamate neurotoxicity' (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present study describes the state of art in the field of GNT with a special emphasis on the oxidative stress and mitochondria. In particular, we report how ROS are generated and how they affect mitochondrial function in GNT. The relationship between ROS generation and cytochrome c release is described in detail, with the released cytochrome c playing a role in the cell defense mechanism against neurotoxicity. PMID:11376653

  10. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  11. Current clinical findings on monosodium glutamate.

    PubMed

    Livingstone, V H

    1981-07-01

    Monosodium glutamate (MSG) is a common and widely used food additive which has been passed as GRAS (generally recognized as safe) by the American Food and Drug Administration. However, it may have a significant adverse effect on certain individuals; the physician must be able to recognize the symptoms of MSG sensitivity, otherwise known as "Chinese Restaurant Syndrome". This article reviews current findings on MSG. PMID:21289773

  12. Metabotropic Glutamate Receptors for Parkinson's Disease Therapy

    PubMed Central

    Gasparini, Fabrizio; Di Paolo, Thérèse; Gomez-Mancilla, Baltazar

    2013-01-01

    Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. PMID:23853735

  13. Transport dynamics in a glutamate transporter homologue

    PubMed Central

    Akyuz, Nurunisa; Altman, Roger B.; Blanchard, Scott C.; Boudker, Olga

    2013-01-01

    Summary Glutamate transporters are integral membrane proteins that catalyze neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons1. Their mechanism involves transitions between extracellular- (outward-) and intracellular- (inward-) facing conformations, whereby substrate binding sites become accessible to the opposite sides of the membrane2. This process has been proposed to entail trans-membrane movements of three discrete transport domains within a trimeric scaffold3. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging4, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters for the first time. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods5,6. We suggest that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent trans-membrane movements and may be rate determining in the transport cycle. PMID:23792560

  14. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition.

    PubMed

    Thomas, Ajit G; Rojas, Camilo J; Hill, Jeanette R; Shaw, Michael; Slusher, Barbara S

    2010-09-01

    We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices. PMID:20434427

  15. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    PubMed

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain. PMID:21437781

  16. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement.

    PubMed

    Atlante, A; Passarella, S; Pierro, P; Di Martino, C; Quagliariello, E

    1996-10-01

    Proline/glutamate antiport in rat kidney mitochondria has been studied in terms of two different features: energy dependence and glutamate-carrier contribution to accomplish proline movement across the mitochondrial membrane. Energy dependence of the proline/glutamate antiporter in rat kidney mitochondria has been investigated by means of both spectroscopic measurements and isotopic techniques, using either normal or [14C]glutamate-loaded mitochondria. The sensitivity of the proline/glutamate antiport to the ionophores valinomycin and nigericin, under conditions in which delta psi and delta pH are selectively affected, shows that the exchange is energy dependent. Measurements of both membrane potential and proton movement across the mitochondrial membrane suggest that proline/glutamate antiport is driven by the electrochemical proton gradient via the delta psi dependent proline/glutamate translocator and delta pH-dependent glutamate/OH- carrier. Such a carrier provides for re-uptake of glutamate that has already passed out of the mitochondria in exchange with incoming proline, made possible by the existence of a separate pool of glutamate in the intermembrane space, directly shown by means of HPLC measurements. PMID:8898903

  17. Quantum-mechanical calculations and spectroscopic characteristics of magnesium glutamate glycine and magnesium glutamate arginine

    NASA Astrophysics Data System (ADS)

    Marcoin, W.; Pasterny, K.; Pasterna, G.; Wrzalik, R.

    2006-07-01

    Theoretical calculations of magnesium glutamate-glycine ([Mg(glu-gly)]) and magnesium glutamate-arginine ([Mg(glu-arg)]) structures and their spectroscopic characteristics have been performed in the gas phase with the GAUSSIAN 98 software package using density functional theory (DFT) at the B3PW91 level. The 6-31+G* basis set was selected due to their reasonable quality and size. NMR and IR measurements were carried out and obtained experimental 1H and 13C chemical shifts and IR spectra are compared with calculated spectral parameters.

  18. Topiramate antagonism of L-glutamate-induced paroxysms in planarians

    PubMed Central

    Raffa, Robert B.; Finno, Kristin E.; Tallarida, Christopher S.; Rawls, Scott M.

    2010-01-01

    We recently reported that NMDA (N-Methyl-D-aspartate) and AMPA (α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) induce concentration-dependent paroxysms in planarians (Dugesia dorotocephala). Since the postulated mechanisms of action of the sulfamate-substituted monosaccharide antiepileptic drug topiramate include inhibition of glutamate-activated ion channels, we tested the hypothesis that topiramate would inhibit glutamate-induced paroxysms in our model. We demonstrate that: (1) L-glutamate (1–10 mM), but not D-glutamate, induced dose-related paroxysms, and that (2) topiramate dose-relatedly (0.3–3 mM) inhibited L-glutamate-induced paroxysms. These results provide further evidence of a topiramate-sensitive glutamate receptor-mediated activity in this model. PMID:20863783

  19. Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells.

    PubMed

    Otter, Silke; Lammert, Eckhard

    2016-03-01

    Glutamate represents a key excitatory neurotransmitter in the central nervous system, and also modulates the function and viability of endocrine cells in pancreatic islets. In insulin-secreting beta cells, glutamate acts as an intracellular messenger, and its transport into secretory granules promotes glucose- and incretin-stimulated insulin secretion. Mitochondrial degradation of glutamate also contributes to insulin release when glutamate dehydrogenase is allosterically activated. It also signals extracellularly via glutamate receptors (AMPA and NMDA receptors) to modulate glucagon, insulin and somatostatin secretion, and islet cell survival. Its degradation products, GABA and γ-hydroxybutyrate, are released and also influence islet cell behavior. Thus, islet glutamate receptors, such as the NMDA receptors, might serve as possible drug targets to develop new medications for adjunct treatment of diabetes. PMID:26740469

  20. From the Cover: Glutamate antagonists limit tumor growth

    NASA Astrophysics Data System (ADS)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  1. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  2. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.

    PubMed

    Robinson, Michael B; Jackson, Joshua G

    2016-09-01

    In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or

  3. [Autoantibodies to glutamate and GABA in opiate addiction].

    PubMed

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed. PMID:26852594

  4. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    ERIC Educational Resources Information Center

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  5. Glutamate-induced sensitization of rat masseter muscle fibers.

    PubMed

    Cairns, B E; Gambarota, G; Svensson, P; Arendt-Nielsen, L; Berde, C B

    2002-01-01

    In rats, intradermal or intraarticular injection of glutamate or selective excitatory amino acid receptor agonists acting at peripheral excitatory amino acid receptors can decrease the intensity of mechanical stimulation required to evoke nocifensive behaviors, an indication of hyperalgesia. Since excitatory amino acid receptors have been found on the terminal ends of cutaneous primary afferent fibers, it has been suggested that increased tissue glutamate levels may have a direct sensitizing effect on primary afferent fibers, in particular skin nociceptors. However, less is known about the effects of glutamate on deep tissue afferent fibers. In the present study, a series of experiments were undertaken to investigate the effect of intramuscular injection of glutamate on the excitability and mechanical threshold of masseter muscle afferent fibers in anesthetized rats of both sexes. Injection of 1.0 M, but not 0.1 M glutamate evoked masseter muscle afferent activity that was significantly greater than that evoked by isotonic saline. The mechanical threshold of masseter muscle afferent fibers, which was assessed with a Von Frey hair, was reduced by approximately 50% for a period of 30 min after injection of 1.0 M glutamate, but was unaffected by injections of 0.1 M glutamate or isotonic saline. Injection of 25% dextrose, which has the same osmotic strength as 1.0 M glutamate, did not evoke significant activity in or decrease the mechanical threshold of masseter muscle afferent fibers. Magnetic resonance imaging experiments confirmed that injection of 25% dextrose and 1.0 M glutamate produced similar edema volumes in the masseter muscle tissue. Co-injection of 0.1 M kynurenate, an excitatory amino acid receptor antagonist, and 1.0 M glutamate attenuated glutamate-evoked afferent activity and prevented glutamate-induced mechanical sensitization. When male and female rats were compared, no difference in the baseline mechanical threshold or in the magnitude of glutamate

  6. Glutamate. Its applications in food and contribution to health.

    PubMed

    Jinap, S; Hajeb, P

    2010-08-01

    This article reviews application of glutamate in food and its benefits and role as one of the common food ingredients used. Monosodium glutamate is one of the most abundant naturally occurring amino acids which frequently added as a flavor enhancer. It produced a unique taste that cannot be provided by other basic taste (saltiness, sourness, sweetness and bitterness), referred to as a fifth taste (umami). Glutamate serves some functions in the body as well, serving as an energy source for certain tissues and as a substrate for glutathione synthesis. Glutamate has the potential to enhance food intake in older individuals and dietary free glutamate evoked a visceral sensation from the stomach, intestine and portal vein. Small quantities of glutamate used in combination with a reduced amount of table salt during food preparation allow for far less salt to be used during and after cooking. Because glutamate is one of the most intensely studied food ingredients in the food supply and has been found safe, the Joint Expert Committee on Food Additives of the United Nations Food and Agriculture Organization and World Health Organization placed it in the safest category for food additives. Despite a widespread belief that glutamate can elicit asthma, migraine headache and Chinese Restaurant Syndrome (CRS), there are no consistent clinical data to support this claim. In addition, findings from the literature indicate that there is no consistent evidence to suggest that individuals may be uniquely sensitive to glutamate. PMID:20470841

  7. Drug solubilization effect of lauroyl-L-glutamate.

    PubMed

    Ariki, Ryosuke; Hirano, Atsushi; Arakawa, Tsutomu; Shiraki, Kentaro

    2012-01-01

    This article proposes a new technique for the solubilization of poorly soluble drugs using lauroyl-L-glutamate, which is one of the amino acid detergents, with additional small additives. Lauroyl-L-glutamate was highly effective in solubilizing long-chain alkyl gallates, e.g. dodecyl gallate. Furthermore, lauroyl-L-glutamate and small additives, particularly arginine, acted to increase the solubility of alkyl gallates. The synergistic effect was not observed by sodium dodecyl sulphate with arginine. The solubilizing system can be applied to other drugs because of the low toxicity of both lauroyl-L-glutamate and arginine. PMID:21949409

  8. Glutathione is a Physiologic Reservoir of Neuronal Glutamate

    PubMed Central

    Koga, Minori; Serritella, Anthony V.; Messmer, Marcus M.; Hayashi-Takagi, Akiko; Hester, Lynda D.; Snyder, Solomon H.; Sawa, Akira; Sedlak, Thomas W.

    2013-01-01

    Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10 millimolar. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress. PMID:21539809

  9. Gut glutamate metabolism is extensive in piglets supplemented with dietary glutamate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate (GLU) is a key intestinal oxidative fuel and neurotransmitter. GLU may be a therapeutic nutrient in enhancing intestinal growth and function in premature neonates; however, increased systemic GLU levels may be neurotoxic. We hypothesized that the rates of intestinal GLU absorption are rela...

  10. Cystine/glutamate antiporter blockage induces myelin degeneration.

    PubMed

    Soria, Federico N; Zabala, Alazne; Pampliega, Olatz; Palomino, Aitor; Miguelez, Cristina; Ugedo, Luisa; Sato, Hideyo; Matute, Carlos; Domercq, María

    2016-08-01

    The cystine/glutamate antiporter is a membrane transport system responsible for the uptake of extracellular cystine and release of intracellular glutamate. It is the major source of cystine in most cells, and a key regulator of extrasynaptic glutamate in the CNS. Because cystine is the limiting factor in the biosynthesis of glutathione, and glutamate is the most abundant neurotransmitter, the cystine/glutamate antiporter is a central player both in antioxidant defense and glutamatergic signaling, two events critical to brain function. However, distribution of cystine/glutamate antiporter in CNS has not been well characterized. Here, we analyzed expression of the catalytic subunit of the cystine/glutamate antiporter, xCT, by immunohistochemistry in histological sections of the forebrain and spinal cord. We detected labeling in neurons, oligodendrocytes, microglia, and oligodendrocyte precursor cells, but not in GFAP(+) astrocytes. In addition, we examined xCT expression and function by qPCR and cystine uptake in primary rat cultures of CNS, detecting higher levels of antiporter expression in neurons and oligodendrocytes. Chronic inhibition of cystine/glutamate antiporter caused high toxicity to cultured oligodendrocytes. In accordance, chronic blockage of cystine/glutamate antiporter as well as glutathione depletion caused myelin disruption in organotypic cerebellar slices. Finally, mice chronically treated with sulfasalazine, a cystine/glutamate antiporter inhibitor, showed a reduction in the levels of myelin and an increase in the myelinated fiber g-ratio. Together, these results reveal that cystine/glutamate antiporter is expressed in oligodendrocytes, where it is a key factor to the maintenance of cell homeostasis. GLIA 2016. GLIA 2016;64:1381-1395. PMID:27247047

  11. Characterization of the Connexin45 Carboxyl-Terminal Domain Structure and Interactions with Molecular Partners

    PubMed Central

    Kopanic, Jennifer L.; Al-mugotir, Mona H.; Kieken, Fabien; Zach, Sydney; Trease, Andrew J.; Sorgen, Paul L.

    2014-01-01

    Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins

  12. Activation Requirements for Metabotropic Glutamate Receptors

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2013-01-01

    It has been common experimentally to use high frequency, tetanic, stimulation to activate metabotropic glutamate receptors (mGluRs) in cortex and thalamus. To determine what type of stimulation is actually necessary to activate mGluRs we examined the effects of varying stimulation duration and intensity on activating mGluR responses. We used a thalamocortical and an intracortical slice preparation from mice and performed whole cell recordings from neurons in the ventral posterior medial nucleus or in layer 4 of primary somatosensory cortex (S1) while electrically stimulating in layer 6 of S1. Extracellular ionotropic glutamate receptor antagonists and GABAA receptor antagonists were used to isolate Group I or Group II mGluR responses. We observed that high frequency stimulation is not necessary for the activation of either Group I or Group II mGluRs. Either could be activated with as few as 2-3 pulses at stimulation frequencies around 15-20Hz. Additionally, increasing the number of pulses, intensity of stimulation, or stimulation frequency increased amplitude and duration of the mGluR response. PMID:23416319

  13. Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus.

    PubMed

    Palmieri, G; Di Palo, M; Scaloni, A; Orru, S; Marino, G; Sannia, G

    1996-12-01

    Glutamate-1-semialdehyde aminotransferase (GSA-AT) from the extremely thermophilic bacterium Sulfolobus solfataricus has been purified to homogeneity and characterized. GSA-AT is the last enzyme in the C5 pathway for the conversion of glutamate into the tetrapyrrole precursor delta-aminolaevulinate (ALA) in plants, algae and several bacteria. The active form of GSA-AT from S. solfataricus seems to be a homodimer with a molecular mass of 87 kDa. The absorption spectrum of the purified aminotransferase is indicative of the presence of pyridoxamine 5'-phosphate (PMP) cofactor, and the catalytic activity of the enzyme is further stimulated by addition of PMP. 3-Amino-2,3-dihydrobenzoic acid is an inhibitor of the aminotransferase activity. The N-terminal amino acid sequence of GSA-AT from S. solfataricus was found to share significant similarity with the eukaryotic and eubacterial enzymes. Evidence is provided that ALA synthesis in S. solfataricus follows the C5 pathway characteristic of plants, algae, cyanobacteria and many other bacteria. PMID:8973563

  14. Monosodium glutamate 'allergy': menace or myth?

    PubMed

    Williams, A N; Woessner, K M

    2009-05-01

    Monosodium glutamate (MSG) is a salt form of a non-essential amino acid commonly used as a food additive for its unique flavour enhancing qualities. Since the first description of the 'Monosodium glutamate symptom complex', originally described in 1968 as the 'Chinese restaurant syndrome', a number of anecdotal reports and small clinical studies of variable quality have attributed a variety of symptoms to the dietary ingestion of MSG. Descriptions of MSG-induced asthma, urticaria, angio-oedema, and rhinitis have prompted some to suggest that MSG should be an aetiologic consideration in patients presenting with these conditions. This review prevents a critical review of the available literature related to the possible role of MSG in the so-called 'Chinese restaurant syndrome' and in eliciting asthmatic bronchospasm, urticaria, angio-oedema, and rhinitis. Despite concerns raised by early reports, decades of research have failed to demonstrate a clear and consistent relationship between MSG ingestion and the development of these conditions. PMID:19389112

  15. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    PubMed

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production. PMID:23990041

  16. 78 FR 76321 - Monosodium Glutamate From China and Indonesia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Register of September 20, 2013 (78 FR 57881). The conference was held in Washington, DC, on October 23... COMMISSION Monosodium Glutamate From China and Indonesia Determinations On the basis of the record \\1... injured by reason of imports from China and Indonesia of monosodium glutamate, provided for in...

  17. On the regulative role of the glutamate receptor in mitochondria.

    PubMed

    Selin, Alexey A; Lobysheva, Natalia V; Nesterov, Semen V; Skorobogatova, Yulia A; Byvshev, Ivan M; Pavlik, Lyubov L; Mikheeva, Irina B; Moshkov, Dmitry A; Yaguzhinsky, Lev S; Nartsissov, Yaroslav R

    2016-05-01

    The purpose of this work was to study the regulative role of the glutamate receptor found earlier in the brain mitochondria. In the present work a glutamate-dependent signaling system with similar features was detected in mitochondria of the heart. The glutamate-dependent signaling system in the heart mitochondria was shown to be suppressed by γ-aminobutyric acid (GABA). The GABA receptor presence in the heart mitochondria was shown by golding with the use of antibodies to α- and β-subunits of the receptor. The activity of glutamate receptor was assessed according to the rate of synthesis of hydrogen peroxide. The glutamate receptor in mitochondria could be activated only under conditions of hypoxic stress, which in model experiments was imitated by blocking Complex I by rotenone or fatty acids. The glutamate signal in mitochondria was shown to be calcium- and potential-dependent and the activation of the glutamate cascade was shown to be accompanied by production of hydrogen peroxide. It was discovered that H2O2 synthesis involves two complexes of the mitochondrial electron transfer system - succinate dehydrogenase (SDH) and fatty acid dehydrogenase (ETF:QO). Thus, functions of the glutamate signaling system are associated with the system of respiration-glycolysis switching (the Pasteur-Crabtree) under conditions of hypoxia. PMID:26812870

  18. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  19. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  20. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  1. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  2. Modulation of intestinal L-glutamate transport by luminal leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; Lostao, María Pilar; Ducroc, Robert

    2015-06-01

    Leptin is secreted into the digestive tract and contributes to the absorption of dietary molecules by regulating transporters activity. Here, we studied the effect of luminal leptin on the intestinal transport of L-glutamate, an important component of human diet. We examined the effect of leptin on L-glutamate uptake in rat intestine in vitro measuring glutamate-induced short-circuit current (Isc) in Ussing chambers and L-[(3)H (U)]-glutamate uptake in jejunal everted rings. Glutamate-induced Isc was only observed in Na(+)-free conditions. This Isc was concentration (1-60 mmol L(-1)) and pH dependent. Luminal leptin increased glutamate Isc (∼100 %). Dose-response curve showed a biphasic pattern, with maximal stimulations observed at 10(-13) and 10(-10) mmol L(-1), that were sensitive to leptin receptor antagonist. In everted rings, two glutamate transport mechanisms were distinguished: a Na(+)-dependent, H(+)-independent, that was inhibited by leptin (∼20 %), and a Na(+)-independent but H(+)-dependent, that was enhanced by leptin (∼20 %), in line with data obtained in Ussing chambers. Altogether, these data reveal original non-monotonic effect of luminal leptin in the intestine and demonstrate a new role for this hormone in the modulation of L-glutamate transport, showing that luminal active gut peptides can influence absorption of amino acids. PMID:25935421

  3. A review of glutamate's role in traumatic brain injury mechanisms

    NASA Astrophysics Data System (ADS)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  4. Neuronal vs glial glutamate uptake: Resolving the conundrum.

    PubMed

    Danbolt, N C; Furness, D N; Zhou, Y

    2016-09-01

    Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox. PMID:27235987

  5. Cortical neurons exposed to glutamate rapidly leak preloaded chromium 51

    SciTech Connect

    Maulucci-Gedde, M.; Choi, D.W.

    1987-05-01

    The acute toxic effects of excess glutamate exposure on cortical neurons in culture was followed using a novel adaptation of the /sup 51/Cr efflux assay. Although the acute, sodium-dependent phase of glutamate neurotoxicity may contribute to several acute disease settings, including sustained seizures and stroke, functional aspects of the phenomenon have not been previously studied. We report here that the earliest morphologic sign of glutamate neurotoxicity, neuronal swelling, is accompanied by a large efflux of complexed /sup 51/Cr from preloaded neurons in the first hour after exposure, and that this efflux is detectable as early as 15 min after the onset of glutamate exposure. We suggest that this pathological burst of /sup 51/Cr may result from glutamate-induced leakiness of neuronal cell membranes.

  6. Does monosodium glutamate cause flushing (or merely "glutamania")?

    PubMed

    Wilkin, J K

    1986-08-01

    Monosodium glutamate is widely regarded as the provocative agent in the "Chinese restaurant syndrome," of which flushing is regarded as part of the reaction. Six subjects were monitored by laser Doppler velocimetry for changes in facial cutaneous blood flow during challenge with monosodium glutamate and its cyclization product, pyroglutamate. Additionally, records of patients challenged with monosodium glutamate in the laboratory were reviewed. No flushing was provoked among the twenty-four people tested, eighteen of whom gave a positive history of Chinese restaurant syndrome flushing. These results indicate that monosodium glutamate-provoked flushing, if it exists at all, must be rare. Monosodium glutamate and its cyclization product, pyroglutamate, may provoke edema and associated symptoms. PMID:3745527

  7. pH-dependent modulation of connexin-based gap junctional uncouplers

    PubMed Central

    Skeberdis, Vytenis A; Rimkute, Lina; Skeberdyte, Aiste; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2011-01-01

    Abstract Gap junction (GJ) channels formed from connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell–cell communication exhibiting high sensitivity to intracellular pH (pHi). We examined pHi-dependent modulation of junctional conductance (gj) of GJs formed of Cx26, mCx30.2, Cx36, Cx40, Cx43, Cx45, Cx46, Cx47 and Cx50 by reagents representing several distinct groups of uncouplers, such as long carbon chain alkanols (LCCAs), arachidonic acid, carbenoxolone, isoflurane, flufenamic acid and mefloquine. We demonstrate that alkalization by NH4Cl to pH ∼8 increased gj in cells expressing mCx30.2 and Cx45, yet did not affect gj of Cx26, Cx40, Cx46, Cx47 and Cx50 and decreased it in Cx43 and Cx36 GJs. Unexpectedly, cells expressing Cx45, but not other Cxs, exhibited full coupling recovery after alkalization with NH4Cl under the continuous presence of LCCAs, isoflurane and mefloquine. There was no coupling recovery by alkalization in the presence of arachidonic acid, carbenoxolone and flufenamic acid. In cells expressing Cx45, IC50 for octanol was 0.1, 0.25 and 2.68 mm at pHi values of 6.9, 7.2 and 8.1, respectively. Histidine modification of Cx45 protein by N-bromosuccinimide reduced the coupling-promoting effect of NH4Cl as well as the uncoupling effect of octanol. This suggests that LCCAs and some other uncouplers may act through the formation of hydrogen bonds with the as-of-yet unidentified histidine/s of the Cx45 GJ channel protein. PMID:21606109

  8. pH-dependent modulation of connexin-based gap junctional uncouplers.

    PubMed

    Skeberdis, Vytenis A; Rimkute, Lina; Skeberdyte, Aiste; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2011-07-15

    Gap junction (GJ) channels formed from connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell–cell communication exhibiting high sensitivity to intracellular pH (pH(i)). We examined pH(i)-dependent modulation of junctional conductance (g(j)) of GJs formed of Cx26, mCx30.2, Cx36, Cx40, Cx43, Cx45, Cx46, Cx47 and Cx50 by reagents representing several distinct groups of uncouplers, such as long carbon chain alkanols (LCCAs), arachidonic acid, carbenoxolone, isoflurane, flufenamic acid and mefloquine. We demonstrate that alkalization by NH4Cl to pH ∼8 increased g(j) in cells expressing mCx30.2 and Cx45, yet did not affect g(j) of Cx26, Cx40, Cx46, Cx47 and Cx50 and decreased it in Cx43 and Cx36 GJs. Unexpectedly, cells expressing Cx45, but not other Cxs, exhibited full coupling recovery after alkalization with NH4Cl under the continuous presence of LCCAs, isoflurane and mefloquine. There was no coupling recovery by alkalization in the presence of arachidonic acid, carbenoxolone and flufenamic acid. In cells expressing Cx45, IC50 for octanol was 0.1, 0.25 and 2.68 mm at pH(i) values of 6.9, 7.2 and 8.1, respectively. Histidine modification of Cx45 protein by N-bromosuccinimide reduced the coupling-promoting effect of NH4Cl as well as the uncoupling effect of octanol. This suggests that LCCAs and some other uncouplers may act through the formation of hydrogen bonds with the as-of-yet unidentified histidine/s of the Cx45 GJ channel protein. PMID:21606109

  9. Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons.

    PubMed

    Ho, Yuen-Shan; Yu, Man-Shan; Yik, Suet-Yi; So, Kwok-Fai; Yuen, Wai-Hung; Chang, Raymond Chuen-Chung

    2009-12-01

    Glutamate excitotoxicity is involved in many neurodegenerative diseases including Alzheimer's disease (AD). Attenuation of glutamate toxicity is one of the therapeutic strategies for AD. Wolfberry (Lycium barbarum) is a common ingredient in oriental cuisines. A number of studies suggest that wolfberry has anti-aging properties. In recent years, there is a trend of using dried Wolfberry as food supplement and health product in UK and North America. Previously, we have demonstrated that a fraction of polysaccharide from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate whether LBA can protect neurons from other pathological factors such as glutamate found in Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in primary cultured neurons. The glutamate-induced cell death as detected by lactate dehydrogenase assay and caspase-3-like activity assay was significantly reduced by LBA at concentrations ranging from 10 to 500 microg/ml. Protective effects of LBA were comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA attenuated N-methyl-D-aspartate (NMDA)-induced neuronal damage. To further explore whether LBA might function as antioxidant, we used hydrogen peroxide (H(2)O(2)) as oxidative stress inducer in this study. LBA could not attenuate the toxicity of H(2)O(2). Furthermore, LBA did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective effects on cultured cortical neurons exposed to glutamate. PMID:19499323

  10. Glutamate release from astrocytic gliosomes under physiological and pathological conditions.

    PubMed

    Milanese, Marco; Bonifacino, Tiziana; Zappettini, Simona; Usai, Cesare; Tacchetti, Carlo; Nobile, Mario; Bonanno, Giambattista

    2009-01-01

    Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases. PMID:19607977

  11. Prefrontal glutamate correlates of methamphetamine sensitization and preference.

    PubMed

    Lominac, Kevin D; Quadir, Sema G; Barrett, Hannah M; McKenna, Courtney L; Schwartz, Lisa M; Ruiz, Paige N; Wroten, Melissa G; Campbell, Rianne R; Miller, Bailey W; Holloway, John J; Travis, Katherine O; Rajasekar, Ganesh; Maliniak, Dan; Thompson, Andrew B; Urman, Lawrence E; Kippin, Tod E; Phillips, Tamara J; Szumlinski, Karen K

    2016-03-01

    Methamphetamine (MA) is a widely misused, highly addictive psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated MA impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relationship between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of MA (ten injections of 2 mg/kg, i.p.) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high vs. low MA-drinking selectively bred mouse lines (MAHDR vs. MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated MA sensitized drug-induced glutamate release and lowered indices of N-methyl-d-aspartate receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. Elevated basal glutamate, blunted MA-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high vs. low MA drinking, and Homer2a/b levels were inversely correlated with the motivational valence of MA in C57BL/6J mice. These data provide novel evidence that repeated, low-dose MA is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in MA addiction vulnerability/resiliency. PMID:26742098

  12. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  13. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    NASA Astrophysics Data System (ADS)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  14. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-01

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. PMID:24269238

  15. Dietary Glutamate: Interactions With the Enteric Nervous System

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun

    2014-01-01

    Background/Aims Digestion of dietary protein elevates intraluminal concentrations of glutamate in the small intestine, some of which gain access to the enteric nervous system (ENS). Glutamate, in the central nervous system (CNS), is an excitatory neurotransmitter. A dogma that glutamatergic neurophysiology in the ENS recapitulates CNS glutamatergic function persists. We reassessed the premise that glutamatergic signaling in the ENS recapitulates its neurotransmitter role in the CNS. Methods Pharmacological analysis of actions of receptor agonists and antagonists in concert with immunohistochemical localization of glutamate transporters and receptors was used. Analysis focused on intracellularly-recorded electrical and synaptic behavior of ENS neurons, on stimulation of mucosal secretion by secretomotor neurons in the submucosal plexus and on muscle contractile behavior mediated by musculomotor neurons in the myenteric plexus. Results Immunoreactivity for glutamate was expressed in ENS neurons. ENS neurons expressed immunoreactivity for the EAAC-1 glutamate transporter. Neither L-glutamate nor glutamatergic receptor agonists had excitatory actions on ENS neurons. Metabotropic glutamatergic receptor agonists did not directly stimulate neurogenic mucosal chloride secretion. Neither L-glutamate nor the metabotropic glutamatergic receptor agonist, aminocyclopentane-1,3-dicarboxylic acid (ACPD), changed the mean amplitude of spontaneously occurring contractions in circular or longitudinal strips of intestinal wall from either guinea pig or human small intestinal preparations. Conclusions Early discoveries, for excitatory glutamatergic neurotransmission in the CNS, inspired enthusiasm that investigation in the ENS would yield discoveries recapitulating the CNS glutamatergic story. We found this not to be the case. PMID:24466444

  16. Glutamate carboxypeptidase II (NAALADase) inhibition as a novel therapeutic strategy.

    PubMed

    Thomas, Ajit G; Wozniak, Krystyna M; Tsukamoto, Takashi; Calvin, David; Wu, Ying; Rojas, Camilo; Vornov, James; Slusher, Barbara S

    2006-01-01

    GCP II inhibition decreases extracellular excitotoxic glutamate and increases extracellular NAAG, both of which provide neuroprotection. We have demonstrated with our potent and selective GCP II inhibitors efficacy in models of stroke, ALS and neuropathic pain. GCP II inhibition may have significant potential benefits over existing glutamate-based neuroprotection strategies. The upstream mechanism seems selective for excitotoxic induced glutamate release, as GCP II inhibitors in normal animals induced no change in basal glutamate. This suggestion has recently been corroborated by Lieberman and coworkers24 who found that both NAAG release and increase in GCP II activity appear to be induced by electrical stimulation in crayfish nerve fibers and that subsequent NAAG hydrolysis to glutamate contributes, at least in part, to subsequent NMDA receptor activation. Interestingly, even at relatively high doses of compounds, GCP II inhibition did not appear to be associated with learning/memory deficits in animals. Additionally, quantitative neurophysiological testing data and visual analog scales for 'psychedelic effects' in Phase I single dose and repeat dose studies showed GCP II inhibition to be safe and well tolerated by both healthy volunteers and diabetic patients. GCP II inhibition may represent a novel glutamate regulating strategy devoid of the side effects that have hampered the development of postsynaptic glutamate receptor antagonists. PMID:16802724

  17. Connexins in skeletal muscle development and disease.

    PubMed

    Merrifield, Peter A; Laird, Dale W

    2016-02-01

    Gap junctions consist of clusters of intercellular channels composed of connexins that connect adjacent cells and allow the exchange of small molecules. While the 21 member multi-gene family of connexins are ubiquitously found in humans, only Cx39, Cx40, Cx43 and Cx45 have been documented in developing myoblasts and injured adult skeletal muscle while healthy adult skeletal muscle is devoid of connexins. The use of gap junctional blockers and cultured myoblast cell lines have suggested that these connexins play a critical role in myotube formation and muscle regeneration. More recent genetically-modified mouse models where Cx43 function is greatly compromized or ablated have further supported a role for Cx43 in regulating skeletal muscle development. In the last decade, we have become aware of a cohort of patients that have a development disorder known as oculodentodigital dysplasia (ODDD). These patients harbor either gain or loss of Cx43 function gene mutations that result in many organ anomalies raising questions as to whether they suffer from defects in skeletal muscle formation or regeneration upon injury. Interesting, some ODDD patients report muscle weakness and loss of limb control but it is not clear if this is neurogenic or myogenic in origin. This review will focus on the role connexins play in muscle development and repair and discuss the impact of Cx43 mutants on muscle function. PMID:26688333

  18. Group II metabotropic glutamate receptors inhibit glutamate release at thalamocortical synapses in the developing somatosensory cortex.

