These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421.  

PubMed

We compared the optical properties of the trimeric photosystem (PS) I complexes of the primordial cyanobacterium Gloeobacter violaceus PCC 7421 with those of Synechocystis sp. PCC 6803. Gloeobacter violaceus PS I showed (1) a shorter difference maximum of P700 by approximately 2 nm, (2) a smaller antenna size by approximately 10 chlorophyll (Chl) a molecules and (3) an absence of Red Chls. The energy transfer kinetics in the antennae at physiological temperatures were very similar between the two species due to the thermal equilibrium within the antenna; however, they differed at 77 K where energy transfer to Red Chls was clearly observed in Synechocystis sp. PCC 6803. Taken together with the lower P700 redox potential in G. violaceus by approximately 60 mV, we discuss differences in the optical properties of the PS I complexes with respect to the amino acid sequences of core proteins and further to evolution of cyanobacteria. PMID:19769578

Mimuro, Mamoru; Yokono, Makio; Akimoto, Seiji

2010-01-01

2

New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421.  

PubMed

Two new linker proteins were identified by peptide mass fingerprinting in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. The proteins were products of glr1262 and glr2806. Three tandem phycocyanin linker motifs similar to CpcC were present in each. The glr1262 product most probably functions as a rod linker connecting phycoerythrin and phycocyanin, while the glr2806 product may function as a rod-core linker. We have designated these two proteins CpeG and CpcJ, respectively. The morphology of phycobilisomes in G. violaceus has been reported to be a bundle-like shape with six rods, consistent with the proposed functions of these linkers. PMID:16714023

Koyama, Kohei; Tsuchiya, Tohru; Akimoto, Seiji; Yokono, Makio; Miyashita, Hideaki; Mimuro, Mamoru

2006-06-12

3

The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains.  

PubMed

The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids. PMID:21642550

Rexroth, Sascha; Mullineaux, Conrad W; Ellinger, Dorothea; Sendtko, Esther; Rögner, Matthias; Koenig, Friederike

2011-06-01

4

The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421.  

PubMed

The complete genome sequence of Gloeobacter violaceus [Nakamura et al. (2003a, b) DNA Res 10:37-45, 181-201] allows us to understand better the structure of the phycobilisomes (PBS) of this cyanobacterium. Genomic analysis revealed peculiarities in these PBS: the presence of genes for two multidomain linker proteins, a core membrane linker with four repetitive sequences (REP domains), the absence of rod core linkers, two sets of phycocyanin (PC) alpha and beta subunits, two copies of a rod PC associated linker (CpcC), and two rod cap associated linkers (CpcD). Also, there is one ferredoxin-NADP(+) oxidoreductase with only two domains. The PBS proteins were investigated by gel electrophoresis, amino acid sequencing and peptide mass fingerprinting (PMF). The two unique multidomain linkers contain three REP domains with high similarity and these were found to be in tandem and were separated by dissimilar Arms. One of these, with a mass of 81 kDa, is found in heavy PBS fragments rich in PC. We propose that it links six PC hexamers in two parallel rows in the rods. The other unique linker has a mass of 91 kDa and is easily released from the heavy fragments of PBS. We propose that this links the rods to the core. The presence of these multidomain linkers could explain the bundle shaped rods of the PBS. The presence of 4 REP domains in the core membrane linker protein (129 kDa) was established by PMF. This core linker may hold together 16 AP trimers of the pentacylindrical core, or alternatively, a tetracylindrical core of the PBS of G. violaceus. PMID:17310305

Krogmann, David W; Pérez-Gómez, Bertha; Gutiérrez-Cirlos, Emma Berta; Chagolla-López, Alicia; González de la Vara, Luis; Gómez-Lojero, Carlos

2007-01-01

5

Directed Evolution of Gloeobacter violaceus Rhodopsin Spectral Properties.  

PubMed

Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein. PMID:24979679

Engqvist, Martin K M; McIsaac, R Scott; Dollinger, Peter; Flytzanis, Nicholas C; Abrams, Michael; Schor, Stanford; Arnold, Frances H

2015-01-16

6

The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains.  

PubMed

Gloeobacter violaceus PCC 7421 is a unique cyanobacterium that has no thylakoids and whose genome has been sequenced [Y. Nakamura, T. Kaneko, S. Sato, M. Mimuro, H. Miyashita, T. Tsuchiya, S. Sasamoto, A. Watanabe, K. Kawashima, Y. Kishida, C. Kiyokawa, M. Kohara, M. Matsumoto, A. Matsuno, N. Nakazaki, S. Shimpo, C. Takeuchi, M. Yamada, S. Tabata, Complete Genome Structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 10 (2003) 137-145]. Phycobilisomes of G. violaceus were isolated and analyzed by SDS-PAGE followed by N-terminal sequencing. Three rod-linker subunits (CpeC, CpeD and CpeE) were identified as predicted from the genome sequence. The cpcC1 and cpcC2 genes at order locus named (OLN) glr0950 and gll 3219 encoding phycocyanin-associated linker proteins from G. violaceus are 56 and 55 amino acids longer at the N-terminus than the open reading frame proposed in the genome. The two amino acid extensions showed a 66% identity to one another. Also, the N-terminal extensions of these sequences were similar to domains in both the rod-capping-linker protein CpcD2 and to the C-terminus domain of the phycoerythrin-associated linker protein CpeC. These domains are not only unusual in their N-terminal location, but are unusual in that they are more closely related in sequence similarity to the C-terminus domain of the phycoerythrin-associated linker, CpeC of G. violaceus, than to the C-terminus domain of phycocyanin-associated linker CpcC in other cyanobacteria. These linker proteins with unique special domains are indicators of the unusual structure of the phycobilisomes of G. violaceus. PMID:16617515

Gutiérrez-Cirlos, Emma Berta; Pérez-Gómez, Bertha; Krogmann, David W; Gómez-Lojero, Carlos

2006-02-01

7

Reconstitution of Gloeobacter violaceus Rhodopsin with a Light-Harvesting Carotenoid Antenna†  

PubMed Central

We show that salinixanthin, the light-harvesting carotenoid antenna of xanthorhodopsin, can be reconstituted into the retinal protein from Gloeobacter violaceus expressed in E. coli. Reconstitution of gloeobacter rhodopsin with the carotenoid is accompanied by characteristic absorption changes and the appearance of CD bands similar to those observed for xanthorhodopsin that indicate immobilization and twist of the carotenoid in the binding site. As in xanthorhodopsin, the carotenoid functions as a light-harvesting antenna. The excitation spectrum for retinal fluorescence emission shows that ca. 36% of the energy absorbed by the carotenoid is transferred to the retinal. From excitation anisotropy, we calculate the angle between the two chromophores as ca. 50°, similar to that in xanthorhodopsin. The results indicate that gloeobacter rhodopsin binds salinixanthin in a similar way as xanthorhodopsin, and suggest that it might bind a carotenoid also in vivo. In the crystallographic structure of xanthorhodopsin, the conjugated chain of the carotenoid lies on the surface of helices E and F, and the 4-keto-ring is immersed in the protein at van der Waals distance from the ionone ring of the retinal. The 4-keto-ring is in the space occupied by a tryptophan in bacteriorhodopsin, which is replaced by the smaller glycine in xanthorhodopsin and gloeobacter rhodopsin. Specific binding of the carotenoid and its light-harvesting function are eliminated by a single mutation of the gloeobacter protein that replaces this glycine with a tryptophan. This indicates that the 4-keto-ring is critically involved in carotenoid binding, and suggests that a number of other recently identified retinal proteins, from a diverse group of organisms, could also contain carotenoid antenna since they carry the homologous glycine near the retinal. PMID:19842712

Imasheva, Eleonora S.; Balashov, Sergei P.; Choi, Ah Reum; Jung, Kwang-Hwan; Lanyi, Janos K.

2009-01-01

8

Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.  

PubMed

We show that salinixanthin, the light-harvesting carotenoid antenna of xanthorhodopsin, can be reconstituted into the retinal protein from Gloeobacter violaceus expressed in Escherichia coli. Reconstitution of gloeobacter rhodopsin with the carotenoid is accompanied by characteristic absorption changes and the appearance of CD bands similar to those observed for xanthorhodopsin that indicate immobilization and twist of the carotenoid in the binding site. As in xanthorhodopsin, the carotenoid functions as a light-harvesting antenna. The excitation spectrum for retinal fluorescence emission shows that ca. 36% of the energy absorbed by the carotenoid is transferred to the retinal. From excitation anisotropy, we calculate the angle between the two chromophores as being ca. 50 degrees , similar to that in xanthorhodopsin. The results indicate that gloeobacter rhodopsin binds salinixanthin in a manner similar to that of xanthorhodopsin and suggest that it might bind a carotenoid also in vivo. In the crystallographic structure of xanthorhodopsin, the conjugated chain of the carotenoid lies on the surface of helices E and F, and the 4-keto ring is immersed in the protein at van der Waals distance from the ionone ring of the retinal. The 4-keto ring is in the space occupied by a tryptophan in bacteriorhodopsin, which is replaced by the smaller glycine in xanthorhodopsin and gloeobacter rhodopsin. Specific binding of the carotenoid and its light-harvesting function are eliminated by a single mutation of the gloeobacter protein that replaces this glycine with a tryptophan. This indicates that the 4-keto ring is critically involved in carotenoid binding and suggests that a number of other recently identified retinal proteins, from a diverse group of organisms, could also contain carotenoid antenna since they carry the homologous glycine near the retinal. PMID:19842712

Imasheva, Eleonora S; Balashov, Sergei P; Choi, Ah Reum; Jung, Kwang-Hwan; Lanyi, Janos K

2009-11-24

9

The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism  

PubMed Central

Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an “evolutionary curiosity” with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide. PMID:23823729

Mareš, Jan; Hrouzek, Pavel; Ka?a, Radek; Ventura, Stefano; Strunecký, Otakar; Komárek, Ji?í

2013-01-01

10

Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC).  

PubMed

Ligand binding at the extracellular domain of pentameric ligand-gated ion channels initiates a relay of conformational changes that culminates at the gate within the transmembrane domain. The interface between the two domains is a key structural entity that governs gating. Molecular events in signal transduction at the interface are poorly defined because of its intrinsically dynamic nature combined with functional modulation by membrane lipid and water vestibules. Here we used electron paramagnetic resonance spectroscopy to delineate protein motions underlying Gloeobacter violaceus ligand-gated ion channel gating in a membrane environment and report the interface conformation in the closed and the desensitized states. Extensive intrasubunit interactions were observed in the closed state that are weakened upon desensitization and replaced by newer intersubunit contacts. Gating involves major rearrangements of the interfacial loops, accompanied by reorganization of the protein-lipid-water interface. These structural changes may serve as targets for modulation of gating by lipids, alcohols, and amphipathic drug molecules. PMID:24338475

Velisetty, Phanindra; Chalamalasetti, Sreevatsa V; Chakrapani, Sudha

2014-01-31

11

Cultivation and Complete Genome Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in K?lauea Caldera, Hawai'i  

PubMed Central

The ancestor of Gloeobacter violaceus PCC 7421T is believed to have diverged from that of all known cyanobacteria before the evolution of thylakoid membranes and plant plastids. The long and largely independent evolutionary history of G. violaceus presents an organism retaining ancestral features of early oxygenic photoautotrophs, and in whom cyanobacteria evolution can be investigated. No other Gloeobacter species has been described since the genus was established in 1974 (Rippka et al., Arch Microbiol 100:435). Gloeobacter affiliated ribosomal gene sequences have been reported in environmental DNA libraries, but only the type strain's genome has been sequenced. However, we report here the cultivation of a new Gloeobacter species, G. kilaueensis JS1T, from an epilithic biofilm in a lava cave in K?lauea Caldera, Hawai'i. The strain's genome was sequenced from an enriched culture resembling a low-complexity metagenomic sample, using 9 kb paired-end 454 pyrosequences and 400 bp paired-end Illumina reads. The JS1T and G. violaceus PCC 7421T genomes have little gene synteny despite sharing 2842 orthologous genes; comparing the genomes shows they do not belong to the same species. Our results support establishing a new species to accommodate JS1T, for which we propose the name Gloeobacter kilaueensis sp. nov. Strain JS1T has been deposited in the American Type Culture Collection (BAA-2537), the Scottish Marine Institute's Culture Collection of Algae and Protozoa (CCAP 1431/1), and the Belgian Coordinated Collections of Microorganisms (ULC0316). The G. kilaueensis holotype has been deposited in the Algal Collection of the US National Herbarium (US# 217948). The JS1T genome sequence has been deposited in GenBank under accession number CP003587. The G+C content of the genome is 60.54 mol%. The complete genome sequence of G. kilaueensis JS1T may further understanding of cyanobacteria evolution, and the shift from anoxygenic to oxygenic photosynthesis. PMID:24194836

Saw, Jimmy H. W.; Schatz, Michael; Brown, Mark V.; Kunkel, Dennis D.; Foster, Jamie S.; Shick, Harry; Christensen, Stephanie; Hou, Shaobin; Wan, Xuehua; Donachie, Stuart P.

2013-01-01

12

Gloeobacter Rhodopsin, Limitation of Proton Pumping at High Electrochemical Load  

PubMed Central

We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities. PMID:24209850

Vogt, Arend; Wietek, Jonas; Hegemann, Peter

2013-01-01

13

Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group.  

PubMed

In previous work, we reconstituted salinixanthin, the C(40)-carotenoid acyl glycoside that serves as a light-harvesting antenna to the light-driven proton pump xanthorhodopsin, into a different protein, gloeobacter rhodopsin expressed in Escherichia coli, and demonstrated that it transfers energy to the retinal chromophore [Imasheva, E. S., et al. (2009) Biochemistry 48, 10948]. The key to binding of salinixanthin was the accommodation of its ring near the retinal ?-ionone ring. Here we examine two questions. Do any of the native Gloeobacter carotenoids bind to gloeobacter rhodopsin, and does the 4-keto group of the ring play a role in binding? There is no salinixanthin in Gloeobacter violaceous, but a simpler carotenoid, echinenone, also with a 4-keto group but lacking the acyl glycoside, is present in addition to ?-carotene and oscillol. We show that ?-carotene does not bind to gloeobacter rhodopsin, but its 4-keto derivative, echinenone, does and functions as a light-harvesting antenna. This indicates that the 4-keto group is critical for carotenoid binding. Further evidence of this is the fact that salinixanthol, an analogue of salinixanthin in which the 4-keto group is reduced to hydroxyl, does not bind and is not engaged in energy transfer. According to the crystal structure of xanthorhodopsin, the ring of salinixanthin in the binding site is turned out of the plane of the polyene conjugated chain. A similar conformation is expected for echinenone in the gloeobacter rhodopsin. We suggest that the 4-keto group in salinixanthin and echinenone allows for the twisted conformation of the ring around the C6-C7 bond and probably is engaged in an interaction that locks the carotenoid in the binding site. PMID:20942439

Balashov, Sergei P; Imasheva, Eleonora S; Choi, Ah Reum; Jung, Kwang-Hwan; Liaaen-Jensen, Synnøve; Lanyi, Janos K

2010-11-16

14

Reconstitution of Gloeobacter Rhodopsin with Echinenone: Role of the 4-keto Group†  

PubMed Central

In previous work we reconstituted salinixanthin, the C40-carotenoid acyl glycoside that serves as a light-harvesting antenna to light-driven proton pump xanthorhodopsin, into a different protein, gloeobacter rhodopsin expressed in E. coli, and demonstrated that it transfers energy to the retinal chromophore (Imasheva et al. 2009. Biochemistry 48, 10948). The key to binding of salinixanthin was the accommodation of its ring near the retinal ?-ionone ring. Here we examine two questions: do any of the native Gloeobacter carotenoids bind to gloeobacter rhodopsin, and does the 4-keto group of the ring play a role in binding. There is no salinixanthin in Gloeobacter violaceous, but a simpler carotenoid, echinenone, also with a 4-keto group that lacks the acyl glycoside, is present in addition to ?-carotene and oscillol. We show that ?-carotene does not bind to gloeobacter rhodopsin, but its 4-keto derivative, echinenone, does and functions as a light-harvesting antenna. This indicates that the 4-keto group is critical for the carotenoid binding. Further evidence for this is that salinixanthol, an analogue of salinixanthin in which the 4-keto group is reduced to hydroxyl, does not bind and is not engaged in energy transfer. According to the crystal structure of xanthorhodopsin, the ring of salinixanthin in the binding site is turned out of the plane of the polyene conjugated chain. Similar conformation is expected for echinenone in the gloeobacter rhodopsin. We suggest that the 4-keto group in salinixanthin and echinenone allows for the twisted conformation of the ring around C6-C7 bond and probably is engaged in interaction that locks the carotenoid in the binding site. PMID:20942439

Balashov, Sergei P.; Imasheva, Eleonora S.; Choi, Ah Reum; Jung, Kwang-Hwan; Liaaen-Jensen, Synnøve; Lanyi, Janos K.

2010-01-01

15

Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.  

PubMed

A new triterpene glycoside (1) along with the known intercedenside B (2) was isolated from the sea cucumber Pseudocolochirus violaceus. Glycoside 1 was elucidated as 3-O-{6-O-sodiumsulfate-3-O-methyl-beta-D-glucopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta-D-xylopyranosyl(1-->2)]-beta-D-quinovopyranosyl-(1-->2)-4-O-sodiumsulfate-beta-D-xylopyranosyl}-16beta-acetoxy-holosta-7, 24-diene-3beta-ol on the basis of extensive spectral studies and chemical evidence. Both the glycosides exhibited significant cytotoxicity against cancer cell lines MKN-45 and HCT-116. PMID:17493770

Zhang, Shu-Yu; Tang, Hai-Feng; Yi, Yang-Hua

2007-06-01

16

Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus  

Microsoft Academic Search

A new triterpene glycoside (1) along with the known intercedenside B (2) was isolated from the sea cucumber Pseudocolochirus violaceus. Glycoside 1 was elucidated as 3-O-{6-O-sodiumsulfate-3-O-methyl-?-d-glucopyranosyl-(1?3)-?-d-xylopyranosyl-(1?4)-[?-d-xylopyranosyl(1?2)]-?-d-quinovopyranosyl-(1?2)-4-O-sodiumsulfate-?-d-xylopyranosyl}-16?-acetoxy-holosta-7, 24-diene-3?-ol on the basis of extensive spectral studies and chemical evidence. Both the glycosides exhibited significant cytotoxicity against cancer cell lines MKN-45 and HCT-116.

Shu-Yu Zhang; Hai-Feng Tang; Yang-Hua Yi

2007-01-01

17

Cytotoxic sulfated triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.  

PubMed

Bioassay-guided fractionation of the active BuOH extract of the sea cucumber Pseudocolochirus violaceus resulted in the isolation of three new sulfated triterpene glycosides, i.e., violaceusides I, II, and III (1-3, resp.), as active compounds causing morphological abnormality of Pyricularia oryzae mycelia. Their structures were elucidated by spectroscopic methods including 2D-NMR and MS experiments, as well as chemical evidence. Compounds 1-3 exhibit the same structural features, i.e., the presence of a 16-oxo group in the holostane-type triterpene aglycone with the C(7)=C(8) bond, but differ in the side chains and the tetrasaccharide moieties. Compound 1 possesses one sulfate group, while 2 and 3 are disulfated glycosides. All the glycosides showed significant in vitro cytotoxicities against human gastric cancer MKN-45 and human colon cancer HCT-116 cells. PMID:17193313

Zhang, Shu-Yu; Yi, Yang-Hua; Tang, Hai-Feng

2006-07-01

18

Draft Genome Sequence of Gephyronic Acid Producer Cystobacter violaceus Strain Cb vi76  

PubMed Central

A draft genome sequence of Cystobacter violaceus strain Cb vi76, which produces the eukaryotic protein synthesis inhibitor gephyronic acid, has been obtained. The genome contains numerous predicted secondary metabolite clusters, including the gephyronic acid biosynthetic pathway. This genome will contribute to the investigation of secondary metabolism in other Cystobacter strains. PMID:25502681

Stevens, D. Cole; Young, Jeanette; Carmichael, Rory; Tan, John

2014-01-01

19

Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient.  

PubMed

Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century. PMID:25394627

Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Timmermann, Tania; Lardies, Marco A

2014-12-15

20

Male satin bowerbirds ( Ptilonorhynchus violaceus ) compensate for sexual signal loss by enhancing multiple display features  

Microsoft Academic Search

Numerous studies have focussed on the relationship between female choice and the multiple exaggerated sexual traits of males.\\u000a However, little is known about the ability of males to actively enhance specific components of their display in response to\\u000a the loss of one component. We investigated the capacity of male satin bowerbirds (Ptilonorhynchus violaceus) to respond to the loss of one

Benjamin D. Bravery; Anne W. Goldizen

2007-01-01

21

Efficient Femtosecond Energy Transfer from Carotenoid to Retinal in Gloeobacter Rhodopsin-Salinixanthin Complex.  

PubMed

The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR. Gloeobacter rhodopsin (GR), exhibiting particularly close homology to XR, has been shown to attach SX, and fluorescence measurements suggest SX can function as a light harvesting (LH) antenna in GR as well. In this study, we test this suggestion in real time using ultrafast transient absorption. Results show that energy transfer indeed occurs from S2 of SX to retinal in the GR-SX composite with an efficiency of ?40%, even higher than that in XR. This validates the earlier fluorescence study, and supports the notion that many microbial retinal proteins use carotenoid antennae to harvest light. PMID:25144664

Iyer, E Siva Subramaniam; Gdor, Itay; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

2014-09-01

22

Two new bioactive triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.  

PubMed

By activity-guided fractionation, two new triterpene glycosides, violaceusides A (1) and B (2), were isolated from the sea cucumber Pseudocolochirus violaceus as active compounds causing morphological abnormality of Pyricularia oryzae mycelia. By extensive 2D NMR techniques and chemical evidence, the structures of the two new glycosides were established as 16beta-acetoxy-3-O-[3-O-methyl-beta-D-glucopyranosyl-(1 --> 3)-beta-D-xylopyranosyl-(1 --> 4)-beta-D-quinovopyranosyl-(1 --> 2)-4-O-sodiumsulphate-beta-D-xylopyranosyl]-holosta-7,24-diene-3beta-ol (1) and 16beta-acetoxy-3-O-[3-O-methyl-beta-D-glucopyranosyl-(1 --> 3)-beta-D-xylopyranosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 2)-4-O-sodiumsulphate-beta-D-xylopyranosyl]-holosta-7,24-diene-3beta-ol (2), respectively. The two glycosides also exhibited significant cytotoxicity against HL-60 and BEL-7402 cancer cell lines. PMID:16753775

Zhang, Shu-Yu; Yi, Yang-Hua; Tang, Hai-Feng; Li, Ling; Sun, Peng; Wu, Jun

2006-01-01

23

Biogeochemical tracers of the marine cyanobacterium Trichodesmium  

Microsoft Academic Search

We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C14 and C16 acids, with lesser amounts of several saturated

Edward J. Carpenter; H. Rodger Harvey; Brian Fry; Douglas G. Capone

1997-01-01

24

Dynamic mate-searching tactic allows female satin bowerbirds Ptilonorhynchus violaceus to reduce searching.  

PubMed Central

Females can maximize the benefits of mate choice by finding high-quality mates while using search tactics that limit the costs of searching for mates. Mate-searching models indicate that specific search tactics would best optimize this trade-off under different conditions. These models do not, however, consider that females may use information from previous years to improve mate searching and reduce search costs in subsequent years. We followed female satin bowerbirds Ptilonorhynchus violaceus during mate searching and reconstructed their search patterns. We found that females who chose very attractive males typically mated with the same male in the following year, resulting in these females sampling fewer males than those who switched mates. In contrast, females who mated with less attractive males typically rejected their previous mates and searched longer for more attractive mates in the following mating season. A potential cost to mate searching is suggested by the observed increase in the likelihood of force-copulation attempts from marauding males with increased searching. Our results suggest that by using past experiences to adjust their search tactics, females may obtain high-quality mates while limiting search costs. These results emphasize the need to consider historical effects in studies of sexual selection, especially for long-lived species with stable display sites. PMID:10714879

Uy, J A; Patricelli, G L; Borgia, G

2000-01-01

25

Variation of cuticular characters in the Nematomorpha: studies on Gordionus violaceus (Baird, 1853) and G. wolterstorffii (Camerano, 1888) from Britain and Ireland  

Microsoft Academic Search

Gordionus violaceus (Baird, 1853) and G. wolterstorffii (Camerano, 1888) are regarded as two species which are clearly separated by distinct cuticular patterns. A study of 59 specimens of these two species from Britain and Ireland revealed numerous transitional stages between the cuticular patterns that are regarded as being typical for each species. Variation was also found at the posterior end,

Andreas Schmidt-Rhaesa

2001-01-01

26

Diarrhea caused by a Cyanobacterium -like organism  

Microsoft Academic Search

Seven cases of watery diarrhea of explosive onset, three of them ending within two weeks, are discussed. The cause of diarrhea is believed to be the presence of an organism calledCyanobacterium-like organism. These are non-refractile, spherical bodies, 8–9 micrometers in diameter, which take on a faint to deep pink color after modified kinyoun acid-fast staining. Risk factors such as travel

Adeleh Ebrahimzadeh I; Linda Rogers

1995-01-01

27

Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus  

PubMed Central

Background The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. Results The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. Conclusions DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus. PMID:24456102

2014-01-01

28

Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus  

E-print Network

The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 ...

Berube, Paul M.

29

Analysis of photoregulation in a cyanobacterium through reverse genetics  

E-print Network

Synechococcus sp. strain PCC 7942, a unicellular cyanobacterium which utilizes a plant-like photosynthetic apparatus, was the model organism in a search for regulators of photosynthesis genes. Cyanobacteria share with plants and algea the need...

Cogdell, David Earl

2012-06-07

30

Biogeochemical tracers of the marine cyanobacterium Trichodesmium  

NASA Astrophysics Data System (ADS)

We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the ? 15N and ? 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest ? 15N and highest ? 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a ? 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low ? 15N and high ? 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

1997-01-01

31

Flavodoxin from the nitrogen-fixing cyanobacterium Anabaena PCC 7119  

Microsoft Academic Search

Flavodoxin has been isolated and purified from cultures of the cyanobacterium Anabaena cultivated in a low-iron medium. This flavoprotein has a molecular weight of 20,000 and contains 1 molecule of flavin mononucleotide per mol of protein. Various biochemical characteristics are reported including amino-acid composition, isoelectric point and the fluorescence properties of the apoprotein. The extinction coefficients and isosbestic points were

Maria F. Fillat; Gerhard Sandmann; Carlos Gomez-Moreno

1988-01-01

32

Expression of mouse metallothionein in the cyanobacterium Synechococcus PCC7942  

Microsoft Academic Search

A cDNA encoding mouse metallothionein was cloned into the shuttle vector pUC303, creating a translational fusion with the bacterial chloramphenicol acetyltransferase gene. The resulting fusion protein has been expressed in the cyanobacteriumSynechococcus PCC7942. Cyanobacterial transformants expressed mouse metallothionein-specific mRNA species as detected by RNA slot blots. In addition, the transformants expressed a unique cadmium ionbinding protein corresponding to the predicted

J L Erbe; K B Taylor; L M Hall

1996-01-01

33

Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium  

PubMed Central

Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

Richardson, Laurie L.; Stani?, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R.

2014-01-01

34

Introduction of a nitrogen-fixing cyanobacterium into tobacco shoot regenerates  

Microsoft Academic Search

Tobacco (Nicotiana tabacum L.) shoots associated with the nitrogen-fixing cyanobacterium Anabaena variabilis Kütz. (ATCC 29413) were regenerated in mixed cultures of tobacco callus and the cyanobacterium. The cyanobacteria were localized inside the tissues as well as on the surface of regenerated shoots, formed heterocysts, and were capable of acetylene reduction.

M. V. Gusev; T. G. Korzhenevskaya; L. V. Pyvovarova; O. I. Baulina; R. G. Butenko

1986-01-01

35

Photosynthetic production of glycerol by a recombinant cyanobacterium.  

PubMed

Cyanobacteria are prokaryotic organisms capable of oxygenic photosynthesis. Glycerol is an important commodity chemical. Introduction of phosphoglycerol phosphatase 2 from Saccharomyces cerevisiae into the model cyanobacterium Synechocystis sp. PCC6803 resulted in a mutant strain that produced a considerable amount of glycerol from light, water and CO2. Mild salt stress (200mM NaCl) on the cells led to an increase of the extracellular glycerol concentration of more than 20%. Under these conditions the mutant accumulated glycerol to an extracellular concentration of 14.3mM after 17 days of culturing. PMID:25541461

Savakis, Philipp; Tan, Xiaoming; Du, Wei; Branco Dos Santos, Filipe; Lu, Xuefeng; Hellingwerf, Klaas J

2015-02-10

36

First report of cyanobacterium Cylindrospermopsis raciborskii from Algerian freshwaters.  

PubMed

This study investigated the first report of the cyanobacterium Cylindrospermopsis raciborskii in Algerian freshwaters. The morphological characteristics of the two morphotypes observed in Lake Oubeira (Algeria) conformed to those of natural populations of C. raciborskii species described in the literature. The two morphotypes produced only straight trichomes. During the study (February 2000-September 2001), this species occurred as a codominant with Microcystis spp., and a peak was observed during the autumn (November 2000) with a remarkable density estimated to be 43 x 10(5) trichomes/L. However, difficulty in isolating and culturing these two morphotypes limited the evaluation of their toxic potential. PMID:15352271

Bouaïcha, Noureddine; Nasri, Aïcha-Beya

2004-10-01

37

Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)  

NASA Astrophysics Data System (ADS)

Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

Ambe, Shizuko

1990-07-01

38

Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures  

SciTech Connect

A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

2014-09-30

39

Whole-Genome Shotgun Sequence of Arthrospira platensis Strain Paraca, a Cultivated and Edible Cyanobacterium  

PubMed Central

Here we report the whole-genome shotgun sequence of a Peruvian strain of Arthrospira platensis (Paraca), a cultivated and edible haloalkaliphilic cyanobacterium of great scientific, technical, and economic potential. PMID:25103760

Calmin, Gautier; Crovadore, Julien; Falquet, Jacques; Hurni, Jean-Pierre; Osteras, Magne; Haldemann, Francois; Farinelli, Laurent

2014-01-01

40

Toxicological impact of anilofos on some physiological processes of a rice field cyanobacterium Anabaena torulosa  

Microsoft Academic Search

This study deals with the toxicological impact of the herbicide anilofos on photosynthesis, respiration, nitrogen assimilation, and antioxidant system in a diazotrophic rice field cyanobacterium Anabaena torulosa. Treatment of anilofos (1.25, 2.5, and 5?mg?L) affected growth, photosynthetic pigments, photosynthesis, and respiration of the cyanobacterium. Although all the photosynthetic pigments were affected, a maximum effect of the herbicide was observed on

Davinder Pal Singh; Jasvirinder Singh Khattar; Kanwaldeep Kaur; Baljinder Singh Sandhu; Yadvinder Singh

2012-01-01

41

Three-dimensional ultrastructure of a unicellular cyanobacterium  

PubMed Central

The first complete three-dimensional ultrastructural reconstruction of a cyanobacterium was accomplished with high-voltage electron microscopy and computer-aided assembly of serial sections. The precise arrangement of subcellular features within the cell body was very consistent from one cell to another. Specialized inclusion bodies always occupied specific intracellular locations. The photosynthetic thylakoid membranes entirely surrounded the central portion of the cytoplasm, thereby compartmentalizing it from the rest of the cell. The thylakoid membranes formed an interconnecting network of concentric shells, merging only at the inner surface of the cytoplasmic membrane. The thylakoids were in contact with the cytoplasmic membrane at several locations, apparently to maintain the overall configuration of the thylakoid system. These results clarified several unresolved issues regarding structure-function relationships in cyanobacteria. PMID:6411738

1983-01-01

42

Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii.  

PubMed

Cylindrospermopsis raciborskii is a toxic cyanobacterium with an invasive nature. The species is found in all the main continents but its origin and dispersal routes on a worldwide perspective remain yet mostly unknown. In this study, 27 isolates of C. raciborskii gathered worldwide have been used for an in-deep phylogenetic analyses with a concatenated system of three genetic markers (16 rRNA, 16S-23S ITS larger subunit, and RNA polymerase rpoC1) comprehending 3,188 bp. Our results provide support for an origin of C. raciborskii in the American continent. Dispersal routes included afterward a spread into the African continent and then Asia and Australia, being Europe the last continent to be colonized by this species. Our phylogenetic inferences suggest that C. raciborskii seem to have a well-defined dispersal behavior with a well-established population structure around the world. PMID:25381137

Moreira, Cristiana; Fathalli, Afef; Vasconcelos, Vitor; Antunes, Agostinho

2015-01-01

43

Genetic manipulation of a cyanobacterium for heavy metal detoxivication  

SciTech Connect

Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

McCormick, P.; Cannon, G.; Heinhorst, S.

1995-12-31

44

Interaction effects of mercury-pesticide combinations towards a cyanobacterium  

SciTech Connect

The present study supplies interaction data for combinations of mercuric ion (supplied as mercuric chloride), atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and permethrin (3-phenoxybenzyl-(1RS)-cis,trans-3-(2,2-dichloro-vinyl)-2,2-dimethyl cyclopropanecarboxylate) when tested towards growth of the cyanobacterium (blue-green alga) Anabaena inaequalis. Mercury is one of the most important heavy metal pollutants and has been widely used in toxicology research. Atrazine is the most heavily used pesticide in the United States and its residues are widely distributed in terrestrial and aquatic ecosystems. Permethrin is an important insecticide with expanding markets and is presently being evaluated for its environmental impact. A. inaequalis has been used extensively in this laboratory in previous interaction studies.

Stratton, G.W.

1985-05-01

45

Two New Lyngbyatoxin Derivatives from the Cyanobacterium, Moorea producens  

PubMed Central

The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as “swimmer’s itch”). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase C? (PKC?)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway. PMID:25470181

Jiang, Weina; Tan, Satoshi; Hanaki, Yusuke; Irie, Kazuhiro; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

2014-01-01

46

Two new lyngbyatoxin derivatives from the Cyanobacterium, Moorea producens.  

PubMed

The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as "swimmer's itch"). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase C? (PKC?)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway. PMID:25470181

Jiang, Weina; Tan, Satoshi; Hanaki, Yusuke; Irie, Kazuhiro; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

2014-12-01

47

Crossbyanols A-D, Toxic Brominated Polyphenyl Ethers from the Hawai'ian Bloom-Forming Cyanobacterium Leptolyngbya crossbyana  

E-print Network

cyanobacterium Leptolyngbya crossbyana forms extensive blooms on Hawai'ian coral reefs and results in significant damage to the subtending corals. Additionally, corals near mats of this cyanobacterium, but not directly a cyanobacterial mat responsible for black band disease on Florida Coral reefs.4 Therefore, we undertook

Smith, Jennifer E.

48

The Photocycle and Proton Translocation Pathway in a Cyanobacterial Ion-Pumping Rhodopsin  

PubMed Central

The genome of thylakoidless cyanobacterium Gloeobacter violaceus encodes a fast-cycling rhodopsin capable of light-driven proton transport. We characterize the dark state, the photocycle, and the proton translocation pathway of GR spectroscopically. The dark state of GR contains predominantly all-trans-retinal and, similar to proteorhodopsin, does not show the light/dark adaptation. We found an unusually strong coupling between the conformation of the retinal and the site of Glu132, the homolog of Asp96 of BR. Although the photocycle of GR is similar to that of proteorhodopsin in general, it differs in accumulating two intermediates typical for BR, the L-like and the N-like states. The latter state has a deprotonated cytoplasmic proton donor and is spectrally distinct from the strongly red-shifted N intermediate known for proteorhodopsin. The proton uptake precedes the release and occurs during the transition to the O intermediate. The proton translocation pathway of GR is similar to those of other proton-pumping rhodopsins, involving homologs of BR Schiff base proton acceptor and donor Asp85 and Asp96 (Asp121 and Glu132). We assigned a pair of FTIR bands (positive at 1749 cm?1 and negative at 1734 cm?1) to the protonation and deprotonation, respectively, of these carboxylic acids. PMID:19217863

Miranda, Mylene R.M.; Choi, Ah Rheum; Shi, Lichi; Bezerra, Arandi G.; Jung, Kwang-Hwan; Brown, Leonid S.

2009-01-01

49

Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans.  

PubMed

The phytoene-related desaturases are the key enzymes in the carotenoid biosynthetic pathway. The gene encoding phytoene desaturase in the deinoxanthin synthesis pathway of Deinococcus radiodurans was identified and characterized. Two putative phytoene desaturase homologues (DR0861 and DR0810) were identified by analysis of conserved amino acid regions, and the former displayed the highest identity (68 %) with phytoene desaturase of the cyanobacterium Gloeobacter violaceus. DR0861 gene knockout and dinucleotide-binding motif deletion resulted in the arrest of lycopene synthesis and the accumulation of phytoene. The colourless DR0861 knockout mutant became more sensitive to acute ionizing radiation and oxygen stress. Complementation of the mutant with a heterologous or homologous gene restored its pigment and resistance. The desaturase activity of DR0861 (crtI) was further confirmed by the assay of enzyme activity in vitro and heterologous expression in Escherichia coli containing crtE and crtB genes (responsible for phytoene synthesis) from Erwinia uredovora. In addition, the amount of lycopene synthesis in E. coli resulting from the expression of crtI from D. radiodurans was determined, and this had significant dose-dependent effects on the survival rate of E. coli exposed to hydrogen peroxide and ionizing radiation. PMID:17464079

Xu, Zhenjian; Tian, Bing; Sun, Zongtao; Lin, Jun; Hua, Yuejin

2007-05-01

50

Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan  

PubMed Central

Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20?m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

2014-01-01

51

Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan.  

PubMed

Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20 m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium-shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

2014-01-01

52

Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium.  

