Science.gov

Sample records for cyanobacterium gloeobacter violaceus

  1. Directed evolution of Gloeobacter violaceus rhodopsin spectral properties.

    PubMed

    Engqvist, Martin K M; McIsaac, R Scott; Dollinger, Peter; Flytzanis, Nicholas C; Abrams, Michael; Schor, Stanford; Arnold, Frances H

    2015-01-16

    Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein. PMID:24979679

  2. The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism

    PubMed Central

    Mare, Jan; Hrouzek, Pavel; Ka?a, Radek; Ventura, Stefano; Struneck, Otakar; Komrek, Ji?

    2013-01-01

    Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an evolutionary curiosity with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide. PMID:23823729

  3. Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis

    PubMed Central

    Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan

    2014-01-01

    A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537

  4. Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in K?lauea Caldera, Hawai'i.

    PubMed

    Saw, Jimmy H W; Schatz, Michael; Brown, Mark V; Kunkel, Dennis D; Foster, Jamie S; Shick, Harry; Christensen, Stephanie; Hou, Shaobin; Wan, Xuehua; Donachie, Stuart P

    2013-01-01

    The ancestor of Gloeobacter violaceus PCC 7421(T) is believed to have diverged from that of all known cyanobacteria before the evolution of thylakoid membranes and plant plastids. The long and largely independent evolutionary history of G. violaceus presents an organism retaining ancestral features of early oxygenic photoautotrophs, and in whom cyanobacteria evolution can be investigated. No other Gloeobacter species has been described since the genus was established in 1974 (Rippka et al., Arch Microbiol 100:435). Gloeobacter affiliated ribosomal gene sequences have been reported in environmental DNA libraries, but only the type strain's genome has been sequenced. However, we report here the cultivation of a new Gloeobacter species, G. kilaueensis JS1(T), from an epilithic biofilm in a lava cave in K?lauea Caldera, Hawai'i. The strain's genome was sequenced from an enriched culture resembling a low-complexity metagenomic sample, using 9 kb paired-end 454 pyrosequences and 400 bp paired-end Illumina reads. The JS1(T) and G. violaceus PCC 7421(T) genomes have little gene synteny despite sharing 2842 orthologous genes; comparing the genomes shows they do not belong to the same species. Our results support establishing a new species to accommodate JS1(T), for which we propose the name Gloeobacter kilaueensis sp. nov. Strain JS1(T) has been deposited in the American Type Culture Collection (BAA-2537), the Scottish Marine Institute's Culture Collection of Algae and Protozoa (CCAP 1431/1), and the Belgian Coordinated Collections of Microorganisms (ULC0316). The G. kilaueensis holotype has been deposited in the Algal Collection of the US National Herbarium (US# 217948). The JS1(T) genome sequence has been deposited in GenBank under accession number CP003587. The G+C content of the genome is 60.54 mol%. The complete genome sequence of G. kilaueensis JS1(T) may further understanding of cyanobacteria evolution, and the shift from anoxygenic to oxygenic photosynthesis. PMID:24194836

  5. Cultivation and Complete Genome Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kīlauea Caldera, Hawai'i

    PubMed Central

    Saw, Jimmy H. W.; Schatz, Michael; Brown, Mark V.; Kunkel, Dennis D.; Foster, Jamie S.; Shick, Harry; Christensen, Stephanie; Hou, Shaobin; Wan, Xuehua; Donachie, Stuart P.

    2013-01-01

    The ancestor of Gloeobacter violaceus PCC 7421T is believed to have diverged from that of all known cyanobacteria before the evolution of thylakoid membranes and plant plastids. The long and largely independent evolutionary history of G. violaceus presents an organism retaining ancestral features of early oxygenic photoautotrophs, and in whom cyanobacteria evolution can be investigated. No other Gloeobacter species has been described since the genus was established in 1974 (Rippka et al., Arch Microbiol 100:435). Gloeobacter affiliated ribosomal gene sequences have been reported in environmental DNA libraries, but only the type strain's genome has been sequenced. However, we report here the cultivation of a new Gloeobacter species, G. kilaueensis JS1T, from an epilithic biofilm in a lava cave in Kīlauea Caldera, Hawai'i. The strain's genome was sequenced from an enriched culture resembling a low-complexity metagenomic sample, using 9 kb paired-end 454 pyrosequences and 400 bp paired-end Illumina reads. The JS1T and G. violaceus PCC 7421T genomes have little gene synteny despite sharing 2842 orthologous genes; comparing the genomes shows they do not belong to the same species. Our results support establishing a new species to accommodate JS1T, for which we propose the name Gloeobacter kilaueensis sp. nov. Strain JS1T has been deposited in the American Type Culture Collection (BAA-2537), the Scottish Marine Institute's Culture Collection of Algae and Protozoa (CCAP 1431/1), and the Belgian Coordinated Collections of Microorganisms (ULC0316). The G. kilaueensis holotype has been deposited in the Algal Collection of the US National Herbarium (US# 217948). The JS1T genome sequence has been deposited in GenBank under accession number CP003587. The G+C content of the genome is 60.54 mol%. The complete genome sequence of G. kilaueensis JS1T may further understanding of cyanobacteria evolution, and the shift from anoxygenic to oxygenic photosynthesis. PMID:24194836

  6. [Phosphinothricin-resistant somatic hybrids Brassica napus + Orychophragmus violaceus].

    PubMed

    Sakhno, L O; Komarnyts'ky?, I K; Cherep, M N; Kuchuk, M V

    2007-01-01

    Phosphinothricin (PPT) resistant hybrid plants between Brassica napus L. cv. Kalinovsky and Orychophragmus violaceus (L.) O.E. Shulz. were obtained as a result of somatic hybridization experiments. The hybrids inherited PPT resistance from O. violaceus plants which were previously transformed by the vector containing Spm/dSpm Zea mays transposon system with bar gene located within the nonautonomous transposon. The obtained plants had intermediate morphology. Their hybrid nature has been confirmed by isozyme (esterase and amilase activity) and PCR (bar, gus, Spm/dSpm integration) analyses. The hybrids combined B. napus plastom and O. violaceus mithochondrion that was revealed by PCR-RFLP. The hybrid plants might be included to rapeseed breeding programme after examination of their oil quality as well as to chloroplast transformation experiments that is still urgent for B. napus. PMID:17427411

  7. Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72.

    PubMed

    Manivasagan, Panchanathan; Sivasankar, Palaniappan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-08-01

    The isolation, optimization, purification and characterization of an extracellular polysaccharide (EPS) from a marine actinobacterium, Streptomyces violaceus MM72 were investigated. Medium composition and culture conditions for the EPS production by S. violaceus MM72 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of EPS production and central composite design used to optimize the concentration of the three significant variables: glucose, tryptone and NaCl. The preferable culture conditions for EPS production were pH 7.0, temperature 35°C and NaCl concentration 2.0% for 120h with fructose and yeast extract as best carbon and nitrogen sources, respectively. The results showed that S. violaceus MM72 produced a kind of EPS having molecular weight of 8.96×10(5)Da. In addition, the EPS showed strong DPPH radical-scavenging activity, superoxide scavenging and metal chelating activities while moderate inhibition of lipid peroxidation and reducing activities determined in this study. These results showed the great potential of EPS produced by S. violaceus MM72 could be used in industry in place of synthetic compounds. The EPS from S. violaceus MM72 may be a new source of natural antioxidants with potential value for health, food and therapeutics. PMID:23597709

  8. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Timmermann, Tania; Lardies, Marco A

    2014-12-15

    Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century. PMID:25394627

  9. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.

    PubMed

    Iyer, E Siva Subramaniam; Gdor, Itay; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

    2015-02-12

    The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR. Gloeobacter rhodopsin (GR), exhibiting particularly close homology to XR, has been shown to attach SX, and fluorescence measurements suggest SX can function as a light harvesting (LH) antenna in GR as well. In this study, we test this suggestion in real time using ultrafast transient absorption. Results show that energy transfer indeed occurs from S2 of SX to retinal in the GR-SX composite with an efficiency of ∼40%, even higher than that in XR. This validates the earlier fluorescence study, and supports the notion that many microbial retinal proteins use carotenoid antennae to harvest light. PMID:25144664

  10. Production and characterization of intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus and their backcrossing progenies.

    PubMed

    Zhao, Zhi-gang; Hu, Ting-ting; Ge, Xian-Hong; Du, Xue-zhu; Ding, Li; Li, Zai-yun

    2008-10-01

    Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2n = 38) + Orychophragmus violaceus (2n = 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2n = 51-67) with a range of 19-28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC(1) plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC(1) plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2n = 41-54) with 9-16 chromosomes from O. violaceus. BC(2) plants showed segregations for female fertility, leaf shape and still some chromosome variation (2n = 39-43) with 2-5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC(2) plants, monosomic addition lines (2n = 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. PMID:18626647

  11. Historical ecology meets conservation and evolutionary genetics: a secondary contact zone between Carabus violaceus (Coleoptera, Carabidae) populations inhabiting ancient and recent woodlands in north-western Germany

    PubMed Central

    Matern, Andrea; Drees, Claudia; Härdtle, Werner; von Oheimb, Goddert; Assmann, Thorsten

    2011-01-01

    Abstract Only very few cases have documented that an increase in connectivity after a period of fragmentation in ecological time has had an effect on the distribution, genetic structure and morphology of stenotopic species. In this study we present an example of clinal variability in a woodland ground beetle as a result of changes in the connectivity of a landscape during the last two centuries. The study area hosts both the nominate form Carabus violaceus s. str. and the subspecies Carabus violaceus purpurascens, which is ranked as a distinct species by some authors. We studied 12 Carabus violaceus populations from a 30 km transect of ancient and recent forests in north-western Germany. We analyzed three polymorphic enzyme loci, classified the elytron sculpture and measured the shape of the aedeagus tip of the specimens. Carabus violaceus showed secondary gradients both in allozyme markers and morphometric characters in our study area. A genetic differentiation of 16% between the populations is high but lies within the range of intraspecific variability in habitat specialists of the genus Carabus. Populations had no significant deficit of heterozygotes. We found many hybrid populations in terms of morphological properties. This study highlights the conservation value of ancient woodland and the consequences of landscape connectivity and defragmentation on the genetic setting of a ground beetle. Moreover, it shows that differences in the external shape of male genitalia do not prevent gene flow within the genus Carabus. Thus, the establishment of species status should not exclusively be based on this property. PMID:21738433

  12. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus

    PubMed Central

    2014-01-01

    Background The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. Results The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. Conclusions DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus. PMID:24456102

  13. Synergistic allelochemicals from a freshwater cyanobacterium

    PubMed Central

    Leo, Pedro N.; Pereira, Alban R.; Liu, Wei-Ting; Ng, Julio; Pevzner, Pavel A.; Dorrestein, Pieter C.; Knig, Gabriele M.; Vasconcelos, Vitor M.; Gerwick, William H.

    2010-01-01

    The ability of cyanobacteria to produce complex secondary metabolites with potent biological activities has gathered considerable attention due to their potential therapeutic and agrochemical applications. However, the precise physiological or ecological roles played by a majority of these metabolites have remained elusive. Several studies have shown that cyanobacteria are able to interfere with other organisms in their communities through the release of compounds into the surrounding medium, a phenomenon usually referred to as allelopathy. Exudates from the freshwater cyanobacterium Oscillatoria sp. had previously been shown to inhibit the green microalga Chlorella vulgaris. In this study, we observed that maximal allelopathic activity is highest in early growth stages of the cyanobacterium, and this provided sufficient material for isolation and chemical characterization of active compounds that inhibited the growth of C. vulgaris. Using a bioassay-guided approach, we isolated and structurally characterized these metabolites as cyclic peptides containing several unusually modified amino acids that are found both in the cells and in the spent media of Oscillatoria sp. cultures. Strikingly, only the mixture of the two most abundant metabolites in the cells was active toward C. vulgaris. Synergism was also observed in a lung cancer cell cytotoxicity assay. The binary mixture inhibited other phytoplanktonic organisms, supporting a natural function of this synergistic mixture of metabolites as allelochemicals. PMID:20534563

  14. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    NASA Astrophysics Data System (ADS)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the ? 15N and ? 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest ? 15N and highest ? 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a ? 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low ? 15N and high ? 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  15. Phylogeography of the Thermophilic Cyanobacterium Mastigocladus laminosus?

    PubMed Central

    Miller, Scott R.; Castenholz, Richard W.; Pedersen, Deana

    2007-01-01

    We have taken a phylogeographic approach to investigate the demographic and evolutionary processes that have shaped the geographic patterns of genetic diversity for a sample of isolates of the cosmopolitan thermophilic cyanobacterial Mastigocladus laminosus morphotype collected from throughout most of its range. Although M. laminosus is found in thermal areas throughout the world, our observation that populations are typically genetically differentiated on local geographic scales suggests the existence of dispersal barriers, a conclusion corroborated by evidence for genetic isolation by distance. Genealogies inferred using nitrogen metabolism gene sequence data suggest that a significant amount of the extant global diversity of M. laminosus can be traced back to a common ancestor associated with the western North American hot spot currently located below Yellowstone National Park. Estimated intragenic recombination rates are comparable to those of pathogenic bacteria known for their capacity to exchange DNA, indicating that genetic exchange has played an important role in generating novel variation during M. laminosus diversification. Selection has constrained protein changes at loci involved in the assimilation of both dinitrogen and nitrate, suggesting the historic use of both nitrogen sources in this heterocystous cyanobacterium. Lineage-specific differences in thermal performance were also observed. PMID:17557856

  16. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica.

    PubMed Central

    Cohen, Y; Padan, E; Shilo, M

    1975-01-01

    An isolate from H2S-rich layers of the Solar Lake, the cyanobacterium Oscillatoria limnetica, exhibits both oxygenic and anoxygenic photosynthesis. It can use Na2S as an electron donor for CO2 photoassimilation (photosystem I supplies the energy) in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 700-nm light. A stoichiometric ratio of approximately 2 is observed between the Na2S consumed and the photoassimilated CO2. The anoxygenic phototrophic capability of this cyanobacterium explains its growth in nature in high sulfide concentrations and indicates a selective advantage. PMID:808537

  17. Two tuf genes in the cyanobacterium Spirulina platensis.

    PubMed Central

    Tiboni, O; Di Pasquale, G; Ciferri, O

    1984-01-01

    Probes derived from the tufA gene of Escherichia coli have been utilized to detect homologous sequences on Spirulina platensis DNA. A 6-kilobase-pair fragment of S. platensis DNA appears to contain two sequences homologous to the E. coli gene. Thus, as reported for gram-negative bacteria, the cyanobacterium presumably contains two tuf genes. Images PMID:6330044

  18. A primitive cyanobacterium as pioneer microorganism for terraforming Mars.

    PubMed

    Friedmann, E I; Ocampo-Friedmann, R

    1995-03-01

    The primitive characteristics of the cyanobacterium Chroococcidiopsis suggest that it represents a very ancient type of the group. Its morphology is simple but shows a wide range of variability, and it resembles certain Proterozoic microfossils. Chroococcidiopsis is probably the most desiccation-resistant cyanobacterium, the sole photosynthetic organism in extreme arid habitats. It is also present in a wide range of other extreme environments, from Antarctic rocks to thermal springs and hypersaline habitats, but it is unable to compete with more specialized organisms. Genetic evidence suggests that all forms belong to a single species. Its remarkable tolerance of environmental extremes makes Chroococcidiopsis a prime candidate for use as a pioneer photosynthetic microorganism for terraforming of Mars. The hypolithic microbial growth form (which lives under stones of a desert pavement) could be used as a model for development of technologies for large-scale Martian farming. PMID:11539232

  19. Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1.

    PubMed

    Everroad, R Craig; Woebken, Dagmar; Singer, Steven W; Burow, Luke C; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Detweiler, Angela; Prufert-Bebout, Leslie; Pett-Ridge, Jennifer

    2013-01-01

    The nonheterocystous filamentous cyanobacterium strain ESFC-1 has recently been isolated from a marine microbial mat system, where it was identified as belonging to a recently discovered lineage of active nitrogen-fixing microorganisms. Here, we report the draft genome sequence of this isolate. The assembly consists of 3 scaffolds and contains 5,632,035 bp with a GC content of 46.5%. PMID:23908279

  20. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium.

    PubMed

    Richardson, Laurie L; Stani?, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R

    2014-01-01

    Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch's Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

  1. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium

    PubMed Central

    Richardson, Laurie L.; Stanić, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R.

    2014-01-01

    Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

  2. Draft Genome Sequence of Exopolysaccharide-Producing Cyanobacterium Aphanocapsa montana BDHKU 210001

    PubMed Central

    Bhattacharyya, Sourav; Chandrababunaidu, Mathu Malar; Sen, Deeya; Panda, Arijit; Ghorai, Arpita; Bhan, Sushma; Sanghi, Neha

    2015-01-01

    We report for the first time the draft genome sequence of Aphanocapsa montana BDHKU 210001, a halotolerant cyanobacterium isolated from India. This is a marine exopolysaccharide (EPS)-producing cyanobacterium. The genome of this species is assembled into 11.50 million bases, with 296 scaffolds carrying approximately 7,296 protein-coding genes. PMID:25744997

  3. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  4. Photosynthetic production of glycerol by a recombinant cyanobacterium.

    PubMed

    Savakis, Philipp; Tan, Xiaoming; Du, Wei; Branco dos Santos, Filipe; Lu, Xuefeng; Hellingwerf, Klaas J

    2015-02-10

    Cyanobacteria are prokaryotic organisms capable of oxygenic photosynthesis. Glycerol is an important commodity chemical. Introduction of phosphoglycerol phosphatase 2 from Saccharomyces cerevisiae into the model cyanobacterium Synechocystis sp. PCC6803 resulted in a mutant strain that produced a considerable amount of glycerol from light, water and COPhotosynthetic production . Mild salt stress (200 mM NaCl) on the cells led to an increase of the extracellular glycerol concentration of more than 20%. Under these conditions the mutant accumulated glycerol to an extracellular concentration of 14.3 mM after 17 days of culturing. PMID:25541461

  5. Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium.

    PubMed

    Tang, Jiao Wen; Wu, Qing Yu; Hao, Hong Wei; Chen, Yifang; Wu, Minsheng

    2004-07-15

    Ultrasonic signals propagated through medium were directly applied to unicellular cyanobacterium cell surfaces to investigate the biological effects induced by ultrasound. The gas-vacuolate cyanobacterium Microcystis aeruginosa and the gas-vacuole negative cyanobacterium Synechococcus PCC 7942 responded differently to ultrasound. When M. aeruginosa was irradiated by 1.7 MHz ultrasound at 0.6 W cm(-2) every day, it showed a decrease of nearly 65% in biomass increment, and this group's generation time increased twice as much as the control. While Synechococcus culture irradiated every day still grew as fast as the control, and its final biomass was as much as the control. The value of the electric conductivity change (Deltasigma) sharply increased in Microcystis suspension during the exposure process, which revealed more ultrasonic cavitation yield in liquid related to the gas-vacuolate cyanobacteria. The relative malondialdehyde (MDA) content, a quantitative indicator of lipid peroxidation, increased by 65% in Microcystis cells and 9% in Synechoccus cells after ultrasonic irradiation. Moreover, the membrane permeability, quantified by measuring the relative amount of electrolyte leaking out of cells, increased to more than 60% in the Microcystis cells. The results indicated that Microcystis cells were susceptible to ultrasonic stress. According to Rayleigh-Plesset's bubble activation theory, 1.7 MHz ultrasound approached the eigenfrequency of gas-vacuolate cells. The present investigation suggested the importance of the cavitational effect relative to intracellular gas-vacuoles in the loss of cell viability. In summary, 1.7 MHz ultrasonic irradiation was effective in preventing water-bloom forming cyanobacteria from growing rapidly due to changes in the functioning and integrity of cellular and subcellular structures. PMID:15261016

  6. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  7. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 Several high Space Environment Tolerances for ``Tanpopo'' Mission

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the Tanpopo mission in Japan Experimental Module of the International Space Station.

  8. Mssbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    NASA Astrophysics Data System (ADS)

    Ambe, Shizuko

    1990-07-01

    Mssbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mssbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  9. Two New Lyngbyatoxin Derivatives from the Cyanobacterium, Moorea producens

    PubMed Central

    Jiang, Weina; Tan, Satoshi; Hanaki, Yusuke; Irie, Kazuhiro; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

    2014-01-01

    The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as swimmers itch). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase C? (PKC?)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway. PMID:25470181

  10. Interaction effects of mercury-pesticide combinations towards a cyanobacterium

    SciTech Connect

    Stratton, G.W.

    1985-05-01

    The present study supplies interaction data for combinations of mercuric ion (supplied as mercuric chloride), atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and permethrin (3-phenoxybenzyl-(1RS)-cis,trans-3-(2,2-dichloro-vinyl)-2,2-dimethyl cyclopropanecarboxylate) when tested towards growth of the cyanobacterium (blue-green alga) Anabaena inaequalis. Mercury is one of the most important heavy metal pollutants and has been widely used in toxicology research. Atrazine is the most heavily used pesticide in the United States and its residues are widely distributed in terrestrial and aquatic ecosystems. Permethrin is an important insecticide with expanding markets and is presently being evaluated for its environmental impact. A. inaequalis has been used extensively in this laboratory in previous interaction studies.

  11. Outdoor biophotolytic system using the cyanobacterium anabaena cylindrica B629

    SciTech Connect

    Smith, G.D.; Lambert, G.R.

    1981-01-01

    The cyanobacterium Anabaena cylindrica B629 was suspended in small glass beads and incubated in a gas-tight glass vessel outdoors under a gas atmosphere comprising carbon monoxide (0.2%), acetylene (5%), oxygen (6.5%), and nitrogen. The solution phase initially contained sodium bicarbonate (10mM) at pH 7. Under these conditions the organism continuously produced hydrogen gas for over three weeks. The temperature of the culture was maintained below 30 /degree/C and the minimum night temperatures were recorded. The vessel was covered by a shadecloth, which reduced the natural illumination by approximately 70%. The system is an alternative to those requiring the strict absence of oxygen and little nitrogen, and requires virtually no attention during the incubation period. 18 refs.

  12. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  13. Characterization of corrinoid compounds from edible cyanobacterium Nostochopsis sp.

    PubMed

    Hashimoto, Eri; Yabuta, Yukinori; Takenaka, Shigeo; Yamaguchi, Yuji; Takenaka, Hiroyuki; Watanabe, Fumio

    2012-01-01

    Vitamin B?? content of an edible cyanobacterium, Nostochopsis sp. was determined to be 140.616.2 ?g/100 g dry weight by a microbiological method. To evaluate whether the Nostochopsis cells contain vitamin B?? or inactive corrinoid compounds, corrinoid compounds were purified from the cells and then identified as pseudovitamin B?? (97.411.8 ?g/100 g dry weight) and vitamin B?? (43.26.0 ?g/100 g dry weight) on the basis of silica gel 60 TLC bioautograms and LC/ESI-MS/MS chromatograms. Vitamin B?? content was significantly increased in the Nostochopsis cells (254.817.6 ?g/100 g dry weight) grown in the vitamin B??-supplemented medium. PMID:23007067

  14. Two new lyngbyatoxin derivatives from the Cyanobacterium, Moorea producens.

    PubMed

    Jiang, Weina; Tan, Satoshi; Hanaki, Yusuke; Irie, Kazuhiro; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

    2014-12-01

    The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as "swimmer's itch"). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase Cδ (PKCδ)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway. PMID:25470181

  15. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus

    PubMed Central

    Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.

    2014-01-01

    The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversityboth in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791

  16. A New Lyngbyatoxin from the Hawaiian Cyanobacterium Moorea producens

    PubMed Central

    Jiang, Weina; Zhou, Wei; Uchida, Hajime; Kikumori, Masayuki; Irie, Kazuhiro; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

    2014-01-01

    Lyngbyatoxin A from the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) is known as the causative agent of “swimmer’s itch” with its highly inflammatory effect. A new toxic compound was isolated along with lyngbyatoxin A from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies revealed the isolated compound had the same planar structure with that of lyngbyatoxin A. The results of optical rotation and CD spectra indicated that the compound was a new lyngbyatoxin A derivative, 12-epi-lyngbyatoxin A (1). While 12-epi-lyngbyatoxin A showed comparable toxicities with lyngbyatoxin A in cytotoxicity and crustacean lethality tests, it showed more than 100 times lower affinity for protein kinase Cδ (PKCδ) using the PKCδ-C1B peptide when compared to lyngbyatoxin A. PMID:24824022

  17. Lipopeptides from the Tropical Marine Cyanobacterium Symploca sp.

    PubMed Central

    2015-01-01

    A collection of the tropical marine cyanobacterium Symploca sp., collected near Kimbe Bay, Papua New Guinea, previously yielded several new metabolites including kimbeamides AC, kimbelactone A, and tasihalide C. Investigations into a more polar cytotoxic fraction yielded three new lipopeptides, tasiamides CE (13). The planar structures were deduced by 2D NMR spectroscopy and tandem mass spectrometry, and their absolute configurations were determined by a combination of Marfeys and chiral-phase GC-MS analysis. These new metabolites are similar to several previously isolated compounds, including tasiamide (4), grassystatins (5, 6), and symplocin A, all of which were isolated from similar filamentous marine cyanobacteria. PMID:24588245

  18. Comparative amperometric study of uptake hydrogenase and hydrogen photoproduction activities between heterocystous cyanobacterium Anabaena cylindrica B629 and nonheterocystous cyanobacterium Oscillatoria sp. strain Miami BG7

    SciTech Connect

    Kumazawa, S.; Mitsui, A.

    1985-08-01

    Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N/sub 2/ as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact that the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O/sub 2/ evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O/sub 2/ on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7. 32 references, 5 figures.

  19. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation

    PubMed Central

    Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA). PMID:25953174

  20. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    SciTech Connect

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  1. Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon.

    PubMed Central

    Cobley, J G; Miranda, R D

    1983-01-01

    The chromatically adapting cyanobacterium, Fremyella diplosiphon, when grown in cool white fluorescent light, contains phycoerythrin as its predominant phycobiliprotein. When grown on agar plates with cool white illumination, mutant colonies deficient or devoid of phycoerythrin can be visibly distinguished from the wild type. A total of 25 anomalously pigmented strains were isolated and examined for their ability to chromatically adapt. Based on absorption spectra of cell extracts and on fluorescence emission spectra of intact filaments, we assigned each mutant to one of three classes. In green mutants (16 strains), the photoinduction of phycoerythrin synthesis by green light was lost or impaired, whereas the photorepression of phycocyanin synthesis by green light still functioned as in the wild type. In blue mutants (eight strains), both the ability to photoinduce phycoerythrin synthesis and the ability to photorepress phycocyanin synthesis were lost or impaired. Filaments of blue mutants exhibited a high fluorescence emission at 660 nm. A black mutant (one strain) exhibited partial induction of phycoerythrin and partial repression of phycocyanin in both red and cool white light. From the data, we suggest that in information transduction for chromatic adaptation, early events are common to both phycoerythrin and phycocyanin regulation and that blue mutants possess lesions in these early events. The lesions in green mutants occur in a subsequent branch of the information transduction pathway which is specific for phycoerythrin photoinduction. PMID:6402499

  2. Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis.

    PubMed

    Beltran, E C; Neilan, B A

    2000-10-01

    Blooms of the cyanobacterium Anabaena circinalis are a major worldwide problem due to their production of a range of toxins, in particular the neurotoxins anatoxin-a and paralytic shellfish poisons (PSPs). Although there is a worldwide distribution of A. circinalis, there is a geographical segregation of neurotoxin production. American and European isolates of A. circinalis produce only anatoxin-a, while Australian isolates exclusively produce PSPs. The reason for this geographical segregation of neurotoxin production by A. circinalis is unknown. The phylogenetic structure of A. circinalis was determined by analyzing 16S rRNA gene sequences. A. circinalis was found to form a monophyletic group of international distribution. However, the PSP- and non-PSP-producing A. circinalis formed two distinct 16S rRNA gene clusters. A molecular probe was designed, allowing the identification of A. circinalis from cultured and uncultured environmental samples. In addition, probes targeting the predominantly PSP-producing or non-PSP-producing clusters were designed for the characterization of A. circinalis isolates as potential PSP producers. PMID:11010900

  3. Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica.

    PubMed

    Heng, Ri-Liang; Lee, Euntaek; Pilon, Laurent

    2014-04-01

    This study presents experimental measurements of the absorption and scattering cross sections and the spectral complex index of refraction of filamentous cyanobacteria. Filamentous heterocystous cyanobacterium Anabaena cylindrica was chosen as a model organism. Its filaments consisted of long chains of polydisperse cells. Their average mass scattering and absorption cross sections were measured from 400 to 750 nm at four different times during their batch growth in medium BG-11(-N) under 3000 lux of white fluorescent light. The effective real (or refraction index) and imaginary (or absorption index) parts of the complex index of refraction were retrieved using an inverse method based on a genetic algorithm. The microorganisms were modeled as infinitely long and randomly oriented volume-equivalent cylinders. The absorption index featured peaks corresponding to chlorophyll a (Chl a) at 436 and 676 nm and phycocyanin (PCCN) at 630 nm and a shoulder around 480 nm, corresponding to photoprotective carotenoids. The absorption peaks of Chl a and PCCN concentrations increased and the shoulder due to carotenoids decreased in response to photolimitation caused by biomass growth. Subsequent nitrogen limitation caused the PCCN absorption peak to decrease significantly due to degradation of PCCN as an endogenous source of nitrogen for nitrogenase maintenance and synthesis, as confirmed by increasing heterocyst differentiation. The results can be used for predicting and optimizing light transfer in photobioreactors for wastewater treatment and ammonia or biofuel production. PMID:24695147

  4. Purification and properties of nitrogenase from the cyanobacterium, Anabaena cylindrica.

    PubMed

    Hallenbeck, P C; Kostel, P J; Benemann

    1979-07-01

    The nitrogenase complex was isolated from nitrogen-starved cultures of Anabaema cylindrica. Sodium dithionite, photochemically reduced ferredoxin, and NADPH were found to be effective election donors to nitro genase in crude extracts whereas hydrogen and pyruvate were not. The Km for acetylene in vivo is ten-fold higher than the Km in vitro, whereas this pattern does not hold for the non-heterocystous cyanobacterium, Plectonema boryanum. This indicates that at least one mechanism of oxygen protection in vivo involves a gas diffusion barrier presented by the heterocyst cell wall. The Mo-Fe component was purified to homogeneity. Its molecular weight (220,000), subunit composition, isoelectric point (4.8), Mo, Fe, and S2- content (2, 20 and 20 mol/mol component), and amino acid composition indicate that this component has similar properties to Mo-Fe-containing components isolated from other bacterial sources. The isolated components from A. cylindrica were found to cross-react, to varying degrees, with components isolated from Azotobacter vinelandii, Rhodospirillum rubrum, and P. boryanum. PMID:111934

  5. Multiphase calcification associated with the atmophytic cyanobacterium Scytonema julianum

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2014-11-01

    Scytonema julianum, which is an atmophytic cyanobacterium that lives in small clusters in shaded vadose settings throughout the world, is prone to rapid calcification. Specimens found on cavity walls in an inactive spring tower located in Shiqiang (Stone Wall) in China and cavity walls in a breccia that fills sinkholes in dolostones of the Cayman Formation (Miocene) on Grand Cayman are morphologically identical. The microbes (4-11 ?m diameter) are encased with thick, well-developed calcified sheaths with external diameters of 11 to 25 ?m, which developed through the sequential precipitation of amorphous CaCO3 (ACC), acicular calcite crystals, triradiate calcite crystals, and dendrite calcite crystals. The paragenetic relationship of these precipitates to the skeletal rhombic crystals that cover some specimens is unknown. Precipitation probably took place in the extracellular polymeric substances (EPS) that covered the microbes when they were alive. Critically, the type of crystal evident on the surface of the sheath depends on the thickness of the calcified sheath, which is in accord with the sequential development of the different crystal forms. Available evidence indicates that precipitation was largely "microbially influenced" rather than "environment influenced" and also demonstrates that crystals commonly morphed from one crystal form into another as precipitation progressed. There is, for example, clear evidence that the dendrite crystals developed from the triradiate crystals. S. julianum can play a significant role in the development of microbialites in vadose settings by acting as nuclei for CaCO3 precipitation.

  6. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis.

    PubMed

    Fang, Linchuan; Zhou, Chen; Cai, Peng; Chen, Wenli; Rong, Xingmin; Dai, Ke; Liang, Wei; Gu, Ji-Dong; Huang, Qiaoyun

    2011-06-15

    Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH(4)NO(3), respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. PMID:21514723

  7. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806.

    PubMed

    Martin, C; Oberer, L; Ino, T; Knig, W A; Busch, M; Weckesser, J

    1993-10-01

    Four depsipeptides (peptide lactones), called cyanopeptolins A, B, C and D, have been isolated from the cyanobacterium Microcystis sp. PCC 7806. They possess identical structures consisting of cyclic L-glutamic acid-gamma-aldehyde, L-leucine, N-methyl-phenylalanine, L-valine, L-threonine, L-aspartic acid, hexanoic acid and a variable basic amino acid. This variable amino acid can be L-arginine (cyanopeptolin A), L-lysine (cyanopeptolin B), N epsilon-methyl-L-lysine (cyanopeptolin C) and N epsilon,N epsilon-dimethyl-L-lysine (cyanopeptolin D), respectively. The L-glutamic acid-gamma-aldehyde and the amino group of L-leucine form an unusual 3-amino-6-hydroxy-2-oxo-1-piperidine system. L-Threonine is connected to L-valine via its hydroxy-group forming an ester bonding. The hexanoic acid residue is attached to the N-terminal aspartic acid residue which is not a part of the ring structure. The isolation procedure of the four cyanopeptolins as well as structure elucidation are described. Amino acid analysis, GC/MS analysis, FAB-MS and several NMR techniques were used to reveal the structures. PMID:8244882

  8. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    PubMed Central

    2011-01-01

    Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs. PMID:21914201

  9. Draft Genome Sequence of Filamentous Marine Cyanobacterium Lyngbya confervoides Strain BDU141951

    PubMed Central

    Chandrababunaidu, Mathu Malar; Sen, Diya

    2015-01-01

    Lyngbya confervoides strain BDU141951 is a fast-growing, unicellular, marine, nonheterocystous cyanobacterium forming long unbranched filaments inside sheaths. Here, we report the draft genome assembly of Lyngbya confervoides BDU141951 for the first time. The genome size is 8,799,693bp and has 6,093 putative protein-coding genes assembled into 298 scaffolds. PMID:25745003

  10. Deciphering the Genome Sequences of the Hydrophobic Cyanobacterium Scytonema tolypothrichoides VB-61278

    PubMed Central

    Das, Abhishek; Panda, Arijit; Singh, Deeksha; Chandrababunaidu, Mathu Malar; Mishra, Gyan Prakash; Bhan, Sushma

    2015-01-01

    Scytonema tolypothrichoides VB-61278, a terrestrial cyanobacterium, can be exploited to produce commercially important products. Here, we report for the first time a 10-Mb draft genome assembly of S. tolypothrichoides VB-61278, with 214 scaffolds and 7,148 putative protein-coding genes. PMID:25838486

  11. Jahanyne, an apoptosis-inducing lipopeptide from the marine cyanobacterium Lyngbya sp.

    PubMed

    Iwasaki, Arihiro; Ohno, Osamu; Sumimoto, Shinpei; Ogawa, Hidetoshi; Nguyen, Kim Anh; Suenaga, Kiyotake

    2015-02-01

    An acetylene-containing lipopeptide, jahanyne, was isolated from the marine cyanobacterium Lyngbya sp. Its gross structure was established by spectroscopic analyses, and the absolute configuration was clarified based on a combination of chiral HPLC analyses, spectroscopic analyses, and derivatization reactions. Jahanyne significantly inhibited the growth of human cancer cells and induced apoptosis in HeLa cells. PMID:25582897

  12. Draft genome sequence of a novel culturable marine chroococcalean cyanobacterium from the South atlantic ocean.

    PubMed

    Rigonato, Janaina; Alvarenga, Danillo O; Branco, Luis H Z; Varani, Alessandro M; Brandini, Frederico P; Fiore, Marli F

    2015-01-01

    The novel chroococcalean cyanobacterium strain CENA595 was isolated from the deep chlorophyll maximum layer of the continental shelf of the South Atlantic Ocean. Here, we report the draft genome sequence for this strain, consisting of 60 contigs containing a total of 5,265,703 bp and 3,276 putative protein-coding genes. PMID:25908150

  13. Combining immunolabeling and catalyzed reporter deposition to detect intracellular saxitoxin in a cyanobacterium.

    PubMed

    Piccini, Claudia; Fabre, Amelia; Lacerot, Gissell; Bonilla, Sylvia

    2015-10-01

    We combined the use of polyclonal antibodies against saxitoxin with catalyzed reporter deposition to detect production of saxitoxin by the cyanobacterium Cylindrospermopsis raciborskii. The procedure is simple, allows detection of intracellular saxitoxin in cyanobacteria filaments by confocal laser microscopy and is a promising tool to study toxin production and metabolism. PMID:26164741

  14. Isolation of an Extremophilic Cyanobacterium Using Low Earth Orbit as a Selection Factor

    NASA Astrophysics Data System (ADS)

    Olsson-Francis, K.; de La Torre, R.; Cockell, C. S.

    2010-04-01

    A rock-dwelling community from cliffs in Beer, UK was exposed to 10 days of LEO as part of the BIOPAN VI mission. An extremophilic cyanobacterium, which was identified as a member of the order Chroococcales was isolated after exposure.

  15. Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.

    SciTech Connect

    Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

    2014-01-02

    The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

  16. Draft Genome Sequence of the Brazilian Toxic Bloom-Forming Cyanobacterium Microcystis aeruginosa Strain SPC777

    PubMed Central

    Alvarenga, Danillo O.; Varani, Alessandro M.; Hoff-Risseti, Caroline; Crespim, Elaine; Ramos, Rommel T. J.; Silva, Artur; Schaker, Patricia D. C.; Heck, Karina; Rigonato, Janaina; Schneider, Maria Paula C.

    2013-01-01

    Microcystis aeruginosa strain SPC777 is an important toxin-producing cyanobacterium, isolated from a water bloom of the Billings reservoir (So Paulo State, Brazil). Here, we report the draft genome sequence and initial findings from a preliminary analysis of strain SPC777, including several gene clusters involved in nonribosomal and ribosomal synthesis of secondary metabolites. PMID:23908289

  17. TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803

    SciTech Connect

    Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

    2006-09-01

    The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorption in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in cells with very low contrast produced principally by electron-dense manganese precipitates. Thin sections were imaged and analyzed using JEOL 2010 HRTEM coupled with EDS (Oxford) and EELS (Gatan) systems. Manganese uptake was measured using a colorimetric method. Cells incubated with Mn solutions were able to take up about 150uM of Mn(II) or Mn(IV) in 48 hours. The predominant accumulation of Mn was associated with the outer membrane for both Mn substrates. Massive deposits seemed to be related in a large extent to the external polymeric substances (EPS) as shown in Fig. 1A-C. Elemental analyses of these precipitates revealed a signal consistent with manganese phosphate. The potential of EPS such as polysaccharides for biosorption or reduction of metals has been described [4], however, the fact that Mn bound to the EPS withstood multiple washes during TEM sample processing is remarkable. From our work with Gram-negative soil bacteria, we hypothesized that the periplasm, an area between the outer and plasma membrane, might be the storage space for internal Mn in pool B. This phenomenon was not observed at any time point for either culture exposed to the Mn. Instead, thin layers of Mn deposits were often found lining the outer and plasma membrane (F). In the MnCl2 solution only, we also observed fine deposits of Mn precipitates along the thylakoid membranes deep inside the cells (Fig. E). Localization of Mn precipitation sites in Synechocystis has important implications for better understanding of the Mn transport and storage processes within cyanobacterial cells, as well as of metal precipitation, solubilization and cycling in the environment.

  18. Bouillonamide: a mixed polyketide-peptide cytotoxin from the marine cyanobacterium Moorea bouillonii.

    PubMed

    Tan, Lik Tong; Okino, Tatsufumi; Gerwick, William H

    2013-08-01

    The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of α-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha) residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha). Absolute stereochemistry of the α-amino acid units in bouillonamide was determined mainly by Marfey's analysis. Compound 1 exhibited mild toxicity with IC50's of 6.0 µM against the neuron 2a mouse neuroblastoma cells. PMID:23966034

  19. Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan

    PubMed Central

    Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

    2014-01-01

    Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20 m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

  20. Osmoregulatory role of alanine during salt stress in the nitrogen fixing cyanobacterium Anabaena sp. 287.

    PubMed

    Thomas, S P; Shanmugasundaram, S

    1991-01-01

    The freshwater cyanobacterium, Anabaena sp. 287 exhibited enhanced tolerance to NaCl in the presence of ammonium, nitrate, and the amino acids, alanine, valine, proline, lysine, histidine, methionine and aspartic acid. Apart from providing permanent protection to the growth during stress, like NO3- and NH4+, alanine also relieved the initial salt mediated inhibition on enzymes involved in nitrogen fixation, photosynthesis and respiration. The accumulation of sugars was observed only during molecular nitrogen growth in the presence of salt. The cellular total nitrogen content was inversely proportional to the total sugar concentration. All nitrogenous substances which supported growth in the presence of salt curtailed the Na+ influx. Sodium chloride concentration-dependent [3H]D-alanine uptake in this cyanobacterium favours the conclusion that alanine acts as an osmoregulator along with sugars. PMID:1677806

  1. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    PubMed Central

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y.

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique. PMID:26500619

  2. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.

    PubMed

    de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Ramos, V; Vasconcelos, V M; Vasconcelos, M Teresa S D

    2014-04-01

    Pentachlorophenol (PCP) effects on a strain of the cyanobacterium Microcystis aeruginosa were investigated at laboratory scale. This is the first systematic ecotoxicity study of the effects of PCP on an aquatic cyanobacterium. The microalga Chlorella vulgaris was studied in the same conditions as the cyanobacterium, in order to compare the PCP toxicity and its removal by the species. The cells were exposed to environmental levels of PCP during 10 days, in Fraquil culture medium, at nominal concentrations from 0.01 to 1000 μg L(-1), to the cyanobacterium, and 0.01 to 5000 μg L(-1), to the microalga. Growth was assessed by area under growth curve (AUC, optical density vs time) and chlorophyll a content (chla). The toxicity profiles of the two species were very different. The calculated effective concentrations EC20 and EC50 were much lower to M. aeruginosa, and its growth inhibition expressed by chla was concentration-dependent while by AUC was not concentration-dependent. The cells might continue to divide even with lower levels of chla. The number of C. vulgaris cells decreased with the PCP concentration without major impact on the chla. The effect of PCP on M. aeruginosa is hormetic: every concentration studied was toxic except 1 μg L(-1), which promoted its growth. The legal limit of PCP set by the European Union for surface waters (1 μg L(-1)) should be reconsidered since a toxic cyanobacteria bloom might occur. The study of the removal of PCP from the culture medium by the two species is an additional novelty of this work. M. aeruginosa could remove part of the PCP from the medium, at concentrations where toxic effects were observed, while C. vulgaris stabilized it. PMID:24462928

  3. Eucapsitrione, an Anti-Mycobacterium tuberculosis Anthraquinone Derivative from the Cultured Freshwater Cyanobacterium Eucapsis sp.

    PubMed Central

    Sturdy, Megan; Krunic, Aleksej; Cho, Sanghyun; Franzblau, Scott; Orjala, Jimmy

    2010-01-01

    Eucapsitrione (1), an anthraquinone derivative with an indeno-anthracene-trione skeleton, was isolated from the cyanobacterium Eucapsis sp. (UTEX 1519) by bioassay-guided fractionation. The chemical structure was determined by analyzing MS and 1D and 2D NMR spectroscopic data. Eucapsitrione (1) showed anti-Mycobacterium tuberculosis activity in the microplate Alamar blue assay and low-oxygen-recovery assay with MIC values of 3.1 and 6.4 M, respectively. PMID:20795743

  4. Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803

    SciTech Connect

    Flores, E.; Schmetterer, G.