    PubMed

    Mateo, Z; Porter, J T

    2007-05-25

    Thalamocortical synapses provide a strong glutamatergic excitation to cortical neurons that is critical for processing sensory information. Unit recordings in vivo indicate that metabotropic glutamate receptors (mGluRs) reduce the effect of thalamocortical input on cortical circuits. However, it is not known whether this reduction is due to a reduction in glutamate release from thalamocortical terminals or from a decrease in cortical neuron excitability. To directly determine whether mGluRs act as autoreceptors on thalamocortical terminals, we examined the effect of mGluR agonists on thalamocortical synapses in slices. Thalamocortical excitatory postsynaptic currents (EPSCs) were recorded in layer IV cortical neurons in developing mouse brain slices. The activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) reduced thalamocortical EPSCs in both excitatory and inhibitory neurons, while the stimulation of group I or group III mGluRs had no effect on thalamocortical EPSCs. Consistent with a reduction in glutamate release, DCG IV increased the paired pulse ratio and the coefficient of variation of the EPSCs. The reduction induced by DCG IV was reversed by the group II mGluR antagonist, LY341495, and mimicked by another selective group II agonist, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC). The mGluR2 subtype appears to mediate the reduction of thalamocortical EPSCs, since the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), had no effect on the EPSCs. Consistent with this, we showed that mGluR2 is expressed in the barrels. Furthermore, blocking group II mGluRs with LY341495 reduced the synaptic depression induced by a short stimulus train, indicating that synaptically released glutamate activates these receptors. These results indicate that group II mGluRs modulate thalamocortical processing by inhibiting glutamate release from thalamocortical synapses. This inhibition provides a feedback mechanism for

  19. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  20. Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis.

    PubMed

    Morayya, Sapna; Awasthy, Disha; Yadav, Reena; Ambady, Anisha; Sharma, Umender

    2015-01-25

    Glutamate racemase (MurI) converts l-glutamate into d-glutamate which is an essential component of peptidoglycan in bacteria. The gene encoding glutamate racemase, murI has been shown to be essential for the growth of a number of bacterial species including Escherichia coli. However, in some Gram-positive species d-amino acid transaminase (Dat) can also convert l-glutamate into d-glutamate thus rendering MurI non-essential for growth. In a recent study the murI gene of Mycobacterium tuberculosis was shown to be non-essential. As d-glutamate is an essential component of peptidoglycan of M. tuberculosis, either Dat or MurI has to be essential for its survival. Since, a Dat encoding gene has not been reported in M. tuberculosis genome sequence, the reported non-essentiality of murI was unexplainable. In order to resolve this dilemma we tried to knockout murI in the presence of single and two copies of murI, in wild type and merodiploid strains respectively. It was found that murI could not be inactivated in the wild type background indicating that it could be an essential gene. Also, inactivation of murI could not be achieved in the presence of externally supplied d-glutamate in 7H9 medium suggesting that M. tuberculosis is unable to take up d-glutamate under the conditions tested. However we could generate murI knockout strains at high frequency when two copies of the gene were present indicating that at least one murI gene is required for cellular viability. The essential nature of MurI in M. tuberculosis H37Rv suggests that it could be a potential drug target. PMID:25447907

  1. Opioid-glutamate interactions in rat locus coeruleus neurons.

    PubMed

    Oleskevich, S; Clements, J D; Williams, J T

    1993-09-01

    1. The effect of mu-opioids on the glutamate response was investigated in rat locus coeruleus (LC) neurons by intracellular recording in the brain slice preparation. Glutamate responses were evoked by bath application of selective glutamate agonists, glutamate iontophoresis, and stimulation of excitatory afferents. 2. The mu-opioid agonist D-Ala2-MePhe4-Gly-ol5-enkephalin (DAMGO; 1 microM) potentiated the response to bath application of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid by 91 and 142%, respectively, in slices cut in the horizontal plane. The mechanism of action of this effect was investigated under conditions that limited the DAMGO-induced hyperpolarization and improved the space clamp of the neuron through 1) addition of barium, 2) increase in extracellular potassium concentration, 3) sectioning of the LC in the coronal plane, and 4) addition of carbenoxolone. Each experimental manipulation decreased the DAMGO outward current and reduced the mu-opioid potentiation of the glutamate response. The results suggest that the mu-opioid-mediated potentiation of the glutamate response is dependent on membrane hyperpolarization. 3. Neither forskolin nor the phorbol ester 4b-phorbol 12,13-dibutyrate (PDBu) altered the glutamate-mediated inward currents. The potentiation of the glutamate response by DAMGO was not affected by PDBu. 4. The mu-opioids DAMGO and [met]5enkephalin (10 microM) did not significantly affect the NMDA receptor-mediated depolarization (mean 14%) evoked by local application of glutamate but inhibited the NMDA receptor-mediated synaptic potential (mean 25%).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7693886

  2. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. PMID:25447408

  3. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  4. [Cardiac arrhythmias in targeted connexin deficient mice: significance for the arrhythmia field].

    PubMed

    Hagendorff, A; Plum, A

    2000-12-01

    Intercellular communication can be mediated by gap junction channels. One channel is composed of two hexameric hemichannels which consist of six polypeptide subunits called connexines (Cx). Three different connexines were documented in the cardiac myocytes: Cx40, Cx43 and Cx45. The labeling by number represents the rounded, molecular mass of the amino acid sequences given in kD. Identical connexons form homotypic channels different connexons can form heterotypic channels. Each channel type has specific properties regarding permeability and electrical conductance. Beside a typical age-dependent alignment of gap junction channels on the surface of the cardiac myocytes, regional distribution of the different connexins is different at distinct parts of the mouse heart. The ventricular working myocardium is characterized by Cx43, whereas Cx40 and Cx45 were not found in this region. In the atria as well as in the conduction system, Cx40 is the most frequently expressed. Cx45 appears to form a border zone between conductive and the surrounding working myocardium. In line with the localization and the conduction properties of distinct homotypic gap junction channels, the Cx43 deficient mouse is suitable for analysis of ventricular arrhythmias and the Cx40 deficient mouse primarily for studies of atrial arrhythmias. Increased ventricular conduction velocity and increased ventricular vulnerability were observed in the presence of a decreased number and density of Cx43 gap junction channels. This observation, however, is controversially discussed. Cx40 deficiency induces an impairment of the sinuatrial, intraatrial and atrioventricular conduction properties and is associated with an increased atrial vulnerability. Transgenic mouse models and new mapping techniques for detection of the electrical wavefront propagation provide new insights into the mechanisms of arrhythmogenesis. Geneticists, clinicians and basic researchers need to collaborate in order to explore the clinical

  5. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters

    SciTech Connect

    Reyes, N.; Ginter, C; Boudker, O

    2009-01-01

    Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, GltPh, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt{sub Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt{sub Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

  6. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    PubMed

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  7. Transport mechanism of a glutamate transporter homologue GltPh.

    PubMed

    Ji, Yurui; Postis, Vincent L G; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-06-15

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  8. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs.

    PubMed

    Shigeri, Yasushi; Seal, Rebecca P; Shimamoto, Keiko

    2004-07-01

    L-Glutamate serves as a major excitatory neurotransmitter in the mammalian central nervous system (CNS) and is stored in synaptic vesicles by an uptake system that is dependent on the proton electrochemical gradient (VGLUTs). Following its exocytotic release, glutamate activates fast-acting, excitatory ionotropic receptors and slower-acting metabotropic receptors to mediate neurotransmission. Na+-dependent glutamate transporters (EAATs) located on the plasma membrane of neurons and glial cells rapidly terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels. Thus far, five Na+-dependent glutamate transporters (EAATs 1-5) and three vesicular glutamate transporters (VGLUTs 1-3) have been identified. Examination of EAATs and VGLUTs in brain preparations and by heterologous expression of the various cloned subtypes shows these two transporter families differ in many of their functional properties including substrate specificity and ion requirements. Alterations in the function and/or expression of these carriers have been implicated in a range of psychiatric and neurological disorders. EAATs have been implicated in cerebral stroke, epilepsy, Alzheimer's disease, HIV-associated dementia, Huntington's disease, amyotrophic lateral sclerosis (ALS) and malignant glioma, while VGLUTs have been implicated in schizophrenia. To examine the physiological role of glutamate transporters in more detail, several classes of transportable and non-transportable inhibitors have been developed, many of which are derivatives of the natural amino acids, aspartate and glutamate. This review summarizes the development of these indispensable pharmacological tools, which have been critical to our understanding of normal and abnormal synaptic transmission. PMID:15210307

  9. Monosodium glutamate is not likely to be genotoxic.

    PubMed

    Rogers, Michael D

    2016-08-01

    The International Glutamate Technical Committee (IGTC) wishes to comment on a recent publication in the Journal entitled "Genotoxicity of monosodium glutamate" (authored by Ataseven N, Yüzbaşıoğlu D, Keskin AÇ and Ünal F) (Ataseven et al. 2016). In particular, we wish to highlight that, in our considered view, the results of this study were inappropriately discussed and that references were selectively used. PMID:27372553

  10. Transport mechanism of a glutamate transporter homologue GltPh

    PubMed Central

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  11. Ammonia Mediates Methamphetamine-Induced Increases in Glutamate and Excitotoxicity

    PubMed Central

    Halpin, Laura E; Northrop, Nicole A; Yamamoto, Bryan K

    2014-01-01

    Ammonia has been identified to have a significant role in the long-term damage to dopamine and serotonin terminals produced by methamphetamine (METH), but how ammonia contributes to this damage is unknown. Experiments were conducted to identify whether increases in brain ammonia affect METH-induced increases in glutamate and subsequent excitotoxicity. Increases in striatal glutamate were measured using in vivo microdialysis. To examine the role of ammonia in mediating changes in extracellular glutamate after METH exposure, lactulose was used to decrease plasma and brain ammonia. Lactulose is a non-absorbable disaccharide, which alters the intestinal lumen through multiple mechanisms that lead to the increased peripheral excretion of ammonia. METH caused a significant increase in extracellular glutamate that was prevented by lactulose. Lactulose had no effect on METH-induced hyperthermia. To determine if ammonia contributed to excitotoxicity, the effect of METH and lactulose treatment on calpain-mediated spectrin proteolysis was measured. METH significantly increased calpain-specific spectrin breakdown products, and this increase was prevented with lactulose treatment. To examine if ammonia-induced increases in extracellular glutamate were mediated by excitatory amino-acid transporters, the reverse dialysis of ammonia, the glutamate transporter inhibitor, DL-threo-β-benzyloxyaspartic acid (TBOA), or the combination of the two directly into the striatum of awake, freely moving rats was conducted. TBOA blocked the increases in extracellular glutamate produced by the reverse dialysis of ammonia. These findings demonstrate that ammonia mediates METH-induced increases in extracellular glutamate through an excitatory amino-acid transporter to cause excitotoxicity. PMID:24165886

  12. Glutamate: the new frontier in pharmacotherapy for cocaine addiction.

    PubMed

    Uys, Joachim D; LaLumiere, Ryan T

    2008-11-01

    Considerable research into the neurobiology of cocaine addiction has shed light on the role of glutamate. Findings from models of relapse to cocaine-seeking indicate that the glutamatergic system is critically involved, as glutamate levels in the nucleus accumbens increase during reinstatement and glutamate receptor activation is necessary for reinstatement to drug-seeking. Thus, it would seem beneficial to block the increased glutamate release, but full antagonists of ionotropic glutamate receptors produce undesirable side effects. Therefore, modulation of glutamatergic transmission would be advantageous and provide novel pharmacotherapeutic avenues. Pharmacotherapies have been developed that have the potential to modulate excessive glutamatergic transmission through ionotropic and metabotropic (mGluR) glutamate receptors. Compounds that modulate glutamatergic transmission through ionotropic glutamate receptors include the non-competitive N-methyl-D-aspartic acid antagonists, amantadine and memantine, and the partial N-methyl-D-aspartic acid agonist d-cycloserine. They have shown promise in preclinical models of cocaine addiction. The mGluR2/3 agonist LY379268 is effective in inhibiting cocaine seeking in preclinical animal models and could decrease stress-induced relapse due to its anxiolytic effects. Similarly, the mGluR1/5 antagonists, 2-methyl-6-(phenylethynyl)pyridine and 3-[2-methyl-4-thiazolyl)ethynyl]pyridine, have shown to be effective in preclinical models of cocaine addiction. The cysteine pro-drug, N-acetylcysteine, restores the inhibitory tone on presynaptic glutamate receptors and has been effective in reducing cue-induced craving and cocaine use in humans. Furthermore, anticonvulsants, such as topiramate or lamotrigine, have shown efficacy in treating cocaine dependence or reducing relapse in humans. Future pharmacotherapy may focus on manipulating signal transduction proteins and pathways, which include Homer/N-methyl-D-aspartic acid complexes, to

  13. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. PMID

  14. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    PubMed

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. PMID:27231330

  15. Stimulation of peripheral cholinergic nerves by glutamate indicates a new peripheral glutamate receptor.

    PubMed

    Aas, P; Tansø, R; Fonnum, F

    1989-05-01

    The bronchial smooth muscle of the rat was examined for contractile responses to excitatory amino acids. The nerve-mediated contraction induced by electrical field stimulation was enhanced by exogenous L-glutamate (L-Glu). The apparent affinity (ED50) of L-Glu was 3.5 +/- 0.1 mM. Both tetrodotoxin and hemicholinium-3 completely abolished the electrical field-induced contraction and therefore the potentiation by L-Glu, which indicates that L-Glu has a prejunctional effect. Concentrations of L-Glu higher than 22 mM inhibited the electrical field-induced contractions and enhanced the tonus of the smooth muscle by postjunctional stimulation. The ED50 of exogenous ACh was not altered by L-Glu. High concentrations (62 mM) of L-Glu increased the intrinsic activity (alpha) of ACh, indicating a postjunctional potentiation of ACh-induced contractions. L-Glu did not inhibit the activity of acetylcholinesterase, therefore the postjunctional potentiation was not due to ACh accumulation. Inhibition of the electrical field-induced contraction was seen with high concentrations of D-Glu, L-aspartate (L-Asp), L-alpha-amino adipate and ibotenate. Neither glutamate diethyl ester nor 2-amino-5-phosphonovalerate had any inhibitory effects on the L-Glu- and L-Asp-induced alterations of the electrical field-stimulated contraction or on the L-Glu-enhanced tonus of the bronchial smooth muscle. Kainate, N-methyl-D-aspartate, quisqualate and N-acetyl-aspartyl-glutamate had only minor transient potentiating effects on the electrical field-induced contraction. The results provide evidence for a L-Glu receptor in rat bronchi that has a different specificity for glutamate agonists and antagonists than the L-Glu receptor described in the CNS. The receptor seems to be located prejunctionally and enhances nerve-mediated responses and thereby stimulates the bronchial smooth muscle to contract. The possible involvement of this type of receptor in the 'Chinese restaurant syndrome' is discussed. PMID

  16. [Glutamate Metabotropic Receptors: Structure, Localisation, Functions].

    PubMed

    Perfilova, V N; Tyurenkov, I N

    2016-01-01

    The data on the structure, location and functions of the metabotropic glutamate receptor is shown. The family consists of 8 mGluRs subtypes and is divided into three groups: I group--mGluRs1/mGluRs5, II group--mGluRs2/mGluRs3, III group--mGluRs4/mGluRs6/mGluRs7/mGluRs8. They are associated with G-protein; signaling in the cells is carried out by IP3 or adenylate cyclase signaling pathways, in the result of which, mGluRs modify glial and neuronal excitability. Receptors are localized in the CNS and periphery in non-neuronal tissues: bone, heart, kidney, pancreas pod and platelets, the gastrointestinal tract, immune system. Their participation in the mechanisms of neurodegenerative diseases, mental and cognitive disorders, autoimmune processes, etc. is displayed. Agonists, antagonists, allosteric modulators of mGluRs are considered as potential medicines for treatment of mental diseases, including depression, fragile X syndrome, anxiety, obsessive-compulsive disorders, Parkinson's disease, etc. PMID:27530046

  17. Striatal interaction among dopamine, glutamate and ascorbate.

    PubMed

    Morales, Ingrid; Fuentes, Angel; Ballaz, Santiago; Obeso, Jose A; Rodriguez, Manuel

    2012-12-01

    Despite evidence suggesting the interaction among glutamate (GLU), dopamine (DA) and ascorbic acid (AA) in the striatum, their actions are often studied separately. Microdialysis was used here to quantify the extracellular interaction among GLU-DA-AA in the striatum of rats, an interaction which was compared with those studied in the substantia nigra (SN). Perfusion of GLU by reverse microdialysis increased DA and decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the extracellular medium of the striatum, but increased both DA and DOPAC in the SN. The increase of extracellular DA-concentration induced by the local DA-perfusion decreased the extracellular level of GLU and glutamine, an effect that, as suggested by the GLU and glutamine increase observed after the haloperidol administration, probably involves the D2 dopamine receptor. Local administration of AA increased the extracellular DA, decreased DOPAC and had no effect on GLU and glutamine. Present data suggest that, in the striatum, GLU-release inhibits DA-uptake, DA-release inhibits GLU-release, and AA-release prevents DA-oxidation increasing its extracellular diffusion. These effects were different in the SN where GLU probably promoted the DA-release instead of inhibiting the DA-uptake as presumably occurred in the striatum. Present data denote a marked GLU-DA-AA interaction in the striatum, which might be relevant for the pharmacological control of basal ganglia disorders. PMID:22959966

  18. Reduced hippocampal glutamate in Alzheimer disease.

    PubMed

    Rupsingh, R; Borrie, M; Smith, M; Wells, J L; Bartha, R

    2011-05-01

    Altered neurometabolic profiles have been detected in Alzheimer disease (AD) using (1)H magnetic resonance spectroscopy (MRS), but no definitive biomarker of mild cognitive impairment (MCI) or AD has been established. This study used MRS to compare hippocampal metabolite levels between normal elderly controls (NEC) and subjects with MCI and AD. Short echo-time (TE=46 ms) (1)H spectra were acquired at 4T from the right hippocampus of 23 subjects with AD, 12 subjects with MCI and 15 NEC. Absolute metabolite levels and metabolite ratios were compared between groups using a multivariate analysis of covariance (covariates: age, sex) followed by post hoc Tukey's test (p<0.05 significant). Subjects with AD had decreased glutamate (Glu) as well as decreased Glu/creatine (Cr), Glu/myo-inositol (mI), Glu/N-acetylaspartate (NAA), and NAA/Cr ratios compared to NEC. Subjects with AD also had decreased Glu/mI ratio compared to MCI. There were no differences between subjects with MCI and NEC. Therefore, in addition to NAA/Cr, decreased hippocampal Glu may be an indicator of AD. PMID:19501936

  19. Monosodium L-glutamate-induced asthma.

    PubMed

    Allen, D H; Delohery, J; Baker, G

    1987-10-01

    Ingested chemicals, including aspirin and sulfites, are becoming increasingly recognized as provokers of acute severe asthma. In order to investigate the asthma-provoking potential of the widely used flavor enhancer, monosodium L-glutamate (MSG), we challenged 32 subjects with asthma, a number of whom gave histories of severe asthma after Chinese restaurant meals or similarly spiced meals. The subjects received an additive-free diet for 5 days before challenge and were challenged in hospital, after an overnight fast, with 500 mg capsules of MSG. They were challenged in a single-blind, placebo-controlled fashion with increasing doses of MSG from 0.5 gm to 5.0 gm. Thirteen subjects reacted. Seven subjects (group 1) developed asthma and symptoms of the Chinese restaurant syndrome 1 to 2 hours after ingestion of MSG. Six subjects (group 2) did not develop symptoms of Chinese restaurant syndrome, and their asthma developed 6 to 12 hours after ingestion of MSG. These challenge studies confirm that MSG can provoke asthma. The reaction to MSG is dose dependent and may be delayed up to 12 hours, making recognition difficult for both patient and physician. PMID:3312372

  20. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  1. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange.

    PubMed

    Timmerman, M; Teng, C; Wilkening, R B; Fennessey, P; Battaglia, F C; Meschia, G

    2000-05-01

    Intravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanisms, hepatic amino acid uptake and conversion of L-[1-(13)C]glutamine to L-[1-(13)C]glutamate and (13)CO(2) were measured in six sheep fetuses before and in the last 2 h of a 26-h Dex infusion. Dex decreased hepatic glutamine and alanine uptakes (P < 0.01) and hepatic glutamate output (P < 0.001). Hepatic outputs of the glutamate (R(Glu,Gln)) and CO(2) formed from plasma glutamine decreased to 21 (P < 0.001) and 53% (P = 0.009) of control, respectively. R(Glu,Gln), expressed as a fraction of both outputs, decreased (P < 0.001) from 0.36 +/- 0.02 to 0.18 +/- 0.04. Hepatic glucose output remained virtually zero throughout the experiment. We conclude that Dex decreases fetal hepatic glutamate output by increasing the routing of glutamate carbon into the citric acid cycle and by decreasing the hepatic uptake of glucogenic amino acids. PMID:10780940

  2. Effect of free dietary glutamate on gastric secretion in dogs.

    PubMed

    Zolotarev, Vasiliy; Khropycheva, Raisa; Uneyama, Hisayuki; Torii, Kunio

    2009-07-01

    The amino acid, L-glutamate, which is abundant in many foodstuffs, is a potent stimulator of gastric vagal afferents. The aim of the study was to evaluate a role of dietary glutamate in neuroendocrine control of gastric secretion of acid, pepsinogen, and fluid. In mongrel dogs with small gastric pouches surgically prepared according to Pavlov (vagally innervated) or Heidenhain (vagally decentralized), secretion in a pouch was induced by infusion into the main stomach of an amino acid-rich diet lacking glutamate (Elental) or the same diet supplemented with monosodium glutamate (MSG). Having no effect alone, MSG (100 mM) potentiated secretion induced by Elental both in Pavlov and Heidenhain models. In the Pavlov pouch, the effect of MSG was markedly reduced after i.v. injection of granisetron, an antagonist of 5-HT(3) receptors. In the Heidenhain model, MSG enhanced the stimulatory effect of pentagastrin (1 microg/kg, s.c.). In conclusion, dietary glutamate at doses not exceeding its common concentrations in foods substantially potentiates gastric phase secretion induced by stimulation of gastric mucosa with an amino acid-rich diet or by administration of pentagastrin. The effect of glutamate is partially mediated via serotonin secretion and stimulation of 5-HT(3) receptors. PMID:19686114

  3. NEURONAL ACTIVITY REGULATES GLUTAMATE TRANSPORTER DYNAMICS IN DEVELOPING ASTROCYTES

    PubMed Central

    Benediktsson, A.M.; Marrs, G.S.; Tu, J.C.; Worley, P.F.; Rothstein, J.D.; Bergles, D.E.; Dailey, M.E.

    2011-01-01

    Glutamate transporters maintain a low ambient level of glutamate in the CNS and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here we examined the subcellular distribution and dynamic remodeling of the predominant glutamate transporter GLT-1 (EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. GFP-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse 3D confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of glutamate transporters in developing astrocyte membranes and their position relative to synapses. PMID:22052455

  4. Impairment of Neuronal Glutamate Uptake and Modulation of the Glutamate Transporter GLT-1 Induced by Retinal Ischemia

    PubMed Central

    Varano, Giuseppe Pasquale; Milanese, Marco; Adornetto, Annagrazia; Nucci, Carlo; Bonanno, Giambattista; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto

    2013-01-01

    Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus. PMID:23936321

  5. Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition. PMID:24984001

  6. Phosphorylation and Assembly of Glutamate Receptors after Brain Ischemia

    PubMed Central

    Zhang, Fan; Guo, Ailan; Liu, Chunli; Comb, Micheal; Hu, Bingren

    2012-01-01

    Background and Purpose Over-assembly of synaptic glutamate receptors leads to excitotoxicity. The goal of this study is to investigate phosphorylation and assembly of AMPA and NMDA receptors after brain ischemia with reperfusion (I/R). Methods Rats were subjected to 15 min of global ischemia followed by 0.5, 4, and 24 h of reperfusion. Phosphotyrosine (Ptyr) peptides of glutamate receptors in synaptosomal fraction after I/R were identified and quantified by state-of-the-art immuno-affinity purification of Ptyr peptides followed by LC-MS/MS analysis (IAP-LC/MS/MS). Glutamate receptor phosphorylation and synaptic assembly after I/R were studied by biochemical methods. Results Numerous Ptyr sites of AMPA and NMDA were upregulated by about 2- to 37-fold after I/R. A core glutamate receptor kinase, Src kinase, was significantly activated. GluR2/3 and NR2A/B were rapidly clustered from extrasynaptic to synaptic membrane fractions after I/R. GluR2/3 was then translocated into the intracellular pool, whereas NR2A/B remained in the synaptic fraction for as long as 24 h. Consistently, trafficking-related phosphorylation of GluR2/3-S880 was significantly but transiently upregulated, whereas NR2A/B-Y1246 and -Y1472 were significantly and persistently upregulated after I/R. Conclusions Phosphorylation of glutamate receptors at synapses may lead to over-assembly of glutamate receptors, probably via activation of Src family kinases, after I/R. This study provides “global” proteomic information about glutamate receptor tyrosine phosphorylation after brain ischemia. PMID:23212166

  7. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  8. Brain to blood glutamate scavenging as a novel therapeutic modality: a review.

    PubMed

    Boyko, Matthew; Gruenbaum, Shaun E; Gruenbaum, Benjamin F; Shapira, Yoram; Zlotnik, Alexander

    2014-08-01

    It is well known that abnormally elevated glutamate levels in the brain are associated with secondary brain injury following acute and chronic brain insults. As such, a tight regulation of brain glutamate concentrations is of utmost importance in preventing the neurodegenerative effects of excess glutamate. There has been much effort in recent years to better understand the mechanisms by which glutamate is reduced in the brain to non-toxic concentrations, and in how to safely accelerate these mechanisms. Blood glutamate scavengers such as oxaloacetate, pyruvate, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase have been shown to reduce blood glutamate concentrations, thereby increasing the driving force of the brain to blood glutamate efflux and subsequently reducing brain glutamate levels. In the past decade, blood glutamate scavengers have gained increasing international interest, and its uses have been applied to a wide range of experimental contexts in animal models of traumatic brain injury, ischemic stroke, subarachnoid hemorrhage, epilepsy, migraine, and malignant gliomas. Although glutamate scavengers have not yet been used in humans, there is increasing evidence that their use may provide effective and exciting new therapeutic modalities. Here, we review the laboratory evidence for the use of blood glutamate scavengers. Other experimental neuroprotective treatments thought to scavenge blood glutamate, including estrogen and progesterone, beta-adrenergic activation, hypothermia, insulin and glucagon, and hemodialysis and peritoneal dialysis are also discussed. The evidence reviewed here will hopefully pave the way for future clinical trials. PMID:24623040

  9. HIV-1, Methamphetamine and Astrocyte Glutamate Regulation: Combined Excitotoxic Implications for Neuro-AIDS

    PubMed Central

    Cisneros, Irma E; Ghorpade, Anuja

    2012-01-01

    Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection. PMID:22591363

  10. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.

    PubMed

    Tanui, Rose; Tao, Zhen; Silverstein, Nechama; Kanner, Baruch; Grewer, Christof

    2016-05-27

    Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse. PMID:27044739

  11. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    PubMed

    Wigmore, M A; Lacey, M G

    1998-02-01

    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  12. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    1998-01-01

    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) was reversed by the group III preferring mGlu receptor antagonist, α-methyl-4-phosphonophenylglycine (MPPG; 250 μM). The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3–30 μM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 μM) was reversed by (+)-α-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3±15.7%, 4 cells) by MPPG (250 μM). The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 μM), decreased e.p.s.p. amplitude by 27.1±8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1′R,2′R,3′R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 μM) by 26.7±4.3% (5 cells). DHPG (10–100 μM) caused a depolarization of the recorded cell, as did ACPD (3–30 μM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID:9517386

  13. Human Articular Chondrocytes Express Multiple Gap Junction Proteins

    PubMed Central

    Mayan, Maria D.; Carpintero-Fernandez, Paula; Gago-Fuentes, Raquel; Martinez-de-Ilarduya, Oskar; Wang, Hong-Zhang; Valiunas, Virginijus; Brink, Peter; Blanco, Francisco J.

    2014-01-01

    Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. PMID:23416160

  14. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.

    PubMed

    Gholizadeh, Azam; Shahrokhian, Saeed; zad, Azam Iraji; Mohajerzadeh, Shamsoddin; Vosoughi, Manouchehr; Darbari, Sara; Sanaee, Zeinab

    2012-01-15

    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate. PMID:22040749

  15. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes.

    PubMed

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L; Frago, Laura M; Dickson, Suzanne L; Argente, Jesús; Chowen, Julie A

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  16. A novel mechanism of neuroprotection: Blood glutamate grabber.