PubMed

The establishment of non-diazotrophic cultures of the filamentous marine cyanobacterium Trichodesmium erythraeum IMS101 enabled the first detailed investigation of the process leading to the development of its unique nitrogen-fixing cell type, the diazocyte. Trichome heterogeneity was apparent already within 3-8 h, while the differentiation of mature diazocytes, containing the nitrogenase enzyme, required 27 h after the removal of combined nitrogen. The distribution of 'pro-diazocytes' within the trichomes correlates with the localization of mature diazocytes, which suggests that pattern regulation is an early event during diazocyte development. The development was initially identified as changes in the subcellular ultrastructure, most notably the degradation of glycogen granules and gas vacuoles. These changes were preceded by the induced expression of the global nitrogen regulator ntcA at an early stage of combined nitrogen deprivation, followed by elevated expression of genes related to nitrogen metabolism and their corresponding proteins. The strongest induction (10-fold) was related to the transcription of the respiratory gene coxB2, apparent already at an early stage, which suggests an important role for respiration and the subsequent energy generation in the subcellular changes found, and in the creation of the reducing environment required for nitrogen fixation in diazocytes. PMID:22053003

Sandh, Gustaf; Xu, Linghua; Bergman, Birgitta

2012-02-01

53

Production of the Neurotoxin BMAA by a Marine Cyanobacterium  

PubMed Central

Diverse species of cyanobacteria have recently been discovered to produce the neurotoxic non-protein amino acid ?-methylamino-L-alanine (BMAA). In Guam, BMAA has been studied as a possible environmental toxin in the diets of indigenous Chamorro people known to have high levels of Amyotrophic Lateral Sclerosis/ Parkinsonism Dementia Complex (ALS/PDC). BMAA has been found to accumulate in brain tissues of patients with progressive neurodegenerative illness in North America. In Guam, BMAA was found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which live in specialized cycad roots. We here report detection of BMAA in laboratory cultures of a free-living marine species of Nostoc. We successfully detected BMAA in this marine species of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino Acid Analyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five different analytical methods unequivocally demonstrates the presence of BMAA in this marine cyanobacterium. Since protein-associated BMAA can accumulate in increasing levels within food chains, it is possible that biomagnification of BMAA could occur in marine ecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Production of BMAA by marine cyanobacteria may represent another route of human exposure to BMAA. Since BMAA at low concentrations causes the death of motor neurons, low levels of BMAA exposure may trigger motor neuron disease in genetically vulnerable individuals. PMID:18463731

Banack, Sandra Anne; Johnson, Holly E.; Cheng, Ran; Cox, Paul Alan

2007-01-01

54

Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica.  

PubMed

This study presents experimental measurements of the absorption and scattering cross sections and the spectral complex index of refraction of filamentous cyanobacteria. Filamentous heterocystous cyanobacterium Anabaena cylindrica was chosen as a model organism. Its filaments consisted of long chains of polydisperse cells. Their average mass scattering and absorption cross sections were measured from 400 to 750 nm at four different times during their batch growth in medium BG-11(-N) under 3000 lux of white fluorescent light. The effective real (or refraction index) and imaginary (or absorption index) parts of the complex index of refraction were retrieved using an inverse method based on a genetic algorithm. The microorganisms were modeled as infinitely long and randomly oriented volume-equivalent cylinders. The absorption index featured peaks corresponding to chlorophyll a (Chl a) at 436 and 676 nm and phycocyanin (PCCN) at 630 nm and a shoulder around 480 nm, corresponding to photoprotective carotenoids. The absorption peaks of Chl a and PCCN concentrations increased and the shoulder due to carotenoids decreased in response to photolimitation caused by biomass growth. Subsequent nitrogen limitation caused the PCCN absorption peak to decrease significantly due to degradation of PCCN as an endogenous source of nitrogen for nitrogenase maintenance and synthesis, as confirmed by increasing heterocyst differentiation. The results can be used for predicting and optimizing light transfer in photobioreactors for wastewater treatment and ammonia or biofuel production. PMID:24695147

Heng, Ri-Liang; Lee, Euntaek; Pilon, Laurent

2014-04-01

55

Geographical Segregation of the Neurotoxin-Producing Cyanobacterium Anabaena circinalis  

PubMed Central

Blooms of the cyanobacterium Anabaena circinalis are a major worldwide problem due to their production of a range of toxins, in particular the neurotoxins anatoxin-a and paralytic shellfish poisons (PSPs). Although there is a worldwide distribution of A. circinalis, there is a geographical segregation of neurotoxin production. American and European isolates of A. circinalis produce only anatoxin-a, while Australian isolates exclusively produce PSPs. The reason for this geographical segregation of neurotoxin production by A. circinalis is unknown. The phylogenetic structure of A. circinalis was determined by analyzing 16S rRNA gene sequences. A. circinalis was found to form a monophyletic group of international distribution. However, the PSP- and non-PSP-producing A. circinalis formed two distinct 16S rRNA gene clusters. A molecular probe was designed, allowing the identification of A. circinalis from cultured and uncultured environmental samples. In addition, probes targeting the predominantly PSP-producing or non-PSP-producing clusters were designed for the characterization of A. circinalis isolates as potential PSP producers. PMID:11010900

Beltran, E. Carolina; Neilan, Brett A.

2000-01-01

56

A novel nitrite reductase gene from the cyanobacterium Plectonema boryanum.  

PubMed Central

The gene (nirA) for nitrite reductase was cloned from the nonheterocystous, filamentous cyanobacterium Plectonema boryanum. The predicted protein consists of 654 amino acids and has a calculated molecular weight of 72,135. The deduced amino acid sequence from positions 1 to 511 is strongly similar to the entire sequence of the ferredoxin-dependent nitrite reductases from other phototrophs, while the remainder of the protein is unique to the Plectonema nitrite reductase. The C-terminal portion of the protein (amino acids 584 to 654) is 30 to 35% identical to [2Fe-2S] ferredoxins from higher plants and cyanobacteria, with all of the four Cys residues involved in binding of the [2Fe-2S] cluster in the ferredoxins being conserved. Immunoblotting analysis of the extracts of P. boryanum cells showed that the NirA polypeptide has an apparent molecular mass of 75 kDa. An insertional mutant of nirA lacked the 75-kDa polypeptide, had no nitrite reductase activity, and failed to grow on nitrate and nitrite, indicating that the novel nirA is the sole nitrite reductase gene in P. boryanum and that the NirA polypeptide with the ferredoxin-like domain is the apoprotein of the functional nitrite reductase. As in Synechococcus sp. strain PCC7942, nirA is the first gene of a large transcription unit (> 7 kb in size) and is repressed by ammonium and derepressed simply by deprivation of ammonium from the medium. The development of nitrite reductase activity was, however, found to require the presence of nitrate in the medium. PMID:7592378

Suzuki, I; Kikuchi, H; Nakanishi, S; Fujita, Y; Sugiyama, T; Omata, T

1995-01-01

57

Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis  

PubMed Central

The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study. PMID:24040267

Fisher, Michael L.; Allen, Rebecca; Luo, Yingqin; Curtiss, Roy

2013-01-01

58

Gene Transfer to the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis  

PubMed Central

The coccoid cyanobacterium Chroococcidiopsis dominates microbial communities in the most extreme arid hot and cold deserts. These communities withstand constraints that result from multiple cycles of drying and wetting and/or prolonged desiccation, through mechanisms which remain poorly understood. Here we describe the first system for genetic manipulation of Chroococcidiopsis. Plasmids pDUCA7 and pRL489, based on the pDU1 replicon of Nostoc sp. strain PCC 7524, were transferred to different isolates of Chroococcidiopsis via conjugation and electroporation. This report provides the first evidence that pDU1 replicons can be maintained in cyanobacteria other than Nostoc and Anabaena. Following conjugation, both plasmids replicated in Chroococcidiopsis sp. strains 029, 057, and 123 but not in strains 171 and 584. Both plasmids were electroporated into strains 029 and 123 but not into strains 057, 171, and 584. Expression of PpsbA-luxAB on pRL489 was visualized through in vivo luminescence. Efficiencies of conjugative transfer for pDUCA7 and pRL489 into Chroococcidiopsis sp. strain 029 were approximately 10?2 and 10?4 transconjugants per recipient cell, respectively. Conjugative transfer occurred with a lower efficiency into strains 057 and 123. Electrotransformation efficiencies of about 10?4 electrotransformants per recipient cell were achieved with strains 029 and 123, using either pDUCA7 or pRL489. Extracellular deoxyribonucleases were associated with each of the five strains. Phylogenetic analysis, based upon the V6 to V8 variable regions of 16S rRNA, suggests that desert strains 057, 123, 171, and 029 are distinct from the type species strain Chroococcidiopsis thermalis PCC 7203. The high efficiency of conjugative transfer of Chroococcidiopsis sp. strain 029, from the Negev Desert, Israel, makes this a suitable experimental strain for genetic studies on desiccation tolerance. PMID:11244070

Billi, Daniela; Friedmann, E. Imre; Helm, Richard F.; Potts, Malcolm

2001-01-01

59

CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing  

E-print Network

CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing, University of Freiburg, Freiburg, Germany Abstract The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats ­ CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria

Will, Sebastian

60

The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway  

Microsoft Academic Search

We present experimental laboratory evidence and field observations of an autocatalyzed, programmed cell death (PCD) pathway in the nitrogen-fixing cyanobacteriumTrichodesmium spp., which forms massive blooms in the subtropical and tropical oceans. The PCD pathway was induced in response to phosphorus and iron starvation as well as high irradiance and oxidative stress. Transmission electron microscopy revealed morpho- logical degradation of internal

Ilana Berman-Frank; Kay D. Bidle; Liti Haramaty; Paul G. Falkowski

2004-01-01

61

Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142  

Microsoft Academic Search

Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ?30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic

Jana Stöckel; Jon M. Jacobs; Thanura R. Elvitigala; Michelle L. Liberton; Eric A. Welsh; Ashoka D. Polpitiya; Marina A. Gritsenko; Carrie D. Nicora; David W. Koppenaal; Richard D. Smith; Himadri B. Pakrasi; Timothy Ravasi

2011-01-01

62

New Pigments from the Terrestrial Cyanobacterium Scytonema sp. Collected on the Mitaraka Inselberg, French Guyana  

E-print Network

1 New Pigments from the Terrestrial Cyanobacterium Scytonema sp. Collected on the Mitaraka of the ultraviolet-screening, photostable sheath pigment scytonemin. The organic extract of Scytonema sp., collected on the Mitaraka inselberg, French Guyana, yielded three new pigments, tetramethoxyscytonemin (1

Paris-Sud XI, Université de

63

Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium  

E-print Network

Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Department of Geological Sciences, Rutgers University, Piscataway, NJ 08854, USA. Summary Iron deficiency the major iron-binding pro- teins, including psbA and psbE of photosystem II, psaA and psaC of photosystem I

64

Harmful Algae 4 (2005) 651672 The proliferation of the toxic cyanobacterium Planktothrix  

E-print Network

Harmful Algae 4 (2005) 651­672 The proliferation of the toxic cyanobacterium Planktothrix rubescens water residence time), local conditions (the nutrient load and charge) and global changes (global warming) all had to be taken into account to explain this bloom. We suggest that the success of P

Jacquet, Stéphan

65

A new UVA\\/B protecting pigment in the terrestrial cyanobacterium Nostoc commune  

Microsoft Academic Search

A new ultraviolet (UV)-A\\/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by

S. Scherer; T. W. Chen; P. Boeger

1988-01-01

66

Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on  

E-print Network

Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends First published online 3 July 2003 Edited by Stuart Ferguson Abstract The molecular basis of potassium potassium transporters can be identi¢ed in the genome of Synechocystis sp. strain PCC 6803. Mutants

Roegner, Matthias

67

Diversity of the marine cyanobacterium Trichodesmium : characterization of the Woods Hole culture collection and quantification of field populations  

E-print Network

Trichodesmium is a colonial, N2-fixing cyanobacterium found in tropical oceans. Species of Trichodesmium are genetically similar but several species exist together in the same waters. In order to coexist, Trichodesmium ...

Hynes, Annette Michelle

2009-01-01

68

Dietary preferences of the opisthobranch mollusc Stylocheilus longicauda for secondary metabolites produced by the tropical cyanobacterium Lyngbya majuscula  

Microsoft Academic Search

Pure compounds isolated from the cyanobacterium Lyngbya majuscula Gomont were evaluated in an artificial diet for their influence on the feeding preferences of the sea hare Stylocheilus longicauda (Quoy and Gaimard, 1824), which lives in and feeds on this filamentous cyanobacterium (blue-green alga). Microcolin B, ypaoamide,\\u000a malyngolide and other natural products acted as feeding deterrents at natural concentrations. At lower

D. G. Nagle; F. T. Camacho; V. J. Paul

1998-01-01

69

TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803  

SciTech Connect

The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorption in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in cells with very low contrast produced principally by electron-dense manganese precipitates. Thin sections were imaged and analyzed using JEOL 2010 HRTEM coupled with EDS (Oxford) and EELS (Gatan) systems. Manganese uptake was measured using a colorimetric method. Cells incubated with Mn solutions were able to take up about 150uM of Mn(II) or Mn(IV) in 48 hours. The predominant accumulation of Mn was associated with the outer membrane for both Mn substrates. Massive deposits seemed to be related in a large extent to the external polymeric substances (EPS) as shown in Fig. 1A-C. Elemental analyses of these precipitates revealed a signal consistent with manganese phosphate. The potential of EPS such as polysaccharides for biosorption or reduction of metals has been described [4], however, the fact that Mn bound to the EPS withstood multiple washes during TEM sample processing is remarkable. From our work with Gram-negative soil bacteria, we hypothesized that the periplasm, an area between the outer and plasma membrane, might be the storage space for internal Mn in pool B. This phenomenon was not observed at any time point for either culture exposed to the Mn. Instead, thin layers of Mn deposits were often found lining the outer and plasma membrane (F). In the MnCl2 solution only, we also observed fine deposits of Mn precipitates along the thylakoid membranes deep inside the cells (Fig. E). Localization of Mn precipitation sites in Synechocystis has important implications for better understanding of the Mn transport and storage processes within cyanobacterial cells, as well as of metal precipitation, solubilization and cycling in the environment.

Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

2006-09-01

70

Bouillonamide: A Mixed Polyketide–Peptide Cytotoxin from the Marine Cyanobacterium Moorea bouillonii  

PubMed Central

The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of ?-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha) residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha). Absolute stereochemistry of the ?-amino acid units in bouillonamide was determined mainly by Marfey’s analysis. Compound 1 exhibited mild toxicity with IC50’s of 6.0 µM against the neuron 2a mouse neuroblastoma cells. PMID:23966034

Tan, Lik Tong; Okino, Tatsufumi; Gerwick, William H.

2013-01-01

71

Pitipeptolides C-F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam.  

PubMed

Pitipeptolides A (1) and B (2) are cyclic depsipeptides isolated from the marine cyanobacterium Lyngbya majuscula from Piti Bomb Holes, Guam. Additional analogues have now been isolated by revisiting larger collections of the same cyanobacterium. The four identified analogues, pitipeptolides C-F (3-6), are the tetrahydro analogue (3), an analogue with a lower degree of methylation (4) as well as two homologues (5 and 6) of pitipeptolide A. Their structures were elucidated using 2D NMR experiments, chiral HPLC analysis and comparison with pitipeptolide A. The identified analogues showed weaker cytotoxic activities compared to the two major parent compounds, pitipeptolides A (1) and B (2), against HT-29 colon adenocarcinoma and MCF7 breast cancer cells. On the other hand, pitipeptolide F (6) was the most potent pitipeptolide in a disc diffusion assay against Mycobacterium tuberculosis. The latter finding suggests that the structure of pitipeptolides could be optimized for selective antibacterial activity. PMID:21843895

Montaser, Rana; Paul, Valerie J; Luesch, Hendrik

2011-11-01

72

Genetic analysis of natural populations of the marine diazotrophic cyanobacterium Trichodesmium  

Microsoft Academic Search

The genetic diversity of Trichodesmium, a marine nitrogen-fixing non-heterocystous cyanobacterium of great ecological importance, was examined using the partial gene sequences of the small subunit ribosomal RNA (16S rDNA) gene and the regulatory gene hetR. Different species and morphotypes (fusiform and spherical colonies) of Trichodesmium were collected in the northern Caribbean Sea, the central Atlantic Ocean and southern Pacific Ocean.

Sven Janson; Birgitta Bergman; Edward J. Carpenter; Stephen J. Giovannoni; Kevin Vergin

1999-01-01

73

A Novel Nitrate\\/Nitrite Permease in the Marine Cyanobacterium Synechococcus sp. Strain PCC 7002  

Microsoft Academic Search

The nrtP and narB genes, encoding nitrate\\/nitrite permease and nitrate reductase, respectively, were isolated from the marine cyanobacterium Synechococcus sp. strain PCC 7002 and characterized. NrtP is a member of the major facilitator superfamily and is unrelated to the ATP-binding cassette-type nitrate transporters that previously have been described for freshwater strains of cyanobacteria. However, NrtP is similar to the NRT2-

TOSHIO SAKAMOTO; KAORI INOUE-SAKAMOTO; DONALD A. BRYANT

1999-01-01

74

A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune  

SciTech Connect

A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.

Scherer, S.; Chen, T.W.; Boeger, P. (Universitaet Konstanz (West Germany))

1988-12-01

75

Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.  

PubMed

Pentachlorophenol (PCP) effects on a strain of the cyanobacterium Microcystis aeruginosa were investigated at laboratory scale. This is the first systematic ecotoxicity study of the effects of PCP on an aquatic cyanobacterium. The microalga Chlorella vulgaris was studied in the same conditions as the cyanobacterium, in order to compare the PCP toxicity and its removal by the species. The cells were exposed to environmental levels of PCP during 10 days, in Fraquil culture medium, at nominal concentrations from 0.01 to 1000 ?g L(-1), to the cyanobacterium, and 0.01 to 5000 ?g L(-1), to the microalga. Growth was assessed by area under growth curve (AUC, optical density vs time) and chlorophyll a content (chla). The toxicity profiles of the two species were very different. The calculated effective concentrations EC20 and EC50 were much lower to M. aeruginosa, and its growth inhibition expressed by chla was concentration-dependent while by AUC was not concentration-dependent. The cells might continue to divide even with lower levels of chla. The number of C. vulgaris cells decreased with the PCP concentration without major impact on the chla. The effect of PCP on M. aeruginosa is hormetic: every concentration studied was toxic except 1 ?g L(-1), which promoted its growth. The legal limit of PCP set by the European Union for surface waters (1 ?g L(-1)) should be reconsidered since a toxic cyanobacteria bloom might occur. The study of the removal of PCP from the culture medium by the two species is an additional novelty of this work. M. aeruginosa could remove part of the PCP from the medium, at concentrations where toxic effects were observed, while C. vulgaris stabilized it. PMID:24462928

de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Ramos, V; Vasconcelos, V M; Vasconcelos, M Teresa S D

2014-04-01

76

Chemical Deterrence of a Marine Cyanobacterium against Sympatric and Non-sympatric Consumers  

Microsoft Academic Search

This study investigates the influence of mesograzer prior exposure to toxic metabolites on palatability of the marine cyanobacterium,\\u000a Lyngbya majuscula. We examined the palatability of L. majuscula crude extract obtained from a bloom in Moreton Bay, South East Queensland, Australia, containing lyngbyatoxin-a (LTA) and\\u000a debromoaplysiatoxin (DAT), to two groups: (1) mesograzers of L. majuscula from Guam where LTA and DAT

Angela Capper; Edwin Cruz-Rivera; Valerie J. Paul; Ian R. Tibbetts

2006-01-01

77

Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp  

Microsoft Academic Search

The aerobic nitrogen-fixing cyanobacterium, Cyanothece sp. BH68K produces non-mucoid variants defective in exopolysaccharide (EPS) production at a high frequency. The EPS-producing wild-type colonies (EPS+) have a characteristic smooth and shiny appearance which allows them to be easily distinguished from the EPS- variants. When grown on agar plates lacking a source of combined nitrogen, the EPS- variants exhibited a yellow phenotype

K. J. Reddy; B. W. Soper; J. Tang; R. L. Bradley

1996-01-01

78

Conditions for Mutagenesis of the Nitrogen-fixing Cyanobacterium Anabaena variabilis  

Microsoft Academic Search

Chemically induced mutation in the cyanobacterium Anabaena variabilis was studied using resistance to the pyrimidine analogue 5'-fluorocytosine as a genetic marker which can be selected positively. Cytosine is metabolized through uracil and the UMP pyrophosphorylase 'salvage' pathway in this photoautotroph, as it is in enteric bacteria. Treatment with various concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) gave the highest frequencies of 5FC-resistant mutants

JOHN S. CHAPMAN; JOHN C. MEEKS

1987-01-01

79

A New UV-A/B Protecting Pigment in the Terrestrial Cyanobacterium Nostoc commune1  

PubMed Central

A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported. PMID:16666420

Scherer, S.; Chen, T.W.; Böger, P.

1988-01-01

80

Structural and immunoelectrophoretic comparison of soluble and particulate ribulose bisphosphate carboxylases from the cyanobacterium Chlorogloeopsis fritschii  

Microsoft Academic Search

The soluble and particulate (carboxysomal) forms of ribulose 1,5-bisphosphate (RuBP) carboxylase from the cyanobacterium Chlorogloeopsis fritschii have been purified separately. A molecular weight of 520,000 was found in each case. Large (L, 53,000) and small (S, 13,000) subunits were obtained after dissociation, indicating a L8S8 quaternary structure for the enzyme from both sources. The L and S subunits are identical

T. Lanaras; G. A. Codd

1981-01-01

81

Phosphate uptake by phosphorus-starved cells of the cyanobacterium Phormidium laminosum  

Microsoft Academic Search

Phosphorus(P)-starved cells of the cyanobacterium Phormidium laminosum have been investigated in relation to their phosphate uptake characteristics. P-deficient cells showed much higher phosphate uptake rates from ultrapure water supplemented with this anion than P-sufficient ones. After 9 days of starvation in P-free medium, the total cellular P content of P-deficient cells was approximately five times lower than that of cells

B. Prieto; M. A. Pardo; C. Garbisu; M. J. Llama; J. L. Serra

1997-01-01

82

Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002  

Microsoft Academic Search

The coastal marine cyanobacterium Synechococcus sp. PCC 7002 produces three amphiphilic siderophores, sy- nechobactins A-C, under iron-limiting growth conditions. The synechobactins are comprised of a citric acid back- bone linked to two 1, 3-diaminopropane units. The terminal amine of one diaminopropane is acetylated and hy- droxylated forming one hydroxamate group. The terminal amine of the other diaminopropane is appended to

Yusai Ito; Alison Butler

2005-01-01

83

Physiological and Biochemical Alterations in a Diazotrophic Cyanobacterium Anabaena cylindrica Under NaCl Stress  

Microsoft Academic Search

Growth, morphological variation, and liquid chromatography–photodiode array detection–mass spectrometric analysis of pigments\\u000a have been studied in a diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress. The chlorophyll and cellular protein contents increased initially in response to 50 mM NaCl. Further increment in NaCl concentration, however, resulted in a significant decrease in both chlorophyll and cellular\\u000a protein. A. cylindrica cells

Pratiksha Bhadauriya; Radha Gupta; Surendra Singh; Prakash Singh Bisen

2007-01-01

84

Phenotype and temperature affect the affinity for dissolved inorganic carbon in a cyanobacterium Microcystis  

Microsoft Academic Search

The cyanobacterium Microcystis is the most common bloom-forming species in eutrophicated water bodies. Known eco-physiological advantages of this organism\\u000a help it to compete effectively with other algae and cyanobacteria; however, little is known about the physiological characteristics\\u000a competence of colonial Microcystis. In the present study, carbonic anhydrase (CA) activity, the affinity for dissolved inorganic carbon (DIC), and the transcription\\u000a of

Xinghua Wu; Zhongxing Wu; Lirong Song

85

Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira ( Spirulina ) platensis  

Microsoft Academic Search

The spiral structure of the cyanobacterium Arthrospira (Spirulina) platensis (Nordst.) Gomont was previously found to be altered by solar ultraviolet radiation (UVR, 280–400 nm). However, how photosynthetic\\u000a active radiation (PAR, 400–700 nm) and UVR interact in regulating this morphological change remains unknown. Here, we show\\u000a that the spiral structure of A. platensis (D-0083) was compressed under PAR alone at 30°C, but that

Zengling Ma; Kunshan Gao

2009-01-01

86

Influence of Leaching Parameters on the Biological Removal of Uranium from Coal by a Filamentous Cyanobacterium  

PubMed Central

Axenic cultures of the filamentous cyanobacterium LPP OL3 were incubated with samples of uraniumbearing coal from a German mining area. The influence of leaching parameters such as coal concentration (pulp density), initial biomass, particle size, temperature, and composition of the growth medium on the leaching of uranium from the ore by the cyanobacterial strain was studied. When low pulp densities were applied, the yield of biologically extracted uranium was optimal (reaching 96% at 1% [wt/vol] coal) and all released uranium was found in the culture liquid. Above 10% (wt/vol) coal in the medium, the amount of cell-bound uranium increased. Initial biomass concentration (protein content of the cultures) and particle size were not critical parameters of leaching by LPP OL3. However, temperature and composition of the growth medium profoundly influenced the leaching of uranium and growth of the cyanobacterium. The yield of leached uranium (at 10% [wt/vol] coal) could not be raised with a tank leaching apparatus. Also, coal ashes were not suitable substrates for the leaching of uranium by LPP OL3. In conclusion, the reactions of the cyanobacterium to variations in leaching parameters were different from reactions of acidic leaching organisms. Images PMID:16346934

Lorenz, Michael G.; Krumbein, Wolfgang E.

1985-01-01

87

A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris.  

PubMed

Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe a new cyanobacterium possessing a high amount of chlorophyll d, which was isolated from waters around Heron Island, Great Barrier Reef (23° 26' 31.2? S, 151° 54' 50.4? E). The 16S ribosomal RNA is 2% divergent from the two previously described isolates of A. marina, which were isolated from waters around the Palau islands (Pacific Ocean) and the Salton Sea lake (California), suggesting that it belongs to a different clade within the genus Acaryochloris. An overview sequence analysis of its genome based on Illumina technology yielded 871 contigs with an accumulated length of 8?371?965?nt. Their analysis revealed typical features associated with Acaryochloris, such as an extended gene family for chlorophyll-binding proteins. However, compared with A. marina MBIC11017, distinct genetic, morphological and physiological differences were observed. Light saturation is reached at lower light intensities, Chl d/a ratios are less variable with light intensity and the phycobiliprotein phycocyanin is lacking, suggesting that cyanobacteria of the genus Acaryochloris occur in distinct ecotypes. These data characterize Acaryochloris as a niche-adapted cyanobacterium and show that more rigorous attempts are worthwhile to isolate, cultivate and analyse chlorophyll d-containing cyanobacteria for understanding the ecophysiology of these organisms. PMID:20505751

Mohr, Remus; Voss, Björn; Schliep, Martin; Kurz, Thorsten; Maldener, Iris; Adams, David G; Larkum, Anthony D W; Chen, Min; Hess, Wolfgang R

2010-11-01

88

Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae.  

PubMed

The influence of two metals, copper and cadmium, was studied on the growth and ultrastructures of cyanobacterium Anabaena flos-aquae grown at three different temperatures: 10 degrees C, 20 degrees C, and 30 degrees C. The highest concentration of chlorophyll a was observed at 20 degrees C and the lowest at 10 degrees C. Both toxic metal ions, Cu(2+) and Cd(2+), inhibited growth of the tested cyanobacterium. Chlorophyll a concentration decreased with the increase of metal concentration. A 50% decrease in the growth of A. flos-aquae population, compared with the control, was reached at 0.61 mg l(-1) cadmium and at 0.35 mg l(-1) copper (at 20 degrees C). Copper at all temperatures tested was proven to be more toxic than cadmium. At 3 mg l(-1), the lysis and distortion of cells was observed; however, after incubation at 9 mg l(-1) cadmium, most of the cells were still intact, and only intrathylakoidal spaces started to appear. Copper caused considerably greater changes in the protein system of A. flos-aquae than did cadmium; in this case, not only phycobilins but also total proteins were destructed. The aim of this study was also to identify the place of metal accumulation and sorption in the tested cyanobacterium. Analysis of the energy-dispersion spectra of the characteristic x-ray radiation of trichomes and their sheaths showed that cadmium was completely accumulated in cells but was not found in the sheath. Spectrum of the isolated sheath after treatment with copper exhibited only traces of the metal, but isolated cells without a sheath showed a high peak of copper. PMID:15657804

Surosz, W; Palinska, K A

2005-01-01

89

n Alkanes variability in the diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress  

Microsoft Academic Search

n-Alkanes pattern in response to NaCl stress has been studied in the cyanobacterium Anabaena cylindrica. Saturated hydrocarbons were separated and identified by gas chromatography-mass spectrometry (GC-MS) using serially coupled\\u000a capillary column. Light chain n-alkanes in the range of C9–C17 (43%) and heavy chain n-alkanes in range of C17–C23 (34%) and C23–C31 (23%) were identified as the major components of total

Pratiksha Bhadauriya; Radha Gupta; Surendra Singh; Prakash Singh Bisen

2008-01-01

90

NaCl induced metabolic changes in the diazotrophic cyanobacterium Anabaena cylindrica  

Microsoft Academic Search

NaCl induced changes in fatty acid composition and nitrogenase, glutamine synthetase (GS) and nitrate reductase (NR) activities\\u000a have been studied in a diazotrophic cyanobacterium Anabaena cylindrica. GC-MS analysis revealed that the cellular fatty acid composition of NaCl untreated cells of A. cylindrica contained saturated and unsaturated fatty acids in high (85.15%) and low (13.17%) proportions, respectively. In contrast,\\u000a NaCl adapted cells of

Pratiksha Bhadauriya; Radha Gupta; Surendra Singh; Prakash Singh Bisen

2009-01-01

91

The effects of the toxic cyanobacterium Limnothrix (strain AC0243) on Bufo marinus larvae.  

PubMed

Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL(-1) of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to ?-N-Methylamino-L-alanine are discussed. PMID:24662524

Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

2014-03-01

92

The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae  

PubMed Central

Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL?1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to ?-N-Methylamino-l-alanine are discussed. PMID:24662524

Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

2014-01-01

93

An empirically derived protocol for the detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery  

Microsoft Academic Search

A protocol was developed for use with Coastal Zone Color Scanner (CZCS) imagery to detect blooms of the N2 fixing cyanobacterium Trichodesmium. The protocol takes into account two optical characteristics of Trichodesmium blooms–a high reflectivity due to the presence of gas vacuoles and an absorption feature at 550nm due to the accessory pigment phycoerythrin. It is suggested that the combination

A. Subramaniam; E. J. Carpenter

1994-01-01

94

Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions  

Microsoft Academic Search

Aerobic nitrogenase activity in the marine non-heterocystous cyanobacterium Trichodesmium spp. NIBB 1067, isolated off the Izu Peninsula, Japan in 1983 and grown under artificial conditions, was assayed by the acetylene reduction method. This strain exhibited acetylene reduction activity under aerobic conditions when cells had been grown in the medium free of combined nitrogen. Activity was markedly enhanced by light, and

K. Ohki; Y. Fujita

1988-01-01

95

R E V I E W A R T I C L E Trichodesmium a widespread marine cyanobacterium with  

E-print Network

R E V I E W A R T I C L E Trichodesmium ­ a widespread marine cyanobacterium with unusual nitrogen cyanobacterial genus Trichodesmium to the nitrogen influx of the global marine ecosystem is by now undisputable of the genus Trichodesmium are recognized as major players. Representatives within the genus have consistently

96

Circadian Rhythm of Nitrogenase Gene Expression in the Diazotrophic Filamentous Nonheterocystous Cyanobacterium Trichodesmium sp. Strain IMS 101  

Microsoft Academic Search

Recent studies suggested that the daily cycle of nitrogen fixation activity in the marine filamentous nonhet- erocystous cyanobacterium Trichodesmium sp. is controlled by a circadian rhythm. In this study, we evaluated the rhythm of nitrogen fixation in Trichodesmium sp. strain IMS 101 by using the three criteria for an endogenous rhythm. Nitrogenase transcript abundance oscillated with a period of approximately

YI-BU CHEN; BENNY DOMINIC; MARK T. MELLON; JONATHAN P. ZEHR

1998-01-01

97

Structure of Trichamide, a Cyclic Peptide from the Bloom-Forming Cyanobacterium Trichodesmium erythraeum, Predicted from the Genome Sequence  

Microsoft Academic Search

A gene cluster for the biosynthesis of a new small cyclic peptide, dubbed trichamide, was discovered in the genome of the global, bloom-forming marine cyanobacterium Trichodesmium erythraeum ISM101 because of striking similarities to the previously characterized patellamide biosynthesis cluster. The tri cluster consists of a precursor peptide gene containing the amino acid sequence for mature trichamide, a putative heterocycliza- tion

Sebastian Sudek; Margo G. Haygood; Diaa T. A. Youssef; Eric W. Schmidt

2006-01-01

98

Com putational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102  

Microsoft Academic Search

Deciphering the regulatory networks encoded in the genome of an organism represents one of the most interesting and challenging tasks in the post- genome sequencing era. As an example of this problem, we have predicted a detailed model for the nitrogen assimilation network in cyanobacterium Synechococcus sp. WH 8102 (WH8102) using a com- putational protocol based on comparative genomics analysis

Zhengchang Su; Fenglou Mao; Phuongan Dam; Hongwei Wu; Victor Olman; Ian T. Paulsen; Brian Palenik; Ying Xu

99

Photosynthetically active and UV radiation act in an antagonistic way in regulating buoyancy of Arthrospira ( Spirulina) platensis (cyanobacterium)  

Microsoft Academic Search

Buoyancy provided by gas vesicles has been suggested to play an important role in regulating vertical distribution and nutrient acquisition in cyanobacteria. However, little is known about how changes in UV radiation (UVR, 280–400nm) would affect the buoyancy. We have shown here that the floatation activity of the economically important cyanobacterium Arthrospira platensis (D-0083) decreased with increased photosynthetic rates associated

Zengling Ma; Kunshan Gao

2009-01-01

100

Draft genome sequence of calothrix strain 336/3, a novel h2-producing cyanobacterium isolated from a finnish lake.  

PubMed

We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications. PMID:25614574

Isojärvi, Janne; Shunmugam, Sumathy; Sivonen, Kaarina; Allahverdiyeva, Yagut; Aro, Eva-Mari; Battchikova, Natalia

2015-01-01

101

Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis.  

PubMed

Parallel chemical and phylogenetic investigation of a marine cyanobacterium from Panama led to the isolation of two new PKS-NRPS-derived compounds, viridamides A and B. Their structures were determined by NMR and mass spectroscopic methods, and the absolute configurations assigned by Marfey's method and chiral HPLC analysis. In addition to six standard, N-methylated amino and hydroxy acids, these metabolites contained the structurally novel 5-methoxydec-9-ynoic acid moiety and an unusual proline methyl ester terminus. Morphologically, this cyanobacterium was identified as Oscillatoria nigro-viridis, and its 16S rDNA sequence is reported here for the first time. Phylogenetic analysis of these sequence data has identified O. nigro-viridis strain OSC3L to be closely related to two other marine cyanobacterial genera, Trichodesmium and Blennothrix. Viridamide A showed antitrypanosomal activity with an IC50 of 1.1 microM and antileishmanial activity with an IC50 of 1.5 microM. PMID:18715036

Simmons, T Luke; Engene, Niclas; Ureña, Luis David; Romero, Luz I; Ortega-Barría, Eduardo; Gerwick, Lena; Gerwick, William H

2008-09-01

102

Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed Central

We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core. Images PMID:1717264

Smart, L B; Anderson, S L; McIntosh, L

1991-01-01

103

Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography  

SciTech Connect

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

2011-04-01

104

Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography  

SciTech Connect

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

2010-01-01

105

Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the ?-olefin biosynthesis pathway.  

PubMed

The production of alkanes in a marine cyanobacterium possessing the ?-olefin biosynthesis pathway was achieved by introducing an exogenous alkane biosynthesis pathway. Cyanobacterial hydrocarbons are synthesized via two separate pathways: the acyl-acyl carrier protein (ACP) reductase/aldehyde-deformylating oxygenase (AAR/ADO) pathway for the alkane biosynthesis and the ?-olefin synthase (OLS) pathway for the ?-olefin biosynthesis. Coexistence of these pathways has not yet been reported. In this study, the marine cyanobacterium Synechococcus sp. NKBG15041c was shown to produce ?-olefins similar to those of Synechococcus sp. PCC7002 via the ?-olefin biosynthesis pathway. The production of heptadecane in Synechococcus sp. NKBG15041c was achieved by expressing the AAR/ADO pathway genes from Synechococcus elongatus PCC 7942. The production yields of heptadecane in Synechococcus sp. NKBG15041c varied with the expression level of the aar and ado genes. The maximal yield of heptadecane was 4.2?±?1.2 ?g/g of dried cell weight in the transformant carrying a homologous promoter. Our results also suggested that the effective activation of ADO may be more important for the enhancement of alkane production by cyanobacteria. PMID:25527377

Yoshino, Tomoko; Liang, Yue; Arai, Daichi; Maeda, Yoshiaki; Honda, Toru; Muto, Masaki; Kakunaka, Natsumi; Tanaka, Tsuyoshi

2015-02-01

106

Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms  

PubMed Central

Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

2014-01-01

107

Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus.  

PubMed

The morphological, physiological and genetic characteristics of an isolate cyanobacterium from hard sand of the lake Venere in the Pantelleria island (Italy) were described. The isolate with a small-size coiled helix shape, growing optimally at pH 9.2-9.5 at 30 degrees C under continuous illumination and aeration, possessed a 61.5 mol% of Guanine + Cytosine content of DNA. The lipid profile showed the presence of mono-, di-glycosyl, sulphoquinovolosyl and phosphatidyl (MGDG, DGDG, SQDG and PG). The fatty acid profile was also studied, characterized by the absence of gamma-linolenic acid and the presence of saturated and monounsaturated C16 and C18. The latter was also present as a dienoic component. The fatty acid composition was affected by growth temperature by increasing the degree of desaturation at a lower temperature and the biosynthesis of shorter acyl chains. The effects of growth conditions other than temperature, physical, nutritional and chemical on lipid composition were also studied. The overall features of the cyanobacterium isolated from Pantelleria clustered it into Spirulina genus. PMID:10870183

Romano, I; Bellitti, M R; Nicolaus, B; Lama, L; Manca, M C; Pagnotta, E; Gambacorta, A

2000-06-01

108

Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir.  