    1986-05-01

    Fructose was bactericidal for the cyanobacterium Synechocystis sp. strain PCC 6803. Each of ten independently isolated fructose-resistant mutants had an alteration of the glucose transport system, measured as uptake of glucose or of 3-0-methyl-D-glucose. In the presence of the analog, the wild-type Synechocystis strain was protected against fructose. Two mutants altered in photoautotrophy were also isolated.

  5. Draft Genome Assembly of a Filamentous Euendolithic (True Boring) Cyanobacterium, Mastigocoleus testarum Strain BC008

    PubMed Central

    Guida, Brandon S.

    2016-01-01

    Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3. PMID:26823575

  6. Draft Genome Sequence of the Terrestrial Cyanobacterium Scytonema millei VB511283, Isolated from Eastern India

    PubMed Central

    Sen, Diya; Chandrababunaidu, Mathu Malar; Singh, Deeksha; Sanghi, Neha; Ghorai, Arpita; Mishra, Gyan Prakash; Madduluri, Madhavi

    2015-01-01

    We report here the draft genome sequence of Scytonema millei VB511283, a cyanobacterium isolated from biofilms on the exterior of stone monuments in Santiniketan, eastern India. The draft genome is 11,627,246 bp long (11.63 Mb), with 118 scaffolds. About 9,011 protein-coding genes, 117 tRNAs, and 12 rRNAs are predicted from this assembly. PMID:25744984

  7. Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp.

    PubMed

    Raveh, Avi; Carmeli, Shmuel

    2010-08-01

    A novel thiazole-containing cyclic peptide, aeruginazole A (1), was isolated from the cyanobacterium Microcystis sp. strain (IL-323), which was collected from a water reservoir near Kfar-Yehoshua, Valley of Armageddon, Israel. The planar structure of aeruginazole A was established using homonuclear and inverse-heteronuclear 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of the asymmetric centers was determined using Marfey's method. Aeruginazole A potently inhibited Bacillus subtilis. PMID:20614868

  8. Influence of Leaching Parameters on the Biological Removal of Uranium from Coal by a Filamentous Cyanobacterium

    PubMed Central

    Lorenz, Michael G.; Krumbein, Wolfgang E.

    1985-01-01

    Axenic cultures of the filamentous cyanobacterium LPP OL3 were incubated with samples of uraniumbearing coal from a German mining area. The influence of leaching parameters such as coal concentration (pulp density), initial biomass, particle size, temperature, and composition of the growth medium on the leaching of uranium from the ore by the cyanobacterial strain was studied. When low pulp densities were applied, the yield of biologically extracted uranium was optimal (reaching 96% at 1% [wt/vol] coal) and all released uranium was found in the culture liquid. Above 10% (wt/vol) coal in the medium, the amount of cell-bound uranium increased. Initial biomass concentration (protein content of the cultures) and particle size were not critical parameters of leaching by LPP OL3. However, temperature and composition of the growth medium profoundly influenced the leaching of uranium and growth of the cyanobacterium. The yield of leached uranium (at 10% [wt/vol] coal) could not be raised with a tank leaching apparatus. Also, coal ashes were not suitable substrates for the leaching of uranium by LPP OL3. In conclusion, the reactions of the cyanobacterium to variations in leaching parameters were different from reactions of acidic leaching organisms. Images PMID:16346934

  9. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes. PMID:25572501

  10. Ecological genomics of the newly discovered diazotrophic filamentous cyanobacterium ESFC-1

    NASA Astrophysics Data System (ADS)

    Everroad, C.; Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Lee, J.; Mayali, X.; Singer, S. W.; Stuart, R.; Weber, P. K.; Woebken, D.; Pett-Ridge, J.

    2014-12-01

    Cyanobacteria-dominated microbial mats played a key role in the evolution of the early Earth and provide a model for exploring the relationships between ecology, evolution and biogeochemistry. A recently described nonheterocystous filamentous cyanobacterium, strain ESFC-1, has been shown to be a major diazotroph year round in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16s RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence within the cyanobacteria. Consequently, the draft genome sequence of this strain has been determined. Here we report features of this genome, particularly as they relate to the ecological functions and capabilities of strain ESFC-1. One striking feature of this cyanobacterium is the apparent lack of a functional bi-directional hydrogenase typically expected to be found within a diazotroph; consortia- and culture-based experiments exploring the metabolic processes of ESFC-1 also indicate that this hydrogenase is absent. Co-culture studies with ESFC-1 and some of the dominant heterotrophic members within the microbial mat system, including the ubiquitous Flavobacterium Muricauda sp., which often is found associated with cyanobacteria in nature and in culture collections worldwide, have also been performed. We report on these species-species interactions, including materials exchange between the cyanobacterium and heterotrophic bacterium. The combination of genomics with culture- and consortia-based experimental research is a powerful tool for understanding microbial processes and interactions in complex ecosystems.

  11. Adaptation strategies of the sheathed cyanobacterium Lyngbya majuscula to ultraviolet-B.

    PubMed

    Mandal, Sikha; Rath, Jnanendra; Adhikary, Siba Prasad

    2011-02-01

    Lyngbya majuscula is a dominant organism in the east coast of India forming characteristic mat in dried saline soils simultaneously exposed to solar radiation of the tropics. Studies on the growth response, changes in the spectral properties of the methanolic extract and protein profile of this estuarine sheathed cyanobacterium to UV-B revealed existence of effective adaptation mechanism to withstand prolonged UV-B radiation. Carotenoids along with MAAs of the organism was increased with increase in UV irradiation. Increase in thickness of the mucilaginous sheath layer as well as cellular carbohydrate content was observed upon exposure to prolonged UV-B dose. Induction of 21 and 33 kDa low molecular weight proteins, and a 99 kDa protein together with formation of distinct multilayered sheath embedding trichomes with granulated cells were the adaptive features of the organism to cope with UV-B stress. The organism was considerably revived after incubating the irradiated cells in mineral medium under florescent light and in the dark suggesting existence of photoreactivation and dark repair in this cyanobacterium. However more experiments are needed to establish the existence of photoreactivation and dark repair mechanism in the studied cyanobacterium. PMID:20970352

  12. Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium

    PubMed Central

    Vigil-Stenman, Theoden; Nylander, Johan A. A.; Ininbergs, Karolina; Zheng, Wei-Wen; Lapidus, Alla; Lowry, Stephen; Haselkorn, Robert; Bergman, Birgitta

    2010-01-01

    Background An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. Methodology/Principal Findings To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (∼600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. Conclusions/Significance This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor. PMID:20628610

  13. A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris.

    PubMed

    Mohr, Remus; Voss, Bjrn; Schliep, Martin; Kurz, Thorsten; Maldener, Iris; Adams, David G; Larkum, Anthony D W; Chen, Min; Hess, Wolfgang R

    2010-11-01

    Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe a new cyanobacterium possessing a high amount of chlorophyll d, which was isolated from waters around Heron Island, Great Barrier Reef (23 26' 31.2? S, 151 54' 50.4? E). The 16S ribosomal RNA is 2% divergent from the two previously described isolates of A. marina, which were isolated from waters around the Palau islands (Pacific Ocean) and the Salton Sea lake (California), suggesting that it belongs to a different clade within the genus Acaryochloris. An overview sequence analysis of its genome based on Illumina technology yielded 871 contigs with an accumulated length of 8?371?965?nt. Their analysis revealed typical features associated with Acaryochloris, such as an extended gene family for chlorophyll-binding proteins. However, compared with A. marina MBIC11017, distinct genetic, morphological and physiological differences were observed. Light saturation is reached at lower light intensities, Chl d/a ratios are less variable with light intensity and the phycobiliprotein phycocyanin is lacking, suggesting that cyanobacteria of the genus Acaryochloris occur in distinct ecotypes. These data characterize Acaryochloris as a niche-adapted cyanobacterium and show that more rigorous attempts are worthwhile to isolate, cultivate and analyse chlorophyll d-containing cyanobacteria for understanding the ecophysiology of these organisms. PMID:20505751

  14. Aerobic hydrogen accumulation by a nitrogen-fixing Cyanobacterium, Anabaena sp

    SciTech Connect

    Asada, Y.; Kawamura, S.

    1986-05-01

    Hydrogen evolution by a nitrogen-fixing cyanobacterium, Anabaena sp. strain N-7363, was tested in order to develop a water biophotolysis system under aerobic conditions. A culture of the strain supplemented with carbon dioxide under an air atmosphere evolved hydrogen and oxygen gas, which reached final concentrations of 9.7 and 69.8%, respectively, after 12 days of incubation. Hydrogen uptake activity was not observed during incubation, and nitrogenase was thought to be the sole enzyme responsible for the hydrogen evolution.

  15. Inhibitory effect of petroleum oil on photosynthetic electron transport system in the cyanobacterium Anabaena doliolum

    SciTech Connect

    Singh, A.K.; Kumar, H.D. )

    1991-12-01

    Virtually nothing is known about the site of action of oil and the mechanism of inhibition of photosynthetic electron transport, a process responsible for the generation of ATP and NADPH, which are essential for carbon fixation. The present study was an attempt to learn something about these aspects. The influence of diesel on photosynthetic O{sub 2}-evolution, {sup 14}CO{sub 2} fixation, and electron transport system has been examined in Anabaena doliolum, a heterocystous cyanobacterium. A. doliolum and other heterocystous cyanobacteria are widely distributed in soil and aquatic ecosystems, and represent an important group of free-living nitrogen fixing microorganisms.

  16. The effects of the toxic cyanobacterium Limnothrix (strain AC0243) on Bufo marinus larvae.

    PubMed

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-03-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL(-1) of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-L-alanine are discussed. PMID:24662524

  17. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity.

    PubMed

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F David; Iii, Roger Smith; Watanabe, Coran M H

    2015-10-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  18. A new open reading frame in the genome of the cyanobacterium Synechocystis sp. PCC 6803

    SciTech Connect

    Lysenko, E.S.; Ogarkova, O.A.; Tarasov, V.A.; Elanskaya, I.V.; Shestakov, S.V.

    1995-02-01

    A new open reading frame ORF242, coding for a 26.47-kDa polypeptide, was found in a DNA fragment of the cyanobacterium Synechocystis 6803, transforming a photosynthetic mutant to photoautotrophy and having homology with plant chloroplast DNA. In the 5{prime} flanking region of ORF242, consensus sequences characteristic of a functioning gene were found. One copy of ORF242 is present in the Synechocystis 6803 genome. Insertion inactivation of ORF242 does not lead to a decrease in photosynthetic activity in cells of cyanobacteria but may influence the ratio between active complexes of photosystems I and II. 22 refs., 6 figs., 2 tabs.

  19. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae

    PubMed Central

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-01-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL?1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to ?-N-Methylamino-l-alanine are discussed. PMID:24662524

  20. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    PubMed Central

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 ?M against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  1. Bouillonamide: A Mixed Polyketide–Peptide Cytotoxin from the Marine Cyanobacterium Moorea bouillonii

    PubMed Central

    Tan, Lik Tong; Okino, Tatsufumi; Gerwick, William H.

    2013-01-01

    The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of α-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha) residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha). Absolute stereochemistry of the α-amino acid units in bouillonamide was determined mainly by Marfey’s analysis. Compound 1 exhibited mild toxicity with IC50’s of 6.0 µM against the neuron 2a mouse neuroblastoma cells. PMID:23966034

  2. Aluminum effects on uptake and metabolism of phosphorus by the Cyanobacterium Anabaena cylindrica

    SciTech Connect

    Pettersson, A.; Haellbom, L. Bergman, B.

    1988-01-01

    Aluminum severely affects the growth of the cyanobacterium Anabaena cylindrica and induces symptoms indicating phosphorus starvation. Pre- or post-treating the cells with high (90 micromolar) phosphorus reduces the toxicity of aluminum compared to cells receiving a lower orthophosphate concentration. In this study aluminum (ranging from 9 to 36 micromolar) and phosphorus concentrations were chosen so that the precipitation of insoluble AlPO/sub 4/ never exceeded 10% of the total phosphate concentration. The uptake of /sup 32/P-phosphorus is not disturbed by aluminium either at high (100 micromolar) or low (10 micromolar) concentrations of phosphate. Also, the rapid accumulation of polyphosphate granules in cells exposed to aluminum indicates that the incorporation of phosphate is not disturbed. However, a significant decrease in the mobilization of the polyphosphates is observed, as is a lowered activity of the enzyme acid phosphatase, in aluminum treated cells. We conclude that aluminum acts on the intracellular metabolism of phosphate, which eventually leads to phosphorus starvation rather than on its uptake in the cyanobacterium A. cylindrica.

  3. Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir.

    PubMed

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J; Vinon-Leite, Brigitte; Slim, Kamal

    2014-11-01

    Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r = -0.05). Cylindrospermopsin reached a maximum concentration of 1.7 g L?. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

  4. Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus.

    PubMed

    Romano, I; Bellitti, M R; Nicolaus, B; Lama, L; Manca, M C; Pagnotta, E; Gambacorta, A

    2000-06-01

    The morphological, physiological and genetic characteristics of an isolate cyanobacterium from hard sand of the lake Venere in the Pantelleria island (Italy) were described. The isolate with a small-size coiled helix shape, growing optimally at pH 9.2-9.5 at 30 degrees C under continuous illumination and aeration, possessed a 61.5 mol% of Guanine + Cytosine content of DNA. The lipid profile showed the presence of mono-, di-glycosyl, sulphoquinovolosyl and phosphatidyl (MGDG, DGDG, SQDG and PG). The fatty acid profile was also studied, characterized by the absence of gamma-linolenic acid and the presence of saturated and monounsaturated C16 and C18. The latter was also present as a dienoic component. The fatty acid composition was affected by growth temperature by increasing the degree of desaturation at a lower temperature and the biosynthesis of shorter acyl chains. The effects of growth conditions other than temperature, physical, nutritional and chemical on lipid composition were also studied. The overall features of the cyanobacterium isolated from Pantelleria clustered it into Spirulina genus. PMID:10870183

  5. Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium.

    PubMed

    Campos, Marcela M C; Faria, Vanessa H F; Teodoro, Taciane S; Barbosa, Francisco A R; Magalhes, Srgia M S

    2013-01-01

    The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 ?g L(-1). After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 ?g L(-1)), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC(50)) of atrazine to the cyanobacterium was 4.2 mg L(-1) at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine. PMID:23305277

  6. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    SciTech Connect

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  7. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    SciTech Connect

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  8. The production of the sesquiterpene ?-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis.

    PubMed

    Reinsvold, Robert E; Jinkerson, Robert E; Radakovits, Randor; Posewitz, Matthew C; Basu, Chhandak

    2011-05-15

    The plant secondary metabolite, ?-caryophyllene, is a ubiquitous component of many plant resins that has traditionally been used in the cosmetics industry to provide a woody, spicy aroma to cosmetics and perfumes. Clinical studies have shown it to be potentially effective as an antibiotic, anesthetic, and anti-inflammatory agent. Additionally, there is significant interest in engineering phototrophic microorganisms with sesquiterpene synthase genes for the production of biofuels. Currently, the isolation of ?-caryophyllene relies on purification methods from oleoresins extracted from large amounts of plant material. An engineered cyanobacterium platform that produces ?-caryophyllene may provide a more sustainable and controllable means of production. To this end, the ?-caryophyllene synthase gene (QHS1) from Artemisia annua was stably inserted, via double homologous recombination, into the genome of the cyanobacterium Synechocystis sp. strain PCC6803. Gene insertion into Synechocystis was confirmed through PCR assays and sequencing reactions. Transcription and expression of QHS1 were confirmed using RT-PCR, and synthesis of ?-caryophyllene was confirmed in the transgenic strain using GC-FID and GC-MS analysis. PMID:21185107

  9. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    SciTech Connect

    Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  10. Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean Eutrophic Reservoir

    PubMed Central

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J.; Vinçon-Leite, Brigitte; Slim, Kamal

    2014-01-01

    Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

  11. Differential proteomes of the cyanobacterium Cyanothece sp. CCY 0110 upon exposure to heavy metals

    PubMed Central

    Mota, Rita; Pereira, Sara B.; Meazzini, Marianna; Fernandes, Rui; Santos, Arlete; Evans, Caroline A.; De Philippis, Roberto; Wright, Phillip C.; Tamagnini, Paula

    2015-01-01

    The proteomes of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110, grown in medium supplemented with an essential metal (Cu2+) or a non-essential metal (Cd2+),were compared using iTRAQ technology. The data were obtained within a larger study that evaluated the overall effects of different heavy metals on growth/survival, EPS production and ultrastructure of this cyanobacterium [1]. To allow a broader understanding of the strategies triggered to coupe with toxic effects of the metals, Cyanothece′s proteomes were evaluated after chronic and acute exposure to Cu2+ and Cd2+ in two independent 8-plex iTRAQ studies. For the chronic exposure 0.1 mg/l of Cu2+ or 5 mg/l of Cd2+ were used for 10 and 20 days, while in the acute experiments the cells were exposed to 10× these concentrations for 24 h. 202 and 268 proteins were identified and quantified for studies 1 (Cu2+) and 2 (Cd2+), respectively. The majority of the proteins with significant fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism. PMID:26217780

  12. Differential proteomes of the cyanobacterium Cyanothece sp. CCY 0110 upon exposure to heavy metals.

    PubMed

    Mota, Rita; Pereira, Sara B; Meazzini, Marianna; Fernandes, Rui; Santos, Arlete; Evans, Caroline A; De Philippis, Roberto; Wright, Phillip C; Tamagnini, Paula

    2015-09-01

    The proteomes of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110, grown in medium supplemented with an essential metal (Cu(2+)) or a non-essential metal (Cd(2+)),were compared using iTRAQ technology. The data were obtained within a larger study that evaluated the overall effects of different heavy metals on growth/survival, EPS production and ultrastructure of this cyanobacterium [1]. To allow a broader understanding of the strategies triggered to coupe with toxic effects of the metals, Cyanothece's proteomes were evaluated after chronic and acute exposure to Cu(2+) and Cd(2+) in two independent 8-plex iTRAQ studies. For the chronic exposure 0.1 mg/l of Cu(2+) or 5 mg/l of Cd(2+) were used for 10 and 20 days, while in the acute experiments the cells were exposed to 10× these concentrations for 24 h. 202 and 268 proteins were identified and quantified for studies 1 (Cu(2+)) and 2 (Cd(2+)), respectively. The majority of the proteins with significant fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism. PMID:26217780

  13. Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms

    PubMed Central

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

  14. Potential contribution of the diazotrophic cyanobacterium, Cyanothece sp. strain 51142, to a bioregenerative life support system.

    PubMed

    Arieli, B; Schneegurt, M A; Sherman, L A

    1996-01-01

    Long-duration manned space missions will likely require the development of bioregenerative means of life support. Such a Controlled Ecological Life Support System (CELSS) would use higher plants to provide food and a breathable atmosphere for the crew and employ a waste processing system to recover elements for recycling. The current study identifies ways in which a cyanobacterial component may enhance the sustainability of a space-deployed CELSS, including balancing CO2/O2 gas exchange, production of bioavailable N, dietary supplementation, and contingency against catastrophic failure of the higher plant crops. Relevant quantitative data have been collected about the cyanobacterium, Cyanothece sp. strain ATCC 51142, a large, aerobic, unicellular diazotroph. This organism grew rapidly (466 g dry wt. m-3 d-1) and under diverse environmental conditions, was amenable to large-scale culture, could be grown with relative energy efficiency (3.8% conversion), could actively fix atmospheric N2 (35.0 g m-3 d-1), could survive extreme environmental insults, and exhibited gas exchange properties (assimilatory quotient of 0.49) that may be useful for correcting the gas exchange ratio imbalances observed between humans and higher plants. It is suggested that a diazotrophic cyanobacterium, like Cyanothece sp. strain ATCC 51142, may be a safe, effective, and renewable complement or alternative to physicochemical backup systems in a CELSS. PMID:11538563

  15. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    PubMed

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  16. Draft Genome Sequence of Alteromonas macleodii Strain MIT1002, Isolated from an Enrichment Culture of the Marine Cyanobacterium Prochlorococcus

    PubMed Central

    Coe, Allison; Martin-Cuadrado, Ana-Belen

    2015-01-01

    Alteromonas spp. are heterotrophic gammaproteobacteria commonly found in marine environments. We present here the draft genome sequence of Alteromonas macleodii MIT1002, which was isolated from an enrichment culture of the marine cyanobacterium Prochlorococcus NATL2A. This genome contains a mixture of features previously seen only within either the “surface” or “deep” Alteromonas ecotype. PMID:26316635

  17. Genome of the Cyanobacterium Microcoleus vaginatusFGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide?

    PubMed Central

    Starkenburg, Shawn R.; Reitenga, Krista G.; Freitas, Tracey; Johnson, Shannon; Chain, Patrick S. G.; Garcia-Pichel, Ferran; Kuske, Cheryl R.

    2011-01-01

    The filamentous cyanobacterium Microcoleus vaginatusis found in arid land soils worldwide. The genome of M. vaginatusstrain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organism's ability to function as a major component of biological soil crusts in arid lands. PMID:21705610

  18. Draft Genome Sequence of Calothrix Strain 336/3, a Novel H2-Producing Cyanobacterium Isolated from a Finnish Lake

    PubMed Central

    Isojrvi, Janne; Shunmugam, Sumathy; Sivonen, Kaarina; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2015-01-01

    We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications. PMID:25614574

  19. Extreme Sensory Complexity Encoded in the 10-Megabase Draft Genome Sequence of the Chromatically Acclimating Cyanobacterium Tolypothrix sp. PCC 7601

    PubMed Central

    Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K.; Fryszczyn, Bartlomiej G.; Fox, George E.; Tirumalai, Madhan R.; Liu, Yamei; Kim, Sun

    2015-01-01

    Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. PMID:25953173

  20. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome

    PubMed Central

    Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains. PMID:25931605

  1. Draft Genome Sequence of a Thermophilic Cyanobacterium from the Family Oscillatoriales (Strain MTP1) from the Chalk River, Colorado

    PubMed Central

    Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2016-01-01

    The draft genome (57.7% GC, 7,647,882 bp) of the novel thermophilic cyanobacterium MTP1 was determined by metagenomics of an enrichment culture. The genome shows that it is in the family Oscillatoriales and encodes multiple heavy metal resistances as well as the capacity to make exopolysaccharides. PMID:26893415

  2. Draft Genome Sequence of a Thermophilic Cyanobacterium from the Family Oscillatoriales (Strain MTP1) from the Chalk River, Colorado.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2016-01-01

    The draft genome (57.7% GC, 7,647,882 bp) of the novel thermophilic cyanobacterium MTP1 was determined by metagenomics of an enrichment culture. The genome shows that it is in the family Oscillatoriales and encodes multiple heavy metal resistances as well as the capacity to make exopolysaccharides. PMID:26893415

  3. A stable, reusable, and highly active photosynthetic bioreactor by bio-interfacing an individual cyanobacterium with a mesoporous bilayer nanoshell.

    PubMed

    Jiang, Nan; Yang, Xiao-Yu; Deng, Zhao; Wang, Li; Hu, Zhi-Yi; Tian, Ge; Ying, Guo-Liang; Shen, Ling; Zhang, Ming-Xi; Su, Bao-Lian

    2015-05-01

    An individual cyanobacterium cell is interfaced with a nanoporous biohybrid layer within a mesoporous silica layer. The bio-interface acts as an egg membrane for cell protection and growth of outer shell. The resulting bilayer shell provides efficient functions to create a single cell photosynthetic bioreactor with high stability, reusability, and activity. PMID:25641812

  4. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    NASA Astrophysics Data System (ADS)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  5. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    PubMed Central

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid ?-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  6. BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-08-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid ?-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  7. Physiological effects of nickel chloride on the freshwater cyanobacterium Synechococcus sp. IU 625

    PubMed Central

    Nohomovich, Brian; Nguyen, Bao T.; Quintanilla, Michael; Lee, Lee H.; Murray, Sean R.; Chu, Tin-Chun

    2013-01-01

    Harmful algal blooms (HABs) are a serious environmental problem globally. The ability of cyanobacteria, one of the major causative agents of HABs, to grow in heavy metal polluted areas is proving a challenge to environmental restoration initiatives. Some cyanobacteria secrete toxins, such as microcystin, that are potentially dangerous to animals and humans. In this study, the physiology of a cyanobacterium was assessed to nickel chloride exposure. Cell growths were monitored throughout the study with various nickel chloride concentrations (0, 10, 25 or 50 mg/L). Morphological abnormalities were observed with microscopic image analyses. Inductively coupled plasma mass spectrometry (ICP-MS) was carried out to trace the distribution of nickel during the growth period. This study provides insight on potential nickel response mechanisms in freshwater cyanobacteria, which may lead to effective HAB prevention strategy development. PMID:24073357

  8. nifH,D,K gene organization in the cyanobacterium, Plectonema boryanum

    SciTech Connect

    Barnum, S.R.; Gendel, S.M.

    1986-04-01

    Cyanobacteria are a diverse group of Gram-negative oxygenic photosynthetic prokaryotes with some species capable of fixing atmospheric nitrogen. Detailed studies dealing with the organization of nitrogen fixation genes have been limited to Anabaena, a filamentous, heterocystous cyanobacterium. The authors have determined the organization of nifH,D,K in Plectonema boryanum, a filamentous, nonheterocystous species that fixes nitrogen microaerophilically. It has been demonstrated that nifH,D,K genes are contiguous in cells grown under non-nitrogen fixing conditions using Anabaena nif genes as probes in Southern observed for all three nif genes as probes in southern hybridizations. A change in the pattern of hybridization was observed for all three nif genes isolated from cells grown under nitrogen fixing conditions. Restriction enzyme digestion experiments and analysis of cloned Plectonema nif genes are being used to determine the type of DNA modification and the location.

  9. Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119

    SciTech Connect

    Serrano, A.; Rivas, J.; Losada, M.

    1984-04-01

    An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive

  10. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    SciTech Connect

    Owttrim, G.W.; Coleman, J.R.

    1987-05-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system.

  11. Dermatitis associated with exposure to a marine cyanobacterium during recreational water exposure

    PubMed Central

    Osborne, Nicholas J; Shaw, Glen R

    2008-01-01

    Background Anecdotal evidence reported an outbreak of symptoms on Fraser Island during the late 1990s similar to those expected from exposure to dermotoxins found in the cyanobacterium L. majuscula. This coincided with the presence of a bloom of L. majuscula. Methods Records from the Fraser Island National Parks First aid station were examined. Information on cyanobacterial blooms at Fraser Island were obtained from Queensland National Parks rangers. Results Examination of first aid records from Fraser Island revealed an outbreak of symptoms predominantly in January and February 1998. Conclusion During a bloom of L. majuscula there were numerous reports of symptoms that could be attributed to dermotoxins found in L. majuscula. The other four years examined had no L. majuscula blooms and the number of L. majuscula symptoms was much reduced. These cases comprised a high percentage of the cases treated at the first aid station. PMID:19116031

  12. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    PubMed

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application. PMID:17919902

  13. Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium

    SciTech Connect

    Sadler, Natalie C.; Melnicki, Matthew R.; Serres, Margrethe H.; Merkley, Eric D.; Chrisler, William B.; Hill, Eric A.; Romine, Margaret F.; Kim, Sangtae; Zink, Erika M.; Datta, Suchitra; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-01-01

    Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ~5-10 fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium, Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 seconds after nutrient perturbation, and oscillations in reduction and oxidation for 60 minutes following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins, in addition to validating those previously identified in vitro.

  14. Antibiotic effects on growth and heterocyst differentiation of the cyanobacterium Nostoc muscorum.

    PubMed

    Pattanaik, U; Singh, P K

    1988-01-01

    In a medium free of combined nitrogen, 1.0-6.0 micrograms/ml chloramphenicol gradually decreased the growth of the nitrogen-fixing cyanobacterium Nostoc muscorum; at 2.0 micrograms/ml the culture appeared yellowish, heterocyst frequency was not evident up to 3.0 micrograms/ml, whereas 4.0 micrograms/ml suppressed heterocyst differentiation. Lower concentrations (0.0125-0.75 microgram/ml) of rifampicin suppressed the growth but had no significant effect on heterocyst frequency in liquid medium, whereas on solid medium 0.02 micrograms/ml produced chains of heterocysts in filaments. The growth and heterocyst frequency declined gradually with increasing doses of puromycin and 6.0 micrograms/ml suppressed the heterocyst differentiation. Actinomycin-D did not affect significantly growth and heterocyst frequency even at 10.0 and 20.0 micrograms/ml. PMID:3142201

  15. Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.

    PubMed Central

    Zehr, J P; Ohki, K; Fujita, Y; Landry, D

    1991-01-01

    The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature. Images FIG. 1 FIG. 2 PMID:1657876

  16. Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium Synechococcus sp. strain PCC 7002

    PubMed Central

    2015-01-01

    The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system had a 48-fold dynamic range and was shown to out-perform Ptrc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002. PMID:25216157

  17. Acclimation to environmentally relevant Mn concentrations rescues a cyanobacterium from the detrimental effects of iron limitation.

    PubMed

    Salomon, Eitan; Keren, Nir

    2015-06-01

    The functions of micronutrient transition metals in photosynthetic organisms are interconnected. So are the effects of their limitation. Here we present evidence for the effects of Mn limitation on Fe limitation responses in the cyanobacterium Synechocystis sp. PCC 6803. Low Mn acclimated cells were able to detect and respond to iron insufficiency by inducing specific Fe transporters. However, they did not bleach, lose additional photosystem I activity and did not induce isiA transcription. Induction of the isiAB operon is a hallmark of iron limitation, and the isiA protein is considered to be central to the acclimation of the photosynthetic apparatus. Our results suggest that acclimation to environmentally relevant Mn concentrations that much lower than those used in laboratory experiments reduces the detrimental effects of iron limitation and modifies iron stress responses. PMID:25728137

  18. Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113.

    PubMed Central

    Pitta, T P; Sherwood, E E; Kobel, A M; Berg, H C

    1997-01-01

    The marine cyanobacterium Synechococcus strain WH8113 swims in the absence of any recognizable organelles of locomotion. We have found that calcium is required for this motility. Cells deprived of calcium stopped swimming, while addition of calcium completely restored motility. No other divalent ions tested could replace calcium. Terbium, a lanthanide ion, blocked motility even when calcium was present at 10(5)-fold-higher concentrations, presumably by occupying calcium binding sites. Calcium chelators, EGTA or EDTA, blocked motility, even when calcium was present at 25-fold-higher concentrations, presumably by acting as calcium ionophores. Finally, motility was blocked by verapamil and nitrendipine, molecules known to block voltage-gated calcium channels of eukaryotic cells by an allosteric mechanism. These results suggest that a calcium potential is involved in the mechanism of motility. PMID:9098048

  19. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus

    PubMed Central

    Soo, Rochelle M.; Woodcroft, Ben J.; Parks, Donovan H.; Tyson, Gene W.

    2015-01-01

    An uncultured non-photosynthetic basal lineage of the Cyanobacteria, the Melainabacteria, was recently characterised by metagenomic analyses of aphotic environmental samples. However, a predatory bacterium, Vampirovibrio chlorellavorus, originally described in 1972 appears to be the first cultured representative of the Melainabacteria based on a 16S rRNA sequence recovered from a lyophilised co-culture of the organism. Here, we sequenced the genome of V. chlorellavorus directly from 36 year-old lyophilised material that could not be resuscitated confirming its identity as a member of the Melainabacteria. We identified attributes in the genome that likely allow V. chlorellavorus to function as an obligate predator of the microalga Chlorella vulgaris, and predict that it is the first described predator to use an Agrobacterium tumefaciens-like conjugative type IV secretion system to invade its host. V. chlorellavorus is the first cyanobacterium recognised to have a predatory lifestyle and further supports the assertion that Melainabacteria are non-photosynthetic. PMID:26038723

  20. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    PubMed Central

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 C to 40 C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  1. Isolation, purification and characterization of the ATPase complex from the thermophilic cyanobacterium Synechococcus 6716.

    PubMed

    Lubberding, H J; Zimmer, G; van Walraven, H S; Schrickx, J; Kraayenhof, R

    1983-12-01

    The ATPase complex is isolated and purified from membrane vesicles of the thermophilic cyanobacterium Synechococcus 6716 by octyl glucoside and cholic acid by a modification of the procedure for its extraction from spinach chloroplasts. The complex is purified by differential centrifugation and ammonium sulfate precipitation and by gel filtration on Sepharose 6B. The purified fraction, without any phycocyanin contamination, shows ATP hydrolysis activity and Pi/ATP exchange activity of 1564 and 350 nmol X min-1 X mg protein-1, respectively. N,N'-Dicyclohexylcarbodiimide inhibits the ATP hydrolysis activity of this purified fraction. On polyacrylamide gels most typical F1 ATPase polypeptides are identified, but the low-molecular weight polypeptides visible cannot be ascribed to the F0 part of the complex with certainty; non-identified bands around 30 kDa are also present. PMID:6197306

  2. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis.

    PubMed

    Vzquez-Martnez, Guadalupe; Rodriguez, Mario H; Hernndez-Hernndez, Fidel; Ibarra, Jorge E

    2004-04-01

    An efficient strategy, based on a combination of procedures, was developed to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. Samples were initially cultured in solid ASN-10 medium, and a crude separation of major contaminants from P. animalis filaments was achieved by washing in a series of centrifugations and resuspensions in liquid medium. Then, manageable filament fragments were obtained by probe sonication. Fragmentation was followed by forceful washing, using vacuum-driven filtration through an 8-microm pore size membrane and an excess of water. Washed fragments were cultured and treated with a sequential exposure to four different antibiotics. Finally, axenic cultures were obtained from serial dilutions of treated fragments. Monitoring under microscope examination and by inoculation in Luria-Bertani (LB) agar plates indicated either axenicity or the degree of contamination throughout the strategy. PMID:15003694

  3. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme

    PubMed Central

    Peramuna, Anantha; Summers, Michael L.

    2014-01-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophyllic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen–fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), - tochopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

  4. Natural Products Chemistry and Taxonomy of the Marine Cyanobacterium Blennothrix cantharidosmum

    PubMed Central

    Clark, Benjamin R.; Engene, Niclas; Teasdale, Margaret E.; Rowley, David C.; Matainaho, Teatulohi; Valeriote, Frederick A.; Gerwick, William H.

    2009-01-01

    A Papua New Guinea field collection of the marine cyanobacterium Blennothrix cantharidosmum was investigated for its cytotoxic constituents. Bioassay-guided isolation defined the cytotoxic components as the known compounds lyngbyastatins 1 and 3. However, six new acyl proline derivatives, tumonoic acids D-I, plus the known tumonoic acid A, were also isolated. Their planar structures were defined from NMR and MS data while their stereostructures followed from a series of chiral chromatographies, degradation sequences and synthetic approaches. The new compounds were tested in an array of assays, but showed only modest antimalarial and inhibition of quorum sensing activities. Nevertheless, these are the first natural products to be reported from this genus, and this inspired a detailed morphologic and 16S rDNA-based phylogenetic analysis of the producing organism. PMID:18698821

  5. Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa.

    PubMed

    Gabbay-Azaria, R; Tel-Or, E; Schnfeld, M

    1988-07-01

    Glycinebetaine was found to be the major organic substrate accumulating under hypersaline growth conditions in the halotolerant cyanobacterium Spirulina subsalsa. In addition to its proposed role as osmolite, glycinebetaine is shown to specifically protect enzymatic activity. Glucose-6-phosphate dehydrogenase from S. subsalsa retained full activity in the presence of NaCl at concentrations as high as 1.5 M, provided that comparable concentrations of glycinebetaine were also present in the reaction mixture. A kinetic analysis indicated that glycinebetaine protected the enzyme against both NaCl-induced decrease in Vmax and reduction in affinity to glucose 6-phosphate. The alternative osmolites, glycerol and proline, protected the enzyme against the reduction in Vmax but not against the reduction in affinity to glucose 6-phosphate. PMID:3134857

  6. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum

    PubMed Central

    Oku, Naoya; Matsumoto, Miyako; Yonejima, Kohsuke; Tansei, Keijiroh

    2014-01-01

    Summary Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1), as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption. PMID:25161741

  7. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus.

    PubMed

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

    2015-04-01

    Microalgae cultivation has recently been recognized as an important issue to deal with the increasingly prominent resource and environmental problems. In this study, desert cyanobacterium Microcoleus vaginatus was open cultivated in 4 different cultivation conditions in Qubqi Desert, and it was found Chlorella sp., Scenedesmus sp. and Navicula sp. were the main contaminating microalgal species during the cultivation. High light intensity alone was responsible for the green algae contamination, but the accompanied high temperature was beneficial to cyanobacterial growth, and the maximum biomass productivity acquired was 41.3mgL(-1)d(-1). Low temperature was more suitable for contaminating diatoms' growth, although all the microalgae (including the target and contaminating) are still demand for a degree of light intensity, at least average daily light intensity >5?Em(-2)s(-1). As a whole, cultivation time, conditions and their interaction had a significant impact on microalgal photosynthetic activity (Fv/Fm), biomass and exopolysaccharides content (P<0.001). PMID:25689308

  8. Period doubling observed in the circadian photosynthetic rhythm of the prokaryotic cyanobacterium Cyanothece RF-1

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Chiang; Cheng, Da-Long

    2005-03-01

    The circadian rhythm is an endogenous biological clock that governs biochemical phenomena or behavior in organisms. The Cyanothece RF-1 is the first prokaryote shown to exhibit circadian nitrogen-fixing rhythm. The observation of the circadian photosynthetic rhythm of this strain was recently reported by the authors. In this work, the dissolved-oxygen variation in the culture of Cyanothece RF-1 was recorded, which would reveal the photosynthetic activity of the strain. For a culture of about 1x10^8 cells/ml in concentration, a period-doubling pattern was clearly displayed in the circadian photosynthetic rhythm signals. The mechanism corresponding to this nonlinear effect will be discussed. These results represent the first observation of the period doubling in the circadian rhythm of a prokaryotic cyanobacterium.

  9. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium.

    PubMed

    Jacobsen, Jacob H; Frigaard, Niels-Ulrik

    2014-01-01

    D-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L(-1) and a production rate of 0.15 g mannitol L(-1) day(-1). This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria. PMID:24269997

  10. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.

    PubMed

    Gupta, V K; Rastogi, A

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 degrees C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater. PMID:18053641

  11. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    PubMed

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira. PMID:26308624

  12. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira. PMID:26308624

  13. Draft Genome Sequence of the N2-Fixing Cyanobacterium Nostoc piscinale CENA21, Isolated from the Brazilian Amazon Floodplain.

    PubMed

    Leão, Tiago; Guimarães, Pedro Ivo; de Melo, Aline Grasielle Costa; Ramos, Rommel Thiago Jucá; Leão, Pedro Nuno; Silva, Artur; Fiore, Marli Fatima; Schneider, Maria Paula Cruz

    2016-01-01

    We announce here the draft genome sequence ofNostoc piscinaleCENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products. PMID:27034496

  14. The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods

    NASA Astrophysics Data System (ADS)

    Han, Bingnan; Reinscheid, Uwe M.; Gerwick, William H.; Gross, Harald

    2011-03-01

    The 2 Z-isomer of malyngamide K has been isolated along with the known compounds malyngamide C, deoxy-C and K, and characterized from a Papua New Guinea field collection of the cyanobacterium Lyngbya majuscula. The planar structure was deduced by 1D and 2D NMR spectroscopic and mass spectral data interpretation. The absolute configurations were determined on the basis of spectroscopic techniques, chemical degradation and DFT theoretical calculations.

  15. The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods

    PubMed Central

    Han, Bingnan; Reinscheid, Uwe M.; Gerwick, William H.; Gross, Harald

    2011-01-01

    The 2Z-isomer of malyngamide K has been isolated along with the known compounds malyngamide C, deoxy-C and K, and characterized from a Papua New Guinea field collection of the cyanobacterium Lyngbya majuscula. The planar structure was deduced by 1D and 2D NMR spectroscopic and mass spectral data interpretation. The absolute configurations were determined on the basis of spectroscopic techniques, chemical degradation and DFT theoretical calculations. PMID:21461120

  16. Crossbyanols AD, Toxic Brominated Polyphenyl Ethers from the Hawai'ian Bloom-forming Cyanobacterium Leptolyngbya crossbyana

    PubMed Central

    Choi, Hyukjae; Engene, Niclas; Smith, Jennifer E.; Preskitt, Linda B.; Gerwick, William H.

    2010-01-01

    Periodically, the marine cyanobacterium Leptolyngbya crossbyana forms extensive blooms on Hawai'ian coral reefs, and results in significant damage to the subtending corals. Additionally, corals near to mats of this cyanobacterium, but not directly overgrown, have been observed to undergo bleaching. Therefore, samples of this cyanobacterium were chemically investigated for bioactive secondary metabolites that might underlie this toxicity phenomenon. 1H NMR spectroscopy-guided fractionation led to the isolation of four hepta-brominated polyphenolic ethers, crossbyanols AD (14). Structure elucidation of these compounds was made challenging by their very low proton to carbon (H/C) ratio, but was completed by combining standard NMR and MS data with 2 Hz-optimized HMBC data. Derivatization of crossbyanol A as the diacetate assisted in the assignment of its structure. Crossbyanol B (2) showed antibiotic activity with an MIC value between 2.03.9 ?g/mL against methicillin-resistant Staphylococcus aureus (MRSA) and relatively potent brine shrimp toxicity (IC50 2.8 ppm). PMID:20170122

  17. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant. PMID:25128787

  18. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    PubMed

    B-Bres, Viktria; Vasas, Gbor; Dobronoki, Dalma; Gonda, Sndor; Nagy, Sndor Alex; Bcsi, Istvn

    2015-11-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  19. Low cellular P-quota and poor metabolic adaptations of the freshwater cyanobacterium Anabaena fertilissima Rao during Pi-limitation.

    PubMed

    Tripathi, Keshawanand; Sharma, Naveen K; Rai, Vandna; Rai, Ashwani K

    2013-02-01

    Anabaena fertilissima is a filamentous freshwater N(2)-fixing cyanobacterium, isolated from a paddy field. Growth of the cyanobacterium was limited by the non-availability of inorganic phosphate (Pi) in the growth medium and was found to be directly related to the cellular P quota, which declined rapidly in Pi-deficient cells. To overcome Pi-deficiency, cells induced both cell-bound and cell-free alkaline phosphatase activities (APase). The activity of cell-bound APase was rapid and 5-6 times higher than that of the cell-free APase activity. Native gel electrophoresis revealed the presence of two APase activity bands for both the cell bound and cell-free APase (Mr ?42 and 34 kDa). For Pi-deficient cells, APase activity was inversely related to cellular P-quota. In A. fertilissima phosphate uptake was facilitated by single high-affinity phosphate transporter (K ( s ), 4.54 ?M; V(max), 4.84 ?mol mg protein(-1) min(-1)). Pi-deficiency severely reduced the photosynthetic rate, respiration rate and nitrate uptake, as well as the activities of nitrate reductase, nitrite reductase and nitrogenase enzymes. In photosynthesis, PSII activity was maximally inhibited, followed by PSI and whole chain activities. Transcript levels of five key glycolytic enzymes showed the poor adaptability of the cyanobacterium to switch its metabolic activity to PPi-dependent enzyme variants, which has rather constant cellular concentrations. PMID:22968428

  20. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga—Competition or Allelopathy?