    PubMed

    Castillo, José; Loza, María Isabel; Mirelman, David; Brea, José; Blanco, Miguel; Sobrino, Tomás; Campos, Francisco

    2016-02-01

    Glutamate excitotoxicity is a primary contributor of ischemic neuronal death and other cellular components of the neurovascular unit. Several strategies have been developed against glutamate excitotoxicity, however none of them have not shown positive results in the clinical practice so far. Nowadays, the concept of blood/brain glutamate grabbing or scavenging is well recognized as a novel and attractive protective strategy to reduce the excitotoxic effect of excess extracellular glutamate that accumulates in the brain following an ischemic stroke. The main advantage of this novel therapeutic strategy is that it occurs in the blood circulation and therefore does not affect the normal brain neurophysiology, as it has been described for other drug treatments used against glutamate excitotoxicity. In this work we report all experimental data from the beginning of our studies, focused on stroke pathology, and we describe new findings about the potential application of this therapy. Future clinical trials will allow to know the real efficacy of this novel therapeutic strategy in stroke patients. PMID:26661174

  17. Neuronal pyruvate carboxylation supports formation of transmitter glutamate.

    PubMed

    Hassel, B; Brâthe, A

    2000-02-15

    Release of transmitter glutamate implies a drain of alpha-ketoglutarate from neurons, because glutamate, which is formed from alpha-ketoglutarate, is taken up by astrocytes. It is generally believed that this drain is compensated by uptake of glutamine from astrocytes, because neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates, which requires pyruvate carboxylation. Here we show that cultured cerebellar granule neurons form releasable [(14)C]glutamate from H(14)CO(3)(-) and [1-(14)C]pyruvate via pyruvate carboxylation, probably mediated by malic enzyme. The activity of pyruvate carboxylation was calculated to be approximately one-third of the pyruvate dehydrogenase activity in neurons. Furthermore, intrastriatal injection of NaH(14)CO(3) or [1-(14)C]pyruvate labeled glutamate better than glutamine, showing that pyruvate carboxylation occurs in neurons in vivo. This means that neurons themselves to a large extent may support their release of glutamate, and thus entails a revision of the current view of glial-neuronal interactions and the importance of the glutamine cycle. PMID:10662824

  18. Glutamate Excitotoxicity Inflicts Paranodal Myelin Splitting and Retraction

    PubMed Central

    Fu, Yan; Sun, Wenjing; Shi, Yunzhou; Shi, Riyi; Cheng, Ji-Xin

    2009-01-01

    Paranodal myelin damage is observed in white matter injury. However the culprit for such damage remains unknown. By coherent anti-Stokes Raman scattering imaging of myelin sheath in fresh tissues with sub-micron resolution, we observed significant paranodal myelin splitting and retraction following glutamate application both ex vivo and in vivo. Multimodal multiphoton imaging further showed that glutamate application broke axo-glial junctions and exposed juxtaparanodal K+ channels, resulting in axonal conduction deficit that was demonstrated by compound action potential measurements. The use of 4-aminopyridine, a broad-spectrum K+ channel blocker, effectively recovered both the amplitude and width of compound action potentials. Using CARS imaging as a quantitative readout of nodal length to diameter ratio, the same kind of paranodal myelin retraction was observed with applications of Ca2+ ionophore A23187. Moreover, exclusion of Ca2+ from the medium or application of calpain inhibitor abolished paranodal myelin retraction during glutamate exposure. Examinations of glutamate receptor agonists and antagonists further showed that the paranodal myelin damage was mediated by NMDA and kainate receptors. These results suggest that an increased level of glutamate in diseased white matter could impair paranodal myelin through receptor-mediated Ca2+ overloading and subsequent calpain activation. PMID:19693274

  19. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  20. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  1. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  2. Single rodent mesohabenular axons release glutamate and GABA

    PubMed Central

    Root, David H.; Mejias-Aponte, Carlos; Zhang, Shiliang; Wang, Huiling; Hoffman, Alexander F.; Lupica, Carl R.; Morales, Marisela

    2016-01-01

    The lateral habenula (LHb) is involved in reward, aversion, addiction, and depression, through descending interactions with several brain structures, including the ventral tegmental area (VTA). VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb co-express markers for both glutamate-signaling (vesicular glutamate transporter 2, VGluT2) and GABA-signaling (glutamate decarboxylase, GAD; and vesicular GABA transporter, VGaT). A single axon from these mesohabenular neurons co-expresses VGluT2-protein and VGaT-protein, and surprisingly establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin-2 (ChR2) driven by VGluT2 or VGaT promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light-activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that co-transmits glutamate and GABA, and provides the majority of mesohabenular inputs. PMID:25242304

  3. [Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma].

    PubMed

    Wang, Zhong-Feng; Yang, Xiong-Li

    2016-08-25

    Glaucoma, the second leading cause of blindness, is a neurodegenerative disease characterized by optic nerve degeneration related to apoptotic death of retinal ganglion cells (RGCs). In the pathogenesis of RGC death following the onset of glaucoma, functional changes of glutamate receptors are commonly regarded as important risk factors. During the past several years, we have explored the mechanisms underlying RGC apoptosis and retinal Müller cell reactivation (gliosis) in a rat chronic ocular hypertension (COH) model. We demonstrated that elevated intraocular pressure in COH rats may induce changes of various signaling pathways, which are involved in RGC apoptosis by modulating glutamate NMDA and AMPA receptors. Moreover, we also demonstrated that over-activation of group I metabotropic glutamate receptors (mGluR I) by excessive extracellular glutamate in COH rats could contribute to Müller cell gliosis by suppressing Kir4.1 channels. In this review, incorporating our results, we discuss glutamate receptor- mediated RGC apoptosis and Müller cell gliosis in experimental glaucoma. PMID:27546508

  4. Glutamate detection by amino functionalized tetrahedral amorphous carbon surfaces.

    PubMed

    Kaivosoja, Emilia; Tujunen, Noora; Jokinen, Ville; Protopopova, Vera; Heinilehto, Santtu; Koskinen, Jari; Laurila, Tomi

    2015-08-15

    In this paper, a novel amperometric glutamate biosensor with glutamate oxidase (GlOx) immobilized directly on NH2 functionalized, platinum doped tetrahedral amorphous carbon (ta-C) film, has been successfully developed. First, we demonstrate that direct GlOx immobilization is more effective on amino-groups than on carboxyl- or hydroxyl-groups. Second, we show that anodizing and plasma treatments increase the amount of nitrogen and the proportion of protonated amino groups relative to amino groups on the aminosilane coating, which subsequently results in an increased amount of active GlOx on the surface. This effect, however, is found to be unstable due to unstable electrostatic interactions between GlOx and NH3(+). We demonstrate the detection of glutamate in the concentration range of 10µM-1mM using the NH2 functionalized Pt doped ta-C surface. The biosensor showed high sensitivity (2.9nA μM(-1)cm(-2)), low detection limit (10μM) and good storage stability. The electrode response to glutamate was linear in the concentrations ranging from 10µM to 500µM. In conclusion, the study shows that GlOx immobilization is most effective on aminosilane treated ta-C surface without any pre-treatments and the fabricated sensor structure is able to detect glutamate in the micromolar range. PMID:25966399

  5. System xc- regulates microglia and macrophage glutamate excitotoxicity in vivo

    PubMed Central

    Kigerl, Kristina A.; Ankeny, Daniel P.; Garg, Sanjay K.; Wei, Ping; Guan, Zhen; Lai, Wenmin; McTigue, Dana M.; Banerjee, Ruma; Popovich, Phillip G.

    2011-01-01

    It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system xc-) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system xc- and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system xc-, could be a novel approach for attenuating injurious neuroinflammatory cascades. PMID:22079587

  6. Frontal glutamate and reward processing in adolescence and adulthood.

    PubMed

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood. PMID:25009315

  7. Intragastric administration of glutamate increases REM sleep in rats.

    PubMed

    Datta, Karuna; Kumar, Deependra; Mallick, Hruda Nanda

    2013-10-01

    Monosodium glutamate, a umami taste substance is commonly used flavor enhancer. The effect of intragastric administration of 1.5 ml of 0.12M monosodium glutamate on sleep-wake was studied in 10 adult male Wistar rats. Sleep-wake parameters were recorded through chronically implanted electroencephalogram, electrooculogram and electromyogram electrodes using a digital recording system (BIOPAC system Inc. BSL PRO 36, USA). The sleep-wake was recorded for 6h after the intragastric administration of either glutamate or saline. Sleep-wake stages were analyzed as wake, slow wave sleep and REM sleep. Compared to saline, intragastric administration of glutamate significantly increased REM sleep duration and episode frequency. REM sleep duration was increased in all the three 2h bins, 10:00-12:00 h (p=0.037), 12:00-14:00 h (p=0.037) and 14:00-16:00 h (p=0.007). The slow wave sleep and total sleep time were not affected. It is concluded that intragastric glutamate administration increases REM sleep. PMID:24055576

  8. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain.

    PubMed

    Cooper, Arthur J L; Jeitner, Thomas M

    2016-01-01

    Glutamate is present in the brain at an average concentration-typically 10-12 mM-far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low-typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase

  9. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain

    PubMed Central

    Cooper, Arthur J. L.; Jeitner, Thomas M.

    2016-01-01

    Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate

  10. N-acetyl-aspartyl-glutamate and inhibition of glutamate carboxypeptidases protects against soman-induced neuropathology.

    PubMed

    Guo, Huifu; Liu, Jiong; Van Shura, Kerry; Chen, HuaZhen; Flora, Michael N; Myers, Todd M; McDonough, John H; McCabe, Joseph T

    2015-05-01

    N-acetyl-aspartyl-glutamate (NAAG) is the most abundant neuropeptide in the mammalian brain. In a variety of animal models of brain injury, the administration of NAAG-related compounds, or inhibitors of glutamate carboxypeptidases (GCPs; the enzymes that hydrolyze NAAG), were shown to be neuroprotective. This study determined the impact of the administration of three NAAG-related compounds, NAAG, β-NAAG (a NAAG homologue resistant to degradation), and 2-phosphonomethyl pentanedioic acid (2-PMPA; an inhibitor of GCP enzymes), on the neuropathology that develops following exposure to the nerve agent, soman. When given 1 min after soman exposure, NAAG-related drug treatments did not alter the survival rate or body weight loss seen 24 h after rats were exposed to soman. Likewise, brain levels of both NAAG and its metabolite, N-acetyl-aspartate (NAA), were substantially decreased 24 h after soman, and in particularly vulnerable brain regions the drug treatments were unable to attenuate the reduction in NAA and NAAG levels. Histochemical study indicated there was a dramatic increase in Fluoro-Jade C (FJC) staining, indicative of neuron cell death, 24 h after soman exposure. However, in the amygdala and in the entorhinal and piriform limbic cortex, which sustained severe neuropathology following soman intoxication, single or combined injections of NAAG compounds and 2-PMPA significantly reduced the number of FJC-positive cells, and effect size estimates suggest that in some brain regions the treatments were effective. The findings suggest that NAAG neurotransmission in the central nervous system is significantly altered by soman exposure, and that the administration of NAAG-related compounds and 2-PMPA reduces neuron cell death in brain regions that sustain severe damage. PMID:25825357

  11. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  12. Mapping Auditory Synaptic Circuits with Photostimulation of Caged Glutamate.

    PubMed

    Sturm, Joshua J; Nguyen, Tuan; Kandler, Karl

    2016-01-01

    Photostimulation of neurons with caged glutamate is a viable tool for mapping the strength and spatial distribution of synaptic networks in living brain slices. In photostimulation experiments, synaptic connectivity is assessed by eliciting action potentials in putative presynaptic neurons via focal photolysis of caged glutamate, while measuring postsynaptic responses via intracellular recordings. Two approaches are commonly used for delivering light to small, defined areas in the slice preparation; an optical fiber-based method and a laser-scanning-based method. In this chapter, we outline the technical bases for using photostimulation of caged glutamate to map synaptic circuits, and discuss the advantages and disadvantages of using fiber-based vs. laser-based systems. PMID:27259947

  13. Astrocytic Dysfunction and Addiction: Consequences of Impaired Glutamate Homeostasis

    PubMed Central

    Scofield, Michael D.; Kalivas, Peter W.

    2016-01-01

    Addiction is characterized as a chronic relapsing disorder whereby addicted individuals persistently engage in drug seeking and use despite profound negative consequences. The results of studies using animal models of addiction and relapse indicate that drug seeking is mediated by alterations in cortico-accumbal plasticity induced by chronic drug exposure. Among the maladaptive responses to drug exposure are long-lasting alterations in the expression of proteins localized to accumbal astrocytes, which are responsible for maintaining glutamate homeostasis. These alterations engender an aberrant potentiation of glutamate transmission in the cortico-accumbens circuit that is linked to the reinstatement of drug seeking. Accordingly, pharmacological restoration of glutamate homeostasis functions as an efficient method of reversing drug-induced plasticity and inhibiting drug seeking in both rodents and humans. PMID:24496610

  14. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    PubMed Central

    Goo, Marisa S.; Scudder, Samantha L.; Patrick, Gentry N.

    2015-01-01

    Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses. PMID:26528125

  15. Chronic Glutamate Toxicity in Neurodegenerative Diseases—What is the Evidence?

    PubMed Central

    Lewerenz, Jan; Maher, Pamela

    2015-01-01

    Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases. PMID:26733784

  16. WAY208466 inhibits glutamate release at hippocampal nerve terminals.

    PubMed

    Wang, Hue Yu; Lu, Cheng Wei; Lin, Tzu Yu; Kuo, Jinn Rung; Wang, Su Jane

    2016-06-15

    Evidence suggests that the glutamatergic system plays a crucial role in the pathophysiology and treatment of depression. This study investigates the effect of WAY208466, a 5-HT6 receptor agonist exhibiting an antidepressant effect, on glutamate release from rat hippocampal nerve terminals (synaptosomes). WAY208466 inhibited the Ca(2+)-dependent release of glutamate that was evoked by exposing the synaptosomes to the potassium channel blocker 4-aminopyridine, and the selective 5-HT6 receptor antagonist SB258585 blocked this phenomenon. The WAY208466-mediated inhibition of glutamate release was associated with a reduction of 4-aminopyridine-induced increase in the cytosolic free Ca(2+) concentration ([Ca(2+)]C) mediated via Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels. WAY208466 did not alter the resting synaptosomal membrane potential or 4-aminopyridine-mediated depolarization; thus, the inhibition of the Ca(2+) influx could not be attributed to the decrease in synaptosomal excitability caused by 5-HT6 receptor activation. Furthermore, the effect of WAY208466 on 4-aminopyridine-evoked glutamate release was prevented by a Gi/Go-protein inhibitor pertussis toxin, adenylate cyclase inhibitor SQ22536, and a protein kinase A inhibitor H89. These results suggest that WAY208466 acts at the 5-HT6 receptors present in the hippocampal nerve terminals to suppress the Gi/Go-protein-coupled adenylate cyclase/protein kinase A cascade, which subsequently reduces the Ca(2+) influx via N- and P/Q-type Ca(2+) channels to inhibit the evoked glutamate release. This finding implicated a potential therapeutic role of 5-HT6 receptor agonist in the treatment of depression and other neurological diseases associated with glutamate excitotoxicity. PMID:27068148

  17. Two Pathways of Glutamate Fermentation by Anaerobic Bacteria

    PubMed Central

    Buckel, Wolfgang; Barker, H. A.

    1974-01-01

    Two pathways are involved in the fermentation of glutamate to acetate, butyrate, carbon dioxide, and ammonia—the methylaspartate and the hydroxyglutarate pathways which are used by Clostridium tetanomorphum and Peptococcus aerogenes, respectively. Although these pathways give rise to the same products, they are easily distinguished by different labeling patterns of the butyrate when [4-14C]glutamate is used as substrate. Schmidt degradation of the radioactive butyrate from C. tetanomorphum yielded equally labeled propionate and carbon dioxide, whereas nearly all the radioactivity of the butyrate from P. aerogenes was recovered in the corresponding propionate. This procedure was used as a test for the pathway of glutamate fermentation by 15 strains (9 species) of anaerobic bacteria. The labeling patterns of the butyrate indicate that glutamate is fermented via the methylaspartate pathway by C. tetani, C. cochlearium, and C. saccarobutyricum, and via the hydroxyglutarate pathway by Acidaminococcus fermentans, C. microsporum, Fusobacterium nucleatum, and F. fusiformis. Enzymes specific for each pathway were assayed in crude extracts of the above organisms. 3-Methylaspartase was found only in clostridia which use the methylaspartate pathway, including Clostridium SB4 and C. sticklandii, which probably degrade glutamate to acetate and carbon dioxide by using a second amino acid as hydrogen acceptor. High levels of 2-hydroxyglutarate dehydrogenase were found exclusively in organisms that use the hydroxyglutarate pathway. The data indicate that only two pathways are involved in the fermentation of glutamate by the bacteria analyzed. The methylaspartate pathway appears to be used only by species of Clostridium, whereas the hydroxyglutarate pathway is used by representatives of several genera. PMID:4813895

  18. Rapid glutamate release in the mediobasal hypothalamus accompanies feeding and is exaggerated by an obesogenic food

    PubMed Central

    Guyenet, Stephan J.; Matsen, Miles E.; Morton, Gregory J.; Kaiyala, Karl J.; Schwartz, Michael W.

    2013-01-01

    The mediobasal hypothalamus (MBH) plays a central role in the regulation of food intake and energy balance. Although the excitatory neurotransmitter glutamate is implicated in energy balance regulation by the MBH, the hypothesis that feeding elicits local glutamate release remains untested. To test this hypothesis, we employed a glutamate biosensor that measures glutamate concentrations at 1-s intervals in conscious, freely behaving rats. Results indicate that feeding is associated with an increase of MBH glutamate concentration that occurs within 1–2 s of oral contact with a food pellet, and the glutamate response to a palatable high-fat pellet is greatly exaggerated relative to chow. In contrast, glutamate responses were not observed during water ingestion or other observed behaviors. These findings indicate that feeding is associated with rapid release of glutamate in the MBH, that this release is exaggerated with an obesogenic food, and that this response is likely stimulated by orosensory factors. PMID:24199157

  19. [Glutamate and malignant gliomas, from epilepsia to biological aggressiveness: therapeutic implications].

    PubMed

    Blecic, Serge; Rynkowski, Michal; De Witte, Olivier; Lefranc, Florence

    2013-09-01

    In this review article, we describe the unrecognized roles of glutamate and glutamate receptors in malignant glioma biology. The neurotransmitter glutamate released from malignant glioma cells in the extracellular matrix is responsible for seizure induction and at higher concentration neuronal cell death. This neuronal cell death will create vacated place for tumor growth. Glutamate also stimulates the growth and the migration of glial tumor cells by means of the activation of glutamate receptors on glioma cells in a paracrine and autocrine manner. The multitude of effects of glutamate in glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters in the adjuvant treatment of malignant gliomas in neurology and neuro-oncology. Using the website www.clinicaltrials.gov/ as a reference - a service developed by the National Library of Medicine for the National Health Institute in USA - we have evoked the few clinical trials completed and currently ongoing with therapies targeting the glutamate receptors. PMID:23883552

  20. Glutamate transporters and presynaptic metabotropic glutamate receptors protect neocortical Cajal-Retzius cells against over-excitation.

    PubMed

    Dvorzhak, Anton; Unichenko, Petr; Kirischuk, Sergei

    2012-08-01

    Cajal-Retzius (CR) cells, early generated neurons in the marginal zone of developing neocortex, are reported to be highly vulnerable to excitotoxic damage. Because extracellular glutamate concentration in the central nervous system is mainly controlled by glutamate transporters (EAATs), we studied the effects of EAAT blockade on CR cells. DL: -TBOA, a specific EAAT antagonist, induced NMDA receptor-dependent bursting discharges in layer 2/3 pyramidal neurons, indicating that EAATs operate in the uptake mode and their blockade leads to elevation of extracellular glutamate concentration. In CR cells, however, DL: -TBOA failed to change either the membrane resistance or holding current, and moreover, it reduced the frequency of spontaneous GABAergic postsynaptic currents. DL: -TBOA decreased the mean amplitude and increased paired-pulse ratio of evoked GABAergic postsynaptic currents, indicating the presynaptic locus of its action. Indeed, LY379268, a specific agonist of group II metabotropic glutamate receptors (mGluR-II), mimicked the DL: -TBOA-mediated effects, and LY341495, an unspecific mGluR antagonist, eliminated the DL: -TBOA-induced effects. As dihydrokainic acid, a specific EAAT2 blocker, failed to affect evoked GABAergic postsynaptic currents, whereas TFB-TBOA, a selective blocker of EAAT1 and EAAT2, produced effects similar to that of DL: -TBOA, extracellular glutamate concentration in the marginal zone is mainly controlled by EAAT1 (GLAST). Thus, even though CR cells are highly vulnerable to excitotoxic damage, a number of mechanisms serve to protect them against excessive extracellular glutamate concentration including a lack of functional glutamatergic synapses, Mg(2+) blockade of NMDA receptors, and presynaptic mGluRs that inhibit transmission at GABAergic synapses. PMID:22665047

  1. Temperature Differentially Facilitates Spontaneous but Not Evoked Glutamate Release from Cranial Visceral Primary Afferents

    PubMed Central

    Fawley, Jessica A.; Hofmann, Mackenzie E.; Largent-Milnes, Tally M.; Andresen, Michael C.

    2015-01-01

    Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST) synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+) and A-fibers (TRPV1-). Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs) at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4–5°C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are independently

  2. Rapid Microelectrode Measurements and the Origin and Regulation of Extracellular Glutamate in Rat Prefrontal Cortex

    PubMed Central

    Hascup, E.R.; Hascup, K.N.; Stephens, M.; Pomerleau, F.; Huettl, P.; Gratton, A.; Gerhardt, G.A.

    2010-01-01

    Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal vs. astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays (MEAs) to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally-applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (TTX; sodium channel blocker), produced a significant (~40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally-applied ω-conotoxin (MVIIC; ~50%; calcium channel blocker), and the mGluR⅔ agonist, LY379268 (~20%), and a significant increase with the mGluR⅔ antagonist LY341495 (~40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (TBOA; glutamate transporter inhibitor) produced an ~120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (CPG; cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of TTX completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the MEA technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically-evoked event is entirely neuronally derived. PMID:20969570

  3. Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization.

    PubMed

    Parikh, Vinay; Naughton, Sean X; Shi, Xiangdang; Kelley, Leslie K; Yegla, Brittney; Tallarida, Christopher S; Rawls, Scott M; Unterwald, Ellen M

    2014-09-01

    Recent evidence suggests that diminished ability to control cocaine seeking arises from perturbations in glutamate homeostasis in the nucleus accumbens. However, the neurochemical substrates underlying cocaine-induced neuroadaptations in the dorsal striatum and how these mechanisms link to behavioral plasticity is not clear. We employed glutamate-sensitive microelectrodes and amperometry to study the impact of repeated cocaine administration on glutamate dynamics in the dorsolateral striatum of awake freely-moving rats. Depolarization-evoked glutamate release was robustly increased in cocaine-pretreated rats challenged with cocaine. Moreover, the clearance of glutamate signals elicited either by terminal depolarization or blockade of non-neuronal glutamate transporters slowed down dramatically in cocaine-sensitized rats. Repeated cocaine exposure also reduced the neuronal tone of striatal glutamate. Ceftriaxone, a β-lactam antibiotic that activates the astrocytic glutamate transporter, attenuated the effects of repeated cocaine exposure on synaptic glutamate release and glutamate clearance kinetics. Finally, the antagonism of AMPA glutamate receptors in the dorsolateral striatum blocked the development of behavioral sensitization to repeated cocaine administration. Collectively, these data suggest that repeated cocaine exposure disrupts presynaptic glutamate transmission and transporter-mediated clearance mechanisms in the dorsal striatum. Moreover, such alterations produce an over activation of AMPA receptors in this brain region leading to the sensitized behavioral response to repeated cocaine. PMID:24911954

  4. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  5. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  6. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  7. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  8. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  9. Astrocyte/neuron ratio and its importance on glutamate toxicity: an in vitro voltammetric study.

    PubMed

    Hacimuftuoglu, Ahmet; Tatar, Abdulgani; Cetin, Damla; Taspinar, Numan; Saruhan, Fatih; Okkay, Ufuk; Turkez, Hasan; Unal, Deniz; Stephens, Robert Louis; Suleyman, Halis

    2016-08-01

    The purpose of this study was to clarify the relationship between neuron cells and astrocyte cells in regulating glutamate toxicity on the 10th and 20th day in vitro. A mixed primary culture system from newborn rats that contain cerebral cortex neurons cells was employed to investigate the glutamate toxicity. All cultures were incubated with various glutamate concentrations, then viability tests and histological analyses were performed. The activities of glutamate transporters were determined by using in vitro voltammetry technique. Viable cell number was decreased significantly on the 10th day at 10(-7) M and at 10(-6) M glutamate applications, however, viable cell number was not decreased at 20th day. Astrocyte number was increased nearly six times on the 20th day as compared to the 10th day. The peak point of glutamate reuptake capacity was about 2 × 10(-4) M on the 10th day and 10(-3) M on the 20th day. According to our results, we suggested that astrocyte age was important to maintain neuronal survival against glutamate toxicity. Thus, we revealed activation or a trigger point of glutamate transporters on astrocytes due to time since more glutamate was taken up by astrocytes when glutamate transporters on the astrocyte were triggered with high exogenous glutamate concentrations. In conclusion, the present investigation is the first voltammetric study on the reuptake parameters of glutamate in vitro. PMID:26438331

  10. [Effectiveness of glutamate in the treatment of early manifestations of occupational fluorosis].

    PubMed

    Grekhova, T D; Katsnelśon, B A; Kolmogortseva, V M; Konysheva, L K; Babakova, O M

    1994-01-01

    Efficiency of glutamic acid for therapy of early signs of occupational fluorosis was studied in workers engaged into cryolite production. The study proved that use of glutamic acid in occupational conditions prevents progressing of metabolic disorders. The results encourage recommendations to include glutamate into therapeutic and prophylactic nutrition of workers exposed to fluor compounds, into nutritive additions according to special recipe. PMID:7987560

  11. Triple threat treatment: Exploiting the dependence receptor properties of metabotropic glutamate receptor 1 against melanoma

    PubMed Central

    Gelb, Tara; Hathaway, Hannah A; Wroblewski, Jarda T

    2014-01-01

    Melanoma cells that express metabotropic glutamate 1 (mGlu1) receptors depend on glutamate for their survival and proliferation. The dependence receptor properties of mGlu1 allow us to propose and justify three promising approaches for melanoma treatment: glutamate depletion, mGlu1 receptor antagonism, and targeting of mGlu1 receptor signaling.

  12. Continuous glutamate production using an immobilized whole-cell system

    SciTech Connect

    Kim, H.S.; Ryu, D.D.Y.

    1982-10-01

    For the purpose of saving the energy and raw materials required in a glutamate fermentation, an immobilized whole-cell system was prepared and its performance in a continuous reactor system was evaluated. Corynebacterium glutamicum (a mutant strain of ATCC 13058) whole cell was immobilized in k-carrageenan matrix and the gel structure was strengthened by treatment with a hardening agent. The effective diffusivities of carrageenan gel for glucose and oxygen were formed to decrease significantly with an increase in carrageenan concentration, while the gel strength showed an increasing trend. Based on the physical and chemical properties of carrageenan gel, the immobilized method was improved and the operation of the continuous reactor system was partially optimized. In an air-stirred fermentor, the continuous production of glutamate was carried out. The effect of the dilution rate of glutamate production and operation stability was investigated. The performance of the continuous wbole-cell reactor system was evaluated by measuring glutamate productivity for a period of 30 days; it was found to be far superior to the performance of convention batch reactor systems using free cells.

  13. Blood and Brain Glutamate Levels in Children with Autistic Disorder

    ERIC Educational Resources Information Center

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel

    2013-01-01

    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  14. Microbial production and chemical transformation of poly-γ-glutamate

    PubMed Central

    Ashiuchi, Makoto

    2013-01-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of d-glutamate (D-PGA), a homo polymer of l-glutamate (L-PGA), and a random copolymer consisting of d- and l-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented. PMID:23855427

  15. Neonatal hyperammonemia: the N-carbamoyl-L-glutamic acid test.

    PubMed

    Guffon, Nathalie; Schiff, Manuel; Cheillan, David; Wermuth, Bendicht; Häberle, Johannes; Vianey-Saban, Christine

    2005-08-01

    In a prospective study, patients with a suspected urea cycle defect underwent oral N-carbamoyl-L-glutamic acid loading testing. In patients with subsequently confirmed N-acetylglutamate synthase deficiency, hyperammonemia normalized within 8 hours. This test may be useful in the early diagnosis of patients with suspected urea cycle disorders. PMID:16126063

  16. Does formate reduce alpha-ketoglutarate and ammonia to glutamate?

    NASA Technical Reports Server (NTRS)

    Maughan, Q.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The reported reduction of alpha-ketoglutarate and ammonia by formate is much slower than described (Morowitz et al., 1995). The formate reduction if any is small under these conditions. Glutamate is produced from a reduction by a second molecule of alpha-ketoglutarate involving an oxidative decarboxylation.

  17. Control of cortical neuronal migration by glutamate and GABA.

    PubMed

    Luhmann, Heiko J; Fukuda, A; Kilb, W

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  18. Caffeine promotes glutamate and histamine release in the posterior hypothalamus

    PubMed Central

    Kodama, Tohru; Siegel, Jerome M.

    2014-01-01

    Histamine neurons are active during waking and largely inactive during sleep, with minimal activity during rapid-eye movement (REM) sleep. Caffeine, the most widely used stimulant, causes a significant increase of sleep onset latency in rats and humans. We hypothesized that caffeine increases glutamate release in the posterior hypothalamus (PH) and produces increased activity of wake-active histamine neurons. Using in vivo microdialysis, we collected samples from the PH after caffeine administration in freely behaving rats. HPLC analysis and biosensor measurements showed a significant increase in glutamate levels beginning 30 min after caffeine administration. Glutamate levels remained elevated for at least 140 min. GABA levels did not significantly change over the same time period. Histamine level significantly increased beginning 30 min after caffeine administration and remained elevated for at least 140 min. Immunostaining showed a significantly elevated number of c-Fos-labeled histamine neurons in caffeine-treated rats compared with saline-treated animals. We conclude that increased glutamate levels in the PH activate histamine neurons and contribute to caffeine-induced waking and alertness. PMID:25031227

  19. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  20. Antipsychotic treatment modulates glutamate transport and NMDA receptor expression.