PubMed

Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = -0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L-1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

Fadel, Ali; Atoui, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Slim, Kamal

2014-11-01

109

Discovery of an Endosymbiotic Nitrogen-Fixing Cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae)  

PubMed Central

Braarudosphaera bigelowii (Prymnesiophyceae) is a coastal coccolithophore with a long fossil record, extending back to the late Cretaceous (ca. 100 Ma). A recent study revealed close phylogenetic relationships between B. bigelowii, Chrysochromulina parkeae (Prymnesiophyceae), and a prymnesiophyte that forms a symbiotic association with the nitrogen-fixing cyanobacterium UCYN-A. In order to further examine these relationships, we conducted transmission electron microscopic and molecular phylogenetic studies of B. bigelowii. TEM studies showed that, in addition to organelles, such as the nucleus, chloroplasts and mitochondria, B. bigelowii contains one or two spheroid bodies with internal lamellae. In the 18S rDNA tree of the Prymnesiophyceae, C. parkeae fell within the B. bigelowii clade, and was close to B. bigelowii Genotype III (99.89% similarity). Plastid 16S rDNA sequences obtained from B. bigelowii were close to the unidentified sequences from the oligotrophic SE Pacific Ocean (e.g. HM133411) (99.86% similarity). Bacterial16S rDNA sequences obtained from B. bigelowii were identical to the UCYN-A sequence AY621693 from Arabian Sea, and fell in the UCYN-A clade. From these results, we suggest that; 1) C. parkeae is the alternate life cycle stage of B. bigelowii sensu stricto or that of a sibling species of B. bigelowii, and 2) the spheroid body of B. bigelowii originated from endosymbiosis of the nitrogen-fixing cyanobacterium UCYN-A. PMID:24324722

Hagino, Kyoko; Onuma, Ryo; Kawachi, Masanobu; Horiguchi, Takeo

2013-01-01

110

Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142  

SciTech Connect

Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

2011-02-22

111

Molecular Dissection of Cl?-selective Cys-loop Receptor Points to Components That Are Dispensable or Essential for Channel Activity*  

PubMed Central

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular ? helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular ? helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind ?-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal ? helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl? ion within the intracellular vestibule of the ion channel pore. PMID:21987577

Bar-Lev, Dekel D.; Degani-Katzav, Nurit; Perelman, Alexander; Paas, Yoav

2011-01-01

112

Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa.  

PubMed

In previous studies, we have demonstrated that the population structure of the bloom-forming cyanobacterium Microcystis aeruginosa is clonal. Expanded multilocus sequence typing analysis of M. aeruginosa using 412 isolates identified five intraspecific lineages suggested to be panmictic while maintaining overall clonal structure probably due to a reduced recombination rate between lineages. Interestingly, since 2005 most strains belonging to one of these panmictic clusters (group G) have been found in a particular locality (Lake Kasumigaura Basin) in Japan. In this locality, multiple, similar but distinct genotypes of this lineage predominated in the bloom, a pattern that is unprecedented for M. aeruginosa. The population structure underlying blooms associated with this lineage is comparable to epidemics of pathogens. Our results may reveal an expansion of the possible adaptive lineage in a localized aquatic environment, providing us with a unique opportunity to investigate its ecological and biogeographical consequences. PMID:21390221

Tanabe, Yuuhiko; Watanabe, Makoto M

2011-01-01

113

Enhanced Survival of the Cyanobacterium Oscillatoria terebriformis in Darkness under Anaerobic Conditions †  

PubMed Central

Oscillatoria terebriformis, a thermophilic cyanobacterium, maintained viability in darkness under anaerobic conditions by fermenting exogenous glucose or fructose to lactic acid. The time period of survival was greatly extended when the environmental redox potential was lowered by the addition of sodium thioglycolate or titanium(III) citrate. When exposed to aerobic conditions in darkness, many trichomes underwent lysis in 6 h, and death of all cells occurred in 2 to 3 days. The endogenous aerobic respiration rate was high, and the limited dark aerobic survival period appeared to be due to depletion of stored glycogen. Fructose or glucose did not support or increase aerobic respiration in darkness or lengthen aerobic survival time. Enhanced survival of O. terebriformis in darkness under anaerobic, reducing conditions correlates well with the natural nighttime position of this species within sulfide-rich microbial mats associated with hot springs of western North America. Images PMID:16347436

Richardson, Laurie L.; Castenholz, Richard W.

1987-01-01

114

Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308.  

PubMed Central

The effect of a number of conditions on the amount of cyanophycin granule polypeptide [multi-L-arginyl poly(L-aspartic acid)] formed in the unicellular cyanobacterium Aphanocapsa 6308 was determined. Light, CO2, sulfur, and phosphorus starvation as well as the addition of arginine to culture media increased the amount of cyanophycin granule polypeptide in cells when compared with that in cells grown under conditions optimal for growth. Nitrogen limitation and reduction of growth temperature to 30 degrees C decreased the amount of cyanophycin granule polypeptide on a dry-weight basis. Shift-up and shift-down experiments suggest cyanophycin granule polypeptide may be a reserve nitrogen polymer in Aphanocapsa 6308. PMID:6767688

Allen, M M; Hutchison, F; Weathers, P J

1980-01-01

115

The carmaphycins: new proteasome inhibitors exhibiting an ?,?-epoxyketone warhead from a marine cyanobacterium.  

PubMed

Two new peptidic proteasome inhibitors were isolated as trace components from a Curaçao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived ?,?-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the ?5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors. PMID:22383253

Pereira, Alban R; Kale, Andrew J; Fenley, Andrew T; Byrum, Tara; Debonsi, Hosana M; Gilson, Michael K; Valeriote, Frederick A; Moore, Bradley S; Gerwick, William H

2012-04-16

116

Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature  

PubMed Central

In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

2011-01-01

117

Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium Synechococcus sp. strain PCC 7002.  

PubMed

The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system had a 48-fold dynamic range and was shown to out-perform Ptrc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002. PMID:25216157

Markley, Andrew L; Begemann, Matthew B; Clarke, Ryan E; Gordon, Gina C; Pfleger, Brian F

2014-09-25

118

Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula.  

PubMed

Lagunamides A (1) and B (2) are new cyclic depsipeptides isolated from the marine cyanobacterium Lyngbya majuscula obtained from Pulau Hantu Besar, Singapore. The planar structural characterization of these molecules was achieved by extensive spectroscopic analysis, including 2D NMR experiments. In addition to Marfey's method and (3)J(H-H) coupling constant values, a modified method based on Mosher's reagents and analysis using LC-MS was deployed for the determination of the absolute configuration. Lagunamides A and B displayed significant antimalarial properties, with IC(50) values of 0.19 and 0.91 ?M, respectively, when tested against Plasmodium falciparum. Lagunamides A and B also possessed potent cytotoxic activity against P388 murine leukemia cell lines, with IC(50) values of 6.4 and 20.5 nM, respectively. Furthermore, these cyanobacterial compounds exhibited moderate antiswarming activities when tested against Pseudomonas aeruginosa PA01. PMID:20936843

Tripathi, Ashootosh; Puddick, Jonathan; Prinsep, Michèle R; Rottmann, Matthias; Tan, Lik Tong

2010-11-29

119

Instability and variable toxicity of HBP-Tx, a toxin in the cyanobacterium Microcystis aeruginosa.  

PubMed

It was found that autoxidative degradation is responsible for the inactivation of the unstable Microcystis toxin HBP-Tx. The purified toxin was similar in its properties to the "fast-death-factor" in Microcystis, described as a cyclic peptide in the literature. The apparent presence of an entirely different toxin was simulated by the partially inactivated HBP-Tx. A number of associated fluorescent compounds were identified as the non-toxic degradation products of the toxin. As a consequence, as established method for the detection of other algal toxins was applied. This chemical assay, which uses fluorescent measurement of the oxidized toxin in the cyanobacterium Aphanizomenon flos-aquae, was applicable for HBP-Tx after the removal of interfering degradation products of the toxin. The results obtained with Microcystis toxin HBP-Tx do not confirm suggestions concerning the structure of the "fast-death-factor". PMID:6426092

Amann, M J

1984-01-01

120

Local Expansion of a Panmictic Lineage of Water Bloom-Forming Cyanobacterium Microcystis aeruginosa  

PubMed Central

In previous studies, we have demonstrated that the population structure of the bloom-forming cyanobacterium Microcystis aeruginosa is clonal. Expanded multilocus sequence typing analysis of M. aeruginosa using 412 isolates identified five intraspecific lineages suggested to be panmictic while maintaining overall clonal structure probably due to a reduced recombination rate between lineages. Interestingly, since 2005 most strains belonging to one of these panmictic clusters (group G) have been found in a particular locality (Lake Kasumigaura Basin) in Japan. In this locality, multiple, similar but distinct genotypes of this lineage predominated in the bloom, a pattern that is unprecedented for M. aeruginosa. The population structure underlying blooms associated with this lineage is comparable to epidemics of pathogens. Our results may reveal an expansion of the possible adaptive lineage in a localized aquatic environment, providing us with a unique opportunity to investigate its ecological and biogeographical consequences. PMID:21390221

Tanabe, Yuuhiko; Watanabe, Makoto M.

2011-01-01

121

Effects of Iron Starvation on the Ultrastructure of the Cyanobacterium Agmenellum quadruplicatum  

PubMed Central

The effects of iron starvation on the ultrastructure of the unicellular cyanobacterium Agmenellum quadruplicatum were studied by using thin sectioning and transmission electron microscopy. Intracellular polysaccharide began to accumulate at the onset of iron limitation. This was followed by degradation of ribosomes and (later) degradation of the thylakoid membranes, both of which were virtually absent by 200 h. The thylakoids underwent structural modifications and rearrangements before they actually began to break down. Iron starvation did not appear to affect carboxysomes or the extracellular glyocalyx. On the other hand, polyphosphate bodies may have been partially degraded, and an electrontransparent gap eventually appeared between the cell wall and the cytoplasmic membrane. All of these changes were reversed when iron was added back to 200-h starved cultures. The sequence of ultrastructural changes observed during iron starvation clearly differed from those previously reported to occur during nitrogen, phosphorous, or carbon limitation. Images PMID:16346226

Hardie, L. P.; Balkwill, D. L.; Stevens, S. E.

1983-01-01

122

Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus.  

PubMed Central

In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942. PMID:1967057

Laudenbach, D E; Herbert, S K; McDowell, C; Fork, D C; Grossman, A R; Straus, N A

1990-01-01

123

Characterization of lysis of the multicellular Cyanobacterium Limnothrix/Pseudanabaena sp. strain ABRG5-3.  

PubMed

The cyanobacterium semi-filamentous multicellular strain ABRG5-3 undergoes cell lysis as a unique feature that occurs due to growth condition changes from normal cultivation with shaking to static cultivation without shaking in liquid culture (Nishizawa et al., 2010). Microscopic observation and energy dispersive X-ray spectrometer (EDX) analysis have revealed that lysis is involved in the accumulation of polyphosphate compounds and the disintegration of thylakoid membranes in cells. Static cultivation, dark or red light exposure, and temperature (22 to 42 °C) conditions were found to be effective factors for the induction of lysis. Moreover, stress induced by salts, osmotic pressure with sucrose, and the depletion of nitrogen or phosphate in cultures also induced ABRG5-3 cell lysis. Based on these results, we discuss lysis and its utilization in the biotechnology industry. PMID:24317044

Kitazaki, Chifumi; Numano, Setsuko; Takanezawa, Akira; Nishizawa, Tomoyasu; Shirai, Makoto; Asayama, Munehiko

2013-01-01

124

Extinction of cells of cyanobacterium Anabaena circinalis in the presence of humic acid under illumination.  

PubMed

Laboratory experiments targeting the effect of humic acid (HA) on the cell lysis of cyanobacterium Anabaena circinalis have been performed. Light irradiation was found to be an important factor for the cell lysis phenomenon, whereas intracellular hydrogen peroxide (H2O2) might be a chemical factor for the process. An exogenous H2O2 concentration of 1.0 mg l(-1) was determined as the threshold for cell survival. Our results indicated that HA or its possible product(s) of photochemical reaction can induce damage to intracellular catalase under artificial illumination, which leads intracellular H2O2 to be accumulated to an abnormally high concentration, eventually resulting in cell death. Moreover, H2O2 released into the culture from dead cells can damage other cells, which in turn brings about the population extinction. PMID:16505991

Sun, Bing-kun; Tanji, Yasunori; Unno, Hajime

2006-10-01

125

Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.  

PubMed

Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), ?-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

Peramuna, Anantha; Summers, Michael L

2014-12-01

126

Regulation of nitrogen-fixation by different nitrogen sources in the marine non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067  

Microsoft Academic Search

The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2

Kaori Ohki; Jonathan P. Zehr; Paul G. Falkowski; Yoshihiko Fujita

1991-01-01

127

Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum  

Microsoft Academic Search

The marine non-heterocystous cyanobacterium Trichodesmium fixes atmospheric N2 aerobically in light. In situ immunolocalization\\/light microscopy of NifH revealed that lighter, non-granulated cell regions observed correspond to the nitrogenase-containing diazocyte clusters in Trichodesmium IMS101. The number of diazocyte clusters per trichome varied from 0 to 4 depending on trichome length. The constant percentage of diazocytes (approx. 15 %) in cultured strains

R. El-Shehawy; C. Lugomela; A. Ernst; B. Bergman

2003-01-01

128

Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides.  

PubMed

Obyanamide (1) was isolated from a variety of the marine cyanobacterium Lyngbya confervoides collected in Saipan, Commonwealth of the Northern Mariana Islands. Gross structure elucidation of this novel cyclic depsipeptide relied on extensive application of 2D NMR techniques. The absolute stereochemistry was deduced by chiral chromatography of the hydrolysis products and comparison with authentic and synthetic standards. Obyanamide (1) was cytotoxic against KB cells with an IC(50) of 0.58 microg/mL. PMID:11809060

Williams, Philip G; Yoshida, Wesley Y; Moore, Richard E; Paul, Valerie J

2002-01-01

129

Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa fo. flos-aquae strain C3-40  

Microsoft Academic Search

The sorption of cadmium (II), copper (II), lead (II),manganese (II), and zinc (II) by purified capsularpolysaccharide from the cyanobacterium Microcystis aeruginosafo. flos-aquae strainC3-40 was examined by four methods: equilibriumdialysis, metal removal from solution as detected byvoltammetry, metal accumulation by capsule-containingalginate beads, and calorimetry. The polysaccharide'ssaturation binding capacities for these metals rangedfrom 1.2 to 4 mmol of metal g-1 of capsule,

Dorothy L. Parker; Jennifer E. Mihalick; John L. Plude; Michelle J. Plude; Thomas P. Clark; Lynn Egan; Joshua J. Flom; L. C. Rai; H. D. Kumar

2000-01-01

130

Purification and Physicochemical Properties of the Low Potential Cytochrome C 549 from the Cyanobacterium Synechocystis Sp PCC 6803  

Microsoft Academic Search

A soluble low-potential cytochrome c549 has been purified in milligram quantities from the cyanobacterium Synechocystis sp. PCC 6803. The protein exhibits an acid isoelectric point of 3.9, a molecular mass of 15.8 kDa, and a midpoint redox potential value of ?250 mV at pH 7.0. EPR and 1H NMR studies suggest a low-spin heme iron with bis-histidine coordination at the

J. A. Navarro; M. Hervas; B. Delacerda; M. A. Delarosa

1995-01-01

131

Lyngbyaureidamides A and B, Two Anabaenopeptins from the Cultured Freshwater Cyanobacterium Lyngbya sp. (SAG 36.91)  

PubMed Central

Two anabaenopeptin-type peptides, lyngbyaureidamides A and B, together with two previously reported peptides lyngbyazothrins C and D, were isolated from the cultured freshwater cyanobacterium Lyngbya sp. (SAG 36.91). Their structures were determined by spectroscopic and chemical methods. Lyngbyazothrins C and D were also able to inhibit the 20S proteasome with IC50 values of 7.1 ?M and 19.2 ?M, respectively, while lyngbyaureidamides A and B were not active at 50 ?M. PMID:22152977

Zi, Jiachen; Lantvit, Daniel D.; Swanson, Steven M.; Orjala, Jimmy

2011-01-01

132

Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium it Microcystis aeruginosa as food  

Microsoft Academic Search

The ability of cladocerans and rotifers to utilise the cyanobacterium Microcystis aeruginosa was tested by comparing the somatic\\u000a and population growth in cultures using Chlorella and Microcystis as food types. Five species of cladocerans (Ceriodaphnia\\u000a cornuta, Scapholeberis kingi, Moina macrocopa, Daphnia carinata, Simocephalus vetulus) and two species of rotifers (Brachionus\\u000a calyciflorus, Hexarthra mira) were used in this study. In order

S. Nandini; T. R. Rao

1997-01-01

133

Differential Effects of Bentazon and Molinate on Anabaena cylindrica , an Autochthonous Cyanobacterium of Portuguese Rice Field Agro-ecosystems  

Microsoft Academic Search

The effects of bentazon and molinate, two selective herbicides recommended for integrated weed management in rice, were studied\\u000a in Anabaena cylindrica, an abundant cyanobacterium isolated from a Portuguese rice field agro-ecosystem. Comparative effects of both herbicides\\u000a on A. cylindrica were estimated under laboratory conditions by measuring its dry weight yield, photopigments, and carbohydrate and protein\\u000a contents in a time- and

V. Galhano; F. Peixoto; J. Gomes-Laranjo; E. Fernández-Valiente

2009-01-01

134

Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly(vinylalcohol): Application to the detection of pollutants  

Microsoft Academic Search

A cyanobacterium, Synechocystis sp. PCC 6803, was immobilized by entrapment in poly(vinylalcohol) bearing styrylpyridinium groups. Its properties in a single-compartment micro-photoelectrochemical cell using platinum electrodes in potentiosatic mode were compared with the native material. The operational activity was measured in the presence of an electrolytic solution containing 20 mM sodium phosphate, 0.15 mM NaCl and 1 mM MgCl2. The best conditions of use

Alina Avramescu; Régis Rouillon; Robert Carpentier

1999-01-01

135

Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum  

NASA Technical Reports Server (NTRS)

Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was likely less saline. The division of marine cyanobacterium P. subcapitatum is associated with periodic deposition and dissolution of CaCO3, the rhythms and intensity of which are dependent on concentrations of both OH(-) and Na(+). Thus, the role of present-day marine cyanobacteria in the global carbonate cycle might be reduced to aggregation and recrystallization of available CaCO3 particles in marine water rather than long-term precipitation and accumulation of CaCO3 deposits. For lower Na(+) concentrations, precipitation of carbonates by cyanobacteria would be even less significant. These results suggest that the lack of calcified cyanobacteria in stromatalite-bearing Precambrian sequences can be explained not only by high dissolved inorganic carbon concentrations but also by lower salinity, as well as possible lower pH compared to present-day oceans.

Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

2006-01-01

136

Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov.  

PubMed Central

Lyngbya wollei (Farlow ex Gomont) comb. nov., a perennial mat-forming filamentous cyanobacterium prevalent in lakes and reservoirs of the southeastern United States, was found to produce a potent, acutely lethal neurotoxin when tested in the mouse bioassay. Signs of poisoning were similar to those of paralytic shellfish poisoning. As part of the Tennessee Valley Authority master plan for Guntersville Reservoir, the mat-forming filamentous cyanobacterium L. wollei, a species that had recently invaded from other areas of the southern United States, was studied to determine if it could produce any of the known cyanotoxins. Of the 91 field samples collected at 10 locations at Guntersville Reservoir, Ala., on the Tennessee River, over a 3-year period, 72.5% were toxic. The minimum 100% lethal doses of the toxic samples ranged from 150 to 1,500 mg kg of lyophilized L. wollei cells-1, with the majority of samples being toxic at 500 mg kg-1. Samples bioassayed for paralytic shellfish toxins by the Association of Official Analytical Chemists method exhibited saxitoxin equivalents ranging from 0 to 58 micrograms g (dry weight)-1. Characteristics of the neurotoxic compound(s), such as the lack of adsorption by C18 solid-phase extraction columns, the short retention times on C18 high-performance liquid chromatography (HPLC) columns, the interaction of the neurotoxins with saxiphilin (a soluble saxitoxin-binding protein), and external blockage of voltage-sensitive sodium channels, led to our discovery that this neurotoxin(s) is related to the saxitoxins, the compounds responsible for paralytic shellfish poisonings. The major saxitoxin compounds thus far identified by comparison of HPLC fluorescence retention times are decarbamoyl gonyautoxins 2 and 3. There was no evidence of paralytic shellfish poison C toxins being produced by L. wollei. Fifty field samples were placed in unialgal culture and grown under defined culture conditions. Toxicity and signs of poisoning for these laboratory-grown strains of L. wollei were similar to those of the field collection samples. PMID:9251196

Carmichael, W W; Evans, W R; Yin, Q Q; Bell, P; Moczydlowski, E

1997-01-01

137

Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity.  

PubMed Central

A mosquitocidal cyanobacterium has been developed by introducing the mosquito-toxic cryIVD gene from Bacillus thuringiensis subsp. israelensis into the unicellular cyanobacterium Agmenellum quadruplicatum PR-6 (Synechococcus sp. strain PCC 7002). The cryIVD gene was introduced into the cyanobacterium on a derivative of the PR-6 expression vector pAQE19 delta Sal in which the cryIVD gene was translationally fused to the initial coding sequence of the highly expressed PR-6 cpcB gene. Coomassie blue staining and immunoblot analysis of gel-fractionated cell extract polypeptides indicate that the cpcB-cryIVD gene fusion is expressed at high levels in the cyanobacterial cells, with little or no apparent degradation of the cryIVD gene product. Larvicidal assays revealed that freshly hatched Culex pipiens mosquito larvae readily ingested the transformed cyanobacteria and that the cells proved to be toxic to the larvae. Images PMID:1622235

Murphy, R C; Stevens, S E

1992-01-01

138

Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142  

NASA Technical Reports Server (NTRS)

Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

1997-01-01

139

Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis.  

PubMed

Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. PMID:22467177

Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack

2012-01-01

140

Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum.  

PubMed

Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 ?M and 2.7 ?M, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R; Chu, Justin Jang Hann

2014-01-01

141

Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101.  

PubMed

Examination of the diurnal patterns of basic cellular processes in the marine nonheterocystous diazotrophic cyanobacterium Trichodesmium revealed that the division of cells occurred throughout the diurnal cycle, but that it oscillated and peaked at an early stage in the dark period. Transcription of the early cell division gene ftsZ and the occurrence of the FtsZ protein showed a similar diurnal rhythmicity that preceded the division of cells. DNA replication (dnaA gene transcription) occurred before the transcription of ftsZ and hetR, the latter encoding the key heterocyst differentiation protein. Transcription of ftsZ and hetR in turn preceded the development of the nitrogen-fixing diazocytes and nifH transcription, and were at the minimum when diazotrophy was at the maximum. The nifH gene transcription showed a negative correlation to the circadian clock gene kaiC. Together, the data show a temporal separation between cell division and diazotrophy on a diurnal basis. PMID:19456868

Sandh, Gustaf; El-Shehawy, Rehab; Díez, Beatriz; Bergman, Birgitta

2009-06-01

142

Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium  

PubMed Central

Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases ?-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and ?-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of ?-aspartyl-arginine. These observations imply that ?-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule ?-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria. PMID:24550502

Burnat, Mireia; Herrero, Antonia; Flores, Enrique

2014-01-01

143

Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium.  

PubMed

Extracellular polysaccharide aggregates, operationally defined as transparent exopolymeric particles (TEP), are recognized as an important conduit for carbon recycling and export in aquatic systems. Yet, the factors controlling the build-up of the TEP pool are not well characterized. Here we show that increased TEP production by Trichodesmium, an oceanic bloom-forming nitrogen-fixing (diazotrophic) cyanobacterium, is coupled with autocatalytic programmed cell death (PCD) process. We demonstrate that PCD induction, in both laboratory cultures and natural populations, is characterized by high caspase-like activity, correlates with enhanced TEP production, and occurs under iron and phosphorus starvation, as well as under high irradiance and oxidative stress. Enhanced TEP production was not observed in actively growing populations. We provide further evidence that iron is a key trigger for the induction of PCD. We demonstrate, for the first time, the concomitant enhanced build-up of the TEP pool when Trichodesmium is Fe-stressed. These results suggest a functional linkage between activation of caspases and PCD in Trichodesmium and regulation of vertical carbon and nitrogen fluxes. We hypothesize that modulation of TEP formation and its qualities by different mortality pathways could regulate the fate of phytoplankton blooms and particulate organic matter in aquatic ecosystems. PMID:17504479

Berman-Frank, Ilana; Rosenberg, Gad; Levitan, Orly; Haramaty, Liti; Mari, Xavier

2007-06-01

144

On the role of oxygen for nitrogen fixation in the marine cyanobacterium Trichodesmium sp.  

PubMed

The marine, non-heterocystous, filamentous cyanobacterium Trichodesmium shows a distinct diurnal pattern of nitrogenase activity. In an attempt to reveal the factors that control this pattern, a series of measurements were carried out using online acetylene reduction assay. Light response curves of nitrogenase were recorded applying various concentrations of oxygen. The effect of oxygen depended on the irradiance applied. Above a photon irradiance of 16 mumol m(-2) s(-1) nitrogenase activity was highest under anoxic conditions. Below this irradiance the presence of oxygen was required to achieve highest nitrogenase activity and in the dark 5% oxygen was optimal. At any oxygen concentration a photon irradiance of 100 mumol m(-2) s(-1) was saturating. When Trichodesmium was incubated in the dark, nitrogenase activity gradually decreased and this decline was higher at higher levels of oxygen. The activity recovered when the cells were subsequently incubated in the light. This recovery depended on oxygenic photosynthesis because it did not occur in the presence of DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Recovery of nitrogenase activity in the light was faster at low oxygen concentrations. The results showed that under aerobic conditions nitrogenase activity was limited by the availability of reducing equivalents suggesting a competition for electrons between nitrogenase and respiration. PMID:17298372

Staal, Marc; Rabouille, Sophie; Stal, Lucas J

2007-03-01

145

Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes.  

PubMed

Trichodesmium is a marine filamentous diazotrophic cyanobacterium and an important contributor of "new" nitrogen in the oligotrophic surface waters of the tropical and sub-tropical oceans. It is unique in that it exclusively fixes N(2) at daytime, although it belongs to the non-heterocystous filamentous segment of the cyanobacterial radiation. Here we present the first quantitative proteomic analysis of Trichodesmium erythraeum IMS101 when grown under different nitrogen regimes using 2-DE/MALDI-TOF-MS. Addition of combined nitrogen (NO3-) prevented development of the morphological characteristics of the N(2)-fixing cell type (diazocytes), inhibited expression of the nitrogenase enzyme subunits and consequently N(2) fixation activity. The diazotrophic regime (N(2) versus NO3- cultures) elicited the differential expression of more than 100 proteins, which represented 13.5% of the separated proteins. Besides proteins directly related to N(2) fixation, proteins involved in the synthesis of reducing equivalents and the generation of a micro-oxic environment were strongly up-regulated, as was in particular Dps, a protein related to iron acquisition and potentially other vital cellular processes. In contrast, proteins involved in the S-adenosylmethionine (SAM) cycle, synthesis of amino acids and production of carbon skeletons for storage and synthesis of amino acids were suppressed. The data are discussed in the context of Trichodesmium's unusual N(2)-fixing physiology. PMID:21268270

Sandh, Gustaf; Ran, Liang; Xu, Linghua; Sundqvist, Gustav; Bulone, Vincent; Bergman, Birgitta

2011-02-01

146

FtsZ degradation in the cyanobacterium Anabaena sp. strain PCC 7120.  

PubMed

In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120. PMID:21794946

Lopes Pinto, Fernando; Erasmie, Sven; Blikstad, Cecilia; Lindblad, Peter; Oliveira, Paulo

2011-11-01

147

Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii.  

PubMed

Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions. PMID:24735048

Burford, Michele A; Davis, Timothy W; Orr, Philip T; Sinha, Rati; Willis, Anusuya; Neilan, Brett A

2014-07-01

148

Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.  

PubMed

An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO? concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 ?mol m?² s?¹ and air enriched with 3.18% (v/v) CO? supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors. PMID:23732832

Ketseoglou, Irene; Bouwer, Gustav

2013-08-10

149

Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity  

NASA Technical Reports Server (NTRS)

In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

1988-01-01

150

Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis  

SciTech Connect

The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.

Watanabe, Yoshitomo; Hall, D.O. [Univ. of London (United Kingdom); Nouee, J. De La [Univ. Laval, Quebec City, Quebec (Canada). Dept. of Food Science and Technology

1995-07-20

151

Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica  

NASA Technical Reports Server (NTRS)

The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

1989-01-01

152

Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations.  

PubMed

We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118-125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 ?mol quanta m(-2) s(-1)) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and ?-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 ?mol quanta m(-2) s(-1)) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 ?mol quanta m(-2) s(-1)) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II. PMID:24158260

Hou, Xuejing; Raposo, Aaron; Hou, Harvey J M

2013-11-01

153

Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505  

PubMed Central

The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy). Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end) that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot) were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning) demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR) and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy). These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells). Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen. PMID:23405062

Plominsky, Álvaro M.; Larsson, John; Bergman, Birgitta; Delherbe, Nathalie; Osses, Igor; Vásquez, Mónica

2013-01-01

154

A biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina  

PubMed Central

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d–bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light–absorbing form (Pfr, ?max = 697?nm) and an orange light–absorbing form (Po, ?max = 622?nm). At room temperature, Pfr fluoresces with a maximum at 730?nm. These spectral features are red-shifted by 48~77?nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

2015-01-01

155

Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens  

PubMed Central

Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

2014-01-01

156

Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis.  

PubMed

As a consequence of increasing industrial applications, thousand tons of polyphosphonates are introduced every year into the environment. The inherent stability of the C-P bond results in a prolonged half-life. Moreover, low uptake rates limit further their microbial metabolization. To assess whether low detergent concentrations were able to increase polyphosphonate utilization by the cyanobacterium Spirulina platensis, tolerance limits to the exposure to various detergents were determined by measuring the growth rate in the presence of graded levels below the critical micellar concentration. Then, the amount of hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid) that is metabolized in the absence or in the presence of sublethal detergent concentrations was quantified by (31)P NMR analysis on either P-starved or P-fed cyanobacterial cultures. The strain tolerated the presence of detergents in the order: nonionic > anionic > cationic. When added to the culture medium at the highest concentrations showing no detrimental effects upon cell viability, detergents either improved or decreased polyphosphonate utilization, the anionic sodium dodecyl sulfate being the most beneficial. Metabolization was not lower in P-fed cells--a result that strengthens the possibility of using, in the future, this strain for bioremediation purposes. PMID:23089958

Forlani, Giuseppe; Bertazzini, Michele; Giberti, Samuele; Wieczorek, Dorota; Kafarski, Pawe?; Lipok, Jacek

2013-05-01

157

Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula.  

PubMed

Cyanobacteria, or blue-green algae, are a rich source of novel bioactive secondary metabolites that have potential applications as antimicrobial or anticancer agents or useful probes in cell biology studies. A Jamaican collection of the cyanobacterium Lyngbya majuscula has yielded several unique compounds including hectochlorin ( 1) and the jamaicamides A-C ( 5- 7). Hectochlorin has remarkable antifungal and cytotoxic properties. In this study, we have isolated the hectochlorin biosynthetic gene cluster ( hct) from L. majuscula to obtain details regarding its biosynthesis at the molecular genetic level. The genetic architecture and domain organization appear to be colinear with respect to its biosynthesis and consists of eight open reading frames (ORFs) spanning 38 kb. An unusual feature of the cluster is the presence of ketoreductase (KR) domains in two peptide synthetase modules, which are predicted to be involved in the formation of the two 2,3-dihydroxyisovaleric acid (DHIV) units. This biosynthetic motif has only recently been described in cereulide, valinomycin, and cryptophycin biosynthesis, and hence, this is only the second such report of an embedded ketoreductase in a cyanobacterial secondary metabolite gene cluster. Also present at the downstream end of the cluster are two cytochrome P450 monooxygenases, which are likely involved in the formation of the DHIV units. A putative halogenase, at the beginning of the gene cluster, is predicted to form 5,5-dichlorohexanoic acid. PMID:18001088

Ramaswamy, Aishwarya V; Sorrels, Carla M; Gerwick, William H

2007-12-01

158

An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803  

SciTech Connect

The broader goal of this project was to merge knowledge from genomic, metabolic, ultrastructural and other perspectives to understand how cyanobacteria live, adapt and are regulated. This understanding aids in metabolic engineering and synthetic biology efforts using this group of organisms that contribute greatly to global photosynthetic CO2 fixation and that are closely related to the ancestors of chloroplasts. This project focused on photosynthesis and respiration in the cyanobacterium Synechocystis sp. PCC 6803, which is spontaneously transformable and has a known genome sequence. Modification of these fundamental processes in this organism can lead to improved carbon sequestration and hydrogen production, as well as to generation of high-quality biomass. In our GTL-supported studies at Arizona State University we focus on cell structure and cell physiology in Synechocystis, with particular emphasis on thylakoid membrane formation and on metabolism related to photosynthesis and respiration. Results on (a) thylakoid membrane biogenesis, (b) fluxes through central carbon utilization pathways, and (c) distribution mechanisms between carbon storage compounds are presented. Together, these results help pave the way for metabolic engineering efforts that are likely to result in improved solar-powered carbon sequestration and bioenergy conversion. Fueled by the very encouraging results obtained in this project, we already have attracted interest from major companies in the use of cyanobacteria for biofuel production.

Vermaas, Willem F.J.

2006-03-14

159

A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.  

PubMed

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, ?max = 697?nm) and an orange light-absorbing form (Po, ?max = 622?nm). At room temperature, Pfr fluoresces with a maximum at 730?nm. These spectral features are red-shifted by 48~77?nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

2015-01-01

160

CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.  

PubMed

Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics's usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics. PMID:25632108

Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

2015-01-01

161

[Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp].  

PubMed

The effect of carbonate concentration, pH of the medium, and illumination intensity on the major physiological characteristics (growth rate and the intensities of CO2 assimilation and oxygen photoproduction) of the natronophilic cyanobacterium Euhalothece sp. Z-M001 have been studied. It was established that the investigated microorganism has at least two transport systems (TS) for CO2, which differ in both the pH optimum and substrate affinity: TS I has a pH, 9.4-9.5 and a K(S) 0.5 of 13-17 mM, whereas TS II has a pH(opt) 9.9-10.2 and a K(S) 0.5 of 600-800 mM. The substrate affinity of these transport systems is several orders of magnitude lower than the substrate affinity of the transport systems of freshwater cyanobacteria. It is suggested that they are unique for extremely alkaliphilic cyanobacteria and reflect their adaptation to the seasonal cycles of the lake hydrochemistry. PMID:18825972

Mikhodiuk, O S; Zavarzin, G A; Ivanovski?, R N

2008-01-01

162

Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula.  

PubMed

Lagunamide C (1) is a cytotoxic cyclodepsipeptide isolated from the marine cyanobacterium, Lyngbya majuscula, from the western lagoon of Pulau Hantu Besar, Singapore. The complete structural characterization of the molecule was achieved by extensive NMR spectroscopic analysis as well as chemical manipulations. Several methods, including the advanced Marfey's method, a modified method based on derivatization with Mosher's reagents and analysis using LC-MS, and the use of (3)J(H-H) coupling constant values, were utilized for the determination of its absolute configuration. Compound 1 is related to the aurilide-class of molecules and it differs mainly in the macrocyclic structure by having a 27 membered ring system due to additional methylene carbon in the polyketide moiety. Lagunamide C displayed potent cytotoxic activity against a panel of cancer cell lines, such as P388, A549, PC3, HCT8, and SK-OV3 cell lines, with IC(50) values ranging from 2.1 nM to 24.4 nM. Compound 1 also displayed significant antimalarial activity with IC(50) value of 0.29 ?M when tested against Plasmodium falciparum. In addition, lagunamide C exhibited weak anti-swarming activity when tested at 100 ppm against the Gram-negative bacterial strain, Pseudomonas aeruginosa PA01. PMID:21903231

Tripathi, Ashootosh; Puddick, Jonathan; Prinsep, Michele R; Rottmann, Matthias; Chan, Kok Ping; Chen, David Yu-Kai; Tan, Lik Tong

2011-12-01

163

The amino acid sequence of low-potential cytochrome c550 from the cyanobacterium Microcystis aeruginosa.  

PubMed

The low-potential cytochrome c550 has been purified from the cyanobacterium Microcystis aeruginosa and its amino acid sequence has been determined. The protein contains 135 amino acid residues with the Cys-X-X-Cys-His heme binding site at residues 37 to 41. The sequence from residue 28 to 45 shows similarity to cytochrome c553 residues 1 to 18 when the heme binding sites are aligned. Another region of similarity is in the carboxyl-terminal regions of these two proteins. The two aligning regions of cytochrome c553 correspond to helical segments in other related cytochromes. A partial sequence of cytochrome c550 from Aphanizomenon flos-aquae was obtained and showed a 48% identity to the sequence of the M. aeruginosa cytochrome. The single methionine residue in cytochrome c550 of M. aeruginosa occurs at position 119 but there is no methionine in this region in the A. flos-aquae cytochrome, indicating that methionine is not the sixth ligand to the heme iron atom. Histidine 92 is a possible sixth ligand in M. aeruginosa cytochrome c550. The far-uv circular dichroism spectrum indicates that this protein is approximately 17% alpha helix, 42% beta-pleated sheet, and 41% random coil. PMID:2539046

Cohn, C L; Sprinkle, J R; Alam, J; Hermodson, M; Meyer, T; Krogmann, D W

1989-04-01

164

Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum  

PubMed Central

Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 ?M and 2.7 ?M, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R.; Chu, Justin Jang Hann

2014-01-01

165

GABA Accumulation in Response to Different Nitrogenous Compounds in Unicellular Cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

GABA accumulation and glutamate decarboxylase (GAD) activity, the principal enzyme involved in GABA formation, was investigated in cyanobacterium Synechocystis sp. PCC 6803 wild-type (WT) and gad knockout mutant strains grown in medium containing different nitrogenous compounds. Nitrate was the best nitrogen source for GAD activity and GABA accumulation followed by nitrite, ammonium, and urea. An increase in the accumulation of GABA was observed in WT and mutant cells grown for 24 h in medium supplemented with 0.5 mM putrescine or spermidine with a parallel increase in GAD activity. The mutant could not accumulate GABA at all the conditions tested except when supplemented with putrescine or spermidine, where high GABA levels were observed in both WT and mutant strains. Glutamate supplementation up to 10 mM for 24 h resulted in a significant increase in both GAD activity and GABA content. Overall results suggested that optimization of nitrogen source and nitrogenous compounds supplementation was effective for the enhancement of GABA accumulation in Synechocystis. PMID:25212770

Kanwal, Simab; Khetkorn, Wanthanee; Incharoensakdi, Aran

2015-01-01

166

Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming cyanobacterium  

PubMed Central

Background Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation. Results Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force [17]. Conclusion The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes. PMID:11329361

Samuel, Aravinthan DT; Petersen, Jennifer D; Reese, Thomas S

2001-01-01

167

Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803  

PubMed Central

In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

2014-01-01

168

Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39  

PubMed Central

A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis. PMID:20203057

Fujisawa, Takatomo; Narikawa, Rei; Okamoto, Shinobu; Ehira, Shigeki; Yoshimura, Hidehisa; Suzuki, Iwane; Masuda, Tatsuru; Mochimaru, Mari; Takaichi, Shinichi; Awai, Koichiro; Sekine, Mitsuo; Horikawa, Hiroshi; Yashiro, Isao; Omata, Seiha; Takarada, Hiromi; Katano, Yoko; Kosugi, Hiroki; Tanikawa, Satoshi; Ohmori, Kazuko; Sato, Naoki; Ikeuchi, Masahiko; Fujita, Nobuyuki; Ohmori, Masayuki

2010-01-01

169

Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119.  