    PubMed Central

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-01-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  1. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was likely less saline. The division of marine cyanobacterium P. subcapitatum is associated with periodic deposition and dissolution of CaCO3, the rhythms and intensity of which are dependent on concentrations of both OH(-) and Na(+). Thus, the role of present-day marine cyanobacteria in the global carbonate cycle might be reduced to aggregation and recrystallization of available CaCO3 particles in marine water rather than long-term precipitation and accumulation of CaCO3 deposits. For lower Na(+) concentrations, precipitation of carbonates by cyanobacteria would be even less significant. These results suggest that the lack of calcified cyanobacteria in stromatalite-bearing Precambrian sequences can be explained not only by high dissolved inorganic carbon concentrations but also by lower salinity, as well as possible lower pH compared to present-day oceans.

  2. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    NASA Astrophysics Data System (ADS)

    Badri, Hanne; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA following respectively 3200 Gy and 5000 Gy. Furthermore proteomics analysis confirmed the presence of proteins for a set of the genes overexpressed in mRNA level. The results allowed to identify the network of genes, involved in antioxidant production and damage repair, and to map the mechanistic response used by Arthrospira sp. PCC8005 to cope with high doses ionizing radiation. This advanced integration between transcriptomic data and proteomics analysis, allowed also the identification of new set of conserved proteins which were never reported or described, and which were found to be expressed in a dose dependent manner upon exposure to ionising radiation in Arthrospira sp. PCC8005. The exact role of this new set of genes and proteins in the radiation resistance of Arthrospira needs to be further elucidated. Nevertheless, this finding of high radiation resistance of an edible bacterium, that can also be used for life support, is peculiar and opens new horizons to perused further research into its possible function in radiation protection. This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the ARTEMISS project, which is part of the MELiSSA program.

  3. Classical and Alternative Activation of Cyanobacterium Oscillatoria sp. Lipopolysaccharide-Treated Rat Microglia in vitro.

    PubMed

    Mayer, Alejandro M S; Murphy, Joseph; MacAdam, David; Osterbauer, Christopher; Baseer, Imaan; Hall, Mary L; Feher, Domonkos; Williams, Phillip

    2016-02-01

    The purpose of this investigation was to test the hypothesis that an invitro exposure to cyanobacterium Oscillatoria sp. Lipopolysaccharide (LPS) might result in classical and alternative activation of rat neonatal microglia. Using Escherichia coli LPS-primed microglia as a positive control, this study revealed that treatment of rat microglia with Oscillatoria sp. LPS for 17?h invitro resulted in both classical and alternative activation as well as concomitant pro-inflammatory and anti-inflammatory mediator release, in a concentration-dependent manner: (1) treatment with 0.1-10 000?ng/ml Oscillatoria sp. LPS resulted in minimal lactic dehydrogenase (LDH) release, induced concentration-dependent and statistically significant O2 (-) generation, matrix metalloproteinase-9 (MMP-9) release, generation of the cytokines tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6), and the chemokines macrophage inflammatory protein-2 (MIP-2/CXCL2), interferon ?-induced protein 10?kDa (IP-10/CXCL-10), (MIP-1?/CCL3), monocyte chemotactic protein-1 (MCP-1/CCL2), regulated on activation, normal T cell expressed and secreted (RANTES/CCL5), and the alternative activation cytokine IL-10; (3) in contrast, treatment with 100 000?ng/ml Oscillatoria sp. LPS appeared to damage the microglia cell membrane, because it resulted in minimal O2 (-) generation, statistically significant LDH release, and a decrease in the generation of all the cytokines and chemokines investigated, with the exception of IL-1? and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) generation, which was increased. Thus, our results provide experimental support for our working hypothesis, namely that Oscillatoria sp. LPS induces classical and alternative activation of rat brain microglia invitro in a concentration-dependent manner, namely 0.1-10 000?ng/ml Oscillatoria sp. LPS, when microglia cells were shown to be viable. Furthermore, should cyanobacterium Oscillatoria sp. LPS gain entry into the CNS, our findings suggest that classical and alternative activation of rat brain microglia invivo, might lead to concomitant mediator release that could result in an interplay between neuroinflammation and neural repair in a concentration-dependent manner. PMID:26609141

  4. ABC Transporter Required for Intercellular Transfer of Developmental Signals in a Heterocystous Cyanobacterium

    PubMed Central

    Videau, Patrick; Rivers, Orion S.; Higa, Kelly C.

    2015-01-01

    ABSTRACT In the filamentous cyanobacterium Anabaena, patS and hetN encode peptide-derived signals with many of the properties of morphogens. These signals regulate the formation of a periodic pattern of heterocysts by lateral inhibition of differentiation. Here we show that intercellular transfer of the patS- and hetN-dependent developmental signals from heterocysts to vegetative cells requires HetC, a predicted ATP-binding cassette transporter (ABC transporter). Relative to the wild type, in a hetC mutant differentiation resulted in a reduced number of heterocysts that were incapable of nitrogen fixation, but deletion of patS or hetN restored heterocyst number and function in a hetC background. These epistasis results suggest that HetC is necessary for conferring self-immunity to the inhibitors on differentiating cells. Nine hours after induction of differentiation, HetC was required for neither induction of transcription of patS nor intercellular transfer of the patS-encoded signal to neighboring cells. Conversely, in strains lacking HetC, the patS- and hetN-encoded signals were not transferred from heterocyst cells to adjacent vegetative cells. The results support a model in which the patS-dependent signal is initially transferred between vegetative cells in a HetC-independent fashion, but some time before morphological differentiation of heterocysts is complete, transfer of both signals transitions to a HetC-dependent process. IMPORTANCE How chemical cues that regulate pattern formation in multicellular organisms move from one cell to another is a central question in developmental biology. In this study, we show that an ABC transporter, HetC, is necessary for transport of two developmental signals between different types of cells in a filamentous cyanobacterium. ABC transporters are found in organisms as diverse as bacteria and humans and, as the name implies, are often involved in the transport of molecules across a cellular membrane. The activity of HetC was shown to be required for signaling between heterocysts, which supply fixed nitrogen to the organism, and other cells, as well as for conferring immunity to self-signaling on developing heterocysts. PMID:26055115

  5. Glycosylated Porphyra-334 and Palythine-Threonine from the Terrestrial Cyanobacterium Nostoc commune

    PubMed Central

    Nazifi, Ehsan; Wada, Naoki; Yamaba, Minami; Asano, Tomoya; Nishiuchi, Takumi; Matsugo, Seiichi; Sakamoto, Toshio

    2013-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments. PMID:24065157

  6. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  7. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens

    PubMed Central

    Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

    2014-01-01

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structureactivity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

  8. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    SciTech Connect

    Wolk, C. Peter Wolk; Fan, Qing; Zhou, Ruanbao; Huang, Guocun; Lechno-Yossef, Sigal; Kuritz, Tanya; Wojciuch, Elizabeth

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  9. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.

    PubMed

    Rudolf, Mareike; Kranzler, Chana; Lis, Hagar; Margulis, Ketty; Stevanovic, Mara; Keren, Nir; Schleiff, Enrico

    2015-08-01

    Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred. PMID:25943160

  10. Fluorapatite as Inorganic Phosphate Source for the Cyanobacterium Anabaena PCC 7120

    NASA Astrophysics Data System (ADS)

    Schaperdoth, I.; Brantley, S.

    2003-12-01

    We investigated the hypothesis that the cyanobacterium Anabaena PCC 7120 is able to use fluorapatite (FAP) as sole phosphate source for growth. In the experimental setup the dissolution of FAP was tested in a phosphate free growth medium in the presence and absence of the Anabaena, as well as the cell free supernatant of an Anabaena culture. The results were compared with that of an Anabaena culture grown without fluorapatite. Parameters measured were pH, dissolved P and Ca, as well as cell density. The FAP grains were analyzed using SEM and XPS. Additionally, the differential expression of secreted proteins in cultures with and without dissolved phosphate was examined. P-limited Anabaena cultures tend to aggregate and in the presence of FAP the cells attached themselves to the mineral grains. The cultures benefit from the presence of FAP. The cells have a very effective P-uptake system that is able to take up dissolved phosphate very efficiently and draw the concentrations down to very low levels. Furthermore, the SEM analysis of FAP showed an etching of the mineral grains in the samples from the Anabaena cultures. The mechanism of apatite dissolution with and without Anabaena will be discussed in terms of these experimental observations.

  11. Changes in saxitoxin-production through growth phases in the metaphytic cyanobacterium Scytonema cf. crispum.

    PubMed

    Harland, Francine; Wood, Susanna A; Broady, Paul; Williamson, Wendy; Gaw, Sally

    2015-09-01

    The cyanobacterium Scytonema cf. crispum produces a range of saxitoxins. Previous studies on other saxitoxin-producing cyanobacteria have shown that toxin production can vary throughout the growth cycle. Monitoring cyanotoxin-production in S. cf. crispum is challenging because it is metaphytic and has a very slow growth rate (ca. 6 months to reach stationary phase). In this study, a new method was developed to track growth and toxin production in S. cf. crispum. Samples were collected once a week for 131 days, and cell concentrations and saxitoxin quotas determined. Cells in the lag and exponential growth phases had significantly (P < 0.05) higher saxitoxin quotas (162 37 fg cell(-1) and 139 32 fg cell(-1), respectively) than the stationary phases (83 19 fg cell(-1)). Extracellular saxitoxin concentrations were present at low concentrations (2-16 ng mL(-1) of culture medium) throughout the experiment. The proportion of extracellular saxitoxin to total saxitoxin decreased throughout the experiment. New knowledge on growth and saxitoxin variability will assist in improving monitoring, risk assessment and management of this species. PMID:26091875

  12. Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Ludwig, Marcus; Chua, Tiing Tiing; Chew, Chyue Yie; Bryant, Donald A.

    2015-01-01

    Metal homeostasis is a crucial cellular function for nearly all organisms. Some heavy metals (e.g., Fe, Zn, Co, Mo) are essential because they serve as cofactors for enzymes or metalloproteins, and chlorophototrophs such as cyanobacteria have an especially high demand for iron. At excessive levels, however, metals become toxic to cyanobacteria. Therefore, a tight control mechanism is essential for metal homeostasis. Metal homeostasis in microorganisms comprises two elements: metal acquisition from the environment and detoxification or excretion of excess metal ions. Different families of metal-sensing regulators exist in cyanobacteria and each addresses a more or less specific set of target genes. In this study the regulons of three Fur-type and two ArsR-SmtB-type regulators were investigated in a comparative approach in the cyanobacterium Synechococcus sp. PCC 7002. One Fur-type regulator controls genes for iron acquisition (Fur); one controls genes for zinc acquisition (Zur); and the third controls two genes involved in oxidative stress (Per). Compared to other well-investigated cyanobacterial strains, however, the set of target genes for each regulator is relatively small. Target genes for the two ArsR-SmtB transcriptional repressors (SmtB (SYNPCC7002_A2564) and SYNPCC7002_A0590) are involved in zinc homeostasis in addition to Zur. Their target genes, however, are less specific for zinc and point to roles in a broader heavy metal detoxification response. PMID:26582412

  13. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme

    PubMed Central

    Liaimer, Anton; Helfrich, Eric J. N.; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-01-01

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2? mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme. PMID:25624477

  14. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.

    PubMed

    Ketseoglou, Irene; Bouwer, Gustav

    2013-08-10

    An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO? concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 ?mol m? s? and air enriched with 3.18% (v/v) CO? supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors. PMID:23732832

  15. Molybdenum independence of nitrogenase component synthesis in the non-heterocystous cyanobacterium Plectonema.

    PubMed Central

    Nagatani, H H; Haselkorn, R

    1978-01-01

    The cyanobacterium Plectonema boryanum (IU 594-UTEX 594) fixes N2 only in the absence of combined N and of O2. We induced nitrogenase by transfer to anaerobic N-free medium and studied the effect of Mo starvation on nitrogenase activity and synthesis. Activity was first detected within 3 h after transfer by the acetylene reduction assay in controls, increasing for at least 25 h. Cells grown on nitrate and Mo and then transferred to N-free, Mo-free medium produced 8% of the control nitrogenase activity. Addition of W to the Mo-free medium reduced the activity to 0.5%. Under both Mo starvation conditions, nitrogenase protein components were synthesized. Component II of the cyanobacterial enzyme was detected by in vitro complementation with Mo-containing component I from Klebsiella pneumoniae or Azotobacter vinelandii but not Clostridium pasteurianum. Component I activity was restored by addition of Mo to cultures in which new enzyme synthesis was blocked by chloramphenicol. Acidified extracts of Plectonema induced in Mo-containing medium contained the Fe-Mo cofactor required to activate extracts of the Azotobacter mutant UW45 in vitro, but they did not activate extracts of Mo-starved Plectonema. Analysis of 35SO4(2-)-labeled proteins by polyacrylamide gel electrophoresis suggested that Mo is required for the conversion of a high-molecular-weight precursor to component I in Plectonema. Images PMID:96092

  16. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Hernndez-Prieto, Miguel A; Semeniuk, Trudi Ann; Giner-Lamia, Joaqun; Futschik, Matthias E

    2016-01-01

    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu). PMID:26923200

  17. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.

    PubMed

    Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

    2015-01-01

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, ?max = 697?nm) and an orange light-absorbing form (Po, ?max = 622?nm). At room temperature, Pfr fluoresces with a maximum at 730?nm. These spectral features are red-shifted by 48~77?nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

  18. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    PubMed

    Sonani, Ravi Raghav; Gupta, Gagan Deep; Madamwar, Datta; Kumar, Vinay

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of ?- and ?- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of ?- and ?- subunits (known as ?? monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of ?? monomers in solution and in crystal lattice. The overall tertiary structures of ?- and ?- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to ?-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein. PMID:25923120

  19. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

    PubMed

    Li, Yaqiong; Lin, Yuankui; Garvey, Christopher J; Birch, Debra; Corkery, Robert W; Loughlin, Patrick C; Scheer, Hugo; Willows, Robert D; Chen, Min

    2016-01-01

    Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 with two ?/? allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions. PMID:26514405

  20. A biliverdin-binding cyanobacteriochrome from the chlorophyll dbearing cyanobacterium Acaryochloris marina

    PubMed Central

    Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

    2015-01-01

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll dbearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red lightabsorbing form (Pfr, ?max = 697?nm) and an orange lightabsorbing form (Po, ?max = 622?nm). At room temperature, Pfr fluoresces with a maximum at 730?nm. These spectral features are red-shifted by 48~77?nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

  1. Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium.

    PubMed

    Ishihara, Jun-ichi; Tachikawa, Masashi; Iwasaki, Hideo; Mochizuki, Atsushi

    2015-04-21

    The filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest models of a multicellular system showing cellular differentiation. In nitrogen-deprived culture, undifferentiated vegetative cells differentiate into heterocysts at ~10-cell intervals along the cellular filament. As undifferentiated cells divide, the number of cells between heterocysts (segment length) increases, and a new heterocyst appears in the intermediate region. To understand how the heterocyst pattern is formed and maintained, we constructed a one-dimensional cellular automaton (CA) model of the heterocyst pattern formation. The dynamics of vegetative cells is modeled by a stochastic transition process including cell division, differentiation and increase of cell age (maturation). Cell division and differentiation depend on the time elapsed after the last cell division, the "cell age". The model dynamics was mathematically analyzed by a two-step Markov approximation. In the first step, we determined steady state of cell age distribution among vegetative cell population. In the second step, we determined steady state distribution of segment length among segment population. The analytical solution was consistent with the results of numerical simulations. We then compared the analytical solution with the experimental data, and quantitatively estimated the immeasurable intercellular kinetics. We found that differentiation is initially independent of cellular maturation, but becomes dependent on maturation as the pattern formation evolves. Our mathematical model and analysis enabled us to quantify the internal cellular dynamics at various stages of the heterocyst pattern formation. PMID:25665721

  2. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii.

    PubMed

    Burford, Michele A; Davis, Timothy W; Orr, Philip T; Sinha, Rati; Willis, Anusuya; Neilan, Brett A

    2014-07-01

    Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions. PMID:24735048

  3. Exposure of mallards (Anas platyrhynchos) to the hepatotoxic cyanobacterium Nodularia spumigena

    USGS Publications Warehouse

    Sipia, V.O.; Franson, J.C.; Sjovall, O.; Pflugmacher, S.; Shearn-Bochsler, V.; Rocke, T.E.; Meriluoto, J.A.O.

    2008-01-01

    Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which forms extensive blooms during the summer in the Baltic Sea. Nodularin was detected in liver, muscle and/or feather samples of several common eiders (Somateria mollissima) from the Gulf of Finland (northern Baltic Sea) in 2002-2005. Published information on the adverse effects of NODLN in marine birds is scarce. The aim of this study was to evaluate the toxicity of NODLN, and determine the concentrations of NODLN in liver and muscle tissue in mallards (Anas platyrhynchos) exposed to N. spumigena. Mallards received a single or multiple exposure via oral gavage with an aqueous slurry containing toxic N. spumigena. Dosages ranged from 200 to 600 ??g NODLN per kg body weight (bw). There were minimal histopathological changes in liver tissue, and brain cholinesterase activity did not differ among treatment groups. Concentrations of NODLN measured by LC-MS in liver varied between approximately 3-120 ??g kg-1 dry weight (dw) and ducks receiving multiple exposures had significantly greater liver toxin levels than ducks receiving the two lowest single exposures. In muscle, NODLN concentrations were approximately 2-6 ??g kg-1 dw, but did not differ significantly among exposure groups. This is the first in vivo lab study examining the effects and bioaccumulation of NODLN from N. spumigena in birds. The mallards in this study were resistant to adverse effects and did not bioaccumulate substantial levels of NODLN at the doses given. ?? 2008 Taylor & Francis.

  4. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Hernández-Prieto, Miguel A.; Semeniuk, Trudi Ann; Giner-Lamia, Joaquín; Futschik, Matthias E.

    2016-01-01

    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis’ gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu). PMID:26923200

  5. Effects of Photosystem II Herbicides on the Photosynthetic Membranes of the Cyanobacterium Aphanocapsa 6308 1

    PubMed Central

    Allen, Mary Mennes; Turnburke, Anne C.; Lagace, Emily A.; Steinback, Katherine E.

    1983-01-01

    The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 10?9 molar and the I50 value for atrazine was 8.8 10?8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 10?8 molar for atrazine and 1.7 10?7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts. Images Fig. 5 Fig. 6 Fig. 7 PMID:16662835

  6. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM

    PubMed Central

    Gupta, Gagan Deep; Madamwar, Datta

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein. PMID:25923120

  7. Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505

    PubMed Central

    Plominsky, Álvaro M.; Larsson, John; Bergman, Birgitta; Delherbe, Nathalie; Osses, Igor; Vásquez, Mónica

    2013-01-01

    The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy). Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end) that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot) were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning) demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR) and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy). These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells). Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen. PMID:23405062

  8. Cylindrofridins A-C, Linear Cylindrocyclophane-Related Alkylresorcinols from the Cyanobacterium Cylindrospermum stagnale.

    PubMed

    Preisitsch, Michael; Niedermeyer, Timo H J; Heiden, Stefan E; Neidhardt, Inga; Kumpfmller, Jana; Wurster, Martina; Harmrolfs, Kirsten; Wiesner, Christoph; Enke, Heike; Mller, Rolf; Mundt, Sabine

    2016-01-22

    A rapid and exhaustive one-step biomass extraction as well as an enrichment and cleanup procedure has been developed for HPLC-UV detection and quantification of closely related [7.7]paracyclophanes and structural derivatives based on a two-phase solvent system. The procedure has been validated using the biomass of the carbamidocyclophane- and cylindrocyclophane-producing cyanobacterium Nostoc sp. CAVN2 and was utilized to perform a screening comprising 102 cyanobacterial strains. As a result, three new cylindrocyclophane-related alkylresorcinols, cylindrofridins A-C (1-3), and known cylindrocyclophanes (4-6) were detected and isolated from Cylindrospermum stagnale PCC 7417. Structures of 1-3 were elucidated by a combination of 1D and 2D NMR experiments, HRMS, and ECD spectroscopy. Cylindrofridin A (1) is the first naturally occurring [7.7]paracyclophane-related monomeric derivative. In contrast, cylindrofridins B (2) and C (3) represent dimers related to 1. Due to chlorination at the alkyl carbon atom in 1-3, the site of [7.7]paracyclophane macrocycle formation, the cylindrofridins represent linearized congeners of the cylindrocyclophanes. Compounds 1-3 were not toxic against nontumorigenic HaCaT cells (IC50 values >25 ?M) compared to the respective cylindrocyclophanes, but 1 was the only cylindrofridin showing moderate activity against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae with MIC values of 9 and 17 ?M, respectively. PMID:26684177

  9. Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena.

    PubMed Central

    Belknap, W R; Haselkorn, R

    1987-01-01

    The biliprotein phycocyanin (PC) is a major constituent of the light-harvesting apparatus of cyanobacteria and red algae. A DNA fragment encoding the beta and alpha subunits of PC was isolated from a genomic library of the cyanobacterium Anabaena 7120 DNA. The single-copy PC genes are part of a larger operon which consists of five open reading frames (ORFs) encoding, in order, the beta and alpha subunits of PC, two linker polypeptides associated with PC in phycobilisome rods, and a fifth ORF, which may encode a linker polypeptide involved in attachment of the phycobilisome rod to the core of the structure. The operon yields three major transcripts, the first of which (1.4 kb) encodes only the PC subunits. A second (3.6 kb) encodes all five ORFs, and appears to arise from partial read-through of a terminator following the PC subunit genes. The third transcript (1.4 kb) encodes the last two ORFs. The relative levels of the three transcripts in vivo are modulated by light intensity, but they are not altered by the removal of fixed nitrogen from the growth medium. The site of light regulation appears to be the terminator following the PC genes, rather than a promoter. Images Fig. 1. Fig. 2. Fig. 10. Fig. 11. Fig. 12. Fig. 13. Fig. 14. PMID:3109890

  10. Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia.

    PubMed Central

    Ernst, A; Reich, S; Böger, P

    1990-01-01

    In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. Böger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:2105302

  11. Diazotrophic specific cytochrome c oxidase required to overcome light stress in the cyanobacterium Nostoc muscorum.

    PubMed

    Bhargava, Santosh; Chouhan, Shweta

    2016-01-01

    Diazotrophic, filamentous and heterocystous cyanobacterium Nostoc muscorum perform photosynthesis in vegetative whereas nitrogen fixation occurs in heterocyst only. However, despite their metabolic plasticity, respiration takes place both in vegetative cells and heterocysts. The role of the respiratory electron transport system and terminal oxidases under light stress is not evident so far. As compared to the diazotrophically grown cultures, the non-diazotrophically grown cultures of the N. muscorum show a slight decrease in their growth, chlorophyll a contents and photosynthetic O2 evolution under light stress. Whereas respiratory O2 uptake under identical stress condition increases several fold. Likewise, nitrogen fixing enzyme i.e. nitrogenase over-expresses itself under light stress condition. The terminal enzyme of respiratory electron transport chain i.e. cytochrome c oxidase shows more activity under light stress, whilst light stress has no impact on Ca(++)-dependent ATPase activity. This leads to the conclusion that under light stress, cytochrome c oxidase plays a vital role in mitigating given light stress. PMID:26712617

  12. Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation

    SciTech Connect

    Pakrasi, H.B.; Goldenberg, A.; Sherman, L.A.

    1985-09-01

    Deprivation of iron from the growth medium results in physiological as well as structural changes in the unicellular cyanobacterium Anacystis nidulans R2. Important among these changes are alterations in the composition and function of the photosynthetic membranes. Room-temperature absorption spectra of iron-starved cyanobacterial cells show a chlorophyll absorption peak at 672 nanometers, 7 nanometers blue-shifted from its normal position at 679 nanometers. Iron-starved cells have decreased amounts of chlorophyll and phycobilins. Their fluorescence spectra (77K) have one prominent chlorophyll emission peak at 684 nanometers as compared to three peaks at 687, 696, and 717 nanometers from normal cells. Chlorophyll-protein analysis of iron-deprived cells indicated the absence of high molecular weight bands. Addition of iron to iron-starved cells induced a restoration process in which new components were initially synthesized and integrated into preexisting membranes; at later times, new membranes were assembled and cell division commenced. Synthesis of chlorophyll and phycocyanins started almost immediately after the addition of iron. The origin of the fluorescence emission at 687 and 696 nanometers is discussed in relation to the specific chlorophyll-protein complexes formed during iron reconstitution. 26 references, 2 figures, 1 table.

  13. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142

    PubMed Central

    ?erven, Jan; Sinetova, Maria A.; Valledor, Luis; Sherman, Louis A.; Nedbal, Ladislav

    2013-01-01

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 C, which continuously decreased to 10 h at 39 C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability. PMID:23878254

  14. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.

    PubMed

    Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang T L; Heiden, Stefan E; Fssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo H J; Mller, Rolf; Mundt, Sabine

    2015-03-01

    The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0??M, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties. PMID:25182484

  15. Bastimolide A, a Potent Antimalarial Polyhydroxy Macrolide from the Marine Cyanobacterium Okeania hirsuta.

    PubMed

    Shao, Chang-Lun; Linington, Roger G; Balunas, Marcy J; Centeno, Argelis; Boudreau, Paul; Zhang, Chen; Engene, Niclas; Spadafora, Carmenza; Mutka, Tina S; Kyle, Dennis E; Gerwick, Lena; Wang, Chang-Yun; Gerwick, William H

    2015-08-21

    Bastimolide A (1), a polyhydroxy macrolide with a 40-membered ring, was isolated from a new genus of the tropical marine cyanobacterium Okeania hirsuta. This novel macrolide was defined by spectroscopy and chemical reactions to possess one 1,3-diol, one 1,3,5-triol, six 1,5-diols, and one tert-butyl group; however, the relationships of these moieties to one another were obscured by a highly degenerate (1)H NMR spectrum. Its complete structure and absolute configuration were therefore unambiguously determined by X-ray diffraction analysis of the nona-p-nitrobenzoate derivative (1d). Pure bastimolide A (1) showed potent antimalarial activity against four resistant strains of Plasmodium falciparum with IC50 values between 80 and 270 nM, although with some toxicity to the control Vero cells (IC50 = 2.1 ?M), and thus represents a potentially promising lead for antimalarial drug discovery. Moreover, rigorous establishment of its molecular arrangement gives fresh insight into the structures and biosynthesis of cyanobacterial polyhydroxymacrolides. PMID:26222145

  16. Isolation and characterization of a new reported cyanobacterium Leptolyngbya bijugata coproducing odorous geosmin and 2-methylisoborneol.

    PubMed

    Wang, Zhongjie; Xiao, Peng; Song, Gaofei; Li, Yeguang; Li, Renhui

    2015-08-01

    The earthy-musty compounds geosmin and 2-methylisoborneol (MIB) produced by cyanobacteria are considered as the main biological causes of off-flavor events, especially in aquatic ecosystems. More than 50 filamentous cyanobacteria species have been documented as geosmin or MIB producers; however, little is known about the species coproducing these two metabolites. In this study, an epiphytic sample was collected from a river in Hubei, China. Three isolated strains (A2, B2, and B4) producing earthy odors were successfully isolated and identified as the cyanobacterium Leptolyngbya bijugata Anagnostidis et Komrek 1988 based on morphology and 16S rDNA sequences. Gas chromatography analysis confirmed that the isolated L. bijugata strains were geosmin and MIB coproducers, with accumulation ranging from 13.6 to 22.4 and 12.3 to 57.5 ?g L(-1), respectively. The partial fragments of geosmin and MIB synthesis genes in the L. bijugata strains were cloned and sequenced. Further sequences and phylogenetic analysis indicated the high conservation and a common origin of these genes in cyanobacteria. This study is the first to report and characterize the coproduction of geosmin and MIB by L. bijugata, representing a new source for potential risk of off-flavor events. PMID:25893620

  17. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    PubMed

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  18. Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New?

    PubMed

    Cheregi, Otilia; Funk, Christiane

    2015-01-01

    In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5' GGCGATCGCC 3', was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes. PMID:26274949

  19. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Juo, Suh-Hang Hank; Maness, Pin-Ching; Yu, Jianping

    2015-07-01

    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introduction of xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation. PMID:26079651

  20. Proteomic profiling of the Baltic Sea cyanobacterium Nodularia spumigena strain AV1 during ammonium supplementation.

    PubMed

    Vintila, Simina; Jonasson, Sara; Wadensten, Henrik; Nilsson, Anna; Andrén, Per E; El-Shehawy, Rehab

    2010-08-01

    The cyanobacterium Nodularia spumigena dominates the annual, toxic summer blooms in the Baltic Sea. Although Nodularia has been receiving attention due to its production of the hepatotoxin nodularin, molecular data regarding the regulation of nitrogen fixation is lacking. We have previously reported that N. spumigena strain AV1, unlike model filamentous cyanobacteria, differentiates heterocysts in the absence of detectable nitrogen fixation activity. To further analyze the uncoupling between these two linked processes, we assessed the impact of ammonium ions on the N. spumigena metabolism using a proteomic approach. Proteomic profiling was performed at three different times during ammonium supplementation using quantitative 2-dimensional gel electrophoresis followed by MS/MS analysis. Using this approach, we identified 34 proteins, 28 of which were unique proteins that changed successively in abundance during growth on ammonium. Our results indicate that N. spumigena generally exhibits lower energy production and carbon fixation in the presence of ammonium and seems to be inefficient in utilizing ammonium as an external nitrogen source. The possibility of ammonium toxicity due to PSII damage was investigated and the results are discussed. Our findings have implications in regard to the strategies considered to manage the cyanobacterial blooms in the Baltic Sea. PMID:20438875

  1. Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella.

    PubMed

    Fiore, Marli Fátima; Genuário, Diego Bonaldo; da Silva, Caroline Souza Pamplona; Shishido, Tânia Keiko; Moraes, Luiz Alberto Beraldo; Cantúsio Neto, Romeu; Silva-Stenico, Maria Estela

    2009-06-01

    We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, São Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6microg MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. PMID:19233225

  2. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

    2015-01-01

    Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics’s usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics PMID:25632108

  3. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631.

    PubMed

    Fiore, Cara L; Longnecker, Krista; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2015-10-01

    Photoautotrophic plankton in the surface ocean release organic compounds that fuel secondary production by heterotrophic bacteria. Here we show that an abundant marine cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and sulfur-containing compounds to dissolved organic matter. A combination of targeted and untargeted metabolomics and genomic tools was used to characterize the intracellular and extracellular metabolites of S. elongatus. Aromatic compounds, such as 4-hydroxybenzoic acid and phenylalanine, as well as nucleosides (e.g. thymidine, 5'-methylthioadenosine, xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin indole 3-acetic acid, were released by S. elongatus at multiple time points during its growth. Further, the amino acid kynurenine was found to accumulate in the media even though it was not present in the predicted metabolome of S. elongatus. This indicates that some metabolites, including those not predicted by an organism's genome, are likely excreted into the environment as waste; however, these molecules may have broader ecological relevance if they are labile to nearby microbes. The compounds described herein provide excellent targets for quantitative analysis in field settings to assess the source and lability of dissolved organic matter in situ. PMID:25970745

  4. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis

    SciTech Connect

    Watanabe, Yoshitomo; Hall, D.O.; Nouee, J. De La

    1995-07-20

    The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.

  5. Hantupeptins B and C, cytotoxic cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula.

    PubMed

    Tripathi, Ashootosh; Puddick, Jonathan; Prinsep, Michele R; Lee, Peter Peng Foo; Tan, Lik Tong

    2010-02-01

    Hantupeptins B (2) and C (3) were isolated, along with the previously reported hantupeptin A (1), from the marine cyanobacterium, Lyngbya majuscula, collected from Pulau Hantu Besar, Singapore. Their structures were elucidated by interpretation of extensive 1D and 2D NMR spectroscopic data. Compounds 2 and 3 are cyclic depsipeptides consisting of five alpha-amino/hydroxy acid residues, including phenyllactic acid, proline, N-methyl-valine, valine, N-methyl-isoleucine, and a beta-hydroxy acid unit with different degrees of unsaturation at the terminal end of each molecule. The absolute configurations of the common amino acids and phenyllactic acid were determined by the advanced Marfey's and chiral HPLC analyses, respectively. The complete stereochemistry of 3-hydroxy-2-methyl-7-octynoic acid moiety in hantupeptin A was elucidated by a combination of homonuclear J-resolved 2D NMR experiments and by Mosher's method. Hantupeptins B and C showed moderate in vitro cytotoxicity when tested against MOLT-4 (leukemic) and MCF-7 (breast cancer) cell lines. PMID:19913263

  6. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    PubMed Central

    Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3− during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  7. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake. PMID:25536900

  8. Flotation characteristics of cyanobacterium Anabaena flos-aquae for gas vesicle production.

    PubMed

    Kashyap, S; Sundararajan, A; Ju, L K

    1998-12-01

    Cyanobacterium Anabaena flos-aquae was cultivated in photobioreactors for production of intracellular gas vesicles (GVs), as potential oxygen microcarriers. Natural flotation of the buoyant culture was investigated as a potential means of cell harvesting, because filtration and centrifugation tended to destroy the vesicles. Best flotation was found with actively growing culture and when conducted in the dark. The flotation-related cell properties, including the specific GV content, vesicle-collapsed filament density, and intracellular carbohydrate content, were measured to understand the phenomena. During the batch culture, the specific GV content remained relatively constant at 370 microL/(g dry cells) but the filament density (ranging 1.02 to 1.08 g/cm3) showed a decrease-then-increase profile. The increase began when the growth slowed down because of the reduced light availability at high cell concentrations. The dark flotation was studied with both actively growing (mu approximately 0.2 day-1) and stationary-phase cultures. The specific GV content of the stationary-phase culture remained relatively constant while that of the growing culture increased slightly. The intracellular carbohydrate content of the growing culture decreased much faster and more significantly, from 57 to 10 mg/(g dry cells) in

  9. An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803

    SciTech Connect

    Vermaas, Willem F.J.

    2006-03-14

    The broader goal of this project was to merge knowledge from genomic, metabolic, ultrastructural and other perspectives to understand how cyanobacteria live, adapt and are regulated. This understanding aids in metabolic engineering and synthetic biology efforts using this group of organisms that contribute greatly to global photosynthetic CO2 fixation and that are closely related to the ancestors of chloroplasts. This project focused on photosynthesis and respiration in the cyanobacterium Synechocystis sp. PCC 6803, which is spontaneously transformable and has a known genome sequence. Modification of these fundamental processes in this organism can lead to improved carbon sequestration and hydrogen production, as well as to generation of high-quality biomass. In our GTL-supported studies at Arizona State University we focus on cell structure and cell physiology in Synechocystis, with particular emphasis on thylakoid membrane formation and on metabolism related to photosynthesis and respiration. Results on (a) thylakoid membrane biogenesis, (b) fluxes through central carbon utilization pathways, and (c) distribution mechanisms between carbon storage compounds are presented. Together, these results help pave the way for metabolic engineering efforts that are likely to result in improved solar-powered carbon sequestration and bioenergy conversion. Fueled by the very encouraging results obtained in this project, we already have attracted interest from major companies in the use of cyanobacteria for biofuel production.

  10. Global Analysis of Circadian Expression in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Kucho, Ken-ichi; Okamoto, Kazuhisa; Tsuchiya, Yuka; Nomura, Satoshi; Nango, Mamoru; Kanehisa, Minoru; Ishiura, Masahiro

    2005-01-01

    Cyanobacteria are the only bacterial species found to have a circadian clock. We used DNA microarrays to examine circadian expression patterns in the cyanobacterium Synechocystis sp. strain PCC 6803. Our analysis identified 54 (2%) and 237 (9%) genes that exhibited circadian rhythms under stringent and relaxed filtering conditions, respectively. The expression of most cycling genes peaked around the time of transition from subjective day to night, suggesting that the main role of the circadian clock in Synechocystis is to adjust the physiological state of the cell to the upcoming night environment. There were several chromosomal regions where neighboring genes were expressed with similar circadian patterns. The physiological functions of the cycling genes were diverse and included a wide variety of metabolic pathways, membrane transport, and signal transduction. Genes involved in respiration and poly(3-hydroxyalkanoate) synthesis showed coordinated circadian expression, suggesting that the regulation is important for the supply of energy and carbon source in the night. Genes involved in transcription and translation also followed circadian cycling patterns. These genes may be important for output of the rhythmic information generated by the circadian clock. Our findings provided critical insights into the importance of the circadian clock on cellular physiology and the mechanism of clock-controlled gene regulation. PMID:15743968

  11. Emulsifying, flocculating, and physicochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme.

    PubMed

    Han, Pei-pei; Sun, Ying; Wu, Xiao-ying; Yuan, Ying-jin; Dai, Yu-jie; Jia, Shi-ru

    2014-01-01

    The emulsifying, flocculating, and physicochemical properties of purified exopolysaccharide (EPS) of terrestrial cyanobacterium Nostoc flagelliforme cultured in liquid media were investigated. The EPS was defined as heteropolysaccharide composed by 41.2 % glucose, 21.1 % galactose, 21.0 % mannose, 2.5 % fructose, 3.6 % ribose, 1.7 % xylose, 0.6 % arabinose, 3.0 % rhamnose, 0.9 % fucose, and 4.3 % glucuronic acid. The EPS possessed higher intrinsic viscosity than other cyanobacterial strains as reported and displayed pseudoplastic behavior in aqueous solution. The EPS produced more stable emulsions with tested hydrocarbons and oils than xanthan gum, and the emulsification indexes with n-hexadecane, liquid paraffin, and peanut oil were higher than 50 %, indicating the strong emulsion-stabilizing capacity. The EPS showed peak flocculating rates of 93.5 and 86.1 % in kaolin and MgO suspension, respectively, and exhibited a better flocculation performance than Al2(SO4)3 and xanthan gum. These results demonstrated that the EPS of N. flagelliforme was a very promising candidate for numerous industrial applications, as it had higher intrinsic viscosity, good emulsification activity, and excellent flocculation capability. PMID:24043454

  12. Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune.

    PubMed

    Nazifi, Ehsan; Wada, Naoki; Yamaba, Minami; Asano, Tomoya; Nishiuchi, Takumi; Matsugo, Seiichi; Sakamoto, Toshio

    2013-09-01

    Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments. PMID:24065157

  13. Response of diazotrophic cyanobacterium Nostoc carneum under pesticide and UV-B stress.

    PubMed

    Bhattacharyya, S; Nayak, B; Choudhury, N K

    2011-06-01

    A study was under taken, under controlled laboratory conditions, to investigate the influence of non-ionizing radiation (UV-B) and an organochlorine pesticide on the growth, photosynthetic pigments, protein content and DCPIP photoreduction of a cyanobacterium Nostoc carneum. Test algae was isolated from rice field soils of Sambalpur, Western Orissa, India and grown in nitrogen free BG 11 culture medium. Culture of algae from log phase of growth was treated with 5 pp m of the insecticide, Endodhan and UV-B (20 mW m(-2)) for 2h daily, separately and in combination of insecticide and UV-B radiation. Algal samples treated with UV-B and pesticide separately showed distinct inhibitory effects on growth, pigments, protein content and DCPIP reduction of the test samples. However, when pesticide treated samples were subjected to UV-B exposure, the effect showed additive as well as synergetic effect. Experiment conducted to check the ability of the organism to recover from the stress, exposed for various time periods, suggest their ability to partially recover from the stress. PMID:21388655

  14. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  15. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  16. Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505.

    PubMed

    Plominsky, Álvaro M; Delherbe, Nathalie; Mandakovic, Dinka; Riquelme, Brenda; González, Karen; Bergman, Birgitta; Mariscal, Vicente; Vásquez, Mónica

    2015-03-01

    Cylindrospermopsis raciborskii CS-505 is an invasive freshwater filamentous cyanobacterium that when grown diazotrophically may develop trichomes of up to 100 vegetative cells while differentiating only two end heterocysts, the sole sites for their N2-fixation process. We examined the diazotrophic growth and intercellular transfer mechanisms in C. raciborskii CS-505. Subjecting cultures to a combined-nitrogen-free medium to elicit N2 fixation, the trichome length remained unaffected while growth rates decreased. The structures and proteins for intercellular communication showed that while a continuous periplasmic space was apparent along the trichomes, the putative septal junction sepJ gene is divided into two open reading frames and lacks several transmembrane domains unlike the situation in Anabaena, differentiating a 5-fold higher frequency of heterocysts. FRAP analyses also showed that the dyes calcein and 5-CFDA were taken up by heterocysts and vegetative cells, and that the transfer from heterocysts and 'terminal' vegetative cells showed considerably higher transfer rates than that from vegetative cells located in the middle of the trichomes. The data suggest that C. raciborskii CS-505 compensates its low-frequency heterocyst phenotype by a highly efficient transfer of the fixed nitrogen towards cells in distal parts of the trichomes (growing rapidly) while cells in central parts suffers (slow growth). PMID:25757729

  17. Salinity tolerance of the chlorophyll b-synthesizing cyanobacterium Prochlorothrix hollandica strain SAG 10.89.

    PubMed

    Bergmann, Ingo; Geiss-Brunschweiger, Ulrike; Hagemann, Martin; Schoor, Arne

    2008-05-01

    Ecophysiological investigations on the salinity acclimation of the cyanobacterium Prochlorothrix hollandica SAG 10.89 led to significantly revised salinity tolerance limits. Besides potential effects of cultivation techniques, clear ion composition effects mainly explain formerly described hypersensitivity to NaCl-mediated salinity and lack of osmolyte detection. An extraordinarily broad plasticity of cellular chlorophyll a/b ratios occurred with variations of NaCl-induced salinity. Photosynthesis characteristics, pigment regulation, respiration, and biomass yield in growth medium with field-like ion composition indicated generally reduced acclimation pressure. A simultaneously significant increase in osmolyte (sucrose) accumulation indicated more efficient osmotic acclimation. Minor growth inhibition up to salinities of 10 practical salinity units enlarged the potential habitat of P. hollandica but at the most to about 300,000 km2 in the Baltic Sea. This supports probable observations of Prochlorothrix sp. in phytoplankton assemblages of open waters in Baltic Sea-monitoring studies. Brackish habitats differ from so far known habitats of Prochlorothrix spp. in turbidity, productivity, and plankton composition. Adjusted physiological features dispel fundamental doubts on the establishment of filamentous prochlorophytes in brackish waters. PMID:17874260

  18. Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum

    NASA Astrophysics Data System (ADS)

    Hu, Jinlu; Jin, Liang; Wang, Xiaojuan; Cai, Wenkai; Liu, Yongding; Wang, Gaohong

    2014-01-01

    The present study investigated the physiological and biochemical characteristics of Scytonema javanicum, a pioneer species isolated from desert biological crusts, under salinity stress. Pigment analysis showed that salinity decreased chlorophyll a and phycocyanin content, while low salinity increased carotenoid concentration and high salinity decreased carotenoid concentration. Salinity also inhibited CO2 assimilation rate and photosynthetic oxygen evolution in this cyanobacterium. Chlorophyll a fluorescence transient parameters (φPo, φEo, ψO, RC/ABS, RC/CS, PIABS, and PICS) were decreased under salt stress, while dVo/dto(Mo), Vj and φDo were increased. The decrease of ETRmax and Yield and the change of chlorophyll a fluorescence transients showed that salt stress had an important influence on photosynthesis. These results indicated that the effects of salinity stress on photosynthesis in S. javanicum may depend on the inhibition of electron transport and the inactivation of the reaction centers, but this inhibition may occur in the electron transport pathway at the PSII donor and acceptor sites.

  19. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    PubMed

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210??M temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. PMID:25630511

  20. Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium

    PubMed Central

    Pfreundt, Ulrike; Hess, Wolfgang R.