    PubMed

    Zink, Mathias; Englisch, Susanne; Schmitt, Andrea

    2014-11-01

    Schizophrenia patients often suffer from treatment-resistant cognitive and negative symptoms, both of which are influenced by glutamate neurotransmission. Innovative therapeutic strategies such as agonists at metabotropic glutamate receptors or glycin reuptake inhibitors try to modulate the brain's glutamate network. Interactions of amino acids with monoamines have been described on several levels, and first- and second-generation antipsychotic agents (FGAs, SGAs) are known to exert modulatory effects on the glutamatergic system. This review summarizes the current knowledge on effects of FGAs and SGAs on glutamate transport and receptor expression derived from pharmacological studies. Such studies serve as a control for molecular findings in schizophrenia brain tissue and are clinically relevant. Moreover, they may validate animal models for psychosis, foster basic research on antipsychotic substances and finally lead to a better understanding of how monoaminergic and amino acid neurotransmissions are intertwined. In the light of these results, important differences dependent on antipsychotic substances, dosage and duration of treatment became obvious. While some post-mortem findings might be confounded with multifold drug effects, others are unlikely to be influenced by antipsychotic treatment and could represent important markers of schizophrenia pathophysiology. In similarity to the convergence of toxic and psychotomimetic effects of dopaminergic, serotonergic and anti-glutamatergic substances, the therapeutic mechanisms of SGAs might merge on a yet to be defined molecular level. In particular, serotonergic effects of SGAs, such as an agonism at 5HT1A receptors, represent important targets for further clinical research. PMID:25214389

  1. Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors.

    PubMed

    Ferraris, D V; Shukla, K; Tsukamoto, T

    2012-01-01

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc metallopeptidase that hydrolyzes N-acetylaspartylglutamate (NAAG) into N-acetylaspartate (NAA) and glutamate in the nervous system. Inhibition of GCPII has the potential to reduce extracellular glutamate and represents an opportune target for treating neurological disorders in which excess glutamate is considered pathogenic. Furthermore, GCPII was found to be identical to a tumor marker, prostate-specific membrane antigen (PSMA), and has drawn significant interest as a diagnostic and/or therapeutic target in oncology. Over the past 15 years, tremendous efforts have been made in the discovery of potent GCPII inhibitors, particularly those with phosphorus-, urea- and thiol-based zinc binding groups. In addition, significant progress has been made in understanding the three-dimensional structural characteristics of GCPII in complex with various ligands. The purpose of this review article is to analyze the structure-activity relationships (SAR) of GCPII inhibitors reported to date, which are classified on the basis of their zinc-binding group. SAR and crystallographic data are evaluated in detail for each of these series to highlight the future challenges and opportunities to identify clinically viable GCPII inhibitors. PMID:22304717

  2. Paraventricular Stimulation with Glutamate Elicits Bradycardia and Pituitary Responses

    NASA Technical Reports Server (NTRS)

    Darlington, Daniel N.; Miyamoto, Michael; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    The excitatory neurotransmitter, L-glutamate (0.5 M, pH 7.4), or the organic acid, acetate (0.5 M, pH 7.4), was microinjected (50 nl over 2 min) directly into the paraventricular nuclei (PVN) of pentobarbital sodium-anesthetized rats while arterial blood pressure and heart rate and plasma adrenocorticotropic hormone (ACTH), vasopressin, and oxytocin were measured. Activation of PVN neurons with L-glutamate led to increases in plasma ACTH, vasopressin, and oxytocin and a profound bradycardia (-80 beats/min) with little change in arterial blood pressure. Microinjection of acetate had no effect on the above variables. The decrease in heart rate was shown to be dependent on the concentration of glutamate injected and the volume of injectate. The bradycardia was mediated through the autonomic nervous system because ganglionic blockade (pentolinium tartrate) eliminated the response; atropine and propranolol severely attenuated the bradycardia. The bradycardia was greatest when L-glutamate was microinjected into the caudal PVN. Injections into the rostral PVN or into nuclei surrounding the PVN led to small or nonsignificant decreases in heart rate. Focal electric stimulation (2-50 pA) of the PVN also led to decreases in heart rate and arterial blood pressure. These data suggest that activation of PVN neurons leads to the release of ACTH, vasopressin, and oxytocin from the pituitary and a bradycardia that is mediated by the autonomic nervous system.

  3. [Glutamic acid group poisoning. So-called Chinese restaurant syndrome].

    PubMed

    Rudin, O; Stauffer, E; Cramer, Y; Krämer, M

    1989-01-01

    After eating a soup 10 persons (out of 100) fell sick; within 10 minutes they suffered from nervous muscle convulsions, trembling, mouth desiccation and dilatation of the pupils. The soup contained glutamate as flavour enhancer in an unusually high concentration of 31 grams per litre. PMID:2573344

  4. Vasorelaxation induced by L-glutamate in porcine coronary arteries.

    PubMed

    Nguyen-Duong, H

    2001-04-20

    Isolated porcine coronary arteries (PCA) contracted by depolarization with high K0 or by histamine (10 microM) were relaxed concentration-dependently by glutamic acid, aspartic acid, N-methyl-D-aspartate (NMDA) and, gamma-aminobutyric acid (GABA). In the PCA preparations contracted by high K0 or histamine the effects were monophasic, but the histamine-induced effects were more sustained and of larger amplitude. The ED50 values of cumulative concentration-response (CCR) curves obtained for the relaxation induced by L-glutamate in histamine-stimulated PCA preparations were shifted from 0.8 mM to 0.25 microM in presence of 1 mM glycine, a co-agonist required for the activation of NMDA receptors. The relaxations resulting from low-affinity binding of L-glutamic were dependent on Ca0 as evidenced by the shift of CCR curves to the right in the presence of 5-100 mM K0. In contrast, CCR curves obtained for contractions induced by NaF (1.5-12 mM), were significantly shifted to the left (from 6.3 to 3.1 mM). A depression of the maximum effect observed at higher F- concentrations was reversed by addition of 5 mM Mg0. Data show that glutamate induces a vasorelaxation that may be associated with symptoms seen in Chinese restaurant syndrome. PMID:11339334

  5. Regulation of glutamate metabolism by protein kinases in mycobacteria.

    PubMed

    O'Hare, Helen M; Durán, Rosario; Cerveñansky, Carlos; Bellinzoni, Marco; Wehenkel, Anne Marie; Pritsch, Otto; Obal, Gonzalo; Baumgartner, Jens; Vialaret, Jérome; Johnsson, Kai; Alzari, Pedro M

    2008-12-01

    Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit alpha-ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD(+)-specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence. PMID:19019160

  6. PRRT2 Mutant Leads to Dysfunction of Glutamate Signaling.

    PubMed

    Li, Ming; Niu, Fenghe; Zhu, Xilin; Wu, Xiaopan; Shen, Ning; Peng, Xiaozhong; Liu, Ying

    2015-01-01

    Paroxysmal kinesigenic choreoathetosis (PKC) is an inherited disease of the nervous system. We previously identified PRRT2 as the causative gene of PKC. However, as little is known about the function of PRRT2, elucidating its function will benefit not only PKC studies, but also many other related disorders. Here, we reveal higher levels of glutamate in the plasma of PKC patients and the culture medium of neurons following knock-out Prrt2 expression. Using double immunostaining assays we confirm Prrt2 is located at the glutamatergic neurons in accordance with its function. Our co-immunoprecipitation assays reveal mutant PRRT2 interferes with SNAP25 and GRIA1 interactions, respectively. Furthermore, using live-labeling techniques, we confirmed co-transfection with mutant PRRT2 caused an increase in GRIA1 distribution on the cell surface. Therefore, our results suggest that mutant PRRT2, probably through its weakened interaction with SNAP25, affects glutamate signaling and glutamate receptor activity, resulting in the increase of glutamate release and subsequent neuronal hyperexcitability. PMID:25915028

  7. PRRT2 Mutant Leads to Dysfunction of Glutamate Signaling

    PubMed Central

    Li, Ming; Niu, Fenghe; Zhu, Xilin; Wu, Xiaopan; Shen, Ning; Peng, Xiaozhong; Liu, Ying

    2015-01-01

    Paroxysmal kinesigenic choreoathetosis (PKC) is an inherited disease of the nervous system. We previously identified PRRT2 as the causative gene of PKC. However, as little is known about the function of PRRT2, elucidating its function will benefit not only PKC studies, but also many other related disorders. Here, we reveal higher levels of glutamate in the plasma of PKC patients and the culture medium of neurons following knock-out Prrt2 expression. Using double immunostaining assays we confirm Prrt2 is located at the glutamatergic neurons in accordance with its function. Our co-immunoprecipitation assays reveal mutant PRRT2 interferes with SNAP25 and GRIA1 interactions, respectively. Furthermore, using live-labeling techniques, we confirmed co-transfection with mutant PRRT2 caused an increase in GRIA1 distribution on the cell surface. Therefore, our results suggest that mutant PRRT2, probably through its weakened interaction with SNAP25, affects glutamate signaling and glutamate receptor activity, resulting in the increase of glutamate release and subsequent neuronal hyperexcitability. PMID:25915028

  8. On the potential role of glutamate transport in mental fatigue.

    PubMed

    Rönnbäck, Lars; Hansson, Elisabeth

    2004-11-01

    Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms.It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-alpha, IL-1beta and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At

  9. Prefrontal Cortex Glutamate Correlates with Mental Perspective-Taking

    PubMed Central

    Montag, Christiane; Schubert, Florian; Heinz, Andreas; Gallinat, Jürgen

    2008-01-01

    Background Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC) and anterior cingulate cortex (ACC) function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. Methodology/Principal Findings Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS) in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI). Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor “perspective taking” (T = −2.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni) but not by “empathic concern” or “personal distress”. No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. Conclusions/Significance This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated by prefrontal glutamatergic projections. This is a preliminary finding that needs a replication in an independent sample. PMID:19060949

  10. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    PubMed Central

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  11. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    PubMed

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  12. Transport-mediated release of endogenous glutamate in the vertebrate retina.

    PubMed

    Maguire, G; Simko, H; Weinreb, R N; Ayoub, G

    1998-08-01

    In the present study we measured calcium-dependent, vesicular glutamate release, and calcium-independent, transport-mediated glutamate release patterns in the vertebrate retina to better understand the sources of elevated glutamate in neural tissue under ischemic conditions. A potassium concentration of 40 mM, which mimics the extracellular potassium concentration in the central nervous system during ischemia, was applied to the bathing medium of a retinal slice prepared from zebrafish. High external potassium evoked release of endogenous glutamate that was measured using a glutamate-specific fluorometric assay applied to the bath. The slice was visualized under 668 nm light using Normarski optics and fluorescent images were captured using a cooled charge-coupled device (CCD) camera. Following the elevation of external potassium to 40 mM several bands of glutamate fluorescence, reflecting the spatial distribution of glutamate release, were observed. A calcium-dependent cloud of glutamate was observed in the inner plexiform layer, that was antagonized by bath-applied nifedipine. A relatively dense glutamate cloud (1-10 microM) was observed over the ganglion cell layer, which was blocked by dihydrokainate, a glutamate transport antagonist. In contrast, nifedipine, an inhibitor of calcium-dependent neurotransmitter release in the retina, failed to block the cloud of released glutamate in the ganglion cell layer. These data suggest that under pathological conditions in the eye where glutamate levels are elevated surrounding retinal ganglion cells, such as observed in some forms of glaucoma, a possible source of the elevated glutamate is through a glutamate transporter operating in a reversed direction. A likely candidate for mediating this reversed transport of glutamate is the retinal Muller cell. PMID:9644233

  13. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    PubMed Central

    Armbruster, Moritz; Hampton, David; Yang, Yongjie; Dulla, Chris G.

    2014-01-01

    Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL) model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM), which combines glutamate transport current (TC) recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes. PMID:25249939

  14. Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode.

    PubMed

    Batra, Bhawna; Kumari, Seema; Pundir, Chandra Shekhar

    2014-04-10

    A method is described for construction of a highly sensitive electrochemical biosensor for detection of glutamate. The biosensor is based on covalent immobilization of glutamate oxidase (GluOx) onto polypyrrole nanoparticles and polyaniline composite film (PPyNPs/PANI) electrodeposited onto Au electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 7.5 (0.1 M sodium phosphate) and 35 °C, when operated at 50 mV s⁻¹. It exhibited excellent sensitivity (detection limit as 0.1 nM), fast response time and wider linear range (from 0.02 to 400 μM). Analytical recovery of added glutamate (5 mM and 10 mM) was 95.56 and 97%, while within batch and between batch coefficients of variation were 3.2% and 3.35% respectively. The enzyme electrode was used 100 times over a period of 60 days, when stored at 4 °C. The biosensor measured glutamate level in food stuff, which correlated well with a standard colorimetric method (r=0.99). PMID:24629270

  15. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis.

    PubMed

    Shih, Ing-Lung; Yu, Yun-Ti

    2005-01-01

    Bacillus subtilis(natto) Takahashi, used to prepare the fermented soybean product natto, was grown in a basal medium containing 5% (w/w) sucrose and 1.5% (w/w) L-glutamate and produced 58% (w/w) poly(gamma-glutamic acid) and 42% (w/w) levan simultaneously. After 21 h, 40-50 mg levan ml-1 had been produced in medium containing 20% (w/w) sucrose but without L-glutamate. In medium containing L-glutamic acid but without sucrose, mainly poly(gamma-glutamic acid) was produced. PMID:15703872

  16. Glial and light-dependent glutamate metabolism in the suprachiasmatic nuclei.

    PubMed

    Leone, M J; Beaule, C; Marpegan, L; Simon, T; Herzog, E D; Golombek, D A

    2015-05-01

    The suprachiasmatic nuclei, the main circadian clock in mammals, are entrained by light through glutamate released from retinal cells. Astrocytes are key players in glutamate metabolism but their role in the entrainment process is unknown. We studied the time dependence of glutamate uptake and glutamine synthetase (GS) activity finding diurnal oscillations in glutamate uptake (high levels during the light phase) and daily and circadian fluctuations in GS activity (higher during the light phase and the subjective day). These results show that glutamate-related astroglial processes exhibit diurnal and circadian variations, which could affect photic entrainment of the circadian system. PMID:25798929

  17. Detection of the Messenger RNA Encoding for the Ferredoxin-Dependent Glutamate Synthase in Maize Leaf

    PubMed Central

    Commere, Bernard; Vidal, Jean; Suzuki, Akira; Gadal, Pierre; Caboche, Michel

    1986-01-01

    Ferredoxin-dependent glutamate synthase (EC 1.4.7.1), glutamate oxoglutarate aminotransferase (glutamate synthase) (GOGAT) messenger RNA was extracted from maize (Zea mays L.) leaves and partially purified through oligo(dT)-cellulose chromatography and ultracentrifugation in a sucrose gradient. mRNA were translated in vitro using a reticulocyte system. The glutamate synthase subunit was characterized by immunoprecipitation with antibodies raised against the rice (Oryza sativa L.) ferredoxin-glutamate synthase. The in vitro synthesized protein and the 145 kilodaltons genuine maize leaf subunit of GOGAT were found to comigrate in sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments. Images Fig. 1 Fig. 2 Fig. 3 PMID:16664732

  18. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  19. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes.

    PubMed

    Görg, Boris; Morwinsky, Anke; Keitel, Verena; Qvartskhava, Natalia; Schrör, Karsten; Häussinger, Dieter

    2010-04-15

    Ammonia toxicity to the brain involves NMDA receptor overactivation and glutamate excitotoxicity. The mechanisms underlying glutamate release from astrocytes in response to ammonia were addressed in this study. In cultured rat astrocytes, glutamate immunoreactivity (IR) was punctate and partly colocalized with transfected VAMP2-YFP. NH(4)Cl (5 mmol/L) and hypoosmotic exposure (205 mosmol/L) induced a rapid colchicine-sensitive loss of cellular glutamate and glutamate appearance in the extracellular space. The NH(4)Cl-induced glutamate loss from astrocytes was strongly blunted after transfection of the cells with VAMP2 siRNA. Ammonia-induced exocytosis of VAMP2-YFP expressing vesicles was shown by total internal reflection fluorescence microscopy (TIRF-M). Glutamate exocytosis in response to ammonia was sensitive to chelation of Ca(2+), cyclooxygenase inhibition by indomethacin and colchicine. Ammonia triggered the rapid formation of prostanoids, which were identified as upstream events in ammonia-induced glutamate exocytosis. Also, addition of prostaglandin E(2) or of tumor necrosis factor (TNF)-alpha triggered glutamate exocytosis. Inhibition of ammonia-induced glutamate exocytosis after transfection of VAMP2 siRNA inhibited ammonia-induced RNA oxidation. It is concluded that ammonia triggers a prostanoid- and Ca(2+)-dependent glutamate exocytosis, which is essential for induction of ammonia-induced RNA oxidation. PMID:20014275

  20. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  1. Enzyme-Doped Thin Films and Optical Fiber Sensors for Glutamate

    NASA Astrophysics Data System (ADS)

    Rickus, Jenna L.; Tobin, Allan J.; Zink, Jeffrey I.; Dunn, Bruce S.

    2002-10-01

    Biomolecules encapsulated in porous silicate glass using the sol-gel process form optically transparent materials capable of biorecognition. We are working to design biosensors from these materials for the detection of glutamate, the major excitatory neurotransmitter in the central nervous system. Previously we demonstrated the ability of glutamate dehydrogenase (GDH)-doped sol-gel bulk materials to measure glutamate at varying concentrations. Here we show that GDH can be encapsulated in a thin film while retaining its enzymatic activity. The films are likely to be reaction limited rather than diffusion limited, as the reaction rate at saturating glutamate concentrations varies linearly with enzyme loading. At a given enzyme loading, the film reaction rate increases with increasing glutamate concentration, demonstrating its potential as a glutamate sensor material. In addition we have shown that the enzyme-doped sol-gel glass can be deposited onto the tip of an optical fiber. The fiber is active and responds to the presence of glutamate.

  2. Glutamate release from satellite glial cells of the murine trigeminal ganglion.

    PubMed

    Wagner, Lysann; Warwick, Rebekah A; Pannicke, Thomas; Reichenbach, Andreas; Grosche, Antje; Hanani, Menachem

    2014-08-22

    It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells. Extracellular glutamate was detected by microfluorimetry. After loading the cells with a photolabile Ca(2+) chelator, the intracellular Ca(2+) concentration was raised in SGCs by a UV pulse, which resulted in glutamate release. The amount of released glutamate was decreased in cells with suppressed exocytosis and after pharmacological block of hemichannels. The data demonstrate that SGCs of the trigeminal ganglion release glutamate in a Ca(2+)-dependent manner. PMID:24993296

  3. Effect of insulin on the compartmentation of glutamate for protein synthesis

    SciTech Connect

    Brown, A.B.; Mohan, C.; Bessman, S.P.

    1986-03-05

    The effect of insulin on the formation of CO/sub 2/ and incorporation of 1-/sup 14/C glutamine and U-/sup 14/C acetate into protein was studied in isolated rat hepatocytes. Insulin caused an 18% increase in /sup 14/CO/sub 2/ production from U-/sup 14/C acetate in comparison to a 10% increase from 1-/sup 14/C glutamate. Insulin caused a greater increase in the incorporation of tracer acetate carbons into hepatocyte protein. Hydrolysis of labeled protein and subsequent determination of glutamate specific activity revealed that incorporation of acetate carbons into protein as glutamate was about 52% greater in the presence of insulin. These results demonstrate the existence of two compartments of glutamate for protein synthesis: (i) glutamate generated in the Krebs cycle through transamination of a-ketoglutarate; (ii) cytosolic glutamate. Insulin had a greater stimulatory effect on the incorporation of glutamate generated in the Krebs cycle.

  4. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration. PMID:25701025

  5. Sodium-Dependent Glutamate Uptake by an Alkaliphilic, Thermophilic Bacillus Strain, TA2.A1

    PubMed Central

    Peddie, Catherine J.; Cook, Gregory M.; Morgan, Hugh W.

    1999-01-01

    A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70°C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (ΔpNa) across the cell membrane. N,N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (ΔΨ), but only when sodium was present. In the absence of sodium, the rate of ΔΨ-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of ΔpNa alone (i.e., no ΔΨ). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 μM, and the Vmax was 0.7 nmol · min−1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues. PMID:10322019

  6. 1,25-Dihydroxyvitamin D induces the glutamate transporter SLC1A1 and alters glutamate handling in non-transformed mammary cells.

    PubMed

    Beaudin, Sarah; Welsh, JoEllen

    2016-03-15

    Genomic profiling of immortalized human mammary epithelial (hTERT-HME1) cells identified several metabolic genes, including the membrane glutamate transporter, SLC1A1, as 1,25-dihydroxyvitamin D3 (1,25D) regulated. In these studies we have surveyed the effects of 1,25D on known glutamate transporters and evaluated its impact on cellular glutamate handling. We confirm that expression of SLC1A1 and all of its known transcript variants are significantly upregulated in hTERT-HME1 cells following 1,25D treatment. Expression of the full-length cognate protein, EAAT3, is correspondingly increased in 1,25D treated hTERT-HME1 cells. Under the same conditions, the expression of two other glutamate transporters--SLC1A6 (EAAT4) and SLC1A2 (EAAT2 or GLT-1)--is enhanced by 1,25D while that of SLC1A3 (EAAT1 or GLAST) and SLC7A11 (xCT) is decreased. Glutamate is not essential for growth of hTERT-HME1 cells, and supplemental glutamate (up to 0.5 mM) does not abrogate the growth inhibitory effects of 1,25D. These data suggest that extracellular glutamate is not a major contributor to cellular energy metabolism in hTERT-HME1 cells under basal conditions and that the growth inhibitory effects of 1,25D are not secondary to its effects on glutamate handling. Instead, the effects of 1,25D on glutamate transporters translated to a decrease in cellular glutamate concentration and an increase in media glutamate concentration, suggesting that one or more of these transporters functions to export glutamate in response to 1,25D exposure. The reduced cellular glutamate concentration may also reflect its incorporation into the cellular glutathione (GSH) pool, which is increased upon 1,25D treatment. In support of this concept, the expression of GCLC (which codes for the rate-limiting enzyme in GSH synthesis) and genes which generate reducing equivalents in the form of NADPH (ie, G6PD, PGD, IDH2) are elevated in 1,25D-treated cells. Taken together, these data identify 1,25D as a physiological

  7. High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells

    PubMed Central

    Thomas, Ajit G.; Sattler, Rita; Tendyke, Karen; Loiacono, Kara A.; Hansen, Hans; Sahni, Vishal; Hashizume, Yutaka; Rojas, Camilo; Slusher, Barbara S.

    2015-01-01

    The cystine-glutamate antiporter (system xc-) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc- expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc- in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc- is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc- inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc-. Human glioma cells were chosen based on their high system xc- activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of

  8. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  9. Functional Insights from Glutamate Receptor Ion Channel Structures

    PubMed Central

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  10. Synthesis of biobased succinonitrile from glutamic acid and glutamine.

    PubMed

    Lammens, Tijs M; Le Nôtre, Jérôme; Franssen, Maurice C R; Scott, Elinor L; Sanders, Johan P M

    2011-06-20

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermediate 3-cyanopropanoic amide was achieved from glutamic acid 5-methyl ester in an 86 mol% yield and from glutamine in a 56 mol % yield. 3-Cyanopropanoic acid can be converted into succinonitrile, with a selectivity close to 100% and a 62% conversion, by making use of a palladium(II)-catalyzed equilibrium reaction with acetonitrile. Thus, a new route to produce biobased 1,4-diaminobutane has been discovered. PMID:21557494

  11. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    PubMed

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut. PMID:25365864

  12. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  13. Glutamate modulators in the treatment of obsessive-compulsive disorder

    PubMed Central

    Pittenger, Christopher

    2015-01-01

    Established treatments for obsessive-compulsive disorder (OCD) are of benefit in approximately 3 of every 4 patients, but refractory disease remains distressingly common, and many treatment responders continue to experience considerable morbidity. This motivates a search for new insights into pathophysiology that may inform novel treatment strategies. Much recent work has focused on the neurotransmitter glutamate. Several lines of neurochemical and genetic evidence suggests that glutamate dysregulation may contribute to OCD, although much remains unclear. The off-label use of a number of pharmacological agents approved for other indications has been investigated in refractory OCD. We summarize investigations of memantine, riluzole, ketamine, D-cycloserine, glycine, N-acetylserine, topiramate, and lamotrigine. Evidence exists for benefit from each of these in some patients; though none has been proven effective with sufficient clarity to be considered part of standard care, these agents are options in individuals whose symptoms are refractory to better-established therapeutic strategies. PMID:26236057

  14. Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate

    PubMed Central

    Liu, Zhixiang; Zhou, Jingfeng; Li, Yi; Hu, Fei; Lu, Yao; Ma, Ming; Feng, Qiru; Zhang, Ju-en; Wang, Daqing; Zeng, Jiawei; Bao, Junhong; Kim, Ji-Young; Chen, Zhou-Feng; Mestikawy, Salah El; Luo, Minmin

    2015-01-01

    Summary The dorsal raphe nucleus (DRN) in the midbrain is a key center for serotonin (5-hydroxytryptamine; 5-HT) expressing neurons. Serotonergic neurons in the DRN have been theorized to encode punishment by opposing the reward signaling of dopamine neurons. Here, we show that DRN neurons encode reward, but not punishment, through 5-HT and glutamate. Optogenetic stimulation of DRN Pet-1 neurons reinforces mice to explore the stimulation-coupled spatial region, shifts sucrose preference, drives optical self-stimulation, and directs sensory discrimination learning. DRN Pet-1 neurons increase their firing activity during reward tasks and this activation can be used to rapidly change neuronal activity patterns in the cortnassociated with 5-HT, they also release glutamate, and both neurotransmitters contribute to reward signaling. These experiments demonstrate the ability of DRN neurons to organize reward behaviors and might provide insights into the underlying mechanisms of learning facilitation and anhedonia treatment. PMID:24656254

  15. Relevance of exocytotic glutamate release from retinal glia.

    PubMed

    Slezak, Michal; Grosche, Antje; Niemiec, Aurore; Tanimoto, Naoyuki; Pannicke, Thomas; Münch, Thomas A; Crocker, Britni; Isope, Philippe; Härtig, Wolfgang; Beck, Susanne C; Huber, Gesine; Ferracci, Geraldine; Perraut, Martine; Reber, Michael; Miehe, Monique; Demais, Valérie; Lévêque, Christian; Metzger, Daniel; Szklarczyk, Klaudia; Przewlocki, Ryszard; Seeliger, Mathias W; Sage-Ciocca, Dominique; Hirrlinger, Johannes; Reichenbach, Andreas; Reibel, Sophie; Pfrieger, Frank W

    2012-05-10

    Glial cells release molecules that influence brain development, function, and disease. Calcium-dependent exocytosis has been proposed as potential release mechanism in astroglia, but the physiological relevance of "gliotransmission" in vivo remains controversial. We focused on the impact of glial exocytosis on sensory transduction in the retina. To this end, we generated transgenic mice to block exocytosis by Cre recombinase-dependent expression of the clostridial botulinum neurotoxin serotype B light chain, which cleaves vesicle-associated membrane protein 1-3. Ubiquitous and neuronal toxin expression caused perinatal lethality and a reduction of synaptic transmission thus validating transgene function. Toxin expression in Müller cells inhibited vesicular glutamate release and impaired glial volume regulation but left retinal histology and visual processing unaffected. Our model to study gliotransmission in vivo reveals specific functions of exocytotic glutamate release in retinal glia. PMID:22578502

  16. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.

    PubMed

    Brown, Tashalee R; Krogh-Madsen, Trine; Christini, David J

    2016-08-23

    Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not

  17. Role of astrocytic glutamate transporter in alcohol use disorder

    PubMed Central

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-01-01

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD. PMID:27014596

  18. Role of astrocytic glutamate transporter in alcohol use disorder.

    PubMed

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-03-22

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD. PMID:27014596

  19. Metabotropic glutamate receptor regulation of neuronal cell death.

    PubMed

    Spillson, Alison Berent; Russell, James W

    2003-11-01

    The metabotropic glutamate receptors (mGluRs) are a family of glutamate-sensitive receptors that regulate neuronal function separately from the ionotropic glutamate receptors. By coupling to guanosine nucleotide-binding proteins (G proteins), mGluRs are able to regulate neuronal injury and survival, likely through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrial regulated programmed cell death (PCD). The physiological relevance of this system is supported by evidence that mGluRs are associated with cell survival in several central nervous system neurodegenerative diseases. Evidence is presented that mGluRs are also able to prevent PCD in the peripheral nervous system, and that this may provide a novel mechanism for treatment of diabetic neuropathy. In dorsal root ganglion (DRG) neurons, a high glucose load increases generation of reactive oxygen species (ROS), destabilizes the inner mitochondrial membrane potential (Deltapsi(M)), induces cytochrome c release from the mitochondrial intermembrane space, and induces downstream activation of caspases. In high-glucose conditions, the group II metabotropic glutamate agonist N-acetylaspartylglutamate (NAAG) blocks caspase activation and is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). Furthermore, the direct mGluR3 agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) prevents induction of ROS. Together these findings are consistent with an emerging concept that mGluRs may protect against cellular injury by regulating oxidative stress in the neuron. More complete understanding of the complex PCD regulatory pathways mediated by mGluRs will provide new therapeutic approaches for the treatment of a wide variety of neurodegenerative diseases. PMID:14597332

  20. Expression of glutamate carboxypeptidase II in human brain.

    PubMed

    Sácha, P; Zámecník, J; Barinka, C; Hlouchová, K; Vícha, A; Mlcochová, P; Hilgert, I; Eckschlager, T; Konvalinka, J

    2007-02-23

    Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein expressed in various tissues. When expressed in the brain it cleaves the neurotransmitter N-acetylaspartylglutamate (NAAG), yielding free glutamate. In jejunum it hydrolyzes folylpoly-gamma-glutamate, thus facilitating folate absorption. The prostate form of GCPII, known as prostate specific membrane antigen (PSMA), is an established cancer marker. The NAAG-hydrolyzing activity of GCPII has been implicated in a number of pathological conditions in which glutamate is neurotoxic (e.g. amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, epilepsy, schizophrenia, and stroke). Inhibition of GCPII was shown to be neuroprotective in tissue culture and in animal models. GCPII is therefore an interesting putative therapeutic target. However, only very limited and controversial data on the expression and localization of GCPII in human brain are available. Therefore, we set out to analyze the activity and expression of GCPII in various compartments of the human brain using a radiolabeled substrate of the enzyme and the novel monoclonal antibody GCP-04, which recognizes an epitope on the extracellular portion of the enzyme and is more sensitive to GCPII than to the homologous GCPIII. We show that this antibody is more sensitive in immunoblots than the widely used antibody 7E11. By Western blot, we show that there are approximately 50-300 ng of GCPII/mg of total protein in human brain, depending on the specific area. Immunohistochemical analysis revealed that astrocytes specifically express GCPII in all parts of the brain. GCPII is enzymatically active and the level of activity follows the expression pattern. Using pure recombinant GCPII and homologous GCPIII, we conclude that GCPII is responsible for the majority of overall NAAG-hydrolyzing activity in the human brain. PMID:17150306

  1. Beyond Dopamine: Glutamate as a Target for Future Antipsychotics

    PubMed Central

    Sendt, Kyra-Verena; Giaroli, Giovanni; Tracy, Derek K.