PubMed Central

An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6,000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive features with respect to that isolated from non-photosynthetic organisms: (i) absolute specificity for NADPH, (ii) an alkaline optimum pH value of ca. 9.0, and (iii) strong acidic character of the protein, as estimated by column chromatofocusing. The kinetic parameters are very similar to those found for the chloroplast enzyme, but the molecular weight is lower, being comparable to that of non-photosynthetic microorganisms. A protective function, analogous to that assigned to the chloroplast enzyme, is suggested. Images PMID:6425264

Serrano, A; Rivas, J; Losada, M

1984-01-01

170

Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena.  

PubMed Central

The biliprotein phycocyanin (PC) is a major constituent of the light-harvesting apparatus of cyanobacteria and red algae. A DNA fragment encoding the beta and alpha subunits of PC was isolated from a genomic library of the cyanobacterium Anabaena 7120 DNA. The single-copy PC genes are part of a larger operon which consists of five open reading frames (ORFs) encoding, in order, the beta and alpha subunits of PC, two linker polypeptides associated with PC in phycobilisome rods, and a fifth ORF, which may encode a linker polypeptide involved in attachment of the phycobilisome rod to the core of the structure. The operon yields three major transcripts, the first of which (1.4 kb) encodes only the PC subunits. A second (3.6 kb) encodes all five ORFs, and appears to arise from partial read-through of a terminator following the PC subunit genes. The third transcript (1.4 kb) encodes the last two ORFs. The relative levels of the three transcripts in vivo are modulated by light intensity, but they are not altered by the removal of fixed nitrogen from the growth medium. The site of light regulation appears to be the terminator following the PC genes, rather than a promoter. Images Fig. 1. Fig. 2. Fig. 10. Fig. 11. Fig. 12. Fig. 13. Fig. 14. PMID:3109890

Belknap, W R; Haselkorn, R

1987-01-01

171

Effects of Iron Starvation on the Physiology of the Cyanobacterium Agmenellum quadruplicatum  

PubMed Central

The effects of iron starvation on the growth and physiology of the unicellular cyanobacterium Agmenellum quadruplicatum were studied. Uptake of iron from the medium did not occur at a constant rate. The majority of the iron was removed at two different times, when the cells were initially inoculated into the medium and after the cultures had become quite dense and had stopped growing. Iron became limiting for growth 16 h after transfer to an iron-deficient medium, but cultures retained full viability for at least 212 h. Once iron became limiting, c-phycocyanin and chlorophyll a were degraded concurrently. This was followed by an accumulation of intracellular glucose in place of the c-phycocyanin. Nitrate and nitrite reductase activities were elevated through 50 h, after which they decreased steadily. The photosynthetic unit size also increased through 50 h and then decreased. Once iron was restored to the culture medium, growth resumed. The intracellular pigment levels increased rapidly as the glucose level diminished. PMID:16346259

Hardie, L. P.; Balkwill, D. L.; Stevens, S. E.

1983-01-01

172

Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.  

PubMed

The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

2014-01-01

173

Anilofos Tolerance and Its Mineralization by the Cyanobacterium Synechocystis sp. Strain PUPCCC 64  

PubMed Central

This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L?1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L?1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L?1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L?1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L?1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L?1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate. PMID:23382844

Singh, D. P.; Khattar, J. I. S.; Kaur, Mandeep; Kaur, Gurdeep; Gupta, Meenu; Singh, Yadvinder

2013-01-01

174

Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme.  

PubMed

Nostoc punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc. A protocol for isolating thylakoid membranes was developed to examine the biochemical and biophysical aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N. punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analysed by measuring oxygen evolution activity, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centres were active in water oxidation in the final membrane preparation. Analysis of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b(6)/f could be observed. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones. PMID:18251853

Cardona, Tanai; Battchikova, Natalia; Agervald, Asa; Zhang, Pengpeng; Nagel, Erik; Aro, Eva-Mari; Styring, Stenbjörn; Lindblad, Peter; Magnuson, Ann

2007-12-01

175

Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake.  

PubMed

The reasons for annual variability in the composition of phytoplankton assemblages are poorly understood but may include competition for resources and allelopathic interactions. We show that domination by the patch-forming dinoflagellate, Peridinium gatunense, or, alternatively, a bloom of a toxic cyanobacterium, Microcystis sp., in the Sea of Galilee may be accounted for by mutual density-dependent allelopathic interactions. Over the last 11 years, the abundance of these species in the lake displayed strong negative correlation. Laboratory experiments showed reciprocal, density-dependent, but nutrient-independent, inhibition of growth. Application of spent P. gatunense medium induced sedimentation and, subsequently, massive lysis of Microcystis cells within 24 hr, and sedimentation and lysis were concomitant with a large rise in the level of McyB, which is involved in toxin biosynthesis by Microcystis. P. gatunense responded to the presence of Microcystis by a species-specific pathway that involved a biphasic oxidative burst and activation of certain protein kinases. Blocking this recognition by MAP-kinase inhibitors abolished the biphasic oxidative burst and affected the fate (death or cell division) of the P. gatunense cells. We propose that patchy growth habits may confer enhanced defense capabilities, providing ecological advantages that compensate for the aggravated limitation of resources in the patch. Cross-talk via allelochemicals may explain the phytoplankton assemblage in the Sea of Galilee. PMID:12401172

Vardi, Assaf; Schatz, Daniella; Beeri, Karen; Motro, Uzi; Sukenik, Assaf; Levine, Alex; Kaplan, Aaron

2002-10-15

176

Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.  

PubMed

Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme. PMID:25624477

Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

2015-02-10

177

A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 6803  

PubMed Central

A gene cluster composed of nine open reading frames (ORFs) involved in Ni2+, Co2+, and Zn2+ sensing and tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 has been identified. The cluster includes an Ni2+ response operon and a Co2+ response system, as well as a Zn2+ response system previously described. Expression of the Ni2+ response operon (nrs) was induced in the presence of Ni2+ and Co2+. Reduced Ni2+ tolerance was observed following disruption of two ORFs of the operon (nrsA and nrsD). We also show that the nrsD gene encodes a putative Ni2+ permease whose carboxy-terminal region is a metal binding domain. The Co2+ response system is composed of two divergently transcribed genes, corR and corT, mutants of which showed decreased Co2+ tolerance. Additionally, corR mutants showed an absence of Co2+-dependent induction of corT, indicating that CorR is a transcriptional activator of corT. To our knowledge, CorR is the first Co2+-sensing transcription factor described. Our data suggest that this region of the Synechocystis sp. strain PCC 6803 genome is involved in sensing and homeostasis of Ni2+, Co2+, and Zn2+. PMID:10692354

García-Domínguez, Mario; Lopez-Maury, Luis; Florencio, Francisco J.; Reyes, José C.

2000-01-01

178

Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005  

PubMed Central

The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

2014-01-01

179

Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803.  

PubMed

In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

2014-01-01

180

Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413  

PubMed Central

A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation of A. variabilis. The hupSL genes were transcribed as a 2.7-kb operon and were induced only under nitrogen-fixing conditions, as shown by Northern blot experiments and reverse transcriptase PCR. Primer extension experiments with a fluorescence-labeled oligonucleotide primer confirmed these results and identified the 5? start of the mRNA transcript 103 bp upstream of the ATG initiation codon. A consensus sequence in the promoter that is recognized by the fumarate nitrate reductase regulator (Fnr) could be detected. The hupSL operon in A. variabilis was interrupted by an interposon deletion (mutant strain AVM13). Under N2-fixing conditions, the mutant strain exhibited significantly increased rates in H2 accumulation and produced three times more hydrogen than the wild type. These results indicate that the uptake hydrogenase is catalytically active in the wild type and that the enzyme reoxidizes the H2 developed by the nitrogenase. The Nif phenotype of the mutant strain showed a slight decrease of acetylene reduction compared to that of the wild type. PMID:10692368

Happe, Thomas; Schütz, Kathrin; Böhme, Herbert

2000-01-01

181

Functional Analysis of PilT from the Toxic Cyanobacterium Microcystis aeruginosa PCC 7806?  

PubMed Central

The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 ± 1.8 nmol Pi min?1 mg protein?1, with a requirement for Mg2+. Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed. PMID:17172325

Nakasugi, Kenlee; Alexova, Ralitza; Svenson, Charles J.; Neilan, Brett A.

2007-01-01

182

Draft genome sequence of Rubidibacter lacunae strain KORDI 51-2T, a cyanobacterium isolated from seawater of Chuuk lagoon  

PubMed Central

A photoautotrophic cyanobacterium, Rubidibacter lacunae was reported in 2008 for the first time. The type strain, KORDI 51-2T, was isolated from seawater of Chuuk lagoon located in a tropical area. Although it belonged to a clade exclusively comprised of extremely halotolerant strains by phylogenetic analyses, R. lacunae is known to be incapable of growth at high salt concentration over 10%. Here we report the main features of the genome of R. lacunae strain KORDI 51-2T. The genome of R. lacunae contains a gene cluster for phosphonate utilization encoding three transporters, one regulator and eight C-P lyase subunits. PMID:24501656

Choi, Dong Han; Ryu, Jee-Youn; Kwon, Kae-Kyoung; Lee, Jung-Hyun; Kim, Changhoon; Lee, Charity M.

2013-01-01

183

Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process.  

PubMed

In this work, a recombinant cyanobacterium strain with increased photosynthesis rate, cell growth and carbohydrate production efficiency was genetically engineered by co-expressing ictB, ecaA, and acsAB (encoded for bacterial cellulose) in Synechococcus elongatus PCC7942. The resulting cyanobacterial biomass could be effectively hydrolyzed with dilute acid (2% sulfuric acid), achieving a nearly 90% glucose recovery at a biomass concentration of 80g/L. Bioethanol can be produced from fermenting the acidic hydrolysate of S. elongatus PCC7942 via separate hydrolysis and fermentation (SHF) process at a concentration of 7.2g/L and with a 91% theoretical yield. PMID:25453434

Chow, Te-Jin; Su, Hsiang-Yen; Tsai, Tsung-Yu; Chou, Hsiang-Hui; Lee, Tse-Min; Chang, Jo-Shu

2014-10-19

184

Isolation and Characterization of a Cyanophage Infecting the Toxic Cyanobacterium Microcystis aeruginosa  

PubMed Central

We isolated a cyanophage (Ma-LMM01) that specifically infects a toxic strain of the bloom-forming cyanobacterium Microcystis aeruginosa. Transmission electron microscopy showed that the virion is composed of anisometric head and a tail complex consisting of a central tube and a contractile sheath with helical symmetry. The morphological features and the host specificity suggest that Ma-LMM01 is a member of the cyanomyovirus group. Using semi-one-step growth experiments, the latent period and burst size were estimated to be 6 to 12 h and 50 to 120 infectious units per cell, respectively. The size of the phage genome was estimated to be ca. 160 kbp using pulse-field gel electrophoresis; the nucleic acid was sensitive to DNase I, Bal31, and all 14 restriction enzymes tested, suggesting that it is a linear double-stranded DNA having a low level of methylation. Phylogenetic analyses based on the deduced amino acid sequences of two open reading frames coding for ribonucleotide reductase alpha- and beta-subunits showed that Ma-LMM01 forms a sister group with marine and freshwater cyanobacteria and is apparently distinct from T4-like phages. Phylogenetic analysis of the deduced amino acid sequence of the putative sheath protein showed that Ma-LMM01 does not form a monophyletic group with either the T4-like phages or prophages, suggesting that Ma-LMM01 is distinct from other T4-like phages that have been described despite morphological similarity. The host-phage system which we studied is expected to contribute to our understanding of the ecology of Microcystis blooms and the genetics of cyanophages, and our results suggest the phages could be used to control toxic cyanobacterial blooms. PMID:16461672

Yoshida, Takashi; Takashima, Yukari; Tomaru, Yuji; Shirai, Yoko; Takao, Yoshitake; Hiroishi, Shingo; Nagasaki, Keizo

2006-01-01

185

Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*  

PubMed Central

In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ?340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

2013-01-01

186

A Novel Nitrate/Nitrite Permease in the Marine Cyanobacterium Synechococcus sp. Strain PCC 7002  

PubMed Central

The nrtP and narB genes, encoding nitrate/nitrite permease and nitrate reductase, respectively, were isolated from the marine cyanobacterium Synechococcus sp. strain PCC 7002 and characterized. NrtP is a member of the major facilitator superfamily and is unrelated to the ATP-binding cassette-type nitrate transporters that previously have been described for freshwater strains of cyanobacteria. However, NrtP is similar to the NRT2-type nitrate transporters found in diverse organisms. An nrtP mutant strain consumes nitrate at a 4.5-fold-lower rate than the wild type, and this mutant grew exponentially on a medium containing 12 mM nitrate at a rate approximately 2-fold lower than that of the wild type. The nrtP mutant cells could not consume nitrite as rapidly as the wild type at pH 10, suggesting that NrtP also functions in nitrite uptake. A narB mutant was unable to grow on a medium containing nitrate as a nitrogen source, although this mutant could grow on media containing urea or nitrite with rates similar to those of the wild type. Exogenously added nitrite enhanced the in vivo activity of nitrite reductase in the narB mutant; this suggests that nitrite acts as a positive effector of nitrite reductase. Transcripts of the nrtP and narB genes were detected in cells grown on nitrate but were not detected in cells grown on urea or ammonia. Transcription of the nrtP and narB genes is probably controlled by the NtcA transcription factor for global nitrogen control. The discovery of a nitrate/nitrite permease in Synechococcus sp. strain PCC 7002 suggests that significant differences in nutrient transporters may occur in marine and freshwater cyanobacteria. PMID:10572142

Sakamoto, Toshio; Inoue-Sakamoto, Kaori; Bryant, Donald A.

1999-01-01

187

Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942.  

PubMed Central

A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme. PMID:7919981

Cunningham, F X; Sun, Z; Chamovitz, D; Hirschberg, J; Gantt, E

1994-01-01

188

Rapid transient growth at low pH in the cyanobacterium Synechococcus sp.  

PubMed Central

The thermophilic cyanobacterium Synechococcus sp. strain Y-7c-s grows at its maximum rate at a high pH (pH 8 and above) the does not show sustained growth below pH 6.5. However, rapidly growing, exponential-phase cells from high-pH cultures continued to grow rapidly for several hours after transfer to pH 6.0 or 5.0. This transient growth represented increases in mass and protein, but cells failed to complete division. Viability loss commenced well before the cessation of growth, and cells at pH 5.0 showed no net DNA synthesis. When irradiated by visible light, cells at pH 6.0 and 5.0 maintained and internal pH of 6.9 to 7.1 (determined by 31P nuclear magnetic resonance spectroscopy) and an extremely high ATP/(ATP + ADP) ratio even after growth had ceased. Cells exposed to a low pH did not show an increase in the spontaneous mutation rate, as measured by mutation to streptomycin resistance. However, cells already resistant to streptomycin were more resistant to viability loss at a low pH than the parental type. Cultures that could grow transiently at a low pH had higher rates of viability loss than nongrowing cultures in light or darkness. The retention of a high internal pH by cells exposed to a low pH suggested that a low pH acted initially on the cell membrane, possibly on solute transport. PMID:6798020

Kallas, T; Castenholz, R W

1982-01-01

189

Increase of Nitrogenase Activity in the Blue-Green Alga Nostoc muscorum (Cyanobacterium)  

PubMed Central

Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under hydrogen or argon (nongrowing conditions, neither CO2 nor N2 or bound nitrogen present) in the light resulted in a two- to fourfold increase of light-induced hydrogen evolution and a 30% increase of acetylene reduction. Preincubation under the same gases in the dark led to a decrease of both activities. Cultivation of algae under a hydrogen-containing atmosphere (N2, H2, CO2) increased neither hydrogen nor ethylene evolution by the cells. Formation of both ethylene and hydrogen is due to nitrogenase activity, which apparently was induced by the absence of N2 or bound nitrogen and not by the presence of hydrogen. Inhibitors of protein biosynthesis prevented the increase of nitrogenase activity. Hydrogen uptake by the cells was almost unaffected under all of these conditions. With either ammonia or chloramphenicol present, nitrogenase activity decreased under growing conditions (i.e., an atmosphere of N2 and CO2). The kinetics of decrease were the same with ammonia or chloramphenicol, which was interpreted as being due to rapid protein breakdown with a half-life of approximately 4 h. The decay of nitrogenase activity caused by chloramphenicol could be counteracted by nitrogenase-inducing conditions, i.e., by the absence of N2 or bound nitrogen. A cell-free system from preconditioned algae with an adenosine 5?-triphosphate-generating system exhibited the same increase or decrease of nitrogenase activity as the intact cell filaments, indicating that this effect resided in the nitrogenase complex only. We tentatively assume that not the whole nitrogenase complex, but merely a subunit or a special protein with regulatory function, is susceptible to fast turnover. PMID:6777364

Scherer, Siegfried; Kerfin, Wolfgang; Böger, Peter

1980-01-01

190

Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.  

PubMed

Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. PMID:25303871

Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

2014-12-15

191

Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community  

PubMed Central

N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

Brauer, Verena S.; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J.; Stal, LucasJ.; Huisman, Jef

2014-01-01

192

Preliminary evidence of toxicity associated with the benthic cyanobacterium Phormidium in South Australia.  

PubMed

In April 2000, the water supply for Yorke Peninsula in South Australia was deemed non-potable when extracts from a proliferation of the benthic cyanobacterium Phormidium aff. formosum in Upper Paskeville Reservoir were found to be lethally toxic by intraperitoneal injection into mice (400 mg kg-1). Routine water quality monitoring had failed to detect the development of the Phormidium until complaints of musty taste and odour, attributable to the production of 2-methyl-isoborneol (MIB), were received from the consumers. The 185 ML open-balancing storage, receiving filtered and chloraminated water from the River Murray, was isolated from the drinking water supply and a health alert was issued to approximately 15,000 consumers. The identity of the toxin(s) is thus far unknown, but clinical symptoms of toxicity in mice and chemical characteristics are distinct from the known major cyanotoxins. Preliminary characterisation of this toxin indicates that it has low solubility in water and organic solvents and is strongly associated with the particulate cellular material of the filaments. Toxicity of extracts was diminished by boiling and by treatment with chlorine, but not by chloramines. Further testing of floating cyanobacterial mats in the Torrens Lake in the city of Adelaide (Phormidium aff. formosum) and Myponga Reservoir (Phormidium aff. amoenum) in 2000/2001 was also found to be toxic by mouse bioassay. Toxicity is yet to be confirmed in monospecific cultured strains and further studies are required to identify the toxin and assess its health significance. Genetic characterisation of isolates has commenced in an attempt to classify their relatedness and to assist in the rapid identification of potentially toxic strains. PMID:11769248

Baker, P D; Steffensen, D A; Humpage, A R; Nicholson, B C; Falconer, I R; Lanthois, B; Fergusson, K M; Saint, C P

2001-01-01

193

Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413  

PubMed Central

The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

Thiel, Teresa; Pratte, Brenda S.

2014-01-01

194

Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803.  

PubMed

Aiming at developing cyanobacterial-based biosensors for heavy metal detection, expression of heavy metal inducible genes of the cyanobacterium Synechocystis PCC 6803 was investigated by quantitative RT-PCR upon 15 minutes exposure to biologically relevant concentrations of Co2+, Zn2+, Ni2+, Cd2+, Cr6+, As3+ and As5+. The ziaA gene, which encodes a Zn2+-transporting P-type ATPase showed a markedly increased mRNA level after incubation with Cd2+ and arsenic ions, besides the expected induction by Zn2+ ions. The Co2+ efflux system-encoding gene coaT was strongly induced by Co2+ and Zn2+ ions, moderately induced by As3+ ions, and induced at a relatively low level by Cd2+ and As5+ ions. Expression of nrsB, which encodes a part of a putative Ni2+ efflux system was highly induced by Ni2+ salts and at a low extent by Co2+ and Zn2+ salts. The arsB gene, which encodes a putative arsenite-specific efflux pump was highly induced by As3+ and As5+ ions, while other metal salts provoked insignificant transcript level increase. The transcript of chrA, in spite of the high sequence similarity of its protein product with several bacterial chromate transporters, shows no induction upon Cr6+ salt exposure. We conclude that due to the largely unspecific heavy metal response of the studied genes only nrsB and arsB are potential candidates for biosensing applications for detection of Ni2+ and arsenic pollutants, respectively. PMID:18297791

Peca, Loredana; Kós, P B; Vass, I

2007-01-01

195

Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ?sigCDE contains the stress responsive SigB as the only functional group 2 ? factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required. PMID:24275086

Hakkila, Kaisa; Antal, Taras; Rehman, Ateeq Ur; Kurkela, Juha; Wada, Hajime; Vass, Imre; Tyystjärvi, Esa; Tyystjärvi, Taina

2014-02-01

196

Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface  

PubMed Central

The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species. PMID:21304826

Morris, J. Jeffrey; Johnson, Zackary I.; Szul, Martin J.; Keller, Martin; Zinser, Erik R.

2011-01-01

197

Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1.  

PubMed

Cyanobacteria are aquatic and photosynthetic microorganisms, which contribute up to 30% of the yearly oxygen production on the earth. They have the distinction of being the oldest known fossils, more than 3.5 billion years old, and are one of the largest and most important groups of bacteria on earth. Cyanobacteria are an emerging source of potentially pharmacologically active products and, among these, there are the lipopolysaccharides. Despite their significant and well documented activity, very little is known about the cyanobacteria lipopolysaccharides (LPS) structure. The aim of this work is to investigate the structure of the highly TLR4-antagonist lipopolysaccharide from the cyanobacterium Oscillatoria plankthotrix FP1. The LPS was purified and analysed by means of chemical analysis and 1H and 13C NMR spectroscopy. The LPS was then degraded by Smith degradation, HF and acetic acid hydrolyses. All the obtained products were investigated in detail by chemical analysis, NMR spectroscopy and by mass spectrometry. The LPS consists of a high molecular mass and very complex molecule lacking Kdo and heptose residues, where the polysaccharide chain is mainly constituted by a backbone of 3-substituted ?-l-rhamnose units. The core region is rich in galacturonic acid and mannose residues. Moreover a glycolipid portion, similar to Gram-negative lipid A, was identified. This was built up of a non phosphorylated (1'?6) linked glucosamine disaccharide, acylated with 3-hydroxylated fatty acids. In particular 3-hydroxypentadecanoic and 3-hydroxyesadecanoic acids were found, together with esadecanoic and tetradecanoic ones. Finally the presence of a galacturonic acid residue at 6-position of the distal glucosamine in place of the Kdo residue is suggested. PMID:24632212

Carillo, Sara; Pieretti, Giuseppina; Bedini, Emiliano; Parrilli, Michelangelo; Lanzetta, Rosa; Corsaro, Maria Michela

2014-03-31

198

Characterization of the Response to Zinc Deficiency in the Cyanobacterium Anabaena sp. Strain PCC 7120  

PubMed Central

Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium. PMID:22389488

Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J.

2012-01-01

199

Transcription of a 'photosynthetic' T4-type phage during infection of a marine cyanobacterium.  

PubMed

The transcription of S-PM2 phage following infection of Synechococcus sp. WH7803, a marine cyanobacterium, was analysed by quantitative real-time PCR. Unlike the distantly related coliphage T4, there were only two (early and late) instead of three (early, middle and late) classes of transcripts during the developmental cycle of the phage. This difference is consistent with the absence from the S-PM2 genome of T4-like middle mode promoter sequences and the transcription factors associated with their recognition. Phage S-PM2 carries the 'photosynthetic' genes psbA and psbD that encode homologues of the host photosystem II proteins D1 and D2. Transcripts of the phage psbA gene appeared soon after infection and remained at high levels until lysis. Throughout the course of infection, the photosynthetic capacity of the cells remained constant. A considerable transient increase in the abundance of the host psbA transcripts occurred shortly after infection, suggesting that the host responds to the trauma of phage infection in a similar way as it does to a variety of other environmental stresses. The very substantial transcription of the phage psbA gene during the latter phase of phage infection suggests that S-PM2 has acquired this cellular gene to ensure that D1 levels and thus photosynthesis are fully maintained until the infected cell finally lyses. Unexpectedly, transcripts of a phage-encoded S-layer protein gene were among the earliest and most abundant detected, suggesting that this partial homologue of a host protein plays an important role in the S-PM2 infection process. PMID:16623740

Clokie, Martha R J; Shan, Jinyu; Bailey, Shaun; Jia, Ying; Krisch, Henry M; West, Stephen; Mann, Nicholas H

2006-05-01

200

Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium  

PubMed Central

Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans. PMID:18534010

Frangeul, Lionel; Quillardet, Philippe; Castets, Anne-Marie; Humbert, Jean-François; Matthijs, Hans CP; Cortez, Diego; Tolonen, Andrew; Zhang, Cheng-Cai; Gribaldo, Simonetta; Kehr, Jan-Christoph; Zilliges, Yvonne; Ziemert, Nadine; Becker, Sven; Talla, Emmanuel; Latifi, Amel; Billault, Alain; Lepelletier, Anthony; Dittmann, Elke; Bouchier, Christiane; Tandeau de Marsac, Nicole

2008-01-01

201

DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F.  

PubMed Central

An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution. Images PMID:2880834

Chen, C H; Van Baalen, C; Tabita, F R

1987-01-01

202

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle  

SciTech Connect

Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

2008-09-30

203

Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis.  

PubMed Central

Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis. Images PMID:8407800

Thiel, T

1993-01-01

204

Isolation and characterization of the VnfEN genes of the cyanobacterium Anabaena variabilis.  

PubMed Central

The filamentous cyanobacterium Anabaena variabilis fixes nitrogen in the presence of vanadium (V) and in the absence of molybdenum (Mo), using a V-dependent nitrogenase (V-nitrogenase) encoded by the vnfDGK genes. Downstream from these genes are two genes that are similar to the vnfEN genes of Azotobacter vinelandii. Like the vnfDGK genes, the vnfEN genes were transcribed in the absence of Mo, whether or not V was present. A mutant with an insertion in the vnfN gene lacked V-nitrogenase activity; thus, the vnfEN genes were essential for the V-nitrogenase system in A. variabilis. Growth and acetylene reduction assays with wild-type and mutant strains suggested that the V-nitrogenase reduced dinitrogen better than acetylene. The similarity of the vnfEN genes of A. variabilis and A. vinelandii was not strong. The vnfEN genes of A. variabilis showed greater similarity to the vnfDK genes just upstream than to the A. vinelandii vnfEN genes. Sequence comparisons provide support for the idea that if the vnf genes were transferred laterally among bacterial strains, the vnf cluster was not transferred intact. It appears likely that the structural genes were transferred before a duplication event led to the evolution of the vnfEN genes independently in the two strains. The divergence of the vnfEN genes from the vnfDK genes suggests that this duplication, and hence the transfer of vnf genes, was an ancient event. PMID:8755876

Thiel, T

1996-01-01

205

Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal  

PubMed Central

Background Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution. PMID:21573169

van Gremberghe, Ineke; Vanormelingen, Pieter; Van der Gucht, Katleen; Debeer, Ann-Eline; Lacerot, Gissell; De Meester, Luc; Vyverman, Wim

2011-01-01

206

Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium  

PubMed Central

ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400 µmol ? mg Chl?1 ? h?1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ? mg Chl?1 ? h?1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. PMID:22872781

Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alexander S.

2012-01-01

207

Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium.  

PubMed

Some aquatic microbial oxygenic photoautotrophs (AMOPs) make hydrogen (H(2)), a carbon-neutral, renewable product derived from water, in low yields during autofermentation (anaerobic metabolism) of intracellular carbohydrates previously stored during aerobic photosynthesis. We have constructed a mutant (the ldhA mutant) of the cyanobacterium Synechococcus sp. strain PCC 7002 lacking the enzyme for the NADH-dependent reduction of pyruvate to D-lactate, the major fermentative reductant sink in this AMOP. Both nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) metabolomic methods have shown that autofermentation by the ldhA mutant resulted in no D-lactate production and higher concentrations of excreted acetate, alanine, succinate, and hydrogen (up to 5-fold) compared to that by the wild type. The measured intracellular NAD(P)(H) concentrations demonstrated that the NAD(P)H/NAD(P)(+) ratio increased appreciably during autofermentation in the ldhA strain; we propose this to be the principal source of the observed increase in H(2) production via an NADH-dependent, bidirectional [NiFe] hydrogenase. Despite the elevated NAD(P)H/NAD(P)(+) ratio, no decrease was found in the rate of anaerobic conversion of stored carbohydrates. The measured energy conversion efficiency (ECE) from biomass (as glucose equivalents) converted to hydrogen in the ldhA mutant is 12%. Together with the unimpaired photoautotrophic growth of the ldhA mutant, these attributes reveal that metabolic engineering is an effective strategy to enhance H(2) production in AMOPs without compromising viability. PMID:20543051

McNeely, Kelsey; Xu, Yu; Bennette, Nick; Bryant, Donald A; Dismukes, G Charles

2010-08-01

208

Investigation of the excited states dynamics in the Chl d- containing cyanobacterium Acaryochloris marina by time and wavelength correlated single-photon counting  

Microsoft Academic Search

The phototrophic cyanobacterium Acaryochloris marina discovered in 1996 has a unique composition of the light harvesting system. The chlorophyll (Chl) antenna contains mainly Chl d instead of the usually dominant Chl a and the Phycobiliprotein (PBP) antenna has a simpler rod shaped structure than in typical cynobacteria [1]. The interaction of the photosynthetic subunits and especially the mechanisms regulating the

Franz-Josef Schmitt; Christoph Theiss; Karin Wache; Justus Fuesers; Stefan Andree; Andrianto Handojo; Anne Karradt; Daniela Kiekebusch; Hans Joachim Eichler; Hann-Jörg Eckert

2006-01-01

209

Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris – a filamentous cyanobacterium containing chlorophyll f  

PubMed Central

A chlorophyll f containing cyanobacterium, Halomicronema hongdechloris (H. hongdechloris) was isolated from a stromatolite cyanobacterial community. The extremely slow growth rate of H. hongdechloris has hindered research on this newly isolated cyanobacterium and the investigation of chlorophyll f-photosynthesis. Therefore, optimizing H. hongdechloris culture conditions has become an essential requirement for future research. This work investigated the effects of various culture conditions, essential nutrients and light environments to determine the optimal growth conditions for H. hongdechloris and the biosynthetic rate of chlorophyll f. Based on the total chlorophyll concentration, an optimal growth rate of 0.22 ± 0.02 day-1(doubling time: 3.1 ± 0.3 days) was observed when cells were grown under continuous illumination with far-red light with an intensity of 20 ?E at 32°C in modified K + ES seawater (pH 8.0) with additional nitrogen and phosphor supplements. High performance liquid chromatography on H. hongdechloris pigments confirmed that chlorophyll a is the major chlorophyll and chlorophyll f constitutes ~10% of the total chlorophyll from cells grown under far-red light. Fluorescence confocal image analysis demonstrated changes of photosynthetic membranes and the distribution of photopigments in response to different light conditions. The total photosynthetic oxygen evolution yield per cell showed no changes under different light conditions, which confirms the involvement of chlorophyll f in oxygenic photosynthesis. The implications of the presence of chlorophyll f in H. hongdechloris and its relationship with the ambient light environment are discussed. PMID:24616731

Li, Yaqiong; Lin, Yuankui; Loughlin, Patrick C.; Chen, Min

2014-01-01

210

Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803.  

PubMed Central

The facultative heterotrophic cyanobacterium Synechocystis sp. strain PCC 6803 was transformed by HaeII Cmr fragments ligated at random to HaeII DNA fragments of the host genome. A similar transformation was done with an AvaII Kmr marker ligated to AvaII host DNA fragments. Integration of the resistance markers into the host genome led to a high frequency of stable Kmr and Cmr transformants. Physical analysis of individual transformants indicated that this result was due to homologous recombination by conversionlike events leading to insertion of the Cmr (or Kmr) gene between two HaeII (or AvaII) sites of the host genome, with precise deletion of the host DNA between these sites. In contrast, integrative crossover of circular DNA molecules with homology to the host DNA is very rare in this cyanobacterium. Strain PCC 6803 was shown to have about 12 genomic copies per cell in standard growth conditions, which complicates the detection of recessive mutations induced by chemical or UV mutagenesis. Random disruption of the host DNA by insertional transformation provides a convenient alternative to transposon mutagenesis in cyanobacteria and may help to overcome the difficulties encountered in generating recessive mutants by classical mutagenesis. Images PMID:2498291

Labarre, J; Chauvat, F; Thuriaux, P

1989-01-01

211

Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022.  

PubMed

The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli. PMID:19429625

Melnikov, Olga; Zaritsky, Arieh; Zarka, Aliza; Boussiba, Sammy; Malchin, Natalia; Yagil, Ezra; Kolot, Mikhail

2009-07-01

212

Site-Specific Recombination in the Cyanobacterium Anabaena sp. Strain PCC 7120 Catalyzed by the Integrase of Coliphage HK022?  

PubMed Central

The integrase (Int) of the ?-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP × attB and attL × attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate PglnA-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter PglnA. The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli. PMID:19429625

Melnikov, Olga; Zaritsky, Arieh; Zarka, Aliza; Boussiba, Sammy; Malchin, Natalia; Yagil, Ezra; Kolot, Mikhail

2009-01-01

213

Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna.  

PubMed

Laboratory experiments were used to test the hypothesis that feeding and growth of the zooplankton grazer Daphnia magna will decrease with increasing proportions of the cyanobacterium Cylindrospermopsis raciborskii in the diet (mixed feeds with the green alga Scenedesmus obliquus). A strain of C. raciborskii, which does not produce cylindrospermopsin but contains saxitoxins and gonyautoxins, was not acutely toxic to Daphnia, as the daphnids survived slightly longer in suspensions with the cyanobacterium as the sole feed than in medium without food. Daphnia growth rates were only depressed at feeds comprised of 75% C. raciborskii or more. Daphnids were larger with increased proportions of Scenedesmus in the food, but there was no difference between animals reared on mixed feeds and those grown on different proportions of a pure diet of Scenedesmus. Daphnia clearance rates on feeds with a high share of C. raciborskii were significantly lower than on mixtures with a low share of C. raciborskii. Consequently, in cylindrospermopsin-free strains, chemotypes that have been observed so far in Europe and Brazil, feeding inhibition and the resulting energy limitation might be the dominant factor affecting growth of large-bodied cladocerans. PMID:18951629

Soares, Maria Carolina S; Lürling, Miquel; Panosso, Renata; Huszar, Vera

2009-05-01

214

A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W  

PubMed Central

In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

2013-01-01

215

Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer  

PubMed Central

The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 ?m wide trichomes, composed of stacked disk-like short cells (2 ?m long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity. PMID:24376438

Kothari, Ankita; Vaughn, Michael; Garcia-Pichel, Ferran

2013-01-01

216

Application of Real-Time PCR To Estimate Toxin Production by the Cyanobacterium Planktothrix sp.? †  

PubMed Central

Quantitative real-time PCR methods are increasingly being applied for the enumeration of toxic cyanobacteria in the environment. However, to justify the use of real-time PCR quantification as a monitoring tool, significant correlations between genotype abundance and actual toxin concentrations are required. In the present study, we aimed to explain the concentrations of three structural variants of the hepatotoxin microcystin (MC) produced by the filamentous cyanobacterium Planktothrix sp., [Asp, butyric acid (Dhb)]-microcystin-RR (where RR means two arginines), [Asp, methyl-dehydro-alanine (Mdha)]-microcystin-RR, and [Asp, Dhb]-microcystin-homotyrosine-arginine (HtyR), by the abundance of the microcystin genotypes encoding their synthesis. Three genotypes of microcystin-producing cyanobacteria (denoted the Dhb, Mdha, and Hty genotypes) in 12 lakes of the Alps in Austria, Germany, and Switzerland from 2005 to 2007 were quantified by means of real-time PCR. Their absolute and relative abundances were related to the concentration of the microcystin structural variants in aliquots determined by high-performance liquid chromatography (HPLC). The total microcystin concentrations varied from 0 to 6.2 ?g liter?1 (mean ± standard error [SE] of 0.6 ± 0.1 ?g liter?1) among the samples, in turn resulting in an average microcystin content in Planktothrix of 3.1 ± 0.7 ?g mm?3 biovolume. Over a wide range of the population density (0.001 to 3.6 mm3 liter?1 Planktothrix biovolume), the Dhb genotype and [Asp, Dhb]-MC-RR were most abundant, while the Hty genotype and MC-HtyR were found to be in the lowest proportion only. In general, there was a significant linear relationship between the abundance/proportion of specific microcystin genotypes and the concentration/proportion of the respective microcystin structural variants on a logarithmic scale. We conclude that estimating the abundance of specific microcystin genotypes by quantitative real-time PCR is useful for predicting the concentration of microcystin variants in water. PMID:20363794

Ostermaier, Veronika; Kurmayer, Rainer

2010-01-01

217

Photoautotrophic production of D-lactic acid in an engineered cyanobacterium  

PubMed Central

Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the lactate production rate by the engineered strain reached a maximum of ~0.19 g D-lactate/L/day (in the presence of acetate). This study serves as a good complement to the recent metabolic engineering work done on Synechocystis 6803 for L-lactate production. Thereby, our study may facilitate future developments in the use of cyanobacterial cell factories for the commercial production of high quality PLA. PMID:24274114

2013-01-01

218

Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.  

PubMed

The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS), and mitochondrial membrane potential (??m) level. The results expose that there is a loss in membrane integrity with ROS formation that leads to alteration in the ??m, which ends up with severe mitochondrial injury in copper oxide nanoparticles treated cells. Hence, green way synthesized copper oxide nanoparticles may be a useful selective biological agent for the control of M. aeruginosa. PMID:25074832

Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

2014-12-01

219

Identification and characterization of a carboxysomal ?-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.  