    2015-01-01

    The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in vivo splicing of a 5400 nt long group II twintron interrupting a highly conserved gene that is associated with RNase HI in some cyanobacteria, but free-standing in others, including Trichodesmium erythraeum. We show that twintron splicing results in a putatively functional mRNA. The full genetic arrangement was found conserved in two geospatially distinct metagenomic datasets supporting its functional relevance. We further show that splicing of the inner intron yields the free intron as a true circle. This reaction requires the spliced exon reopening (SER) reaction to provide a free 5′ exon. The fact that Trichodesmium harbors a functional twintron fits in well with the high intron load of these genomes, and suggests peculiarities in its genetic machinery permitting such arrangements. PMID:26577185

  1. Anilofos Tolerance and Its Mineralization by the Cyanobacterium Synechocystis sp. Strain PUPCCC 64

    PubMed Central

    Singh, D. P.; Khattar, J. I. S.; Kaur, Mandeep; Kaur, Gurdeep; Gupta, Meenu; Singh, Yadvinder

    2013-01-01

    This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L?1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L?1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L?1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L?1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L?1, pH 8.0 and 30C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L?1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate. PMID:23382844

  2. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification.

    PubMed

    Ekman, Martin; Tollbck, Petter; Bergman, Birgitta

    2008-01-01

    Cyanobacteria are able to form stable nitrogen-fixing symbioses with diverse eukaryotes. To extend our understanding of adaptations imposed by plant hosts, two-dimensional gel electrophoresis and mass spectrometry (MS) were used for comparative protein expression profiling of a cyanobacterium (cyanobiont) dwelling in leaf cavities of the water-fern Azolla filiculoides. Homology-based protein identification using peptide mass fingerprinting [matrix-assisted laser desorption ionization-time of flight (MALDI-TOF-MS)], tandem MS analyses, and sequence homology searches resulted in an identification success rate of 79% of proteins analysed in the unsequenced cyanobiont. Compared with a free-living strain, processes related to energy production, nitrogen and carbon metabolism, and stress-related functions were up-regulated in the cyanobiont while photosynthesis and metabolic turnover rates were down-regulated, stressing a slow heterotrophic mode of growth, as well as high heterocyst frequencies and nitrogen-fixing capacities. The first molecular data set on the nature of the NifH post-translational modification in cyanobacteria was also obtained: peptide mass spectra of the protein demonstrated the presence of a 300-400 Da protein modification localized to a specific 13 amino acid sequence, within the part of the protein that is ADP-ribosylated in other bacteria and close to the active site of nitrogenase. Furthermore, the distribution of the highest scoring database hits for the identified proteins points to the possibility of using proteomic data in taxonomy. PMID:18065763

  3. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  4. Refolding and Enzyme Kinetic Studies on the Ferrochelatase of the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Storm, Patrik; Tibiletti, Tania; Hall, Michael; Funk, Christiane

    2013-01-01

    Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident. PMID:23390541

  5. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    ?erven, Jan; Sinetova, Maria A; Valledor, Luis; Sherman, Louis A; Nedbal, Ladislav

    2013-08-01

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 C, which continuously decreased to 10 h at 39 C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability. PMID:23878254

  6. Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

    1989-01-01

    The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

  7. Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047.

    PubMed

    Moreno, Jos; Vargas, M Angeles; Rodrguez, Herminia; Rivas, Joaqun; Guerrero, Miguel G

    2003-07-01

    Optimization of conditions for outdoor production of the nitrogen-fixing cyanobacterium Anabaena sp. ATCC 33047 has been pursued. In open ponds operated under semi-continuous regime biomass productivity values achieved ranged from 9 g (dry weight) m(-2) per day, in winter, to over 20 g m(-2) per day, in summer, provided that key operation parameters, including cell density, were optimized. Under these conditions the efficiency of solar energy conversion by the cells was fairly constant throughout the year, with photosynthetic efficiency values higher than 2%. The cyanobacterial biomass was rich in high-value phycobiliproteins, namely allophycocyanin and phycocyanin, for which open cultures of marine Anabaena represent a most interesting production system. The performance of Anabaena cultures operated under continuous regime in a closed tubular reactor has also been assessed outdoors, in winter. Biomass productivity values similar to those obtained in the ponds have been recorded for the closed system. Additionally, under these conditions, the cells excreted to the medium large amounts of a previously characterized exopolysaccharide, at production rates as high as 35 g m(-2) per day (1.4 g l(-1) per day). Properly operated closed cultures of this strain of Anabaena appear most suitable for outdoor mass production of valuable extracellular polysaccharides. PMID:12919797

  8. Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39

    PubMed Central

    Fujisawa, Takatomo; Narikawa, Rei; Okamoto, Shinobu; Ehira, Shigeki; Yoshimura, Hidehisa; Suzuki, Iwane; Masuda, Tatsuru; Mochimaru, Mari; Takaichi, Shinichi; Awai, Koichiro; Sekine, Mitsuo; Horikawa, Hiroshi; Yashiro, Isao; Omata, Seiha; Takarada, Hiromi; Katano, Yoko; Kosugi, Hiroki; Tanikawa, Satoshi; Ohmori, Kazuko; Sato, Naoki; Ikeuchi, Masahiko; Fujita, Nobuyuki; Ohmori, Masayuki

    2010-01-01

    A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis. PMID:20203057

  9. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    PubMed

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria. PMID:12882559

  10. Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum

    PubMed Central

    Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michle R.; Chu, Justin Jang Hann

    2014-01-01

    Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 M to 10.0 M. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 ?M and 2.7 ?M, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

  11. Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803

    NASA Astrophysics Data System (ADS)

    Focsan, Monica; Ardelean, Ioan I.; Craciun, Constantin; Astilean, Simion

    2011-12-01

    Many microorganisms have long been known to be able to synthesize nanoparticles either in extracellular media or inside cells but the biochemical mechanisms involved in biomineralization are still poorly understood. In this paper we report the intracellular synthesis of gold nanoparticles (GNPs) by the cyanobacterium Synechocystis sp. PCC 6803 exposed to an aqueous solution of chloroauric acid. We assess the interplay between the biomineralization process and the metabolic activities (i.e. photosynthesis and respiration) of cyanobacteria cells by correlating the GNP synthesis yield with the amount of respiratory and photosynthetic oxygen exchange. The biogenic GNPs are compared in terms of their internalization and biological effects to GNPs synthesized by a standard citrate reduction procedure (cGNPs). The TEM analysis, in conjunction with spectroscopic measurements (i.e. surface plasmon resonance, fluorescence quenching and surface-enhanced Raman scattering, SERS), reveals the localization of biogenic GNPs at the level of intracytoplasmic membranes whereas the pre-formed cGNPs are located at the level of external cellular membrane. Our findings have implications for better understanding the process of biomineralization and assessing the potential risks associated with the accumulation of nanomaterials by various biological systems.

  12. Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2014-01-01

    In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

  13. Hfq is required for optimal nitrate assimilation in the Cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Puerta-Fernández, Elena; Vioque, Agustín

    2011-07-01

    Hfq is an RNA binding protein involved in posttranscriptional regulation of gene expression in bacteria. It acts by binding to regulatory small RNAs (sRNAs), which confer specificity for the regulation. Recently, orthologues of the Hfq protein were annotated in cyanobacterial genomes, although its capacity to regulate gene expression by interacting with sRNAs has not been yet demonstrated. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that, in the absence of combined nitrogen, is able to fix atmospheric nitrogen by differentiating specialized cells called heterocysts. We have generated an hfq knockout mutant of Anabaena sp. PCC 7120. Deletion of this gene results in differentiation of heterocysts in the presence of nitrate, suggesting a defect in nitrate assimilation. We show that hfq mutant cells are affected in transport and use of nitrate and nitrite. An analysis of the expression of several genes in the nir operon, encoding different elements of the nitrate assimilation pathway, demonstrates a downregulation of their transcription in mutant cells. We also observed that genes ntcB and cnaT, involved in the regulation of the nir operon, show a lower expression in cells lacking Hfq. Finally, when hfq was reintroduced in the mutant, heterocyst differentiation was no longer observed in the presence of nitrate. Therefore, our results indicate that the RNA chaperone Hfq is involved in the regulation of the nir operon, although the mechanism for this regulation is still unknown. PMID:21602329

  14. Hfq Is Required for Optimal Nitrate Assimilation in the Cyanobacterium Anabaena sp. Strain PCC 7120 ▿

    PubMed Central

    Puerta-Fernández, Elena; Vioque, Agustín

    2011-01-01

    Hfq is an RNA binding protein involved in posttranscriptional regulation of gene expression in bacteria. It acts by binding to regulatory small RNAs (sRNAs), which confer specificity for the regulation. Recently, orthologues of the Hfq protein were annotated in cyanobacterial genomes, although its capacity to regulate gene expression by interacting with sRNAs has not been yet demonstrated. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that, in the absence of combined nitrogen, is able to fix atmospheric nitrogen by differentiating specialized cells called heterocysts. We have generated an hfq knockout mutant of Anabaena sp. PCC 7120. Deletion of this gene results in differentiation of heterocysts in the presence of nitrate, suggesting a defect in nitrate assimilation. We show that hfq mutant cells are affected in transport and use of nitrate and nitrite. An analysis of the expression of several genes in the nir operon, encoding different elements of the nitrate assimilation pathway, demonstrates a downregulation of their transcription in mutant cells. We also observed that genes ntcB and cnaT, involved in the regulation of the nir operon, show a lower expression in cells lacking Hfq. Finally, when hfq was reintroduced in the mutant, heterocyst differentiation was no longer observed in the presence of nitrate. Therefore, our results indicate that the RNA chaperone Hfq is involved in the regulation of the nir operon, although the mechanism for this regulation is still unknown. PMID:21602329

  15. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process.

    PubMed

    Chow, Te-Jin; Su, Hsiang-Yen; Tsai, Tsung-Yu; Chou, Hsiang-Hui; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    In this work, a recombinant cyanobacterium strain with increased photosynthesis rate, cell growth and carbohydrate production efficiency was genetically engineered by co-expressing ictB, ecaA, and acsAB (encoded for bacterial cellulose) in Synechococcus elongatus PCC7942. The resulting cyanobacterial biomass could be effectively hydrolyzed with dilute acid (2% sulfuric acid), achieving a nearly 90% glucose recovery at a biomass concentration of 80 g/L. Bioethanol can be produced from fermenting the acidic hydrolysate of S. elongatus PCC7942 via separate hydrolysis and fermentation (SHF) process at a concentration of 7.2 g/L and with a 91% theoretical yield. PMID:25453434

  16. Domain organization of photosystem II in membranes of the cyanobacterium Synechocystis PCC6803 investigated by electron microscopy.

    PubMed

    Folea, I Mihaela; Zhang, Pengpeng; Aro, Eva-Mari; Boekema, Egbert J

    2008-05-28

    The supramolecular organization of photosystem II (PSII) complexes in the photosynthetic membrane of the cyanobacterium Synechocystis 6803 was studied by electron microscopy. After mild detergent solubilization, crystalline PSII arrays were extracted in which dimeric PSII particles associate in multiple rows. Image processing of the arrays shows that the PSII dimers are tightly packed at distances of 12.2 and 16.7 nm. The domains are considered to be an important type of association for preventing either spill-over energy from PSII towards photosystem I (PSI) or direct energy flow from phycobilisomes to PSI, because the latter can only be at periphery of the arrays. PMID:18466767

  17. Lyngbyastatins 810, Elastase Inhibitors with Cyclic Depsipeptide Scaffolds Isolated from the Marine Cyanobacterium Lyngbya semiplena

    PubMed Central

    Kwan, Jason C.; Taori, Kanchan; Paul, Valerie J.; Luesch, Hendrik

    2009-01-01

    Investigation of an extract from the marine cyanobacterium Lyngbya semiplena, collected in Tumon Bay, Guam, led to the identification of three new cyclodepsipeptides, lyngbyastatins 810 (13). The structures of 13 were determined by NMR, MS, ESIMS fragmentation and chemical degradation. Compounds 13 are closely related to lyngbyastatins 47. Like the latter compounds, we found 13 to inhibit porcine pancreatic elastase, with IC50 values of 123 nM, 210 nM and 120 nM, respectively. PMID:20098596

  18. Cloning of a copper resistance gene cluster from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery.

    PubMed

    Gittins, John R

    2015-07-01

    A copper resistance gene cluster (6 genes, ?8.2 kb) was isolated from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery (RR). Following integration of a narrow-host-range plasmid vector adjacent to the target region in the Synechocystis genome (pSYSX), DNA was isolated from transformed cells and the plasmid plus flanking sequence circularized by recombineering to precisely clone the gene cluster. Complementation of a copper-sensitive Escherichia coli mutant demonstrated the functionality of the pcopM gene encoding a copper-binding protein. RR provides a novel alternative method for cloning large DNA fragments from species that can be transformed by homologous recombination. PMID:25980606

  19. Effect of pretreatment of salt, copper and temperature on ultraviolet-B-induced antioxidants in diazotrophic cyanobacterium Anabaena doliolum.

    PubMed

    Srivastava, Ashish Kumar; Bhargava, Poonam; Mishra, Yogesh; Shukla, Bideh; Rai, Lal Chand

    2006-01-01

    Effect of salt, copper, and temperature pretreatments on the UV-B-induced oxidative damage, measured in terms of peroxide and MDA (lipid peroxidation) contents, was studied in the diazotrophic cyanobacterium Anabaena doliolum. To understand the survival strategy enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbate, alpha-tocopherol and carotenoid) antioxidants were studied. Among the various pretreatments salt was found to decrease and copper and temperature pretreatments increased the deleterious effects of UV-B. This study is the first to demonstrate that physical stress (high temperature) enhanced the damaging effect of UV-B more profoundly than chemical stresses (salt and copper). PMID:16598827

  20. Optimal conditions for genetic transformations of the cyanobacterium Anacystis nidulans R2

    SciTech Connect

    Golden, S.S.; Sherman, L.A.

    1984-04-01

    Under optimal conditions, the cyanobacterium Anacystis nidulans R2 was transformed to ampicillin resistance at frequencies of >10/sup 7/ transformants per ..mu..g of plasmid (pCH1) donor DNA. No stringent period of competency was detected, and high frequencies of transformation were achieved with cultures at various growth stages. Transformation increased with time after addition of donor DNA up to 15 to 18 h. The peak of transformation efficiency (transformants/donor molecule) occurred at plasmid concentrations of 125 to 325 ng/ml with an ampicillin resistance donor plasmid (pCH1) and 300 to 625 ng/ml for chloramphenicol resistance conferred by plasmid pSG111. The efficiency of transformation was enhanced by excluding light during the incubation or by blocking photosynthesis with the electron transport inhibitor 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) or the uncoupler carbonyl cyanide-m-chlorophenyl hydrazone. Preincubation of cells in darkness for 15 to 18 h before addition of donor DNA significantly decreased transformation efficiency. Growth of cells in iron-deficient medium before transformation enhanced efficiency fourfold. These results were obtained with selection for ampicillin (pCH1 donor plasmid)- or chloramphenicol (pSG111 donor plasmid)-resistant transformants. Approximately 1000 transformants per ..mu..g were obtained when chromosomal DNA from a herbicide (DCMU)-resistant mutant was used as donor DNA. DCMU resistance was also transferred to recipient cells by using restriction fragments of chromosomal DNA from DCMU-resistant mutants. This procedure allowed size classes of fragments to be assayed for the presence of the DCMU resistance gene.

  1. Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1.

    PubMed

    Carillo, Sara; Pieretti, Giuseppina; Bedini, Emiliano; Parrilli, Michelangelo; Lanzetta, Rosa; Corsaro, Maria Michela

    2014-03-31

    Cyanobacteria are aquatic and photosynthetic microorganisms, which contribute up to 30% of the yearly oxygen production on the earth. They have the distinction of being the oldest known fossils, more than 3.5 billion years old, and are one of the largest and most important groups of bacteria on earth. Cyanobacteria are an emerging source of potentially pharmacologically active products and, among these, there are the lipopolysaccharides. Despite their significant and well documented activity, very little is known about the cyanobacteria lipopolysaccharides (LPS) structure. The aim of this work is to investigate the structure of the highly TLR4-antagonist lipopolysaccharide from the cyanobacterium Oscillatoria plankthotrix FP1. The LPS was purified and analysed by means of chemical analysis and 1H and 13C NMR spectroscopy. The LPS was then degraded by Smith degradation, HF and acetic acid hydrolyses. All the obtained products were investigated in detail by chemical analysis, NMR spectroscopy and by mass spectrometry. The LPS consists of a high molecular mass and very complex molecule lacking Kdo and heptose residues, where the polysaccharide chain is mainly constituted by a backbone of 3-substituted ?-l-rhamnose units. The core region is rich in galacturonic acid and mannose residues. Moreover a glycolipid portion, similar to Gram-negative lipid A, was identified. This was built up of a non phosphorylated (1'?6) linked glucosamine disaccharide, acylated with 3-hydroxylated fatty acids. In particular 3-hydroxypentadecanoic and 3-hydroxyesadecanoic acids were found, together with esadecanoic and tetradecanoic ones. Finally the presence of a galacturonic acid residue at 6-position of the distal glucosamine in place of the Kdo residue is suggested. PMID:24632212

  2. Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface

    PubMed Central

    Morris, J. Jeffrey; Johnson, Zackary I.; Szul, Martin J.; Keller, Martin; Zinser, Erik R.

    2011-01-01

    The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species. PMID:21304826

  3. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    SciTech Connect

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-03-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-(/sup 14/C)glutamate from 2-keto-(1-/sup 14/C)glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with (/sup 14/C)bicarbonate and L-(1-/sup 14/C)ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.

  4. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    PubMed Central

    Brauer, Verena S.; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J.; Stal, LucasJ.; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

  5. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    SciTech Connect

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  6. Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide.

    PubMed

    Gaudana, Sandeep B; Alagesan, Swathi; Chetty, Madhu; Wangikar, Pramod P

    2013-11-01

    Mixotrophic cultivation of cyanobacteria in wastewaters with flue gas sparging has the potential to simultaneously sequester carbon content from gaseous and aqueous streams and convert to biomass and biofuels. Therefore, it was of interest to study the effect of mixotrophy and elevated CO2 on metabolism, morphology and rhythm of gene expression under diurnal cycles. We chose a diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 as a model, which is a known hydrogen producer with robust circadian rhythm. Cyanothece 51142 grows faster with nitrate and/or an additional carbon source in the growth medium and at 3% CO2. Intracellular glycogen contents undergo diurnal oscillations with greater accumulation under mixotrophy. While glycogen is exhausted by midnight under autotrophic conditions, significant amounts remain unutilized accompanied by a prolonged upregulation of nifH gene under mixotrophy. This possibly supports nitrogen fixation for longer periods thereby leading to better growth. To gain insights into the influence of mixotrophy and elevated CO2 on circadian rhythm, transcription of core clock genes kaiA, kaiB1 and kaiC1, the input pathway, cikA, output pathway, rpaA and representatives of key metabolic pathways was analyzed. Clock genes' transcripts were lower under mixotrophy suggesting a dampening effect exerted by an external carbon source such as glycerol. Nevertheless, the genes of the clock and important metabolic pathways show diurnal oscillations in expression under mixotrophic and autotrophic growth at ambient and elevated CO2, respectively. Taken together, the results indicate segregation of light and dark associated reactions even under mixotrophy and provide important insights for further applications. PMID:23881383

  7. Increase of Nitrogenase Activity in the Blue-Green Alga Nostoc muscorum (Cyanobacterium)

    PubMed Central

    Scherer, Siegfried; Kerfin, Wolfgang; Bger, Peter

    1980-01-01

    Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under hydrogen or argon (nongrowing conditions, neither CO2 nor N2 or bound nitrogen present) in the light resulted in a two- to fourfold increase of light-induced hydrogen evolution and a 30% increase of acetylene reduction. Preincubation under the same gases in the dark led to a decrease of both activities. Cultivation of algae under a hydrogen-containing atmosphere (N2, H2, CO2) increased neither hydrogen nor ethylene evolution by the cells. Formation of both ethylene and hydrogen is due to nitrogenase activity, which apparently was induced by the absence of N2 or bound nitrogen and not by the presence of hydrogen. Inhibitors of protein biosynthesis prevented the increase of nitrogenase activity. Hydrogen uptake by the cells was almost unaffected under all of these conditions. With either ammonia or chloramphenicol present, nitrogenase activity decreased under growing conditions (i.e., an atmosphere of N2 and CO2). The kinetics of decrease were the same with ammonia or chloramphenicol, which was interpreted as being due to rapid protein breakdown with a half-life of approximately 4 h. The decay of nitrogenase activity caused by chloramphenicol could be counteracted by nitrogenase-inducing conditions, i.e., by the absence of N2 or bound nitrogen. A cell-free system from preconditioned algae with an adenosine 5?-triphosphate-generating system exhibited the same increase or decrease of nitrogenase activity as the intact cell filaments, indicating that this effect resided in the nitrogenase complex only. We tentatively assume that not the whole nitrogenase complex, but merely a subunit or a special protein with regulatory function, is susceptible to fast turnover. PMID:6777364

  8. Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).

    PubMed

    Pérez-Morales, Alfredo; Sarma, S S S; Nandini, S

    2014-11-01

    Microcystis aeruginosa is generally dominant in many Mexican freshwater ecosystems interacting with zooplankton species. Hence, feeding and filtration rates were quantified for three cladoceran (Daphnia pulex, Moina micrura and Ceriodaphnia dubia) and three rotifer species (Brachionus calyciflorus, Brachionus rubens and Plationus patulus) using sonicated M. aeruginosa alone or mixed with Scenedesmus acutus in different proportions (25, 50 and 75%, based on cell density), offering a combined initial density of 100,000 cells·ml(-1). All the three cladoceran species ingested M. aeruginosa (100-300 cells ind(-1) min(-1)) when fed exclusively with cyanobacterium. When green alga offered as exclusive diet, the number of cells ingested by the tested cladocerans varied from 80 to 400 cells ind(-1) min(-1). Compared to cladocerans, rotifers in general consumed much lower quantity (< 200 cells ind(-1) min(-1)) of M. aeruginosa and S. acutus. The filtration rate for Daphnia pulex was inversely related to the proportion of green alga in the diet. For other tested cladocerans, no such clear trend was evident. In mixed treatments containing M. aeruginosa, the filtration rate of Daphnia was highest (about 220 μl ind(-1) min(-1)) when the medium contained 75% of S. acutus. Among the rotifer species, P. patulus filtered highest volume (100 μl ind(-1) min(-1) from mixed diets containing higher proportions (50 or 75%) of M. aeruginosa. Thus, there were species-specific differences in the filtration and feeding rates of zooplankton when offered mixed diets of green algae and toxic cyanobacteria. These probably explain the coexistence of different zooplankton species in Microcystis-dominant waterbodies. PMID:25522500

  9. Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis.

    PubMed Central

    Spiller, H; Latorre, C; Hassan, M E; Shanmugam, K T

    1986-01-01

    A positive selection method for isolation of nitrogenase-derepressed mutant strains of a filamentous cyanobacterium, Anabaena variabilis, is described. Mutant strains that are resistant to a glutamate analog, L-methionine-D,L-sulfoximine, were screened for their ability to produce and excrete NH4+ into medium. Mutant strains capable of producing nitrogenase in the presence of NH4+ were selected from a population of NH4+-excreting mutants. One of the mutant strains (SA-1) studied in detail was found to be a conditional glutamine auxotroph requiring glutamine for growth in media containing N2, NO3-, or low concentrations of NH4+ (less than 0.5 mM). This glutamine requirement is a consequence of a block in the assimilation of NH4+ produced by an enzyme system like nitrogenase. Glutamate and aspartate failed to substitute for glutamine because of a defect in the transport and utilization of these amino acids. Strain SA-1 assimilated NH4+ when the concentration in the medium reached about 0.5 mM, and under these conditions the growth rate was similar to that of the parent. Mutant strain SA-1 produced L-methionine-D,L-sulfoximine-resistant glutamine synthetase activity. Kinetic properties of the enzyme from the parent and mutant were similar. Mutant strain SA-1 can potentially serve as a source of fertilizer nitrogen to support growth of crop plants, since the NH4+ produced by nitrogenase, utilizing sunlight and water as sources of energy and reductant, respectively, is excreted into the environment. PMID:2867990

  10. A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress.

    PubMed

    Chakravarty, Dhiman; Banerjee, Manisha; Bihani, Subhash C; Ballal, Anand

    2016-02-01

    Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed reduced formation of reactive oxygen species, peroxides, and oxidized proteins than the control cells (i.e. not treated with NaCl) exposed to H2O2. This protective effect correlated well with the substantial increase in production of KatB, a Mn-catalase. Addition of NaCl did not safeguard the katB mutant from H2O2, suggesting that KatB was indeed responsible for detoxifying the externally added H2O2. Moreover, Anabaena deficient in KatB was susceptible to oxidative effects of salinity stress. The katB gene was strongly induced in response to osmotic stress or desiccation. Promoter-gfp analysis showed katB to be expressed only in the vegetative cells but not in heterocysts. Biochemically, KatB was an efficient, robust catalase that remained active in the presence of high concentrations of NaCl. Our findings unravel the role of Mn-catalase in acclimatization to salt/oxidative stress and demonstrate that the oxidative stress resistance of an organism can be enhanced by a simple compound such as NaCl. PMID:26645454

  11. Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Schuerger, Andrew C.; Billi, Daniela; Imre Friedmann, E.; Panitz, Corinna

    2005-06-01

    Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.

  12. Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation

    SciTech Connect

    Dzelzkalns, V.A.; Bogorad, L.

    1986-03-01

    Irradiation of the photoheterotrophic cyanobacterium Synechocystis sp. PCC 6803 with low levels of UV light allows for stable, integrative transformation of these cells by heterologous DNA. In this system, transformation does not rely on an autonomously replicating plasmid and is independent of homologous recombination. Cells treated with UV light in the absence of DNA and cells given DNA but not exposed to UV do not yield antibiotic-resistant colonies in platings of up to 2 x 10/sup 8/ cells. Optimal conditions for this UV-induced transformation are described. Analysis of the transformants indicates that (i) only a segment of the introduced plasmid is found in the DNA of the transformed cells; (ii) in independently isolated clones, DNA insertion apparently occurs at different sites in the chromosome; and (iii) hybridization data suggest that insertion in one of the transformants may have occurred into a region of the chromosome that is repeated or that integration of plasmid DNA may have been accompanied by a rearrangement or duplication of DNA sequences near the insertion site. DNA isolated from the primary transformants as well as a cloned fragment containing the UV- inserted plasmid sequence and flanking cyanobacterial DNA transform wild-type cells at a high frequency (5.0 x 10/sup -4/ and 1.5 x 10/sup -5/, respectively). Possible mechanisms of this transformation system are discussed, as are the potential uses of this system as an integrative cloning-complementation vector and as a mutagenic agent in which the genetic lesion is already tagged with a selectable marker.

  13. Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*

    PubMed Central

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-01-01

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

  14. Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium

    PubMed Central

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alexander S.

    2012-01-01

    ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400mol?mg Chl?1?h?1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90mol?mg Chl?1?h?1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. PMID:22872781

  15. Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus

    PubMed Central

    Clerico, Eugenia M.; Cassone, Vincent M.; Golden, Susan S.

    2009-01-01

    SUMMARY Molecular aspects of the circadian clock in the cyanobacterium Synechococcus elongatus have been described in great detail. Three-dimensional structures have been determined for the three proteins, KaiA, KaiB, and KaiC, that comprise a central oscillator of the clock. Moreover, a temperature-compensated circadian rhythm of KaiC phosphorylation can be reconstituted in vitro with the addition of KaiA, KaiB, and ATP. These data suggest a relatively simple circadian system in which a single oscillator provides temporal information for all downstream processes. However, in vivo the situation is more complex, and additional components contribute to the maintenance of a normal period, the resetting of relative phases of circadian oscillations, and the control of rhythms of gene expression. We show here that two well-studied promoters in the S. elongatus genome report different circadian periods of expression under a given set of conditions in wild-type as well as mutant genetic backgrounds. Moreover, the period differs between these promoters with respect to modulation by light intensity, growth phase, and the presence or absence of a promoter-recognition subunit of RNA polymerase. These data contrast sharply with the current clock model in which a single Kai-based oscillator governs circadian period. Overall, these findings suggest that complex interactions between the circadian oscillator, perhaps other oscillators, and other cellular machinery result in a clock that is plastic and sensitive to the environment and to the physiological state of the cell. PMID:19202112

  16. Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047.

    PubMed

    Moreno, J; Vargas, M A; Madiedo, J M; Muñoz, J; Rivas, J; Guerrero, M G

    2000-02-01

    The cyanobacterium (blue-green alga) Anabaena sp. ATCC 33047 produces an exopolysaccharide (EPS) during the stationary growth phase in batch culture. Chemical analysis of EPS revealed a heteropolysaccharidic nature, with xylose, glucose, galactose, and mannose the main neutral sugars found. The infrared (IR) spectrum of EPS showed absorption bands of carboxylate groups. The average molecular mass of the polymer was 1.35 MDa. Aqueous dispersions at EPS concentrations ranging from 0.2% to 0.6% (w/w) showed marked shear-thinning properties (power-law behavior). Linear dynamic viscoelastic properties showed that the elastic component was always higher than the viscous component. Viscous and viscoelastic properties demonstrated the absence of conformational changes within the concentration range studied. Stress-growth experiments revealed that 0.4% and 0.6% (w/w) EPS dispersions showed thixotropic properties. A detailed comparison of the linear dynamic viscoelasticity, transient flow, and decreasing shear rate flow curve properties was made for 0.4% (w/w) dispersions of xanthan gum (XG), Alkemir 110 (AG), and EPS. Viscoelastic spectra demonstrated that the EPS dispersion turned out to be more "fluidlike" than the AG and XG dispersions. The flow indexes indicated that the EPS dispersion was less shear-sensitive than that of XG, showing essentially the same viscosity, that is, >50 s(-1). The fact that viscosities of EPS and AG dispersions were not substantially different within the shear-rate range covered must be emphasized, in relation to EPS potential applications. The rheological behavior of EPS dispersions indicates the formation of an intermediate structure between a random-coil polysaccharide and a weak gel. PMID:10620258

  17. Arsenic Demethylation by a CAs Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a CAs lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (?arsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 0.33 ?M for MAs(III), Vmax = 0.79 0.02 ?M min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment. PMID:26544154

  18. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium

    PubMed Central

    Burnat, Mireia; Herrero, Antonia; Flores, Enrique

    2014-01-01

    Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases β-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and β-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of β-aspartyl-arginine. These observations imply that β-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule β-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria. PMID:24550502

  19. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  20. Characterization of the Response to Zinc Deficiency in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J.

    2012-01-01

    Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium. PMID:22389488

  1. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium.

    PubMed

    Burnat, Mireia; Herrero, Antonia; Flores, Enrique

    2014-03-11

    Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases β-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and β-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of β-aspartyl-arginine. These observations imply that β-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule β-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria. PMID:24550502

  2. Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium

    PubMed Central

    Nürnberg, Dennis J.; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia

    2015-01-01

    ABSTRACT Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. PMID:25784700

  3. Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

    PubMed Central

    van Gremberghe, Ineke; Vanormelingen, Pieter; Van der Gucht, Katleen; Debeer, Ann-Eline; Lacerot, Gissell; De Meester, Luc; Vyverman, Wim

    2011-01-01

    Background Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution. PMID:21573169

  4. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

  5. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation

    PubMed Central

    Spt, Philipp; Ma?ek, Boris; Forchhammer, Karl

    2015-01-01

    Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria. PMID:25873915

  6. The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization.

    PubMed

    Regelsberger, Gnther; Laaha, Ulrike; Dietmann, Dagmar; Rker, Florian; Canini, Antonella; Grilli-Caiola, Maria; Furtmller, Paul Georg; Jakopitsch, Christa; Peschek, Gnter A; Obinger, Christian

    2004-10-22

    The nitrogen-fixing filamentous cyanobacterium Nostoc PCC 7120 (formerly named Anabaena PCC 7120) possesses two genes for superoxide dismutase, a unique membrane-associated manganese superoxide dismutase (MnSOD) and a soluble iron superoxide dismutase (FeSOD). A phylogenetic analysis of FeSODs shows that cyanobacterial enzymes form a well separated cluster with filamentous species found in one subcluster and unicellular species in the other. Activity staining, inhibition patterns, and immunogold labeling show that FeSOD is localized in the cytosol of vegetative cells and heterocysts (nitrogenase containing specialized cells formed during nitrogen-limiting conditions). The recombinant Nostoc FeSOD is a homodimeric, acidic enzyme exhibiting the characteristic iron peak at 350 nm in its ferric state, an almost 100% occupancy of iron per subunit, a specific activity using the ferricytochrome assay of (2040 +/- 90) units mg(-1) at pH 7.8, and a dissociation constant Kd of the azide-FeSOD complex of 2.1 mM. Using stopped flow spectroscopy it was shown that the decay of superoxide in the presence of various FeSOD concentrations is first-order in enzyme concentration allowing the calculation of the catalytic rate constants, which increase with decreasing pH: 5.3 x 10(9) M(-1) s(-1) (pH 7) to 4.8 x 10(6) M(-1) s(-1) (pH 10). FeSOD and MnSOD complement each other to keep the superoxide level low in Nostoc PCC 7120, which is discussed with respect to the fact that Nostoc PCC 7120 exhibits oxygenic photosynthesis and oxygen-dependent respiration within a single prokaryotic cell and also has the ability to form differentiated cells under nitrogen-limiting conditions. PMID:15302891

  7. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  8. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii

    NASA Astrophysics Data System (ADS)

    Burford, Michele A.; Davis, Timothy W.

    2011-07-01

    The freshwater cyanobacterium, Cylindrospermopsis raciborskii (Wo'oszy?ska) Seenayya and Subba Raju is a common species in lakes and reservoirs globally. In some areas of the world it can produce cyto- and hepatotoxins (cylindrospermopsins, saxitoxins), making blooms of this species a serious health concern for humans. In the last 10-15 years, there has been a considerable body of research conducted on the ecology, physiology and toxin production of this species and this paper reviews these studies with a focus on the cylindrospermopsin (CYN)-producing strains. C. raciborskii has low light requirements, close to neutral buoyancy, and a wide temperature tolerance, giving it the capacity to grow in many lentic waterbodies. It also has a flexible strategy with respect to nitrogen (N) utilisation; being able to switch between utilising fixed and atmospheric N as sources of N fluctuate. Additionally this species has a high phosphate (DIP) affinity and storage capacity. Like many cyanobacteria, it also has the capacity to use dissolved organic phosphorus (DOP). Changes in nutrient concentrations, light levels and temperature have also been found to affect production of the toxin CYN by this species. However, optimal toxin production does not necessarily occur when growth rates are optimal. Additionally, different strains of C. raciborskii vary in their cell quota of CYN, making it difficult to predict toxin concentrations, based on C. raciborskii cell densities. In summary, the ecological flexibility of this organism means that controlling blooms of C. raciborskii is a difficult undertaking. However, improved understanding of factors promoting the species and toxin production by genetically capable strains will lead to improved predictive models of blooms.

  9. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.

    PubMed

    Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

    2014-12-15

    Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. PMID:25303871

  10. A Bisallylic Mini-lipoxygenase from Cyanobacterium Cyanothece sp. That Has an Iron as Cofactor*

    PubMed Central

    Andreou, Alexandra; Göbel, Cornelia; Hamberg, Mats; Feussner, Ivo

    2010-01-01

    Lipoxygenases are enzymes that are found ubiquitously in higher animals and plants, but have only recently been identified in a number of bacteria. The genome of the diazotrophic unicellular cyanobacterium Cyanothece sp. harbors two genes with homology to lipoxygenases. Here we describe the isolation of one gene, formerly named csplox2. It was cloned, and the protein was expressed in Escherichia coli and purified. The purified enzyme belongs to the group of prokaryotic mini lipoxygenases, because it had a molecular mass of 65 kDa. Interestingly, it catalyzed the conversion of linoleic acid, the only endogenously found polyunsaturated fatty acid, primarily to the bisallylic hydroperoxide 11R-hydroperoxyoctadecadienoic acid. This product had previously only been described for the manganese lipoxygenase from the take all fungus, Gaeumannomyces graminis. By contrast, CspLOX2 was shown to be an iron lipoxygenase. In addition, CspLOX2 formed a mixture of typical conjugated lipoxygenase products, e.g. 9R- and 13S-hydroperoxide. The conversion of linoleic acid took place with a maximum reaction rate of 31 s−1. Incubation of the enzyme with [(11S)-2H]linoleic acid led to the formation of hydroperoxides that had lost the deuterium label, thus suggesting that CspLOX2 catalyzes antarafacial oxygenation as opposed to the mechanism of manganese lipoxygenase. CspLOX2 could also oxidize diarachidonylglycerophosphatidylcholine with similar specificity as the free fatty acid, indicating that binding of the substrate takes place with a “tail-first” orientation. We conclude that CspLOX2 is a novel iron mini-lipoxygenase that catalyzes the formation of bisallylic hydroperoxide as the major product. PMID:20223828

  11. Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029.

    PubMed

    Cockell, Charles S; Schuerger, Andrew C; Billi, Daniela; Friedmann, E Imre; Panitz, Corinna

    2005-04-01

    Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars. PMID:15815164

  12. Isolation and Characterization of a Cyanophage Infecting the Toxic Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Yoshida, Takashi; Takashima, Yukari; Tomaru, Yuji; Shirai, Yoko; Takao, Yoshitake; Hiroishi, Shingo; Nagasaki, Keizo

    2006-01-01

    We isolated a cyanophage (Ma-LMM01) that specifically infects a toxic strain of the bloom-forming cyanobacterium Microcystis aeruginosa. Transmission electron microscopy showed that the virion is composed of anisometric head and a tail complex consisting of a central tube and a contractile sheath with helical symmetry. The morphological features and the host specificity suggest that Ma-LMM01 is a member of the cyanomyovirus group. Using semi-one-step growth experiments, the latent period and burst size were estimated to be 6 to 12 h and 50 to 120 infectious units per cell, respectively. The size of the phage genome was estimated to be ca. 160 kbp using pulse-field gel electrophoresis; the nucleic acid was sensitive to DNase I, Bal31, and all 14 restriction enzymes tested, suggesting that it is a linear double-stranded DNA having a low level of methylation. Phylogenetic analyses based on the deduced amino acid sequences of two open reading frames coding for ribonucleotide reductase alpha- and beta-subunits showed that Ma-LMM01 forms a sister group with marine and freshwater cyanobacteria and is apparently distinct from T4-like phages. Phylogenetic analysis of the deduced amino acid sequence of the putative sheath protein showed that Ma-LMM01 does not form a monophyletic group with either the T4-like phages or prophages, suggesting that Ma-LMM01 is distinct from other T4-like phages that have been described despite morphological similarity. The host-phage system which we studied is expected to contribute to our understanding of the ecology of Microcystis blooms and the genetics of cyanophages, and our results suggest the phages could be used to control toxic cyanobacterial blooms. PMID:16461672

  13. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  14. Pathway-Level Acceleration of Glycogen Catabolism by a Response Regulator in the Cyanobacterium Synechocystis Species PCC 68031[W

    PubMed Central

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-01-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium. PMID:24521880

  15. Proline biosynthesizing enzymes (glutamate 5-kinase and pyrroline-5-carboxylate reductase) from a model cyanobacterium for desiccation tolerance.

    PubMed

    Singh, Priyanka; Tiwari, Anupam; Singh, Sureshwar Prasad; Asthana, Ravi Kumar

    2013-10-01

    Drought is the most important abiotic stress, challenging sustainable agriculture globally. For desiccation being the multigenic trait, a combination of identified genes from the appropriate organism may render crop tolerant to the water stress. Among the compatible solutes, proline plays multifaceted role in counteracting such stress. The genes encoding proline biosynthesizing enzymes, glutamate 5-kinase (G5K), and pyrroline-5-carboxylate reductase (P5CR) from the low-desiccation-tolerant cyanobacterium Anabaena sp. PCC 7120, were cloned and overexpressed in Escherichia coli BL21(DE3) individually. The recombinant E. coli cells harboring G5K, failed to exhibit enhanced desiccation tolerance relative to those with P5CR that showed increased growth/survival over the wild type. This may be ascribed to the overexpression of the reductase gene. Multiple sequence alignment showed P5CR to be conserved in all the organisms. We hypothesize that P5CR gene from high-desiccation-tolerant cyanobacteria may be adopted as the candidate for making transgenic N2-fixing cyanobacterium for paddy fields and/or crop development in future. PMID:24431521

  16. Chemoheterotrophic growth of the Cyanobacterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase.

    PubMed

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus; Schmetterer, Georg

    2012-09-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth. PMID:22730128

  17. Chemoheterotrophic Growth of the Cyanobacterium Anabaena sp. Strain PCC 7120 Dependent on a Functional Cytochrome c Oxidase

    PubMed Central

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus

    2012-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth. PMID:22730128

  18. Insights into the complex 3-D architecture of thylakoid membranes in the unicellular cyanobacterium Cyanothece sp. ATCC 51142

    PubMed Central

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard

    2011-01-01

    In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement. PMID:21445014

  19. Chimaeric CP47 mutants of the cyanobacterium Synechocystis sp. PCC 6803 carrying spinach sequences: Construction and function.

    PubMed

    Vermaas, W F; Shen, G; Ohad, I

    1996-05-01

    Chimaeric mutants of the cyanobacterium Synechocystis sp. PCC 6803 have been generated carrying part or all of the spinach psbB gene, encoding CP47 (one of the chlorophyll-binding core antenna proteins in Photosystem II). The mutant in which the entire psbB gene had been replaced by the homologous gene from spinach was an obligate photoheterotroph and lacked Photosystem II complexes in its thylakoid membranes. However, this strain could be transformed with plasmids carrying selected regions of Synechocystis psbB to give rise to photoautotrophs with a chimaeric spinach/cyanobacterial CP47 protein. This process involved heterologous recombination in the cyanobacterium between psbB sequences from spinach and Synechocystis 6803; which was found to be reasonably effective in Synechocystis. Also other approaches were used that can produce a broad spectrum of chimaeric mutants in a single experiment. Functional characterization of the chimaeric photoautotrophic mutants indicated that if a decrease in the photoautotrophic growth rates was observed, this was correlated with a decrease in the number of Photosystem II reaction centers (on a chlorophyll basis) in the thylakoid membrane and with a decrease in oxygen evolution rates. Remaining Photosystem II reaction centers in these chimaeric mutants appeared to function rather normally, but thermoluminescence and chlorophyll a fluorescence measurements provided evidence for a destabilization of QB (-). This illustrates the sensitivity of the functional properties of the PS II reaction center to mild perturbations in a neighboring protein. PMID:24271295

  20. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803?

    PubMed

    Haimovich-Dayan, Maya; Lieman-Hurwitz, Judy; Orf, Isabel; Hagemann, Martin; Kaplan, Aaron

    2015-05-01

    Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis?PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved. PMID:25297829

  1. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-07-01

    Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes. PMID:24769912

  2. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    PubMed

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium. PMID:24521880

  3. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.

    PubMed

    Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

    2012-10-01

    Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP. PMID:22670754

  4. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    PubMed Central

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  5. Ethoxyzolamide Inhibition of CO(2)-Dependent Photosynthesis in the Cyanobacterium Synechococcus PCC7942.

    PubMed

    Price, G D; Badger, M R

    1989-01-01

    Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (C(i)) conditions (1% CO(2); pH 8) were found to be photosynthetically dependent on exogenous CO(2). This was judged by the fact that they had a similar photosynthetic affinity for CO(2) (K(0.5)[CO(2)] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for C(i) measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO(2) in high C(i) cells. The addition of 200 micromolar EZ to high C(i) cells increased K(0.5)(CO(2)) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low C(i) cells (grown at 30 microliters CO(2) per liter of air) were less sensitive to EZ. EZ inhibition in high and low C(i) cells was largely relieved by increasing exogenous C(i) up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO(2) usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO(2) usage. High C(i) cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO(2) usage in high C(i) cells of Synechococcus PCC7942 may be due to inhibition of a ;CA-like' function associated with the CO(2) utilizing C(i) pump or due to inhibition of an internal CA activity, thus affecting CO(2) supply to ribulose bisphosphate carboxylase-oxygenase. PMID:16666544

  6. Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock.