    2012-01-01

    The dopamine hypothesis of schizophrenia remains the primary theoretical framework for the pharmacological treatment of the disorder. Despite various lines of evidence of dopaminergic abnormalities and reasonable efficacy of current antipsychotic medication, a significant proportion of patients show suboptimal treatment responses, poor tolerability, and a subsequent lack of treatment concordance. In recent decades, intriguing evidence for the critical involvement of other neurotransmitter systems in the pathophysiology of schizophrenia has emerged, most notably of dysfunctions within the glutamate pathways. Consequently, the glutamate synapse has arisen as a promising target for urgently needed novel antipsychotic compounds—particularly in regards to debilitating negative and cognitive symptoms poorly controlled by currently available drugs. In this paper, recent findings integrating glutamatergic and dopaminergic abnormalities in schizophrenia and their implications for novel pharmacological targets are discussed. An overview of compounds in various stages of development is given: drugs enhancing NMDA receptor function as well as metabotropic glutamate receptor (mGluR) agonist and positive allosteric modulators (PAMs) are emphasised. Together with other agents more indirectly affecting glutamatergic neurotransmission, their potential future role in the pharmacotherapy of schizophrenia is critically evaluated. PMID:22830044

  2. Glutamate Receptor Homologs in Plants: Functions and Evolutionary Origins

    PubMed Central

    Price, Michelle Beth; Jelesko, John; Okumoto, Sakiko

    2012-01-01

    The plant glutamate-like receptor homologs (GLRs) are homologs of mammalian ionotropic glutamate receptors (iGluRs) which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs), which in turn will help understanding of the molecular mechanisms of plant GLR functions. In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenetic analysis using iGluRs from metazoans, plants, and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial iGluRs, indicating the separation of plant, other eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed. PMID:23115559

  3. Dysfunction of Glutamate Receptors in Microglia May Cause Neurodegeneration.

    PubMed

    Noda, Mami

    2016-01-01

    Dysregulation of glutamate signalling is important in Alzheimer's disease and other pathologies. There has been a focus on changes in neuronal glutamate signalling, but microglia also express glutamate receptors (GluRs), which are known to modulate their responses to neuropathology. Microglia express both metabotropic and ionotropic GluRs. Among ionotropic GluRs, microglial AMPA (α-amino-hydroxy-5-methyl-isoxazole-4-propionate)-type of GluRs (AMPA-Rs) are Ca2+ impermeable due to the expression of subunit GluA2. Upon activation of microglia, expression level of surface GluA2 subunits significantly increase, while expression of GluA1, A3 and A4 subunits on membrane surface significantly decrease. Owing to the GluA2 subunits-dominant composition, AMPA-Rs in activated microglia show little response to Glu. On the other hand, microglia lacking GluA2 show higher Ca(2+)-permeability, consequently inducing a significant increase in the release of the pro-inflammatory cytokine, such as TNF-α. It is suggested that membrane translocation of GluA2-containing AMPA-Rs in activated microglia has functional importance. Thus, dysfunction or decreased expression of GluA2 reported in patients with neurodegenerative diseases such as Alzheimer's and Creutzfeldt-Jakob disease may accelerate Glu neurotoxicity via excess release of proinflammatory cytokines from microglia, causing more neuronal death. PMID:26567741

  4. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    PubMed

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives. PMID:27455572

  5. Targeting glutamate uptake to treat alcohol use disorders

    PubMed Central

    Rao, P.S.S.; Bell, Richard L.; Engleman, Eric A.; Sari, Youssef

    2015-01-01

    Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence. PMID:25954150

  6. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    PubMed

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  7. Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

    PubMed Central

    Greenfield, Seymour; Claus, G. W.

    1969-01-01

    Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate. Images PMID:5361215

  8. Group III metabotropic glutamate receptors and drug addiction

    PubMed Central

    Mao, Limin; Guo, Minglei; Jin, Daozhong; Xue, Bing; Wang, John Q.

    2014-01-01

    Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates). PMID:24078068

  9. Group III metabotropic glutamate receptors and drug addiction.

    PubMed

    Mao, Limin; Guo, Minglei; Jin, Daozhong; Xue, Bing; Wang, John Q

    2013-12-01

    Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates). PMID:24078068

  10. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization.

    PubMed

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix

    2015-10-16

    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination. PMID:26414427

  11. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  12. Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids.

    PubMed

    Salminen, S O; Streeter, J G

    1987-02-01

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and supplied with 14C-labeled succinate, malate, aspartate, or glutamate for periods of up to 60 min in the presence of myoglobin to control the O2 concentration. Succinate and malate were absorbed about twice as rapidly as glutamate and aspartate. Conversion of substrate to CO2 was most rapid for malate, followed by succinate, glutamate, and aspartate. When CO2 production was expressed as a proportion of total carbon taken up, malate was still the most rapidly respired substrate, with 68% of the label absorbed converted to CO2. The comparable values for succinate, glutamate, and aspartate were 37, 50, and 38%, respectively. Considering the fate of labeled substrate not respired, greater than 95% of absorbed glutamate remained as glutamate in the bacteroids. In contrast, from 39 to 66% of the absorbed succinate, malate, or aspartate was converted to glutamate. An increase in the rate of CO2 formation from labeled substrates after 20 min appeared to coincide with a maximum accumulation of label in glutamate. The results indicate the presence of a substantial glutamate pool in bacteroids and the involvement of glutamate in the respiratory metabolism of bacteroids. PMID:2879829

  13. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  14. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  15. Magnetic Resonance Spectroscopy Studies of Glutamate-Related Abnormalities in Mood Disorders

    PubMed Central

    Yüksel, Cagri; Öngür, Dost

    2010-01-01

    In mood disorders there is growing evidence for glutamatergic abnormalities derived from peripheral measures of glutamatergic metabolites in patients, postmortem studies on glutamate related markers, and animal studies on the mechanism of action of available treatments. Magnetic resonance spectroscopy (MRS) has the potential to corroborate and extend these findings with the advantage of in vivo assessment of glutamate-related metabolites in different disease states, in response to treatment, and in relation with functional imaging data. In this article we first review the biological significance of glutamate, glutamine, and Glx (composed mainly of glutamate and glutamine). Next we review the MRS literature in mood disorders examining these glutamate-related metabolites. Here, we find a highly consistent pattern of Glx level reductions in major depressive disorder and elevations in bipolar disorder. In addition, studies of depression regardless of diagnosis provide suggestive evidence for reduced glutamine/glutamate ratio, and in mania for elevated glutamine/glutamate ratio. These patterns suggest that the glutamate-related metabolite pool (not all of it necessarily relevant to neurotransmission) is constricted in major depressive disorder and expanded in bipolar disorder. Depressive and manic episodes may be characterized by modulation of the glutamine/glutamate ratio in opposite directions, possibly suggesting reduced vs. elevated glutamate conversion to glutamine by glial cells, respectively. We discuss the implications of these results for the pathophysiology of mood disorders, and suggest future directions for MRS studies. PMID:20728076

  16. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  17. Effect of carnitine on muscular glutamate uptake and intramuscular glutathione in malignant diseases

    PubMed Central

    Breitkreutz, R; Babylon, A; Hack, V; Schuster, K; Tokus, M; Böhles, H; Hagmüller, E; Edler, L; Holm, E; Dröge, W

    2000-01-01

    Abnormally low intramuscular glutamate and glutathione (GSH) levels and/or a decreased muscular uptake of glutamate by the skeletal muscle tissue have previously been found in malignant diseases and simian immunodeficiency virus (SIV) infection and may contribute to the development of cachexia. We tested the hypothesis that an impaired mitochondrial energy metabolism may compromise the Na+-dependent glutamate transport. A randomized double-blind clinical trial was designed to study the effects of L -carnitine, i.e. an agent known to enhance mitochondrial integrity and function, on the glutamate transport and plasma glutamate level of cancer patients. The effect of carnitine on the intramuscular glutamate and GSH levels was examined in complementary experiments with tumour-bearing mice. In the mice, L -carnitine treatment ameliorated indeed the tumour-induced decrease in muscular glutamate and GSH levels and the increase in plasma glutamate levels. The carnitine-treated group in the randomized clinical study showed also a significant decrease in the plasma glutamate levels but only a moderate and statistically not significant increase in the relative glutamate uptake in the lower extremities. Further studies may be warranted to determine the effect of L -carnitine on the intramuscular GSH levels in cancer patients. © 2000 Cancer Research Campaign PMID:10646895

  18. The role of glutamate signaling in pain processes and its regulation by GCP II inhibition.

    PubMed

    Wozniak, K M; Rojas, C; Wu, Y; Slusher, B S

    2012-01-01

    Glutamate is the predominant excitatory neurotransmitter used by primary afferent synapses and neurons in the spinal cord dorsal horn. Glutamate and glutamate receptors are also located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Not surprisingly, glutamate receptors have been an attractive target for new pain therapies. However, their widespread distribution and array of function has often resulted in drugs targeting these sites having undesirable side-effects. This chapter will review, in general terms, the current knowledge of glutamate and its effects at various glutamate receptors with regards to nociception. In addition, we will briefly review the glutamatergic drugs currently in use as treatments for pain, as well as known novel candidates in various stages of clinical trial. Lastly, we will summarize the data supporting a novel target for pain intervention by way of GCPII inhibition, which appears devoid of the side-effects associated with direct glutamate receptor antagonists and thus holds major promise for future therapy. GCPII (glutamate carboxypeptidase II) cleaves the prevalent neuropeptide NAAG into NAA and glutamate and there is widespread evidence and belief that targeting the glutamate derived from this enzymatic action may be a promising therapeutic route. PMID:22304711

  19. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  20. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications.

    PubMed

    Kanai, Yoshikatsu; Hediger, Matthias A

    2003-10-31

    The solute carrier family 1 (SLC1) is composed of five high affinity glutamate transporters, which exhibit the properties of the previously described system XAG-, as well as two Na+-dependent neutral amino acid transporters with characteristics of the so-called "ASC" (alanine, serine and cysteine). The SLC1 family members are structurally similar, with almost identical hydropathy profiles and predicted membrane topologies. The transporters have eight transmembrane domains and a structure reminiscent of a pore loop between the seventh and eighth domains [Neuron 21 (1998) 623]. However, each of these transporters exhibits distinct functional properties. Glutamate transporters mediate transport of L-Glu, L-Asp and D-Asp, accompanied by the cotransport of 3 Na+ and one 1 H+, and the countertransport of 1 K+, whereas ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. Given the high concentrating capacity provided by the unique ion coupling pattern of glutamate transporters, they play crucial roles in protecting neurons against glutamate excitotoxicity in the central nervous system (CNS). The regulation and manipulation of their function is a critical issue in the pathogenesis and treatment of CNS disorders involving glutamate excitotoxicity. Loss of function of the glial glutamate transporter GLT1 (SLC1A2) has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), resulting in damage of adjacent motor neurons. The importance of glial glutamate transporters in protecting neurons from extracellular glutamate was further demonstrated in studies of the slc1A2 glutamate transporter knockout mouse. The findings suggest that therapeutic upregulation of GLT1 may be beneficial in a variety of pathological conditions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) but not the glial glutamate transporters may be of therapeutic interest, allowing blockage of glutamate exit from

  1. Evidence for Astrocytes as a Potential Source of the Glutamate Excess in Temporal Lobe Epilepsy

    PubMed Central

    Perez, Edgar L; Lauritzen, Fredrik; Wang, Yue; Lee, Tih-Shih W; Kang, Dewey; Zaveri, Hitten P; Chaudhry, Farrukh A; Ottersen, Ole P; Bergersen, Linda H; Eid, Tore

    2012-01-01

    Increased extracellular brain glutamate has been implicated in the pathophysiology of human refractory temporal lobe epilepsy (TLE), but the cause of the excessive glutamate is unknown. Prior studies by us and others have shown that the glutamate degrading enzyme glutamine synthetase (GS) is deficient in astrocytes in the epileptogenic hippocampal formation in a subset of patients with TLE. We have postulated that the loss of GS in TLE leads to increased glutamate in astrocytes with elevated concentrations of extracellular glutamate and recurrent seizures as the ultimate end-points. Here we test the hypothesis that the deficiency in GS leads to increased glutamate in astrocytes. Rats were chronically infused with methionine sulfoximine (MSO, n=4) into the hippocampal formation to induce GS-deficiency and recurrent seizures. A separate group of rats was infused with 0.9% NaCl (saline) as a control (n=6). At least 10 days after the start of infusion, once recurrent seizures were established in the MSO-treated rats, the concentration of glutamate was assessed in CA1 of the hippocampal formation by immunogold electron microscopy. The concentration of glutamate was 47% higher in astrocytes in the MSO-treated vs. saline-treated rats (p=0.02), and the ratio of glutamate in astrocytes relative to axon terminals was increased by 74% in the MSO-treated rats (p=0.003). These data support our hypothesis that a deficiency in GS leads to increased glutamate in astrocytes. We additionally propose that the GS-deficient astrocytes in the hippocampal formation in TLE lead to elevated extracellular brain glutamate either through decreased clearance of extracellular glutamate or excessive release of glutamate into the extracellular space from these cells, or a combination of the two. PMID:22659305

  2. Serum Glutamate Levels Correlate with Gleason Score and Glutamate Blockade Decreases Proliferation, Migration, and Invasion and Induces Apoptosis in Prostate Cancer Cells

    PubMed Central

    Koochekpour, Shahriar; Majumdar, Sunipa; Azabdaftari, Gissou; Attwood, Kristopher; Scioneaux, Ray; Subramani, Dhatchayini; Manhardt, Charles; Lorusso, Giovanni D.; Willard, Stacey S.; Thompson, Hillary; Shourideh, Mojgan; Rezaei, Katayoon; Sartor, Oliver; Mohler, James L.; Vessella, Robert L.

    2012-01-01

    Purpose During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer (PCa) or metastatic castrate-resistant PCa (mCRPCa) to establish clinical relevance. The effect of glutamate-deprivation or blockade by metabotropic glutamate receptor 1 (GRM1)-antagonists was investigated on PCa cells’ growth, migration, and invasion to establish biological relevance. Experimental Design Serum glutamate levels were measured in normal men (n = 60) and patients with primary PCa (n = 197) or mCRPCa (n = 109). GRM1 expression in prostatic tissues was examined using immunohistochemistry (IHC). Cell growth, migration, and invasion were determined using cell cytotoxicity and modified Boyden chamber assays, respectively. Apoptosis was detected using immunoblotting against cleaved caspases, PARP and γ-H2AX. Results Univariate and multivariate analyses demonstrated significantly higher serum glutamate levels in Gleason score ≥ 8 than in the Gleason sscore ≤ 7 and in African Americans than in the Caucasian Americans. African Americans with mCRPCa significantly higher serum glutamate levels than those with primary PCa or benign prostate. However, in Caucasian Americans, serum glutamate levels were similar in normal research subjects and patients with mCRPC. IHC demonstrated weak or no expression of GRM1 in luminal acinar epithelial cells of normal or hyperplastic glands, but high expression in primary or metastatic PCa tissues. Glutamate deprivation or blockade decreased PCa cells’ proliferation, migration, and invasion and led to apoptotic cell death. Conclusions Glutamate expression is mechanistically associated with and may provide a biomarker of PCa aggressiveness. PMID:23072969

  3. Glutamate Synthase: Properties of the Reduced Nicotinamide Adenine Dinucleotide-Dependent Enzyme from Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.; Larimore, Fred

    1974-01-01

    A reduced nicotinamide adenine dinucleotide (NADH)-dependent glutamate synthase has been detected and partially purified from crude extracts of Saccharomyces cerevisiae. The enzyme is specific for NADH, glutamine, and α-ketoglutarate (Km values of 2.6 μM, 1.0 mM, and 140 μM, respectively) and has a pH optimum between 7.1 and 7.7. The stoichiometry of the reaction has been determined as 2 mol of glutamate synthesized per mol of glutamine consumed. Glutamate synthase can be distinguished from either of the glutamate dehydrogenases of yeast on the basis of its substrate requirements and behavior during agarose gel and ion exchange chromatography. Variations in the specific activity of glutamate synthase, which occur in response to changes in the growth medium, are similar in character to those observed with the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase. PMID:4362465

  4. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3.

    PubMed

    Seal, Rebecca P; Akil, Omar; Yi, Eunyoung; Weber, Christopher M; Grant, Lisa; Yoo, Jong; Clause, Amanda; Kandler, Karl; Noebels, Jeffrey L; Glowatzki, Elisabeth; Lustig, Lawrence R; Edwards, Robert H

    2008-01-24

    The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. The early degeneration of some cochlear ganglion neurons in knockout mice also indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little change in ongoing motor behavior. The glutamate release conferred by expression of VGLUT3 thus has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability. PMID:18215623

  5. Serotonin impairs copulation and attenuates ejaculation-induced glutamate activity in the medial preoptic area.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2010-08-01

    The medial preoptic area (MPOA) is critical for male sexual behavior. Glutamate is released in the MPOA of male rats during copulation, and increasing glutamate levels by reverse dialysis of glutamate uptake inhibitors facilitates mating. Conversely, increased release of serotonin (5-HT) inhibits sexual behavior. In both rats and men, selective serotonin reuptake inhibitors (SSRIs) impair erection, ejaculation, and libido. Here we reverse-dialyzed 5-HT through concentric microdialysis probes in the MPOA of male rats; concurrently we collected 2-min samples for analysis of glutamate and measured sexual behavior. Sexual activity, and especially ejaculation, increased levels of glutamate in the MPOA. However, reverse dialysis of 5-HT into the MPOA impaired ejaculatory ability and attenuated glutamate release. Implications of these results for impairment of sexual behavior that results from administration of SSRIs are discussed. PMID:20695654

  6. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression.

    PubMed

    Hunsberger, Holly C; Weitzner, Daniel S; Rudy, Carolyn C; Hickman, James E; Libell, Eric M; Speer, Rebecca R; Gerhardt, Greg A; Reed, Miranda N

    2015-10-01

    Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD. PMID:26146790

  7. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors

    NASA Astrophysics Data System (ADS)

    Okumoto, Sakiko; Looger, Loren L.; Micheva, Kristina D.; Reimer, Richard J.; Smith, Stephen J.; Frommer, Wolf B.

    2005-06-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian brain. Once released, its rapid removal from the synaptic cleft is critical for preventing excitotoxicity and spillover to neighboring synapses. Despite consensus on the role of glutamate in normal and disease physiology, technical issues limit our understanding of its metabolism in intact cells. To monitor glutamate levels inside and at the surface of living cells, genetically encoded nanosensors were developed. The fluorescent indicator protein for glutamate (FLIPE) consists of the glutamate/aspartate binding protein ybeJ from Escherichia coli fused to two variants of the green fluorescent protein. Three sensors with lower affinities for glutamate were created by mutation of residues peristeric to the ybeJ binding pocket. In the presence of ligands, FLIPEs show a concentration-dependent decrease in FRET efficiency. When expressed on the surface of rat hippocampal neurons or PC12 cells, the sensors respond to extracellular glutamate with a reversible concentration-dependent decrease in FRET efficiency. Depolarization of neurons leads to a reduction in FRET efficiency corresponding to 300 nM glutamate at the cell surface. No change in FRET was observed when cells expressing sensors in the cytosol were superfused with up to 20 mM glutamate, consistent with a minimal contribution of glutamate uptake to cytosolic glutamate levels. The results demonstrate that FLIPE sensors can be used for real-time monitoring of glutamate metabolism in living cells, in tissues, or in intact organisms, providing tools for studying metabolism or for drug discovery. aspartate | hippocampal neuron | neurotransmitter | secretion | transport

  8. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review.

    PubMed

    Sharma, Amod

    2015-01-01

    Animal studies suggest that chronic monosodium glutamate (MSG) intake induces kidney damage by oxidative stress. However, the underlying mechanisms are still unclear, despite the growing evidence and consensus that α-ketoglutarate dehydrogenase, glutamate receptors and cystine-glutamate antiporter play an important role in up-regulation of oxidative stress in MSG-induced renal toxicity. This review summaries evidence from studies into MSG-induced renal oxidative damage, possible mechanisms and their importance from a toxicological viewpoint. PMID:26493866

  9. Magnesium Sulfate Protects Against the Bioenergetic Consequences of Chronic Glutamate Receptor Stimulation

    PubMed Central

    Clerc, Pascaline; Young, Christina A.; Bordt, Evan A.; Grigore, Alina M.; Fiskum, Gary; Polster, Brian M.

    2013-01-01

    Extracellular glutamate is elevated following brain ischemia or trauma and contributes to neuronal injury. We tested the hypothesis that magnesium sulfate (MgSO4, 3 mM) protects against metabolic failure caused by excitotoxic glutamate exposure. Rat cortical neuron preparations treated in medium already containing a physiological concentration of Mg2+ (1 mM) could be segregated based on their response to glutamate (100 µM). Type I preparations responded with a decrease or small transient increase in oxygen consumption rate (OCR). Type II neurons responded with >50% stimulation in OCR, indicating a robust response to increased energy demand without immediate toxicity. Pre-treatment with MgSO4 improved the initial bioenergetic response to glutamate and ameliorated subsequent loss of spare respiratory capacity, measured following addition of the uncoupler FCCP, in Type I but not Type II neurons. Spare respiratory capacity in Type I neurons was also improved by incubation with MgSO4 or NMDA receptor antagonist MK801 in the absence of glutamate treatment. This finding indicates that the major difference between Type I and Type II preparations is the amount of endogenous glutamate receptor activity. Incubation of Type II neurons with 5 µM glutamate prior to excitotoxic (100 µM) glutamate exposure recapitulated a Type I phenotype. MgSO4 protected against an excitotoxic glutamate-induced drop in neuronal ATP both with and without prior 5 µM glutamate exposure. Results indicate that MgSO4 protects against chronic moderate glutamate receptor stimulation and preserves cellular ATP following treatment with excitotoxic glutamate. PMID:24236167

  10. Role of nitric oxide and cyclic GMP in glutamate-induced neuronal death.

    PubMed

    Montoliu, C; Llansola, M; Monfort, P; Corbalan, R; Fernandez-Marticorena, I; Hernandez-Viadel, M L; Felipo, V

    2001-04-01

    Glutamate is the main excitatory neurotransmitter in mammals. However, excessive activation of glutamate receptors is neurotoxic, leading to neuronal degeneration and death. In many systems, including primary cultures of cerebellar neurons, glutamate neurotoxicity is mainly mediated by excessive activation of NMDA receptors, leading to increased intracellular calcium which binds to calmodulin and activates neuronal nitric oxide synthase (NOS), increasing nitric oxide (NO) which in turn activates guanylate cyclase and increases cGMP. Inhibition of NOS prevents glutamate neurotoxicity, indicating that NO mediates glutamate-induced neuronal death in this system. NO generating agents such as SNAP also induce neuronal death. Compounds that can act as "scavengers" of NO such as Croman 6 (CR-6) prevent glutamate neurotoxicity. The role of cGMP in the mediation of glutamate neurotoxicity remains controversial. Some reports indicate that cGMP mediates glutamate neurotoxicity while others indicate that cGMP is neuroprotective. We have studied the role of cGMP in the mediation of glutamate and NO neurotoxicity in cerebellar neurons. Inhibition of soluble guanylate cyclase prevents glutamate and NO neurotoxicity. There is a good correlation between inhibition of cGMP formation and neuroprotection. Moreover 8-Br-cGMP, a cell permeable analog of cGMP, induced neuronal death. These results indicate that increased intracellular cGMP is involved in the mechanism of neurotoxicity. Inhibitors of phosphodiesterase increased extracellular but not intracellular cGMP and prevented glutamate neurotoxicity. Addition of cGMP to the medium also prevented glutamate neurotoxicity. These results are compatible with a neurotoxic effect of increased intracellular cGMP and a neuroprotective effect of increased extracellular cGMP. PMID:14715472

  11. Mechanisms for maintaining extracellular glutamate levels in the anoxic turtle striatum.

    PubMed

    Milton, Sarah L; Thompson, John W; Lutz, Peter L

    2002-05-01

    The turtle Trachemys scripta is one of a limited group of vertebrates that can withstand hours to days without oxygen. One facet of anoxic survival is the turtle's ability to maintain basal extracellular glutamate levels, whereas in most vertebrates, anoxia triggers massive excitotoxic glutamate release. We investigated glutamate release and reuptake in the anoxic turtle and the effects of adenosine and ATP-sensitive potassium (K(ATP)) channels on glutamate homeostasis. Striatal extracellular glutamate was measured in anesthetized T. scripta by microdialysis in normoxia and over 2-h anoxia. Glutamate release is decreased by 44% in the early anoxic turtle; this anoxia-induced decrease in glutamate release was prevented when K(ATP) channels and adenosine receptors were blocked simultaneously but not when either mechanism was blocked individually. We hypothesize that the continued release and reuptake of glutamate during anoxia help maintain neuronal tone and aid in the recovery of a functional neuronal network after long periods of anoxia, whereas activation of adenosine and/or K(ATP) conserves energy by reducing glutamate release and lowering transport costs. PMID:11959671

  12. On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust.

    PubMed Central

    Morosova, K I; Aronova, G V; Katsnelson, B A; Velichkovski, B T; Genkin, A M; Elnichnykh, L N; Privalova, L I

    1982-01-01

    The cytotoxic action of quartz (DQ12) particles on cultures of rat peritoneal macrophages, as estimated by the inhibition of the TTC-reductase activity, is considerably reduced by preincubation with glutamic acid and by adding sodium glutamate (15 mg/ml) to the drinking water of the rats donating the macrophages. This increase in macrophage resistance under the influence of glutamate is the most probable cause of the delay in the development of silicotic fibrosis shown in several experiments on rats intratracheally injected with quartz and then treated by prolonged administration of glutamate. This effect is probably connected with the influence of glutamate on the stability of the macrophage membranes, which can in its turn be explained by different mechanisms, including the influence on the synthesis and phosphorylation of adenosine nucleotides. Such an influence was shown in rats receiving glutamate by the change of the ATP/ADP ratio in macrophages, but not in erythrocytes. The resistance of rat erythrocytes to the haemolytic action of quartz is also not influenced by the action of glutamate neither in vitro nor in vivo. Such differences in the influences of glutamate on two types of cells, equally susceptible to quartz cytotoxicity but considerably differing in the character of energy metabolism, is an indirect proof of the role of the latter in the realisation of the anticytotoxic, and thereby antifibrogenic, effect of glutamate. PMID:6124270

  13. Relationship between Zinc (Zn2+) and Glutamate Receptors in the Processes Underlying Neurodegeneration

    PubMed Central

    Pochwat, Bartłomiej; Nowak, Gabriel; Szewczyk, Bernadeta

    2015-01-01

    The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimer's, Huntington's, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn2+ is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn2+ dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn2+ regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn2+ and glutamate dependent signaling pathways under selected pathological central nervous system (CNS) conditions. PMID:26106488

  14. Importance of glutamate-generating metabolic pathways for memory consolidation in chicks.

    PubMed

    Gibbs, Marie E; Hertz, Leif

    2005-07-15

    Glutamatergic and noradrenergic stimulation is essential for formation of memory of single-trial discriminative avoidance of colored beads in the 1-day-old chick. Transmitter glutamate is released soon after training and again before memory consolidation 30 min after training. Memory consolidation is abolished by posttraining injection of iodoacetate, which inhibits glycolysis and thus not only energy metabolism but also pyruvate carboxylase-dependent glucose conversion to glutamate, needed for consolidation; a similar effect is evoked by the antagonists propranolol acting at beta(2)-adrenoceptors or SR59230A acting at beta(3)-adrenoceptors. This paper shows that the effect of these inhibitors can be overcome by central injection of glutamine, providing an alternate source of transmitter glutamate and compensating for the inhibition of glycolysis by iodoacetate or the blockade of adrenergic stimulation of glycogenolysis by propranolol or of glucose uptake by SR59230A. Conversely, inhibition of memory consolidation by methionine sulfoximine (MSO), an inhibitor of glutamine synthetase and thus of the glutamate-glutamine cycle, essential for neuronal reaccumulation of previously released transmitter glutamate, could be challenged by noradrenaline, stimulating glucose uptake and glycogenolysis and providing glutamate synthesis from glucose to compensate for the lack of return of previously released glutamate. Also, administration of either glutamine or noradrenaline could prevent the spontaneous decay of labile memory 30 min after training on a weakened stimulus, suggesting that direct supply of glutamate from glucose may secure sufficient supplies of transmitter glutamate for release prior to memory consolidation at 30 min. PMID:15929064

  15. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    PubMed

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. PMID:27184733

  16. Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation

    NASA Astrophysics Data System (ADS)

    Agnesi, Filippo; Blaha, Charles D.; Lin, Jessica; Lee, Kendall H.

    2010-04-01

    Thalamic deep brain stimulation (DBS) is proven therapy for essential tremor, Parkinson's disease and Tourette's syndrome. We tested the hypothesis that high-frequency electrical stimulation results in local thalamic glutamate release. Enzyme-linked glutamate amperometric biosensors were implanted in anesthetized rat thalamus adjacent to the stimulating electrode. Electrical stimulation was delivered to investigate the effect of frequency, pulse width, voltage-controlled or current-controlled stimulation, and charge balancing. Monophasic electrical stimulation-induced glutamate release was linearly dependent on stimulation frequency, intensity and pulse width. Prolonged stimulation evoked glutamate release to a plateau that subsequently decayed back to baseline after stimulation. Glutamate release was less pronounced with voltage-controlled stimulation and not present with charge balanced current-controlled stimulation. Using fixed potential amperometry in combination with a glutamate bioprobe and adjacent microstimulating electrode, the present study has shown that monophasic current-controlled stimulation of the thalamus in the anesthetized rat evoked linear increases in local extracellular glutamate concentrations that were dependent on stimulation duration, frequency, intensity and pulse width. However, the efficacy of monophasic voltage-controlled stimulation, in terms of evoking glutamate release in the thalamus, was substantially lower compared to monophasic current-controlled stimulation and entirely absent with biphasic (charge balanced) current-controlled stimulation. It remains to be determined whether similar glutamate release occurs with human DBS electrodes and similar charge balanced stimulation. As such, the present results indicate the importance of evaluating local neurotransmitter dynamics in studying the mechanism of action of DBS.

  17. Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat.