PubMed

Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the ?-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated ?-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid ?-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient ?-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes. PMID:24907906

de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

2014-09-01

220

Sanctolide A, a 14-membered PK-NRP hybrid macrolide from the cultured cyanobacterium Oscillatoria sancta (SAG 74.79)  

PubMed Central

Sanctolide A (1), a 14-membered polyketide-nonribosomal peptide (PK-NRP) hybrid macrolide, was isolated from the cultured cyanobacterium Oscillatoria sancta (SAG 74.79). The planar structure was determined using various spectroscopic techniques including HRESIMS, and 1D and 2D NMR analyses. The relative configuration was assigned by J-based configurational analysis in combination with NOE correlations. The absolute configuration was determined by Mosher ester and enantioselective HPLC analyses. The structure of sanctolide A (1) features a rare N-methyl enamide and a 2-hydroxyisovaleric acid, which are incorporated to form a 14-membered macrolide ring structure, comprising a new type of cyanobacterial macrolides derived from a PKS-NRPS hybrid biosynthetic pathway. PMID:22711943

Kang, Hahk-Soo; Krunic, Aleksej; Orjala, Jimmy

2012-01-01

221

Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases.  

PubMed

We have studied the dynamics of cylindrospermopsin concentration (CYN) of a benthic cyanobacterium of the genus Oscillatoria under various light conditions over the different growth phases. The present study is the first one reporting on the effect of abiotic factors on the CYN accumulation and release by a benthic species. In particular we have measured the concentrations of both intracellular and extracellular CYN. We found that the total CYN content is highest during the exponential growth phase at intermediate light level (10 ?E m(-2) s(-1)) and during the stationary growth phase at more extreme lower and higher light levels. Our results also indicate that the amount of the extracellular form varied between 56 % and 96 % of the total CYN concentrations. We found no relationship between CYN content and growth rates. These results suggest many similarities with planktonic species but also highlight some differences. PMID:24170118

Bormans, Myriam; Lengronne, Marion; Brient, Luc; Duval, Charlotte

2014-02-01

222

Draft Genome Sequence of Marine Cyanobacterium Synechococcus sp. Strain NKBG042902, Which Harbors a Homogeneous Plasmid Available for Metabolic Engineering  

PubMed Central

The marine cyanobacterium Synechococcus sp. strain NKBG042902 was isolated from coastal areas in Japan. Strain NKBG042902 has four plasmids: pSY8, pSY9, pSY10, and pSY11. Moreover, the hybrid plasmid pUSY02 containing pSY11 and Escherichia coli plasmid pUC18 was constructed for this strain. The genetic manipulation technique using pUSY02 was established for this strain and used in metabolic engineering. Here, we report the draft genome sequence of this strain, which has 77 contigs comprising a total length of 3,319,479 bp, with a G+C content of 49.4%. PMID:25059865

Honda, Toru; Liang, Yue; Arai, Daichi; Ito, Yasuhito; Yoshino, Tomoko

2014-01-01

223

High Titer Heterologous Production of Lyngbyatoxin in E. coli, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium  

PubMed Central

Many chemically-complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L-1) and its precursor indolactam-V (150 mg L-1). Production, isolation and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization and exploitation of other cyanobacterial natural product pathways. PMID:23751865

Ongley, Sarah E.; Bian, Xiaoying; Zhang, Youming; Chau, Rocky; Gerwick, William H.; Müller, Rolf; Neilan, Brett A.

2013-01-01

224

Isolation and molecular characterization of a multicellular cyanobacterium, Limnothrix/Pseudanabaena sp. strain ABRG5-3.  

PubMed

A cyanobacterium, semi-filamentous multicellular strain ABRG5-3, was isolated and its unique nature was characterized. This axenic strain formed colonies and was motile on an agarose plate. The 16S rRNA gene of ABRG5-3 exhibited similarities to those of the Limnothrix and Pseudanabaena strains, which are known as filamentous and nonheterocystous cyanobacteria. Peaks in absorbance for the accumulation of chlorophyll a, phycocyanin, and phycoerythrin were observed in the cell extract. Natural separation of the pigments occurred in the supernatant of the autolysed cells. The cell lysis was promoted by osmotic shocks and lysozyme treatments. Chlorophyll a and total DNA were abundantly recovered from the cells. Analysis of the restriction-modification system for genomic DNA revealed novel diversity. Moreover, we made a successful attempt to create antibiotic-resistant strains by conjugation with a foreign plasmid, which indicates that strain ABRG5-3 is transformable. PMID:20834156

Nishizawa, Tomoyasu; Hanami, Tomoyo; Hirano, Eriko; Miura, Takamasa; Watanabe, Yuko; Takanezawa, Akira; Komatsuzaki, Masakazu; Ohta, Hiroyuki; Shirai, Makoto; Asayama, Munehiko

2010-01-01

225

Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium.  

PubMed Central

Anabaena, a filamentous cyanobacterium, is of developmental interest because, when deprived of fixed nitrogen, it shows patterned differentiation of N2-fixing cells called heterocysts. To help elucidate its early responses to a decrease in nitrogen, we used a derivative of transposon Tn5 to generate transcriptional fusions of promoterless bacterial luciferase genes, luxAB, to the Anabaena genome. Genes that responded to removal of fixed nitrogen or to other environmental shifts by increased or decreased transcription were identified by monitoring the luminescence of colonies from transposon-generated libraries. The Tn5 derivative transposed in Anabaena at ca. 1-4 x 10(-5) per cell and permitted high-resolution mapping of its position and orientation in the genome and facile cloning of contiguous genomic DNA. Images PMID:11607193

Wolk, C P; Cai, Y; Panoff, J M

1991-01-01

226

Proteomic Strategy for the Analysis of the Polychlorobiphenyl-Degrading Cyanobacterium Anabaena PD-1 Exposed to Aroclor 1254  

PubMed Central

The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase ? subunit, FOF1 ATP synthase subunit beta, ATP synthase ? subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1. PMID:24618583

Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

2014-01-01

227

Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium  

PubMed Central

Background Cyanobacteria are solar-powered prokaryotes useful for sustainable production of valuable molecules, but orthogonal and regulated promoters are lacking. The Lac repressor (LacI) from Escherichia coli is a well-studied transcription factor that is orthogonal to cyanobacteria and represses transcription by binding a primary lac operator (lacO), blocking RNA-polymerase. Repression can be enhanced through DNA-looping, when a LacI-tetramer binds two spatially separated lacO and loops the DNA. Ptrc is a commonly used LacI-repressed promoter that is inefficiently repressed in the cyanobacterium Synechocystis PCC 6803. Ptrc2O, a version of Ptrc with two lacO, is more efficiently repressed, indicating DNA-looping. To investigate the inefficient repression of Ptrc and cyanobacterial DNA-looping, we designed a Ptrc-derived promoter library consisting of single lacO promoters, including a version of Ptrc with a stronger lacO (Ptrc1O-proximal), and dual lacO promoters with varying inter-lacO distances (the Ptrc2O-library). Results We first characterized artificial constitutive promoters and used one for engineering a LacI-expressing strain of Synechocystis. Using this strain, we observed that Ptrc1O-proximal is similar to Ptrc in being inefficiently repressed. Further, the Ptrc2O-library displays a periodic repression pattern that remains for both non- and induced conditions and decreases with longer inter-lacO distances, in both E. coli and Synechocystis. Repression of Ptrc2O-library promoters with operators out of phase is less efficient in Synechocystis than in E. coli, whereas repression of promoters with lacO in phase is efficient even under induced conditions in Synechocystis. Two well-repressed Ptrc2O promoters were highly active when tested in absence of LacI in Synechocystis. Conclusions The artificial constitutive promoters herein characterized can be utilized for expression in cyanobacteria, as demonstrated for LacI. The inefficient repression of Ptrc and Ptrc1O-proximal in Synechocystis, as compared to E. coli, may be due to insufficient LacI expression, or differences in RNAP subunits. DNA-looping works as a transcriptional regulation mechanism similarly as in E. coli. DNA-looping contributes strongly to Ptrc2O-library repression in Synechocystis, even though they contain the weakly-repressed primary lacO of Ptrc1O-proximal and relatively low levels of LacI/cell. Hence, Synechocystis RNAP may be more sensitive to DNA-looping than E. coli RNAP, and/or the chromatin torsion resistance could be lower. Two strong and highly repressed Ptrc2O promoters could be used without induction, or together with an unstable LacI. PMID:24467947

2014-01-01

228

Regulation of nitrogenase activity in relation to the light-dark regime in the filamentous non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067  

Microsoft Academic Search

A periodicity in nitrogen fixation potential with respect to the light-dark regime was studied in the filamentous non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067. During a 12 h light\\/l2 h dark cycle, potential nitrogenase activity measured by acetylene reduction in the light was insignificant in the dark period, but developed after illumination for 1 to 3 h. Maximum nitrogenase activity was

K. Ohki; JONATHAN P. zEHR; YOSHIHIKO FUJITA

1992-01-01

229

Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation  

Microsoft Academic Search

Three mutant strains (ntcA, hetR, hetF) of the cyanobacterium Nostoc punctiforme unable to differentiate heterocysts were characterized and examined for their ability to form a symbiotic association with the bryophyte Anthoceros punctatus. Previously unknown characteristics of the N. punctiforme hetR mutant include differentiation of chilling-resistant akinetes, while vegetative cells of the ntcA mutant randomly lysed, yielding short filaments, following ammonium

Francis C. Y. Wong; John C. Meeks

230

Sequencing and modification of psbB, the gene encoding the CP47 protein of Photosystem II, in the cyanobacterium Synechocystis 6803  

Microsoft Academic Search

The Photosystem II protein CP-47 has been hypothesized to be involved in binding the reaction center chlorophyll. The psbB gene, encoding this protein, was cloned from the genome of the cyanobacterium Synechocystis 6803, and sequenced. The DNA sequence is 68% homologous with that of the psbB gene from spinach, whereas the predicted amino acid sequence is 76% homologous. The hydropathy

Wim F. J. Vermaas; John G. K. Williams; Charles J. Arntzen

1987-01-01

231

Exogenous expression of the wheat chloroplastic fructose-1,6-bisphosphatase gene enhances photosynthesis in the transgenic cyanobacterium, Anabaena PCC7120  

Microsoft Academic Search

The paper reports a study on the genetic regulation of photosynthesis by introducing the gene encoding wheat chloroplastic fructose-1,6-bisphosphatase (FBPase) into the cyanobacterium Anabaena PCC7120. The gene was RT-PCR amplified from wheat and modified by replacement of the 5'-terminal encoding sequence with optimal and A\\/T-rich codons to promote prokaryotic expression. The resultant FBPase gene was ligated downstream of the strong

Weimin Ma; Dingji Shi; Quanxi Wang; Lanzhen Wei; Haibao Chen

2005-01-01

232

Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea)  

PubMed Central

We report here the de novo genome assembly of a cyanobacterium, Aphanizomenon flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7 Mb with a G+C content of 38.2%, and it is enriched mostly with genes involved in amino acid and carbohydrate metabolism. PMID:25593252

Alzbutas, Gediminas; Kvederavi?i?t?, Kotryna; Koreivien?, Judita; Zakrys, Linas; Lubys, Arvydas; Paškauskas, Ri?ardas

2015-01-01

233

Evaluation of the Natural Product SeaKleen for Controlling the Musty-Odor-Producing Cyanobacterium Oscillatoria perornata in Catfish Ponds  

Microsoft Academic Search

The cyanobacterium (blue-green alga) Oscillatoria perornata is the major cause of musty off-flavor in farm-raised channel catfish Ictalurus punctatus in western Mississippi. Currently, the only federally approved compounds for use as selective algicides in catfish aquaculture ponds in the southeastern United States are the herbicide diuron and copper-based products (e.g., copper sulfate). Due to environmental issues and the broad-spectrum toxicity

Kevin K. Schrader; Agnes M. Rimando; Craig S. Tucker; Jan Glinski; Stephen J. Cutler; Horace G. Cutler

2004-01-01

234

The reaction mechanism of Photosystem I reduction by plastocyanin and cytochrome c 6 follows two different kinetic models in the cyanobacterium Pseudanabaena sp. PCC 6903  

Microsoft Academic Search

Plastocyanin (Pc) and cytochrome c6 (Cyt) have been purified to homogeneity from the cyanobacterium Pseudanabaena sp. PCC 6903, which occupies a unique divergent branch in the evolutionary tree of oxygen-evolving photosynthetic organisms. The two metalloproteins have similar molecular masses (9–10 kDa), as well as almost identical isoelectric points (ca. 8) and midpoint redox potentials (ca. 350 mV, at pH 7).

Manuel Hervás; José A. Navarro; Fernando P. Molina-Heredia; Miguel A. De la Rosa

1998-01-01

235

Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea).  

PubMed

We report here the de novo genome assembly of a cyanobacterium, Aphanizomenon flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7 Mb with a G+C content of 38.2%, and it is enriched mostly with genes involved in amino acid and carbohydrate metabolism. PMID:25593252

Šul?ius, Sigitas; Alzbutas, Gediminas; Kvederavi?i?t?, Kotryna; Koreivien?, Judita; Zakrys, Linas; Lubys, Arvydas; Paškauskas, Ri?ardas

2015-01-01

236

Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins  

PubMed Central

Background The marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation. Results An unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS) and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving ?-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region. Conclusion Insights into natural product regulation in cyanobacteria are of significant value to drug discovery and biotechnology. To our knowledge, this is the first attempt to characterize the transcription and regulation of secondary metabolism in a marine cyanobacterium. If jamaicamide is light regulated, this mechanism would be similar to other cyanobacterial natural product gene clusters such as microcystin LR. These findings could aid in understanding and potentially assisting the management of toxin production by Lyngbya in the environment. PMID:19951434

2009-01-01

237

Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142  

NASA Technical Reports Server (NTRS)

It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

1994-01-01

238

Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.  

PubMed

Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the ?flv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in ?flv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

2014-07-29

239

Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources  

PubMed Central

The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences. PMID:22514553

Ludwig, Marcus; Bryant, Donald A.

2012-01-01

240

Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101.  

PubMed

Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 ?M but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 ?M) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 ?M) and ammonium (20 ?M). However, nifH transcript levels were below detection at ammonium concentrations >20 ?M. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 ?M. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101. PMID:21938021

Post, Anton F; Rihtman, Branko; Wang, Qingfeng

2012-03-01

241

Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean.  

PubMed

Diazotrophic cyanobacteria have long been recognized as important sources of reduced nitrogen (N) and therefore are important ecosystem components. Until recently, species of the filamentous cyanobacterium Trichodesmium were thought to be the primary sources of fixed N to the open ocean euphotic zone. It is now recognized that unicellular cyanobacteria are also important contributors, with members of the oligotrophic genus Crocosphaera being the only cultured examples. Herein we genetically and phenotypically characterize 10 strains isolated from the tropical Atlantic and North Pacific Oceans, and show that although all of the strains are highly similar at the genetic level, with the internal transcribed sequence (ITS) region sequence varying by approximately 2 bp on average, there are many unexpected phenotypic differences between the isolates (e.g. cell size, temperature optima and range, extracellular material excretion and variability in rates of nitrogen fixation). However based on the observed sequence similarity, we propose that all of these isolates are members of the genus Crocosphaera (type strain Crocosphaera watsonii WH8501), and that the phenotypic diversity we see may reflect ecologically important variation relevant for modelling N(2) fixation in the oligotrophic ocean. PMID:19196268

Webb, Eric A; Ehrenreich, Ian M; Brown, Susan L; Valois, Frederica W; Waterbury, John B

2009-02-01

242

Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation.  

PubMed

* As iron (Fe) deficiency is a main limiting factor of ocean productivity, its effects were investigated on interactions between photosynthesis and nitrogen fixation in the marine nonheterocystous diazotrophic cyanobacterium Trichodesmium IMS101. * Biophysical methods such as fluorescence kinetic microscopy, fast repetition rate (FRR) fluorimetry, and in vivo and in vitro spectroscopy of pigment composition were used, and nitrogenase activity and the abundance of key proteins were measured. * Fe limitation caused a fast down-regulation of nitrogenase activity and protein levels. By contrast, the abundance of Fe-requiring photosystem I (PSI) components remained constant. Total levels of phycobiliproteins remained unchanged according to single-cell in vivo spectra. However, the regular 16-kDa phycoerythrin band decreased and finally disappeared 16-20 d after initiation of Fe limitation, concomitant with the accumulation of a 20-kDa protein cross-reacting with the phycoerythrin antibody. Concurrently, nitrogenase expression and activity increased. Fe limitation dampened the daily cycle of photosystem II (PSII) activity characteristic of diazotrophic Trichodesmium cells. Further, it increased the number and prolonged the time period of occurrence of cells with elevated basic fluorescence (F(0)). Additionally, it increased the effective cross-section of PSII, probably as a result of enhanced coupling of phycobilisomes to PSII, and led to up-regulation of the Fe stress protein IsiA. * Trichodesmium survives short-term Fe limitation by selectively down-regulating nitrogen fixation while maintaining but re-arranging the photosynthetic apparatus. PMID:18513224

Küpper, Hendrik; Setlík, Ivan; Seibert, Sven; Prásil, Ondrej; Setlikova, Eva; Strittmatter, Martina; Levitan, Orly; Lohscheider, Jens; Adamska, Iwona; Berman-Frank, Ilana

2008-01-01

243

Isolation and characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the tropical western Pacific Ocean.  

PubMed

A unicellular diazotrophic cyanobacterium strain of Group C, designated TW3, was isolated from the oligotrophic Kuroshio Current of the western Pacific Ocean. To our knowledge, this represents the first successful laboratory culture of a Group C unicellular diazotroph from oceanic water. TW3 cells are green rods, 2.5-3.0 µm in width and 4.0-6.0 µm in length. Phylogenetic analyses of both 16S rRNA and nifH gene fragments indicated that the TW3 sequences were over 98% identical to those of the previously isolated Cyanothece sp. ATCC51142 and Gloeocapsa sp., suggesting that TW3 is a member of the Group C unicellular diazotrophs. In addition, both TW3 and Cyanothece sp. ATCC51142 share morphological characteristics; both strains are sheathless and rod-shaped, display binary fission in a single plane, and possess dispersed thylakoids. TW3 grows aerobically in nitrogen-deficient artificial seawater, and exhibited the highest observed growth rate of 0.035 h(-1) when cultured at 30°C and 140 µmol m(-2) s(-1) of light intensity. The nitrogen fixation rate, when grown optimally using a 12 h/12 h light-dark cycle, was 7.31 × 10(-15) mol N cell(-1) day(-1) . Immunocytochemical staining using Trichodesmium sp. NIBB1067 nitrogenase antiserum revealed the existence of diazotrophic cells sharing morphological characteristics of TW3 in the Kuroshio water from which TW3 was isolated. PMID:21981769

Taniuchi, Yukiko; Chen, Yuh-ling Lee; Chen, Houng-Yung; Tsai, Mei-Ling; Ohki, Kaori

2012-03-01

244

Ecological Physiology of Synechococcus sp. Strain SH-94-5, a Naturally Occurring Cyanobacterium Deficient in Nitrate Assimilation  

PubMed Central

Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world. PMID:11425713

Miller, Scott R.; Castenholz, Richard W.

2001-01-01

245

Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis, and variation in Nostoc sp  

SciTech Connect

Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a physocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.

Ohki, K.; Gantt, E.; Lipschultz, C.A.; Ernst, M.C.

1985-12-01

246

The blooms of a cyanobacterium, Microcystis cf. aeruginosa in a severely polluted estuary, the Golden Horn, Turkey  

NASA Astrophysics Data System (ADS)

The distribution of toxic cyanobacterium Microcystis cf. aeruginosa in the severely polluted Golden Horn Estuary was studied from 1998 to 2000. Microcystis persisted at the upper estuary where the water circulation was poor and values ranged between 2.9 × 10 4 and 2.7 × 10 6 cells ml -1 throughout the study. Simultaneously measured physical (salinity, temperature, rainfall and secchi disc) and chemical parameters (nutrients and dissolved oxygen) were evaluated together with Microcystis data. Although the Microcystis blooms generally occur in summer due to the increase in temperature, the blooms were recorded in winter in the present study. The abundance of Microcystis depended on the variations in salinity and both blooms were recorded below S = 2. A moderate partial correlation between Microcystis abundance and salinity was detected in the presence of temperature, dissolved oxygen and precipitation data ( r = -0.561, p = 0.002). The M. cf. aeruginosa abundance was low in the summer when the salinity was higher than winter. A remarkable increase in the eukaryotic phytoplankton abundance following the improvements in the water quality of the estuary occurred, whilst the Microcystis abundance remained below bloom level.

Ta?, Seyfettin; Oku?, Erdo?an; Aslan-Y?lmaz, Asl?

2006-07-01

247

Alpha-tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803.  

PubMed

Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5 degrees C) in the dark but rapidly losses viability when exposed to chill in the light (100 micromol photons m(-2) s(-1)). Preconditioning at a low temperature (15 degrees C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of alpha-tocopherol after exposure to chill-light stress. Mutants unable to synthesize alpha-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P(petE) controlled the level of alpha-tocopherol and ACLT. We conclude that alpha-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of alpha-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates. PMID:18165303

Yang, Yang; Yin, Chuntao; Li, Weizhi; Xu, Xudong

2008-03-01

248

Model for HCO/sub 3//sup -/ accumulation and photosynthesis in the cyanobacterium Synechococcus sp: theoretical predictions and experimental observations  

SciTech Connect

A simple model based on HCO/sub 3//sup -/ transport has been developed to relate photosynthesis and inorganic carbon fluxes for the marine cyanobacterium, Synechococcus sp. Naegeli (strain RRIMP N1). Predicted relationships between inorganic carbon transport, CO/sub 2/ fixation, internal carbonic anhydrase activity, and leakage of CO/sub 2/ out of the cell, allow comparisons to be made with experimentally obtained data. Measurements of inorganic carbon fluxes and internal inorganic carbon pool sizes in these cells were made by monitoring time-courses of CO/sub 2/ changes (using a mass spectrometer) during light/dark transients. At just saturating CO/sub 2/ conditions, total inorganic carbon transport did not exceed net CO/sub 2/ fixation by more than 30%. This indicates CO/sub 2/ leakage similar to that estimated for C/sub 4/ plants. For this leakage rate, the model predicts the cell would need a conductance to CO/sub 2/ of around 10/sup -5/ centimeters per second. The model predicts that carbonic anhydrase is necessary internally to allow a sufficiently fast rate of CO/sub 2/ production to prevent a large accumulation of HCO/sub 3//sup -/. Intact cells show light stimulated carbon anhydrase activity when assayed using /sup 18/O-labeled CO/sub 2/ techniques.

Badger, M.R.; Bassett, M.; Comins, H.N.

1985-02-01

249

Hydrogen Generation through Indirect Biophotolysis in Batch Cultures of the Non-Heterocystous Nitrogen-Fixing Cyanobacterium Plectonema boryanum  

SciTech Connect

The nitrogen-fixing non-heterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO2 to maintain anaerobiosis. The highest hydrogen production rate (i.e., 0.18 mL/mg?day or 7.3 ?mol/mg?day) ) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 ?mol/m2?sec. The addition of photosystem II inhibitor DCMU did not reduce hydrogen production rates relative to unchallenged controls for 50 to 150 hours, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at photosystem II (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

Huesemann, Michael H.; Hausmann, Tom S.; Carter, Blaine M.; Gerschler, Jared J.; Benemann, John R.

2010-09-01

250

Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus?MED4 I: uptake physiology.  

PubMed

Recent measurements of natural populations of the marine cyanobacterium Prochlorococcus indicate this numerically dominant phototroph assimilates phosphorus (P) at significant rates in P-limited oceanic regions. To better understand uptake capabilities of Prochlorococcus under different P stress conditions, uptake kinetic experiments were performed on Prochlorococcus?MED4 grown in P-limited chemostats and batch cultures. Our results indicate that MED4 has a small cell-specific Vmax but a high specific affinity (?P ) for P, making it competitive with other marine cyanobacteria at low P concentrations. Additionally, MED4 regulates its uptake kinetics in response to P stress by significantly increasing Vmax and ?P for both inorganic and organic P (PO4 and ATP). The Michaelis-Menten constant, KM , for PO4 remained constant under different P stress conditions, whereas the KM for ATP was higher when cells were stressed for PO4 , pointing to additional processes involved in uptake of ATP. MED4 cleaves the PO4 moieties from ATP, likely with a 5'-nucleotidase-like enzyme rather than alkaline phosphatase. MED4 exhibited distinct physiological differences between cells under steady-state P limitation versus those transitioning from P-replete to P-starved conditions. Thus, MED4 employs a variety of strategies to deal with changing P sources in the oceans and displays complexity in P stress acclimation and regulatory mechanisms. PMID:23387819

Krumhardt, Kristen M; Callnan, Kate; Roache-Johnson, Kathryn; Swett, Tammy; Robinson, Daniela; Reistetter, Emily Nahas; Saunders, Jaclyn K; Rocap, Gabrielle; Moore, Lisa R

2013-07-01

251

Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus?MED4 II: gene expression.  

PubMed

Phosphorus (P) availability drives niche differentiation in the most abundant phytoplankter in the oceans, the marine cyanobacterium Prochlorococcus. We compared the molecular response of Prochlorococcus strain MED4 to P starvation in batch culture to P-limited growth in chemostat culture. We also identified an outer membrane porin, PMM0709, which may allow transport of organic phosphorous compounds, rather than phosphate as previously suggested. The expression of three P uptake genes, pstS, the high-affinity phosphate-binding component of the phosphate transporter, phoA, an alkaline phosphatase, and porin PMM0709, were strongly upregulated (between 10- and 700-fold) under both P starvation and limitation. pstS exhibits high basal expression under P-replete conditions and is likely necessary for P uptake regardless of P availability. A P-stress regulatory gene, ptrA, was upregulated in response to both P starvation and limitation although a second regulatory gene, phoB, was not. Elevated expression levels (>?10-fold) of phoR, a P-sensing histidine kinase, were only observed under conditions of P limitation. We suggest Prochlorococcus in P-limited systems are physiologically distinct from cells subjected to abrupt P depletion. Detection of expression of both pstS and phoR in field populations will enable discernment of the present P status of Prochlorococcus in the oligotrophic oceans. PMID:23647921

Reistetter, Emily Nahas; Krumhardt, Kristen; Callnan, Kate; Roache-Johnson, Kathryn; Saunders, Jaclyn K; Moore, Lisa R; Rocap, Gabrielle

2013-07-01

252

In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns  

PubMed Central

Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

Hofmann, Hilmar; Peeters, Frank

2013-01-01

253

Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120  

PubMed Central

Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the ?flv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in ?flv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

2014-01-01

254

Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.  

PubMed

Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed. PMID:25421789

Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

2015-02-01

255

Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters.  

PubMed

The current trend of global warming is expected to stimulate the expansion of harmful cyanobacteria blooms. Previously, the occidental type of barley straw has been used to control blooms in Europe and America, but very little is known about the antialgal abilities of its oriental relative. We tested the use of Tibetan hulless barley straw--the progenitor of oriental barley--to inhibit the growth of cyanobacterium Microcystis aeruginosa. Flow cytometry allowed assessment at single-cell level, with morphologic parameters (cell volume, cell membrane integrity) and physiological parameters (in vivo Chlorophyll a fluorescence, metabolic activity) used as endpoints. The reduction of cell densities together with integrated cell membranes suggests that Tibetan barley may act as an algistatic agent. Doses from 2.0 to 8.0 g L?¹ of Tibetan barley straw efficiently inhibited the alga, but these doses were much higher than those of occidental barley. Such a large dosage introduced additional nutrients, which stimulated the intracellular metabolic activity and induced two physiological subpopulations in the acute term. After mid and long-term exposure, the growth inhibition effect exceeded the stimulation effect, so that the cells' metabolic activity and Chlorophyll a fluorescence decayed, simultaneously with shrinkage in the algal cell volume. PMID:20934201

Xiao, Xi; Chen, Ying-xu; Liang, Xin-qiang; Lou, Li-ping; Tang, Xian-jin

2010-11-01

256

Effect of Nitrogen on Cellular Production and Release of the Neurotoxin Anatoxin-A in a Nitrogen-Fixing Cyanobacterium  

PubMed Central

Anatoxin-a (ANTX) is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply (as 1, 5, and 100% N of standard cyanobacterial medium corresponding to 15, 75, and 1500?mg?L?1 of NaNO3 respectively) on ANTX production and release in a toxic strain of the planktonic cyanobacterium Aphanizomenon issatschenkoi (Nostocales). We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146??g/L and 1683??g?g?1 dry weight) at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nitrogen stress. Maximal cellular contents of other cyanotoxins have recently been reported under severe stress conditions in another Nostocales species. PMID:22701451

Gagnon, Alexis; Pick, Frances R.

2012-01-01

257

Chemical Characterization of Polysaccharide from the Slime Layer of the Cyanobacterium Microcystis flos-aquae C3-40.  

PubMed

Macromolecular material from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40 was defined as material that adhered to cells during centrifugation in growth medium but was dislodged by washing with deionized water and retained within dialysis tubing with a molecular-weight cutoff of 3,500. At each step of this isolation procedure, the slime was observed microscopically. Cells in the centrifugal pellet were surrounded by large amounts of slime that excluded negative stain, whereas cells that had been washed with water lacked visible slime. Two independently isolated lots of slime contained no detectable protein (<1%, wt/wt) and consisted predominantly of anthrone-reacting polysaccharide. Sugars in a hydrolysate of slime polysaccharide were derivatized with trimethylsilylimidazole and examined by gas chromatography-mass spectrometry. The composition of the slime polysaccharide was 1.5% (wt/wt) galactose, 2.0% glucose, 3.0% xylose, 5.0% mannose, 5.5% rhamnose, and 83% galacturonic acid. This composition resembles that of the plant polysaccharide pectin, which was treated in parallel as a control. Consistent with earlier indications that M. flos-aquae slime preferentially binds certain cations, the ratio of Fe to Na in the dialyzed slime was 10 times that in the growth medium. The composition of the slime is discussed with respect to possible mechanisms of cation binding in comparison with other cyanobacterial exopolysaccharides and pectin. PMID:16348506

Plude, John L; Parker, Dorothy L; Schommer, Olivia J; Timmerman, Robert J; Hagstrom, Stephanie A; Joers, James M; Hnasko, Robert

1991-06-01

258

Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters  

PubMed Central

Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100??g/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100??g/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

2011-01-01

259

Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa  

PubMed Central

Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L?1, but not at 1 and 2 mg L?1. Peroxide dosed at 4 or 8 mg L?1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L?1) and 12-times (8 mg L?1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

2014-01-01

260

Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.  

PubMed

A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. PMID:24140001

Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

2014-02-15

261

Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon.  

PubMed Central

Many biological processes in photosynthetic organisms can be regulated by light quantity or light quality or both. A unique example of the effect of specific wavelengths of light on the composition of the photosynthetic apparatus occurs in cyanobacteria that undergo complementary chromatic adaptation. These organisms alter the composition of their light-harvesting organelle, the phycobilisome, and exhibit distinct morphological features as a function of the wavelength of incident light. Fremyella diplosiphon, a filamentous cyanobacterium, responds to green light by activating transcription of the cpeBA operon, which encodes the pigmented light-harvesting component phycoerythrin. We have isolated and determined the complete nucleotide sequence of another operon, cpeCD, that encodes the linker proteins associated with phycoerythrin hexamers in the phycobilisome. The cpeCD operon is activated in green light and expressed as two major transcripts with the same 5' start site but differing 3' ends. Analysis of the kinetics of transcript accumulation in cultures of F. diplosiphon shifted from red light to green light and vice versa shows that the cpeBA and cpeCD operons are regulated coordinately. A common 17-base-pair sequence is found upstream of the transcription start sites of both operons. A comparison of the predicted amino acid sequences of the phycoerythrin-associated linker proteins CpeC and CpeD with sequences of other previously characterized rod linker proteins shows 49 invariant residues, most of which are in the amino-terminal half of the proteins. Images PMID:1694529

Federspiel, N A; Grossman, A R

1990-01-01

262

Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases.  

PubMed

Glycogen constitutes the major carbon storage source in cyanobacteria, as starch in algae and higher plants. Glycogen and starch synthesis is linked to active photosynthesis and both of them are degraded to glucose in the dark to maintain cell metabolism. Control of glycogen biosynthesis in cyanobacteria could be mediated by the regulation of the enzymes involved in this process, ADP-glucose pyrophosphorylase (AGP) and glycogen synthase, which were identified as putative thioredoxin targets. We have analyzed whether both enzymes were subjected to redox modification using purified recombinant enzymes or cell extracts in the model cyanobacterium Synechocystis sp. PCC 6803. Our results indicate that both AGP and glycogen synthases are sensitive to copper oxidation. However, only AGP exhibits a decrease in its enzymatic activity, which is recovered after reduction by DTT or reduced thioredoxin (TrxA), suggesting a redox control of AGP. In order to elucidate the role in redox control of the cysteine residues present on the AGP sequence (C45, C185, C320, and C337), they were replaced with serine. All AGP mutant proteins remained active when expressed in Synechocystis, although they showed different electrophoretic mobility profiles after copper oxidation, reflecting a complex pattern of cysteines interaction. PMID:24121290

Díaz-Troya, Sandra; López-Maury, Luis; Sánchez-Riego, Ana María; Roldán, Miguel; Florencio, Francisco J

2014-01-01

263

The effect of temperature on growth and production of paralytic shellfish poisoning toxins by the cyanobacterium Cylindrospermopsis raciborskii C10.  

PubMed

Cylindrospermopsis raciborskii is a cyanobacterium which produces either cylindrospermopsine or paralytic shellfish poisoning (PSP) toxins. We studied the effect of temperature on growth and production of PSP toxins by C. raciborskii C10, isolated from a freshwater reservoir in Brazil. We analyzed the extracellular and intracellular content of PSP toxins at two different temperatures: 19 and 25 degrees C. C. raciborskii C10 produces STX, GTX2, and GTX3 at both temperatures. dcSTX was also detected at 25 degrees C in the intracellular extracts obtained at the end of the stationary phase. The growth achieved at 25 degrees C and estimated by optical density at 700 nm was three times greater than at 19 degrees C. However, no significant differences were observed in the content of PSP toxins in either the cells or the extracellular media. The kinetics of accumulation of PSP toxins within the cells rather than in the media suggests an active PSP toxins-export process that is not related to cell lysis. The extracellular accumulation of PSP toxins at 19 degrees C suggested a biotransformation of STX to the epimers GTX2 and GTX3. The stability of the PSP toxins produced by C. raciborskii C10 was high enough for them to remain active in the media after 30 days (at 25 degrees C) or after 50 days (at 19 degrees C). PMID:15450922

Castro, Daniela; Vera, Diana; Lagos, Néstor; García, Carlos; Vásquez, Mónica

2004-10-01

264

Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.  

PubMed Central

Absorption and fluorescence spectra of the C-phycocyanin beta-subunit were quantitatively deconvoluted into component spectra of the beta-84 and beta-155 chromophores. The deconvolution procedure was based on a theoretical treatment of polarization properties. Four kinds of spectra (absorption, emission, emission polarization, and excitation polarization) measured on C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus were used as the experimental data set. Without any assumption of spectral shape, the absorption and fluorescence spectra of both chromophores were unambiguously resolved and their fluorescence quantum yields were evaluated. By combining the spectra of the alpha-subunit, independently measured, with the resolved spectra of the beta-subunit, the fluorescence and fluorescence polarization spectra and the fluorescence quantum yield of the monomer were estimated; they agree with experimental values to within an acceptable error. Further, the matrix of energy transfer rates in the monomer was estimated; it gave a significantly different result (by up to 40%) from previously estimated ones. PMID:7787035

Demidov, A A; Mimuro, M

1995-01-01

265

Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa.  

PubMed

Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L-1, but not at 1 and 2 mg L-1. Peroxide dosed at 4 or 8 mg L-1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L-1) and 12-times (8 mg L-1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J

2014-01-01

266

Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena.  

PubMed Central

Depriving the cyanobacterium Anabaena of fixed nitrogen induces the differentiation of heterocysts at intervals along its filaments. To test whether the oxygen-deficient conditions believed to prevail within mature heterocysts are sufficient, in the absence of fixed nitrogen, to elicit the expression of nitrogenase, PnifHDK was fused transcriptionally to luxAB (encoding luciferase). Expression, monitored from individual cells as light emission, was localized (with a resolution of approximately 1 micron) to differentiated cells, whether or not oxygen was present. Anabaena PCC 7118 is a heterocystless mutant strain that is known to fix nitrogen when deprived of combined nitrogen under anaerobic conditions. Three lines of evidence indicate that the mutant has retained the ability to develop a pattern despite its inability to make heterocysts. First, morphologically distinct cells appear at nonrandom intervals when filaments are starved of nitrogen. Second, these cells, like heterocysts, have little or no phycocyanin-dependent fluorescence. Third, nitrogen-starved filaments fragment, with fragment lengths similar to the spacing normally seen between heterocysts. Expression of PnifHDK-luxAB was largely confined to differentiated cells in the mutant as in the wild-type strain. These results provide evidence for a causal relationship between development and transcriptional events in Anabaena. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 9. Fig. 10. Fig. 11. PMID:2120040

Elhai, J; Wolk, C P

1990-01-01

267

Variability of Hydrocarbon and Fatty Acid Components in Cultures of the Filamentous Cyanobacterium Scytonema sp. Isolated from Microbial Community “Black Cover” of Limestone Walls in Jerusalem  

Microsoft Academic Search

The hydrocarbon and lipid components of four strains of the filamentous cyanobacterium Scytonema sp. isolated from microbial community “Black Cover” of limestone walls in Jerusalem were identified by gas chromatography–mass spectrometry using serially coupled capillary columns. The dominant compounds were: 1-heptadecyne (1.5-8%), hexadecanoic acid (14-36%), (Z,Z)-9,12-octadecadienoic acid (12-30%), (Z,Z,Z)-9,12,15-octadecatrienoic acid (6-12%), n-heptadecane (4-16%), and 1-heptadecene (1.5-8%). In addition to unsaturated

V. M. Dembitsky; M. Srebnik

2002-01-01

268

Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.  

PubMed

We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii. PMID:25176411

Airs, R L; Temperton, B; Sambles, C; Farnham, G; Skill, S C; Llewellyn, C A

2014-10-16

269

Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations  

SciTech Connect

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental conditions, such as temperature and nutrient availability. However the global protein responses of Synechocystis 6803 under physiological relevant environmental stresses have not been characterized. Here we present the first global proteome analysis of a photoautotrophic bacteria and the most complete coverage to date of a photosynthetic prokaryotic proteome. To obtain a more complete description of the protein components of Synechocystis 6803, we have performed an in-depth proteome analysis of this organism utilizing the Accurate Mass and Time (AMT) tag approach1 utilizing 33 growth conditions and timepoints. The resulting proteome consists of 22,318 unique peptides, corresponding to 2,369 unique proteins, covering 65% of the predicted proteins. Quantitative analysis of protein abundance ratios under nutrient stress revealed that Synechocystis 6803 resorts to a universal mechanism for nitrogen utilization under phosphate, sulfate, iron, and nitrogen depletion. Comparison of this proteomic data with previously published microarray studies under similar environmental conditions showed that the general response predicted by both types of analyses are common but that the actual levels of protein expression can not be inferred from gene expression data. Our results demonstrate a global nitrogen response to multiple stressors that may be similar to that used by other cyanobacteria under various stress conditions. We anticipate that this protein expression data will be a foundation for the photosynthetic and biofuel communities to better understand metabolic changes under physiological conditions relevant to global productivity. Further more, this comparison of correlation between gene and protein expression data provides deeper insight into the ongoing debate as to whether gene expression can be used to infer cellular response.

Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

2010-12-01

270

Cluster of Genes That Encode Positive and Negative Elements Influencing Filament Length in a Heterocyst-Forming Cyanobacterium  

PubMed Central

The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE?fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

Merino-Puerto, Victoria; Herrero, Antonia

2013-01-01

271

Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view.  

PubMed

The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO(2) partial pressure (pCO(2)) with higher N(2) fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO(2) (150 and 900 microatm) and light (50 and 200 micromol photons m(-2) s(-1)) on Trichodesmium IMS101. We expand on a complementary study that demonstrated that while elevated pCO(2) enhanced N(2) fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO(2) and light controlled the operation of the CO(2)-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO(2) and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N(2) fixation and growth at elevated pCO(2) and light. We suggest that changes in the redox state of the photosynthetic electron transport chain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enable Trichodesmium to flourish in future surface oceans characterized by elevated pCO(2), higher temperatures, and high light. PMID:20625002

Levitan, Orly; Kranz, Sven A; Spungin, Dina; Prásil, Ondrej; Rost, Björn; Berman-Frank, Ilana

2010-09-01

272

Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry.  

PubMed

The marine cyanobacterium Trichodesmium is ubiquitous in tropical and subtropical seas and is an important contributor to global N and C cycling. We sought to characterize metabolic uptake patterns in individual Trichodesmium IMS-101 cells by quantitatively imaging (13)C and (15)N uptake with high-resolution secondary ion mass spectrometry (NanoSIMS). Trichodesmium fix both CO(2) and N(2) concurrently during the day and are, thus, faced with a balancing act: the O(2) evolved during photosynthesis inhibits nitrogenase, the key enzyme in N(2) fixation. After performing correlated transmission electron microscopy (TEM) and NanoSIMS analysis on trichome thin-sections, we observed transient inclusion of (15)N and (13)C into discrete subcellular bodies identified as cyanophycin granules. We speculate that Trichodesmium uses these dynamic storage bodies to uncouple CO(2) and N(2) fixation from overall growth dynamics. We also directly quantified both CO(2) and N(2) fixation at the single cell level using NanoSIMS imaging of whole cells in multiple trichomes. Our results indicate maximal CO(2) fixation rates in the morning, compared with maximal N(2) fixation rates in the afternoon, bolstering the argument that segregation of CO(2) and N(2) fixation in Trichodesmium is regulated in part by temporal factors. Spatial separation of N(2) and CO(2) fixation may also have a role in metabolic segregation in Trichodesmium. Our approach in combining stable isotope labeling with NanoSIMS and TEM imaging can be extended to other physiologically relevant elements and processes in other important microbial systems. PMID:19332780

Finzi-Hart, Juliette A; Pett-Ridge, Jennifer; Weber, Peter K; Popa, Radu; Fallon, Stewart J; Gunderson, Troy; Hutcheon, Ian D; Nealson, Kenneth H; Capone, Douglas G

2009-04-14

273

Application of Real-Time PCR for Quantification of Microcystin Genotypes in a Population of the Toxic Cyanobacterium Microcystis sp.  

PubMed Central

The cyanobacterium Microcystis sp. frequently develops water blooms consisting of organisms with different genotypes that either produce or lack the hepatotoxin microcystin. In order to monitor the development of microcystin (mcy) genotypes during the seasonal cycle of the total population, mcy genotypes were quantified by means of real-time PCR in Lake Wannsee (Berlin, Germany) from June 1999 to October 2000. Standard curves were established by relating cell concentrations to the threshold cycle (the PCR cycle number at which the fluorescence passes a set threshold level) determined by the Taq nuclease assay (TNA) for two gene regions, the intergenic spacer region within the phycocyanin (PC) operon to quantify the total population and the mcyB gene, which is indicative of microcystin synthesis. In laboratory batch cultures, the cell numbers inferred from the standard curve by TNA correlated significantly with the microscopically determined cell numbers on a logarithmic scale. The TNA analysis of 10 strains revealed identical amplification efficiencies for both genes. In the field, the proportion of mcy genotypes made up the smaller part of the PC genotypes, ranging from 1 to 38%. The number of mcyB genotypes was one-to-one related to the number of PC genotypes, and parallel relationships between cell numbers estimated via the inverted microscope technique and TNA were found for both genes. It is concluded that the mean proportion of microcystin genotypes is stable from winter to summer and that Microcystis cell numbers could be used to infer the mean proportion of mcy genotypes in Lake Wannsee. PMID:14602633

Kurmayer, Rainer; Kutzenberger, Thomas

2003-01-01

274

Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin  

PubMed Central

Background Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. Methods Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. Results Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (? = 0.83). Conclusion The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria. PMID:16573840

Stewart, Ian; Seawright, Alan A; Schluter, Philip J; Shaw, Glen R

2006-01-01

275

Cell Envelope Components Influencing Filament Length in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.  

PubMed

Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

2014-12-01

276

Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO2-Requiring Phenotype 1  

PubMed Central

Active human carbonic anhydrase II (HCAII) protein was expressed in the cyanobacterium Synechococcus PCC7942 by means of transformation with the bidirectional expression vector, pCA. This expression was driven by the bacterial Tac promoter and was regulated by the IacIQ repressor protein, which was expressed from the same plasmid. Expression levels reached values of around 0.3% of total cell protein and this protein appeared to be entirely soluble in nature and located within the cytosol of the cell. The expression of this protein has dramatic effects on the photosynthetic physiology of the cell. Induction of expression of carbonic anhydrase (CA) activity in both high dissolved inorganic carbon (Ci) and low Ci grown cells leads the creation of a high Ci requiring phenotype causing: (a) a dramatic increase in the K0.5 (Ci) for photosynthesis, (b) a loss of the ability to accumulate internal Ci, and (c) a decrease in the lag between the initial Ci accumulation following illumination and the efflux of CO2 from the cells. In addition, the effects of the expressed CA can largely be reversed by the carbonic anhydrase inhibitor ethoxyzolamide. As a result of the above findings, it is concluded that the CO2 concentrating mechanism in Synechococcus PCC7942 is largely dependent on (a) the absence of CA activity from the cytosol, and (b) the specific localization of CA activity in the carboxysome. A theoretical model of photosynthesis and Ci accumulation is developed in which the carboxysome plays a central role as both the site of CO2 generation from HCO3? and a resistance barrier to CO2 efflux from the cell. There is good qualitative agreement between this model and the measured physiological effects of expressed cytosolic CA in Synechococcus cells. Images Figure 7 PMID:16667062

Price, G. D.; Badger, M. R.

1989-01-01

277

Gene Transfer in Leptolyngbya sp. Strain BL0902, a Cyanobacterium Suitable for Production of Biomass and Bioproducts  

PubMed Central

Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22°C to 40°C and tolerated up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled Arthrospira (“pirulina” strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a “elper”plasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial production strain. PMID:22292073

Taton, Arnaud; Lis, Ewa; Adin, Dawn M.; Dong, Guogang; Cookson, Scott; Kay, Steve A.; Golden, Susan S.; Golden, James W.

2012-01-01

278

Cryo-Electron Tomography Reveals the Comparative Three-Dimensional Architecture of Prochlorococcus, a Globally Important Marine Cyanobacterium?  

PubMed Central

In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology. PMID:17449628

Ting, Claire S.; Hsieh, Chyongere; Sundararaman, Sesh; Mannella, Carmen; Marko, Michael

2007-01-01

279

Wastewater Utilization for Poly-?-Hydroxybutyrate Production by the Cyanobacterium Aulosira fertilissima in a Recirculatory Aquaculture System?  

PubMed Central

Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-?-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter?1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter?1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m?2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ?17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242

Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

2011-01-01

280

THE TOXIC CYANOBACTERIUM NOSTOC SP. STRAIN 152 PRODUCES HIGHEST AMOUNTS OF MICROCYSTIN AND NOSTOPHYCIN UNDER STRESS CONDITIONS  

PubMed Central

The understanding of how environmental factors regulate toxic secondary metabolite production in cyanobacteria is important to guarantee water quality. Very little is known on the regulation of toxic secondary metabolite production in benthic cyanobacteria. In this study the physiological regulation of the production of the toxic heptapeptide microcystin (MC) and the non-toxic related peptide nostophycin (NP) in the benthic cyanobacterium Nostoc sp. strain 152 was studied under contrasting environmental conditions. I used a 2k levels factorial design, where k is the number of four factors that have been tested: Reduction in temperature (20 vs. 12°C), irradiance (50 vs. 1 ?mol · m?2 · s?1), P-PO4 (144 vs. 0.14 ?M P-PO4), N-NO3 (5.88 mM vs. N-NO3 free). While the growth rate was reduced more than hundred fold under most severe conditions of temperature, irradiance, and phosphate reduction the production of MC and NP never ceased. The MC and NP contents per cell varied at maximum 5- and 10.6-fold each, however the physiological variation did not outweigh the highly significant linear relationship between the daily cell division rate and the MC and NP net production rates. Surprisingly the MC and NP contents per cell showed a maximum under P-PO4 reduced and irradiance reduced conditions. Both intra- and extracellular MC and NP concentrations were negatively related to P-PO4 and irradiance. It is concluded that the proximate factor behind maximal cellular MC and NP contents is physiological stress. PMID:22723716

Kurmayer, Rainer

2012-01-01

281

Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii.  

PubMed

The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae. PMID:17314091

Sato, Yuichiro; Okuyama, Satomi; Hori, Kanji

2007-04-13

282

The ? Subunit of RNA Polymerase Is Essential for Thermal Acclimation of the Cyanobacterium Synechocystis Sp. PCC 6803  

PubMed Central

The rpoZ gene encodes the small ? subunit of RNA polymerase. A ?rpoZ strain of the cyanobacterium Synechocystis sp. PCC 6803 grew well in standard conditions (constant illumination at 40 µmol photons m?2 s?1; 32°C; ambient CO2) but was heat sensitive and died at 40°C. In the control strain, 71 genes were at least two-fold up-regulated and 91 genes down-regulated after a 24-h treatment at 40°C, while in ?rpoZ 394 genes responded to heat. Only 62 of these heat-responsive genes were similarly regulated in both strains, and 80% of heat-responsive genes were unique for ?rpoZ. The RNA polymerase core and the primary ? factor SigA were down-regulated in the control strain at 40°C but not in ?rpoZ. In accordance with reduced RNA polymerase content, the total RNA content of mild-heat-stress-treated cells was lower in the control strain than in ?rpoZ. Light-saturated photosynthetic activity decreased more in ?rpoZ than in the control strain upon mild heat stress. The amounts of photosystem II and rubisco decreased at 40°C in both strains while PSI and the phycobilisome antenna protein allophycocyanin remained at the same level as in standard conditions. The phycobilisome rod proteins, phycocyanins, diminished during the heat treatment in ?rpoZ but not in the control strain, and the nblA1 and nblA2 genes (encode NblA proteins required for phycobilisome degradation) were up-regulated only in ?rpoZ. Our results show that the ? subunit of RNAP is essential in heat stress because it is required for heat acclimation of diverse cellular processes. PMID:25386944

Gunnelius, Liisa; Kurkela, Juha; Hakkila, Kaisa; Koskinen, Satu; Parikainen, Marjaana; Tyystjärvi, Taina

2014-01-01

283

Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles  

SciTech Connect

Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

2009-06-01

284

Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481.  

PubMed

The cyanobacterium Fremyella diplosiphon can alternate its light-harvesting pigments, a process called comple-mentary chromatic adaptation (CCA), allowing it to photosynthesize in green light (GL) and in fluctuating light conditions. Nevertheless, F. diplosiphon requires chlorophylls for photosynthesis under all light conditions. Two alternative enzymes catalyze the penultimate step of chlorophyll synthesis, light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlo-rophyllide oxidoreductase (DPOR). DPOR enzymatic activity is light independent, while LPOR requires light. Therefore, we hypothesize that F. diplosiphon up-regulates DPOR gene expression in GL, so that DPOR is more abundant when LPOR is less functional. We cloned the genes encoding the three subunits of DPOR, chlL, chlN and chlB, and the LPOR gene, por, to determine the abundance of the transcripts under red light (RL), GL and dark conditions. We found that F. diplosiphon chlL and chlN genes are transcribed as parts of a single operon, a gene structure that is conserved within cyanobacteria. Tran-scripts levels of all DPOR genes are up-regulated approximately 2-fold in GL relative to levels in RL, whereas LPOR transcript levels are reduced in GL. Moreover, mutations in CCA regulators, RcaE and CpeR, modify DPOR and LPOR transcript levels under specific light conditions. Finally, both DPOR and LPOR transcripts are down-regulated 2- to 5-fold in the dark. These results provide the first evidence that light quality and CCA affect the genetic regulation of chlorophyll biosynthesis in freshwater cyanobacteria, ecologically important photosynthetic organisms. PMID:19561333

Shui, Jessica; Saunders, Eileen; Needleman, Robert; Nappi, Michelle; Cooper, Joseph; Hall, Lauren; Kehoe, David; Stowe-Evans, Emily

2009-08-01

285

Induction, isolation, and some properties of the NADPH-dependent glutamate dehydrogenase from the nonheterocystous cyanobacterium Phormidium laminosum.  

PubMed Central

The level of the NADPH-dependent glutamate dehydrogenase activity (EC 1.4.1.4) from nitrate-grown cells of the thermophilic non-N2-fixing cyanobacterium Phormidium laminosum OH-1-p.Cl1 could be significantly enhanced by the presence of ammonium or nitrite, as well as by L-methionine-DL-sulfoximine and other sources of organic nitrogen (L-Glu, L-Gln, and methylamine). The enzyme was purified more than 4,400-fold by ultracentrifugation, ion-exchange chromatography, and affinity chromatography, and at 30 degrees C it showed a specific activity of 32.9 mumol of NADPH oxidized per min per mg of protein. The purified enzyme showed no aminotransferase activity and catalyzed the amination of 2-oxoglutarate preferentially to the reverse catabolic reaction. The enzyme was very specific for its substrates 2-oxoglutarate (Km = 1.25 mM) and NADPH (Km = 64 microM), for which hyperbolic kinetics were obtained. However, negative cooperativity (Hill coefficient h = 0.89) and [S]0.5 of 18.2 mM were observed for ammonium. The mechanism of the aminating reaction was of a random type with independent sites. The purified enzyme showed its maximal activity at 60 degrees C (Ea = 5.1 kcal/mol [21.3 kJ/mol]) and optimal pH values of 8.0 and 7.5 when assayed in Tris hydrochloride and potassium phosphate buffers, respectively. The native molecular mass of the enzyme was about 280 kilodaltons. The possible physiological role of the enzyme in ammonia assimilation is discussed. PMID:3139639

Martinez-Bilbao, M; Martinez, A; Urkijo, I; Llama, M J; Serra, J L

1988-01-01

286

Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696.  

PubMed

We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 ?mol m(-2) s(-1) PPFD) and low inorganic carbon (50 ?M Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 ?mol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 ?mol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 ?mol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 ?mol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open. PMID:21678048

de Araujo, Elvin D; Patel, Jason; de Araujo, Charlotte; Rogers, Susan P; Short, Steven M; Campbell, Douglas A; Espie, George S

2011-09-01

287

The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation.  

PubMed Central

The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 (Synechococcus sp. strain PCC 7002) was isolated by complementing an Escherichia coli strain auxotrophic for glutamine (YMC11) with a PR-6 cosmid library. PR-6 glnA is a single-copy gene that encodes a deduced amino acid sequence that is highly homologous to the deduced glnA amino acid sequences reported for other bacteria. No homology was found between the PR-6 glnA flanking sequences and the ntrB, ntrC, or glnB genes of other bacteria. Northern (RNA) and primer extension analyses of PR-6 RNA revealed one predominant and several minor glnA transcripts of about 1.5 to 1.7 kb. The steady-state amounts of these transcripts increased three- to fivefold when the cells were starved for nitrogen. However, we found that mutant PR-6 cells lacking glnA were still able to use nitrate or ammonium as a sole nitrogen source. Although no RNA homologous to an internal fragment of the glnA gene could be detected in the mutant cells, they retained about 60% of wild-type glutamine biosynthetic activity. The mutant cells were more sensitive than the wild-type cells to methionine sulfoximine, a transition state analog of glutamate, a result that might indicate the presence of an additional glutamine synthetase; however, cell extracts of wild-type PR-6 cells and those lacking glnA were both able to use carbamyl phosphate instead of ammonium as a nitrogen donor for the synthesis of glutamine, a result that indicates the use of carbamyl phosphate synthetase to assimilate ammonium and produce glutamine. Images PMID:7678591

Wagner, S J; Thomas, S P; Kaufman, R I; Nixon, B T; Stevens, S E

1993-01-01

288

Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata  

PubMed Central

Musty “off-flavor” in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 ?M (125 ?g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1?-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 ?M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.

2003-01-01

289

Persistent Phytoplankton Bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) Caused by a Cyanobacterium Closely Associated with the Genus Cyanothece (Synechococcaceae, Chroococcales) ?  

PubMed Central

Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped. PMID:21742912

Muir, David G.; Perissinotto, Renzo

2011-01-01

290

Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis  

PubMed Central

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

2013-01-01

291

A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.  

PubMed

A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H?O? could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat. PMID:24384747

Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

2014-04-01

292

NADP(+)-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene.  

PubMed Central

NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) from the dinitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 was purified to homogeneity. The native enzyme is composed of two identical subunits (M(r), 57,000) and cross-reacts with antibodies obtained against the previously purified NADP(+)-IDH from the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Anabaena NADP(+)-IDH resembles in its physicochemical and kinetic parameters the typical dimeric IDHs from prokaryotes. The gene encoding Anabaena NADP(+)-IDH was cloned by complementation of an Escherichia coli icd mutant with an Anabaena genomic library. The complementing DNA was located on a 6-kb fragment. It encodes an NADP(+)-IDH that has the same mobility as that of Anabaena NADP(+)-IDH on nondenaturing polyacrylamide gels. The icd gene was subcloned and sequenced. Translation of the nucleotide sequence gave a polypeptide of 473 amino acids that showed high sequence similarity to the E. coli enzyme (59% identity) and with IDH1 and IDH2, the two subunits of the heteromultimeric NAD(+)-IDH from Saccharomyces cerevisiae (30 to 35% identity); however, a low level of similarity to NADP(+)-IDHs of eukaryotic origin was found (23% identity). Furthermore, Anabaena NADP(+)-IDH contains a 44-residue amino acid sequence in its central region that is absent in the other IDHs so far sequenced. Attempts to generate icd mutants by insertional mutagenesis were unsuccessful, suggesting an essential role of IDH in Anabaena sp. strain PCC 7120. Images PMID:8169222

Muro-Pastor, M I; Florencio, F J

1994-01-01

293

Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses.  

PubMed

Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO(2) partial pressure (pCO(2)) enhances N(2) fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO(2), its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO(2) (150 and 900 microatm) and irradiance (50 and 200 micromol photons m(-2) s(-1)). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO(2) and light levels in the cultures. The pCO(2)-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO(2) stimulated rates of N(2) fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO(2). HCO(3)(-) was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO(2) uptake was enhanced under high pCO(2). A comparison between carbon fluxes in vivo and those derived from (13)C fractionation indicates high internal carbon cycling, especially in the low-pCO(2) treatment under high light. Light-dependent oxygen uptake was only detected under low pCO(2) combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO(2) effect on N(2) fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO(2). These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition. PMID:20625004

Kranz, Sven A; Levitan, Orly; Richter, Klaus-Uwe; Prásil, Ondrej; Berman-Frank, Ilana; Rost, Björn

2010-09-01

294

Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa  

PubMed Central

Background The water-bloom-forming cyanobacterium Microcystis aeruginosa is a known producer of various kinds of toxic and bioactive chemicals. Of these, hepatotoxic cyclic heptapeptides microcystins have been studied most intensively due to increasing concerns for human health risks and environmental damage. More than 70 variants of microcystins are known, and a single microcystin synthetase (mcy) gene cluster consisting of 10 genes (mcyA to mcyJ) has been identified to be responsible for the production of all known variants of microcystins. Our previous multilocus sequence typing (MLST) analysis of the seven housekeeping genes indicated that microcystin-producing strains of M. aeruginosa are classified into two phylogenetic groups. Results To investigate whether the mcy genes are genetically structured similarly as in MLST analysis of the housekeeping genes and to identify the evolutionary forces responsible for the genetic divergence of these genes, we used 118 mcy-positive isolates to perform phylogenetic and population genetic analyses of mcy genes based on three mcy loci within the mcy gene cluster (mcyD, mcyG, and mcyJ), none of which is involved in the production of different microcystin variants. Both individual phylogenetic analysis and multilocus genealogical analysis of the mcy genes divided our isolates into two clades, consistent with the MLST phylogeny based on seven housekeeping loci. No shared characteristics within each clade are known, and microcystin analyses did not identify any compositional trend specific to each clade. Statistical analyses for recombination indicated that recombination among the mcy genes is much more frequent within clades than between, suggesting that recombination has been an important force maintaining the cryptic divergence of mcy genes. On the other hand, a series of statistical tests provided no strong evidence for selection to explain the deep divergence of the mcy genes. Furthermore, analysis of molecular variance (AMOVA) indicated a low level of geographic structuring in the genetic diversity of mcy. Conclusion Our phylogenetic analyses suggest that the mcy genes of M. aeruginosa are subdivided into two cryptic clades, consistent with the phylogeny determined by MLST. Population genetic analyses suggest that these two clades have primarily been maintained as a result of homology-dependent recombination and neutral genetic drift. PMID:19463155

Tanabe, Yuuhiko; Sano, Tomoharu; Kasai, Fumie; Watanabe, Makoto M

2009-01-01

295

PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 (Nostocales) can be induced by sodium and potassium ions.  

PubMed

Paralytic shellfish poisoning (PSP) toxins are a group of naturally occurring neurotoxic alkaloids produced among several genera of primarily freshwater cyanobacteria and marine dinoflagellates. Although saxitoxin (STX) and analogs are all potent Na(+) channel blockers in vertebrate cells, the functional role of these compounds for the toxigenic microorganisms is unknown. Based upon the known importance of monovalent cations (such as sodium) in the maintenance of cellular homeostasis and ion channel function, we examined the effect of high extracellular concentrations of these ions on growth, cellular integrity, toxin production and release to the external medium in the filamentous freshwater cyanobacterium, Raphidiopsis brookii D9; a gonyautoxins (GTX2/3) and STX producing toxigenic strain. We observed a toxin export in response to high (17 mM) NaCl and KCl concentrations in the growth medium that was not primarily related to osmotic stress effects, compared to the osmolyte mannitol. Addition of exogenous PSP toxins with the same compositional profile as the one produced by R. brookii D9 was able to partially mitigate this effect of high Na? (17 mM). The PSP toxin biosynthetic gene cluster (sxt) in D9 has two genes (sxtF and sxtM) that encode for a MATE (multidrug and toxic compound extrusion) transporter. This protein family, represented by NorM in the bacterium Vibrio parahaemolyticus, confers resistance to multiple cationic toxic agents through Na?/drug antiporters. Conserved domains for Na? and drug recognition have been described in NorM. For the D9 sxt cluster, the Na? recognition domain is conserved in both SxtF and SxtM, but the drug recognition domain differs between them. These results suggest that PSP toxins are exported directly in response to the presence of monovalent cations (Na?, K?) at least at elevated concentrations. Thus, the presence of both genes in the sxt cluster from strain D9 can be explained as a selective recognition mechanism by the SxtF/M transporters for GTX2/3 and STX. We propose that these toxins in cyanobacteria could act extracellularly as a protective mechanism to ensure homeostasis against extreme salt variation in the environment. PMID:22983012

Soto-Liebe, Katia; Méndez, Marco A; Fuenzalida, Loreto; Krock, Bernd; Cembella, Allan; Vásquez, Mónica

2012-12-01

296

Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511  

PubMed Central

Background The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. Results The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. Conclusions Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes. PMID:20670397

2010-01-01

297

Elucidation of insertion elements carried on plasmids and in vitro construction of shuttle vectors from the toxic cyanobacterium Planktothrix.  

PubMed

Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6K? origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

Christiansen, Guntram; Goesmann, Alexander; Kurmayer, Rainer

2014-08-01

298

Elucidation of Insertion Elements Carried on Plasmids and In Vitro Construction of Shuttle Vectors from the Toxic Cyanobacterium Planktothrix  

PubMed Central

Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6K? origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

Christiansen, Guntram; Goesmann, Alexander

2014-01-01

299

The role of the PsbU subunit in the light sensitivity of PSII in the cyanobacterium Synechococcus 7942.  

PubMed

In the present study we investigated the role of the PsbU subunit in the electron transport characteristics and light sensitivity of the Photosystem II complex. The experiments were performed by using an earlier characterized PsbU-less mutant of the cyanobacterium Synechococcus PCC 7942, which has enhanced antioxidant capacity (Balint et al. FEBS Lett. 580 (2006) 2117-2122). Flash induced Chl fluorescence measurements in the presence and absence of the electron transport inhibitor DCMU showed that both the S(2)Q(A)(-) and the S(2)Q(B)(-) recombination is slowed down in the PsbU mutant relative to the WT strain. Thermoluminescence measurements confirmed the increased stability of the S(2)Q(A)(-) and S(2)Q(B)(-) charge pairs by showing an increased peak temperature of Q and B bands, which were measured in the presence and absence of DCMU, respectively. In addition, the intensity of the TL bands is also increased in the PsbU mutant (?1.7 times for the B band), as compared to the WT. The PsbU mutant shows enhanced loss of Photosystem II activity under exposure to high light intensity both in the absence and presence of the protein synthesis inhibitor lincomycin. It is concluded from the data that the lack of the PsbU subunit in Synechococcus PCC 7942 affects the energetic stability of the S(2)Q(A)(-) and S(2)Q(B)(-) charge pairs by modifying both the PSII donor and acceptor side components. This effect is most likely caused by structural changes in the vicinity of the Mn cluster and in the inner part of the PSII complex, which are induced by the lack of the PsbU subunit from the lumenal part of the complex. The light sensitivity of Photosystem II in Synechococcus 7942 in the absence of the PsbU subunit is likely due to reactive oxygen species, which are produced as a consequence of disturbed donor side structure and/or due to the modified energetic properties of the primary radical pair. PMID:21944715

Abasova, Leyla; Deák, Zsuzsanna; Schwarz, Rakefet; Vass, Imre

2011-11-01

300

Looking at the stability of life-support microorganisms in space : the MELGEN activity highlights the cyanobacterium Arthrospira sp. PCC8005  

NASA Astrophysics Data System (ADS)

The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of Arthrospira sp. PCC 8005, fully annotated. This genomic information opens the gates to a better understanding of the biology of this cyanobacterium and will be a key to the development of appropriate derivatives that provide enhanced performances (e.g. radiation resistance, genetic stability, photosynthesis and nutritive properties).

Morin, Nicolas

301

Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species  

NASA Technical Reports Server (NTRS)

The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

2011-01-01

302

Genetic Manipulation of the Cyanobacterium Synechocystis sp. PCC 6803 (Development of Strains Lacking Photosystem I for the Analysis of Mutations in Photosystem II).  

PubMed Central

We have taken a genetic approach to eliminating the presence of photosystem I (PSI) in site-directed mutants of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. By selecting under light-activated heterotrophic conditions, we have inactivated the psaA-psaB operon encoding the PSI reaction center proteins in cells containing deletions of the three psbA genes. We have also introduced deletions into both copies of psbD in a strain containing a mutation that inactivates psaA (ADK9). These strains, designated D1-/PSI- and D2-/PSI-, may serve as recipient strains for the incorporation of site-directed mutations in either psbA2 or psbD1. The characterization of these cells, which lack both PSI and PSII, is described. PMID:12232086

Smart, L. B.; Bowlby, N. R.; Anderson, S. L.; Sithole, I.; McIntosh, L.

1994-01-01

303

Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: an FTIR spectroscopic study.  

PubMed

The effects of the growth temperature on the lipids and carotenoids of a filamentous cyanobacterium, Cylindrospermopsis raciborskii, were studied., The relative amounts of polyunsaturated glycerolipids and myxoxanthophylls in the thylakoid membranes increased markedly when this cyanobacterium was grown at 25 degrees C instead of 35 degrees C. Fourier transform infrared spectroscopy was used to analyze the low-temperature-induced structural alterations in the thylakoid membranes. Despite the higher amount of unsaturated lipids there, conventional analysis of the v(sym)CH(2) band (characteristic of the lipid disorder) revealed more tightly arranged fatty-acyl chains for the thylakoids in the cells grown at 25 degrees C as compared with those grown at 35 degrees C. This apparent controversy was resolved by a two-component analysis of the v(sym)CH(2) band, which demonstrated very rigid, myxoxanthophyll-related lipids in the thylakoid membranes. When this rigid component was excluded from the analysis of the thermotropic responses of the v(sym)CH(2) bands, the expected higher fatty-acyl disorder was observed for the thylakoids prepared from cells grown at 25 degrees C as compared with those grown at 35 degrees C. Both the carotenoid composition and this rigid component in the thylakoid membranes were only growth temperature-dependent; the intensity of the illuminating light during cultivation had no apparent effect on these parameters. We propose that, besides their well-known protective functions, the polar carotenoids in particular may have structural effects on the thylakoid membranes. These effects should be exerted locally--by forming protective patches, in-membrane barriers of low dynamics--to prevent the access of reactive radicals generated in either enzymatic or photosynthetic processes to sensitive spots of the membranes. PMID:11842219

Várkonyi, Zsuzsanna; Masamoto, Kazuomori; Debreczeny, Mónika; Zsiros, Ottó; Ughy, Bettina; Gombos, Zoltán; Domonkos, Ildikó; Farkas, Tibor; Wada, Hajime; Szalontai, Balázs

2002-02-19

304

Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937  

SciTech Connect

The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm{sup -2}, UV-A: 25.70 Wm{sup -2} and PAR: 118.06 Wm{sup -2}) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.

Rastogi, Rajesh P. [Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen (Germany) [Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen (Germany); Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005 (India); Singh, Shailendra P.; Haeder, Donat-P. [Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen (Germany)] [Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen (Germany); Sinha, Rajeshwar P., E-mail: r.p.sinha@gmx.net [Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005 (India)

2010-07-02

305

Acetylome Analysis Reveals the Involvement of Lysine Acetylation in Photosynthesis and Carbon Metabolism in the Model Cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium. PMID:25621733

Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

2015-02-01

306

Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis.  

PubMed

Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%-65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%-26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%-36.38%), ?-linolenic acid (C18:3(n-3); 0.00%-21.29%), ?-linolenic acid (C18:3(n-6); 1.94%-17.36%), and arachidonic acid (C20:4(n-6); 0.00%-15.37%). The highest content of ?-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ?-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent. PMID:24566307

Ambrozova, Jarmila Vavra; Misurcova, Ladislava; Vicha, Robert; Machu, Ludmila; Samek, Dusan; Baron, Mojmir; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

2014-01-01

307

Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance  

NASA Technical Reports Server (NTRS)

The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light period, the imaginary part of the refractive index n' showed little variation over a day-night cycle, and bar-(sigma(sub a)) was largely controlled by variations in cell size. The real part of the refractive index at lambda = 660 nm was correlated with the intracellular C concentration and the imaginary part at lambda = 678 nm with the intracellular Chl a concentration. The C-specfic attenuation coefficient showed significant diel variability, which has implications for the estimation of oceanic primary production from measurements of diel variability in beam attenuation. This study provides strong evidence that diel variability is an important component of the optical characterization of marine phytoplankton.

Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

1995-01-01

308

Isolation and Characterization of a Chlorate-Resistant Mutant (Clo R ) of the Symbiotic Cyanobacterium Nostoc ANTH: Heterocyst Formation and N 2 Fixation in the Presence of Nitrate, and Evidence for Separate Nitrate and Nitrite Transport Systems  

Microsoft Academic Search

Nostoc ANTH is a filamentous, heterocystous cyanobacterium capable of N2-fixation in the absence of combined nitrogen. A chlorate-resistant mutant (Clo-R) of Nostoc ANTH was isolated that differentiates heterocysts and fixes N2 in the presence of nitrate, but not in the presence of nitrite or ammonium. The mutant lacks nitrate uptake and thereby also\\u000a lacks induction of nitrate reductase activity by

Jyotirmoy Bhattacharya; Arvind Kumar Singh; Amar Nath Rai

2002-01-01

309

Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements.  

PubMed

In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynthetic components. We now investigated these activity states in more detail. Spectrally resolved fluorescence kinetic measurements of single cells revealed that they were related to alternate uncoupling and coupling of phycobilisomes from and to the photosystems, changing the effective cross-section of PSII. Therefore, we isolated and purified the phycobiliproteins of Trichodesmium via ion exchange chromatography and recorded their UV/VIS absorption, fluorescence excitation and fluorescence emission spectra. After describing these spectra by mathematical equations via the Gauss-Peak-Spectra method, we used them to deconvolute the in vivo fluorescence spectra of Trichodesmium cells. This revealed that the contribution of different parts of the phycobilisome antenna to fluorescence quenching changed during the daily activity cycle, and that individual phycobiliproteins can be reversibly coupled to the photosystems, while the expression levels of these proteins did not change much during the daily activity cycle. Thus we propose that variable phycobilisome coupling plays a key role in the regulation of photosynthesis for nitrogen fixation in Trichodesmium. PMID:19186173

Küpper, Hendrik; Andresen, Elisa; Wiegert, Susanna; Simek, Miloslav; Leitenmaier, Barbara; Setlík, Ivan

2009-03-01

310

Intricate Interactions between the Bloom-Forming Cyanobacterium Microcystis aeruginosa and Foreign Genetic Elements, Revealed by Diversified Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Signatures  

PubMed Central

Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids. PMID:22636003

Kuno, Sotaro; Kaneko, Takakazu; Sako, Yoshihiko

2012-01-01

311

Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142  

PubMed Central

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. PMID:22529767

Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei; Fredrickson, Jim K.; Konopka, Allan E.; Beliaev, Alexander S.; Reed, Jennifer L.

2012-01-01

312

Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803*S?  

PubMed Central

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed. PMID:18502765

Kopycki, Jakub Grzegorz; Stubbs, Milton T.; Brandt, Wolfgang; Hagemann, Martin; Porzel, Andrea; Schmidt, Jürgen; Schliemann, Willibald; Zenk, Meinhart H.; Vogt, Thomas

2008-01-01

313

Identification and Upregulation of Biosynthetic Genes Required for Accumulation of Mycosporine-2-Glycine under Salt Stress Conditions in the Halotolerant Cyanobacterium Aphanothece halophytica  

PubMed Central

Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 ?mol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source. PMID:24375141

Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Sopun, Warangkana; Tanaka, Yoshito

2014-01-01

314

Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.  

PubMed

Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods. PMID:22638838

Billi, Daniela

2012-06-01

315

Cloning of a Nitrilase Gene from the Cyanobacterium Synechocystis sp. Strain PCC6803 and Heterologous Expression and Characterization of the Encoded Protein  

PubMed Central

The gene encoding a putative nitrilase was identified in the genome sequence of the photosynthetic cyanobacterium Synechocystis sp. strain PCC6803. The gene was amplified by PCR and cloned into an expression vector. The encoded protein was heterologously expressed in the native form and as a His-tagged protein in Escherichia coli, and the recombinant strains were shown to convert benzonitrile to benzoate. The active enzyme was purified to homogeneity and shown by gel filtration to consist probably of 10 subunits. The purified nitrilase converted various aromatic and aliphatic nitriles. The highest enzyme activity was observed with fumarodinitrile, but also some rather hydrophobic aromatic (e.g., naphthalenecarbonitrile), heterocyclic (e.g., indole-3-acetonitrile), or long-chain aliphatic (di-)nitriles (e.g., octanoic acid dinitrile) were converted with higher specific activities than benzonitrile. From aliphatic dinitriles with less than six carbon atoms only 1 mol of ammonia was released per mol of dinitrile, and thus presumably the corresponding cyanocarboxylic acids formed. The purified enzyme was active in the presence of a wide range of organic solvents and the turnover rates of dodecanoic acid nitrile and naphthalenecarbonitrile were increased in the presence of water-soluble and water-immiscible organic solvents. PMID:12902216

Heinemann, Ute; Engels, Dirk; Bürger, Sibylle; Kiziak, Christoph; Mattes, Ralf; Stolz, Andreas

2003-01-01

316

Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica.  

PubMed

Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 ?mol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source. PMID:24375141

Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Sopun, Warangkana; Tanaka, Yoshito; Takabe, Teruhiro

2014-03-01

317

Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (-269 to 105°C), pH and salt stress.  

PubMed

Nostoc commune is a widespread colonial cyanobacterium living on bare soils that alternate between frost and thaw, drought and inundation and very low and high temperatures. We collected N. commune from alternating wet and dry limestone pavements in Sweden and tested its photosynthesis and respiration at 20°C after exposure to variations in temperature (-269 to 105°C), pH (2-10) and NaCl (0.02-50 g NaCl kg(-1)). We found that dry field samples and rewetted specimens tolerated exposure beyond that experienced in natural environmental conditions: -269 to 70°C, pH 3-10 and 0-20 g NaCl kg(-1), with only a modest reduction of respiration, photosynthesis and active carbon uptake at 20°C. (14)CO(2) uptake from air declined markedly below zero and above 55°C, but remained positive. Specimens maintained a high metabolism with daily exposure to 6 h of rehydration and 18 h of desiccation at -18 and 20°C, but died at 40°C. The field temperature never exceeded the critical 40°C threshold during the wet periods, but it frequently exceeded this temperature during dry periods when N. commune is already dry and unaffected. We conclude that N. commune has an excellent tolerance to low temperatures, long-term desiccation and recurring cycles of desiccation and rewetting. These traits explain why it is the pioneer species in extremely harsh, nutrient-poor and alternating wet and dry environments. PMID:22120705

Sand-Jensen, Kaj; Jespersen, Thomas Sand

2012-06-01

318

Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy.  

PubMed

In cyanobacteria, the interactions among pigment-protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions. PMID:23605291

Akimoto, Seiji; Yokono, Makio; Aikawa, Shimpei; Kondo, Akihiko

2013-11-01

319

Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142  

SciTech Connect

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

2012-04-05

320

Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142  

SciTech Connect

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

2012-04-05

321

Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium.  