    PubMed

    Cerven, Jan; Nedbal, Ladislav

    2009-08-01

    These experiments aim to reveal the dynamic features that occur during the metabolism of the unicellular, nitrogen fixing cyanobacterium Cyanothece sp. when exposed to diverse circadian forcing patterns (LD 16:8, LD 12:12, LD 8:16, LD 6:6). The chlorophyll concentration grew rapidly from subjective morning when first illuminated to around noon, then remained stable from later in the afternoon and throughout the night. The optical density measured at 735 nm was stable during the morning chlorophyll accumulation, then increased in the early afternoon toward a peak, followed at dusk by a rapid decline toward the late night steady state. The authors propose that these dynamics largely reflect accumulation and subsequent consumption of glycogen granules. This hypothesis is consistent with the sharp peak of respiration that coincides with the putative hydrocarbon catabolism. In the long-day regimen (LD 16:8), these events may mark the transition from the aerobic photosynthetic metabolism to microaerobic nitrogen metabolism that occurs at dusk, and thus cannot be triggered by the darkness that comes later. Rather, control is likely to originate in the circadian clock signaling an approaching night. To explore the dynamics of the link between respiration and circadian oscillations, the authors extrapolated an earlier model of the KaiABC oscillator from Synechococcus elongatus to Cyanothece sp. The measured peak of respiratory activity at dusk correlated strongly in its timing and time width with the modeled peak in accumulation of the KaiB(4) complex, which marks the late afternoon phase of the circadian clock. The authors propose a hypothesis that high levels of KaiB(4) (or of its Cyanothece sp. analog) trigger the glycogen catabolism that is reflected in the experiments in the respiratory peak. The degree of the correlation between the modeled KaiB(4) dynamics and the dynamics of experimentally measured peaks of respiratory activity was further tested during the half-circadian regimen (LD 6:6). The model predicted an irregular pattern of the KaiABC oscillator, quite unlike mechanical or electrical clock pacemakers that are strongly damped when driven at double their endogenous frequency. This highly unusual dynamic pattern was confirmed experimentally, supporting strongly the validity of the circadian model and of the proposed direct link to respiration. PMID:19625731

  7. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer

    PubMed Central

    Kothari, Ankita; Vaughn, Michael; Garcia-Pichel, Ferran

    2013-01-01

    The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity. PMID:24376438

  8. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.

    PubMed

    Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-12-01

    The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS), and mitochondrial membrane potential (??m) level. The results expose that there is a loss in membrane integrity with ROS formation that leads to alteration in the ??m, which ends up with severe mitochondrial injury in copper oxide nanoparticles treated cells. Hence, green way synthesized copper oxide nanoparticles may be a useful selective biological agent for the control of M. aeruginosa. PMID:25074832

  9. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the lactate production rate by the engineered strain reached a maximum of ~0.19 g D-lactate/L/day (in the presence of acetate). This study serves as a good complement to the recent metabolic engineering work done on Synechocystis 6803 for L-lactate production. Thereby, our study may facilitate future developments in the use of cyanobacterial cell factories for the commercial production of high quality PLA. PMID:24274114

  10. Draft genome of Myxosarcina sp. strain GI1, a baeocytous cyanobacterium associated with the marine sponge Terpios hoshinota

    PubMed Central

    2015-01-01

    To date, genome sequences (complete or in draft form) from only six baeocytous cyanobacteria in four genera have been reported: Xenococcus, Chroococcidiopsis, Pleurocapsa, and Stanieria. To expand our knowledge on the diversity of baeocytous cyanobacteria, this study sequenced the genome of GI1, which is a Myxosarcina-like baeocytous cyanobacterium. GI1 is of interest not only because of its phylogenetic niche, but also because it is a cyanobiont isolated from the marine cyanobacteriosponge Terpios hoshinota, which has been shown to cause the death of corals. The ~7Mb draft GI1 genome contains 6,891 protein-coding genes and 62 RNA genes. A comparison of genomes among the sequenced baeocytous cyanobacterial strains revealed the existence or absence of numerous discrete genes involved in nitrogen metabolism. It will be interesting to determine whether these genes are important for cyanobacterial adaptations and interactions between cyanobionts and their marine sponge hosts. PMID:26203339

  11. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium

    SciTech Connect

    Wolk, C.P.; Yuping Cai; Panoff, J.M. )

    1991-06-15

    Anabaena, a filamentous cyanobacterium, is of developmental interest because, when deprived of fixed nitrogen, it shows patterned differentiation of N{sub 2}-fixing cells called heterocysts. To help elucidate its early responses to a decrease in nitrogen, the authors used a derivative of transposon Tn5 to generate transcriptional fusions of promoterless bacterial luciferase genes, luxAB, to the Anabaena genome. Genes that responded to removal of fixed nitrogen or to other environmental shifts by increased or decreased transcription were identified by monitoring the luminescence of colonies from transposon-generated libraries. The Tn5 derivative transposed in Anabaena at ca. 1-4 {times} 10{sup {minus}5} per cell and permitted high-resolution mapping of its position and orientation in the genome and facile cloning of contiguous genomic DNA.

  12. Characterization of the IS895 family of insertion sequences from the cyanobacterium Anabaena sp. strain PCC 7120

    SciTech Connect

    Alam, J.; Vrba, J.M.; Martin, J.A.; Weislo, L.J.; Curtis, S.E. ); Yuping Cai )

    1991-09-01

    A family of repetitive elements from the cyanobacterium Anabaena sp. strain PCC 7120 was identified through the proximity of one element to the psbAI gene. Four members of this seven-member family were isolated and shown to have structures characteristic of bacterial insertion sequences. Each element is approximately 1,200 bp in length, is delimited by a 30-bp inverted repeat, and contains two open reading frames in tandem on the same DNA strand. The four copies differ from each other by small insertions or deletions, some of which alter the open reading frames. By using a system designed to trap insertion elements, one of the elements, denoted IS895, was shown to be mobile. The target site was not duplicated upon insertion of the element. Two other filamentous cyanobacterial strains were also found to contain sequences homologous to IS895.

  13. Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

    1999-05-01

    We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (??) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1? 155?6? 155 (2? 155?5? 155 and 3? 155?4? 155) and 2? 84?5? 84 (3? 84?6? 84 and 1? 84?4? 84) channels and these could be described by Fster dipole-dipole resonance mechanism.

  14. Scytonemides A and B, Cyclic Peptides with 20S Proteasome Inhibitory Activity from the Cultured Cyanobacterium Scytonema hofmanii

    PubMed Central

    Krunic, Aleksej; Vallat, Armelle; Mo, Shunyan; Lantvit, Daniel D.; Swanson, Steven M.; Orjala, Jimmy

    2010-01-01

    Two cyclic peptides, scytonemides A (1) and B (2), were isolated from the cultured fresh water cyanobacterium Scytonema hofmannii (UTEX 1834) by bioassay-guided-fractionation using a proteasome inhibition assay. The planar structures of the compounds were determined by a combination of MS and 1D- and 2D-NMR spectroscopy. The advanced Marfeys method was used to determine the absolute configuration of both peptides. Scytonemide A possesses an unusual imino linkage, while scytonemide B is a depsipeptide containing 3-hydroxyoctanoic acid in the macrocycle. Both isolates were evaluated for their inhibition of the 20S proteasome, and scytonemide A displayed an IC50 value of 96 nM, while scytonemide B was inactive at 50 ?M. PMID:21058727

  15. Genetic variability associated with photosynthetic pigment concentration, and photochemical and nonphotochemical quenching, in strains of the cyanobacterium Microcystis aeruginosa.

    PubMed

    Bañares-España, Elena; López-Rodas, Victoria; Costas, Eduardo; Salgado, Concepción; Flores-Moya, Antonio

    2007-06-01

    Although populations of cyanobacteria are usually considered to be clonal, their capacity to survive environmental changes suggests intrapopulation genetic variation. We therefore estimated the genetic variability on the basis of two processes important for any photoautotroph - photochemical and nonphotochemical quenching - as well as photosynthetic pigment concentrations. For this purpose, two parameters related to photochemical and nonphotochemical quenching were measured using specific experimental and statistical procedures, in 25 strains of the cyanobacterium Microcystis aeruginosa, along with their contents of chlorophyll a, total carotenoids and phycocyanin. The experimental procedure allowed discrimination between genetic and nongenetic (or residual) variability among strains. The high genetic variability found in photosynthetic pigments and both photosynthetic parameters denotes large differences even among strains isolated from the same community. The high genetic diversity within a population could be important for the evolutionary success of cyanobacteria. PMID:17374127

  16. Fabivirga thermotolerans gen. nov., sp. nov., a novel marine bacterium isolated from culture broth of a marine cyanobacterium.

    PubMed

    Tang, M; Chen, C; Li, J; Xiang, W; Wu, H; Wu, J; Dai, S; Wu, H; Li, T; Wang, G

    2016-02-01

    A Gram-stain-negative, red, non-spore-forming, strictly aerobic bacterium, designated strain A4T, was isolated from culture broth of a marine cyanobacterium. Cells were flexible rods with gliding motility. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain A4T formed a coherent cluster with members of the genera Roseivirga and Fabibacter, and represents a distinct lineage in the family Flammeovirgaceae. Thermotolerance and a distinctive cellular fatty acid profile could readily distinguish this isolate from any bacteria of the genera Roseivirga and Fabibacter with a validly published name. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain A4T is suggested to represent a novel species in a novel genus, for which the name Fabivirga thermotolerans gen. nov., sp. nov. is proposed. The type strain is A4T ( = KCTC 42507T = CGMCC 1.15111T). PMID:26652750

  17. Using photosystem I as a reporter protein for C analysis in a coculture containing cyanobacterium and a heterotrophic bacterium.

    PubMed

    You, Le; Liu, Haijun; Blankenship, Robert E; Tang, Yinjie J

    2015-05-15

    (13)C metabolism analysis of a microbial community is often hindered by the time-consuming and complicated separation procedure for a single species. However, a "reporter protein," produced uniquely by one cell type, retains (13)C fingerprint information in microbial consortia. This study describes the use of photosystem I (PSI), a multi-subunit protein complex universally found in oxygenic phototrophs, as a reliable reporter protein to probe microalgal metabolism (i.e., cyanobacterium Synechocystis sp. PCC 6803) in a mixed culture with heterotrophic bacteria (i.e., Escherichia coli). We demonstrate that efficient purification of PSI and subsequent (13)C-based amino acid analyses may decipher photomixotrophic metabolism of Synechocystis 6803 in the coculture. This study also indicates that a supplement of NaHCO3 at high concentration could significantly improve the robustness of cyanobacterial growth against bacterial contamination. PMID:25527068

  18. Establishment of a Pure Culture of the Hitherto Uncultured Unicellular Cyanobacterium Aphanothece sacrum, and Phylogenetic Position of the Organism

    PubMed Central

    Fujishiro, Tsuneo; Ogawa, Takahira; Matsuoka, Masayoshi; Nagahama, Kazuhiro; Takeshima, Yasunobu; Hagiwara, Hideaki

    2004-01-01

    Aphanothece sacrum, an edible freshwater unicellular cyanobacterium, was isolated by using novel synthetic media (designated AST and AST-5xNP). The media were designed on the basis of the ratio of inorganic elements contained in A. sacrum cells cultured in a natural pond. The isolated strain exhibits unicellular rod-shaped cells ?6 ?m in length that are scattered in an exopolysaccharide matrix, a feature similar to that of natural A. sacrum. DNA analysis of the isolated strain revealed that it carried two ferredoxin genes whose deduced amino acid sequences were almost identical to previously published sequences of ferredoxins from natural A. sacrum. Analysis of the 16S rRNA gene and ferredoxin genes revealed that A. sacrum occupies a phylogenetically unique position among the cyanobacteria. PMID:15184129

  19. Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa.

    PubMed

    Sarnelle, Orlando; White, Jeffrey D; Horst, Geoffrey P; Hamilton, Stephen K

    2012-07-01

    We tested the hypothesis that zebra mussels (Dreissena polymorpha) have positive effects on the toxin-producing cyanobacterium, Microcystis aeruginosa, at low phosphorus (P) concentrations, but negative effects on M. aeruginosa at high P, with a large-scale enclosure experiment in an oligotrophic lake. After three weeks, mussels had a significantly positive effect on M. aeruginosa at ambient P (total phosphorus, TP ?10 ?g L?), and a significantly negative effect at high P (simulating a TP of ?40 ?g L? in lakes). Positive and negative effects were strong and very similar in magnitude. Thus, we were able to ameliorate a negative effect of Dreissena invasion on water quality (i.e., promotion of Microcystis) by adding P to water from an oligotrophic lake. Our results are congruent with many field observations of Microcystis response to Dreissena invasion across ecosystems of varying P availability. PMID:22507249

  20. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens.

    PubMed

    Silva, L B; Santos, S S S; Azevedo, C R; Cruz, M A L; Venncio, T M; Cavalcante, C P; Ucha, A F; Astolfi Filho, S; Oliveira, A E A; Fernandes, K V S; Xavier-Filho, J

    2002-03-01

    We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution. PMID:11887207

  1. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2.

    PubMed

    Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J Merijn; Matthijs, Hans C P; Huisman, Jef

    2015-01-01

    Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931

  2. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    NASA Technical Reports Server (NTRS)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  3. Proteomic Strategy for the Analysis of the Polychlorobiphenyl-Degrading Cyanobacterium Anabaena PD-1 Exposed to Aroclor 1254

    PubMed Central

    Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

    2014-01-01

    The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase ? subunit, FOF1 ATP synthase subunit beta, ATP synthase ? subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1. PMID:24618583

  4. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01

    PubMed Central

    Noyma, Natália P.; Silva, Thiago P.; Chiarini-Garcia, Hélio; Amado, André M.; Roland, Fábio; Melo, Rossana C. N.

    2015-01-01

    Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability. We investigated whether C. raciborskii could be affected by ultraviolet (UV) radiation. Non-axenic cultures of C. raciborskii were exposed to three UV treatments (UVA, UVB, or UVA + UVB) over a 6 h period, during which cell concentration, viability and ultrastructure were analyzed. UVA and UVA + UVB treatments showed significant negative effects on cell concentration (decreases of 56.4 and 64.3%, respectively). This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe. Over 90% of UVA + UVB- and UVA-treated cells died. UVB did not alter cell concentration, but reduced cell viability in almost 50% of organisms. Transmission electron microscopy (TEM) revealed a drastic loss of thylakoids, membranes in which cyanobacteria photosystems are localized, after all treatments. Moreover, other photosynthetic- and metabolic-related structures, such as accessory pigments and polyphosphate granules, were damaged. Quantitative TEM analyses revealed a 95.8% reduction in cell area occupied by thylakoids after UVA treatment, and reduction of 77.6 and 81.3% after UVB and UVA + UVB treatments, respectively. Results demonstrated clear alterations in viability and photosynthetic structures of C. raciborskii induced by various UV radiation fractions. This study facilitates our understanding of the subcellular organization of this cyanobacterium species, identifies specific intracellular targets of UVA and UVB radiation and reinforces the importance of UV radiation as an environmental stressor. PMID:26579108

  5. Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter

    PubMed Central

    Harke, Matthew J.; Gobler, Christopher J.

    2013-01-01

    Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis. PMID:23894552

  6. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris

    PubMed Central

    Sunda, William G.; Huntsman, Susan A.

    2015-01-01

    Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron-limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II). Decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean’s deep chlorophyll maximum (DCM) where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM. PMID:26150804

  7. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes.

    PubMed

    Michoux, Franck; Boehm, Marko; Bialek, Wojciech; Takasaka, Kenji; Maghlaoui, Karim; Barber, James; Murray, James W; Nixon, Peter J

    2014-10-01

    The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ. PMID:24838684

  8. Microenvironmental Ecology of the Chlorophyll b-Containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella

    PubMed Central

    Kühl, Michael; Behrendt, Lars; Trampe, Erik; Qvortrup, Klaus; Schreiber, Ulrich; Borisov, Sergey M.; Klimant, Ingo; Larkum, Anthony W. D.

    2012-01-01

    The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl) b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7–25 μm) unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub-) tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O2 and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few minutes of darkness, while the same zone exhibited O2 super-saturation and strongly alkaline pH after a few minutes of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella. PMID:23226144

  9. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    PubMed Central

    Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Huisman, Jef

    2015-01-01

    Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931

  10. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.

    PubMed

    Laloknam, Surasak; Tanaka, Kimihiro; Buaboocha, Teerapong; Waditee, Rungaroon; Incharoensakdi, Aran; Hibino, Takashi; Tanaka, Yoshito; Takabe, Teruhiro

    2006-09-01

    Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetT(A. halophytica)) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetT(A. halophytica) is acidic, 4.58. BetT(A. halophytica) specifically catalyzed the transport of betaine. Choline, gamma-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetT(A. halophytica). Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetT(A. halophytica) is a Na(+)-betaine symporter. Betaine uptake activities of BetT(A. halophytica) were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetT(A. halophytica) showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetT(A. halophytica) were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na(+)-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetT(A. halophytica) is the first identified transporter for compatible solutes in cyanobacteria. PMID:16957224

  11. Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti.

    PubMed Central

    Mulligan, M E; Buikema, W J; Haselkorn, R

    1988-01-01

    The nucleotide sequence of a region located downstream of the nifB gene, both in the cyanobacterium Anabaena sp. strain PCC 7120 and in Rhizobium meliloti, has been determined. This region contains a gene (fdxN) whose predicted polypeptide product strongly resembles typical bacterial ferredoxins. Cyanobacteria have not previously been shown to contain bacterial-type ferredoxins. The presence of this gene suggests that nitrogen-fixing cyanobacteria have at least four distinct ferredoxins. Images PMID:2842320

  12. Different phycobilin antenna organisations affect the balance between light use and growth rate in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata.

    PubMed

    Kunath, Christfried; Jakob, Torsten; Wilhelm, Christian

    2012-03-01

    During the recent years, wide varieties of methodologies have been developed up to the level of commercial use to measure photosynthetic electron transport by modulated chlorophyll a-in vivo fluorescence. It is now widely accepted that the ratio between electron transport rates and new biomass (P (Fl)/B (C)) is not fixed and depends on many factors that are also taxonomically variable. In this study, the balance between photon absorption and biomass production has been measured in two phycobilin-containing phototrophs, namely, a cyanobacterium and a cryptophyte, which differ in their antenna organization. It is demonstrated that the different antenna organization exerts influence on the regulation of the primary photosynthetic reaction and the dissipation of excessively absorbed radiation. Although, growth rates and the quantum efficiency of biomass production of both phototrophs were comparable, the ratio P (Fl)/B (C) was twice as high in the cryptophyte in comparison to the cyanobacterium. It is assumed that this discrepancy is because of differences in the metabolic regulation of cell growth. In the cryptophyte, absorbed photosynthetic energy is used to convert assimilated carbon directly into proteins and lipids, whereas in the cyanobacterium, the photosynthetic energy is preferentially stored as carbohydrates. PMID:22183802

  13. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    PubMed Central

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1) and 12-times (8 mg L−1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  14. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  15. Genetic diversity along the life cycle of the cyanobacterium Microcystis: highlight on the complexity of benthic and planktonic interactions.

    PubMed

    Sabart, Marion; Misson, Benjamin; Jobard, Marlne; Bronner, Gisle; Donnadieu-Bernard, Florence; Duffaud, Emilie; Salenon, Marie-Jos; Amblard, Christian; Latour, Delphine

    2015-03-01

    Microcystis is a toxic freshwater cyanobacterium with an annual life cycle characterized by the alternation of a planktonic proliferation stage in summer and a benthic resting stage in winter. Given the importance of both stages for the development and the survival of the population, we investigated the genotypic composition of the planktonic and benthic Microcystis subpopulations from the Grangent reservoir (France) during two distinct proliferation periods. Our results showed a succession of different dominant genotypes in the sediment as well as in the water all along the study periods with some common genotypes to both compartments. Analysis of molecular variance and UniFrac analysis confirmed the similarity between some benthic and planktonic samples, thus evidencing exchanges of genotypes between water and sediment. Thanks to these data, recruitment and sedimentation were proven not to be restricted to spring and autumn, contrary to what was previously thought. Finally, genetic diversity was significantly higher in the sediment than in the water (P?

  16. Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum.

    PubMed

    Hart, Sarah E; Howe, Christopher J; Mizuguchi, Kenji; Fernandez-Recio, Juan

    2008-12-01

    The interactions between redox proteins are transient in nature. Therefore, very few crystal structures are available for the complexes formed between these proteins. Computational docking simulations thus provide a useful alternative method for studying the interactions between electron transfer proteins. In this paper, we have studied the interactions between the aa(3)-type cytochrome c oxidase of the cyanobacterium Phormidium laminosum and its redox partners plastocyanin and cytochrome c(6) using a combination of comparative modelling techniques and docking simulations. Rigid-body docking orientations were scored with a combined energy function that accounts for electrostatics and desolvation. These simulations have identified two plausible docking sites, one of which appears to be unique to the binding of plastocyanin to the oxidase. This unique binding site may be due to the presence of a long loop region in the subunit II of cyanobacterial oxidases. Control simulations were performed with the ba(3)-type cytochrome c oxidase and its redox partner cytochrome c(552) from Thermus thermophilus. The docking between cytochrome c oxidase and its redox partners plastocyanin and cytochrome c(6) is dominated by hydrophobic residues, a feature already observed from kinetic and structural studies in other complexes of P. laminosum (e.g. plastocyanin or cytochrome c(6) with cytochrome f and photosystem I). PMID:18824464

  17. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1984-07-01

    Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

  18. Consortium of the 'bichlorophyllous' cyanobacterium Prochlorothrix hollandica and chemoheterotrophic partner bacteria: culture and metagenome-based description.

    PubMed

    Velichko, Natalia; Chernyaeva, Ekaterina; Averina, Svetlana; Gavrilova, Olga; Lapidus, Alla; Pinevich, Alexander

    2015-08-01

    'Bacterial consortium' sensu lato applies to mutualism or syntrophy-based systems consisting of unrelated bacteria. Consortia of cyanobacteria have been preferentially studied on Anabaena epibioses; non-photosynthetic satellites of other filamentous or unicellular cyanobacteria were also considered although structure-functional data are few. At the same time, information about consortia of cyanobacteria which have light-harvesting antennae distinct from standard phycobilisome was missing. In this study, we characterized first, via a polyphasic approach, the cultivable consortium of Prochlorothrix hollandica?CCAP 1490/1 (filamentous cyanobacterium which contains chlorophylls a, b/carotenoid/protein complex in the absence of phycobilisome) and non-photosynthetic heterotrophic bacteria. The strains of most abundant satellites were isolated and identified. Consortium metagenome reconstructed via 454-pyro and Illumina sequencing was shown to include, except for P.?hollandica, several phylotypes of Proteobacteria and Bacteroidetes. The ratio of consortium members was essentially stable irrespective of culture age, and restored after artificially imposed imbalance. The consortium had a complex spatial arrangement as demonstrated by FISH and SEM images of the association, epibiosis, and biofilm type. Preliminary data of metagenome annotation agreed with the hypothesis that satellite bacteria contribute to P.?hollandica protection from reactive oxygen species (ROS). PMID:25990300

  19. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Kizawa, Ayumi; Kawahara, Akihito; Takimura, Yasushi; Nishiyama, Yoshitaka; Hihara, Yukako

    2016-01-01

    LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect. PMID:26925056

  20. Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa

    NASA Astrophysics Data System (ADS)

    Takemoto, K.; Mizuta, G.; Yamamoto, A.; Yoshimura, M.; Ichise, S.; Namba, H.; Kihara, H.

    2013-10-01

    A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5-1 ?m, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others.

  1. Selection of proper reference genes for the cyanobacterium Synechococcus PCC 7002 using real-time quantitative PCR.

    PubMed

    Szekeres, Edina; Sicora, Cosmin; Drago?, Nicolae; Drug?, Bogdan

    2014-10-01

    Synechococcus sp. PCC 7002 is known to be tolerant to most of the environmental factors in natural habitats of Cyanobacteria. Gene expression can be easily studied in this cyanobacterium, as its complete genome sequence is available. These properties make Synechococcus sp. PCC 7002 an appropriate model organism for biotechnological applications. To study the gene expression in Cyanobacteria, real-time quantitative PCR (qPCR) can be used, but as this is a highly sensitive method, data standardization is indicated between samples. The most commonly used strategy is normalization against internal reference genes. Synechococcus sp. PCC 7002 has not yet been evaluated for the best reference genes. In this work, six candidate genes were analyzed for this purpose. Cyanobacterial cultures were exposed to several stress conditions, and three different algorithms were used for ranking the reference genes: geNorm, NormFinder, and BestKeeper. Moreover, gene expression stability value M and single-control normalization error E were calculated. Our data provided a list of reference genes that can be used in qPCR experiments in Synechococcus sp. PCC 7002. PMID:25115691

  2. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  3. Viequeamide A, a Cytotoxic Member of the Kulolide Superfamily of Cyclic Depsipeptides from a Marine Button Cyanobacterium

    PubMed Central

    Boudreau, Paul D.; Byrum, Tara; Liu, Wei-Ting; Dorrestein, Pieter C.; Gerwick, William H.

    2012-01-01

    The viequeamides, a family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya) containing cyclic depsipeptides, were isolated from a shallow subtidal collection of a button cyanobacterium (Rivularia sp.) from near the island of Vieques, Puerto Rico. Planar structures of the two major compounds, viequeamide A (1) and viequeamide B (2), were elucidated by 2D-NMR spectroscopy and mass spectrometry, whereas absolute configurations were determined by traditional hydrolysis, derivative formation, and chromatography in comparison with standards. In addition, a series of related minor metabolites, viequeamide CF (36), were characterized by high resolution mass spectroscopic (HRMS) fragmentation methods. Viequeamide A was found to be highly toxic to H460 human lung cancer cells (IC50 = 60 10 nM), whereas the mixture of BF was inactive. From a broader perspective, the viequeamides help to define a superfamily of related cyanobacterial natural products, the first of which to be discovered was kulolide. Within the kulolide superfamily, a wide variation in biological properties is observed, and the reported producing strains are also highly divergent, giving rise to several intriguing questions about structure-activity relationships and the evolutionary origins of this metabolite class. PMID:22924493

  4. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    PubMed

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  5. State transitions and fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 in response to changes in light quality and intensity.

    PubMed

    Zhao, Wenfeng; Xie, Jie; Xu, Xiuling; Zhao, Jingquan

    2015-01-01

    State transition and non-photochemical fluorescence quenching in cyanobacteria are short-term adaptations of photosynthetic apparatus to changes in light quality and intensity, however, the kinetic details and relationship are still not clear. In this work, time-dependent 77K fluorescence spectra were monitored for cyanobacterium Synechocystis PCC 6803 cells under blue, orange and blue-green light in a series of intensities. The characteristic fluorescence signals indicated state transition taking place exclusively under 430-450 or 580-600nm light or 480-550nm light at the intensities ?150?Em(-2)s(-1) to achieve a conserved level with variable rate constant. Under 480-500nm or 530-550nm light at the intensities ?160?Em(-2)s(-1), state transition took place at first but stopped as soon as the fluorescence quenching appeared. The dependence of appearance, induction period, level and rate constant for the quenching on light intensity suggests that a critical concentration of photo-activated OCPs is necessary and may be achieved by a dynamic equilibrium between the activation and deactivation under light. PMID:25543550

  6. Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon.

    PubMed

    Federspiel, N A; Grossman, A R

    1990-07-01

    Many biological processes in photosynthetic organisms can be regulated by light quantity or light quality or both. A unique example of the effect of specific wavelengths of light on the composition of the photosynthetic apparatus occurs in cyanobacteria that undergo complementary chromatic adaptation. These organisms alter the composition of their light-harvesting organelle, the phycobilisome, and exhibit distinct morphological features as a function of the wavelength of incident light. Fremyella diplosiphon, a filamentous cyanobacterium, responds to green light by activating transcription of the cpeBA operon, which encodes the pigmented light-harvesting component phycoerythrin. We have isolated and determined the complete nucleotide sequence of another operon, cpeCD, that encodes the linker proteins associated with phycoerythrin hexamers in the phycobilisome. The cpeCD operon is activated in green light and expressed as two major transcripts with the same 5' start site but differing 3' ends. Analysis of the kinetics of transcript accumulation in cultures of F. diplosiphon shifted from red light to green light and vice versa shows that the cpeBA and cpeCD operons are regulated coordinately. A common 17-base-pair sequence is found upstream of the transcription start sites of both operons. A comparison of the predicted amino acid sequences of the phycoerythrin-associated linker proteins CpeC and CpeD with sequences of other previously characterized rod linker proteins shows 49 invariant residues, most of which are in the amino-terminal half of the proteins. PMID:1694529

  7. Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring microbial mat

    SciTech Connect

    Richardson, L.L.; Castenholz, R.W.

    1987-09-01

    Oscillatoria terebriformis, a thermophilic cyanobacterium, carried out a diel vertical movement pattern in Hunter's Hot Springs, Oregon. Throughout most daylight hours, populations of O. terebriformis covered the surface of microbial mats in the hot spring outflows below an upper temperature limit of 54/sup 0/C. Upon darkness trichomes moved downward by gliding motility into the substrate to a depth of 0.5 to 1.0 mm, where the population remained until dawn. At dawn the population rapidly returned to the top of the mats. Field studies with microelectrodes showed that the dense population of O. terebriformis moved each night across an oxygen-sulfide interface, entering a microenvironment which was anaerobic and reducing, a dramatic contrast to the daytime environment at the mat surface where oxygenic photosynthesis resulted in a supersaturated O/sub 2/. Laboratory experiments on motility with the use of sulfide gradients produced in agar revealed a negative response to sulfide at concentrations similar to those found in the natural mats. The motility response may help explain the presence of O. terebriformis below the mat surface at night. The movement back to the surface at dawn appears to be due to a combination of phototaxis, photokinesis, and the onset of oxygenic photosynthesis which consumes sulfide.

  8. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    PubMed

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 C than at 4 C or 20 C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 C and increased at 30 C, compared with at 20 C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. PMID:24140001

  9. Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.

    PubMed Central

    Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

    2013-01-01

    A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

  10. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune.

    PubMed

    Nazifi, Ehsan; Wada, Naoki; Asano, Tomoya; Nishiuchi, Takumi; Iwamuro, Yoshiaki; Chinaka, Satoshi; Matsugo, Seiichi; Sakamoto, Toshio

    2015-01-01

    Mycosporine-like amino acids (MAAs) are UV-absorbing pigments, and structurally unique glycosylated MAAs are found in the terrestrial cyanobacterium Nostoc commune. In this study, we examined two genotypes of N.commune colonies with different water extract UV-absorption spectra. We found structurally distinct MAAs in each genotype. The water extract from genotype A showed a UV-absorbing spectrum with an absorption maximum at 335nm. The extract contained the following compounds: 7-O-(?-arabinopyranosyl)-porphyra-334 (478Da), pentose-bound shinorine (464Da), hexose-bound porphyra-334 (508Da) and porphyra-334 (346Da). The water extract from genotype B showed a characteristic UV-absorbing spectrum with double absorption maxima at 312 and 340nm. The extract contained hybrid MAAs (1050Da and 880Da) with two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen linked to 2-O-(?-xylopyranosyl)-?-galactopyranoside. A novel 273-Da MAA with an absorption maximum at 310nm was also identified in genotype B. The MAA consisted of a 3-aminocyclohexen-1-one linked to a ?-aminobutyric acid chain. These MAAs had potent radical scavenging activities in vitro and the results confirmed that the MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune. The two genotypes of N. commune exclusively produced their own characteristic glycosylated MAAs, which supports that MAA composition could be a chemotaxonomic marker for the classification of N. commune. PMID:25543549

  11. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    PubMed Central

    Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257

  12. Hydrogen Generation through Indirect Biophotolysis in Batch Cultures of the Non-Heterocystous Nitrogen-Fixing Cyanobacterium Plectonema boryanum

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Carter, Blaine M.; Gerschler, Jared J.; Benemann, John R.

    2010-09-01

    The nitrogen-fixing non-heterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO2 to maintain anaerobiosis. The highest hydrogen production rate (i.e., 0.18 mL/mg?day or 7.3 ?mol/mg?day) ) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 ?mol/m2?sec. The addition of photosystem II inhibitor DCMU did not reduce hydrogen production rates relative to unchallenged controls for 50 to 150 hours, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at photosystem II (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

  13. Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources

    PubMed Central

    Ludwig, Marcus; Bryant, Donald A.

    2012-01-01

    The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences. PMID:22514553

  14. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Kizawa, Ayumi; Kawahara, Akihito; Takimura, Yasushi; Nishiyama, Yoshitaka; Hihara, Yukako

    2016-01-01

    LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect. PMID:26925056

  15. Evidence Regarding the UV Sunscreen Role of a Mycosporine-Like Compound in the Cyanobacterium Gloeocapsa sp

    PubMed Central

    Garcia-Pichel, Ferran; Wingard, Christopher E.; Castenholz, Richard W.

    1993-01-01

    The UV sunscreen role commonly ascribed to mycosporine-like amino acids (MAAs) was investigated with an isolate of the terrestrial cyanobacterium Gloeocapsa sp. strain C-90-Cal-G.(2), which accumulates intracellularly an MAA with absorbance maximum at 326 nm but produces no extracellular sunscreen compound (i.e., scytonemin). The intracellular concentrations of MAA achieved were directly related to the intensity of the UV radiation (maximum at 320 nm) received by the cells. However, the presence of high concentrations of MAA was not necessary for the physiological acclimation of the cultures to UV radiation. The measured sunscreen factor due to MAA in single cells was 0.3 (the MAA prevented 3 out of 10 photons from hitting potential cytoplasmic targets). High contents of MAA in the cells correlated with increased resistance to UV radiation. However, when resistance was gauged under conditions of desiccation, with inoperative physiological photoprotective and repair mechanisms, cells with high MAA specific contents were only 20 to 25% more resistant. Although UV radiation centered around both 320 and 365 nm resulted in chlorophyll a photobleaching and photoinhibition of photosynthesis, the difference in sensitivity correlated with MAA accumulation occurred only at 320 nm (absorbed by MAA) and not at 365 nm (not absorbed by MAA). This difference represents the maximal protection ascribable to the presence of MAA for single cells, i.e., if one does not consider the enhancing effects of colony formation on protection by sunscreens. PMID:16348840

  16. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune.

    PubMed Central

    Ehling-Schulz, M; Bilger, W; Scherer, S

    1997-01-01

    Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors. PMID:9068639

  17. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843.

    PubMed

    Shao, Jihai; He, Yaxian; Li, Fan; Zhang, Huiling; Chen, Anwei; Luo, Si; Gu, Ji-Dong

    2016-01-01

    Oleamide, a fatty acid derivative, shows inhibitory effect against the bloom-forming cyanobacterium Microcystis aeruginosa. The EC50 of oleamide on the growth of M. aeruginosa NIES-843 was 8.601.20mg/L. In order to elucidate the possible mechanism of toxicity of oleamide against M. aeruginosa, chlorophyll fluorescence transient, cellular ultrastructure, fatty acids composition and the transcription of the mcyB gene involved in microcystins synthesis were studied. The results of chlorophyll fluorescence transient showed that oleamide could destruct the electron accepting side of the photosystem II of M. aeruginosa NIES-843. Cellular ultrastructure examination indicated that the destruction of fatty acid constituents, the distortion of thylakoid membrane and the loss of integrity of cell membrane were associated with oleamide treatment and concentration. The damage of cellular membrane increased the release of microcystins from intact cells into the medium. Results presented in this study provide new information on the possible mechanisms involved and potential utilization of oleamide as an algicide in cyanobacterial bloom control. PMID:26547872

  18. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  19. Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae.

    PubMed

    Singh, Anumeha; Mishra, Arun Kumar

    2015-05-01

    Siderophore production in Anabaena oryzae was investigated under the influence of various levels of iron and other abiotic factors such as pH, temperature, light and different nitrogen sources. Optimization of culture conditions under controlled mechanisms of these abiotic factors lead to the siderophore production in significant amount. Under iron-starved condition, A. oryzae extracellularly releases 89.17% hydroxymate-type siderophore. Slightly alkaline pH and 30 C temperature was found stimulatory for the cyanobacterial growth and siderophorogenesis (88.52% SU and 83.87% SU, respectively). Excess iron loading had a negative impact on siderophore production along with the alterations in the morphology and growth. Further, scanning electron microphotographs signified that higher concentrations of iron lead to complete damage of the cells and alterations in membrane proteins possibly transporters responsible for exchange of siderophore complex from environment to the cell. SDS-PAGE analysis of whole cell proteins showed overexpression of low molecular weight proteins ranges between 20.1 to 29.0 kDa up to 100-?M iron concentrations. These polypeptides/proteins might be involved in maintaining iron homeostasis by regulating siderophore production. Results suggest that lower concentrations of iron ? 50 ?M along with other abiotic factors are stimulatory, whereas higher concentrations (>50 ?M) are toxic. Data further suggested that cyanobacterium A. oryzae can serve as a potential biofertilizer especially in iron-rich soil through sequestration by the power of natural Fe(III)-siderophore complex formation. PMID:25805017

  20. Adaptation to High-Intensity, Low-Wavelength Light among Surface Blooms of the Cyanobacterium Microcystis aeruginosa.

    PubMed

    Paerl, H W; Bland, P T; Bowles, N D; Haibach, M E

    1985-05-01

    Natural populations of the nuisance bloom cyanobacterium Microcystis aeruginosa obtained from the eutrophic Neuse River, N.C., revealed optimal chlorophyll a-normalized photosynthetic rates and resistance to photoinhibition at surface photosynthetically active radiation (PAR) intensities. At saturating PAR levels these populations exhibited higher photosynthetic rates in quartz than in Pyrex vessels. Eucaryotic algal populations obtained from the same river failed to counteract photoinhibition. At saturating PAR levels, such populations generally yielded lower photosynthetic rates in quartz containers than they did in Pyrex containers. Cultivation of natural Microcystis populations under laboratory conditions led to physiologically distinct populations which had photoinhibitory characteristics similar to those of other cultured cyanobacterial and eucaryotic algae. Our findings indicate that (i) photosynthetic production among natural surface populations is best characterized and quantified in quartz rather than Pyrex incubation vessels; (ii) extrapolation of natural photoinhibitory trends from laboratory populations is highly subjective to culture and PAR histories and may yield contradictory results; and (iii) buoyant surface-dwelling populations, rather than exhibiting senescence, are poised at optimizing PAR utilization, thereby maintaining numerical dominance in eutrophic waters when physico-chemical conditions favor bloom formation. PMID:16346779

  1. Adaptation to High-Intensity, Low-Wavelength Light among Surface Blooms of the Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Paerl, Hans W.; Bland, Patricia T.; Bowles, N. Dean; Haibach, Mark E.

    1985-01-01

    Natural populations of the nuisance bloom cyanobacterium Microcystis aeruginosa obtained from the eutrophic Neuse River, N.C., revealed optimal chlorophyll a-normalized photosynthetic rates and resistance to photoinhibition at surface photosynthetically active radiation (PAR) intensities. At saturating PAR levels these populations exhibited higher photosynthetic rates in quartz than in Pyrex vessels. Eucaryotic algal populations obtained from the same river failed to counteract photoinhibition. At saturating PAR levels, such populations generally yielded lower photosynthetic rates in quartz containers than they did in Pyrex containers. Cultivation of natural Microcystis populations under laboratory conditions led to physiologically distinct populations which had photoinhibitory characteristics similar to those of other cultured cyanobacterial and eucaryotic algae. Our findings indicate that (i) photosynthetic production among natural surface populations is best characterized and quantified in quartz rather than Pyrex incubation vessels; (ii) extrapolation of natural photoinhibitory trends from laboratory populations is highly subjective to culture and PAR histories and may yield contradictory results; and (iii) buoyant surface-dwelling populations, rather than exhibiting senescence, are poised at optimizing PAR utilization, thereby maintaining numerical dominance in eutrophic waters when physico-chemical conditions favor bloom formation. PMID:16346779

  2. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark.

    PubMed

    De Rosa, Edith; Checchetto, Vanessa; Franchin, Cinzia; Bergantino, Elisabetta; Berto, Paola; Szab, Ildik; Giacometti, Giorgio M; Arrigoni, Giorgio; Costantini, Paola

    2015-01-01

    The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (?HoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (?HypA1 and ?HypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases. PMID:26215212

  3. Mutational analysis of the structure and biogenesis of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803

    SciTech Connect

    Smart, L.B.; McIntosh, L. ); Warren, P.V.; Golbeck, J.H. )

    1993-02-01

    The authors have utilized the unicellular cyanobacterium Synechocystis sp. PCC 6803 to incorporate site-directed amino acid substitutions into the photosystem I (PSI) reaction-center protein PsaB. A cysteine residue (position 565 of PSaB) proposed to serve as a ligand to the [4Fe-4S] center F[sub x] was changed to serine, histidine, and aspartate. These three mutants - C565S, C565H, and C565D - all exhibited greatly reduced accumulation of PSI reaction-center proteins and failed to grow autotrophically, indicating that this cysteine most likely does coordinate F[sub x], which is crucial for PSI biogenesis. Interestingly, the strain C565S accumulated significantly more PSI than the other two cysteine mutants and displayed photoreduction of the [4Fe-4S] terminal electron acceptors F[sub A] and F[sub B]. Mutations were also introduced into a leucine zipper motif of PsaB, proposed to participate in reaction-center dimerization. The mutants L522V, L536M, and L522V/L536M all exhibited wild-type characteristics and grew autotrophically, whereas the L522P mutation prevented PSI accumulation. These data do not provide support for a major structural role of the leucine zipper in reaction-center dimerization or in assembly of F[sub x]. However, the amino acid substitutions incorporated were conservative and might not have perturbed the leucine zipper. 31 refs., 4 figs., 1 tab.

  4. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Schuergers, Nils; Nrnberg, Dennis J; Wallner, Thomas; Mullineaux, Conrad W; Wilde, Annegret

    2015-05-01

    Twitching motility depends on the adhesion of type IV pili (T4P) to a substrate, with cell movement driven by extension and retraction of the pili. The mechanism of twitching motility, and the events that lead to a reversal of direction, are best understood in rod-shaped bacteria such as Myxococcus xanthus. In M. xanthus, the direction of movement depends on the unipolar localization of the pilus extension and retraction motors PilB and PilT to opposite cell poles. Reversal of direction results from relocalization of PilB and PilT. Some cyanobacteria utilize twitching motility for phototaxis. Here, we examine twitching motility in the cyanobacterium Synechocystis sp. PCC 6803, which has a spherical cell shape without obvious polarity. We use a motile Synechocystis sp. PCC 6803 strain expressing a functional GFP-tagged PilB1 protein to show that PilB1 tends to localize in 'crescents' adjacent to a specific region of the cytoplasmic membrane. Crescents are more prevalent under the low-light conditions that favour phototactic motility, and the direction of motility strongly correlates with the orientation of the crescent. We conclude that the direction of twitching motility in Synechocystis sp. PCC 6803 is controlled by the localization of the T4P apparatus, as it is in M. xanthus. The PilB1 crescents in the spherical cells of Synechocystis can be regarded as being equivalent to the leading pole in the rod-shaped cells. PMID:25721851

  5. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark

    PubMed Central

    De Rosa, Edith; Checchetto, Vanessa; Franchin, Cinzia; Bergantino, Elisabetta; Berto, Paola; Szab, Ildik; Giacometti, Giorgio M.; Arrigoni, Giorgio; Costantini, Paola

    2015-01-01

    The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (?HoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (?HypA1 and ?HypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases. PMID:26215212

  6. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. PMID:26656542

  7. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp

    SciTech Connect

    Garcia-Pichel, F.; Wingard, C.E.; Castenholz, R.W. )

    1993-01-01

    The mycosporine-like amino acids (MAAs) have been thought to serve a UV sunscreen role in organisms that produce or contain them because MAAs present strong absorbance in the UV region and because there is no other apparent biological function. The researchers used the cyanobacterium Gloeocapsa sp. to assess the possible sunscreen role of MAAs. Five conditions are evaluated: (1) absorption of radiation high enough to provide benefit to the organisms; (2) correlation of presence of the compound with enhansed fitness under UV; (3) concentration of the compound and resistance to UV still present under physiological inactivity; (4) effect maximal at wavelengths of maximal absorption; (5) loss of protection after artificial removal of compound. The results indicate that only a small sunscreen effect can be ascribed to the MAA in the Gloecapsa sp. under these experimental conditions. It is possible however, that in the typical undisturbed colonial growth form, MAAs and their screening action may become major factors in resistance to UV radiation. 25 refs., 7 figs., 1 tab.