    PubMed

    Carozzi, Valentina A; Chiorazzi, Alessia; Canta, Annalisa; Lapidus, Rena G; Slusher, Barbara S; Wozniak, Krystyna M; Cavaletti, Guido

    2010-05-01

    Chemotherapy is the most common method to treat cancer. The use of certain antineoplastic drugs, however, is associated with the development of peripheral neuropathy that can be dose-limiting. Excitotoxic glutamate release, leading to excessive glutamatergic neurotransmission and activation of N-methyl-D-aspartate (NMDA) receptors, is associated with neuronal damage and death in several nervous system disorders. N-Acetyl-aspartyl-glutamate (NAAG) is an abundant neuropeptide widely distributed in the central and peripheral nervous system which is physiologically hydrolyzed by the enzyme glutamate carboxypeptidase into N-Acetyl-aspartyl (NAA) and glutamate. Pharmacological inhibition of glutamate carboxypeptidase results in decreased glutamate and increased endogenous NAAG and has been shown to provide neuroprotection in several preclinical models. Here, we report the neuroprotective effect of an orally available glutamate carboxypeptidase inhibitor on three well-established animal models of chemotherapy (cisplatin, paclitaxel, bortezomib)-induced peripheral neuropathy. In all cases, glutamate carboxypeptidase inhibition significantly improved the chemotherapy-induced nerve conduction velocity deficits. In addition, morphological and morphometrical alterations induced by cisplatin and bortezomib in dorsal root ganglia (DRG) were improved by glutamate carboxypeptidase inhibition. Our data support a novel approach for the treatment of chemotherapy-induced peripheral neuropathy. PMID:19763734

  18. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels

    PubMed Central

    Lynagh, Timothy; Beech, Robin N.; Lalande, Maryline J.; Keller, Kevin; Cromer, Brett A.; Wolstenholme, Adrian J.; Laube, Bodo

    2015-01-01

    Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling. PMID:25708000

  19. Resting Glutamate Levels and Rapid Glutamate Transients in the Prefrontal Cortex of the Flinders Sensitive Line Rat: A Genetic Rodent Model of Depression

    PubMed Central

    Hascup, Kevin N; Hascup, Erin R; Stephens, Michelle L; Glaser, Paul EA; Yoshitake, Takashi; Mathé, Aleksander A; Gerhardt, Greg A; Kehr, Jan

    2011-01-01

    Despite the numerous drugs targeting biogenic amines for major depressive disorder (depression), the search for novel therapeutics continues because of their poor response rates (∼30%) and slow onset of action (2–4 weeks). To better understand role of glutamate in depression, we used an enzyme-based microelectrode array (MEA) that was selective for glutamate measures with fast temporal (2 Hz) and high spatial (15 × 333 μm) resolution. These MEAs were chronically implanted into the prefrontal cortex of 3- to 6-month-old and 12- to 15-month-old Flinders Sensitive Line (FSL) and control Flinders Resistant Line (FRL) rats, a validated genetic rodent model of depression. Although no changes in glutamate dynamics were observed between 3 and 6 months FRL and FSL rats, a significant increase in resting glutamate levels was observed in the 12- to 15-month-old FSL rats compared with the 3- to 6-month-old FSL and age-matched FRL rats on days 3–5 post-implantation. Our MEA also recorded, for the first time, a unique phenomenon in all the four rat groups of fluctuations in resting glutamate, which we have termed glutamate transients. Although these events lasted only for seconds, they did occur throughout the testing paradigm. The average concentration of these glutamate-burst events was significantly increased in the 12- to 15-month-old FSL rats compared with 3- to 6-month-old FSL and age-matched FRL rats. These studies lay the foundation for future studies of both tonic and phasic glutamate signaling in rat models of depression to better understand the potential role of glutamate signaling in depression. PMID:21525860

  20. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  1. SYNAPTIC VESICLE PROTEIN TRAFFICKING AT THE GLUTAMATE SYNAPSE

    PubMed Central

    Santos, Magda S.; Li, Haiyan; Voglmaier, Susan M.

    2009-01-01

    Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle

  2. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27132995

  3. Possible significance of adverse reactions to glutamate in humans.

    PubMed

    Reif-Lehrer, L

    1976-09-01

    Of those exposed to Chinese restaurant food, our studies indicate that 25% report adverse reactions (Chinese restaurant syndrome (CRS)), presumably to the mono-sodium glutamate (MSG) content. The possible significance of the symptoms is discussed in the light of the known neuroexcitatory activity of MSG. It is suggested that CRS may result from a "benign" inborn "error" of metabolism that is deserving of further study, particularly in individuals with certain other metabolic abnormalities or who are on certain types of drug therapy. PMID:782921

  4. High throughput assay of diffusion through Cx43 gap junction channels with a microfluidic chip.

    PubMed

    Bathany, Cédric; Beahm, Derek; Felske, James D; Sachs, Frederick; Hua, Susan Z

    2011-02-01

    This paper describes a microfluidic-based assay capable of measuring gap-junction mediated dye diffusion in cultured cells. The technique exploits multistream laminar flow to selectively expose cells to different environments, enabling continuous loading of cells in one compartment while monitoring, in real time, dye diffusion into cells of a neighboring compartment. A simple one-dimensional diffusion model fit to the data extracted the diffusion coefficient of four different dyes, 5-(6)-carboxyfluorescein, 5-chloromethylfluorescein, Oregon green 488 carboxylic acid, and calcein. Different inhibitors were assayed for their ability to reduce dye coupling. The chip can screen multiple inhibitors in parallel in the same cell preparation, demonstrating its potential for high throughput. The technique provides a convenient method to measure gap junction mediated diffusion and a screen for drugs that affect gap junction communication. PMID:21182279

  5. Genetic insights into migraine and glutamate: a protagonist driving the headache.

    PubMed

    Gasparini, Claudia F; Smith, Robert A; Griffiths, Lyn R

    2016-08-15

    Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the developed world with a prevalence of 12% in the Caucasian population. Genetic and pharmacological studies have implicated the glutamate pathway in migraine pathophysiology. Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of neuropsychiatric conditions and thus remains a "hot" target for drug discovery. Glutamate has been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine with aura and in animal models carrying FHM mutations. Genotyping case-control studies have shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with migraine with indirect supporting evidence from GWAS. New evidence localizes PRRT2 at glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity via interactions with GRIA1. Glutamate-system defects have also been recently implicated in a novel FHM2 ATP1A2 disease-mutation mouse model. Adding to the growing evidence neurophysiological findings support a role for glutamate in cortical excitability. In addition to the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic neurons, glutamate receptor diversity and regulation is further increased by the post-translational mechanisms of RNA editing and miRNAs. Ongoing genetic studies, GWAS and meta-analysis implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated locus for migraine on chromosome X. Finally, in addition to glutamate modulating therapies, the kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology. In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility. PMID:27423601

  6. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study.

    PubMed

    Kritis, Aristeidis A; Stamoula, Eleni G; Paniskaki, Krystallenia A; Vavilis, Theofanis D

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca(2+) levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione's reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  7. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  8. Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

    PubMed Central

    Kritis, Aristeidis A.; Stamoula, Eleni G.; Paniskaki, Krystallenia A.; Vavilis, Theofanis D.

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  9. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes.

    PubMed

    Innocenti, B; Parpura, V; Haydon, P G

    2000-03-01

    A growing body of evidence proposes that glial cells have the potential to play a role as modulators of neuronal activity and synaptic transmission by releasing the neurotransmitter glutamate (Arague et al., 1999). We explore the spatial nature of glutamate release from astrocytes with an enzyme-linked assay system and CCD imaging technology. In the presence of glutamate, L-glutamic dehydrogenase (GDH) reduces NAD(+) to NADH, a product that fluoresces when excited with UV light. Theoretically, provided that GDH and NAD(+) are present in the bathing saline, the release of glutamate from stimulated astrocytes can be optically detected by monitoring the accumulation of NADH. Indeed, stimuli that induce a wave of elevated calcium among astrocytes produced a corresponding spread of extracellular NADH fluorescence. Treatment of cultures either with thapsigargin, to deplete internal calcium stores, or with the membrane-permeant calcium chelator BAPTA AM significantly decreased the accumulation of NADH, demonstrating that this fluorometric assay effectively monitors calcium-dependent glutamate release. With a temporal resolution of 500 msec and spatial resolution of approximately 20 micrometer, discrete regions of glutamate release were not reliably resolved. The wave of glutamate release that underlies the NADH fluorescence propagated at an average speed of approximately 26 micrometer/sec, correlating with the rate of calcium wave progression (10-30 micrometer/sec), and caused a localized accumulation of glutamate in the range of 1-100 microM. Further analysis of the fluorescence accumulation clearly demonstrated that glutamate is released in a regenerative manner, with subsequent cells that are involved in the calcium wave releasing additional glutamate. PMID:10684881

  10. Biochemical and spectroscopic properties of Brucella microti glutamate decarboxylase, a key component of the glutamate-dependent acid resistance system

    PubMed Central

    Grassini, Gaia; Pennacchietti, Eugenia; Cappadocio, Francesca; Occhialini, Alessandra; De Biase, Daniela

    2015-01-01

    In orally acquired bacteria, the ability to counteract extreme acid stress (pH ⩽ 2.5) ensures survival during transit through the animal host stomach. In several neutralophilic bacteria, the glutamate-dependent acid resistance system (GDAR) is the most efficient molecular system in conferring protection from acid stress. In Escherichia coli its structural components are either of the two glutamate decarboxylase isoforms (GadA, GadB) and the antiporter, GadC, which imports glutamate and exports γ-aminobutyrate, the decarboxylation product. The system works by consuming protons intracellularly, as part of the decarboxylation reaction, and exporting positive charges via the antiporter. Herein, biochemical and spectroscopic properties of GadB from Brucella microti (BmGadB), a Brucella species which possesses GDAR, are described. B. microti belongs to a group of lately described and atypical brucellae that possess functional gadB and gadC genes, unlike the most well-known “classical” Brucella species, which include important human pathogens. BmGadB is hexameric at acidic pH. The pH-dependent spectroscopic properties and activity profile, combined with in silico sequence comparison with E. coli GadB (EcGadB), suggest that BmGadB has the necessary structural requirements for the binding of activating chloride ions at acidic pH and for the closure of its active site at neutral pH. On the contrary, cellular localization analysis, corroborated by sequence inspection, suggests that BmGadB does not undergo membrane recruitment at acidic pH, which was observed in EcGadB. The comparison of GadB from evolutionary distant microorganisms suggests that for this enzyme to be functional in GDAR some structural features must be preserved. PMID:25853037

  11. Glutamate Oxaloacetate Transaminase in Pea Root Nodules 1

    PubMed Central

    Appels, Michiel A.; Haaker, Huub

    1991-01-01

    Glutamate oxaloacetate transaminase (l-glutamate: oxaloacetate aminotransferase, EC 2.6.1.1 [GOT]), a key enzyme in the flow of carbon between the organic acid and amino acid pools in pea (Pisum sativum L.) root nodules, was studied. By ion exchange chromatography, the presence of two forms of GOT in the cytoplasm of pea root nodule cells was established. The major root nodule form was present in only a small quantity in the cytoplasm of root cells. Fractionation of root nodule cell extracts demonstrated that the increase in the GOT activity during nodule development was due to the increase of the activity in the cytoplasm of the plant cells, and not to an increase in activity in the plastids or in the mitochondria. The kinetic properties of the different cytoplasmic forms of GOT were studied. Some of the Km values differed, but calculations indicated that not the kinetic properties but a high concentration of the major root nodule form caused the observed increase in GOT activity in the pea root nodules. It was found that the reactions of the malate/aspartate shuttle are catalyzed by intact bacteroids, and that these reactions can support nitrogen fixation. It is proposed that the main function of the nodule-stimulated cytoplasmic form of GOT is participation in this shuttle. PMID:16668048

  12. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. PMID:26574908

  13. Structural mechanism of glutamate receptor activation and desensitization.

    PubMed

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  14. Abnormal glutamate release in aged BTBR mouse model of autism

    PubMed Central

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality. PMID:26617779

  15. Metabotropic Glutamate Receptor Dependent Cortical Plasticity in Chronic Pain.

    PubMed

    Koga, Kohei; Li, Shermaine; Zhuo, Min

    2016-01-01

    Many cortical areas play crucial roles in higher order brain functions such as pain and emotion-processing, decision-making, and cognition. Among them, anterior cingulate cortex (ACC) and insular cortex (IC) are two key areas. Glutamate mediates major excitatory transmission during long-term plasticity in both physiological and pathological conditions. Specifically related to nociceptive or pain behaviors, metabotropic glutamate subtype receptors (mGluRs) have been involved in different types of synaptic modulation and plasticity from periphery to the spinal cord. However, less is known about their functional roles in plasticity related to pain and its related behaviors within cortical regions. In this review, we first summarized previous studies of synaptic plasticity in both the ACC and IC, and discussed how mGluRs may be involved in both cortical long-term potentiation (LTP) and long-term depression (LTD)-especially in LTD. The activation of mGluRs contributes to the induction of LTD in both ACC and IC areas. The loss of LTD caused by peripheral amputation or nerve injury can be rescued by priming ACC or IC with activations of mGluR1 receptors. We also discussed the potential functional roles of mGluRs for pain-related behaviors. We propose that targeting mGluRs in the cortical areas including the ACC and IC may provide a new therapeutic strategy for the treatment of chronic pain, phantom pain or anxiety. PMID:27296638

  16. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila

    PubMed Central

    Benton, Richard; Vannice, Kirsten S.; Gomez-Diaz, Carolina; Vosshall, Leslie B.

    2009-01-01

    Summary Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a novel family of iGluR-related genes in Drosophila, which we name Ionotropic Receptors (IRs). These receptors do not belong to the well-described Kainate, AMPA, or NMDA classes of iGluRs, and have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Mis-expression of IRs induces novel odor responses in ectopic neurons. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues. PMID:19135896

  17. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    PubMed Central

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  18. Stability of Poly(α-L Glutamic Acid).

    NASA Astrophysics Data System (ADS)

    Choi, Peter; Chen, Y. Z.; Prohofsky, E. W.

    1996-03-01

    For the protein to go to their folded biologically active state, it must first undergo formation of the stabilizing α-helix structure. Taking the repeating unit cells of Glutamic acid in an α-helix structure, the analysis can be made of the vibrational dynamics of the Poly(α-L Glutamic acid). The method used was mean field, modified, self-consistent phonon theory (MSPA) developed by Prohofsky et al. The modes contributing to the fluctuations of the α-helix hydrogen bonds were analyzed yielding the break down probability from the room temperature to the critical temperature Tc where the hydrogen bond probability is over 0.5. The inverse proportionality of the opening bond probability to the relaxation time τ * was then used to compare our results to ultra sonic and electric-field jump experiments. These experiments were done at temperatures ranging from 295 K to 310 K. The data obtained from these experiments agrees well with the temperature dependent MSPA open bond probabilities with correlation constant of (1.6 ± 0.1)x10e-8. Our calculation also yielded critical melting temperature of Tc=332 K.

  19. Dopamine-glutamate interactions in the basal ganglia.

    PubMed

    Schmidt, W J

    1998-01-01

    In an attempt to formulate a working hypothesis of basal-ganglia functions, arguments are considered suggesting that the basal ganglia are involved in a process of response selection i.e. in the facilitation of "wanted" and in the suppression of "unwanted" behaviour. The meso-accumbal dopamine-system is considered to mediate natural and drug-induced reward and sensitization. The meso-striatal dopamine-system seems to fulfill similar functions: It may mediate reinforcement which strengthens a given behaviour when elicited subsequently, but which is not experienced as reward or hedonia. Glutamate as the transmitter of the corticofugal projections to the basal ganglia nuclei and of the subthalamic neurons is critically involved in basal ganglia functions and dysfunctions; for example Parkinson's disease can be considered to be a secondary hyperglutamatergic disease. Additionally, glutamate is an essential factor in the plasticity response of the basal-ganglia. However, opposite to previous suggestions, the NMDA-receptor blocker MK-801 does not prevent psychostimulant- nor morphine-induced day to day increase (sensitization) of locomotion. Also the day to day increase of haloperidol-induced catalepsy was not prevented by MK-801. PMID:9871434

  20. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  1. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    PubMed

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia. PMID:23081992

  2. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  3. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective.

    PubMed

    Bruno, V; Ksiazek, I; Battaglia, G; Lukic, S; Leonhardt, T; Sauer, D; Gasparini, F; Kuhn, R; Nicoletti, F; Flor, P J

    2000-09-01

    We have used potent and selective non-competitive antagonists of metabotropic glutamate receptor subtype 5 (mGlu5) -- 2-methyl-6-phenylethynylpyridine (MPEP), [6-methyl-2-(phenylazo)-3-pyridinol] (SIB-1757) and [(E)-2-methyl-6-(2-phenylethenyl)pyridine] (SIB-1893) - to examine whether endogenous activation of this particular metabotropic glutamate receptor subtype contributes to neuronal degeneration. In cortical cultures challenged with N-methyl-D-aspartate (NMDA), all three mGlu5 receptor antagonists were neuroprotective. The effect of MPEP was highly specific because the close analogue, 3-methyl-6-phenylethynylpyridine (iso-MPEP), which did not antagonize heterologously expressed mGlu5 receptors, was devoid of activity on NMDA toxicity. Neuroprotection by mGlu5 receptor antagonists was also observed in cortical cultures challenged with a toxic concentration of beta-amyloid peptide. We have also examined the effect of mGlu5 receptor antagonists in in vivo models of excitotoxic degeneration. MPEP and SIB-1893 were neuroprotective against neuronal damage induced by intrastriatal injection of NMDA or quinolinic acid. These results indicate that mGlu5 receptors represent a suitable target for novel neuroprotective agents of potential application in neurodegenerative disorders. PMID:10974306

  4. Yokukansan, a Kampo Medicine, Protects PC12 Cells from Glutamate-Induced Death by Augmenting Gene Expression of Cystine/Glutamate Antiporter System Xc−

    PubMed Central

    Kanno, Hitomi; Kawakami, Zenji; Mizoguchi, Kazushige; Ikarashi, Yasushi; Kase, Yoshio

    2014-01-01

    Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc−, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc− subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook. PMID:25551766

  5. Yokukansan, a kampo medicine, protects PC12 cells from glutamate-induced death by augmenting gene expression of cystine/glutamate antiporter system Xc-.

    PubMed

    Kanno, Hitomi; Kawakami, Zenji; Mizoguchi, Kazushige; Ikarashi, Yasushi; Kase, Yoshio

    2014-01-01

    Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc-, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc- subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook. PMID:25551766

  6. Characterization of the venom from the spider, Araneus gemma: search for a glutamate antagonist

    SciTech Connect

    Early, S.L.

    1985-01-01

    Venom from three spiders, Argiope aurantia, Neoscona arabesca, and Araneus gemma have been shown to inhibit the binding of L-(/sup 3/H)glutamate to both GBP and synaptic membranes. The venom from Araneus gemma was shown to be the most potent of the three venoms in inhibiting the binding of L-(/sup 3/H)glutamate to GBP. Therefore, Araneus gemma venom was selected for further characterization. Venom from Araneus gemma appeared to contain two factors which inhibit the binding of L-(/sup 3/H)glutamate to GBP and at least one factor that inhibits L-glutamate-stimulated /sup 35/SCN flux. Factor I is thought to be L-glutamic acid, based on: (1) its similar mobility to glutamic acid in thin-layer chromatography and amino acid analysis, (2) the presence of fingerprint molecular ion peaks for glutamate in the mass spectrum for the methanol:water (17:1) extract and for the fraction from the HPLC-purification of the crude venom, and (3) its L-glutamate-like interaction with the sodium-dependent uptake system. Factor II appears to be a polypeptide, possibly 21 amino acids in length, and does not appear to contain any free amino groups or tryptophan. While the venom does not appear to contain any indoleamines, three catecholamines (epinephrine, epinine, dopamine) and one catecholamine metabolite (DOPAC) were detected.

  7. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    PubMed

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects. PMID:16354919

  8. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  9. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  10. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  11. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies

    PubMed Central

    Hu, Wei; MacDonald, Matthew L.; Elswick, Daniel E.; Sweet, Robert A.

    2014-01-01

    A number of studies have indicated that antagonists of the N-methyl-d-aspartate (NMDA) subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia. PMID:25315318

  12. [Glutamate metabolism in cerebral cortex obtained from chronic hepatic failure rats].

    PubMed

    Ito, M; Matsumoto, H; Kikuchi, S; Yachi, A

    1986-09-01

    The present investigation was carried out in order to elucidate the amino acid metabolism in hepatic failure with particular emphasis placed on glutamate. For this purpose, chronic hepatic failure models were produced in adult male Wistar rats by successive carbontetrachloride injection (0.20 ml/100 g. B. W., twice/week) for 13 weeks. They were confirmed to develop chemical changes compartible with hepatic failure, showing markedly elevated serum levels of NH3, GOT and ALP. Animals were killed by decapitation during fasting and the brains were removed immediately. After the parietal cortical slices were incubated for 45 min at 37 degrees C together with L-(U-14C) glutamate in O2-saturated Gey's balanced salt solution, they were homogenized in 75% ethanol and deproteinized with water saturated chloroform. The radioactivities of liberated CO2, glutamate and its metabolites (glutamine, aspartate and GABA) obtained from the slices were measured. The amount of radioactivity recovered from CO2, glutamine and aspartate revealed a significant increase (p less than 0.001), while that of glutamate and GABA remained unchanged. The main source of the CO2 is believed to originate from TCA cycle rather than the decarboxylation of glutamate to form GABA, and glutamate forms glutamine when it fixes ammonia. Furthermore, glutamate is converted into aspartate via TCA cycle when the carbon was labeled. Therefore, the results indicate that in chronic hepatic failure brains glutamate metabolism is enhanced through TCA cycle as well as ammonia fixation mechanism. PMID:3790365

  13. Biochemical and immunological changes on oral glutamate feeding in male albino rats

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Bansal, Anju; Thomas, Pauline; Sairam, M.; Sharma, S. K.; Mongia, S. S.; Singh, R.; Selvamurthy, W.

    High altitude stress leads to lipid peroxidation and free radical formation which results in cell membrane damage in organs and tissues, and associated mountain diseases. This paper discusses the changes in biochemical parameters and antibody response on feeding glutamate to male albino Sprague Dawley rats under hypoxic stress. Exposure of rats to simulated hypoxia at 7576 m, for 6 h daily for 5 consecutive days, in an animal decompression chamber at 32+/-2° C resulted in an increase in plasma malondialdehyde level with a concomitant decrease in blood glutathione (reduced) level. Supplementation of glutamate orally at an optimal dose (27 mg/kg body weight) in male albino rats under hypoxia enhanced glutathione level and decreased malondialdehyde concentration significantly. Glutamate feeding improved total plasma protein and glucose levels under hypoxia. The activities of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and the urea level remained elevated on glutamate supplementation under hypoxia. Glutamate supplementation increased the humoral response against sheep red blood cells (antibody titre). These results indicate a possible utility of glutamate in the amelioration of hypoxia-induced oxidative stress.

  14. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs re...

  15. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  16. Levetiracetam inhibits oligomeric Aβ-induced glutamate release from human astrocytes.

    PubMed

    Sanz-Blasco, Sara; Piña-Crespo, Juan C; Zhang, Xiaofei; McKercher, Scott R; Lipton, Stuart A

    2016-06-15

    A recently identified mechanism for oligomeric Aβ-induced glutamate release from astrocytes involves intracellular Ca elevation, potentially by Ca-dependent vesicular release. Evidence suggests that levetiracetam (LEV; Keppra), an antiepileptic drug, can improve cognitive performance in both humans with mild cognitive impairment and animal models of Alzheimer disease. Because LEV acts by modulating neurotransmitter release from neurons by interaction with synaptic vesicles, we tested the effect of LEV on Aβ-induced astrocytic release of glutamate. We used a fluorescence resonance energy transfer-based glutamate sensor (termed SuperGluSnFR), whose structure is based on the ligand-binding site of glutamate receptors, to monitor glutamate release from primary cultures of human astrocytes exposed to oligomeric amyloid-β peptide 1-42 (Aβ42). We found that LEV (10 µM) inhibited oligomeric Aβ-induced astrocytic glutamate release. In addition, we show that this Aβ-induced glutamate release from astrocytes is sensitive to tetanus neurotoxin, an inhibitor of the vesicle release machinery. Taken together, our evidence suggests that LEV inhibits Aβ-induced vesicular glutamate release from astrocytes and thus may underlie, at least in part, the ability of LEV to reduce hyperexcitability in Alzheimer disease. PMID:27183239

  17. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  18. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  19. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  20. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  1. Can targeting glutamate receptors with long-term heat acclimation improve outcomes following hypoxic injury?

    PubMed Central

    Ely, Brett R; Brunt, Vienna E; Minson, Christopher T

    2015-01-01

    Long-term heat acclimation appears to improve tolerance to hypoxic insults in various tissues, including brain, providing a promising avenue to improve functional outcomes following cerebrovascular events. Glutamate discharge is implicated in dysfunction following hypoxic stress and thus, targeting glutamate receptors with heat acclimation could improve cognitive outcomes following hypoxic injury. PMID:27227003

  2. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  3. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the requirement of a tolerance. 180.1187 Section 180.1187 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance....

  4. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false L-glutamic acid; exemption from the requirement of a tolerance. 180.1187 Section 180.1187 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance....

  5. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  6. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  7. Retinal Glial Cell Glutamate Transporter is Coupled to an Anionic Conductance

    NASA Astrophysics Data System (ADS)

    Eliasof, Scott; Jahr, Craig E.

    1996-04-01

    Application of L-glutamate to retinal glial (Muller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.

  8. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes. PMID:26099947

  9. Conditional Deletion of the Glutamate Transporter GLT-1 Reveals That Astrocytic GLT-1 Protects against Fatal Epilepsy While Neuronal GLT-1 Contributes Significantly to Glutamate Uptake into Synaptosomes

    PubMed Central

    Petr, Geraldine T.; Sun, Yan; Frederick, Natalie M.; Zhou, Yun; Dhamne, Sameer C.; Hameed, Mustafa Q.; Miranda, Clive; Bedoya, Edward A.; Fischer, Kathryn D.; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C.; Rotenberg, Alexander; Aoki, Chiye J.

    2015-01-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  10. Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase coated biosensors

    PubMed Central

    Gass, Justin T.; Sinclair, Courtney M.; Cleva, Richard M.; Widholm, John J.; Olive, M. Foster

    2010-01-01

    Relapse is one of the most problematic aspects in the treatment of alcoholism and is often triggered by alcohol-associated environmental cues. Evidence indicates that glutamate neurotransmission plays a critical role in cue-induced relapse-like behavior, as inhibition of glutamate neurotransmission can prevent reinstatement of alcohol-seeking behavior. However, few studies have examined specific changes in extracellular glutamate levels in discrete brain regions produced by exposure to alcohol-associated cues. The purpose of this study was to use glutamate oxidase (GluOx)-coated biosensors to monitor changes in extracellular glutamate in specific brain regions during cue-induced reinstatement of alcohol-seeking behavior. Male Wistar rats were implanted with indwelling jugular vein catheters and intracerebral guide cannula aimed at the basolateral amygdala (BLA) or nucleus accumbens (NAc) core, and then trained to self-administer alcohol intravenously. A separate group of animals was trained to self-administer food pellets. Each reinforcer was accompanied by the presentation of a light/tone stimulus. Following stabilization of responding for alcohol or food reinforcement and subsequent extinction training, animals were implanted with precalibrated biosensors and then underwent a 1 hr cue-induced reinstatement testing period. As determined by GluOx-coated biosensors, extracellular levels of glutamate were increased in the BLA and NAc core during cue-induced reinstatement of alcohol-seeking behavior. The cumulative change in extracellular glutamate in both regions was significantly greater for cue-induced reinstatement of alcohol-seeking behavior versus that of food-seeking behavior. These results indicate that increases in glutamate transmission in the BLA and NAc core may be a neurochemical substrate of cue-evoked alcohol-seeking behavior. PMID:21054692

  11. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  12. The neuroactive peptide N-acetylaspartylglutamate is not an agonist at the metabotropic glutamate receptor subtype 3 of metabotropic glutamate receptor.

    PubMed

    Chopra, Maninder; Yao, Yi; Blake, Timothy J; Hampson, David R; Johnson, Edwin C

    2009-07-01

    The peptide N-acetylaspartylglutamate (NAAG) is present in high concentrations in the mammalian central nervous system. Various mechanisms have been proposed for its action, including selective activation of the metabotropic glutamate receptor (mGluR) subtype 3, its action at the N-methyl-D-aspartate receptor, or the production of glutamate by its hydrolysis catalyzed by an extracellular protease. To re-examine its agonist activity at mGluR3, we coexpressed human or rat mGluR3 with G protein inward rectifying channels in Xenopus laevis oocytes. High-performance liquid chromatography analysis of commercial sources of NAAG showed 0.38 to 0.48% glutamate contamination. Although both human and rat mGluR3 were highly sensitive to glutamate, with EC(50) values of 58 and 28 nM, respectively, purified NAAG (100 microM) had little activity (7.7% of full activation by glutamate). Only in the millimolar range did it show significant activity, possibly due to residual traces of glutamate remaining in the purified NAAG preparations. In contrast, the unpurified NAAG sample did produce a full agonist response with mGluR3 coexpressed with G alpha(15), with an EC(50) of 120 microM, as measured by a calcium release assay. This response can be explained by the 0.38 to 0.48% glutamate contamination. Our results suggest that NAAG may not have a direct agonist activity at the mGluR3 receptor. Thus, several in vivo and in vitro published results that did not address the issue of glutamate contamination of NAAG preparations may need to be re-evaluated. PMID:19389924

  13. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    PubMed Central

    Wassum, Kate M.; Tolosa, Vanessa M.; Wang, Jianjun; Walker, Eric; Monbouquette, Harold G.; Maidment, Nigel T.

    2008-01-01

    Using Micro-Electro-Mechanical-Systems (MEMS) technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs) modified with glutamate oxidase (GluOx) for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat. PMID:19543440

  14. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats.

    PubMed

    Hakami, Alqassem Y; Hammad, Alaa M; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence. PMID:27199635

  15. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats

    PubMed Central

    Hakami, Alqassem Y.; Hammad, Alaa M.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence. PMID:27199635

  16. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors

    PubMed Central

    Fedder, Karlie N.; Sabo, Shasta L.

    2015-01-01

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases. PMID:26694480

  17. The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG

    PubMed Central

    Viljoen, Albertus J.; Kirsten, Catriona J.; Baker, Bienyameen; van Helden, Paul D.; Wiid, Ian J. F.

    2013-01-01

    Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine. PMID:24367660

  18. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors.

    PubMed

    Fedder, Karlie N; Sabo, Shasta L

    2015-01-01

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases. PMID:26694480

  19. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes

    PubMed Central

    Selvaraju, Thilaga Rati; Khaza’ai, Huzwah; Vidyadaran, Sharmili; Abd Mutalib, Mohd Sokhini; Vasudevan, Ramachandran

    2014-01-01

    Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson's and Alzheimer's diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity. PMID:25428670

  20. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.