PubMed

A photosystem II preparation from the thermophilic cyanobacterium Synechococcus elongatus, which is especially suitable for three-dimensional crystallization in a fully active form was developed. The efficient purification method applied here yielded 10 mg of protein of a homogenous dimeric complex of about 500 kDa within 2 days. Detailed characterization of the preparation demonstrated a fully active electron transport chain from the manganese cluster to plastoquinone in the Q(B) binding site. The oxygen-evolving activity, 5000-6000 micromol of O(2)/(h.mg of chlorophyll), was the highest so far reported and is maintained even at temperatures as high as 50 degrees C. The crystals obtained by the vapor diffusion method diffracted to a resolution of 4.3 A. The space group was determined to be P2(1)2(1)2(1) with four photosystem II dimers per unit cell. Analysis of the redissolved crystals revealed that activity, supramolecular organization, and subunit composition were maintained during crystallization. PMID:10748017

Kuhl, H; Kruip, J; Seidler, A; Krieger-Liszkay, A; Bunker, M; Bald, D; Scheidig, A J; Rögner, M

2000-07-01

322

Global Gene Expression Profiles of the Cyanobacterium Synechocystis sp. Strain PCC 6803 in Response to Irradiation with UV-B and White Light  

PubMed Central

We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvesting, photosynthesis, photoprotection, and the heat shock response. In addition, UV-B light induced the stringent response in Synechocystis, as indicated by the repression of ribosomal protein transcripts and other mRNAs involved in translation. High-intensity white light- and UV-B-mediated expression profiles overlapped in the down-regulation of photosynthesis genes and induction of heat shock response but differed in several other transcriptional processes including those specifying carbon dioxide uptake and fixation, the stringent response, and the induction profile of the high-light-inducible proteins. These two profile comparisons not only corroborated known physiological changes but also suggested coordinated regulation of many pathways, including synchronized induction of D1 protein recycling and a coupling between decreased phycobilisome biosynthesis and increased phycobilisome degradation. Overall, the gene expression profile analysis generated new insights into the integrated network of genes that adapts rapidly to different wavelengths and intensities of light. PMID:12446635

Huang, Lixuan; McCluskey, Michael P.; Ni, Hao; LaRossa, Robert A.

2002-01-01

323

The AplI restriction-modification system in an edible cyanobacterium, Arthrospira (Spirulina) platensis NIES-39, recognizes the nucleotide sequence 5'-CTGCAG-3'.  

PubMed

The degradation of foreign DNAs by restriction enzymes in an edible cyanobacterium, Arthrospira platensis, is a potential barrier for gene-transfer experiments in this economically valuable organism. We overproduced in Escherichia coli the proteins involved in a putative restriction-modification system of A. platensis NIES-39. The protein produced from the putative type II restriction enzyme gene NIES39_K04640 exhibited an endonuclease activity that cleaved DNA within the sequence 5'-CTGCAG-3' between the A at the fifth position and the G at the sixth position. We designated this enzyme AplI. The protein from the adjacent gene NIES39_K04650, which encodes a putative DNA (cytosine-5-)-methyltransferase, rendered DNA molecules resistant to AplI by modifying the C at the fourth position (but not the C at the first position) in the recognition sequence. This modification enzyme, M.AplI, should be useful for converting DNA molecules into AplI-resistant forms for use in gene-transfer experiments. A summary of restriction enzymes in various Arthrospira strains is also presented in this paper. PMID:23563565

Shiraishi, Hideaki; Tabuse, Yosuke

2013-01-01

324

CP43', the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942.  

PubMed

Under conditions of iron deficiency certain cyanobacteria induce a chlorophyll (Chl)-binding protein, CP43', which is encoded by the isiA gene. We have previously suggested that CP43' functions as a nonradiative dissipator of light energy. To further substantiate its functional role an isiA overexpression construct was introduced into the genome of a cyanobacterium Synechococcus sp. PCC 7942 (giving isiAoe cells). The presence of functional CP43' in isiAoe cells was confirmed by Western blot as well as by the presence of a characteristic blueshift of the red Chl a absorption peak and a notable increase in the 77 K fluorescence peak at 685 nm. Compared to wild-type cells isiAoe cells, with induced CP43', had both smaller functional antenna size and decreased yields of room temperature Chl fluorescence at various light irradiances. These observations strongly suggest that isiAoe cells, with induced CP43', have an increased capacity for dissipating light energy as heat. In agreement with this hypothesis isiAoe cells were also more resistant to photoinhibition of photosynthesis than wild-type cells. Based on these results we have further strengthened the hypothesis that CP43' functions as a nonradiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions. PMID:11594057

Sandström, S; Park, Y I; Oquist, G; Gustafsson, P

2001-09-01

325

Expression of a highly active catalase VktA in the cyanobacterium Synechococcus elongatus PCC 7942 alleviates the photoinhibition of photosystem II.  

PubMed

The repair of photosystem II (PSII) after photodamage is particularly sensitive to reactive oxygen species-such as H2O2, which is abundantly produced during the photoinhibition of PSII. In the present study, we generated a transformant of the cyanobacterium Synechococcus elongatus PCC 7942 that expressed a highly active catalase, VktA, which is derived from a facultatively psychrophilic bacterium Vibrio rumoiensis, and examined the effect of expression of VktA on the photoinhibition of PSII. The activity of PSII in transformed cells declined much more slowly than in wild-type cells when cells were exposed to strong light in the presence of H2O2. However, the rate of photodamage to PSII, as monitored in the presence of chloramphenicol, was the same in the two lines of cells, suggesting that the repair of PSII was protected by the expression of VktA. The de novo synthesis of the D1 protein, which is required for the repair of PSII, was activated in transformed cells under the same stress conditions. Similar protection of the repair of PSII in transformed cells was also observed under strong light at a relatively low temperature. Thus, the expression of the highly active catalase mitigates photoinhibition of PSII by protecting protein synthesis against damage by H2O2 with subsequent enhancement of the repair of PSII. PMID:23456267

Jimbo, Haruhiko; Noda, Akiko; Hayashi, Hidenori; Nagano, Takanori; Yumoto, Isao; Orikasa, Yoshitake; Okuyama, Hidetoshi; Nishiyama, Yoshitaka

2013-11-01

326

Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803.  

PubMed

Highly photoactive Photosystem I (PS I) and Photosystem II (PS II) core complexes have been isolated from the cyanobacterium Synechocystis Pasteur Culture Collection (PCC) 6803 and a phycocyanin-deficient mutant, enriched in PS II. Cell breakage using glass beads was followed by sucrose density gradient centrifugation and two high-performance liquid chromatography steps involving anion-exchange and hydroxyapatite. The PS I core complex has an apparent molecular mass of 300 +/- 20 kDa (including a detergent shell of about 50 kDa) and contains subunits of approximately 60, approximately 60, 18.5, 18.5, 16, 15, 10.5, 9.5, and 6.5 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblots; its antenna size is 75 +/- 5 chlorophyll/P-700. The PS II core complex has an apparent molecular mass of 310 +/- 20 kDa (including the detergent shell); subunits of 43, 37, 33, 29, and 10-11 kDa were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The antenna size of the average PS II complex is 45 +/- 5 chlorophyll/primary quinone electron acceptor (QA). This preparation procedure also yields, as a byproduct, a highly purified cytochrome b6f complex. This complex contains four subunits of 38, 24, 19, and 15 kDa and b- and c-type cytochromes in a ratio of 2:1. Its apparent molecular mass of 180 +/- 20 kDa (including the detergent shell) is consistent with a monomeric complex. PMID:2108153

Rögner, M; Nixon, P J; Diner, B A

1990-04-15

327

Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins.  

PubMed

Circadian rhythms are self-sustained and adjustable cycles, typically entrained with light/dark and/or temperature cycles. These rhythms are present in animals, plants, fungi, and several bacteria. The central mechanism behind these "pacemakers" and the connection to the circadian regulated pathways are still poorly understood. The circadian rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) is highly robust and controlled by only three proteins, KaiA, KaiB, and KaiC. This central clock system has been extensively studied functionally and structurally and can be reconstituted in vitro. These characteristics, together with a relatively small genome (2.7 Mbp), make S. elongatus an ideal model system for the study of circadian rhythms. Different approaches have been used to reveal the influence of the central S. elongatus clock on rhythmic gene expression, rhythmic mRNA abundance, rhythmic DNA topology changes, and cell division. However, a global analysis of its proteome dynamics has not been reported yet. To uncover the variation in protein abundances during 48 h under light and dark cycles (12:12 h), we used quantitative proteomics, with TMT 6-plex isobaric labeling. We queried the S. elongatus proteome at 10 different time points spanning a single 24-h period, leading to 20 time points over the full 48-h period. Employing multidimensional separation and high-resolution mass spectrometry, we were able to find evidence for a total of 82% of the S. elongatus proteome. Of the 1537 proteins quantified over the time course of the experiment, only 77 underwent significant cyclic variations. Interestingly, our data provide evidence for in- and out-of-phase correlation between mRNA and protein levels for a set of specific genes and proteins. As a range of cyclic proteins are functionally not well annotated, this work provides a resource for further studies to explore the role of these proteins in the cyanobacterial circadian rhythm. PMID:24677030

Guerreiro, Ana C L; Benevento, Marco; Lehmann, Robert; van Breukelen, Bas; Post, Harm; Giansanti, Piero; Maarten Altelaar, A F; Axmann, Ilka M; Heck, Albert J R

2014-08-01

328

Involvement of the HtrA family of proteases in the protection of the cyanobacterium Synechocystis PCC 6803 from light stress and in the repair of photosystem II.  

PubMed Central

Photosystem II (PSII) is prone to irreversible light-induced damage, with the D1 polypeptide a major target. Repair processes operate in the cell to replace a damaged D1 subunit within the complex with a newly synthesized copy. As yet, the molecular details of PSII repair are relatively obscure despite the critical importance of this process for maintaining PSII activity and cell viability. We are using the cyanobacterium Synechocystis sp. PCC 6803 to identify the various proteases and chaperones involved in D1 turnover in vivo. Two families of proteases are being studied: the FtsH family (four members) of Zn(2+)-activated nucleotide-dependent proteases; and the HtrA (or DegP) family (three members) of serine-type proteases. In this paper, we report the results of our studies on a triple mutant in which all three copies of the htrA gene family have been inactivated. Growth of the mutant on agar plates was inhibited at high light intensities, especially in the presence of glucose. Oxygen evolution measurements indicated that, under conditions of high light, the rate of synthesis of functional PSII was less in the mutant than in the wild-type. Immunoblotting experiments conducted on cells blocked in protein synthesis further indicated that degradation of D1 was slowed in the mutant. Overall, our observations indicate that the HtrA family of proteases are involved in the resistance of Synechocystis 6803 to light stress and play a part, either directly or indirectly, in the repair of PSII in vivo. PMID:12437885

Silva, Paulo; Choi, Young-Jun; Hassan, Hanadi A G; Nixon, Peter J

2002-01-01

329

Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.  

PubMed

In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm?¹, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm?¹ appear to reflect CNH? and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. PMID:24560813

Gryliuk, G; Rätsep, M; Hildebrandt, S; Irrgang, K-D; Eckert, H-J; Pieper, J

2014-09-01

330

Glutamate production from CO{sub 2} by marine cyanobacterium synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers  

SciTech Connect

A photobioreactor was constructed in the form of a Perspex column 900 mm tall with an internal diameter of 70 mm. The reactor volume was 1.8 L and the light source consisted of a metal-halide lamp to reproduce sunlight. Light was distributed through the culture using a new type of optical fiber that diffuses light out through its surface, perpendicular to the fiber axis. A cluster of 661 light-diffusing optical fibers (LDOFs) pass from the light source through the reactor column (60-cm culture depth) and are connected to a mirror at the top of the reactor. This biosolar reactor has been used for the production of glutamate from CO{sub 2} by the marine cyanobacterium Synechococcus sp. NKBG040607. We present here details of the construction of the biosolar reactor and characterization of its properties. The effect of light intensity on glutamate production was measured. Carbon dioxide-to-glutarnate conversion ratios were determined at different cell densities: the maximum conversion ratio (28%) was achieved at a cell density of 3{times}10{sup 8} cells/mL. A comparison of glutamate production using the LDOF biosolar reactor described here with production by batch culture using free or immobilized cells showed that use of an optical-fiber biosolar reactor increased glutamate-production efficiency 6.75-fold. We conclude that as a result of its high surface-to-volume ratio (692/m) increased photoproduction of useful compounds may be achieved. Such a system is generally applicable to all aspects of photobiotechnology.

Matsunaga, Tadashi; Takeyama, Haruko; Sudo, Hiroaki [Tokyo Univ. of Agriculture and Technology (Japan)] [and others

1991-12-31

331

Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiD™) Sequencing of cDNA  

PubMed Central

The genome of the unicellular, euryhaline cyanobacterium Synechococcus sp. PCC 7002 encodes about 3200 proteins. Transcripts were detected for nearly all annotated open reading frames by a global transcriptomic analysis by Next-Generation (SOLiD™) sequencing of cDNA. In the cDNA samples sequenced, ?90% of the mapped sequences were derived from the 16S and 23S ribosomal RNAs and ?10% of the sequences were derived from mRNAs. In cells grown photoautotrophically under standard conditions [38°C, 1% (v/v) CO2 in air, 250??mol photons m?2?s?1], the highest transcript levels (up to 2% of the total mRNA for the most abundantly transcribed genes; e.g., cpcAB, psbA, psaA) were generally derived from genes encoding structural components of the photosynthetic apparatus. High-light exposure for 1?h caused changes in transcript levels for genes encoding proteins of the photosynthetic apparatus, Type-1 NADH dehydrogenase complex and ATP synthase, whereas dark incubation for 1?h resulted in a global decrease in transcript levels for photosynthesis-related genes and an increase in transcript levels for genes involved in carbohydrate degradation. Transcript levels for pyruvate kinase and the pyruvate dehydrogenase complex decreased sharply in cells incubated in the dark. Under dark anoxic (fermentative) conditions, transcript changes indicated a global decrease in transcripts for respiratory proteins and suggested that cells employ an alternative phosphoenolpyruvate degradation pathway via phosphoenolpyruvate synthase (ppsA) and the pyruvate:ferredoxin oxidoreductase (nifJ). Finally, the data suggested that an apparent operon involved in tetrapyrrole biosynthesis and fatty acid desaturation, acsF2–ho2–hemN2–desF, may be regulated by oxygen concentration. PMID:21779275

Ludwig, Marcus; Bryant, Donald A.

2011-01-01

332

Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides.  

PubMed

A highly active oxygen-evolving photosystem II (PSII) complex was purified from the HT-3 strain of the widely used cyanobacterium Synechocystis sp. PCC 6803, in which the CP47 polypeptide has been genetically engineered to contain a polyhistidine tag at its carboxyl terminus [Bricker, T. M., Morvant, J., Masri, N., Sutton, H. M., and Frankel, L. K. (1998) Biochim. Biophys. Acta 1409, 50-57]. These purified PSII centers had four manganese atoms, one calcium atom, and two cytochrome b(559) hemes each. Optical absorption and fluorescence emission spectroscopy as well as western immunoblot analysis demonstrated that the purified PSII preparation was devoid of any contamination with photosystem I and phycobiliproteins. A comprehensive proteomic analysis using a system designed to enhance resolution of low-molecular-weight polypeptides, followed by MALDI mass spectrometry and N-terminal amino acid sequencing, identified 31 distinct polypeptides in this PSII preparation. We propose a new nomenclature for the polypeptide components of PSII identified after PsbZ, which proceeds sequentially from Psb27. During this study, the polypeptides PsbJ, PsbM, PsbX, PsbY, PsbZ, Psb27, and Psb28 proteins were detected for the first time in a purified PSII complex from Synechocystis 6803. Five novel polypeptides were also identified in this preparation. They included the Sll1638 protein, which shares significant sequence similarity to PsbQ, a peripheral protein of PSII that was previously thought to be present only in chloroplasts. This work describes newly identified proteins in a highly purified cyanobacterial PSII preparation that is being widely used to investigate the structure, function, and biogenesis of this photosystem. PMID:12069591

Kashino, Yasuhiro; Lauber, Wendy M; Carroll, James A; Wang, Qingjun; Whitmarsh, John; Satoh, Kazuhiko; Pakrasi, Himadri B

2002-06-25

333

ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium  

PubMed Central

Background The CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress. Results In this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N assimilation and metabolism, and 65% of the binding regions were located intragenically. Conclusions The distribution of NtcA-binding sites identified here reveals the largest bacterial regulon described to date. Our results show that NtcA has a much wider role in the physiology of the cell than it has been previously thought, acting both as a global transcriptional regulator and possibly also as a factor influencing the superstructure of the chromosome (and plasmids). PMID:24417914

2014-01-01

334

Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142.  

PubMed Central

Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium which demonstrated extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N2-fixing conditions. N2 fixation and respiration peaked at 24-h intervals early in the dark or subjective-dark period, whereas photosynthesis was approximately 12 h out of phase and peaked toward the end of the light or subjective-light phase. Gene regulation studies demonstrated that nitrogenase is carefully controlled at the transcriptional and posttranslational levels. Indeed, Cyanothece sp. strain ATCC 51142 has developed an expensive mode of regulation, such that nitrogenase was synthesized and degraded each day. These patterns were seen when cells were grown under either light-dark or continuous-light conditions. Nitrogenase mRNA was synthesized from the nifHDK operon during the first 4 h of the dark period under light-dark conditions or during the first 6 h of the subjective-dark period when grown in continuous light. The nitrogenase NifH and NifDK subunits reached a maximum level at 4 to 10 h in the dark or subjective-dark periods and were shown by Western blotting and electron microscopy immunocytochemistry to be thoroughly degraded toward the end of the dark periods. An exception is the NifDK protein (MoFe-protein), which appeared not to be completely degraded under continuous-light conditions. We hypothesize that cellular O2 levels were kept low by decreasing photosynthesis and by increasing respiration in the early dark or subjective-dark periods to permit nitrogenase activity. The subsequent increase in O2 levels resulted in nitrogenase damage and eventual degradation. PMID:9209050

Colón-López, M S; Sherman, D M; Sherman, L A

1997-01-01

335

Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.  

PubMed

Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically. PMID:24623652

Pattanaik, Bagmi; Busch, Andrea W U; Hu, Pingsha; Chen, Jin; Montgomery, Beronda L

2014-05-01

336

Effect of Metal Cations on the Viscosity of a Pectin-Like Capsular Polysaccharide from the Cyanobacterium Microcystis flos-aquae C3-40.  

PubMed

The properties of purified capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40 were examined by capillary viscometry. Capsule suspensions exhibited similar viscosities between pH 6 and 10 but were more viscous at pH <=4 than at pH 6 to 11. At pH 7, a biphasic effect of metal ion concentration on capsule viscosity was observed: (i) capsule viscosity increased with increasing metal ion concentration until a maximal viscosity occurred at a specific concentration that was a reproducible characteristic of each metal ion, and (ii) the viscosity decreased with further addition of that ion. Because the latter part of the biphasic curve was complicated by additional factors (especially the precipitation or gelation of capsule by divalent metal ions), the effects of various metal chlorides were compared for the former phase in which capsule viscosity increased in the presence of metal ions. Equivalent increases in capsule viscosity were observed with micromolar concentrations of divalent metal ions but only with 10 to 20 times greater concentrations of Na(sup+). The relative abilities of various metal salts to increase capsule viscosity were as follows: CdCl(inf2), Pb(NO(inf3))(inf2), FeCl(inf2) > MnCl(inf2) > CuCl(inf2), CaCl(inf2) > NaCl. This pattern of metal efficacy resembles known cation influences on the structural integrity of capsule in naturally occurring and cultured M. flos-aquae colonies. The data are the first direct demonstration of an interaction between metal ions and purified M. flos-aquae capsule, which has previously been proposed to play a role in the environmental cycling of certain multivalent metals, especially manganese. The M. flos-aquae capsule and the plant polysaccharide pectin have similar sugar compositions but differ in their relative responses to various metals, suggesting that capsular polysaccharide could be a preferable alternative to pectin for certain biotechnological applications. PMID:16535287

Parker, D L; Schram, B R; Plude, J L; Moore, R E

1996-04-01

337

The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair.  

PubMed

The role of the Syn-CRY cryptochrome from the cyanobacterium Synechocystis sp. PCC 6803 has been a subject of research for more than a decade. Recently we have shown that photolyase, showing strong homology with Syn-CRY is required for Photosystem II repair by preventing accumulation of DNA lesions under UV-B (Vass et al. 2013). Here we investigated if Syn-CRY is also involved in PSII repair, either via removal of DNA lesions or other mechanism? The ?sll1629 mutant lacking Syn-CRY lost faster the PSII activity and D1 protein during UV-B or PAR than the WT. However, no detectable damages in the genomic DNA were observed. The transcript levels of the UV-B and light stress indicator gene psbA3, encoding D1, are comparable in the two strains showing that ?sll1629 cells are not defective at the transcriptional level. Nevertheless 2D protein analysis in combination with mass spectrometry showed a decreased accumulation of several, mostly cytoplasmic, proteins including PilA1 and bicarbonate transporter SbtA. ?sll1629 cells exposed to high light also showed a limitation in de novo assembly of PSII. It is concluded that Syn-CRY is required for efficient restoration of Photosystem II activity following UV-B and PAR induced photodamage. This effect is not caused by retardation of DNA repair, instead the synthesis of new D1 (and D2) subunit(s) and/or the assembly of the Photosystem II reaction center complex is likely affected due to the lack of intracellular CO2, or via a so far unidentified pathway that possibly includes the PilA1 protein. PMID:24389045

Vass, István-Zoltán; Kós, Péter B; Knoppová, Jana; Komenda, Josef; Vass, Imre

2014-01-01

338

Microarray Analysis of the Genome-Wide Response to Iron Deficiency and Iron Reconstitution in the Cyanobacterium Synechocystis sp. PCC 68031[w  

PubMed Central

A full-genome microarray of the (oxy)photosynthetic cyanobacterium Synechocystis sp. PCC 6803 was used to identify genes that were transcriptionally regulated by growth in iron (Fe)-deficient versus Fe-sufficient media. Transcript accumulation for 3,165 genes in the genome was analyzed using an analysis of variance model that accounted for slide and replicate (random) effects and dye (a fixed) effect in testing for differences in the four time periods. We determined that 85 genes showed statistically significant changes in the level of transcription (P ? 0.05/3,165 = 0.0000158) across the four time points examined, whereas 781 genes were characterized as interesting (P ? 0.05 but greater than 0.0000158; 731 of these had a fold change >1.25×). The genes identified included those known previously to be Fe regulated, such as isiA that encodes a novel chlorophyll-binding protein responsible for the pigment characteristics of low-Fe (LoFe) cells. ATP synthetase and phycobilisome genes were down-regulated in LoFe, and there were interesting changes in the transcription of genes involved in chlorophyll biosynthesis, in photosystem I and II assembly, and in energy metabolism. Hierarchical clustering demonstrated that photosynthesis genes, as a class, were repressed in LoFe and induced upon the re-addition of Fe. Specific regulatory genes were transcriptionally active in LoFe, including two genes that show homology to plant phytochromes (cph1 and cph2). These observations established the existence of a complex network of regulatory interactions and coordination in response to Fe availability. PMID:12913140

Singh, Abhay K.; McIntyre, Lauren M.; Sherman, Louis A.

2003-01-01

339

Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.  

PubMed

The cyanobacterium Synechocystis sp. strain PCC 6803 is able to acclimate to levels of salinity ranging from freshwater to twice the seawater concentrations of salt by accumulating the compatible solute glucosylglycerol (GG). Expression of the ggpS gene coding for the key enzyme (glucosylglycerol-phosphate synthase) in GG synthesis was examined in detail. Under control conditions, the GgpS protein is stable, so that weak constitutive transcription of the ggpS gene resulted in a significant protein content. However, the enzyme activity was biochemically switched off, and no GG was detectable. After a salt shock, an immediate increase in mRNA content proportional to the salt content occurred, while the GgpS protein and GG contents rose in a linear manner. Furthermore, the stability of the ggpS mRNA increased transiently. In salt-acclimated cells expression of the ggpS gene, the GgpS protein content, and the amount of accumulated GG depended linearly on the external salt concentration. Mapping of the 5' end of the ggpS transcript revealed a long nontranslated 5' sequence and a putative typical cyanobacterial promoter, which did not show any obvious salt-regulatory element. The alternative sigma factor sigma(F) was found to be involved in salt-dependent regulation of ggpS, since in a sigma(F) mutant induction of this gene was strongly reduced. The present study demonstrated that in addition to biochemical regulation of GgpS activity, alterations of ggpS expression are involved in regulation of GG synthesis in Synechocystis sp. strain PCC 6803. A model showing the interaction of the two regulatory levels is presented. PMID:12003926

Marin, Kay; Huckauf, Jana; Fulda, Sabine; Hagemann, Martin

2002-06-01

340

Serine/Threonine Protein Kinase SpkG Is a Candidate for High Salt Resistance in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803  

PubMed Central

Background Seven serine/threonine kinase genes have been predicted in unicellular cyanobacterium Synechocystis sp. PCC6803. SpkA and SpkB were shown to be required for cell motility and SpkE has no kinase activity. There is no report whether the other four STKs are involved in stress-mediated signaling in Synechocystis PCC6803. Methodology/Principal Findings In this paper, we examined differential expression of the other four serine/threonine kinases, SpkC, SpkD, SpkF and SpkG, at seven different stress conditions. The transcriptional level was up-regulated of spkG and down-regulated of spkC under high salt stress condition. Two spk deletion mutants, ?spkC and ?spkG, were constructed and their growth characteristic were examined compared to the wild strain. The wild strain and ?spkC mutant were not affected under high salt stress conditions. In contrast, growth of spkG mutant was completely impaired. To further confirm the function of spkG, we also examined the effect of mutation of spkG on the expression of salt stress-inducible genes. We compared genome-wide patterns of transcription between wild-type Synechocystis sp. PCC6803 and cells with a mutation in the SpkG with DNA microarray analysis. Conclusion In this study, we first study the spkG gene as sensor of high salt signal. We consider that SpkG play essential roles in Synechocystis sp. for sensing the high salt signal directly, rather than mediating signals among other kinases. Our microarray experiment may help select relatively significant genes for further research on mechanisms of signal transduction of Synechocystis sp. PCC6803 under high salt stress. PMID:21637338

Chi, Xiaoyuan; Guan, Xiangyu; Li, Youxun; Qin, Song; Shao, Hong bo

2011-01-01

341

Inactivation of an ABC Transporter Gene, mcyH, Results in Loss of Microcystin Production in the Cyanobacterium Microcystis aeruginosa PCC 7806  

PubMed Central

The cyanobacterium Microcystis aeruginosa is widely known for its production of the potent hepatotoxin microcystin. Microcystin is synthesized nonribosomally by the thiotemplate function of a large, modular enzyme complex encoded within the 55-kb microcystin synthetase (mcy) gene cluster. Also encoded within the mcy gene cluster is a putative ATP binding cassette (ABC) transporter, McyH. This study details the bioinformatic and mutational analyses of McyH and offers functional predictions for the hypothetical protein. The transporter is putatively comprised of two homodimers, each with an N-terminal hydrophobic domain and a C-terminal ATPase. Phylogenetically, McyH was found to cluster with members of the ABC-A1 subgroup of ABC ATPases, suggesting an export function for the protein. Two mcyH null mutant (?mcyH) strains were constructed by partial deletion of the mcyH gene. Microcystin production was completely absent in these strains. While the mcyH deletion had no apparent effect on the transcription of other mcy genes, the complete microcystin biosynthesis enzyme complex could not be detected in ?mcyH mutant strains. Finally, expression levels of McyH in the wild type and in ?mcyA, ?mcyB, and ?mcyH mutants were investigated by using immunoblotting with an anti-McyH antibody. Expression of McyH was found to be reduced in ?mcyA and ?mcyB mutants and completely absent in the ?mcyH mutant. By virtue of its association with the mcy gene cluster and the bioinformatic and experimental data presented in this study, we predict that McyH functions as a microcystin exporter and is, in addition, intimately associated with the microcystin biosynthesis pathway. PMID:15528494

Pearson, Leanne A.; Hisbergues, Michael; Börner, Thomas; Dittmann, Elke; Neilan, Brett A.

2004-01-01

342

LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity.  

PubMed

The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca(2+) and in the temperature range of 30-57°C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, (86)GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress. PMID:25523083

Kumar, Arvind; Kirti, Anurag; Rajaram, Hema

2015-02-01

343

Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa.  

PubMed

H2O2 is an emerging biocide for bloom-forming cyanobacteria. It is important to investigate the H2O2 scavenging ability of extracellular polymeric substances (EPS) of cyanobacteria because EPS with strong antioxidant activity may "waste" considerable amounts of H2O2 before it kills the cells. In this study, the buffering capacity against H2O2 of EPS from the bloom-forming cyanobacterium Microcystis aeruginosa was investigated. IC50 values for the ability of EPS and vitamin C (VC) to scavenge 50% of the initial H2O2 concentration were 0.097 and 0.28 mg mL(-1), respectively, indicating the higher H2O2 scavenging activity of EPS than VC. Both proteins and polysaccharides are significantly decomposed by H2O2 and the polysaccharides were more readily decomposed than proteins. H2O2 consumed by the EPS accounted for 50% of the total amount of H2O2 consumed by the cells. Cell growth and photosynthesis were reduced more for EPS-free cells than EPS coated cells when the cells were treated with 0.1 or 0.2 mg mL(-1) H2O2, and the maximum photochemical efficiency Fv/Fm of EPS coated cells recovered to higher values than EPS-free cells. Concentrations of H2O2 above 0.3 mg mL(-1) completely inhibited photosynthesis and no recovery was observed for both EPS-free and EPS coated cells. This shows that EPS has some buffering capacity against the killing effect of H2O2 on cyanobacterial cells. Such a strong H2O2 scavenging ability of EPS is not favorable for killing bloom-forming cyanobacteria. The high H2O2 scavenging capacity means considerable amounts of H2O2 have to be used to break through the EPS barrier before H2O2 exerts any killing effects on the cells. It is therefore necessary to determine the H2O2 scavenging capacity of the EPS of various bloom-forming cyanobacteria so that the cost-effective amount of H2O2 needed to be used for killing the cyanobacteria can be estimated. PMID:25463931

Gao, Lei; Pan, Xiangliang; Zhang, Daoyong; Mu, Shuyong; Lee, Duu-Jong; Halik, Umut

2015-02-01

344

Differences in the Interactions between the Subunits of Photosystem II Dependent on D1 Protein Variants in the Thermophilic Cyanobacterium Thermosynechococcus elongatus*  

PubMed Central

The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/?PsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/?PsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits. PMID:20630865

Sugiura, Miwa; Iwai, Eri; Hayashi, Hidenori; Boussac, Alain

2010-01-01

345

Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus.  

PubMed

Viruses can control the structure of bacterial communities in aquatic environments. The aim of this project was to determine if cyanophages (viruses specific to cyanobacteria) could exert a controlling influence on the abundance of the potentially toxic cyanobacterium Microcystis aeruginosa (host). M. aeruginosa was isolated, cultured, and characterized from a subtropical monomictic lake-Lake Baroon, Sunshine Coast, Queensland, Australia. The viral communities in the lake were separated from cyanobacterial grazers by filtration and chloroform washing. The natural lake viral cocktail was incubated with the M. aeruginosa host growing under optimal light and nutrient conditions. The specific growth rate of the host was 0.023 h(-1); generation time, 30.2 h. Within 6 days, the host abundance decreased by 95%. The density of the cyanophage was positively correlated with the rate of M. aeruginosa cell lysis (r(2) = 0.95). The cyanophage replication time was 11.2 h, with an average burst size of 28 viral particles per host cell. However, in 3 weeks, the cultured host community recovered, possibly because the host developed resistance (immunity) to the cyanophage. The multiplicity of infection was determined to be 2,890 virus-like particles/cultured host cell, using an undiluted lake viral population. Transmission electron microscopy showed that two types of virus were likely controlling the host cyanobacterial abundance. Both viruses displayed T7-like morphology and belonged to the Podoviridiae group (short tails) of viruses that we called cyanophage Ma-LBP. In Lake Baroon, the number of the cyanophage Ma-LBP was 5.6 x 10(4) cyanophage x ml(-1), representing 0.23% of the natural viral population of 2.46 x 10(7) x ml(-1). Our results showed that this cyanophage could be a major natural control mechanism of M. aeruginosa abundance in aquatic ecosystems like Lake Baroon. Future studies of potentially toxic cyanobacterial blooms need to consider factors that influence cyanophage attachment, infectivity, and lysis of their host alongside the physical and chemical parameters that drive cyanobacterial growth and production. PMID:15691911

Tucker, Stephen; Pollard, Peter

2005-02-01

346

HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU  

SciTech Connect

The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 ?mole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 ?mole m-2 s-1. Excessive light at 400 ?mole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal at an initial nitrate concentration of 1 mM and a light intensity of 100 ?mole m-2 s-1. DCMU was shown in all experiments to severely decrease hydrogen production as time progressed. With the information acquired so far, future experiments with reducing substances could determine maximum rates of hydrogen production. If maximum hydrogen production rates proved to be large enough, Plectonema boryanum could be grown on an industrial scale to provide hydrogen gas as a renewable fuel.

Carter, B.; Huesemann, M.

2008-01-01

347

Isolation and characterization of a chlorate-resistant mutant (Clo- R) of the symbiotic cyanobacterium Nostoc ANTH: heterocyst formation and N(2)-fixation in the presence of nitrate, and evidence for separate nitrate and nitrite transport systems.  

PubMed

Nostoc ANTH is a filamentous, heterocystous cyanobacterium capable of N(2)-fixation in the absence of combined nitrogen. A chlorate-resistant mutant (Clo- R) of Nostoc ANTH was isolated that differentiates heterocysts and fixes N(2) in the presence of nitrate, but not in the presence of nitrite or ammonium. The mutant lacks nitrate uptake and thereby also lacks induction of nitrate reductase activity by nitrate. However, this mutant is able to transport and assimilate nitrite, indicating that there is a transport system for nitrite that is distinct from that for the nitrate. The lack of inhibitory effect of nitrate on N(2)-fixation was owing to lack of nitrate uptake and not to lack of enzymes for its assimilation (nitrate reductase and glutamine synthetase) or the lack of an ammonium transport system for retention of ammonia. The mutant has potential for use as a biofertilizer supplementing chemical nitrate fertilizer in rice fields, without N(2)-fixation being adversely affected. PMID:12070686

Bhattacharya, Jyotirmoy; Singh, Arvind Kumar; Rai, Amar Nath

2002-08-01

348

Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.  

PubMed Central

Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by the enzyme encoded by the nif genes but also by the enzyme encoded by the vnf genes. Neither NifS nor NifU was essential for nitrogen fixation in A. variabilis. PMID:7883714

Lyons, E M; Thiel, T

1995-01-01

349

The Putative Eukaryote-Like O-GlcNAc Transferase of the Cyanobacterium Synechococcus elongatus PCC 7942 Hydrolyzes UDP-GlcNAc and Is Involved in Multiple Cellular Processes.  

PubMed

The posttranslational addition of a single O-linked ?-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes. PMID:25384478

Sokol, Kerry A; Olszewski, Neil E

2015-01-15

350

Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation.  

PubMed

Iron deficiency is known to suppress primary productivity in both marine and freshwater ecosystems. In response to iron deficiency, certain cyanobacteria induce a chlorophyll (Chl)-protein complex, CP43', which is encoded by the isiA gene. The deduced amino-acid sequence of CP43' predicts some structural similarity to the CP43 polypeptide of photosystem II, but the function of CP43' remains uncertain. In order to assess its physiological role, the isiA gene of a cyanobacterium, Synechococcus sp. PCC7942, was inactivated by insertion mutagenesis (giving isiA cells). Compared with isiA cells, under iron deprivation, wild-type cells showed both lower rates of photosystem II-mediated O2 evolution at limiting light irradiances and decreased yields of room temperature Chl fluorescence at various irradiances. These observations strongly suggest that the decreased photosystem II activity in wild-type cells with CP43' is attributable to increased non-radiative dissipation of light energy. In agreement with this hypothesis, isiA cells were more susceptible to photoinhibition of photosynthesis than wild-type cells, resulting in much slower growth rates under iron limitation. Based on these results, we suggest that CP43' functions as a non-radiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions. PMID:10216865

Park, Y I; Sandström, S; Gustafsson, P; Oquist, G

1999-04-01

351

Monomeric NarB Is a Dual-Affinity Nitrate Reductase, and Its Activity Is Regulated Differently from That of Nitrate Uptake in the Unicellular Diazotrophic Cyanobacterium Synechococcus sp. Strain RF-1  

PubMed Central

Synechococcus sp. strain RF-1 is a unicellular freshwater cyanobacterium that fixes N2 aerobically and exhibits a circadian rhythm for nitrogenase activity under a light-dark regimen. Synechococcus sp. strain RF-1 also utilizes nitrate, nitrite, or ammonium for growth. Under the diazotrophic growth, the nitrate uptake in Synechococcus sp. strain RF-1 was induced by nitrate or nitrite but repressed by ammonium. In contrast, a prominent nitrate reductase (NR) activity was detected in diazotrophically grown cells using the reduced methyl viologen assay. The NR activity was not inhibited by ammonium and only slightly enhanced by nitrate. The different expression patterns of nitrate uptake and NR in Synechococcus sp. strain RF-1 were reflected in general at the transcript level determined by reverse transcriptase PCR. Under both nitrate-induced and uninduced conditions, the in situ NR activity exhibited similar biphasic kinetics for nitrate. The recombinant NR encoded by the narB gene of Synechococcus sp. strain RF-1, expressed in E. coli, also showed the biphasic kinetics with similar pH and temperature profiles. By in-gel NR activity assay, the recombinant NarB was found to exist as a single form. Both the high- and low-affinity NR activities of the recombinant NarB showed the same thermostability. When modified at the N terminus by a polyhistidine tag, the recombinant NR activity was shifted from biphasic to hyperbolic kinetics and showed only a single Km for nitrate, indicating the functional importance of the NarB N-terminal structure in NR kinetics. PMID:13129956

Wang, Tung-Hei; Fu, Hongyong; Shieh, Yuh-Jang

2003-01-01

352

The Hypothetical Protein ‘All4779’, and Not the Annotated ‘Alr0088’ and ‘Alr7579’ Proteins, Is the Major Typical Single-Stranded DNA Binding Protein of the Cyanobacterium, Anabaena sp. PCC7120  

PubMed Central

Single-stranded DNA binding (SSB) proteins are essential for all DNA-dependent cellular processes. Typical SSB proteins have an N-terminal Oligonucleotide-Binding (OB) fold, a Proline/Glycine rich region, followed by a C-terminal acidic tail. In the genome of the heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120, alr0088 and alr7579 are annotated as coding for SSB, but are truncated and have only the OB-fold. In silico analysis of whole genome of Anabaena sp. strain PCC7120 revealed the presence of another ORF ‘all4779’, annotated as a hypothetical protein, but having an N-terminal OB-fold, a P/G-rich region and a C-terminal acidic tail. Biochemical characterisation of all three purified recombinant proteins revealed that they exist either as monomer or dimer and bind ssDNA, but differently. The All4779 bound ssDNA in two binding modes i.e. (All4779)35 and (All4779)66 depending on salt concentration and with a binding affinity similar to that of Escherichia coli SSB. On the other hand, Alr0088 bound in a single binding mode of 50-mer and Alr7579 only to large stretches of ssDNA, suggesting that All4779, in all likelihood, is the major typical bacterial SSB in Anabaena. Overexpression of All4779 in Anabaena sp. strain PCC7120 led to enhancement of tolerance to DNA-damaging stresses, such as ?-rays, UV-irradiation, desiccation and mitomycinC exposure. The tolerance appears to be a consequence of reduced DNA damage or efficient DNA repair due to increased availability of All4779. The ORF all4779 is proposed to be re-annotated as Anabaena ssb gene. PMID:24705540

Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

2014-01-01

353

The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120*  

PubMed Central

The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component “AB-D” systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox? phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ?acrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120. PMID:24014018

Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Lytvynenko, Iryna; Pos, Klaas Martinus; Schleiff, Enrico

2013-01-01

354

Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin.  