  8. Ecological physiology of Synechococcus sp. strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation

    NASA Technical Reports Server (NTRS)

    Miller, S. R.; Castenholz, R. W.

    2001-01-01

    Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.

  9. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism.

    PubMed

    Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257

  10. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  11. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  12. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R.; Haselkorn, Robert

    2015-01-01

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N− media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein. PMID:26216997

  13. Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases.

    PubMed

    Díaz-Troya, Sandra; López-Maury, Luis; Sánchez-Riego, Ana María; Roldán, Miguel; Florencio, Francisco J

    2014-01-01

    Glycogen constitutes the major carbon storage source in cyanobacteria, as starch in algae and higher plants. Glycogen and starch synthesis is linked to active photosynthesis and both of them are degraded to glucose in the dark to maintain cell metabolism. Control of glycogen biosynthesis in cyanobacteria could be mediated by the regulation of the enzymes involved in this process, ADP-glucose pyrophosphorylase (AGP) and glycogen synthase, which were identified as putative thioredoxin targets. We have analyzed whether both enzymes were subjected to redox modification using purified recombinant enzymes or cell extracts in the model cyanobacterium Synechocystis sp. PCC 6803. Our results indicate that both AGP and glycogen synthases are sensitive to copper oxidation. However, only AGP exhibits a decrease in its enzymatic activity, which is recovered after reduction by DTT or reduced thioredoxin (TrxA), suggesting a redox control of AGP. In order to elucidate the role in redox control of the cysteine residues present on the AGP sequence (C45, C185, C320, and C337), they were replaced with serine. All AGP mutant proteins remained active when expressed in Synechocystis, although they showed different electrophoretic mobility profiles after copper oxidation, reflecting a complex pattern of cysteines interaction. PMID:24121290

  14. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein. PMID:26216997

  15. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-01-01

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  16. Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions.

    PubMed

    Baares-Espaa, Elena; Kromkamp, Jacco C; Lpez-Rodas, Victoria; Costas, Eduardo; Flores-Moya, Antonio

    2013-03-01

    The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M.aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the irradiance-onset saturation parameter. We measured the photosynthetic pigment concentrations, PSII photochemical efficiency, electron transport rate (ETR), irradiance-saturated ETR and ETR efficiency. The relationship between ETR and photosynthetic oxygen production and the excess in PSII capacity were also studied for one strain. Higher values of chlorophyll a and phycocyanin and lower values of total carotenoids were found under LL conditions in the three strains. The strains showed clear differences in the irradiance-saturated ETR and in ETR efficiency under both LL and HL treatments. No differences were found in the linear relationship between ETR and photosynthetic oxygen production under both irradiance treatments. LL-acclimated cells showed higher PSII excess capacity than HL ones, possibly because their higher pigment content could result in a higher light stress than HL cells when forming surface blooms. The fact that the genetically different strains show different photosynthetic physiologies suggests that the very dynamic light climate observed in lakes may allow their coexistence. PMID:23057858

  17. Inactivation of the Deg protease family in the cyanobacterium Synechocystis sp. PCC 6803 has impact on the outer cell layers.

    PubMed

    Cheregi, Otilia; Miranda, Hélder; Gröbner, Gerhard; Funk, Christiane

    2015-11-01

    The serine type Deg/HtrA proteases are distributed in a wide range of organisms from Escherichia coli to humans. The cyanobacterium Synechocystis sp. PCC 6803 possesses three Deg protease orthologues: HtrA, HhoA and HhoB. Previously we compared Synechocystis 6803 wild type cells exposed to mild or severe stress conditions with a mutant lacking all three Deg proteases and demonstrated that stress had strong impact on the proteomes and metabolomes. To identify the biochemical processes, which this protease family is involved in, here we compared Synechocystis sp. PCC 6803 wild type cells with a mutant lacking all three Deg proteases grown under normal growth conditions (30°C and 40 μmol photons m(-2) s(-1)). Deletion of the Deg proteases lead to the down-regulation of proteins related to the biosynthesis of outer cell layers (e.g. the GDP mannose 4,6-dehydratase) and affected protein secretion. During the late growth phase of the culture Deg proteases were found to be secreted to the extracellular medium of the Synechocystis sp. PCC 6803 wild type strain. While cyanobacterial Deg proteases seem to act mainly in the periplasmic space, deletion of the three proteases influences the proteome and metabolome of the whole cell. Impairments in the outer cell layers of the triple mutant might explain the higher sensitivity toward light and oxidative stress, which was observed earlier by Barker and coworkers. PMID:26051963

  18. Genomic DNA Microarray Analysis: Identification of New Genes Regulated by Light Color in the Cyanobacterium Fremyella diplosiphon

    PubMed Central

    Stowe-Evans, Emily L.; Ford, James; Kehoe, David M.

    2004-01-01

    Many cyanobacteria use complementary chromatic adaptation to efficiently utilize energy from both green and red regions of the light spectrum during photosynthesis. Although previous studies have shown that acclimation to changing light wavelengths involves many physiological responses, research to date has focused primarily on the expression and regulation of genes that encode proteins of the major photosynthetic light-harvesting antennae, the phycobilisomes. We have used two-dimensional gel electrophoresis and genomic DNA microarrays to expand our understanding of the physiology of acclimation to light color in the cyanobacterium Fremyella diplosiphon. We found that the levels of nearly 80 proteins are altered in cells growing in green versus red light and have cloned and positively identified 17 genes not previously known to be regulated by light color in any species. Among these are homologs of genes present in many bacteria that encode well-studied proteins lacking clearly defined functions, such as tspO, which encodes a tryptophan-rich sensory protein, and homologs of genes encoding proteins of clearly defined function in many species, such as nblA and chlL, encoding phycobilisome degradation and chlorophyll biosynthesis proteins, respectively. Our results suggest novel roles for several of these gene products and highly specialized, unique uses for others. PMID:15205436

  19. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga.

    PubMed

    Pivokonsky, Martin; Safarikova, Jana; Baresova, Magdalena; Pivokonska, Lenka; Kopecka, Ivana

    2014-03-15

    This study investigated characteristics of algal organic matter (AOM) derived from three species (cyanobacterium Microcystis aeruginosa, diatom Fragilaria crotonensis and green alga Chlamydomonas geitleri) which dominate phytoplanktonic populations in reservoirs supplying drinking water treatment plants. Algal growth was monitored by cell counting, optical density and dissolved organic carbon concentration measurements. Extracellular organic matter (EOM) released at exponential and stationary growth phases and cellular organic matter (COM) were characterised in terms of specific UV absorbance (SUVA), peptide/protein and non-peptide content, hydrophobicity and molecular weight (MW). It was found that both EOM and COM were predominantly hydrophilic with low SUVA. COM was richer in peptides/proteins, more hydrophilic (with about 89% of hydrophilic fraction for all three species) and had lower SUVA than EOM. MW fractionation showed that both EOM and COM of all three species contain large portions of low-MW (<1kDa) compounds and high-MW (>100kDa) polysaccharides. Peptides/proteins exhibited narrower MW distribution than non-peptide fraction and it widened as the cultures grew. The highest amount of peptides/proteins with a significant portion of high-MW ones (22%) was observed in COM of M. aeruginosa. The results imply that the knowledge of AOM composition and characteristics predetermine which processes would be effective in the treatment of AOM laden water. PMID:24388829

  20. Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Yokono, Erina; Aikawa, Shimpei; Kondo, Akihiko

    2014-08-01

    In photosynthetic organisms, the interactions among pigment-protein complexes change in response to light conditions. In the present study, we analyzed the transfer of excitation energy from the phycobilisome (PBS) and photosystem (PS) II to PSI in the cyanobacterium Synechocystis sp. PCC 6803. After 20min of dark adaptation, Synechocystis cells were illuminated for 5min with strong light with different spectral profiles, blue, green, two kinds of red, and white light. After illumination, the energy-transfer characteristics were evaluated using steady-state fluorescence and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra, followed by spectral component analysis. Under illumination with strong light, the contribution of the energy transfer from the PSII to PSI (spillover) became greater, and that of the energy transfer from the PBS to PSI decreased; the former change was larger than the latter. The energy transfer pathway to PSI was sensitive to red light. We discuss the short-term adaptation of energy-transfer processes in Synechocystis under strong-light conditions. PMID:24495908

  1. Acrolein, an ?,?-unsaturated carbonyl, inhibits both growth and PSII activity in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Shimakawa, Ginga; Iwamoto, Tatsuya; Mabuchi, Tomohito; Saito, Ryota; Yamamoto, Hiroshi; Amako, Katsumi; Sugimoto, Toshio; Makino, Amane; Miyake, Chikahiro

    2013-01-01

    In this study, we sought to determine whether and how an ?,?-unsaturated carbonyl, acrolein, can inhibit the growth of the cyanobacterium Synechocystis sp. PCC6803 (S. 6803). Treatment of S. 6803 with 200 M acrolein for 3 d significantly and irreversibly inhibited its growth. To elucidate the inhibitory mechanism, we examined the effects of acrolein on photosynthesis. In contrast to dark conditions, the addition of acrolein to S. 6803 under conditions of illumination lowered the CO?-dependent O? evolution rate (photosynthetic activity). Furthermore, treatment with acrolein lowered the activity reducing dimethyl benzoquinone in photosystem II (PSII). Acrolein also suppressed the reduction rate for the oxidized form of the reaction center chlorophyll of photosystem I (PSI), P700. These results indicate that acrolein inhibited PSII activity in thylakoid membranes. The addition of 200 M acrolein to the illuminated S. 6803 cells gradually increased the steady-state level (Fs) of Chl fluorescence and decreased the quantum yield of PSII. These results suggested that acrolein damaged the acceptor side of PSII. On the other hand, acrolein did not inhibit respiration. From the above results, we gained insight into the metabolism of acrolein and its physiological effects in S. 6803. PMID:23924728

  2. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition.

    PubMed

    Arnold, Thomas; Zeth, Kornelius; Linke, Dirk

    2010-06-01

    Omp85 proteins are essential proteins located in the bacterial outer membrane. They are involved in outer membrane biogenesis and assist outer membrane protein insertion and folding by an unknown mechanism. Homologous proteins exist in eukaryotes, where they mediate outer membrane assembly in organelles of endosymbiotic origin, the mitochondria and chloroplasts. We set out to explore the homologous relationship between cyanobacteria and chloroplasts, studying the Omp85 protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Using state-of-the art sequence analysis and clustering methods, we show how this protein is more closely related to its chloroplast homologue Toc75 than to proteobacterial Omp85, a finding supported by single channel conductance measurements. We have solved the structure of the periplasmic part of the protein to 1.97 A resolution, and we demonstrate that in contrast to Omp85 from Escherichia coli the protein has only three, not five, polypeptide transport-associated (POTRA) domains, which recognize substrates and generally interact with other proteins in bigger complexes. We model how these POTRA domains are attached to the outer membrane, based on the relationship of Omp85 to two-partner secretion system proteins, which we show and analyze. Finally, we discuss how Omp85 proteins with different numbers of POTRA domains evolved, and evolve to this day, to accomplish an increasing number of interactions with substrates and helper proteins. PMID:20351097

  3. In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns

    PubMed Central

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  4. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme.

    PubMed

    Splitt, Samantha D; Risser, Douglas D

    2016-03-01

    Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state. PMID:26576759

  5. Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN

    PubMed Central

    Li, Meng; Semchonok, Dmitry A.; Boekema, Egbert J.; Bruce, Barry D.

    2014-01-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

  6. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    PubMed Central

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  7. Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Okuda, Kenji; Hayashi, Hidenori; Nishiyama, Yoshitaka

    2005-07-01

    We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By contrast, Slr1690 showed very low activity for ADP-ribose and had four substitutions of amino acids in the Nudix motif, indicating that Slr1690 is not an active ADP-ribose pyrophosphatase. However, the quadruple mutation of Slr1690, T73G/I88E/K92E/A94G, which replaced the mutated amino acids with those conserved in the Nudix motif, resulted in a significant (6.1 x 10(2)-fold) increase in the k(cat) value. These results suggest that Slr1690 might have evolved from an active ADP-ribose pyrophosphatase. Functional and clustering analyses suggested that Sll1054 is a bacterial type, while the other three and Slr0787, which was characterized previously (Raffaelli et al., FEBS Lett. 444:222-226, 1999), are phylogenetically diverse types that originated from an archaeal Nudix protein via molecular evolutionary mechanisms, such as domain fusion and amino acid substitution. PMID:15995214

  8. Ultrastructural changes in the mouse liver induced by hepatotoxin from the freshwater cyanobacterium Microcystis aeruginosa strain 7820.

    PubMed

    Dabholkar, A S; Carmichael, W W

    1987-01-01

    The time-course of ultrastructural changes was studied in mouse liver hepatocytes after i.p. injection of lethal (100 micrograms/kg) and sublethal (10 micrograms/kg) doses of the heptapeptide hepatotoxin from Microcystis aeruginosa strain 7820, a freshwater blue-green alga (cyanobacterium). At both dose levels the hepatocytes show progressive intracellular changes over time periods of 10, 20, 30, and 60 min. The changes resulting from a lethal dose were more prominent and rapid compared to those of the sublethal dose. The most common responses to lethal and sublethal doses were vesiculation of rough endoplasmic reticulum, swollen mitochondria and degranulation (partial or total loss of ribosomes from vesicles). These vesicles appear to have formed from the dilated parts of rough endoplasmic reticulum by fragmentation or separation. At the lethal dose an increased amount of whorl shaped rough endoplasmic reticulum along with large membrane-bound vacuoles were observed in the cytoplasm. With the sublethal dose an increase in the amount of small and large cytoplasmic lipid droplets occurred. These ultrastructural changes parallel the pathological events which lead to animal death by hemorrhagic shock. PMID:3109075

  9. Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis.

    PubMed

    Singh, Abhay K; Elvitigala, Thanura; Bhattacharyya-Pakrasi, Maitrayee; Aurora, Rajeev; Ghosh, Bijoy; Pakrasi, Himadri B

    2008-09-01

    Light drives the production of chemical energy and reducing equivalents in photosynthetic organisms required for the assimilation of essential nutrients. This process also generates strong oxidants and reductants that can be damaging to the cellular processes, especially during absorption of excess excitation energy. Cyanobacteria, like other oxygenic photosynthetic organisms, respond to increases in the excitation energy, such as during exposure of cells to high light (HL) by the reduction of antenna size and photosystem content. However, the mechanism of how Synechocystis sp. PCC 6803, a cyanobacterium, maintains redox homeostasis and coordinates various metabolic processes under HL stress remains poorly understood. In this study, we have utilized time series transcriptome data to elucidate the global responses of Synechocystis to HL. Identification of differentially regulated genes involved in the regulation, protection, and maintenance of redox homeostasis has offered important insights into the optimized response of Synechocystis to HL. Our results indicate a comprehensive integrated homeostatic interaction between energy production (photosynthesis) and energy consumption (assimilation of carbon and nitrogen). In addition, measurements of physiological parameters under different growth conditions showed that integration between the two processes is not a consequence of limitations in the external carbon and nitrogen levels available to the cells. We have also discovered the existence of a novel glycosylation pathway, to date known as an important nutrient sensor only in eukaryotes. Up-regulation of a gene encoding the rate-limiting enzyme in the hexosamine pathway suggests a regulatory role for protein glycosylation in Synechocystis under HL. PMID:18599646

  10. Expression and processing of an unusual tRNA gene cluster in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Puerto-Galán, Leonor; Vioque, Agustín

    2012-12-01

    Anabaena sp. PCC 7120 is a filamentous cyanobacterium that bears a cluster of 26 tRNA genes and pseudogenes in the delta plasmid. The sequences of these tRNAs suggest that they have been acquired by horizontal gene transfer from another organism. The cluster is transcribed as a single transcript that is quickly processed to individual tRNAs. RNase P and RNase Z, in vitro, are able to process precursors containing some of these tRNAs. Deletion of the cluster causes no obvious phenotype or effect on growth under diverse culture conditions, indicating that the tRNAs encoded in the cluster are not required for growth under laboratory conditions, although they are aminoacylated in vivo. We have studied a possible tRNA(Ser) [tRNA(Ser) GCU(2)] present in the cluster with a sequence that deviates from consensus. This tRNA is processed in vitro by RNase P at the expected position. In addition, this tRNA(Ser) GCU is specifically aminoacylated with serine by an Anabaena sp. PCC 7120 crude extract. These data indicate that tRNA(Ser) GCU(2) is fully functional, despite its unusual structure. Similar clusters are found in other three cyanobacteria whose genomes have been sequenced. PMID:22924345

  11. Identification of Two Genes, sll0804 and slr1306, as Putative Components of the CO2-Concentrating Mechanism in the Cyanobacterium Synechocystis sp. Strain PCC 6803 ▿

    PubMed Central

    Zhang, Shulu; Spann, Kevin W.; Frankel, Laurie K.; Moroney, James V.; Bricker, Terry M.

    2008-01-01

    Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803. PMID:18931125

  12. Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations

    SciTech Connect

    Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2010-12-01

    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental conditions, such as temperature and nutrient availability. However the global protein responses of Synechocystis 6803 under physiological relevant environmental stresses have not been characterized. Here we present the first global proteome analysis of a photoautotrophic bacteria and the most complete coverage to date of a photosynthetic prokaryotic proteome. To obtain a more complete description of the protein components of Synechocystis 6803, we have performed an in-depth proteome analysis of this organism utilizing the Accurate Mass and Time (AMT) tag approach1 utilizing 33 growth conditions and timepoints. The resulting proteome consists of 22,318 unique peptides, corresponding to 2,369 unique proteins, covering 65% of the predicted proteins. Quantitative analysis of protein abundance ratios under nutrient stress revealed that Synechocystis 6803 resorts to a universal mechanism for nitrogen utilization under phosphate, sulfate, iron, and nitrogen depletion. Comparison of this proteomic data with previously published microarray studies under similar environmental conditions showed that the general response predicted by both types of analyses are common but that the actual levels of protein expression can not be inferred from gene expression data. Our results demonstrate a global nitrogen response to multiple stressors that may be similar to that used by other cyanobacteria under various stress conditions. We anticipate that this protein expression data will be a foundation for the photosynthetic and biofuel communities to better understand metabolic changes under physiological conditions relevant to global productivity. Further more, this comparison of correlation between gene and protein expression data provides deeper insight into the ongoing debate as to whether gene expression can be used to infer cellular response.

  13. Effects of UV-B Radiation and Periodic Desiccation on the Morphogenesis of the Edible Terrestrial Cyanobacterium Nostoc flagelliforme

    PubMed Central

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li

    2012-01-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m?2) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG110) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  14. Characterization of five putative aspartate aminotransferase genes in the N2-fixing heterocystous cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Xu, Xinyi; Gu, Liping; He, Ping; Zhou, Ruanbao

    2015-06-01

    Aspartate and glutamate are two key amino acids used in biosynthesis of many amino acids that play vital role in cellular metabolism. Aspartate aminotransferases (AspATs) are required for channelling nitrogen (N(2)) between Glu and Asp in all life forms. Biochemical and genetic characterization of AspATs have been lacking in N(2)-fixing cyanobacteria. In this report, five putative AspAT genes (alr1039, all2340, alr2765, all4327 and alr4853) were identified in the N(2)-fixing heterocystous cyanobacterium Anabaena sp. PCC 7120. Five recombinant C-terminal hexahistidine-tagged AspATs (AspAT-H(6)) were overexpressed in Escherichia coli and purified to homogeneity. Biochemical analysis demonstrated that these five putative AspATs have authentic AspAT activity in vitro using aspartate as an amino donor. However, the enzymic activities of the five AspATs differed in vitro. Alr4853-H(6) showed the highest AspAT activity, while the enzymic activity for the other four AspATs ranged from 6.5 to 53.7?% activity compared to Alr4853 (100?%). Genetic characterization of the five AspAT genes was also performed by inactivating each individual gene. All of the five AspAT knockout mutants exhibited reduced diazotrophic growth, and alr4853 was further identified to be a Fox gene (requiring fixed N(2) for growth in the presence of oxygen). Four out of five P(aspAT)-gfp transcriptional fusions were constitutively expressed in both diazotrophic and nitrate-dependent growth conditions. Quantitative reverse transcriptase PCR showed that alr4853 expression was increased by 2.3-fold after 24?h of N(2) deprivation. Taken together, these findings add to our understanding of the role of AspATs in N(2)-fixing within heterocystous cyanobacteria. PMID:25808172

  15. The influence of iron limitation on the growth and activity of Crocosphaera watsonii, an unicellular diazotrophic cyanobacterium

    NASA Astrophysics Data System (ADS)

    Jacq, V.; Ridame, C.

    2012-04-01

    Diazotrophic cyanobacteria are able to use atmospheric dinitrogen (N2) dissolved in seawater as source of nitrogen for primary production. This metabolic function confers an ecological advantage for such organisms in N-limited environments, such as tropical oligotrophic regions. There, N2 fixation represents a significant source of new nitrogen in the euphotic zone which is available for the non diazotrophic phytoplankton community. Thus, diazotrophic cyanobacteria contribute significantly to new production and play a key role in the global cycling of carbon and nitrogen. The filamentous diazotrophic cyanobacterium Trichodesmium is the best known and most studied marine diazotroph. However, recent research has highlighted the biogeochemical importance of unicellular diazotrophic cyanobacteria (UCYN), such as Crocosphaera watsonii. The factors that control N2 fixation have been intensively studied. Due to the high iron content of the nitrogenase enzyme complex, N2 fixation and growth of diazotrophic cyanobacteria can be controlled by iron bioavailability. Many studies have been conducted on the impact of iron limitation on Trichodesmium, but less is known for UCYN. Here, for the first time, we address the issue of iron limitation on the N2 fixation and growth of UCYN, namely Crocosphaera watsonii. We have designed a study on cultures of Crocosphaera watsonii strain WH8501 grown under a range of dissolved iron, from 2 nM to 400 nM, with a constant EDTA concentration of 2 M. Our experiment encompasses low iron concentrations (2 nM), representative of those measured in the field. Preliminary findings demonstrate a major control of iron availability on the biomass and growth of Crocosphaera watsonii. These results, complemented with data on photosynthetic and diazotrophic activities, significantly contribute to our understanding of the dynamics of N2 fixation by unicellular diazotrophic cyanobacteria and of the role of iron in controlling this process. Keywords: N2 fixation, unicellular cyanobacteria, iron limitation.

  16. Application of Real-Time PCR for Quantification of Microcystin Genotypes in a Population of the Toxic Cyanobacterium Microcystis sp.

    PubMed Central

    Kurmayer, Rainer; Kutzenberger, Thomas

    2003-01-01

    The cyanobacterium Microcystis sp. frequently develops water blooms consisting of organisms with different genotypes that either produce or lack the hepatotoxin microcystin. In order to monitor the development of microcystin (mcy) genotypes during the seasonal cycle of the total population, mcy genotypes were quantified by means of real-time PCR in Lake Wannsee (Berlin, Germany) from June 1999 to October 2000. Standard curves were established by relating cell concentrations to the threshold cycle (the PCR cycle number at which the fluorescence passes a set threshold level) determined by the Taq nuclease assay (TNA) for two gene regions, the intergenic spacer region within the phycocyanin (PC) operon to quantify the total population and the mcyB gene, which is indicative of microcystin synthesis. In laboratory batch cultures, the cell numbers inferred from the standard curve by TNA correlated significantly with the microscopically determined cell numbers on a logarithmic scale. The TNA analysis of 10 strains revealed identical amplification efficiencies for both genes. In the field, the proportion of mcy genotypes made up the smaller part of the PC genotypes, ranging from 1 to 38%. The number of mcyB genotypes was one-to-one related to the number of PC genotypes, and parallel relationships between cell numbers estimated via the inverted microscope technique and TNA were found for both genes. It is concluded that the mean proportion of microcystin genotypes is stable from winter to summer and that Microcystis cell numbers could be used to infer the mean proportion of mcy genotypes in Lake Wannsee. PMID:14602633

  17. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.

    PubMed

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-07-31

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  18. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity

    PubMed Central

    Zhang, Xiaohui; Sherman, Debra M.

    2014-01-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

  19. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Zhang, Shao-Ran; Lin, Gui-Ming; Chen, Wen-Li; Wang, Li; Zhang, Cheng-Cai

    2013-10-01

    When deprived of a combined-nitrogen source in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) can form heterocysts capable of nitrogen fixation. The process of heterocyst differentiation takes about 20 to 24 h, during which extensive metabolic and morphological changes take place. Guanosine tetraphosphate (ppGpp) is the signal of the stringent response that ensures cell survival by adjusting major cellular activities in response to nutrient starvation in bacteria, and ppGpp accumulates at the early stage of heterocyst differentiation (J. Akinyanju, R. J. Smith, FEBS Lett. 107:173-176, 1979; J Akinyanju, R. J. Smith, New Phytol. 105:117-122, 1987). Here we show that all1549 (here designated relana) in Anabaena, homologous to relA/spoT, is upregulated in response to nitrogen deprivation and predominantly localized in vegetative cells. The disruption of relana strongly affects the synthesis of ppGpp, and the resulting mutant, all1549?sp/sm, fails to form heterocysts and to grow in the absence of a combined-nitrogen source. This phenotype can be complemented by a wild-type copy of relana. Although the upregulation of hetR is affected in the mutant, ectopic overexpression of hetR cannot rescue the phenotype. However, we found that the mutant rapidly loses its viability, within a time window of 3 to 6 h, following the deprivation of combined nitrogen. We propose that ppGpp plays a major role in rebalancing the metabolic activities of the cells in the absence of the nitrogen source supply and that this regulation is necessary for filament survival and consequently for the success of heterocyst differentiation. PMID:23935047

  20. Characterization of two naturally truncated, Ssb-like proteins from the nitrogen-fixing cyanobacterium, Anabaena sp. PCC7120.

    PubMed

    Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

    2013-11-01

    Single-stranded (ss) DNA-binding (Ssb) proteins are vital for all DNA metabolic processes and are characterized by an N-terminal OB-fold followed by P/G-rich spacer region and a C-terminal tail. In the genome of the heterocystous, nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120, two genes alr0088 and alr7579 are annotated as ssb, but the corresponding proteins have only the N-terminal OB-fold and no P/G-rich region or acidic tail, thereby rendering them unable to interact with genome maintenance proteins. Both the proteins were expressed under normal growth conditions in Anabaena PCC7120 and regulated differentially under abiotic stresses which induce DNA damage, indicating that these are functional genes. Constitutive overexpression of Alr0088 in Anabaena enhanced the tolerance to DNA-damaging stresses which caused formation of DNA adducts such as UV and MitomycinC, but significantly decreased the tolerance to ?-irradiation, which causes single- and double-stranded DNA breaks. On the other hand, overexpression of Alr7579 had no significant effect on normal growth or stress tolerance of Anabaena. Thus, of the two truncated Ssb-like proteins, Alr0088 may be involved in protection of ssDNA from damage, but due to the absence of acidic tail, it may not aid in repair of damaged DNA. These two proteins are present across cyanobacterial genera and unique to them. These initial studies pave the way to the understanding of DNA repair in cyanobacteria, which is not very well documented. PMID:23928723

  1. Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

    PubMed

    Merino-Puerto, Victoria; Herrero, Antonia; Flores, Enrique

    2013-09-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE?fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

  2. Identification of OmpR-Family Response Regulators Interacting with Thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Kadowaki, Taro; Nishiyama, Yoshitaka; Hisabori, Toru; Hihara, Yukako

    2015-01-01

    The redox state of the photosynthetic electron transport chain is known to act as a signal to regulate the transcription of key genes involved in the acclimation responses to environmental changes. We hypothesized that the protein thioredoxin (Trx) acts as a mediator connecting the redox state of the photosynthetic electron transport chain and transcriptional regulation, and established a screening system to identify transcription factors (TFs) that interact with Trx. His-tagged TFs and S-tagged mutated form of Trx, TrxMC35S, whose active site cysteine 35 was substituted with serine to trap the target interacting protein, were co-expressed in E. coli cells and Trx-TF complexes were detected by immuno-blotting analysis. We examined the interaction between Trx and ten OmpR family TFs encoded in the chromosome of the cyanobacterium Synechocystis sp. PCC 6803 (S.6803). Although there is a highly conserved cysteine residue in the receiver domain of all OmpR family TFs, only three, RpaA (Slr0115), RpaB (Slr0946) and ManR (Slr1837), were identified as putative Trx targets. The recombinant forms of wild-type TrxM, RpaA, RpaB and ManR proteins from S.6803 were purified following over-expression in E. coli and their interaction was further assessed by monitoring changes in the number of cysteine residues with free thiol groups. An increase in the number of free thiols was observed after incubation of the oxidized TFs with Trx, indicating the reduction of cysteine residues as a consequence of interaction with Trx. Our results suggest, for the first time, the possible regulation of OmpR family TFs through the supply of reducing equivalents from Trx, as well as through the phospho-transfer from its cognate sensor histidine kinase. PMID:25774906

  3. Gene Transfer in Leptolyngbya sp. Strain BL0902, a Cyanobacterium Suitable for Production of Biomass and Bioproducts

    PubMed Central

    Taton, Arnaud; Lis, Ewa; Adin, Dawn M.; Dong, Guogang; Cookson, Scott; Kay, Steve A.; Golden, Susan S.; Golden, James W.

    2012-01-01

    Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22C to 40C and tolerated up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled Arthrospira (pirulina strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a elperplasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial production strain. PMID:22292073

  4. Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms.

    PubMed

    Wilson, Alan E; Sarnelle, Orlando; Neilan, Brett A; Salmon, Tim P; Gehringer, Michelle M; Hay, Mark E

    2005-10-01

    To measure genetic variation within and among populations of the bloom-forming cyanobacterium Microcystis aeruginosa, we surveyed a suite of lakes in the southern peninsula of Michigan that vary in productivity (total phosphorus concentrations of approximately 10 to 100 microg liter(-1)). Survival of M. aeruginosa isolates from lakes was relatively low (i.e., mean of 7% and maximum of 30%) and positively related to lake total phosphorus concentration (P = 0.014, r2 = 0.407, n = 14). In another study (D. F. Raikow, O. Sarnelle, A. E. Wilson, and S. K. Hamilton, Limnol. Oceanogr. 49:482-487, 2004), survival rates of M. aeruginosa isolates collected from an oligotrophic lake (total phosphorus of approximately 10 mug liter(-1) and dissolved inorganic nitrogen:total phosphorus ratio of 12.75) differed among five different medium types (G test, P of <0.001), with higher survival (P = 0.003) in low-nutrient media (28 to 37% survival) than in high-nutrient media. Even with the relatively low isolate survivorship that could select against detecting the full range of genetic variation, populations of M. aeruginosa were genetically diverse within and among lakes (by analysis of molecular variance, Phi(sc) = 0.412 [Phi(sc) is an F-statistic derivative which evaluates the correlation of haplotypic diversity within populations relative to the haplotypic diversity among all sampled populations], P = 0.001), with most clones being distantly related to clones collected from lakes directly attached to Lake Michigan (a Laurentian Great Lake) and culture collection strains collected from Canada, Scotland, and South Africa. Ninety-one percent of the 53 genetically unique M. aeruginosa clones contained the microcystin toxin gene (mcyA). Genotypes with the toxin gene were found in all lakes, while four lakes harbored both genotypes possessing and genotypes lacking the toxin gene. PMID:16204530

  5. Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Kato, Kazushige; Tanaka, Ryouichi; Sano, Shinsuke; Tanaka, Ayumi; Hosaka, Hideo

    2010-01-01

    Protoporphyrinogen oxidase (Protox) catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX during the synthesis of tetrapyrrole molecules. Protox is encoded by the hemY gene in eukaryotes and by the hemG gene in many ?-proteobacteria, including Escherichia coli. It has been suggested that other bacteria possess a yet unidentified type of Protox. To identify a unique bacterial gene encoding Protox, we first introduced the Arabidopsis hemY gene into the genome of the cyanobacterium, Synechocystis sp. PCC6803. We subsequently mutagenized the cells by transposon tagging and screened the tagged lines for mutants that were sensitive to acifluorfen, which is a specific inhibitor of the hemY-type Protox. Several cell lines containing the tagged slr1790 locus exhibited acifluorfen sensitivity. The slr1790 gene encodes a putative membrane-spanning protein that is distantly related to the M subunit of NADH dehydrogenase complex I. We attempted to disrupt this gene in the wild-type background of Synechocystis, but we were only able to obtain heteroplasmic disruptants. These cells accumulated a substantial amount of protoporphyrin IX, suggesting that the slr1790 gene is essential for growth and Protox activity of cells. We found that most cyanobacteria and many other bacteria possess slr1790 homologs. We overexpressed an slr1790 homolog of Rhodobacter sphaeroides in Escherichia coli and found that this recombinant protein possesses Protox activity in vitro. These results collectively demonstrate that slr1790 encodes a unique Protox enzyme and we propose naming the slr1790 gene hemJ. PMID:20823222

  6. The ? subunit of RNA polymerase is essential for thermal acclimation of the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Gunnelius, Liisa; Kurkela, Juha; Hakkila, Kaisa; Koskinen, Satu; Parikainen, Marjaana; Tyystjrvi, Taina

    2014-01-01

    The rpoZ gene encodes the small ? subunit of RNA polymerase. A ?rpoZ strain of the cyanobacterium Synechocystis sp. PCC 6803 grew well in standard conditions (constant illumination at 40 mol photons m(-2) s(-1); 32C; ambient CO2) but was heat sensitive and died at 40C. In the control strain, 71 genes were at least two-fold up-regulated and 91 genes down-regulated after a 24-h treatment at 40C, while in ?rpoZ 394 genes responded to heat. Only 62 of these heat-responsive genes were similarly regulated in both strains, and 80% of heat-responsive genes were unique for ?rpoZ. The RNA polymerase core and the primary ? factor SigA were down-regulated in the control strain at 40C but not in ?rpoZ. In accordance with reduced RNA polymerase content, the total RNA content of mild-heat-stress-treated cells was lower in the control strain than in ?rpoZ. Light-saturated photosynthetic activity decreased more in ?rpoZ than in the control strain upon mild heat stress. The amounts of photosystem II and rubisco decreased at 40C in both strains while PSI and the phycobilisome antenna protein allophycocyanin remained at the same level as in standard conditions. The phycobilisome rod proteins, phycocyanins, diminished during the heat treatment in ?rpoZ but not in the control strain, and the nblA1 and nblA2 genes (encode NblA proteins required for phycobilisome degradation) were up-regulated only in ?rpoZ. Our results show that the ? subunit of RNAP is essential in heat stress because it is required for heat acclimation of diverse cellular processes. PMID:25386944

  7. Salinity Tolerance of Picochlorum atomus and the Use of Salinity for Contamination Control by the Freshwater Cyanobacterium Pseudanabaena limnetica

    PubMed Central

    von Alvensleben, Nicolas; Stookey, Katherine; Magnusson, Marie; Heimann, Kirsten

    2013-01-01

    Microalgae are ideal candidates for waste-gas and –water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles – an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass. PMID:23667639

  8. The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain PCC 7822 protects nitrogenase from oxygen toxicity.

    PubMed

    Zhang, Xiaohui; Sherman, Debra M; Sherman, Louis A

    2014-02-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (?hupL), and we determined how this would affect the amount of H2 produced. The ?hupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

  9. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Wu, Wenfang; Hao, Likai; Wuestner, Marina; Obst, Martin; Moran, Dawn; McIlvin, Matthew; Saito, Mak; Kappler, Andreas

    2015-10-01

    Evidence for Fe(II) oxidation and deposition of Fe(III)-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF). While the exact mechanisms of Fe(II) oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III) minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II)-rich) waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II) concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II) is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) are consistent with extracellular precipitation of Fe(III) (oxyhydr)oxide minerals, but that >10% of Fe(III) sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS) in Fe(II) toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II). These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous Precambrian oceans.

  10. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 cells.

    PubMed

    K?odawska, Kinga; Kovcs, Lszl; Vrkonyi, Zsuzsanna; Kis, Mihly; Sozer, zge; Laczk-Dobos, Hajnalka; Kbori, Ottilia; Domonkos, Ildik; Strza?ka, Kazimierz; Gombos, Zoltn; Malec, Przemys?aw

    2015-03-01

    In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (?psaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ?psaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of ?-carotene. The measured H2O?CO2 oxygen evolution rates in the ?psaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure. PMID:25520404

  11. Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the Chlorophyll d-Containing Cyanobacterium Acaryochloris marina

    PubMed Central

    Behrendt, Lars; Schrameyer, Verena; Qvortrup, Klaus; Lundin, Luisa; Sørensen, Søren J.; Larkum, Anthony W. D.

    2012-01-01

    The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions. PMID:22467501

  12. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Wang, Yunpeng; Sun, Tao; Gao, Xingyan; Shi, Mengliang; Wu, Lina; Chen, Lei; Zhang, Weiwen

    2016-03-01

    3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18mgL(-1) (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis. PMID:26546088

  13. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme.

    PubMed

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li; Qiu, Bao-Sheng

    2012-10-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  14. Differential Transcriptional Analysis of the Cyanobacterium Cyanothece sp. Strain ATCC 51142 during Light-Dark and Continuous-Light Growth

    SciTech Connect

    Toepel, Jorg; Welsh, Eric A.; Summerfield, Tina; Pakrasi, Himadri B.; Sherman, Louis A.

    2008-06-01

    We analyzed the metabolic rhythms and differential gene transcription in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC51142 under N?-fixing conditions with 12h light-12h dark cycles followed by 36 h continuous light. Cultures were grown in a 6-L bioreactor that was specially designed for photosynthetic microorganisms and that permitted continuous monitoring of parameters such as pH and dissolved oxygen. Our main objective was to determine the strategies used by these cells to perform N? fixation under normal day-night conditions, as well as under greater stress caused by continuous light. Our results strongly suggested that the level of N? fixation is dependent upon respiration for energy production and for removal of intracellular O?. We determined that N? fixation cycled in continuous light, but that the N? fixation peak was lower and that glycogen degradation and respiration were also lower under these conditions. We also demonstrated that nifH (the gene encoding the Fe protein) and nifB and nifX were strongly induced in the continuous light; this is consistent with the mode of operation of these proteins relative to the MoFe protein and suggested that any regulation of N? fixation was at a posttranscriptional level. Also, many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione) were strongly induced during N? fixation in continuous light. We suggest that these carriers were required to generate enhanced cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of enhanced O?, respectively.

  15. Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Tam, Lam X; Aigner, Harald; Timmerman, Evy; Gevaert, Kris; Funk, Christiane

    2015-06-15

    The family of Deg/HtrA proteases plays an important role in quality control of cellular proteins in a wide range of organisms. In the genome of the cyanobacterium Synechocystis sp. PCC 6803, a model organism for photosynthetic research and renewable energy products, three Deg proteases are encoded, termed HhoA, HhoB and HtrA. In the present study, we compared wild-type (WT) Synechocystis cells with the single insertion mutants ?hhoA, ?hhoB and ?htrA. Protein expression of the remaining Deg/HtrA proteases was strongly affected in the single insertion mutants. Detailed proteomic studies using DIGE (difference gel electrophoresis) and N-terminal COFRADIC (N-terminal combined fractional diagonal chromatography) revealed that inactivation of a single Deg protease has similar impact on the proteomes of the three mutants; differences to WT were observed in enzymes involved in the major metabolic pathways. Changes in the amount of phosphate permease system Pst-1 were observed only in the insertion mutant ?hhoB. N-terminal COFRADIC analyses on cell lysates of ?hhoB confirmed changed amounts of many cell envelope proteins, including the phosphate permease systems, compared with WT. Invitro COFRADIC studies were performed to identify the specificity profiles of the recombinant proteases rHhoA, rHhoB or rHtrA added to the Synechocystis WT proteome. The combined invivo and invitro N-terminal COFRADIC datasets propose RbcS as a natural substrate for HhoA, PsbO for HhoB and HtrA and Pbp8 for HtrA. We therefore suggest that each Synechocystis Deg protease protects the cell through different, but connected mechanisms. PMID:25877158

  16. Effects of Phosphorylation of ? Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Chen, Zhuo; Zhan, Jiao; Chen, Ying; Yang, Mingkun; He, Chenliu; Ge, Feng; Wang, Qiang

    2015-10-01

    Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the ? subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates. PMID:26315596

  17. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    PubMed

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. Biotechnol. Bioeng. 2016;113: 424-432. 2015 Wiley Periodicals, Inc. PMID:26192329

  18. The ? Subunit of RNA Polymerase Is Essential for Thermal Acclimation of the Cyanobacterium Synechocystis Sp. PCC 6803

    PubMed Central

    Gunnelius, Liisa; Kurkela, Juha; Hakkila, Kaisa; Koskinen, Satu; Parikainen, Marjaana; Tyystjrvi, Taina

    2014-01-01

    The rpoZ gene encodes the small ? subunit of RNA polymerase. A ?rpoZ strain of the cyanobacterium Synechocystis sp. PCC 6803 grew well in standard conditions (constant illumination at 40 mol photons m?2 s?1; 32C; ambient CO2) but was heat sensitive and died at 40C. In the control strain, 71 genes were at least two-fold up-regulated and 91 genes down-regulated after a 24-h treatment at 40C, while in ?rpoZ 394 genes responded to heat. Only 62 of these heat-responsive genes were similarly regulated in both strains, and 80% of heat-responsive genes were unique for ?rpoZ. The RNA polymerase core and the primary ? factor SigA were down-regulated in the control strain at 40C but not in ?rpoZ. In accordance with reduced RNA polymerase content, the total RNA content of mild-heat-stress-treated cells was lower in the control strain than in ?rpoZ. Light-saturated photosynthetic activity decreased more in ?rpoZ than in the control strain upon mild heat stress. The amounts of photosystem II and rubisco decreased at 40C in both strains while PSI and the phycobilisome antenna protein allophycocyanin remained at the same level as in standard conditions. The phycobilisome rod proteins, phycocyanins, diminished during the heat treatment in ?rpoZ but not in the control strain, and the nblA1 and nblA2 genes (encode NblA proteins required for phycobilisome degradation) were up-regulated only in ?rpoZ. Our results show that the ? subunit of RNAP is essential in heat stress because it is required for heat acclimation of diverse cellular processes. PMID:25386944

  19. The Sll0606 Protein Is Required for Photosystem II Assembly/Stability in the Cyanobacterium Synechocystis sp. PCC 6803*

    PubMed Central

    Zhang, Shulu; Frankel, Laurie K.; Bricker, Terry M.

    2010-01-01

    An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (FV/FM) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant QA− reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II. PMID:20724474

  20. Wastewater utilization for poly-?-hydroxybutyrate production by the cyanobacterium Aulosira fertilissima in a recirculatory aquaculture system.

    PubMed

    Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

    2011-12-01

    Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-?-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter? during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter?. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m?, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ?17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m water discharge. PMID:21984242

  1. Cluster of Genes That Encode Positive and Negative Elements Influencing Filament Length in a Heterocyst-Forming Cyanobacterium

    PubMed Central

    Merino-Puerto, Victoria; Herrero, Antonia

    2013-01-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

  2. Cell Envelope Components Influencing Filament Length in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Burnat, Mireia; Schleiff, Enrico

    2014-01-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

  3. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

    2014-12-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

  4. Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata

    PubMed Central

    Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.