    PubMed

    Revett, Timothy J; Baker, Glen B; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  1. Glutamate transport and xanthan gum production in the plant pathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Rojas, Robert; Nishidomi, Sabrina; Nepomuceno, Roberto; Oshiro, Elisa; de Cassia Café Ferreira, Rita

    2013-11-01

    L-glutamate plays a central role in nitrogen metabolism in all living organisms. In the genus Xanthomonas, the nitrogen nutrition is an important factor involved in the xanthan gum production, an important exopolysaccharide with various industrial and biotechnological applications. In this report, we demonstrate that the use of L-glutamate by the phytopathogen Xanthomonas axonopodis pv. citri as a nitrogen source in defined medium significantly increases the production of xanthan gum. This increase is dependent on the L-glutamate concentration. In addition, we have also characterized a glutamate transport system that is dependent on a proton gradient and on ATP and is modulated by amino acids that are structurally related to glutamate. This is the first biochemical characterization of an energy substrate transport system observed in a bacterial phytopathogen with a broad economic and industrial impact due to xanthan gum production. PMID:23719672

  2. Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy.

    PubMed

    Feng, Shengjie; Ma, Shaorong; Jia, Caixia; Su, Yujuan; Yang, Shenglian; Zhou, Kechun; Liu, Yani; Cheng, Ju; Lu, Dunguo; Fan, Liu; Wang, Yizheng

    2016-05-01

    Sonic hedgehog (Shh), both as a mitogen and as a morphogen, plays an important role in cell proliferation and differentiation during early development. Here, we show that Shh inhibits glutamate transporter activities in neurons, rapidly enhances extracellular glutamate levels, and affects the development of epilepsy. Shh is quickly released in response to epileptic, but not physiological, stimuli. Inhibition of neuronal glutamate transporters by Shh depends on heterotrimeric G protein subunit Gαi and enhances extracellular glutamate levels. Inhibiting Shh signaling greatly reduces epileptiform activities in both cell cultures and hippocampal slices. Moreover, pharmacological or genetic inhibition of Shh signaling markedly suppresses epileptic phenotypes in kindling or pilocarpine models. Our results suggest that Shh contributes to the development of epilepsy and suppression of its signaling prevents the development of the disease. Thus, Shh can act as a modulator of neuronal activity, rapidly regulating glutamate levels and promoting epilepsy. PMID:27113760

  3. Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON- bipolar cell synapses

    PubMed Central

    Tse, Dennis Y.; Chung, Inyoung; Wu, Samuel M.

    2015-01-01

    To maintain reliable signal transmission across a synapse, free synaptic neurotransmitters must be removed from the cleft in a timely manner. In the first visual synapse, this critical task is mainly undertaken by glutamate transporters (EAATs). Here we study the differential roles of the EAAT1, EAAT2 and EAAT5 subtypes in glutamate (GLU) uptake at the photoreceptor-to-depolarizing bipolar cell synapse in intact dark-adapted retina. Various doses of EAAT blockers and/or GLU were injected into the eye before the electroretinogram (ERG) was measured. Their effectiveness and potency in inhibiting the ERG b-wave were studied to determine their relative contributions to the GLU clearing activity at the synapse. The results showed that EAAT1 and EAAT2 plays different roles. Selectively blocking glial EAAT1 alone using UCPH101 inhibited the b-wave 2–24 hours following injection, suggesting a dominating role of EAAT1 in the overall GLU clearing capacity in the synaptic cleft. Selectively blocking EAAT2 on photoreceptor terminals had no significant effect on the b-wave, but increased the potency of exogenous GLU in inhibiting the b-wave. These suggest that EAAT2 play a secondary yet significant role in the GLU reuptake activity at the rod and the cone output synapses. Additionally, we have verified our electrophysiological findings with double-label immunohistochemistry, and extend the literature on the spatial distribution of EAAT2 splice variants in the mouse retina. PMID:25152321

  4. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  5. Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor

    PubMed Central

    Koulen, Peter; Kuhn, Rainer; Wässle, Heinz; Brandstätter, Johann Helmut

    1999-01-01

    Fast excitatory neurotransmission in the central nervous system is mediated through glutamate acting on ionotropic glutamate receptors. However, glutamate acting on metabotropic glutamate receptors (mGluRs) can also exert an inhibitory action. Here, we report by immunocytochemistry and physiology, to our knowledge, the first glutamate receptor to be found in terminals of photoreceptors in the mammalian retina—the group III metabotropic glutamate receptor mGluR8. Glutamate is the transmitter of photoreceptors, and thus mGluR8 functions as an autoreceptor. Activation of mGluR8 by the group III mGluR agonists l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate, or by glutamate itself, evokes a decrease in the intracellular calcium ion concentration ([Ca2+]i) in isolated photoreceptors. This effect is blocked by the group III mGluR antagonists (RS)-α-methyl-4-phosphonophenylglycine and (RS)-α-methylserine-O-phosphate. Agonists for other classes of glutamate receptors—n-methyl-d-aspartic acid, quisqualic acid, kainic acid, or (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid—have no effect on the [Ca2+]i in isolated photoreceptors. The down-regulation of the [Ca2+]i in photoreceptors by mGluR8 provides evidence for an inhibitory feedback loop at the photoreceptor synapse in the mammalian retina. This negative feedback may be a mechanism for the fine adjustment of the light-regulated release of glutamate from photoreceptors and may serve as a safety device against excitotoxic levels of release at this tonic synapse. Such a mechanism may provide a model for feedback inhibition in other parts of the central nervous system. PMID:10449793

  6. Long-term NMDAR antagonism correlates reduced astrocytic glutamate uptake with anxiety-like phenotype

    PubMed Central

    Zimmer, Eduardo R.; Torrez, Vitor R.; Kalinine, Eduardo; Augustin, Marina C.; Zenki, Kamila C.; Almeida, Roberto F.; Hansel, Gisele; Muller, Alexandre P.; Souza, Diogo O.; Machado-Vieira, Rodrigo; Portela, Luis V.

    2015-01-01

    The role of glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been extensively studied in schizophrenia; however, less is known about its role in anxiety disorders. Recently, it was demonstrated that astrocytic GLT-1 blockade leads to an anxiety-like phenotype. Although astrocytes are capable of modulating NMDAR activity through glutamate uptake transporters, the relationship between astrocytic glutamate uptake and the development of an anxiety phenotype remains poorly explored. Here, we aimed to investigative whether long-term antagonism of NMDAR impacts anxiety-related behaviors and astrocytic glutamate uptake. Memantine, an NMDAR antagonist, was administered daily for 24 days to healthy adult CF-1 mice by oral gavage at doses of 5, 10, or 20 mg/kg. The mice were submitted to a sequential battery of behavioral tests (open field, light–dark box and elevated plus-maze tests). We then evaluated glutamate uptake activity and the immunocontents of glutamate transporters in the frontoparietal cortex and hippocampus. Our results demonstrated that long-term administration of memantine induces anxiety-like behavior in mice in the light–dark box and elevated plus-maze paradigms. Additionally, the administration of memantine decreased glutamate uptake activity in both the frontoparietal cortex and hippocampus without altering the immunocontent of either GLT-1 or GLAST. Remarkably, the memantine-induced reduction in glutamate uptake was correlated with enhancement of an anxiety-like phenotype. In conclusion, long-term NMDAR antagonism with memantine induces anxiety-like behavior that is associated with reduced glutamate uptake activity but that is not dependent on GLT-1 or GLAST protein expression. Our study suggests that NMDAR and glutamate uptake hypofunction may contribute to the development of conditions that fall within the category of anxiety disorders. PMID:26089779

  7. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus.

    PubMed

    Saftenku, E E

    2005-06-01

    Synaptic conductances are influenced markedly by the geometry of the space surrounding the synapse since the transient glutamate concentration in the synaptic cleft is determined by this geometry. Our paper is an attempt to understand the reasons for slow glutamate diffusion in the cerebellar glomerulus, a structure situated around the enlarged mossy fiber terminal in the cerebellum and surrounded by a glial sheath. For this purpose, analytical expressions for glutamate diffusion in the glomerulus were considered in models with two-, three-, and fractional two-three-dimensional (2D-3D) geometry with an absorbing boundary. The time course of average glutamate concentration in the synaptic cleft of the mossy fiber-granule cell connection was calculated for both direct release of glutamate from the same synaptic unit, and for cumulative spillover of glutamate from neighboring release sites. Several kinetic schemes were examined, and the parameters of the diffusion models were estimated by identifying theoretical activation of AMPA receptors with direct release and spillover components of published experimental AMPA receptor-mediated EPSCs. For model selection, the correspondence of simulated paired-pulse ratio and EPSC increase after prevention of desensitization to experimental values were also taken into consideration. Our results suggest at least a 7- to 10-fold lower apparent diffusion coefficient of glutamate in the porous medium of the glomerulus than in water. The modeling of glutamate diffusion in the 2D-3D geometry gives the best fit of experimental EPSCs. We show that it could be only partly explained by normal diffusion of glutamate in the complex geometry of the glomerulus. We assume that anomalous diffusion of glutamate occurs in the glomerulus. A good match of experimental estimations and theoretical parameters, obtained in the simulations that use an approximation of anomalous diffusion by a solution for fractional Brownian motion, confirms our

  8. IN PREMATURE INFANTS, DIETARY GLUTAMATE IS ALMOST ENTIRELY REMOVED IN ITS FIRST PASS THROUGH THE SPLANCHNIC BED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Glutamate is an important gluconeogenic substrate. Breast milk glutamate, its most abundant amino acid, may thus play an important role in glucose production. However, studies in infant pigs have demonstrated that the major portion of intragastrically administered glutamate undergoes fir...

  9. Dietary Glutamate Is Almost Entirely Removed in Its First Pass Through the Splanchnic Bed in Premature Infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breast milk glutamate is a potential gluconeogenic substrate. However, in piglets, most dietary glutamate undergoes first-pass extraction by the gut, limiting its contribution to glucose formation. The objectives of the study were to determine in preterm infants whether dietary glutamate increases p...

  10. Reciprocal Regulation of Epileptiform Neuronal Oscillations and Electrical Synapses in the Rat Hippocampus

    PubMed Central

    Kinjo, Erika R.; Higa, Guilherme S. V.; Morya, Edgard; Valle, Angela C.; Kihara, Alexandre H.; Britto, Luiz R. G.

    2014-01-01

    Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies. PMID:25299405

  11. Emerging structural insights into the function of ionotropic glutamate receptors

    PubMed Central

    Karakas, Erkan; Regan, Michael C.; Furukawa, Hiro

    2015-01-01

    Summary Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function including learning and memory formation. Recently a wealth of structural studies on iGluRs, including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available.. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, which illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. Here we review mechanistic insights into iGluR functions gained through structural studies of multiple groups. PMID:25941168

  12. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  13. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.

    PubMed

    Fawley, Jessica A; Hofmann, Mackenzie E; Andresen, Michael C

    2014-06-11

    Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence

  14. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    PubMed

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. PMID:22392649

  15. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain.

    PubMed

    Zhang, Zhi; Bassam, Bassam; Thomas, Ajit G; Williams, Monica; Liu, Jinhuan; Nance, Elizabeth; Rojas, Camilo; Slusher, Barbara S; Kannan, Sujatha

    2016-10-01

    Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by

  16. Regulation of glutamate carboxypeptidase II hydrolysis of N-acetylaspartylglutamate (NAAG) in crayfish nervous tissue is mediated by glial glutamate and acetylcholine receptors.

    PubMed

    Urazaev, Albert K; Grossfeld, Robert M; Lieberman, Edward M

    2005-05-01

    Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors. PMID:15836619

  17. Exposure to altered gravity conditions results in hypoxia-related enhancement of the presynaptic transporter-mediated release of glutamate.

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana

    High-affinity Na+-dependent glutamate transporters locate in the plasma membrane and maintain the low concentration of glutamate in synaptic cleft by the uptake of glutamate into neurons. Under hypoxic conditions glutamate transporters contribute to the glutamate release due to functioning in reverse mode. The release of glutamate via reverse-operated Na+-dependent glutamate transporters was investigated in brain synaptosomes under conditions of centrifugeinduced hypergravity. Flow cytometric analisis revealed similarity in the size and cytoplasmic granularity of control and hypergravity synaptosomes. Protonophore FCCP dissipates the proton gradient across synaptic vesicle thus synaptic vesicles are not able to keep glutamate inside. 1 microM FCCP induced the release of 4. 8 ±1. 0 % and 8. 0 ±1. 0 % of total accumulated synaptosomal label in control and G-loaded animals, respectively. Ca 2+-independent high- KCl stimulated L-[14C]glutamate release from synaptosomes preliminary treated with FCCP increased considerably from 27. 0 ± 2. 2 % to 35. 0 ± 2. 3 % after centrifuge-induced hypergravity. No-transportable inhibitor of glutamate transporter DL-threo-beta-benzyloxyaspartate was found to inhibit high-KCl and FCCP-stimulated release of L-[14C]glutamate, thus the release was concluded to occur due to reversal of glutamate transporters. We have also found the inhibition of the activity of Na \\ K ATPase in the plasma membrane of synaptosomes after hypergravity that might also contribute to the enhancement of the transporter-mediated release of glutamate. These hypergravity-induced alterations in the transporter-mediated release of glutamate were suggested to correlate with the hypoxic injury of neurons. The changes we have revealed for the transporter-mediated release of glutamate may lead to mental disorders, upcoming seizures and neurotoxicity under hypergravity conditions.

  18. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder.

    PubMed

    Wu, Ke; Hanna, Gregory L; Rosenberg, David R; Arnold, Paul D

    2012-02-01

    Obsessive-compulsive disorder (OCD) is a common and often debilitating neuropsychiatric condition characterized by persistent intrusive thoughts (obsessions), repetitive ritualistic behaviors (compulsions) and excessive anxiety. While the neurobiology and etiology of OCD has not been fully elucidated, there is growing evidence that disrupted neurotransmission of glutamate within corticalstriatal-thalamocortical (CSTC) circuitry plays a role in OCD pathogenesis. This review summarizes the findings from neuroimaging, animal model, candidate gene and treatment studies in the context of glutamate signaling dysfunction in OCD. First, studies using magnetic resonance spectroscopy are reviewed demonstrating altered glutamate concentrations in the caudate and anterior cingulate cortex of patients with OCD. Second, knockout mouse models, particularly the DLGAP3 and Sltrk5 knockout mouse models, display remarkably similar phenotypes of compulsive grooming behavior associated with glutamate signaling dysfunction. Third, candidate gene studies have identified associations between variants in glutamate system genes and OCD, particularly for SLC1A1 which has been shown to be associated with OCD in five independent studies. This converging evidence for a role of glutamate in OCD has led to the development of novel treatment strategies involving glutamatergic compounds, particularly riluzole and memantine. We conclude the review by outlining a glutamate hypothesis for OCD, which we hope will inform further research into etiology and treatment for this severe neuropsychiatric condition. PMID:22024159

  19. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models.

    PubMed

    Parsons, Matthew P; Vanni, Matthieu P; Woodard, Cameron L; Kang, Rujun; Murphy, Timothy H; Raymond, Lynn A

    2016-01-01

    It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. PMID:27052848

  20. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models

    PubMed Central

    Parsons, Matthew P.; Vanni, Matthieu P.; Woodard, Cameron L.; Kang, Rujun; Murphy, Timothy H.; Raymond, Lynn A.

    2016-01-01

    It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. PMID:27052848

  1. Mystixin-7 Peptide Protects Ionotropic Glutamatergic Mechanisms against Glutamate-Induced Excitotoxicity In Vitro

    PubMed Central

    2016-01-01

    Hyperactivation of the N-methyl-D-aspartic acid type glutamate receptors (NMDARs) causes glutamate excitotoxicity, a process potentially important for many neurological diseases. This study aims to investigate protective effects of the synthetic corticotrophin-releasing factor-like peptide, mystixin-7 (MTX), on model glutamate-induced excitotoxicity in vitro. The technique online monitoring of electrophysiological parameters (excitatory glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPAR) and NMDAR-dependent postsynaptic mechanisms) in the olfactory cortex slices was used. Application of L-glutamate in toxic concentration (20 mM) on slices evoked hyperactivation of NMDARs and weaker activation of the AMPARs. Upon further action agonist, the excessive activation of glutamate receptors was replaced by their irreversible blockade. Pretreatment of the slices using MTX in different concentrations (50 and 100 mg/mL) protected both NMDARs and AMPARs from glutamate-induced damage. An enzymatic treatment of MTX reduced hyperactivation of both NMDARs and AMPARs. The present study demonstrated that MTX minipeptide protected the functioning of both NMDARs and AMPARs against glutamate-induced damage. The MTX peptide is a prospective candidate for elaborated medication in treatment of neurological diseases. PMID:27504123

  2. Paracrine Neuroprotective Effects of Neural Stem Cells on Glutamate-Induced Cortical Neuronal Cell Excitotoxicity

    PubMed Central

    Geranmayeh, Mohammad Hossein; Baghbanzadeh, Ali; Barin, Abbas; Salar-Amoli, Jamileh; Dehghan, Mohammad Mehdi; Rahbarghazi, Reza; Azari, Hassan

    2015-01-01

    Purpose: Glutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutamate-treated primary cortical neurons. Methods: Embryonic rat primary cortical cultures were exposed to different concentrations of glutamate for 1 hour and then they incubated with NSCs-CM. Subsequently, the amount of cell survival in different glutamate excitotoxic groups were measured after 24 h of incubation by trypan blue exclusion assay and MTT assay. Hoechst and propidium iodide were used for determining apoptotic and necrotic cell death pathways proportion and then the effect of NSCs-CM was investigated on this proportion. Results: NSCs conditioned medium increased viability rate of the primary cortical neurons after glutamate-induced excitotoxicity. Also we found that NSCs-CM provides its neuroprotective effects mainly by decreasing apoptotic cell death rate rather than necrotic cell death rate. Conclusion: The current study shows that adult neural stem cells could exert paracrine neuroprotective effects on cortical neurons following a glutamate neurotoxic insult. PMID:26819924

  3. Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    PubMed Central

    Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.

    2011-01-01

    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996

  4. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage

    PubMed Central

    2010-01-01

    Background Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA) receptors, may be an important cause of retinal ganglion cells (RGCs) death in glaucoma and several other retinal diseases. Bis(7)-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7)-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo. Results In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7)-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7)-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7)-tacrine(0.2 mg/kg) induced a significant neuroprotective effect against glutamate-induced RGCs damage. Conclusions Our results showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7)-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma. PMID:20199668

  5. Phenotypic Characterization of Mice Heterozygous for a Null Mutation of Glutamate Carboxypeptidase II

    PubMed Central

    Han, Liqun; Picker, Jonathan D.; Schaevitz, Laura R.; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C.; Basu, Alo C.; Berger-Sweeney, Joanne; Coyle, Joseph T.

    2009-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of NMDA receptors has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate (NAA). NAAG is a neuropeptide that is an NMDA receptor antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDA receptor activation. To manipulate the expression of GCP II, loxP sites were inserted flanking exon 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N >200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  6. Quantitative autoradiographic distribution of L-(3H)glutamate-binding sites in rat central nervous system

    SciTech Connect

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-08-01

    Quantitative autoradiography was used to determine the distribution of L-(3H)glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of (3H)glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-(3H)glutamate binding in the central nervous system.

  7. Genetic Analysis of the Glutamate Permease in Escherichia coli K-121

    PubMed Central

    Marcus, Menashe; Halpern, Yeheskel S.

    1969-01-01

    The glutamate permeation system in Escherichia coli K-12 consists of three genes: gltC, gltS, and gltR. The genes gltC and gltS are very closely linked, and are located between the pyrE and tna loci, in the following order: tna, gltC, gltS, pyrE; gltR is located near the metA gene. The three glt genes constitute a regulatory system in which gltR is the regulator gene responsible for the formation of repressor, gltS is the structural gene of the glutamate permease, and gltC is most probably the operator locus. The synthesis of glutamate permease is partially repressed in wild-type K-12 strains, resulting in the inability of these strains to utilize glutamate as the sole source of carbon. Derepression due to mutation at the gltC locus enables growth on glutamate as a carbon source both at 30 C and at 42 C. Temperature-sensitive gltR mutants capable of utilizing glutamate for growth at 42 C but not at 30 C were found to be derepressed for glutamate permease when grown at 42 C and partially repressed (wild-type phenotype) upon growth at 30 C. These mutants produce an altered thermolabile repressor which can be inactivated by mild heat treatment (10 min at 44 C) in the absence of growth. PMID:4887500

  8. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells.

    PubMed

    Barbour, B; Szatkowski, M; Ingledew, N; Attwell, D

    Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP), inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid could severely compromise glutamate uptake and thus contribute to neuronal death. PMID:2512508

  9. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice.

    PubMed

    Hunsberger, Holly C; Hickman, James E; Reed, Miranda N

    2016-06-01

    Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD. PMID:26744018

  10. Effects of aging on glutamate neurotransmission in the substantia nigra of Gdnf heterozygous mice

    PubMed Central

    Farrand, Ariana Q; Gregory, Rebecca A; Scofield, Michael D; Helke, Kristi L; Boger, Heather A

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) helps protect dopaminergic neurons in the nigrostriatal tract. Although the cause of nigrostriatal degeneration is unknown, one theory is that excess glutamate from the subthalamic nucleus (STN) results in excitotoxic events in the substantia nigra (SN). Since dopaminergic degeneration is accompanied by a reduction in GDNF, we examined glutamate neurotransmission in the SN using a Gdnf heterozygous mouse model (Gdnf+/−) at 8 and 12 months of age. At 8 months, Gdnf+/− mice have greater glutamate release and higher basal glutamate levels, which precede the SN dopaminergic degeneration observed at 12 months of age. However, at 12 months, Gdnf+/− mice have lower basal levels of glutamate and less glutamate release than wildtype (WT) mice. Also at 8 months, Gdnf+/− mice have lower levels of GLT-1 and greater GFAP levels in the SN compared to WT mice, differences that increase with age. These data suggest that reduced levels of GDNF induce excess glutamate release and dysregulation of GLT-1, causing excitotoxicity in the SN that precedes dopaminergic degeneration. PMID:25577412

  11. Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II.

    PubMed

    Han, Liqun; Picker, Jonathan D; Schaevitz, Laura R; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C; Basu, Alo C; Berger-Sweeney, Joanne; Coyle, Joseph T

    2009-08-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  12. In Vivo Glutamate Measured with MR Spectroscopy: Behavioral Correlates in Aging

    PubMed Central

    Zahr, Natalie M.; Mayer, Dirk; Rohlfing, Torsten; Chanraud, Sandra; Gu, Meng; Pfefferbaum, Adolf

    2012-01-01

    Summary Altered availability of the brain biochemical glutamate may contribute to the neural mechanisms underlying age-related changes in cognitive and motor functions. To investigate the contribution of regional glutamate levels to behavior in the aging brain, we used an in vivo Magnetic Resonance Spectroscopy (MRS) protocol optimized for glutamate detection in 3 brain regions targeted by cortical glutamatergic efferents—striatum, cerebellum, and pons. Data from 61 healthy men and women ranging in age from 20 – 86 years were used. Older age was associated with lower glutamate levels in the striatum, but not cerebellum or pons. Older age was also predictive of poorer performance on tests of visuomotor skills and balance. Low striatal glutamate levels were associated with high systolic blood pressure and worse performance on a complex visuomotor task, the Grooved Pegboard. These findings suggest that low brain glutamate levels are related to high blood pressure and that changes in brain glutamate levels might mediate the behavioral changes noted in normal aging. PMID:23116877

  13. Expression and plasticity of glutamate receptors in the supraoptic nucleus of the hypothalamus.

    PubMed

    Pak, C Wook; Currás-Collazo, Margarita C

    2002-01-15

    Magnocellular neuroendocrine cells (MNCs) of the supraoptic nucleus of the hypothalamus (SON) produce and release the hormones vasopressin (VP) and oxytocin (OT) in response to a variety of stimuli to regulate body water and salt, parturition and lactation. Hormone release is influenced by the pattern of neuronal firing of these MNCs, which, in turn, is governed by intrinsic conductances and synaptic inputs, including those mediated by the neurotransmitter glutamate. Functional and molecular evidence has confirmed the expression of AMPA-, NMDA-, and metabotropic-type glutamate receptors in the SON, that together may orchestrate the effects of glutamatergic transmission on neuroendocrine function. However, the specific roles of the different subtypes of glutamate receptors is not yet clear. As with other central neurons, the subunit composition of glutamate receptors on MNCs will likely determine their properties and may potentially help define the differential properties of VP- and OT-producing MNCs. Possible functions of glutamate receptors on SON MNCs include altering excitatory synaptic transmission of osmotic information, neuronal firing, hormone production and release, and calcium signaling. Of interest are the anatomical, molecular, and functional changes at glutamatergic synapses in the SON that occur in response to pertinent physiological stimuli or development. These types of plasticity may include changes in glutamatergic synaptic density, glutamate receptor levels, or glutamate receptor subunit expression, all of which can affect the efficiency of synaptic transmission. PMID:11810712

  14. Diffuse Brain Injury Elevates Tonic Glutamate Levels and Potassium-Evoked Glutamate Release in Discrete Brain Regions at Two Days Post-Injury: An Enzyme-Based Microelectrode Array Study

    PubMed Central

    Hinzman, Jason M.; Currier Thomas, Theresa; Burmeister, Jason J.; Quintero, Jorge E.; Huettl, Peter; Pomerleau, Francois; Gerhardt, Greg A.

    2010-01-01

    Abstract Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI. PMID:20233041

  15. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells

    PubMed Central

    da Silva, Larissa Bittencourt; Poulsen, Jeppe Nørgaard; Arendt-Nielsen, Lars; Gazerani, Parisa

    2015-01-01

    This study investigated the presence of cell membrane docking proteins synaptosomal-associated protein, 25 and 23 kD (SNAP-25 and SNAP-23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time- and calcium-dependent manner following calcium-ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose-dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre-incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin-stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP-25 and SNAP-23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP-25 and/or SNAP-23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non-neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA. PMID:25754332

  16. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus

    PubMed Central

    Medrano, M C; Gerrikagoitia, I; Martínez-Millán, L; Mendiguren, A; Pineda, J

    2013-01-01

    Background and Purpose Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. Experimental Approach We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2–3 expression in the LC was also characterized by immunohistochemistry. Key Results The EAAT2–5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg−1 i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. Conclusions and Implications These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus. PMID:23638698

  17. Effects of Cymbopogon citratus and Ferula assa-foetida extracts on glutamate-induced neurotoxicity.

    PubMed

    Tayeboon, Ghazaleh S; Tavakoli, Fatemeh; Hassani, Shokoufeh; Khanavi, Mahnaz; Sabzevari, Omid; Ostad, S Nasser

    2013-10-01

    Many of CNS diseases can lead to a great quantity of release of glutamate and the extreme glutamate induces neuronal cell damage and death. Here, we wanted to investigate the effects of Cymbopogon citratus essential oil and Ferula assa-foetida extracts treatment on glutamate-induced cell damage in a primary culture of rat cerebellar granule neurons. Cerebellums were collected from 7-d rat brains and cerebellar granule neurons were obtained after 8-d culture. CGN cells were treated with C. citratus essential oil and F. assa-foetida extracts at concentration of 100 μg/ml before, after, and during exposure to 30 μM glutamate. The cellular viability was evaluated by 3-(4, 5-dimethytthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) staining. The flow cytometry assay was used to examine cell cycle and apoptosis. MTT assay showed a glutamate-induced reduction in cellular viability while treatment with C. citratus essential oil and F. assa-foetida extracts before, during, and after exposure to glutamate was increased. Flow cytometric analysis indicated that F. assa-foetida extracts treatment significantly (p < 0.001) attenuated glutamate-induced apoptotic/necrotic cell death and the necrotic rate was decreased by C. citratus essential oil treatment compared to glutamate group, significantly (p < 0.001). The results show that C. citratus essential oil and F. assa-foetida extracts display neuroprotective effects in glutamate-induced neurotoxicity. These extracts exert antiapoptotic activity in cerebellar granule neurons due to cell cycle arrest in G0G1 phase, which explain the beneficial effects of C. citratus essential oil and F. assa-foetida extracts as therapies for neurologic disorders. PMID:23949776

  18. Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones.

    PubMed Central

    White, R J; Reynolds, I J

    1997-01-01

    1. In cultures of rat forebrain neurones, mitochondria buffer glutamate-induced, NMDA receptor-mediated Ca2+ influx. Here, we have used the fluorescent calcium indicator, indo-1 AM to record [Ca2+]i from single cells. We varied either the glutamate concentration or the duration of exposure to investigate the cellular mechanisms recruited to buffer [Ca2+]i within different stimulation protocols. 2. For a 15 s stimulus, the recovery time doubled as the glutamate concentration was raised from 3 to 300 microM. Changing the duration of exposure from 15 s to 5 min increased the recovery time tenfold even when the glutamate concentration was held at 3 microM. 3. We used a selective inhibitor of the mitochondrial Na(+)-Ca2+ exchange, CGP-37157. When applied immediately after a 15 s, 100 microM glutamate challenge, CGP-37157 consistently caused a rapid fall in [Ca2+]i followed by a slow rise after the drug was washed out. A similar pattern was seen with the 5 min, 3 microM glutamate stimulus. The effects of CGP-37157 are consistent with the release of substantial mitochondrial Ca2+ stores during recovery from an intense glutamate stimulus. 4. These studies suggest that mitochondria become progressively more important for buffering glutamate-induced Ca2+ loads as the stimulus intensity increases. The recovery of [Ca2+]i to baseline following glutamate removal is critically regulated by the release of Ca2+ from mitochondrial stores via mitochondrial Na(+)-Ca2+ exchange. The data highlight a previously under-appreciated role for [Na+]i in the regulation of [Ca2+]i in central neurones. PMID:9023766

  19. Peritumoural glutamate correlates with post-operative seizures in supratentorial gliomas.

    PubMed

    Neal, Andrew; Yuen, Tanya; Bjorksten, Andrew R; Kwan, Patrick; O'Brien, Terence J; Morokoff, Andrew

    2016-09-01

    To examine the impact of glutamate on post-operative seizures and survival in a cohort of patients with grade II to IV supratentorial glioma. A retrospective analysis was performed on 216 patients who underwent surgery for supratentorial gliomas. Primary explanatory variables were peritumoural and/or tumoural glutamate concentrations, glutamate transporter expression (EAAT2 and SXC). Univariate and multivariate survival analysis was performed with primary outcomes of time to first post-operative seizure and overall survival. Subgroup analysis was performed in patients with de novo glioblastomas who received adjuvant chemoradiotherapy. 47 (21.8 %), 34 (15.8 %) and 135 (62.5 %) WHO grade II, III and IV gliomas respectively were followed for a median of 15.8 months. Following multivariate analysis, there was a non-significant association between higher peritumoural glutamate concentrations and time to first post-operative seizure (HR 2.07, CI 0.98-4.37, p = 0.06). In subgroup analysis of 81 glioblastoma patients who received adjunct chemoradiotherapy, peritumoural glutamate concentration was significantly associated with time to first post-operative seizure (HR 3.10, CI 1.20-7.97, p = 0.02). In both the overall cohort and subgroup analysis no glutamate cycle biomarkers were predictive of overall survival. Increased concentrations of peritumoural glutamate were significantly associated with shorter periods of post-operative seizure freedom in patients with de novo glioblastomas treated with adjuvant chemoradiotherapy. No glutamate cycle biomarkers were predictive of overall survival. These results suggest that therapies targeting glutamate may be beneficial in tumour associated epilepsy. PMID:27311724

  20. Inducible Glutamate Oxaloacetate Transaminase as a Therapeutic Target Against Ischemic Stroke

    PubMed Central

    Khanna, Savita; Briggs, Zachary

    2015-01-01

    Abstract Significance: Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. Recent Advances: Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. Critical Issues: Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. Future Directions: Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies. Antioxid. Redox Signal. 22, 175–186. PMID:25343301

  1. Opposing roles for caspase and calpain death proteases in L-glutamate-induced oxidative neurotoxicity

    SciTech Connect

    Elphick, Lucy M.; Hawat, Mohammad; Toms, Nick J.; Meinander, Annika; Mikhailov, Andrey; Eriksson, John E.; Kass, George E.N.