    2003-01-01

    Musty off-flavor in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 ?M (125 ?g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1?-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 ?M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

  5. Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696.

    PubMed

    de Araujo, Elvin D; Patel, Jason; de Araujo, Charlotte; Rogers, Susan P; Short, Steven M; Campbell, Douglas A; Espie, George S

    2011-09-01

    We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 ?mol m(-2) s(-1) PPFD) and low inorganic carbon (50 ?M Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 ?mol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 ?mol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 ?mol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 ?mol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open. PMID:21678048

  6. Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light.

    PubMed

    Min, Hongtao; Sherman, Louis A

    2010-07-01

    We report on the hydrogen production properties of the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142. This organism has a versatile metabolism and can grow in the presence or absence of combined nitrogen and can grow photosynthetically or mixotrophically and heterotrophically in the presence of glycerol. The strain produces a bidirectional hydrogenase (encoded by the hox genes), an uptake hydrogenase (hupLS), and nitrogenase (nifHDK). We demonstrated hydrogen production by both the hydrogenase and the nitrogenase under appropriate metabolic conditions. The highest rates of hydrogen production were produced under nitrogen-fixing conditions when cells were grown and incubated under continuous light conditions, in either the presence or absence of glycerol. Under such nitrogen-fixing conditions, we have achieved rates of 300 micromol H(2)/mg chloramphenicol (Chl)/hr during the first 24 h of incubation. The levels of H(2) measured were dependent upon the incubation conditions, such as sparging with argon, which generated anaerobic conditions. We demonstrated that the same conditions led to high levels of H(2) production and N(2) fixation, indicating that low-oxygen conditions favor nitrogenase activity for both processes. The levels of hydrogen produced by the hydrogenase are much lower, typically 5 to 10 micromol H(2)/mg Chl/hr. Hydrogenase activity was dependent upon electron transport through photosystem II (PS II), whereas nitrogenase activity was more dependent on PS I, as well as on respiration. Although cells do not double under the incubation conditions when sparged with argon to provide a low-oxygen environment, the cells are metabolically active, and hydrogen production can be inhibited by the addition of chloramphenicol to inhibit protein synthesis. PMID:20453150

  7. Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus.

    PubMed

    Mikhailov, Victor A; Sthlberg, Frida; Clarke, Adrian K; Robinson, Carol V

    2015-12-01

    The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. To investigate the proteolytic core of the ClpXP1/P2 protease from the cyanobacterium Synechococcus elongatus we have used a non-denaturing mass spectrometry approach. We show that the proteolytic core is a double ring tetradecamer consisting of an equal number of ClpP1 and ClpP2 subunits with masses of 21.70 and 23.44kDa, respectively. Two stoichiometries are revealed for the heptameric rings: 4ClpP1+3ClpP2 and 3ClpP1+4ClpP2. When combined in the double ring the stoichiometries are (4ClpP1+3ClpP2)+(3ClpP1+4ClpP2) and 2(3ClpP1+4ClpP2) with a low population of a 2(4ClpP1+3ClpP2) tetradecamer. The assignment of the stoichiometries is confirmed by collision-induced dissociation of selected charge states of the intact heptamer and tetradecamer. Presence of the heterodimers, heterotetramers and heterohexamers, and absence of the mono-oligomers, in the mass spectra of the partially denatured protease indicates that the ring complex consists of a chain of ClpP1/ClpP2 heterodimers with the ring completed by an additional ClpP1 or ClpP2 subunit. PMID:26525362

  8. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Selo, Tiago T; Zhang, Lifang; Knoppov, Jana; Komenda, Josef; Norling, Birgitta

    2016-01-01

    Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis. PMID:26578692

  9. Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium Arthrospira (Spirulina) maxima?

    PubMed Central

    Ananyev, Gennady; Carrieri, Damian; Dismukes, G. Charles

    2008-01-01

    Environmental and nutritional conditions that optimize the yield of hydrogen (H2) from water using a two-step photosynthesis/fermentation (P/F) process are reported for the hypercarbonate-requiring cyanobacterium Arthrospira maxima. Our observations lead to four main conclusions broadly applicable to fermentative H2 production by bacteria: (i) anaerobic H2 production in the dark from whole cells catalyzed by a bidirectional [NiFe] hydrogenase is demonstrated to occur in two temporal phases involving two distinct metabolic processes that are linked to prior light-dependent production of NADPH (photosynthetic) and dark/anaerobic production of NADH (fermentative), respectively; (ii) H2 evolution from these reductants represents a major pathway for energy production (ATP) during fermentation by regenerating NAD+ essential for glycolysis of glycogen and catabolism of other substrates; (iii) nitrate removal during fermentative H2 evolution is shown to produce an immediate and large stimulation of H2, as nitrate is a competing substrate for consumption of NAD(P)H, which is distinct from its slower effect of stimulating glycogen accumulation; (iv) environmental and nutritional conditions that increase anaerobic ATP production, prior glycogen accumulation (in the light), and the intracellular reduction potential (NADH/NAD+ ratio) are shown to be the key variables for elevating H2 evolution. Optimization of these conditions and culture age increases the H2 yield from a single P/F cycle using concentrated cells to 36 ml of H2/g (dry weight) and a maximum 18% H2 in the headspace. H2 yield was found to be limited by the hydrogenase-mediated H2 uptake reaction. PMID:18676712

  10. Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin

    PubMed Central

    Stewart, Ian; Seawright, Alan A; Schluter, Philip J; Shaw, Glen R

    2006-01-01

    Background Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. Methods Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. Results Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (? = 0.83). Conclusion The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria. PMID:16573840

  11. Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus

    PubMed Central

    Mikhailov, Victor A.; Sthlberg, Frida; Clarke, Adrian K.; Robinson, Carol V.

    2015-01-01

    The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. To investigate the proteolytic core of the ClpXP1/P2 protease from the cyanobacterium Synechococcus elongatus we have used a non-denaturing mass spectrometry approach. We show that the proteolytic core is a double ring tetradecamer consisting of an equal number of ClpP1 and ClpP2 subunits with masses of 21.70 and 23.44kDa, respectively. Two stoichiometries are revealed for the heptameric rings: 4ClpP1+3ClpP2 and 3ClpP1+4ClpP2. When combined in the double ring the stoichiometries are (4ClpP1+3ClpP2)+(3ClpP1+4ClpP2) and 2נ(3ClpP1+4ClpP2) with a low population of a 2נ(4ClpP1+3ClpP2) tetradecamer. The assignment of the stoichiometries is confirmed by collision-induced dissociation of selected charge states of the intact heptamer and tetradecamer. Presence of the heterodimers, heterotetramers and heterohexamers, and absence of the mono-oligomers, in the mass spectra of the partially denatured protease indicates that the ring complex consists of a chain of ClpP1/ClpP2 heterodimers with the ring completed by an additional ClpP1 or ClpP2 subunit. PMID:26525362

  12. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    SciTech Connect

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  13. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2

    PubMed Central

    Van de Waal, Dedmer B; Verspagen, Jolanda MH; Finke, Jan F; Vournazou, Vasiliki; Immers, Anne K; Kardinaal, W Edwin A; Tonk, Linda; Becker, Sven; Van Donk, Ellen; Visser, Petra M; Huisman, Jef

    2011-01-01

    Climate change scenarios predict a doubling of the atmospheric CO2 concentration by the end of this century. Yet, how rising CO2 will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms. The model predicts how dynamic changes in carbon chemistry, pH and light conditions during bloom development feed back on competing phytoplankton species. We test the model predictions in chemostat experiments with monocultures and mixtures of a toxic and non-toxic strain of the freshwater cyanobacterium Microcystis aeruginosa. The toxic strain was able to reduce dissolved CO2 to lower concentrations than the non-toxic strain, and became dominant in competition at low CO2 levels. Conversely, the non-toxic strain could grow at lower light levels, and became dominant in competition at high CO2 levels but low light availability. The model captured the observed reversal in competitive dominance, and was quantitatively in good agreement with the results of the competition experiments. To assess whether microcystins might have a role in this reversal of competitive dominance, we performed further competition experiments with the wild-type strain M. aeruginosa PCC 7806 and its mcyB mutant impaired in microcystin production. The microcystin-producing wild type had a strong selective advantage at low CO2 levels but not at high CO2 levels. Our results thus demonstrate both in theory and experiment that rising CO2 levels can alter the community composition and toxicity of harmful algal blooms. PMID:21390081

  14. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium

    PubMed Central

    Yang, Chen; Lin, Feibi; Li, Qi; Li, Tao; Zhao, Jindong

    2015-01-01

    Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR) locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats. PMID:26029174

  15. Harvesting Far-Red Light by Chlorophyll f in Photosystems I and II of Unicellular Cyanobacterium strain KC1.

    PubMed

    Itoh, Shigeru; Ohno, Tomoki; Noji, Tomoyasu; Yamakawa, Hisanori; Komatsu, Hirohisa; Wada, Katsuhiro; Kobayashi, Masami; Miyashita, Hideaki

    2015-10-01

    Cells of a unicellular cyanobacterium strain KC1, which were collected from Japanese fresh water Lake Biwa, formed chlorophyll (Chl) f at 6.7%, Chl a' at 2.0% and pheophytin a at 0.96% with respect to Chl a after growth under 740 nm light. The far-red-acclimated cells (Fr cells) formed extra absorption bands of Chl f at 715 nm in addition to the major Chl a band. Fluorescence lifetimes were measured. The 405-nm laser flash, which excites mainly Chl a in photosystem I (PSI), induced a fast energy transfer to multiple fluorescence bands at 720-760 and 805 nm of Chl f at 77 K in Fr cells with almost no PSI-red-Chl a band. The 630-nm laser flash, which mainly excited photosystem II (PSII) through phycocyanin, revealed fast energy transfer to another set of Chl f bands at 720-770 and 810 nm as well as to the 694-nm Chl a fluorescence band. The 694-nm band did not transfer excitation energy to Chl f. Therefore, Chl a in PSI, and phycocyanin in PSII of Fr cells transferred excitation energy to different sets of Chl f molecules. Multiple Chl f forms, thus, seem to work as the far-red antenna both in PSI and PSII. A variety of cyanobacterial species, phylogenically distant from each other, seems to use a Chl f antenna in far-red environments, such as under dense biomats, in colonies, or under far-red LED light. PMID:26320210

  16. Differential Expression of the Two kdp Operons in the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain L-31

    PubMed Central

    Ballal, Anand; Apte, Shree K.

    2005-01-01

    In several types of bacteria, the Kdp ATPase (comprising of the KdpABC complex) is an inducible, high-affinity potassium transporter that scavenges K+ from the environment. The cyanobacterium Anabaena sp. strain L-31 showed the presence of not one but two distinct kdp operons in its genome. The kdp1 consisted of kdpA1B1G1C1D genes, whereas the kdp2 contained the kdpA2B2G2C2 genes. Among the regulatory genes, the kdpD open reading frame of Anabaena sp. strain L-31 was truncated compared to the kdpD of other bacteria, whereas a kdpE-like gene was absent in the vicinity of the two kdp operons. In response to K+ limitation (<0.05 mM external K+), only kdp2 (and not kdp1) expression could be detected as a 5.3-kb transcript on Northern blots, indicating that kdpA2B2G2C2 genes constitute a polycystronic operon. Unlike E. coli, addition of osmolytes like NaCl, or a change in pH of the medium did not enhance the kdp expression in Anabaena sp. strain L-31. Interestingly, the Anabaena sp. strain L-31 kdp2 operon was strongly induced in response to desiccation stress. The addition of K+ to K+-starved cultures resulted in repression and degradation of kdp2 transcripts. Our results clearly show that kdp2 is the major kdp operon expressed in Anabaena sp. strain L-31 and may play an important role in adaptation to K+ limitation and desiccation stress. PMID:16151117

  17. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    PubMed Central

    Nayak, Nabakishore; Rath, Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  18. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.

    PubMed

    Narikawa, Rei; Fushimi, Keiji; Ni-Ni-Win; Ikeuchi, Masahiko

    2015-05-29

    Cyanobacteriochromes (CBCRs) are diverse photoreceptors that are found only from cyanobacteria and cover wide range of light qualities. CBCRs are divided into two types regarding the chromophore species they contain: phycocyanobilin (PCB) and phycoviolobilin. Red/green-type CBCRs are widely distributed subfamily among the PCB-binding CBCRs and photoconvert between a red-absorbing thermostable form and a green-absorbing metastable form. Our recent study discovered that a red/green-type CBCR, AM1_1557g2, from a cyanobacterium Acaryochloris marina covalently binds not only PCB but also biliverdin (BV). BV-binding AM1_1557g2 photoconverts between a far-red absorbing form and an orange-absorbing form. We report, herein, that another red/green-type CBCR, AM1_1870g3, from the cyanobacterium A.marina also bound both PCB and BV. PCB- and BV-binding ones showed red/green and far-red/orange reversible photoconversions, respectively. Unexpectedly, absorbing wavelengths are 10-20nm red-shifted compared with those of AM1_1557g2. These red-shifted characteristics may be useful for optogenetic light switches that work in various organisms. PMID:25892514

  19. Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Iijima, Hiroko; Shirai, Tomokazu; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulator RpaA transduce the circadian signal from KaiABC to control gene expression. Here, we generated a strain overexpressing rpaA in a unicellular cyanobacterium Synechocystis sp. PCC 6803. The rpaA-overexpressing strain showed pleiotropic phenotypes, including slower growth, aberrant degradation of an RNA polymerase sigma factor SigE after the light-to-dark transition, and higher accumulation of sugar catabolic enzyme transcripts under dark conditions. Metabolome analysis revealed delayed glycogen degradation, decreased sugar phosphates and organic acids in the tricarboxylic acid cycle, and increased amino acids under dark conditions. The current results demonstrate that in this cyanobacterium, RpaA is a regulator of primary metabolism and involved in adaptation to changes in light conditions. PMID:26379657

  20. NADP(+)-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene.

    PubMed Central

    Muro-Pastor, M I; Florencio, F J

    1994-01-01

    NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) from the dinitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 was purified to homogeneity. The native enzyme is composed of two identical subunits (M(r), 57,000) and cross-reacts with antibodies obtained against the previously purified NADP(+)-IDH from the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Anabaena NADP(+)-IDH resembles in its physicochemical and kinetic parameters the typical dimeric IDHs from prokaryotes. The gene encoding Anabaena NADP(+)-IDH was cloned by complementation of an Escherichia coli icd mutant with an Anabaena genomic library. The complementing DNA was located on a 6-kb fragment. It encodes an NADP(+)-IDH that has the same mobility as that of Anabaena NADP(+)-IDH on nondenaturing polyacrylamide gels. The icd gene was subcloned and sequenced. Translation of the nucleotide sequence gave a polypeptide of 473 amino acids that showed high sequence similarity to the E. coli enzyme (59% identity) and with IDH1 and IDH2, the two subunits of the heteromultimeric NAD(+)-IDH from Saccharomyces cerevisiae (30 to 35% identity); however, a low level of similarity to NADP(+)-IDHs of eukaryotic origin was found (23% identity). Furthermore, Anabaena NADP(+)-IDH contains a 44-residue amino acid sequence in its central region that is absent in the other IDHs so far sequenced. Attempts to generate icd mutants by insertional mutagenesis were unsuccessful, suggesting an essential role of IDH in Anabaena sp. strain PCC 7120. Images PMID:8169222

  1. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis.

    PubMed

    Voss, Björn; Bolhuis, Henk; Fewer, David P; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J; Hagemann, Martin; Stal, Lucas J; Hess, Wolfgang R

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

  2. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  3. Persistent phytoplankton bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) caused by a cyanobacterium closely associated with the genus Cyanothece (Synechococcaceae, Chroococcales).

    PubMed

    Muir, David G; Perissinotto, Renzo

    2011-09-01

    Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped. PMID:21742912

  4. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro.

    PubMed

    Padhy, Rabindra N; Nayak, Nabakishore; Rath, Shakti

    2014-03-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  5. Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Iijima, Hiroko; Shirai, Tomokazu; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulator RpaA transduce the circadian signal from KaiABC to control gene expression. Here, we generated a strain overexpressing rpaA in a unicellular cyanobacterium Synechocystis sp. PCC 6803. The rpaA-overexpressing strain showed pleiotropic phenotypes, including slower growth, aberrant degradation of an RNA polymerase sigma factor SigE after the light-to-dark transition, and higher accumulation of sugar catabolic enzyme transcripts under dark conditions. Metabolome analysis revealed delayed glycogen degradation, decreased sugar phosphates and organic acids in the tricarboxylic acid cycle, and increased amino acids under dark conditions. The current results demonstrate that in this cyanobacterium, RpaA is a regulator of primary metabolism and involved in adaptation to changes in light conditions. PMID:26379657

  6. Persistent Phytoplankton Bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) Caused by a Cyanobacterium Closely Associated with the Genus Cyanothece (Synechococcaceae, Chroococcales) ▿

    PubMed Central

    Muir, David G.; Perissinotto, Renzo

    2011-01-01

    Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped. PMID:21742912

  7. PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 (Nostocales) can be induced by sodium and potassium ions.

    PubMed

    Soto-Liebe, Katia; Mndez, Marco A; Fuenzalida, Loreto; Krock, Bernd; Cembella, Allan; Vsquez, Mnica

    2012-12-01

    Paralytic shellfish poisoning (PSP) toxins are a group of naturally occurring neurotoxic alkaloids produced among several genera of primarily freshwater cyanobacteria and marine dinoflagellates. Although saxitoxin (STX) and analogs are all potent Na(+) channel blockers in vertebrate cells, the functional role of these compounds for the toxigenic microorganisms is unknown. Based upon the known importance of monovalent cations (such as sodium) in the maintenance of cellular homeostasis and ion channel function, we examined the effect of high extracellular concentrations of these ions on growth, cellular integrity, toxin production and release to the external medium in the filamentous freshwater cyanobacterium, Raphidiopsis brookii D9; a gonyautoxins (GTX2/3) and STX producing toxigenic strain. We observed a toxin export in response to high (17 mM) NaCl and KCl concentrations in the growth medium that was not primarily related to osmotic stress effects, compared to the osmolyte mannitol. Addition of exogenous PSP toxins with the same compositional profile as the one produced by R. brookii D9 was able to partially mitigate this effect of high Na? (17 mM). The PSP toxin biosynthetic gene cluster (sxt) in D9 has two genes (sxtF and sxtM) that encode for a MATE (multidrug and toxic compound extrusion) transporter. This protein family, represented by NorM in the bacterium Vibrio parahaemolyticus, confers resistance to multiple cationic toxic agents through Na?/drug antiporters. Conserved domains for Na? and drug recognition have been described in NorM. For the D9 sxt cluster, the Na? recognition domain is conserved in both SxtF and SxtM, but the drug recognition domain differs between them. These results suggest that PSP toxins are exported directly in response to the presence of monovalent cations (Na?, K?) at least at elevated concentrations. Thus, the presence of both genes in the sxt cluster from strain D9 can be explained as a selective recognition mechanism by the SxtF/M transporters for GTX2/3 and STX. We propose that these toxins in cyanobacteria could act extracellularly as a protective mechanism to ensure homeostasis against extreme salt variation in the environment. PMID:22983012

  8. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511

    PubMed Central

    2010-01-01

    Background The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. Results The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. Conclusions Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes. PMID:20670397

  9. Elucidation of Insertion Elements Carried on Plasmids and In Vitro Construction of Shuttle Vectors from the Toxic Cyanobacterium Planktothrix

    PubMed Central

    Christiansen, Guntram; Goesmann, Alexander

    2014-01-01

    Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

  10. Combined Effects of CO2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses1[OA

    PubMed Central

    Kranz, Sven A.; Levitan, Orly; Richter, Klaus-Uwe; Pril, Ond?ej; Berman-Frank, Ilana; Rost, Bjrn

    2010-01-01

    Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 ?atm) and irradiance (50 and 200 ?mol photons m?2 s?1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2 fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3? was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2 treatment under high light. Light-dependent oxygen uptake was only detected under low pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2 fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition. PMID:20625004

  11. Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: analysis of the slow fluorescence transient.

    PubMed

    Stamatakis, Kostas; Tsimilli-Michael, Merope; Papageorgiou, George C

    2007-06-01

    At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at approximately 0.2-1 and M at approximately 100-500 s, with a minimum S at approximately 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS-->Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS-->PS I excitation transfer. Blocking the PBS-->PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobacterial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P-->T fluorescence decay, reminiscent of the typical P-->T fluorescence decay of higher plants and algae. A similar P-->T decay was also displayed by DCMU-treated Synechococcus cells at 2 degrees C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2-->1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P-->T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1-->2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS-->PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like. PMID:17448439

  12. Effects of cyanobacterium Fischerella ambigua isolates and cell free culture media on zebrafish (Danio rerio) embryo development.

    PubMed

    Wright, Anthony D; Papendorf, Olaf; Knig, Gabriele M; Oberemm, Axel

    2006-10-01

    The toxic effects of several species of fresh water cyanobacteria, notably Microcystis species and associated toxins, the microcystins, Anabaena species (anatoxin), Nodularia sp. (nodularin), and Cylindrospermopsis raciborskii (cylindrospermopsin), are well known. Little, however, is known about the effects of secondary metabolites other than alkaloids. Early life stage tests with zebrafish (Danio rerio) were used to detect bioactive properties of compounds released by healthy cyanobacteria (Fischerella ambigua), particularly on the early developmental stages of fish. This approach, using F. ambigua is probably most valuable as it shows the toxicity of healthy growing cyanobacteria. The effects of cyanobacterial secondary metabolites on the embryonic stages of fish are of considerable interest as many aquatic creatures, particularly fish, are unable to avoid the potential toxins that may be released by undesirable algal blooms or as a result of allelopathic effects. In the current study, the zebrafish (D. rerio) was used as a model experimental system to investigate the effects of ambigols A and C, tjipanazole D and C, 2,4-dichlorobenzoic acid, cell free culture media, and media extracts of a terrestrial/fresh water strain of the cyanobacterium F. ambigua on embryo development. Fish embryo tests performed with the cell free culture medium showed that after 3h of exposure to undiluted culture medium all fish embryos died. At a tenfold dilution the process of epiboly (formation of the gastrula) was retarded in all embryos, lesions were observed, and their general development was significantly arrested, finally followed by death. The same tests performed with extracts (dichloromethane, n-butanol, and residual cell free culture medium) of the cell free culture medium, ambigol A, ambigol C, 2,4-dichlorobenzoic acid and tjipanazole D showed only ambigol A to have an influence on zebrafish development at concentrations>or=1 mg/l (2.06 microM). After 55 h all embryos showed pectoral oedema, irregularly shaped fin folds, bent tails, and unusual circular neoplasms in the dorsal tail fin fold. Due to the high concentration of ambigol A used in this assay these effects were considered to be of minor importance when compared to those of the culture medium. PMID:16554083

  13. Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

    2008-12-01

    The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all detected proteins in each photosystem was only 1.2, and the median was only 0.72 based on the median. These results contradict the earlier predication of a biochemical basis for a high cellular iron in Synechococcus and may extend to the marine cyanobacteria in general.

  14. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 ? M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further required a growth term to adequately model As(III) excretion by the cyanobacterium. The impact of N:P ratios on As reduction rates implies that N:P cycling can be coupled to As biogeochemistry in surface waters through the action of phytoplankton.

  15. Looking at the stability of life-support microorganisms in space : the MELGEN activity highlights the cyanobacterium Arthrospira sp. PCC8005

    NASA Astrophysics Data System (ADS)

    Morin, Nicolas

    The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of Arthrospira sp. PCC 8005, fully annotated. This genomic information opens the gates to a better understanding of the biology of this cyanobacterium and will be a key to the development of appropriate derivatives that provide enhanced performances (e.g. radiation resistance, genetic stability, photosynthesis and nutritive properties).

  16. Laboratory Simulation of Biogeochemical Interactions Between Cyanobacterium-Growth and CaCO3 Deposition: Implications for Carbon Accumulation Under Extreme Atmospheric Conditions of Precambrian Earth

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Chen, L.; Chen, G.; Yang, H.

    2004-05-01

    The atmosphere of Precambrian Earth was characterized by high PCO2, low PO2, and high violent UV radiation. To better understand the interaction between cyanobacterium-growth and CaCO3 deposition in such extreme environments, we grew Oscillatoria tenuis, a prokaryotic alga that is morphologically similar to micro-fossils found in Precambrian chert, in the laboratory under controlled temperature and patial presure of CO2. During algal cell growth, oxygen was absorbed continously by chromous chloride oxygen-absorbent and the levels of PCO2 were controlled by adding different amounts of HCO3- (NaHCO3) in culture medium with initial pH 7.4. Our observation indicates that PCO2 excerises the first order of control on the accumulation of cyanobaterium biomass. Under 100,000 Pa of PCO2, the growth rate of cyanobaterium increases along with the elevation of CO2 partial pressure; however, when PCO2 is higher than 100,000 Pa, the increase of PCO2 results in the decrease of cyanobacterium biomass. On the other hand, photosynthesis of cyanobacteria controls CaCO3 deposition via the function of adjusting pH in the solution. In a 5 day cell growth experiment with PCO2 controlled at about 50,000 Pa and additional 0.0001, 0.001, 0.01, 0.1 and 1.0 M Ca2+ input separately at speed of 2.5 ml/h, the largest total biomass of cyanobacterium (896 mg/L) including living suspension cells and deposited cells was obtained when Ca2+ input was maintained at 0.01 M with 2.5 ml/h. Otherwise, less Ca2+ input resulted in more living suspension cells and less deposited cells. More Ca2+ input resulted in less living suspension cells and more deposited cells. At last both conditions were not good for cell growth and accumulation of organic matter in carbonate deposition in long term. Our laboratory simulation illustrates that the Ca2+ input is critical to CaCO3 deposition and such controls are indirectly enforced through the accumulation of cyanobacteria biomass under a warm, anoxic and high pCO2 atmospheric condition during a part of Precambrian time.

  17. Cloning, expression, crystallization and preliminary X-ray studies of the ferredoxinNAD(P)+ reductase from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    PubMed Central

    Liauw, Pasqual; Mashiba, Tomohiro; Kopczak, Marta; Wiegand, Katrin; Muraki, Norifumi; Kubota, Hisako; Kawano, Yusuke; Ikeuchi, Masahiko; Hase, Toshiharu; Rgner, Matthias; Kurisu, Genji

    2012-01-01

    FerredoxinNADP+ reductase (FNR) is a flavoenzyme that catalyses the reduction of NADP+ in the final step of the photosynthetic electron-transport chain. FNR from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TeFNR) contains an additional 9?kDa domain at its N-terminus relative to chloroplastic FNRs and is more thermostable than those from mesophilic cyanobacteria. With the aim of understanding the structural basis of the thermostability of TeFNR and assigning a structural role to the small additional domain, the gene encoding TeFNR with and without an additional domain was engineered for heterologous expression and the recombinant proteins were purified and crystallized. Crystals of TeFNR without the additional domain belonged to space group P21, with unit-cell parameters a=55.05, b = 71.66, c = 89.73?, ? = 90, ? = 98.21, ? = 90. PMID:22949191

  18. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing

    PubMed Central

    Ding, Qinglong; Chen, Gu; Wang, Yuling; Wei, Dong

    2015-01-01

    Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally. PMID:26473841

  19. Investigation and modeling of biomass decay rate in the dark and its potential influence on net productivity of solar photobioreactors for microalga Chlamydomonas reinhardtii and cyanobacterium Arthrospira platensis.

    PubMed

    Le Borgne, Franois; Pruvost, Jrmy

    2013-06-01

    Biomass decay rate (BDR) in the dark was investigated for Chlamydomonas reinhardtii (microalga) and Arthrospira platensis (cyanobacterium). A specific setup based on a torus photobioreactor with online gas analysis was validated, enabling us to follow the time course of the specific BDR using oxygen monitoring and mass balance. Various operating parameters that could limit respiration rates, such as culture temperature and oxygen deprivation, were then investigated. C. reinhardtii was found to present a higher BDR in the dark than A. platensis, illustrating here the difference between eukaryotic and prokaryotic cells. In both cases, temperature proved an influential parameter, and the Arrhenius law was found to efficiently relate specific BDR to culture temperature. The utility of decreasing temperature at night to increase biomass productivity in a solar photobioreactor is also illustrated. PMID:23619140

  20. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing.

    PubMed

    Ding, Qinglong; Chen, Gu; Wang, Yuling; Wei, Dong

    2015-01-01

    Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally. PMID:26473841

  1. Regulation of Genes Involved in Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120 by a Group 2 Sigma Factor SigC

    PubMed Central

    Ehira, Shigeki; Miyazaki, Shogo

    2015-01-01

    The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates specialized cells for nitrogen fixation called heterocysts upon limitation of combined nitrogen in the medium. During heterocyst differentiation, expression of approximately 500 genes is upregulated with spatiotemporal regulation. In the present study, we investigated the functions of sigma factors of RNA polymerase in the regulation of heterocyst differentiation. The transcript levels of sigC, sigE, and sigG were increased during heterocyst differentiation, while expression of sigJ was downregulated. We carried out DNA microarray analysis to identify genes regulated by SigC, SigE, and SigG. It was indicated that SigC regulated the expression of genes involved in heterocyst differentiation and functions. Moreover, genes regulated by SigC partially overlapped with those regulated by SigE, and deficiency of SigC was likely to be compensated by SigE. PMID:25692906

  2. Two Cytotoxic Stereoisomers of Malyngamide C, 8-Epi-Malyngamide C and 8-O-Acetyl-8-epi-Malyngamide C, from the Marine Cyanobacterium Lyngbya majuscula

    PubMed Central

    Gross, Harald; McPhail, Kerry L.; Goeger, Douglas E.; Valeriote, Frederick A.; Gerwick, William H.

    2010-01-01

    Two new epimers of malyngamide C, 8-O-acetyl-8-epi-malyngamide C (1) and 8-epi-malyngamide C (3) have been isolated along with known compounds 6-O-acetylmalyngamide F (5), H (6), J (7) K (8), and characterized from a Grenada field collection of the marine cyanobacterium Lyngbya majuscula. The planar structures of these compounds were deduced by 1D- and 2D-NMR and mass spectral data interpretation. The absolute configurations were determined by a combination of CD-spectroscopy, chemical degradation and the variable temperature Moshers method. Compounds 15, 7 and 8 displayed moderate cytotoxicity to NCI-H460 human lung tumor and neuro-2a cancer cell lines, with IC50 values ranging between 0.5 and 20 ?g/mL. PMID:20701935

  3. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry.

    PubMed

    Zavřel, Tomáš; Knoop, Henning; Steuer, Ralf; Jones, Patrik R; Červený, Jan; Trtílek, Martin

    2016-02-01

    The prediction of the world's future energy consumption and global climate change makes it desirable to identify new technologies to replace or augment fossil fuels by environmentally sustainable alternatives. One appealing sustainable energy concept is harvesting solar energy via photosynthesis coupled to conversion of CO2 into chemical feedstock and fuel. In this work, the production of ethylene, the most widely used petrochemical produced exclusively from fossil fuels, in the model cyanobacterium Synechocystis sp. PCC 6803 is studied. A novel instrumentation setup for quantitative monitoring of ethylene production using a combination of flat-panel photobioreactor coupled to a membrane-inlet mass spectrometer is introduced. Carbon partitioning is estimated using a quantitative model of cyanobacterial metabolism. The results show that ethylene is produced under a wide range of light intensities with an optimum at modest irradiances. The results allow production conditions to be optimized in a highly controlled setup. PMID:26708481

  4. ?pH-dependent non-photochemical quenching (qE) of excited chlorophylls in the photosystem II core complex of the freshwater cyanobacterium Synechococcus sp PCC 7942.

    PubMed

    Stamatakis, Kostas; Papageorgiou, George C

    2014-08-01

    Light-induced and lumen acidity-dependent quenching (qE) of excited chlorophylls (Chl) invivo has been amply documented in plants and algae, but not in cyanobacteria, using primarily the saturation pulse method of quenching analysis which is applied to continuously illuminated samples. This method is unsuitable for cyanobacteria because the background illumination elicits in them a very large Chl a fluorescence signal, due to a state 2 to state 1 transition, which masks fluorescence changes due to other causes. We investigated the qE problem in the cyanobacterium Synechococcus sp. PCC 7942 using a kinetic method (Chl a fluorescence induction) with which qE can be examined before the onset of the state 2 to state 1 transition and the attendant rise of Chl a fluorescence. Our results confirm the existence of a qE mechanism that operates on excited Chls a in Photosystem II core complexes of cyanobacteria. PMID:24793104

  5. Symplocin A, a Linear Peptide from the Bahamian Cyanobacterium Symploca sp. Configurational Analysis of N,N-Dimethylamino Acids by Chiral-Phase HPLC of Naphthacyl Esters

    PubMed Central

    Molinski, Tadeusz F.; Reynolds, Kirk A.; Morinaka, Brandon I.

    2012-01-01

    The absolute stereostructures of the components of symplocin A (3), a new N,N-dimethyl-terminated peptide from the Bahamian cyanobacterium, Symploca sp., were assigned from spectroscopic analysis, including MS and 2D NMR and Marfeys analysis. The complete absolute configuration of symplocin A, including the unexpected D-configurations of the terminal N,N-dimethylisoleucine and valic acid residues, were assigned by chiral-phase HPLC of the corresponding 2-naphthacyl esters, a highly sensitive, complementary strategy for assignment of N-blocked peptide residues where Marfeys method is ineffectual, or other methods fall short. Symplocin A exhibited potent activity as an inhibitor of cathepsin E (IC50 300 pM). PMID:22360587

  6. Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species

    NASA Technical Reports Server (NTRS)

    Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

    2011-01-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  7. Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species.

    PubMed

    Mielke, S P; Kiang, N Y; Blankenship, R E; Gunner, M R; Mauzerall, D

    2011-09-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells, and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments. PMID:21708123

  8. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937

    SciTech Connect

    Rastogi, Rajesh P.; Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005 ; Singh, Shailendra P.; Haeder, Donat-P.; Sinha, Rajeshwar P.

    2010-07-02

    The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm{sup -2}, UV-A: 25.70 Wm{sup -2} and PAR: 118.06 Wm{sup -2}) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.

  9. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis.

    PubMed

    Ambrozova, Jarmila Vavra; Misurcova, Ladislava; Vicha, Robert; Machu, Ludmila; Samek, Dusan; Baron, Mojmir; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

    2014-01-01

    Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%-65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%-26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%-36.38%), α-linolenic acid (C18:3(n-3); 0.00%-21.29%), γ-linolenic acid (C18:3(n-6); 1.94%-17.36%), and arachidonic acid (C20:4(n-6); 0.00%-15.37%). The highest content of ω-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent. PMID:24566307

  10. Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed Central

    Brahamsha, B; Haselkorn, R

    1991-01-01

    The filamentous cyanobacterium Anabaena sp. strain PCC 7120 responds to combined nitrogen deprivation by forming specialized nitrogen-fixing cells at regular intervals along the filament. Genetic and biochemical studies have indicated that regulation of gene expression during differentiation occurs at the transcriptional level. As part of a characterization of RNA polymerase during differentiation, the gene encoding the 52-kDa principal sigma factor of the Anabaena sp. strain PCC 7120 vegetative-cell RNA polymerase was isolated by using an oligonucleotide probe based on the sequence of the N-terminal seven amino acids of the purified protein. sigA codes for a 390-amino-acid polypeptide that has a predicted molecular weight of 45,641. The amino acid sequence of the polypeptide encoded by sigA contains four regions corresponding to conserved domains of the principal RNA polymerase sigma factors of Escherichia coli (sigma 70) and Bacillus subtilis (sigma 43). Thus, although the subunit composition of cyanobacterial RNA polymerase core differs from that of other eubacteria (G. J. Schneider and R. Haselkorn, J. Bacteriol. 170:4136-4140, 1988), the principal sigma factor of at least one cyanobacterium is typically eubacterial. In contrast to sigma 70 and sigma 43 operon organization, sigA is monocistronic and encodes two transcripts of 1.7 and 2.2 kb. The abundance of the 1.7-kb transcript remains constant under both nitrogen-replete and nitrogen-limiting conditions, whereas the 2.2-kb transcript is induced following the removal of combined nitrogen. Continued or enhanced transcription of sigA under nitrogen starvation conditions is consistent with the observation that the principal RNA polymerase in differentiating cells contains SigA. Images PMID:1901566

  11. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena

    PubMed Central

    Burnat, Mireia; Flores, Enrique

    2014-01-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [14C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The Δalr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [14C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the Δalr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. PMID:25209059

  12. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    PubMed

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. PMID:25209059

  13. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

    1995-01-01

    The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light period, the imaginary part of the refractive index n' showed little variation over a day-night cycle, and bar-(sigma(sub a)) was largely controlled by variations in cell size. The real part of the refractive index at lambda = 660 nm was correlated with the intracellular C concentration and the imaginary part at lambda = 678 nm with the intracellular Chl a concentration. The C-specfic attenuation coefficient showed significant diel variability, which has implications for the estimation of oceanic primary production from measurements of diel variability in beam attenuation. This study provides strong evidence that diel variability is an important component of the optical characterization of marine phytoplankton.

  14. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.

    PubMed

    Laczk-Dobos, Hajnalka; Szalontai, Balzs

    2009-10-27

    Proper responses to low- and high-temperature stresses are essential for the survival of many organisms. It has been established that at low-temperature stress the sufficient microviscosity of the lipids is decisive in this respect. In many organisms, adapting the level of lipid unsaturation to the low growth temperature regulates this feature. At high-temperature stresses, however, there are no unequivocal results concerning the role of the lipids. In these temperature ranges, the lipids are all disordered and fluid and their physical parameters change slowly with increasing temperatures, while biological organisms give characteristic stress responses in rather narrow temperature ranges. Therefore, one may speculate that other membrane parameters/components, which change sharply in the range of the high-temperature stress, may give a signal to initiate the general response of the cells. For such a role, proteins are the trivial candidates. To reveal the role of the lipids and the proteins in these processes, we used a genetically engineered system, based on a cyanobacterium, Synechocystis PCC 6803. In the wild-type cells of this bacterium, by altering the growth temperature, the polyunsaturated lipid content of the cell membranes can be varied considerably (as required by the homeoviscous adaptation principle). In the case of desA(-)/desD(-) mutant cells, which can contain only monounsaturated fatty acyl chains in their lipids, homeoviscous adaptation of the lipids is not possible. Since desA(-)/desD(-) mutation affects only the lipids, additional perturbations (e.g., altered protein content) should minimally disturb the comparison of the lipid behaviors in wild-type and mutant cells. Infrared spectra of thylakoid and cytoplasmic membranes isolated from wild-type and mutant cells were recorded in 3 degrees C steps between 8 and 92 degrees C. By analyzing the rates of protein structural changes, hydrogen-deuterium exchange, in-membrane lipid disorder, and water-membrane interfacial order/hydration as functions of the temperature, we conclude that (i) the gel-to-liquid crystalline phase transition of the lipids correlates with the growth temperature in the wild-type cells but not in the desA(-)/desD(-) mutants, (ii) over the physiological temperature range, both protein and lipid dynamics are regulating/regulated, providing remarkably constant dynamics for both the thylakoid and cytoplasmic membrane, (iii) in the high-temperature stress region, protein structure and dynamics are changing sharply without any correlation with growth temperature and/or mutation, i.e., membrane protein stability does not seem to depend on the lipid composition of the membrane (this finding points to the possible primacy of proteins as initiators/targets of heat-shock alarms), and (iv) there are substantial differences between the dynamics of the proteins of the thylakoid and cytoplasmic membranes, reflecting their different protein complexes and lipid-to-protein ratios. PMID:19788309

  15. Structural and Synthetic Investigations of Tanikolide Dimer, a SIRT2 Selective Inhibitor, and Tanikolide Seco Acid from the Madagascar Marine Cyanobacterium Lyngbya majuscula

    PubMed Central

    Gutirrez, Marcelino; Andrianasolo, Eric H.; Shin, Won Kyo; Goeger, Douglas E.; Yokochi, Alexandre; Schemies, Jrg; Jung, Manfred; France, Dennis; Cornell-Kennon, Susan; Lee, Eun; Gerwick, William H.

    2009-01-01

    Tanikolide seco acid 2 and tanikolide dimer 3, the latter a novel and selective SIRT2 inhibitor, were isolated from the Madagascar marine cyanobacterium Lyngbya majuscula. The structure of 2, isolated as the pure R enantiomer, was elucidated by an X-ray experiment in conjunction with NMR and optical rotation data, whereas the depside molecular structure of 3 was initially thought to be a meso compound as established by NMR, MS and chiral HPLC analyses. Subsequent total synthesis of the three tanikolide dimer stereoisomers 4, 5, and ent-5, followed by chiral GC-MS comparisons with the natural product, showed it to be exclusively the R,R-isomer 5. Tanikolide dimer 3 (=5) inhibited SIRT2 with an IC50 = 176 nM in one assay format, and 2.4 M in another. Stereochemical determination of symmetrical dimers such as compound 3 pose intriguing and subtle questions in structure elucidation, and as shown in the current work, are perhaps best answered in conjunction with total synthesis. PMID:19572575

  16. Involvement of thioredoxin on the scaffold activity of NifU in heterocyst cells of the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nomata, Jiro; Maeda, Maki; Isu, Atsuko; Inoue, Kazuhito; Hisabori, Toru

    2015-09-01

    The diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 (A.7120) differentiates into specialized heterocyst cells that fix nitrogen under nitrogen starvation conditions. Although reducing equivalents are essential for nitrogen fixation, little is known about redox systems in heterocyst cells. In this study, we investigated thioredoxin (Trx) networks in Anabaena using TrxM, and identified 16 and 38 candidate target proteins in heterocysts and vegetative cells, respectively, by Trx affinity chromatography (Motohashi et al. (Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA, 2001; 98: , 11224-11229)). Among these, the Fe-S cluster scaffold protein NifU that facilitates functional expression of nitrogenase in heterocysts was found to be a potential TrxM target. Subsequently, we observed that the scaffold activity of N-terminal catalytic domain of NifU is enhanced in the presence of Trx-system, suggesting that TrxM is involved in the Fe-S cluster biogenesis. PMID:25953913

  17. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells. PMID:26431054

  18. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353.

    PubMed

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Kupriyanova, Elena V; Pronina, Natalia A; Lee, Bong-Woo; Jo, Seong-Whan; Park, Beom-Seok; Choi, Sang-Bong; Song, Ji-Joon; Park, Youn-Il

    2015-11-20

    Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found. PMID:26405033

  19. Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation.

    PubMed Central

    Sobczyk, A; Schyns, G; Tandeau de Marsac, N; Houmard, J

    1993-01-01

    The cyanobacterium Calothrix sp. PCC 7601 can adapt its pigment content in response to changes in the incident light wavelength. It synthesizes, as major light-harvesting pigments, either phycocyanin 2 (PC2, encoded by the cpc2 operon) under red light or phycoerythrin (PE, encoded by the cpeBA operon) under green light conditions. The last step of the signal transduction pathway is characterized by a transcriptional control of the expression of these operons. Partially purified protein extracts were used in gel retardation assays and DNase I footprinting experiments to identify the factors that interact with the promoter region of the cpeBA operon. We found that two proteins, RcaA and RcaB, only detected in extracts of cells grown under green light, behave as positive transcriptional factors for the expression of the cpeBA operon. Treatment of the fractions containing RcaA and RcaB with alkaline phosphatase prevents the binding of RcaA but not of RcaB to the cpeBA promoter region. A post-translational modification of RcaA thus modulates its affinity for DNA. Images PMID:8458347

  20. Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328 ▿ †

    PubMed Central

    Carrieri, Damian; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A.; Dismukes, G. Charles

    2011-01-01

    Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism. PMID:21890670

  1. Alr5068, a Low-Molecular-Weight protein tyrosine phosphatase, is involved in formation of the heterocysts polysaccharide layer in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Tan, Hui; Wan, Shuang; Liu, Pi-Qiong; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2013-10-01

    The filamentous cyanobacterium Anabaena sp. PCC 7120 forms nitrogen-fixing heterocysts after deprivation of combined nitrogen. Under such conditions, vegetative cells provide heterocysts with photosynthate and receive fixed nitrogen from the latter. Heterocyst envelope contains a glycolipid layer and a polysaccharide layer to restrict the diffusion of oxygen into heterocysts. Low-Molecular-Weight protein tyrosine phosphatases (LMW-PTPs) are involved in the biosynthesis of exopolysaccharides in bacteria. Alr5068, a protein from Anabaena sp. PCC 7120, shows significant sequence similarity with LMW-PTPs. In this study we characterized the enzymatic properties of Alr5068 and showed that it can dephosphorylate several autophosphorylated tyrosine kinases (Alr2856, Alr3059 and All4432) of Anabaena sp. PCC 7120 invitro. Several conserved residues among LMW-PTPs are shown to be essential for the phosphatase activity of Alr5068. Overexpression of alr5068 results in a strain unable to survive under diazotrophic conditions, with the formation of morphologically mature heterocysts detached from the filaments. Overexpression of an alr5068 allele that lost phosphatase activity led to the formation of heterocyst with an impaired polysaccharide layer. The alr5068 gene was upregulated after nitrogen step-down and its mutation affected the expression of hepA and hepC, two genes necessary for the formation of the heterocyst envelope polysaccharide (HEP) layer. Our results suggest that Alr5068 is associated with the production of HEP in Anabaena sp. PCC 7120. PMID:23827083

  2. Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 ?glgC, a strain incapable of glycogen storage

    PubMed Central

    Carrieri, Damian; Broadbent, Charlie; Carruth, David; Paddock, Troy; Ungerer, Justin; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-01-01

    A key objective in microbial biofuels strain development is to maximize carbon flux to target products while minimizing cell biomass accumulation, such that ideally the algae and bacteria would operate in a photo-catalytic state. A brief period of such a physiological state has recently been demonstrated in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC strain incapable of glycogen storage. When deprived of nitrogen, the ?glgC excretes the organic acids alpha-ketoglutarate and pyruvate for a number of days without increasing cell biomass. This study examines the relationship between the growth state and the photo-catalytic state, and characterizes the metabolic adaptability of the photo-catalytic state to increasing light intensity. It is found that the culture can transition naturally from the growth state into the photo-catalytic state when provided with limited nitrogen supply during the growth phase. Photosynthetic capacity and pigments are lost over time in the photo-catalytic state. Reversal to growth state is observed with re-addition of nitrogen nutrient, accompanied by restoration of photosynthetic capacity and pigment levels in the cells. While the overall productivity increased under high light conditions, the ratio of alpha-ketoglutarate/pyruvate is altered, suggesting that carbon partition between the two products is adaptable to environmental conditions. PMID:25616027

  3. An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Drath, Miriam; Baier, Kerstin; Forchhammer, Karl

    2009-05-01

    Methionine aminopeptidases (MetAPs or MAPs, encoded by map genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one map gene, many cyanobacterial genomes contain two map paralogues, the genome of Synechocystis sp. PCC 6803 even three. The physiological function of multiple map paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In Synechocystis sp. PCC 6803, the universally conserved mapC gene (sll0555) is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of mapA (slr0918) and mapB (slr0786) genes increases during stress conditions. The mapB paralogue is only transiently expressed, whereas the widely distributed mapA gene appears to be the major MetAP during stress conditions. A mapA-deficient Synechocystis mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q(B) is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the mapA-deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure. PMID:19359320

  4. Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean.

    PubMed

    Krupke, Andreas; Lavik, Gaute; Halm, Hannah; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

    2014-10-01

    The globally abundant, uncultured unicellular cyanobacterium UCYN-A was recently discovered living in association with a eukaryotic cell closely related to a prymnesiophyte. Here, we established a double CAtalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) approach to identify both partners and provided quantitative information on their distribution and abundance across distinct water masses along a transect in the North Atlantic Ocean. The N2 fixation activity coincided with the detection of UCYN-A cells and was only observed in oligotrophic (?18C) surface waters. Parallel 16S ribosomal RNA gene analyses among unicellular diazotrophs indicated that only UCYN-A cells were present. UCYN-A cells were associated with an algal partner or non-associated using the double CARD-FISH approach. We demonstrated that UCYN-A cells living in association with Haptophyta were the dominant form (87.0??6.1%), whereas non-associated UCYN-A cells represented only a minor fraction (5.2??3.9%). Interestingly, UCYN-A cells were also detected living in association with unknown single-celled eukaryotes in small amounts (7.8??5.2%), presumably Alveolata. The proposed ecological niche of UCYN-A as an oligotrophic, mesophilic and obligate symbiotic nitrogen-fixing microorganism is evident for the North Atlantic Ocean. PMID:24612325

  5. Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium Synechocystis sp. PCC 6803: characterization of spectral and photochemical properties.

    PubMed

    Tomo, Tatsuya; Akimoto, Seiji; Ito, Hisashi; Tsuchiya, Tohru; Fukuya, Michitaka; Tanaka, Ayumi; Mimuro, Mamoru

    2009-03-01

    Chlorophyll (Chl) a in a cyanobacterium Synechocystis sp. PCC 6803 was replaced with di-vinyl (DV)-Chl a by knock-out of the specific gene (slr1923), responsible for the reduction of a 8-vinyl group, and optical and photochemical properties of purified photosystem (PS) II complexes (DV-PS II) were investigated. We observed differences in the peak wavelengths of absorption and fluorescence spectra; however, replacement of Chl a with DV-Chl a had limited effects. On the contrary, photochemical reactions were highly sensitive to high-light treatments in the mutant. Specifically, DV-Chl a was rapidly bleached under high-light conditions, and we detected significant dissociation of complexes and degradation of D1 proteins (PsbA). By comparing the SDS-PAGE patterns observed in this study to those observed in spinach chloroplasts, this degradation is assigned to the acceptor-side photoinhibition. The delayed fluorescence in the nanosecond time region at 77 K was suppressed in DV-PS II, possibly increasing triplet formation of Chl molecules. Our findings provide insight into the evolutionary processes of cyanobacteria. The effects of pigment replacement on the optimization of reactions are discussed. PMID:19168027

  6. Sucrose Synthesis in the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain PCC 7120 Is Controlled by the Two-Component Response Regulator OrrA

    PubMed Central

    Kimura, Satoshi; Miyazaki, Shogo; Ohmori, Masayuki

    2014-01-01

    The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2. PMID:25002430

  7. Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance.

    PubMed

    Waditee-Sirisattha, Rungaroon; Sittipol, Daungjai; Tanaka, Yoshito; Takabe, Teruhiro

    2012-08-01

    Serine hydroxymethyltransferase (SHMT) is a key enzyme in cellular one-carbon pathway and has been studied in many living organisms from bacteria to higher plants and mammals. However, biochemical and molecular characterization of SHMT from photoautotrophic microorganisms remains a challenge. Here, we isolated the SHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (ApSHMT) and expressed it in Escherichia coli. Purified recombinant ApSHMT protein exhibited catalytic reactions for dl-threo-3-phenylserine as well as for l-serine. Catalytic reaction for l-serine was strongly inhibited by NaCl, but not to that level with glycine betaine. Overexpression of ApSHMT in E. coli resulted in the increased accumulation of glycine and serine. Choline and glycine betaine levels were also significantly increased. Under high salinity, the growth rate of ApSHMT-expressing cells was faster compared to its respective control. High salinity also strongly induced the transcript level of ApSHMT in A. halophytica. Our results indicate the importance of a novel pathway; salt-induced ApSHMT increased the level of glycine betaine via serine and choline and conferred the tolerance to salinity stress. PMID:22587350

  8. Evolutionary changes in growth rate and toxin production in the cyanobacterium Microcystis aeruginosa under a scenario of eutrophication and temperature increase.

    PubMed

    Rouco, Mónica; López-Rodas, Victoria; Flores-Moya, Antonio; Costas, Eduardo

    2011-08-01

    Toxic blooms of the cyanobacterium Microcystis aeruginosa affect humans and animals in inland water systems worldwide, and it has been hypothesized that the development of these blooms will increase under the future scenario of global change, considering eutrophication and temperature increase as two important consequences. The importance of genetic adaptation, chance and history on evolution of growth rate, and toxin production of M. aeruginosa was studied under these new conditions. The experiment followed the idea of "replaying life's tape" by means of the simultaneous propagation of 15 independent isolates of three M. aeruginosa strains, which were grown under doubled nutrient concentration and temperature during c. 87 generations. Adaptation by new mutations that resulted in the enhancement of growth rate arose during propagation of derived cultures under the new environmental conditions was the main component of evolution; however, chance also contributed in a lesser extension to evolution of growth rate. Mutations were selected, displacing the wild-type ancestral genotypes. In contrast, the effect of selection on mutations affecting microcystin production was neutral. Chance and history were the pacemakers in evolution of toxin production. Although this study might be considered an oversimplification of the reality, it suggest that a future scenario of global change might lead to an increase in M. aeruginosa bloom frequency, but no predictions about the frequency of toxicity can be made. PMID:21271244

  9. NADPH fluorescence in the cyanobacterium Synechocystis sp. PCC 6803: a versatile probe for in vivo measurements of rates, yields and pools.

    PubMed

    Kauny, Jocelyn; Stif, Pierre

    2014-06-01

    We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP(+) to NADPH by ferredoxin-NADP(+)-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP(+)+NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin-Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales. PMID:24463053

  10. Identification of the correct form of the mis-annotated response regulator Rre1 from the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2015-04-01

    Two-component systems have been extensively described in the control of gene expression in response to different environmental signals in the cyanobacterium Synechocystis sp. PCC 6803. The Hik34-Rre1 two-component system has been shown to regulate a set of genes under certain stress conditions. Some evidence indicates that another histidine kinase, probably Hik2, is acting upstream of Rre1 in the regulation of some genes in response to hyperosmotic and salt stress. In the present study, a mis-annotation of the Rre1 protein has been identified and the correct version has been functionally characterized in vitro. By using EMSA assays, we have demonstrated that phosphorylation of Rre1 by Hik2 increases the affinity of the response regulator for the adhA promoter region, a gene that has been demonstrated previously to be specifically regulated by the Hik34-Rre1 system. These results suggest that Hik2 might cooperate with Hik34 in the regulation of the adhA gene by transferring the phosphoryl group to Rre1 under salt and hyperosmotic stress conditions. PMID:25714549

  11. Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein.

    PubMed

    Zhang, Li-Chen; Risoul, Vronique; Latifi, Amel; Christie, John M; Zhang, Cheng-Cai

    2013-09-01

    In the filamentous heterocyst-forming cyanobacterium Anabaena PCC 7120, vegetative cells and heterocysts are interdependent on each other and engaged in exchanges of metabolites for survival when grown under diazotrophic conditions. In this organism, the periplasm appears to be continuous along each filament, with a shared outer membrane; however, barriers exist preventing free diffusion of the fluorescent protein GFP (27 kDa) targeted into the periplasmic space. Here we expressed a smaller fluorescent protein iLOV (? 13 kDa) fused to the All3333 (a putative homologue of NrtA) signal sequence corresponding to those recognized by the TAT protein translocation system, which exports iLOV to the periplasm of either heterocysts or vegetative cells. Fluorescence microscopy and immunoblot analysis indicated that the iLOV protein is translocated into the periplasm of the producing cell and properly processed, but does not diffuse to neighboring cells via the periplasm. Thus, periplasmic barriers appear to block diffusion of molecules with a size of 13 kDa, the minimum size tested thus far. Assuming that the physical barrier is the peptidoglycan sacculus, its pores might allow diffusion of molecules within the size range between the PatS pentapeptide and iLOV, thus between 0.53 kDa and 13 kDa. PMID:23748014

  12. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes.

    PubMed

    Sacharz, Joanna; Bryan, Samantha J; Yu, Jianfeng; Burroughs, Nigel J; Spence, Edward M; Nixon, Peter J; Mullineaux, Conrad W

    2015-05-01

    In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones. PMID:25601560

  13. Accumulation and effects of nodularin from a single and repeated oral doses of cyanobacterium Nodularia spumigena on flounder (Platichthys flesus L.).

    PubMed

    Vuorinen, Pekka J; Sipiä, Vesa O; Karlsson, Krister; Keinänen, Marja; Furey, Ambrose; Allis, Orla; James, Kevin; Perttilä, Ulla; Rimaila-Pärnänen, Eija; Meriluoto, Jussi A O

    2009-07-01

    Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which occurs regularly in the Baltic Sea during the summer season. In this study flounder (Platichthys flesus L.) was orally exposed to NODLN either as a single dose or as three repeated doses 3 days apart. Liver and bile samples of the fish were taken 4 days after the last dose. Liver glutathione-S-transferase (GST) activity was also measured and the histopathology of the liver was investigated. The liver of the exposed fish was analyzed by liquid chromatography-mass spectrometry for NODLN concentration. The content of NODLN-like compounds in the bile was analyzed by enzyme-linked immunosorbent assay. NODLN exposure caused slightly incoherent liver architecture and degenerative cell changes in both groups. The mean liver GST activity was significantly higher in the repeatedly dosed flounders than in the singly dosed flounders or in the control. In conclusion, the significantly lower NODLN concentration and the increased GST activity in the liver of the repeatedly dosed flounders compared to the singly dosed flounders suggest that NODLN is rapidly detoxificated. The absence of NODLN glutathione conjugates and the low concentrations of NODLN-like compounds in the bile indicate that detoxification products disintegrate or they are rapidly excreted. PMID:19002737

  14. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    PubMed Central

    Karaushu, E. V.; Kravzova, T. R.; Vorobey, N. A.; Kiriziy, D. A.; Olkhovich, O. P.; Taran, N. Yu.; Kots, S. Ya.; Omarova, E.

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum. PMID:26114100

  15. Plasmid Stability in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis and its Potential for GFP Imaging of Survivors on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1mini and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1mini-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecASyn distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecASyn structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  16. Fine-Tuning of Photoautotrophic Protein Production by Combining Promoters and Neutral Sites in the Cyanobacterium Synechocystis sp. Strain PCC 6803.

    PubMed

    Ng, Andrew H; Berla, Bertram M; Pakrasi, Himadri B

    2015-10-01

    Cyanobacteria are photosynthetic cell factories that use solar energy to convert CO2 into useful products. Despite this attractive feature, the development of tools for engineering cyanobacterial chassis has lagged behind that for heterotrophs such as Escherichia coli or Saccharomyces cerevisiae. Heterologous genes in cyanobacteria are often integrated at presumptively "neutral" chromosomal sites, with unknown effects. We used transcriptome sequencing (RNA-seq) data for the model cyanobacterium Synechocystis sp. strain PCC 6803 to identify neutral sites from which no transcripts are expressed. We characterized the two largest such sites on the chromosome, a site on an endogenous plasmid, and a shuttle vector by integrating an enhanced yellow fluorescent protein (EYFP) expression cassette expressed from either the Pcpc560 or the Ptrc1O promoter into each locus. Expression from the endogenous plasmid was as much as 14-fold higher than that from the chromosome, with intermediate expression from the shuttle vector. The expression characteristics of each locus correlated predictably with the promoters used. These findings provide novel, characterized tools for synthetic biology and metabolic engineering in cyanobacteria. PMID:26209663

  17. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.

    PubMed

    Potnis, Akhilesh A; Rajaram, Hema; Apte, Shree K

    2016-03-01

    The nitrogen-fixing cyanobacterium, Anabaena L-31 has two Hsp60 proteins, 59 kDa GroEL coded by the second gene of groESL operon and 61 kDa Cpn60 coded by cpn60 gene. Anabaena GroEL formed stable higher oligomer (>12-mer) in the presence of K(+) and prevented thermal aggregation of malate dehydrogenase (MDH). Using three protein substrates (MDH, All1541 and green fluorescent protein), it was found that the refolding activity of Anabaena GroEL was lower than that of Escherichia coli GroEL, but independent of both GroES and ATP. This correlated with in vivo data. GroEL exhibited ATPase activity which was enhanced in the presence of GroES and absence of a denatured protein, contrary to that observed for bacterial GroEL. However, a significant role for ATP could not be ascertained during in vitro folding assays. The monomeric Cpn60 exhibited much lower refolding activity than GroEL, unaffected by GroES and ATP. In vitro studies revealed inhibition of the refolding activity of Anabaena GroEL by Cpn60, which could be due to their different oligomeric status. The role of GroES and ATP may have been added during the course of evolution from the ancient cyanobacteria to modern day bacteria enhancing the refolding ability and ensuring wider scope of substrates for GroEL. PMID:26449235

  18. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  19. Two Members of a Network of Putative Na+/H+ Antiporters Are Involved in Salt and pH Tolerance of the Freshwater Cyanobacterium Synechococcus elongatus?

    PubMed Central

    Billini, Maria; Stamatakis, Kostas; Sophianopoulou, Vicky

    2008-01-01

    Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na+/H+ antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na+/H+ antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na+/H+ antiporter activity of the Na+-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (?nha1, ?nha2, ?nha3, ?nha4, ?nha5, and ?nha7) had a phenotype different from that of the wild type. In particular, ?nhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while ?nha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions. PMID:18641132

  20. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine.

    PubMed

    He, Yu-Ying; Hder, Donat P

    2002-03-01

    Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage. PMID:11897511

  1. Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand.

    PubMed Central

    Carmichael, W W; Eschedor, J T; Patterson, G M; Moore, R E

    1988-01-01

    A clonal isolate, termed L575, of the filamentous brackish-water cyanobacterium Nodularia spumigena Mertens emend. was found to produce a potent hepatotoxic peptide (50% lethal intraperitoneal dose for the mouse, 60 micrograms/kg) with chemical and toxicological properties similar to those of the hepatotoxic heptapeptides produced by other freshwater planktonic cyanobacteria. The isolate was made from a water sample collected in Lake Ellesmere, New Zealand, in 1980. The toxin, isolated and purified by high-performance liquid chromatography (HPLC) and analyzed by HPLC amino acid analysis, contained glutamic acid, beta-methyla-spartic acid, and arginine units in equivalent amounts. The fast-atom-bombardment mass spectrum of the toxin indicated the molecular weight to be 824. Batch cultures of strain L575 showed that the toxin content varied between 1.96 and 2.99 mg/g of cells and that a positive correlation between toxin content and chlorophyll a, but not biomass, was present. Images PMID:3142356

  2. Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC, a strain incapable of glycogen storage.

    PubMed

    Carrieri, Damian; Broadbent, Charlie; Carruth, David; Paddock, Troy; Ungerer, Justin; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-03-01

    A key objective in microbial biofuels strain development is to maximize carbon flux to target products while minimizing cell biomass accumulation, such that ideally the algae and bacteria would operate in a photo-catalytic state. A brief period of such a physiological state has recently been demonstrated in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC strain incapable of glycogen storage. When deprived of nitrogen, the ?glgC excretes the organic acids alpha-ketoglutarate and pyruvate for a number of days without increasing cell biomass. This study examines the relationship between the growth state and the photo-catalytic state, and characterizes the metabolic adaptability of the photo-catalytic state to increasing light intensity. It is found that the culture can transition naturally from the growth state into the photo-catalytic state when provided with limited nitrogen supply during the growth phase. Photosynthetic capacity and pigments are lost over time in the photo-catalytic state. Reversal to growth state is observed with re-addition of nitrogen nutrient, accompanied by restoration of photosynthetic capacity and pigment levels in the cells. While the overall productivity increased under high light conditions, the ratio of alpha-ketoglutarate/pyruvate is altered, suggesting that carbon partition between the two products is adaptable to environmental conditions. PMID:25616027

  3. Construction of a stepwise gene integration system by transient expression of actinophage R4 integrase in cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Miura, Takamasa; Nishizawa, Akito; Nishizawa, Tomoyasu; Asayama, Munehiko; Takahashi, Hideo; Shirai, Makoto

    2014-08-01

    The integrase of actinophage R4, which belongs to the large serine-recombinase family, catalyzes site-specific recombination between two distinct attachment site sequences of the phage (attP) and actinomycete Streptomyces parvulus 2297 chromosome (attB). We previously reported that R4 integrase (Sre) catalyzed site-specific recombination both in vivo and in vitro. In the present study, a Sre-based system was developed for the stepwise site-specific integration of multiple genes into the chromosome of cyanobacterium Synechocystis sp. PCC 6803 (hereafter PCC 6803). A transgene-integrated plasmid with two attP sites and a non-replicative sre-containing plasmid were co-introduced into attB-inserted PCC 6803 cells. The transiently expressed Sre catalyzed highly efficient site-specific integration between one of the two attP sites on the integration plasmid and the attB site on the chromosome of PCC 6803. A second transgene-integrated plasmid with an attB site was integrated into the residual attP site on the chromosome by repeating site-specific recombination. The transformation frequencies (%) of the first and second integrations were approximately 5.1 10(-5) and 8.2 10(-5), respectively. Furthermore, the expression of two transgenes was detected. This study is the first to apply the multiple gene site-specific integration system based on R4 integrase to cyanobacteria. PMID:24638932

  4. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  5. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes.

    PubMed

    Sugita, M; Sugishita, H; Fujishiro, T; Tsuboi, M; Sugita, C; Endo, T; Sugiura, M

    1997-08-11

    The structure of a large gene cluster containing 22 ribosomal protein (r-protein) genes of the cyanobacterium Synechococcus sp. strain PCC6301 is presented. Based on DNA and protein sequence analyses, genes encoding r-proteins L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L24, L5, S8, L6, L18, S5, L15, L36, S13, S11, L17, SecY, adenylate kinase (AK) and the alpha subunit of RNA polymerase were identified. The gene order is similar to that of the E. coli S10, spc and alpha operons. Unlike the corresponding E. coli operons, the genes for r-proteins S4, S10, S14 and L30 are not present in this cluster. The organization of Synechococcus r-protein genes also resembles that of chloroplast (cp) r-protein genes of red and brown algal species. This strongly supports the endosymbiotic theory that the cp genome evolved from an ancient photosynthetic bacterium. PMID:9300823

  6. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.

    PubMed

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7kbp and 15kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods. PMID:22638838

  7. Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India.

    PubMed

    Goswami, Smita; Diengdoh, Omega L; Syiem, Mayashree B; Pakshirajan, Kannan; Kiran, Mothe Gopi

    2015-03-01

    Nostoc muscorum was isolated from a coal mining pit in Chiehruphi, Meghalaya, India, and its potential to remove Zn(II) and Cu(II) from media and the various biochemical alterations it undergoes during metal stress were studied. Metal uptake measured as a function of the ions removed by N. muscorum from media supplemented independently with 20 μmol/L ZnSO4 and CuSO4 established the ability of this cyanobacterium to remove 66% of Zn(2+) and 71% of Cu(2+) within 24 h of contact time. Metal binding on the cell surface was found to be the primary mode of uptake, followed by internalization. Within 7 days of contact, Zn(2+) and Cu(2+) mediated dissimilar effects on the organism. For instance, although chlorophyll a synthesis was increased by 12% in Zn(2+)-treated cells, it was reduced by 26% in Cu(2+)-treated cells. Total protein content remained unaltered in Zn(2+)-supplemented medium; however, a 15% reduction was noticed upon Cu(2+) exposure. Copper enhanced both photosynthesis and respiration by 15% and 19%, respectively; in contrast, photosynthesis was unchanged and respiration dropped by 11% upon Zn(2+) treatment. Inoculum age also influenced metal removal ability. Experiments in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosynthetic inhibitor), carbonyl cyanide m-chlorophenyl hydrazone (an uncoupler), and exogenous ATP established that metal uptake was energy dependent, and photosynthesis contributed significantly towards the energy pool required to mediate metal removals. PMID:25670258

  8. D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis.

    PubMed

    Wu, Hongyan; Abasova, Leyla; Cheregi, Otilia; Dek, Zsuzsanna; Gao, Kunshan; Vass, Imre

    2011-01-01

    By using two strains of Arthrospira (Spirulina)platensis, an economically important filamentous cyanobacterium, we compared the impairment of PSII activity and loss of D1 protein content under UV-B radiation. Our study showed that UV-B radiation induced a gradual loss of the oxygen-evolving activity to about 56% after 180 min UV-B irradiation both in strains 439 and D-0083, which have been kept under indoor and an outdoor culturing conditions, respectively for a prolonged period of time. The loss of oxygen evolution was accelerated in both strains in the presence of lincomycin, an inhibitor of protein synthesis, and the amount of D1 protein showed a decrease comparable to that of oxygen evolution during the UV-B exposure. However, the UV-B induced loss of oxygen-evolving activity and D1 protein amount was largely prevented when A. platensis cells were exposed to UV-B irradiance supplemented with visible light. Comparison of the two strains also showed a smaller extent of D1 protein synthesis dependent PSII repair in the indoor strain. Our results show that turnover of the D1 protein is an important defense mechanism to counteract the UV-B induced damage of PSII in A. platensis, and also that visible light plays an important role in maintaining the function of PSII under simultaneous exposure to UV-B and visible light. PMID:21300555

  9. A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120.

    PubMed

    Boileau, Cline; Eme, Laura; Brochier-Armanet, Cline; Janicki, Annick; Zhang, Cheng-Cai; Latifi, Amel

    2011-09-01

    The overoxidation of 2-Cys peroxiredoxins (Prxs) into a sulfinic form was thought to be an irreversible protein inactivation process until sulfiredoxins (Srxs) were discovered. These are enzymes occurring among eukaryotes, which are able to reduce sulfinylated Prxs. Although Prxs are present in the three domains of life, their reduction by Srxs has been described only in eukaryotes so far. Here it was established that the cyanobacterium Anabaena PCC 7120 has a Srx homologue (SrxA), which is able to specifically reduce the sulfinic form of the 2-Cys Prx (PrxA) both in vivo and in vitro. A mutant lacking the srxA gene was found to be more sensitive than the wild type to oxidative stress. Sulfiredoxin homologues are restricted to the cyanobacterial and eukaryotic genomes sequenced so far. The present phylogenetic analysis of Srx and 2-Cys Prx sequences showed a pattern of coevolution of the enzyme and its substrate that must have involved an ancient gene transfer between ancestors of Cyanobacteria and Eukaryotes, followed by a more recent transfer from Cyanobacteria to Plantae through the chloroplastic endosymbiosis. This is the first functional characterization of a Srx enzyme in a prokaryotic organism. PMID:21651559

  10. Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune.

    PubMed

    Hirai, Manabu; Yamakawa, Ruriko; Nishio, Junko; Yamaji, Takaharu; Kashino, Yasuhiro; Koike, Hiroyuki; Satoh, Kazuhiko

    2004-07-01

    Changes in photosynthetic activities under hypertonic conditions were studied in a terrestrial, highly desiccation-tolerant cyanobacterium, Nostoc commune, and in some desiccation-sensitive cyanobacteria. The amounts of water sustained in the colony matrix outside the N. commune cells and the cellular solute concentration were estimated by measuring the water potential, and the solute concentration was supposed to correspond to around 0.22 M sorbitol. Incubation of the colonies in 0.8 M sorbitol solution inhibited the energy transfer from the phycobilisome (PBS) anchor to PSII core complexes. At higher sorbitol concentrations, light energy absorbed by PSI, PSII, and PBS was dissipated to heat. PSI and cyclic electron flow around PSI was also deactivated by hypertonic treatment. Fv/Fm and (Fm'-F)/Fm' values started to decrease at 0.6 and 0.3 M sorbitol and reached zero at 1.0 and 0.8 M, respectively. Decreases in these two fluorescence parameters corresponded to the decreases in PSII fluorescence (F695) and photosynthetic CO2 fixation, respectively. The intensity of delayed light emission started to decrease at 1.0 M sorbitol and became negligible at 4.0 M. Comparing these changes in N. commune with those in desiccation-sensitive species, we found that N. commune cells actively deactivates photosynthetic systems on sensing water loss. PMID:15295070

  11. First record of a Mermithidae (Nematoda) from the meloid beetle Meloe violaceus Marsham, 1802 (Coleoptera: Meloidae).

    PubMed

    Lückmann, Johannes; Poinar, George O

    2003-05-01

    A new record of nematode parasitism of meloid beetles is reported and all earlier records are summarised. Rates of parasitism could be influenced by the toxic compound cantharidin that these beetles possess. PMID:12743809

  12. Is Monoglucosyldiacylglycerol a Precursor to Monogalactosyldiacylglycerol in All Cyanobacteria?

    PubMed

    Sato, Naoki

    2015-10-01

    Monogalactosyldiacylglycerol (MGDG) is ubiquitous in the photosynthetic membranes of cyanobacteria and chloroplasts. It is synthesized by galactosylation of diacylglycerol (DAG) in the chloroplasts, whereas it is produced by epimerization of monoglucosyldiacylglycerol (GlcDG) in at least several cyanobacteria that have been analyzed such as Synechocystis sp. PCC 6803. A previous study, however, showed that the mgdE gene encoding the epimerase is absent in some cyanobacteria such as Gloeobacter violaceus, Thermosynechococcus elongatus and Acaryochloris marina. In addition, the N-terminal 'fatty acid hydroxylase' domain is lacking in the MgdE protein of Prochlorococcus marinus. These problems may cast doubt upon the general (or exclusive) role of MgdE in the epimerization of GlcDG to MGDG in cyanobacteria. In addition, GlcDG is usually present at a very low level, and the structural determination of endogenous GlcDG has not been accomplished with cyanobacterial samples. In this study, I determined the structure of GlcDG from Anabaena variabilis by (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy. I then showed that G. violaceus, T. elongatus, A. marina and P. marinus contain GlcDG. In all cases, GlcDG consisted of fewer unsaturated molecular species than MGDG, providing further evidence that GlcDG is a precursor to MGDG. The conversion of GlcDG to MGDG was also demonstrated by radiolabeling and chase experiments in G. violaceus and P. marinus. These results demonstrate that all the analyzed cyanobacteria contain GlcDG, which is converted to MGDG, and suggest that an alternative epimerase is required for MGDG synthesis in these cyanobacteria. PMID:26276824

  13. Role of RNA Secondary Structure and Processing in Stability of the nifH1 Transcript in the Cyanobacterium Anabaena variabilis

    PubMed Central

    Pratte, Brenda S.; Ungerer, Justin

    2015-01-01

    ABSTRACT In the cyanobacterium Anabaena variabilis ATCC 29413, aerobic nitrogen fixation occurs in micro-oxic cells called heterocysts. Synthesis of nitrogenase in heterocysts requires expression of the large nif1 gene cluster, which is primarily under the control of the promoter for the first gene, nifB1. Strong expression of nifH1 requires the nifB1 promoter but is also controlled by RNA processing, which leads to increased nifH1 transcript stability. The processing of the primary nifH1 transcript occurs at the base of a predicted stem-loop structure that is conserved in many heterocystous cyanobacteria. Mutations that changed the predicted secondary structure or changed the sequence of the stem-loop had detrimental effects on the amount of nifH1 transcript, with mutations that altered or destabilized the structure having the strongest effect. Just upstream from the transcriptional processing site for nifH1 was the promoter for a small antisense RNA, sava4870.1. This RNA was more strongly expressed in cells grown in the presence of fixed nitrogen and was downregulated in cells 24 h after nitrogen step down. A mutant strain lacking the promoter for sava4870.1 showed delayed nitrogen fixation; however, that phenotype might have resulted from an effect of the mutation on the processing of the nifH1 transcript. The nifH1 transcript was the most abundant and most stable nif1 transcript, while nifD1 and nifK1, just downstream of nifH1, were present in much smaller amounts and were less stable. The nifD1 and nifK1 transcripts were also processed at sites just upstream of nifD1 and nifK1. IMPORTANCE In the filamentous cyanobacterium Anabaena variabilis, the nif1 cluster, encoding the primary Mo nitrogenase, functions under aerobic growth conditions in specialized cells called heterocysts that develop in response to starvation for fixed nitrogen. The large cluster comprising more than a dozen nif1 genes is transcribed primarily from the promoter for the first gene, nifB1; however, this does not explain the large amount of transcript for the structural genes nifH1, nifD1, and nifK1, which are also under the control of the distant nifB1 promoter. Here, we demonstrate the importance of a predicted stem-loop structure upstream of nifH1 that controls the abundance of nifH1 transcript through transcript processing and stabilization and show that nifD1 and nifK1 transcripts are also controlled by transcript processing. PMID:25666132

  14. Chorismate Pyruvate-Lyase and 4-Hydroxy-3-solanesylbenzoate Decarboxylase Are Required for Plastoquinone Biosynthesis in the Cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Pfaff, Christian; Glindemann, Niels; Gruber, Jens; Frentzen, Margrit; Sadre, Radin

    2014-01-01

    Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated. PMID:24337576

  15. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power.

    PubMed

    Nozue, Shuho; Mukuno, Akira; Tsuda, Yumi; Shiina, Takashi; Terazima, Masahide; Kumazaki, Shigeichi

    2016-01-01

    Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (?0.1ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells. PMID:26474523

  16. The NtcA-regulated amtB gene is necessary for full methylammonium uptake activity in the cyanobacterium Synechococcus elongatus.

    PubMed

    Paz-Yepes, Javier; Herrero, Antonia; Flores, Enrique

    2007-11-01

    The Amt proteins constitute a ubiquitous family of transmembrane ammonia channels that permit the net uptake of ammonium by cells. In many organisms, there is more than one amt gene, and these genes are subjected to nitrogen control. The mature Amt protein is a homo- or heterooligomer of three Amt subunits. We previously characterized an amt1 gene in the unicellular cyanobacterium Synechococcus elongatus strain PCC 7942. In this work, we describe the presence in this organism of a second amt gene, amtB, which encodes a protein more similar to the bacterial AmtB proteins than to any other characterized cyanobacterial Amt protein. The expression of amtB took place in response to nitrogen step-down, required the NtcA transcription factor, and occurred parallel to the expression of amt1. However, the transcript levels of amtB measured after 2 h of nitrogen deprivation were about 100-fold lower than those of amt1. An S. elongatus amtB insertional mutant exhibited an activity for uptake of [14C]methylammonium that was about 55% of that observed in the wild type, but inactivation of amtB had no noticeable effect on the uptake of ammonium when it was supplied at a concentration of 100 microM or more. Because an S. elongatus amt1 mutant is essentially devoid of [14C]methylammonium uptake activity, the mature Amt transporter is functional in the absence of AmtB subunits but not in the absence of Amt1 subunits. However, the S. elongatus amtB mutant could not concentrate [14C]methylammonium within the cells to the same extent as the wild type. Therefore, AmtB is necessary for full methylammonium uptake activity in S. elongatus. PMID:17704220

  17. Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.

    PubMed

    Gryliuk, G; Rtsep, M; Hildebrandt, S; Irrgang, K-D; Eckert, H-J; Pieper, J

    2014-09-01

    In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm?, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm? appear to reflect CNH? and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. PMID:24560813

  18. Essential Role of Acyl-ACP Synthetase in Acclimation of the Cyanobacterium Synechococcus elongatus Strain PCC 7942 to High-Light Conditions.

    PubMed

    Takatani, Nobuyuki; Use, Kazuhide; Kato, Akihiro; Ikeda, Kazutaka; Kojima, Kouji; Aichi, Makiko; Maeda, Shin-Ichi; Omata, Tatsuo

    2015-08-01

    Most organisms capable of oxygenic photosynthesis have an aas gene encoding an acyl-acyl carrier protein synthetase (Aas), which activates free fatty acids (FFAs) via esterification to acyl carrier protein. Cyanobacterial aas mutants are often used for studies aimed at photosynthetic production of biofuels because the mutation leads to intracellular accumulation of FFAs and their secretion into the external medium, but the physiological significance of the production of FFAs and their recycling involving Aas has remained unclear. Using an aas-deficient mutant of Synechococcus elongatus strain PCC 7942, we show here that remodeling of membrane lipids is activated by high-intensity light and that the recycling of FFAs is essential for acclimation to high-light conditions. Unlike wild-type cells, the mutant cells could not increase their growth rate as the light intensity was increased from 50 to 400 mol photons m(-2) s(-1), and the high-light-grown mutant cells accumulated FFAs and the lysolipids derived from all the four major classes of membrane lipids, revealing high-light-induced lipid deacylation. The high-light-grown mutant cells showed much lower PSII activity and Chl contents as compared with the wild-type cells or low-light-grown mutant cells. The loss of Aas accelerated photodamage of PSII but did not affect the repair process of PSII, indicating that PSII is destabilized in the mutant. Thus, Aas is essential for acclimation of the cyanobacterium to high-light conditions. The relevance of the present finding s to biofuel production using cyanobacteria is discussed. PMID:26063393

  19. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels.

    PubMed

    Sandrini, Giovanni; Jakupovic, Dennis; Matthijs, Hans C P; Huisman, Jef

    2015-11-01

    Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2. PMID:26319871

  20. Analysis of spontaneous suppressor mutants from the photomixotrophically grown pmgA-disrupted mutant in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Nishijima, Yoshiki; Kanesaki, Yu; Yoshikawa, Hirofumi; Ogawa, Takako; Sonoike, Kintake; Nishiyama, Yoshitaka; Hihara, Yukako

    2015-12-01

    The pmgA-disrupted (?pmgA) mutant in the cyanobacterium Synechocystis sp. PCC 6803 suffers severe growth inhibition under photomixotrophic conditions. In order to elucidate the key factors enabling the cells to grow under photomixotrophic conditions, we isolated spontaneous suppressor mutants from the ?pmgA mutant derived from a single colony. When the ?pmgA mutant was spread on a BG11 agar plate supplemented with glucose, colonies of suppressor mutants appeared after the bleaching of the background cells. We identified the mutation site of these suppressor mutants and found that 11 mutants out of 13 had a mutation in genes related to the type 1 NAD(P)H dehydrogenase (NDH-1) complex. Among them, eight mutants had mutations within the ndhF3 (sll1732) gene: R32stop, W62stop, V147I, G266V, G354W, G586C, and deletion of 7bp within the coding region. One mutant had one base insertion in the putative -10 box of the ndhC (slr1279) gene, leading to the decrease in the transcripts of the ndhCKJ operon. Two mutants had one base insertion and deletion in the coding region of cupA (sll1734), which is co-transcribed with ndhF3 and ndhD3 and comprises together a form of NDH-1 complex (NDH-1MS complex) involved in inducible high-affinity CO2 uptake. The results indicate that the loss of the activity of this complex effectively rescues the ?pmgA mutant under photomixotrophic condition with 1% CO2. However, little difference among WT and mutants was observed in the activities ascribed to the NDH-1MS complex, i.e., CO2 uptake and cyclic electron transport. This may suggest that the NDH-1MS complex has the third, currently unknown function under photomixotrophic conditions. PMID:25869635

  1. Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Koksharova, O; Schubert, M; Shestakov, S; Cerff, R

    1998-01-01

    Cyanobacterial genomes harbour two separate highly divergent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, gap1 and gap2, which are closely related at the sequence level to the nuclear genes encoding cytosolic and chloroplast GAPDH of higher plants, respectively. Genes gap1 and gap2 of the unicellular cyanobacterium Synechocystis sp. PCC 6803 were cloned and sequenced and subsequently inactivated by insertional mutagenesis to understand their metabolic functions. We obtained homozygous gap1- mutants which have lost the capacity to grow on glucose under dim light while growth on organic acids as well as photosynthetic growth under CO2 and high light is not impaired. Homozygous gap2- mutants show the reciprocal phenotype. Under dim light they only grow on glucose but not on organic acids nor do they survive under photosynthetic conditions. Measurements of the anabolic activities (reduction of 1,3-bisphosphoglycerate) in extracts from wild type and mutant cells show that Gap2 is a major enzyme with dual cosubstrate specificity for NAD and NADP, while Gap1 displays a minor NAD-specific GAPDH activity. However, if measured in the catabolic direction (oxidation of glyceraldehyde-3-phosphate) Gap2 activity is very low and increases three- to fivefold after gel filtration of extracts over Sephadex G25. Our results suggest that enzymes Gap1 and Gap2, although coexpressed in cyanobacterial wild-type cells, play distinct key roles in catabolic and anabolic carbon flow, respectively. While Gap2 operates in the photosynthetic Calvin cycle and in non-photosynthetic gluconeogenesis, Gap1 seems to be essential only for glycolytic glucose breakdown, conditions under which the catabolic activity of Gap2 seems to be repressed by a specific low-molecular-weight inhibitor. PMID:9484473

  2. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon

    PubMed Central

    Busch, Andrea W. U.; Montgomery, Beronda L.

    2015-01-01

    The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo. PMID:26696996

  3. Association of High Light-Inducible HliA/HliB Stress Proteins with Photosystem 1 Trimers and Monomers of the Cyanobacterium Synechocystis PCC 6803.

    PubMed

    Akulinkina, D V; Bolychevtseva, Yu V; Elanskaya, I V; Karapetyan, N V; Yurina, N P

    2015-10-01

    Hlip (high light-inducible proteins) are important for protection of the photosynthetic apparatus of cyanobacteria from light stress. However, the interaction of these proteins with chlorophyll-protein complexes of thylakoids remains unclear. The association of HliA/HliB stress proteins with photosystem 1 (PS1) complexes of the cyanobacterium Synechocystis PCC 6803 was studied to understand their function. Western blotting demonstrated that stress-induced HliA/HliB proteins are associated with PS1 trimers in wild-type cells grown under moderate light condition (40 mol photons/m(2) per sec). The content of these proteins increased 1.7-fold after light stress (150mol photons/m(2) per sec) for 1 h. In the absence of PS1 trimers (?psaL mutant), the HliA/HliB proteins are associated with PS1 monomers and the PS2 complex. HliA/HliB proteins are associated with PS1 monomers but not with PS1 trimers in Synechocystis PS2-deficient mutant grown at 5 mol photons/m(2) per sec; the content of Hli proteins associated with PS1 monomers increased 1.2-fold after light stress. The HliA/HliB proteins were not detected in wild-type cells of cyanobacteria grown in glucose-supplemented medium at 5 mol photons/m(2) per sec, but light stress induces the synthesis of stress proteins associated with PS1 trimers. Thus, for the first time, the association of HliA/HliB proteins not only with PS1 trimers, but also with PS1 monomers is shown, which suggests a universal role of these proteins in the protection of the photosynthetic apparatus from excess light. PMID:26567568

  4. Effects of heavy metals (Pb2+ and Cd2+) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803

    NASA Astrophysics Data System (ADS)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng

    2009-05-01

    The unicellular cyanobacterium Synechocystis sp. PCC 6803, a model organism known for its unique combination of highly desirable molecular genetic, physiological and morphological characteristics, was employed in the present study. The species was cultured in BG11 liquid medium contained various initial concentrations of Pb2+ and Cd2+ (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experiment was conducted for six days and the metal induced alterations in the ultrastructure, growth and pigment contents were assessed. Alterations in the ultrastructure of the Synechocystis sp. PCC 6803 cells became evident with the increased (>4 mg/L Pb2+) metal concentration. The photosynthetic apparatus (thylakoid membranes) were found to be the worst affected. Deteriorated or completely destroyed thylakoid membranes have made large empty spaces in the cell interior. In addition, at the highest concentration (8 mg/L Pb2+), the polyphosphate granules became more prominent both in size and number. Despite the initial slight stimulations (0.2, 3.8 and 6.5% respectively at 0.5, 1 and 2 mg/L Pb2+), both metals inhibited the growth in a dose-dependent manner as incubation progressed. Pigment contents (chlorophyll ?, ? carotene and phycocyanin) were also decreased with increasing metal concentration. Cells exposed to 6 mg/L Pb2+, resulted in 36.56, 37.39 and 29.34% reductions of chlorophyll ?, ? carotene and phycocyanin respectively over the control. Corresponding reductions for the same Cd2+concentrations were 57.83, 48.94 and 56.90%. Lethal concentration (96 h LC50) values (3.47 mg/L Cd2+ and 12.11 mg/L Pb2+) indicated that Synechocystis sp. PCC 6803 is more vulnerable to Cd2+ than Pb2+.