    2008-10-15

    Oxidative glutamate toxicity in HT22 murine hippocampal cells is a model for neuronal death by oxidative stress. We have investigated the role of proteases in HT22 cell oxidative glutamate toxicity. L-glutamate-induced toxicity was characterized by cell and nuclear shrinkage and chromatin condensation, yet occurred in the absence of either DNA fragmentation or mitochondrial cytochrome c release. Pretreatment with the selective caspase inhibitors either benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (pan-caspase), N-acetyl-Leu-Glu-His-Asp-aldehyde (caspase 9) or N-acetyl-Ile-Glu-Thr-Asp-aldehyde (caspase 8), significantly increased L-glutamate-induced cell death with a corresponding increase in observed nuclear shrinkage and chromatin condensation. This enhancement of glutamate toxicity correlated with an increase in L-glutamate-dependent production of reactive oxygen species (ROS) as a result of caspase inhibition. Pretreating the cells with N-acetyl-L-cysteine prevented ROS production, cell shrinkage and cell death from L-glutamate as well as that associated with the presence of the pan-caspase inhibitor. In contrast, the caspase-3/-7 inhibitor N-acetyl-Asp-Glu-Val-Asp aldehyde was without significant effect. However, pretreating the cells with the calpain inhibitor N-acetyl-Leu-Leu-Nle-CHO, but not the cathepsin B inhibitor CA-074, prevented cell death. The cytotoxic role of calpains was confirmed further by: 1) cytotoxic dependency on intracellular Ca{sup 2+} increase, 2) increased cleavage of the calpain substrate Suc-Leu-Leu-Val-Tyr-AMC and 3) immunoblot detection of the calpain-selective 145 kDa {alpha}-fodrin cleavage fragment. We conclude that oxidative L-glutamate toxicity in HT22 cells is mediated via calpain activation, whereas inhibition of caspases-8 and -9 may exacerbate L-glutamate-induced oxidative neuronal damage through increased oxidative stress.

  2. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons

    PubMed Central

    YAN, MIN; ZHU, WENBO; ZHENG, XIAOKE; LI, YUAN; TANG, LIPENG; LU, BINGZHENG; CHEN, WENLI; QIU, PENGXIN; LENG, TIANDONG; LIN, SUIZHEN; YAN, GUANGMEI; YIN, WEI

    2016-01-01

    Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity. PMID:26821268

  3. Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments

    PubMed Central

    Ganesana, Mallikarjunarao; Leiter, J.C.; Andreescu, Silvana

    2013-01-01

    We report on the design and development of a glutamate oxidase (GmOx) microelectrode for measuring L-glutamic acid (GluA) in oxygen-depleted conditions, which is based on the oxygen storage and release capacity of cerium oxides. To fabricate the biosensor, a nanocomposite of oxygen-rich ceria and titania nanoparticles dispersed within a semi-permeable chitosan membrane was co-immobilized with the enzyme GmOx on the surface of a Pt microelectrode. The oxygen delivery capacity of the ceria nanoparticles embedded in a biocompatible chitosan matrix facilitated enzyme stabilization and operation in oxygen free conditions. GluA was measured by amperometry at a working potential of 0.6 V vs Ag/AgCl. Detection limits of 0.594 μM and 0.493 μM and a sensitivity of 793 pA/μM (RSD 3.49%, n=5) and 395 pA/μM (RSD 2.48%, n=5) were recorded in oxygenated and deoxygenated conditions, with response times of 2s and 5s, respectively. The biosensor had good operational stability and selectivity against common interfering substances. Operation of the biosensor was tested in cerebrospinal fluid. Preliminary in vivo recording in Sprague-Dawley rats to monitor GluA in the cortex during cerebral ischemia and reperfusion demonstrate a potential application of the biosensor in hypoxic conditions. This method provides a solution to ensure functionality of oxidoreductase enzymes in oxygen-free environments. PMID:24090755

  4. Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments.

    PubMed

    Özel, Rıfat Emrah; Ispas, Cristina; Ganesana, Mallikarjunarao; Leiter, J C; Andreescu, Silvana

    2014-02-15

    We report on the design and development of a glutamate oxidase (GmOx) microelectrode for measuring l-glutamic acid (GluA) in oxygen-depleted conditions, which is based on the oxygen storage and release capacity of cerium oxides. To fabricate the biosensor, a nanocomposite of oxygen-rich ceria and titania nanoparticles dispersed within a semi-permeable chitosan membrane was co-immobilized with the enzyme GmOx on the surface of a Pt microelectrode. The oxygen delivery capacity of the ceria nanoparticles embedded in a biocompatible chitosan matrix facilitated enzyme stabilization and operation in oxygen free conditions. GluA was measured by amperometry at a working potential of 0.6 V vs Ag/AgCl. Detection limits of 0.594 µM and 0.493 µM and a sensitivity of 793 pA/µM (RSD 3.49%, n=5) and 395 pA/µM (RSD 2.48%, n=5) were recorded in oxygenated and deoxygenated conditions, with response times of 2s and 5s, respectively. The biosensor had good operational stability and selectivity against common interfering substances. Operation of the biosensor was tested in cerebrospinal fluid. Preliminary in vivo recording in Sprague-Dawley rats to monitor GluA in the cortex during cerebral ischemia and reperfusion demonstrate a potential application of the biosensor in hypoxic conditions. This method provides a solution to ensure functionality of oxidoreductase enzymes in oxygen-free environments. PMID:24090755

  5. Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II.

    PubMed

    Navrátil, Michal; Ptáček, Jakub; Šácha, Pavel; Starková, Jana; Lubkowski, Jacek; Bařinka, Cyril; Konvalinka, Jan

    2014-07-01

    In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical. PMID:24863754

  6. Search for soliton modes in helical poly-γ-benzyl-l-glutamate

    NASA Astrophysics Data System (ADS)

    Renthal, Robert; Taboada, J.

    1989-07-01

    Solid α-helical poly(γ-benzyl-L-glutamate) was examined at low temperature for evidence of the unusual temperature-dependent vibrational mode found by Careri and co-workers in solid acetanilide and attributed to a soliton wave trapped in protein-like hydrogen bonds. We have confirmed the anomaly in acetanilide, however, a similar temperature-dependent mode was not observed in poly(γ-benzyl-L-glutamate). These results indicate that anharmonic amide modes may only be present in certain α-helical structures. Two new low frequency modes (180 and 90 cm -1) are observed for poly(γ-benzyl-L-glutamate).

  7. Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells.

    PubMed

    Atlante, A; Gagliardi, S; Minervini, G M; Marra, E; Passarella, S; Calissano, P

    1996-11-01

    A 100 microM glutamate pulse administered to rat cerebellar granule cells causes a very rapid and progressive decrease in both cell and mitochondrial oxygen consumption caused by glucose and succinate addition, respectively. The respiratory control ratio, which reflects the ability of mitochondria to produce ATP, is reduced by 50% within the first 30 min after glutamate addition. Subsequent to glutamate exposure, a progressive decrease of respiratory control ratio to almost 1 was found within the following 3-5 h. The addition of extra calcium had no effect per se on oxygen consumption by cell homogenate. PMID:8981415

  8. Binding and Release of Glutamate from Overoxidized Polypyrrole via an Applied Potential for Application as a Molecular Switch

    NASA Astrophysics Data System (ADS)

    Hauff, Elizabeth von; Meteleva-Fischer, Yulia; Parisi, Jürgen; Weiler, Reto

    2008-06-01

    The controlled binding and release of glutamate from overoxidized polypyrrole (PPy) films via a variable potential was investigated. Glutamate-doped PPy films were electrochemically deposited from aqueous sodium glutamate electrolytes containing the pyrrole monomer. The resulting polymer films were found to have a high degree of roughness, which increased with increasing film thickness. This was also found to correspond to an increase in the glutamate content on the PPy film surface. The glutamate content on the film was in the order of 10-8 m/cm2 depending on the film deposition time. Glutamate was then released from the film into the electrolyte through overoxidization of the PPy layer and an applied potential. The amount of glutamate released from the film was greater than that on the surface of the film indicating that glutamate can be released from the PPy film via an applied potential. The switching behaviour of the polymer electrode, i. e. the repeated binding and release of glutamate to/from the polymer film via a variable potential, was investigated. The glutamate content in the samples was detected via liquid scintillation counting techniques performed on samples prepared with tritium (3H)-marked glutamate.

  9. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    PubMed

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds. PMID:25639143

  10. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells.

    PubMed Central

    Calissano, P; Ciotti, M T; Battistini, L; Zona, C; Angelini, A; Merlo, D; Mercanti, D

    1993-01-01

    Cerebellar granule cells grown in the presence of a serum complex differentiate but are resistant to the lethal action of excitatory amino acids. When these cells are grown also in the presence of insulin-like growth factor I (IGF-I) they become fully susceptible to the toxic, lethal action of glutamate. The glutamate-sensitizing action of IGF-I is dependent on concentration (half-maximal effect at 2-4 ng/ml) and time (half-maximal effect at 2-4 days in vitro) and is paralleled by the appearance of functionally active, glutamate-activated, Ca2+ channels and of voltage-gated Na+ and late K+ channels. IGF-I-induced glutamate sensitivity is rapidly reversible (t1/2 = 30-60 min) after removal of this somatomedin. The action of IGF-I is not mimicked by IGF-II, nerve growth factor, basic or acidic fibroblast growth factor, platelet-derived growth factor, or tumor necrosis factor alpha. We postulate that the constitutive phenotype of cerebellar granule cells is glutamate-resistant and becomes responsive to excitatory amino acids under the action of epigenetic cues among which IGF-I may be one of those operative in vivo. Images Fig. 1 PMID:8104340

  11. Changes in NAD(P)H fluorescence and membrane current produced by glutamate uptake into salamander Müller cells.

    PubMed Central

    Barbour, B; Magnus, C; Szatkowski, M; Gray, P T; Attwell, D

    1993-01-01

    1. Glutamate uptake into isolated, whole-cell patch-clamped glial cells was studied by monitoring the increase of cell fluorescence generated as glutamate and NAD(P) were converted into alpha-ketoglutarate and NAD(P)H by glutamate dehydrogenase. The current generated by the glutamate uptake carrier was recorded simultaneously. 2. L-Glutamate evoked an increase of cell fluorescence and an inward uptake current. L- and D-aspartate generated an uptake current but no fluorescence response, consistent with the amino acid specificity of glutamate dehydrogenase. 3. In the absence of external sodium the glutamate-evoked fluorescence response and uptake current were abolished, showing that there is no sodium-independent glutamate uptake across the cell membrane. 4. Varying the glutamate concentration altered both the fluorescence response and the uptake current. The fluorescence response saturated at a lower glutamate concentration than the uptake current, and depended in a Michaelis-Menten fashion on the uptake current. 5. The fluorescence response and the uptake current were reduced by membrane depolarization, and also by removal of intracellular potassium. 6. The dependence of the fluorescence response on uptake current when membrane potential was altered or intracellular potassium was removed was the same as that seen when the external glutamate concentration was altered. 7. These fluorescence studies show that glutamate uptake is inhibited by depolarization and by removal of intracellular potassium, consistent with the conclusion of earlier work in which uptake was monitored solely as a membrane current. The data are consistent with high-affinity electrogenic sodium- and potassium-dependent glutamate uptake with fixed stoichiometry being the only significant influx route for glutamate. Other possible interpretations of the data are also discussed. PMID:8105078

  12. Time-dependent changes in extracellular glutamate in the rat dorsolateral striatum following a single cocaine injection.

    PubMed

    McKee, B L; Meshul, C K

    2005-01-01

    Acute cocaine administration has been shown to alter dorsal striatal plasticity [Proc Natl Acad Sci USA 87 (1990) 6912; Brain Res Bull 30 (1993) 173] and produce long-term neurochemical changes [Pharmacol Biochem Behav 27 (1987) 533]. To date, the effects of acute cocaine on extracellular glutamate and nerve terminal glutamate immunolabeling in the rat dorsolateral striatum have not been reported. To investigate cocaine-induced changes in extracellular glutamate, in vivo microdialysis was carried out in the dorsolateral striatum of rats 1-14 days after receiving a single injection of either vehicle or 15 mg/kg cocaine. There was an increase in the group injected with cocaine 1 day prior to measuring extracellular glutamate as compared with the control group. The group injected with cocaine 3 days prior to the microdialysis session had decreased extracellular glutamate levels. Furthermore, extracellular glutamate remained attenuated 14 days after acute cocaine treatment. Striatal glutamate decreased in the cocaine-treated rats after calcium removal, suggesting that cocaine-induced changes in extracellular glutamate were partially calcium-dependent. The density of nerve terminal glutamate immunolabeling was measured using immunogold electron microscopy in the contralateral striatum of the same rats that had been acutely treated with cocaine or vehicle. There were no changes in the density of glutamate immunolabeling within identified nerve terminals making an asymmetrical (excitatory) synaptic contact 1, 2, 3, or 14 days after acute cocaine exposure as compared with the control groups. Hence, these alterations in extracellular glutamate did not result from changes in glutamate immunolabeling within the synaptic vesicle pool. In addition, no changes in glutamate immunolabeling were found in rats that received cocaine 2 h previously or were withdrawn after 1 week of cocaine administration. The results demonstrate that a single injection of cocaine produces biphasic

  13. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways. PMID:26620318

  14. Connexin subtype expression during oral carcinogenesis: A pilot study in patients with oral squamous cell carcinoma

    PubMed Central

    BROCKMEYER, PHILLIPP; HEMMERLEIN, BERNHARD; JUNG, KLAUS; FIALKA, FLORIAN; BRODMANN, TOBIAS; GRUBER, RUDOLF MATTHIAS; SCHLIEPHAKE, HENNING; KRAMER, FRANZ-JOSEF

    2016-01-01

    Gap junctional intercellular communication (GJIC) and connexin (Cx) expression were reported in association with carcinogenesis in various types of tumours. In an earlier histomorphometric study, the protein levels of Cx subtypes 26, 43 and 45 were differentially expressed in oral squamous cell carcinoma (OSCC), corresponding lymph node metastases and dysplasia-free oral mucosa. Moreover, membrane Cx43 acted as an independent prognostic marker in OSCC tissues. This study aimed to confirm the expression of described Cx subtypes at the mRNA level. Hence, a reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis of Cx26, Cx43 and Cx45 gene expressions was performed in paired carcinoma and mucosa samples of 15 OSCC patients. Additionally, we assessed the interaction between Cx subtype expression and clinicopathological routine parameters. The RT-qPCR analysis revealed that Cx26 was downregulated in OSCC (P=0.01), while Cx43 was marginally upregulated in cancer tissue (P=0.04). Cx45 was significantly overexpressed in OSCC tissue compared with the intraoral mucosa controls (P<0.01), and remained unchanged at different tumour stages. No significant interactions between differential Cx subtype expression and clinicopathological routine parameters were observed. In conclusion, Cx regulation at the transcriptional level appears to be an early event during the initiation and development of OSCC, and is maintained during further progression. However, the mRNA-protein correlation is variable. This may be indicative of post-transcriptional, translational and degradation regulations being associated with the determination of Cx protein concentration during oral carcinogenesis. PMID:26893879

  15. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    PubMed

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  16. Pharmacological profiles of the metabotropic glutamate receptor ligands.

    PubMed

    Naples, M A; Hampson, D R

    2001-01-01

    Metabotropic glutamate receptors (mGluRs) are a family of G-protein coupled receptors that are expressed in the central and peripheral nervous systems. The purpose of this study was to compare the ligand binding selectivity profiles of the mGluR agonist [(3)H]L-AP4 and the novel radiolabeled phenylglycine antagonist [(3)H]CPPG at all eight rat mGluR subtypes expressed in transfected human embryonic kidney cells. At a concentration of 30 nM [(3)H]L-AP4, no specific binding was detected in membranes expressing the group I receptors mGluR1a or mGluR5a, or in membranes expressing the group II mGluRs, mGluR2 and mGluR3. Among the group III mGluRs, specific [(3)H]L-AP4 binding was detected in cells expressing mGluR4a and mGluR8a but not in cells expressing mGluR6 or mGluR7a. The binding of [(3)H]CPPG showed an exceptional pattern of selectivity amongst the mGluR subtypes; at a concentration of 20 nM [(3)H]CPPG, a high level of specific binding was seen in membranes containing mGluR8a but not in any of the other mGluR subtypes. The affinity constant (K(D)) calculated for [(3)H]CPPG binding to mGluR8a was 183 nM. In competition experiments, the phosphono-substituted phenylglycine congeners including MPPG, (RS)-PPG, and unlabeled CPPG were the most potent inhibitors of [(3)H]CPPG binding while non-phosphonated compounds such as L-glutamate and MCPG were substantially less potent. These results demonstrate that [(3)H]L-AP4 and [(3)H]CPPG can be used as probes to selectively label group III mGluRs and that CPPG and related phenylglycine derivatives are useful for studying differences in the ligand recognition sites of highly homologous mGluRs. PMID:11114395

  17. Adsorption dynamics of L-glutamic acid copolymers at a heptane/water interface.

    PubMed

    Beverung, C J; Radke, C J; Blanch, H W

    1998-02-16

    Random copolymers of glutamic acid (glu-ala, glu-leu, glu-phe, glu-tyr) were employed to investigate the relationship between side chain structure and peptide charge on adsorption behavior at an oil/water boundary. Adsorption of a series of glutamate copolymers at a heptane/water interface was examined by the dynamic pendant-drop method to determine interfacial tension. Incorporation of leucine or phenylalanine into a glutamate copolymer results in greater tension reduction than incorporation of alanine or tyrosine. These effects are amplified at pH values near the isoelectric point of glutamate, where macroscopic adsorbed films of glu-leu and glu-phe exhibit gel-like properties in response to interfacial area compression. Differences in interfacial tension behavior of glu-tyr and glu-phe indicate the importance of the tyrosine p-hydroxyl group on adsorption and aggregation at the oil/water interface. PMID:9540205

  18. Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures.

    PubMed

    Liu, Zhuo; Song, Dan; Yan, Enzhi; Verkhratsky, Alexei; Peng, Liang

    2015-05-01

    Astroglial cells are fundamental elements of most neurological diseases, including bipolar disorders in which astrocytes show morphological and functional deficiency. Here we report the suppression of astroglial glutamate release by chronic treatment with three anti-bipolar drugs, lithium salt (Li(+)), carbamazepine (CBZ) and valproic acid (VPA). Release of glutamate was triggered by transient exposure of astrocytes to ATP (which activated purinoceptors) and 45 mM K(+) (which depolarised cell membrane to ~-30 mV). In both types of stimulation glutamate release was regulated by Ca(2+) entry through plasmalemmal channels and by Ca(2+) release from the endoplasmic reticulum (ER) intracellular stores. Exposure of astroglial cultures to Li(+), CBZ and VPA for 2 weeks led to a significant (more than 2 times) inhibition of glutamate release, which may alleviate the hyperactivity of the glutamatergic transmission in the brain of patients with bipolar disorders and thus contribute the underlying mechanism of drug action. PMID:25676933

  19. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo

    PubMed Central

    Girinathan, Brintha Parasumanna; Braun, Sterling; Sirigireddy, Apoorva Reddy; Lopez, Jose Espinola; Govind, Revathi

    2016-01-01

    Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene, which codes for glutamate dehydrogenase (GDH), was disrupted, the mutant C. difficile was unable to colonize and cause disease in a hamster model. Further, from the complementation experiment it appears that extracellular GDH may be playing a role in promoting C. difficile colonization and disease progression. Quantification of free amino acids in the hamster gut during C. difficile infection showed that glutamate is among preferred amino acids utilized by C. difficile during its expansion. This study provides evidence of the importance of glutamate metabolism for C. difficile pathogenesis. PMID:27467167

  20. Pharmacological modulation of brain levels of glutamate and GABA in rats exposed to total sleep deprivation

    PubMed Central

    Kamal, Sahar Mohamed

    2010-01-01

    Modulation of gamma-aminobutyric acid (GABA) and glutamate by selected antidepressants and anticonvulsants could play a beneficial role in total sleep deprivation (TSD) caused by depressed mood. In the present study, albino rats were exposed to TSD for five days. On the sixth day, the brains were removed, and GABA and glutamate levels were measured in the prefrontal cortex and thalamus to identify TSD-induced changes in untreated rats and in rats treated with carbamazepine 40 mg/kg intraperitoneally (IP), fluoxetine 20 mg/kg IP, or desipramine 10 mg/kg IP. Carbamazepine and fluoxetine significantly increased GABA and reduced glutamate levels in both brain areas. Desipramine administration did not affect GABA or glutamate concentrations in the tested brain areas; levels were comparable with those induced by TSD without treatment. These results suggest that administration of carbamazepine or fluoxetine could have a beneficial effect by increasing GABA levels during TSD.

  1. Tight linkage of genes that encode the two glutamate synthase subunits of Escherichia coli K-12.

    PubMed Central

    Lozoya, E; Sanchez-Pescador, R; Covarrubias, A; Vichido, I; Bolivar, F

    1980-01-01

    A hybrid deoxyribonucleic acid molecule, plasmid pRSP20, which was isolated from the Clarke and Carbon Escherichia coli gene bank, was shown to complement the gltB31 mutation, which affects the synthesis of glutamate synthase in E. coli strain PA340. We present evidence which demonstrates that plasmid pRSP20 carries an 8-megadalton E. coli chromosomal fragment, including the genes encoding the two unequal glutamate synthase subunits. Polypeptides with molecular weights of about 135,000 and 53,000, which comigrated with purified E. coli glutamate synthase subunit polypeptides and immunoprecipitated with antibodies to E. coli glutamate synthase, were synthesized by minicells carrying the pRSP20 plasmid. Images PMID:6107287

  2. Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling

    NASA Astrophysics Data System (ADS)

    Cornell-Bell, Ann H.; Finkbeiner, Steven M.; Cooper, Mark S.; Smith, Stephen J.

    1990-01-01

    The finding that astrocytes possess glutamate-sensitive ion channels hinted at a previously unrecognized signaling role for these cells. Now it is reported that cultured hippocampal astrocytes can respond to glutamate with a prompt and oscillatory elevation of cytoplasmic free calcium, visible through use of the fluorescent calcium indicator fluo-3. Two types of glutamate receptor-one preferring quisqualate and releasing calcium from intracellular stores and the other preferring kainate and promoting surface-membrane calcium influx-appear to be involved. Moreover, glutamate-induced increases in cytoplasmic free calcium frequently propagate as waves within the cytoplasm of individual astrocytes and between adjacent astrocytes in confluent cultures. These propagating waves of calcium suggest that networks of astrocytes may constitute a long-range signaling system within the brain.

  3. A selective review of glutamate pharmacological therapy in obsessive–compulsive and related disorders

    PubMed Central

    Grados, Marco A; Atkins, Elizabeth B; Kovacikova, Gabriela I; McVicar, Erin

    2015-01-01

    Glutamate, an excitatory central nervous system neurotransmitter, is emerging as a potential alternative pharmacological treatment when compared to gamma-aminobutyric acid (GABA)-, dopamine-, and serotonin-modulating treatments for neuropsychiatric conditions. The pathophysiology, animal models, and clinical trials of glutamate modulation are explored in disorders with underlying inhibitory deficits (cognitive, motor, behavioral) including obsessive–compulsive disorder, attention deficit hyperactivity disorder, Tourette syndrome, trichotillomania, excoriation disorder, and nail biting. Obsessive–compulsive disorder, attention deficit hyperactivity disorder, and grooming disorders (trichotillomania and excoriation disorder) have emerging positive data, although only scarce controlled trials are available. The evidence is less supportive for the use of glutamate modulators in Tourette syndrome. Glutamate-modulating agents show promise in the treatment of disorders of inhibition. PMID:25995654

  4. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors.

    PubMed

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-10-28

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]Arachidonic acid release induced by both sPLA and glutamate was partially blocked by MK-801, indicating that the glutamate-NMDA-cPLA pathway contributes to sPLA -induced arachidonic acid release. Systemic administration of MK-801 to rats that had sPLA injected into the right striatum significantly decreased neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death. PMID:12395100

  5. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    PubMed

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  6. Glutamate dysregulation in the trigeminal ganglion: a novel mechanism for peripheral sensitization of the craniofacial region.

    PubMed

    Laursen, J C; Cairns, B E; Dong, X D; Kumar, U; Somvanshi, R K; Arendt-Nielsen, L; Gazerani, P

    2014-01-01

    In the trigeminal ganglion (TG), satellite glial cells (SGCs) form a functional unit with neurons. It has been proposed that SGCs participate in regulating extracellular glutamate levels and that dysfunction of this SGC capacity can impact nociceptive transmission in craniofacial pain conditions. This study investigated whether SGCs release glutamate and whether elevation of TG glutamate concentration alters response properties of trigeminal afferent fibers. Immunohistochemistry was used to assess glutamate content and the expression of excitatory amino acid transporter (EAAT)1 and EAAT2 in TG sections. SGCs contained glutamate and expressed EAAT1 and EAAT2. Potassium chloride (10 mM) was used to evoke glutamate release from cultured rat SGCs treated with the EAAT1/2 inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)ben zoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA) or control. Treatment with TFB-TBOA (1 and 10 μM) significantly reduced the glutamate concentration from 10.6 ± 1.1 to 5.8 ± 1.4 μM and 3.0 ± 0.8 μM, respectively (p<0.05). Electrophysiology experiments were conducted in anaesthetized rats to determine the effect of intraganglionic injections of glutamate on the response properties of ganglion neurons that innervated either the temporalis or masseter muscle. Intraganglionic injection of glutamate (500 mM, 3 μl) evoked afferent discharge and significantly reduced muscle afferent mechanical threshold. Glutamate-evoked discharge was attenuated bythe N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovalerate (APV) and increased by TFB-TBOA, whereas mechanical sensitization was only sensitive to APV. Antidromic invasion of muscle afferent fibers by electrical stimulation of the caudal brainstem (10 Hz) or local anesthesia of the brainstem with lidocaine did not alter glutamate-induced mechanical sensitization. These findings provide a novel mechanism whereby dysfunctional trigeminal SGCs could contribute to cranial muscle tenderness in

  7. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP

  8. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice.

    PubMed

    Melendez, Roberto I; Roman, Cristina; Capo-Velez, Coral M; Lasalde-Dominicci, Jose A

    2016-06-01

    The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients. PMID:26567011

  9. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. PMID:26168906

  10. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.

    PubMed Central

    Rinehart, C A; Hubbard, J S

    1976-01-01

    When illuminated, washed cell suspensions of Ectothiorhodospira halophila carry out a concentrative uptake of glutamate or proline. Dark-exposed cells accumulate glutamate but not proline. Proline transport was strongly inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP), a proton permeant that uncouples photophosphorylation, and by 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO), an inhibitor of photosynthetic electron transport. A stimulation of proline uptake was effected by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane adenosine triphosphatase (ATPase) which catalyzes the phosphorylation. These findings suggest that the driving force for proline transport is the proton-motive force established during photosynthetic electron transport. Glutamate uptake in the light was inhibited by CCCP and HQNO, but to a lesser extent than was the proline system. DCCD caused a mild inhibition of glutamate uptake in the light, but strongly inhibited the uptake by dark-exposed cells. CCCP strongly inhibited glutamate uptake in the dark. The light-dependent transport of glutamate is apparently driven by the proton-motive force established during photosynthetic electron transport. Hydrolysis of adenosine triphosphate (ATP) by membrane ATPase apparently establishes the proton-motive force to drive the light-independent transport. These conclusions were supported by demonstrating that light- or dark-exposed cells accumulate [3H]triphenylmethylphosphonium, a lipid-soluble cation. Several lines of indirect evidence indicated that the proline system required higher levels of energy than did the glutamate system(s). This could explain why ATP hydrolysis does not drive proline transport in the dark. Membrane vesicles were prepared by the sonic treatment of E. halophila spheroplasts. The vesicles contained active systems for the uptake of proline and glutamate. PMID:956126

  11. Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    PubMed Central

    Greget, Renaud; Pernot, Fabien; Bouteiller, Jean-Marie C.; Ghaderi, Viviane; Allam, Sushmita; Keller, Anne Florence; Ambert, Nicolas; Legendre, Arnaud; Sarmis, Merdan; Haeberle, Olivier; Faupel, Michel; Bischoff, Serge; Berger, Theodore W.; Baudry, Michel

    2011-01-01

    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following

  12. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex.

    PubMed

    Aluisio, Leah; Fraser, Ian; Berdyyeva, Tamara; Tryputsen, Volha; Shireman, Brock T; Shoblock, James; Lovenberg, Timothy; Dugovic, Christine; Bonaventure, Pascal

    2014-01-01

    The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg) to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C.) which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient) or genetic (permanent) inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states. PMID:24904253

  13. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    PubMed Central

    Aluisio, Leah; Fraser, Ian; Berdyyeva, Tamara; Tryputsen, Volha; Shireman, Brock T.; Shoblock, James; Lovenberg, Timothy; Dugovic, Christine; Bonaventure, Pascal

    2014-01-01

    The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg) to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C.) which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient) or genetic (permanent) inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states. PMID:24904253

  14. Electrochemical synthesis of adiponitrile from the renewable raw material glutamic acid.

    PubMed

    Dai, Jian-Jun; Huang, Yao-Bing; Fang, Chi; Guo, Qing-Xiang; Fu, Yao

    2012-04-01

    Current affairs: Adiponitrile, used to produce nylon 6.6, is prepared from the renewable compound glutamic acid by an electrochemical route, involving electro-oxidative decarboxylation and Kolbe coupling reactions. The new route is an example of the use of glutamic acid as a versatile substrate in the transformation of biomass into chemicals. Also, it highlights the use of electrochemical methods in biomass conversion. PMID:22441826

  15. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    PubMed

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. PMID:26804444

  16. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for