PubMed

The genus Octadecabacter is a member of the ubiquitous marine Roseobacter clade. The two described species of this genus, Octadecabacter arcticus and Octadecabacter antarcticus, are psychrophilic and display a bipolar distribution. Here we provide the manually annotated and finished genome sequences of the type strains O. arcticus 238 and O. antarcticus 307, isolated from sea ice of the Arctic and Antarctic, respectively. Both genomes exhibit a high genome plasticity caused by an unusually high density and diversity of transposable elements. This could explain the discrepancy between the low genome synteny and high 16S rRNA gene sequence similarity between both strains. Numerous characteristic features were identified in the Octadecabacter genomes, which show indications of horizontal gene transfer and may represent specific adaptations to the habitats of the strains. These include a gene cluster encoding the synthesis and degradation of cyanophycin in O. arcticus 238, which is absent in O. antarcticus 307 and unique among the Roseobacter clade. Furthermore, genes representing a new subgroup of xanthorhodopsins as an adaptation to icy environments are present in both Octadecabacter strains. This new xanthorhodopsin subgroup differs from the previously characterized xanthorhodopsins of Salinibacter ruber and Gloeobacter violaceus in phylogeny, biogeography and the potential to bind 4-keto-carotenoids. Biochemical characterization of the Octadecabacter xanthorhodopsins revealed that they function as light-driven proton pumps. PMID:23671678

Vollmers, John; Voget, Sonja; Dietrich, Sascha; Gollnow, Kathleen; Smits, Maike; Meyer, Katja; Brinkhoff, Thorsten; Simon, Meinhard; Daniel, Rolf

2013-01-01

355

Proton gradients in intact cyanobacteria  

NASA Technical Reports Server (NTRS)

The internal pH values of two unicellular cyanobacterial strains were determined with electron spin resonance probes, over an external pH range of 6 to 9, in the light and in the dark. The slow growing, thylakoid-lacking Gloeobacter violaceus was found to have a low capacity for maintaining a constant internal pH. The distribution pattern of weak acid and amine nitroxide spin probes across the cell membranes of this organism, in the light and in the dark, was consistent with the assumption that it contains a single intracellular compartment. At an external pH of 7.0, intracellular pH was 6.8 in the dark and 7.2 in the light. The cells of Agmenellum quadruplicatum, a marine species, were found to contain two separate compartments; in the dark, the pH of the cytoplasmic and the intrathylakoid spaces were calculated to be 7.2 and 5.5, respectively. Upon illumination, the former increased and the latter decreased by about 0.5 pH units.

Belkin, S.; Mehlhorn, R. J.; Packer, L.

1987-01-01

356

Trichodesmium, a globally significant marine cyanobacterium  

SciTech Connect

Planktonic marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans. Their unusual adaptations, from the molecular to the macroscopic level, contribute to their ecological success and biogeochemical importance. Trichodesmium fixes nitrogen gas (N{sub 2}) under fully aerobic conditions while photosynthetically evolving oxygen. Its temporal pattern of N{sub 2} fixation results from an enclogenous daily cycle that confines N{sub 2} fixation to daylight hours. Trichodesmium colonies provide a unique pelagic habitat that supports a complex assemblage of consortial organisms. These colonies often represent a large fraction of the plant biomass in tropical, oligotrophic waters and contribute substantially to primary production. N{sub 2} fixation by Trichodesmium is likely a major input to the marine and global nitrogen cycle.

Capone, D.G. [Univ. of Maryland, Solomons, MD (United States)] [Univ. of Maryland, Solomons, MD (United States); Zehr, J.P. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [Rensselaer Polytechnic Institute, Troy, NY (United States); Paerl, H.W. [Univ. of North Carolina, Morehead City, NC (United States)] [and others] [Univ. of North Carolina, Morehead City, NC (United States); and others

1997-05-23

357

Trichodesmium, a globally significant marine cyanobacterium  

Microsoft Academic Search

Planktonic marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans. Their unusual adaptations, from the molecular to the macroscopic level, contribute to their ecological success and biogeochemical importance. Trichodesmium fixes nitrogen gas (Nâ) under fully aerobic conditions while photosynthetically evolving oxygen. Its temporal pattern of Nâ fixation results from an enclogenous daily cycle that confines

Douglas G. Capone; Jonathan P. Zehr; Hans W. Paerl

1997-01-01

358

Cytosolic Ni(II) Sensor in Cyanobacterium  

PubMed Central

Efflux of surplus Ni(II) across the outer and inner membranes of Synechocystis PCC 6803 is mediated by the Nrs system under the control of a sensor of periplasmic Ni(II), NrsS. Here, we show that the product of ORF sll0176, which encodes a CsoR/RcnR-like protein now designated InrS (for internal nickel-responsive sensor), represses nrsD (NrsD is deduced to efflux Ni(II) across the inner membrane) from a cryptic promoter between the final two ORFs in the nrs operon. Transcripts initiated from the newly identified nrsD promoter accumulate in response to nickel or cobalt but not copper, and recombinant InrS forms specific, Ni(II)-inhibited complexes with the nrsD promoter region. Metal-dependent difference spectra of Ni(II)- and Cu(I)-InrS are similar to Cu(I)-sensing CsoR and dissimilar to Ni(II)/Co(II)-sensing RcnR, consistent with factors beyond the primary coordination sphere switching metal selectivity. Competition with chelators mag-fura-2, nitrilotriacetic acid, EDTA, and EGTA estimate KD Ni(II) for the tightest site of InrS as 2.05 (±1.5) × 10?14 m, and weaker KD Ni(II) for the cells' metal sensors of other types: Zn(II) co-repressor Zur, Co(II) activator CoaR, and Zn(II) derepressor ZiaR. Ni(II) transfer to InrS occurs upon addition to Ni(II) forms of each other sensor. InrS binds Ni(II) sufficiently tightly to derepress Ni(II) export at concentrations below KD Ni(II) of the other sensors. PMID:22356910

Foster, Andrew W.; Patterson, Carl J.; Pernil, Rafael; Hess, Corinna R.; Robinson, Nigel J.

2012-01-01

359

Phosphorus physiology of the marine cyanobacterium Trichodesmium  

E-print Network

Primary producers play a critical role in the oceanic food chain and the global cycling of carbon. The marine diazotroph Trichodesmium is a major contributor to both primary production and nitrogen fixation in the tropical ...

Orchard, Elizabeth Duncan

2010-01-01

360

Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17(+)ROR?t(+)/IL-10(+)FoxP3(+) ratio in CD4(+) T cells.  

PubMed

Regular bathing in the Blue Lagoon in Iceland has beneficial effects on psoriasis. Cyanobacterium aponinum is a dominating member of the Blue Lagoon's microbial ecosystem. The aim of the study was to determine whether exopolysaccharides (EPSs) secreted by C. aponinum (EPS-Ca) had immunomodulatory effects in vitro. Human monocyte-derived dendritic cells (DCs) were matured in the absence or presence of EPS-Ca and the effects were determined by measuring the secretion of cytokines by ELISA and the expression of surface molecules by flow cytometry. DCs matured with EPS-Ca at 100?g/ml secreted higher levels of IL-10 than untreated DCs. Subsequently, DCs matured in the presence or absence of EPS-Ca were co-cultured with allogeneic CD4(+) T cells and their effects on T cell activation analysed by measuring expression of intracellular and surface molecules and cytokine secretion. Supernatant from allogeneic T cells co-cultured with EPS-Ca-exposed DCs had raised levels of IL-10 compared with control. A reduced frequency of IL-17(+)ROR?t(+) T cells was observed when co-cultured with EPS-Ca-exposed DCs and a tendency towards increased frequency of FoxP3(+)IL-10(+) T cells, resulting in a lower IL-17(+)ROR?t(+)/FoxP3(+)IL-10(+) ratio. The study shows that EPSs secreted by C. aponinum stimulate DCs to produce vast amounts of the immunosuppressive cytokine IL-10. These DCs induce differentiation of allogeneic CD4(+) T cells with an increased Treg but decreased Th17 phenotype. These data suggest that EPSs from C. aponinum may play a role in the beneficial clinical effect on psoriasis following bathing in the Blue Lagoon. PMID:25499021

Gudmundsdottir, Asa B; Omarsdottir, Sesselja; Brynjolfsdottir, Asa; Paulsen, Berit S; Olafsdottir, Elin S; Freysdottir, Jona

2015-02-01

361

A gating mechanism of pentameric ligand-gated ion channels  

PubMed Central

Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we present atomistic molecular dynamics simulations of the prokaryotic channels from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC), whose crystal structures are thought to represent the active and the resting states of pLGICs, respectively, and of the eukaryotic glutamate-gated chloride channel from Caenorhabditis elegans (GluCl), whose open-channel structure was determined complexed with the positive allosteric modulator ivermectin. Structural observables extracted from the trajectories of GLIC and ELIC are used as progress variables to analyze the time evolution of GluCl, which was simulated in the absence of ivermectin starting from the structure with bound ivermectin. The trajectory of GluCl with ivermectin removed shows a sequence of structural events that couple agonist unbinding from the extracellular domain to ion-pore closing in the transmembrane domain. Based on these results, we propose a structural mechanism for the allosteric communication leading to deactivation/activation of the GluCl channel. This model of gating emphasizes the coupling between the quaternary twisting and the opening/closing of the ion pore and is likely to apply to other members of the pLGIC family. PMID:24043807

Calimet, Nicolas; Simoes, Manuel; Changeux, Jean-Pierre; Karplus, Martin; Taly, Antoine; Cecchini, Marco

2013-01-01

362

Engineering a prokaryotic Cys-loop receptor with a third functional domain.  

PubMed

Prokaryotic members of the Cys-loop receptor ligand-gated ion channel superfamily were recently identified. Previously, Cys-loop receptors were only known from multicellular organisms (metazoans). Contrary to the metazoan Cys-loop receptors, the prokaryotic ones consist of an extracellular (ECD) and a transmembrane domain (TMD), lacking the large intracellular domain (ICD) present in metazoa (between transmembrane segments M3 and M4). Using a chimera approach, we added the 115-amino acid ICD from mammalian serotonin type 3A receptors (5-HT(3A)) to the prokaryotic proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC). We created 12 GLIC-5-HT(3A)-ICD chimeras by replacing a variable number of amino acids in the short GLIC M3M4 linker with the entire 5-HT(3A)-ICD. Two-electrode voltage clamp recordings after expression in Xenopus laevis oocytes showed that only two chimeras were functional and produced currents upon acidification. The pH(50) was comparable with wild-type GLIC. 5-HT(3A) receptor expression can be inhibited by the chaperone protein RIC-3. We have shown previously that the 5-HT(3A)-ICD is required for the attenuation of 5-HT-induced currents when RIC-3 is co-expressed with 5-HT(3A) receptors in X. laevis oocytes. Expression of both functional 5-HT(3A) chimeras was inhibited by RIC-3 co-expression, indicating appropriate folding of the 5-HT(3A)-ICD in the chimeras. Our results indicate that the ICD can be considered a separate domain that can be removed from or added to the ECD and TMD while maintaining the overall structure and function of the ECD and TMD. PMID:21844195

Goyal, Raman; Salahudeen, Ahmed Abdullah; Jansen, Michaela

2011-10-01

363

Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton  

Microsoft Academic Search

The marine filamentous bloom-forming cyanobacteria Trichodesmium thiebautii and T. erythraeum were collected at locations in the Carribean during Jan.–Feb. 1991. They were screened for toxicity using Artemia salina and several species of copepods, which were harpacticoid grazers, filter-feeding calanoids, or cyclopoid copepods. Approximately\\u000a 50% of the 89 T. thiebautii samples caused> 50% lethality of A. salina, though none of the

S. P. Hawser; J. M. O'Neil; M. R. Roman; G. A. Coddl

1992-01-01

364

Functional genomics of the unicellular cyanobacterium Synechococcus elongatus PCC 7942  

E-print Network

. elongatus PCC 7942 genome is 2,695,903 bp in length, and has a 55.5% GC content. Automated annotation identified 2,856 protein-coding genes and 51 RNA coding loci. A system for community refinement of the annotation was established. Organization...

Chen, You

2009-05-15

365

Regulation of Phosphate Accumulation in the Unicellular Cyanobacterium Synechococcus  

PubMed Central

The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent Km of about 0.5 ?M, but Vmax was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15°C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity. PMID:227842

Grillo, John F.; Gibson, Jane

1979-01-01

366

Inflammatory effects of the toxic cyanobacterium Geitlerinema amphibium.  

PubMed

Toxic cyanobacteria in public water reservoirs may cause severe health issues for livestock and human beings. Geitlerinema amphibium, which is frequently found in São Paulo City's drinking water supplies, showed toxicity in the standard mouse bioassay, while displaying signs of intoxication and post-mortem findings different from those showed by animals intoxicated by known cyanotoxins. We report here the alterations caused by G. amphibium methanolic extract on mouse microcirculatory network, as seen by in vivo intravital microscopy, besides observations on leukocyte migration, cytokine quantitation, and results of toxicological essays. Our data showed that G. amphibium methanolic extract displayed time- and dose-dependent pro-inflammatory activity, and that at lower doses [125 and 250 mg/kg body weight (b.w.)] increased the leukocyte rolling, caused partial venular stasis, as well as induced an increase in leukocyte counts in the peripheral blood and peritoneal washings. At higher doses (500 and 1000 mg/kg b.w.), the extract caused ischemic injury leading to animal death. As confirmed by mass spectrometric studies and polymyxin B test, the G. amphibium methanolic extract did not contain lipopolysaccharides. PMID:21867725

Dogo, Camila Ranzatto; Bruni, Fernanda Miriane; Elias, Fabiana; Rangel, Marisa; Pantoja, Patricia Araujo; Sant'anna, Célia Leite; Lima, Carla; Lopes-Ferreira, Monica; de Carvalho, Luciana Retz

2011-11-01

367

Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1  

NASA Technical Reports Server (NTRS)

Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

Cumbers, John Robert; Rothschild, Lynn J.

2014-01-01

368

Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium  

PubMed Central

Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to understand the genetic basis for different physiologies and possible niche adaptation in this genus. Here we show that unlike all other known isolates of Acaryochloris, the strain HICR111A, isolated from waters around Heron Island, Great Barrier Reef, possesses a unique genomic region containing all the genes for the structural and enzymatically active proteins of nitrogen fixation and cofactor biosynthesis. Their phylogenetic analysis suggests a close relation to nitrogen fixation genes from certain other marine cyanobacteria. We show that nitrogen fixation in Acaryochloris sp. HICR111A is regulated in a light–dark-dependent fashion. We conclude that nitrogen fixation, one of the most complex physiological traits known in bacteria, might be transferred among oceanic microbes by horizontal gene transfer more often than anticipated so far. Our data show that the two powerful processes of oxygenic photosynthesis and nitrogen fixation co-occur in one and the same cell also in this branch of marine microbes and characterize Acaryochloris as a physiologically versatile inhabitant of an ecological niche, which is primarily driven by the absorption of far-red light. PMID:22237545

Pfreundt, Ulrike; Stal, Lucas J; Voß, Björn; Hess, Wolfgang R

2012-01-01

369

Response of the cyanobacterium Microcystis flos-aquae to levofloxacin.  

PubMed

The effects of levofloxacin (LEV) on Microcystis flos-aquae and its mechanism were investigated by determining the responses of some parameters of M. flos-aquae to LEV stress, including growth inhibition ratio, chlorophyll a content, superoxide dismutase (SOD) and catalase (CAT) activities, malondialdehyde (MDA) content, F v/F 0 and F v/F m, etc. The results indicated that LEV at 0.001-0.1 ?g L(-1) could stimulate the growth of M. flos-aquae and increase the chlorophyll a content but did not induce a significant increase in the activity of antioxidant enzymes (SOD and CAT) and the content of MDA. When the LEV concentration exceeds 10 ?g L(-1), the growth of M. flos-aquae could be significantly inhibited (the highest inhibition ratio can be up to 88.38 % at 100 ?g L(-1)) and chlorophyll a content, SOD and CAT activities, and MDA content also significantly decreased in a concentration-dependent manner, indicating that high concentrations of LEV caused a severe oxidative stress on algal cells, resulting in a large number of reactive oxygen species produced in algal cells and thereby inhibiting the growth of algae. At the same time, the F v/F m and F v/F 0 values of M. flos-aquae decreased significantly with both exposure time and increasing test concentration of LEV, showing that the process of photosynthesis was inhibited. PMID:24288061

Wan, Jinjin; Guo, Peiyong; Zhang, Shengxiang

2014-03-01

370

Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica  

E-print Network

over the next two decades, the supply of fossil fuels remains finite and is being depleted://dx.doi.org/10.1364/JOSAA.31.000836 1. INTRODUCTION The prolonged reliance on fossil fuels for many human activ

Pilon, Laurent

371

Effective transformation of the cyanobacterium Spirulina platensis using electroporation  

Microsoft Academic Search

Although Spirulina (Arthrospira) is expected to be a suitableorganism for producing recombinant proteins, a gene transfer system hasnot yet been established, due to a lack of suitable vectors and because Spirulina appears refractory to common genetic manipulations. As theinitial stages of the development of recombinant DNA methodology, weexamined the effects on transformation efficiency of electroporationconditions such as electric-field strength (2,

Masaaki Toyomizu; Kazuaki Suzuki; Yoshikazu Kawata; Hiroyuki Kojima; Yukio Akiba

2001-01-01

372

Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties  

PubMed Central

The last several decades have witnessed dramatic advances in unfolding the diversity and commonality of oceanic diazotrophs and their N2-fixing potential. More recently, substantial progress in diazotrophic cell biology has provided a wealth of information on processes and mechanisms involved. The substantial contribution by the diazotrophic cyanobacterial genus Trichodesmium to the nitrogen influx of the global marine ecosystem is by now undisputable and of paramount ecological importance, while the underlying cellular and molecular regulatory physiology has only recently started to unfold. Here, we explore and summarize current knowledge, related to the optimization of its diazotrophic capacity, from genomics to ecophysiological processes, via, for example, cellular differentiation (diazocytes) and temporal regulations, and suggest cellular research avenues that now ought to be explored. PMID:22928644

Bergman, Birgitta; Sandh, Gustaf; Lin, Senjie; Larsson, John; Carpenter, Edward J

2013-01-01

373

Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation.  

PubMed

Desert cyanobacteria of the genus Chroococcidiopsis are extremely resistant to desiccation and ionizing radiation. When an endolithic strain was exposed to UVC radiation cell lysis, genome damage, photosynthetic pigment bleaching and reduced photochemical performance occurred. Nevertheless, survivors were scored after UVC doses as high as 13 kJ/m(2) and their endurance ascribed to multicellular aggregates enveloped in thick envelopes, so that attenuated UVC radiation reached the inner cells. In addition, the accumulation of carotenoids contributed to UVC resistance by providing protection against oxidative stress. Finally, in survivors repair mechanisms were responsible for the recovery of the induced damage to genome and photosynthetic apparatus. PMID:23239185

Baqué, Mickael; Viaggiu, Emanuela; Scalzi, Giuliano; Billi, Daniela

2013-01-01

374

Mechanism of activation of the prokaryotic channel ELIC by propylamine: A single-channel study.  

PubMed

Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ?102 (?20 for ?1? glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state. PMID:25548135

Marabelli, Alessandro; Lape, Remigijus; Sivilotti, Lucia

2015-01-01

375

Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle.  

PubMed

The evolution of mitochondria and plastids from bacterial endosymbionts were key events in the origin and diversification of eukaryotic cells. Although the ancient nature of these organelles makes it difficult to understand the earliest events that led to their establishment, the study of eukaryotic cells with recently evolved obligate endosymbiotic bacteria has the potential to provide important insight into the transformation of endosymbionts into organelles. Diatoms belonging to the family Rhopalodiaceae and their endosymbionts of cyanobacterial origin (i.e., "spheroid bodies") are emerging as a useful model system in this regard. The spheroid bodies, which appear to enable rhopalodiacean diatoms to use gaseous nitrogen, became established after the divergence of extant diatom families. Here we report what is, to our knowledge, the first complete genome sequence of a spheroid body, that of the rhopalodiacean diatom Epithemia turgida. The E. turgida spheroid body (EtSB) genome was found to possess a gene set for nitrogen fixation, as anticipated, but is reduced in size and gene repertoire compared with the genomes of their closest known free-living relatives. The presence of numerous pseudogenes in the EtSB genome suggests that genome reduction is ongoing. Most strikingly, our genomic data convincingly show that the EtSB has lost photosynthetic ability and is metabolically dependent on its host cell, unprecedented characteristics among cyanobacteria, and cyanobacterial symbionts. The diatom-spheroid body endosymbiosis is thus a unique system for investigating the processes underlying the integration of a bacterial endosymbiont into eukaryotic cells. PMID:25049384

Nakayama, Takuro; Kamikawa, Ryoma; Tanifuji, Goro; Kashiyama, Yuichiro; Ohkouchi, Naohiko; Archibald, John M; Inagaki, Yuji

2014-08-01

376

The search for new chlorophyll-binding proteins in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Light harvesting provides a major challenge in the production of biofuels from microorganisms; while sunlight provides the energy necessary for biomass/biofuel production, at the same time it damages the cells. The genome of Synechocystis sp. PCC 6803 was searched for open reading frames that might code for yet unidentified chlorophyll-binding proteins with low molecular mass that could be involved in stress-adaptation. Amongst 9167 hypothetical ORFs corresponding to potential polypeptides of 100 amino acids or less, two were identified that had the potential to be pigment-binding, because they (i) encoded a potential transmembrane region, (ii) showed sequence similarity with known chlorophyll-binding domains, (iii) were conserved in other cyanobacterial species, and (iv) their codon adaptation index indicated significant translation probability. The two ORFs were located complementary (antisense) and internal to the ferrochelatase (hemH) and the pyruvate dehydrogenase (pdh) genes and therefore were named a-fch and a-pdh, respectively. Transcription of both genes was confirmed; however, no translated proteins could be detected immunologically. Whereas mutations within a-pdh or a-fch did not lead to any obvious phenotype, it is clear that transcripts and proteins over and above the currently known set may play a role in defining the physiology of cyanobacteria and other organisms. PMID:22759916

Cheregi, Otilia; Vermaas, Wim; Funk, Christiane

2012-11-30

377

Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture  

PubMed Central

A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (?max) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ?max while maintaining a constant affinity for Fe. PMID:22210212

Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

2012-01-01

378

Response of the Unicellular Diazotrophic Cyanobacterium Crocosphaera watsonii to Iron Limitation  

PubMed Central

Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nitrogen cycles. To address this knowledge gap, we conducted culture experiments on Crocosphaera watsonii WH8501 growing under a range of dissolved Fe concentrations (from 3.3 to 403 nM). Overall, severe Fe limitation led to significant decreases in growth rate (2.6-fold), C, N and chlorophyll a contents per cell (up to 4.1-fold), N2 and CO2 fixation rates per cell (17- and 7-fold) as well as biovolume (2.2-fold). We highlighted a two phased response depending on the degree of limitation: (i) under a moderate Fe limitation, the biovolume of C. watsonii was strongly reduced, allowing the cells to keep sufficient energy to maintain an optimal growth, volume-normalized contents and N2 and CO2 fixation rates; (ii) with increasing Fe deprivation, biovolume remained unchanged but the entire cell metabolism was affected, as shown by a strong decrease in the growth rate, volume-normalized contents and N2 and CO2 fixation rates. The half-saturation constant for growth of C. watsonii with respect to Fe is twice as low as that of the filamentous Trichodesmium indicating a better adaptation of C. watsonii to poor Fe environments than filamentous diazotrophs. The physiological response of C. watsonii to Fe limitation was different from that previously shown on the UCYN Cyanothece sp, suggesting potential differences in Fe requirements and/or Fe acquisition within the UCYN community. These results contribute to a better understanding of how Fe bioavailability can control the activity of UCYN and explain the biogeography of diverse N2 fixers in ocean. PMID:24466221

Jacq, Violaine; Ridame, Céline; L'Helguen, Stéphane; Kaczmar, Fanny; Saliot, Alain

2014-01-01

379

Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties.  

PubMed

The last several decades have witnessed dramatic advances in unfolding the diversity and commonality of oceanic diazotrophs and their N2 -fixing potential. More recently, substantial progress in diazotrophic cell biology has provided a wealth of information on processes and mechanisms involved. The substantial contribution by the diazotrophic cyanobacterial genus Trichodesmium to the nitrogen influx of the global marine ecosystem is by now undisputable and of paramount ecological importance, while the underlying cellular and molecular regulatory physiology has only recently started to unfold. Here, we explore and summarize current knowledge, related to the optimization of its diazotrophic capacity, from genomics to ecophysiological processes, via, for example, cellular differentiation (diazocytes) and temporal regulations, and suggest cellular research avenues that now ought to be explored. PMID:22928644

Bergman, Birgitta; Sandh, Gustaf; Lin, Senjie; Larsson, John; Carpenter, Edward J

2013-05-01

380

Identification of trichotoxin, a novel chlorinated compound associated with the bloom forming Cyanobacterium, Trichodesmium thiebautii.  

PubMed

Trichodesmium is a suspected toxin-producing nonheterocystous cyanobacteria ubiquitous in tropical, subtropical, and temperate seas. The genus is known for its ability to fix nitrogen and form massive blooms. In oligotrophic seas, it can dominate the biomass and be a major component of oceanic primary production and global nitrogen cycling. Numerous reports suggest Trichodesmium-derived toxins are a cause of death of fish, crabs, and bivalves. Laboratory studies have demonstrated neurotoxic effects in T. thiebautii cell extracts and field reports suggest respiratory distress and contact dermatitis of humans at collection sites. However, Trichodesmium toxins have not been identified and characterized. Here, we report the extraction of a lipophilic toxin from field-collected T. thiebautii using a purification method of several chromatographic techniques, nuclear magnetic resonance (NMR), mass spectroscopy (MS), and Fourier transformed-infrared spectroscopy (FT-IR). Trichotoxin has a molecular formula of C(20)H(27)ClO and a mass of 318 m/z and possesses cytotoxic activity against GH(4)C(1) rat pituitary and Neuro-2a mouse neuroblastoma cells. A detection method using liquid chromatography/mass spectrometry (LC/MS) was developed. This compound is the first reported cytotoxic natural product isolated and fully characterized from a Trichodesmium species. PMID:21740025

Schock, Tracey B; Huncik, Kevin; Beauchesne, Kevin R; Villareal, Tracy A; Moeller, Peter D R

2011-09-01

381

Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export.  

PubMed

The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2-3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

2013-12-01

382

Buoyancy Regulation and the Potential for Vertical Migration in the Oceanic Cyanobacterium Trichodesmium  

Microsoft Academic Search

  Diel protein and carbohydrate content in Trichodesmium thiebautii was measured to evaluate the relationship to buoyancy status.\\u000a Carbohydrate:protein ratio was the best predictor of buoyancy and fit a cosine curve with increasing values during the day\\u000a and decreasing values at night in cycles that paralleled observed diel buoyancy patterns. This ratio also increased in short-term\\u000a experiments as a function of

T. A. Villareal; E. J. Carpenter

2003-01-01

383

Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean  

Microsoft Academic Search

Primary production and standing crop, as chlorophyll-a (chl-a), of Trichodesmium spp., and other phytoplankton as well as the abundance and depth distribution of Trichodesmium were measured on three cruises to the tropical North Atlantic Ocean. Trichodesmium abundance was greatest on a cruise in May–June 1994, with average surface densities of 2250trichomesl?1 and depth integrated abundance of 91×106trichomesm?2. Average surface densities

Edward J. Carpenter; Ajit Subramaniam; Douglas G. Capone

2004-01-01

384

Factors affecting N 2 fixation by the cyanobacterium Trichodesmium sp. GBRTRLI101  

Microsoft Academic Search

Various factors affecting N2 fixation of a cultured strain of Trichodesmium sp. (GBRTRLI101) from the Great Barrier Reef Lagoon were investigated. The diurnal pattern of N2 fixation demonstrated that it was primarily light-induced although fixation continued to occur for at least 1 h in the dark in samples that had been actively fixing N2. N2 fixation was dependent on the

Fei-Xue Fu; P. R. F Bell

2003-01-01

385

First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium.  

PubMed

Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales) are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed. PMID:21731549

Kerbrat, Anne Sophie; Amzil, Zouher; Pawlowiez, Ralph; Golubic, Stjepko; Sibat, Manoella; Darius, Helene Taiana; Chinain, Mireille; Laurent, Dominique

2011-01-01

386

Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmium.  

PubMed

Photosynthetic oxygen-evolving microorganisms contend with continuous self-production of molecular oxygen and reactive oxygen species. The deleterious effects of reactive oxygen species are exacerbated for cyanobacterial nitrogen-fixers (diazotrophs) due to the innate sensitivity of nitrogenase to oxygen. This renders incompatible the processes of oxygen-evolving photosynthesis and N-fixation. We examined total antioxidative potential of various diazotrophic and non-diazotrophic cyanobacteria. We focused on Trichodesmium spp., a bloom-forming marine diazotroph that contributes significantly to global nitrogen fixation. Among the species tested, Trichodesmium possessed the highest antioxidant activity. Moreover, while proteins constituted the dominant antioxidative component of all other cyanobacteria tested, Trichodesmium was unique in that small-molecule natural products provided the majority of antioxidant activity, while proteins constituted only 13% of total antioxidant activity. Bioassay-guided fractionation followed by high-performance liquid chromatography profiling of antioxidant purified fractions identified the highly potent antioxidant all-trans-?-carotene, and small amounts of 9-cis-?-carotene and retinyl palmitate. Search of the Trichodesmium genome identified protein sequences homologous to key enzymes in the ?-carotene to retinyl palmitate biosynthetic pathway, including 33-37% identity to lecithin retinol acyltransferase. The present study demonstrates the importance of carotenoids in Trichodesmium's arsenal of defensive compounds against oxidative damage and protection of nitrogenase from oxygen and its radicals. PMID:19397682

Kelman, Dovi; Ben-Amotz, Ami; Berman-Frank, Ilana

2009-07-01

387

Segregation of Nitrogen Fixation and Oxygenic Photosynthesis in the Marine Cyanobacterium Trichodesmium  

Microsoft Academic Search

In the modern ocean, a significant amount of nitrogen fixation is attributed to filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium In these organisms, nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme responsible for biological N2 fixation, is irreversibly inhibited by oxygen in vitro. How nitrogenase is protected from damage by photosynthetically produced

Ilana Berman-Frank; Pernilla Lundgren; Yi-Bu Chen; Hendrik Küpper; Zbigniew Kolber; Birgitta Bergman; Paul Falkowski

2001-01-01

388

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle.  

PubMed

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell. PMID:18812508

Welsh, Eric A; Liberton, Michelle; Stöckel, Jana; Loh, Thomas; Elvitigala, Thanura; Wang, Chunyan; Wollam, Aye; Fulton, Robert S; Clifton, Sandra W; Jacobs, Jon M; Aurora, Rajeev; Ghosh, Bijoy K; Sherman, Louis A; Smith, Richard D; Wilson, Richard K; Pakrasi, Himadri B

2008-09-30

389

Deep-Sea Research I 51 (2004) 173203 Biomass and primary productivity of the cyanobacterium  

E-print Network

Trichodesmium spp. in the tropical N Atlantic ocean Edward J. Carpentera, *, Ajit Subramaniamb,c , Douglas G October 2003 Abstract Primary production and standing crop, as chlorophyll-a (chl-a), of Trichodesmium spp., and other phytoplankton as well as the abundance and depth distribution of Trichodesmium were measured

Capone, Douglas G.

390

Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation.  

PubMed

Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nitrogen cycles. To address this knowledge gap, we conducted culture experiments on Crocosphaera watsonii WH8501 growing under a range of dissolved Fe concentrations (from 3.3 to 403 nM). Overall, severe Fe limitation led to significant decreases in growth rate (2.6-fold), C, N and chlorophyll a contents per cell (up to 4.1-fold), N2 and CO2 fixation rates per cell (17- and 7-fold) as well as biovolume (2.2-fold). We highlighted a two phased response depending on the degree of limitation: (i) under a moderate Fe limitation, the biovolume of C. watsonii was strongly reduced, allowing the cells to keep sufficient energy to maintain an optimal growth, volume-normalized contents and N2 and CO2 fixation rates; (ii) with increasing Fe deprivation, biovolume remained unchanged but the entire cell metabolism was affected, as shown by a strong decrease in the growth rate, volume-normalized contents and N2 and CO2 fixation rates. The half-saturation constant for growth of C. watsonii with respect to Fe is twice as low as that of the filamentous Trichodesmium indicating a better adaptation of C. watsonii to poor Fe environments than filamentous diazotrophs. The physiological response of C. watsonii to Fe limitation was different from that previously shown on the UCYN Cyanothece sp, suggesting potential differences in Fe requirements and/or Fe acquisition within the UCYN community. These results contribute to a better understanding of how Fe bioavailability can control the activity of UCYN and explain the biogeography of diverse N2 fixers in ocean. PMID:24466221

Jacq, Violaine; Ridame, Céline; L'Helguen, Stéphane; Kaczmar, Fanny; Saliot, Alain

2014-01-01

391

Lyngbyabellins K-N from Two Palmyra Atoll Collections of the Marine Cyanobacterium Moorea bouillonii  

PubMed Central

Five lipopeptides of the lyngbyabellin structure class, four cyclic (1-3, and 5) and one linear (4), were isolated from the extracts of two collections of filamentous marine cyanobacteria obtained from Palmyra Atoll in the Central Pacific Ocean. Their planar structures and absolute configurations were elucidated by combined spectroscopic and chromatographic analyses as well as chemical synthesis of fragments. In addition to structural features typical of the lyngbyabellins, such as two thiazole rings and a chlorinated 2-methyloctanoate residue, these new compounds possess several unique aspects. Of note, metabolites 2 and 3 possessed rare mono-chlorination on the 3-acyloxy-2-methyloctanoate residue while lyngbyabellin N (5) had an unusual N,N-dimethylvaline terminus. Lyngbyabellin N also possessed a leucine statine residue, and showed strong cytotoxic activity against HCT116 colon cancer cell line (IC50 = 40.9 ± 3.3 nM). PMID:24574859

Byrum, Tara; Valeriote, Frederick A.; Gerwick, William H.

2014-01-01

392

Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export  

PubMed Central

The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

2013-01-01

393

Thermodynamics of copper and zinc distribution in the cyanobacterium Synechocystis PCC 6803  

PubMed Central

Copper is supplied to plastocyanin for photosynthesis and cytochrome c oxidase for respiration in the thylakoids of Synechocystis PCC 6803 by the membrane-bound P-type ATPases CtaA and PacS, and the metallochaperone Atx1. We have determined the Cu(I) affinities of all of the soluble proteins and domains in this pathway. The Cu(I) affinities of the trafficking proteins range from 5 × 1016 to 5 × 1017 M-1 at pH 7.0, consistent with values for homologues. Unusually, Atx1 binds Cu(I) significantly tighter than the metal-binding domains (MBDs) of CtaA and PacS (CtaAN and PacSN), and equilibrium copper exchange constants of approximately 0.2 are obtained for transfer to the MBDs. Dimerization of Atx1 increases the affinity for Cu(I), but the loop 5 His61 residue has little influence. The MBD of the zinc exporter ZiaA (ZiaAN) exhibits an almost identical Cu(I) affinity, and Cu(I) exchange with Atx1, as CtaAN and PacSN, and the relative stabilities of the complexes must enable the metallochaperone to distinguish between the MBDs. The binding of potentially competing zinc to the trafficking proteins has been studied. ZiaAN has the highest Zn(II) affinity and thermodynamics could be important for zinc removal from the cell. Plastocyanin has a Cu(I) affinity of 2.6 × 1017 M-1, 15-fold tighter than that of the CuA site of cytochrome c oxidase, highlighting the need for specific mechanisms to ensure copper delivery to both of these targets. The narrow range of Cu(I) affinities for the cytoplasmic copper proteins in Synechocystis will facilitate relocation when copper is limiting. PMID:21778408

Badarau, Adriana; Dennison, Christopher

2011-01-01

394

Temperature dependence and polarization of fluorescence from Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I. PMID:24407980

Wittmershaus, B P; Woolf, V M; Vermaas, W F

1992-02-01

395

Parguerene and Precarriebowmide, Two Classes of Lipopeptides from the Marine Cyanobacterium Moorea producens  

PubMed Central

Two new marine cyanobacterial natural products, parguerene (1) and precarriebowmide (2), were isolated from a collection of Moorea producens obtained from La Parguera, Puerto Rico. The planar structures of both were deduced by 2D NMR spectroscopy and mass spectrometry. Parguerene is an modified acyl amide with some structural similarity to the bacterial metabolite, stipiamide (3), whereas precarriebowmide is a lipopeptide and represents a minor modification compared to two other known metabolites, carriebowmide (4) and carriebowmide sulfone (5). The identification of 2 led to an investigation into whether carriebowmide and carriebowmide sulfone were true secondary metabolites or isolation artifacts. PMID:24044577

Mevers, Emily; Byrum, Tara; Gerwick, William H.

2014-01-01

396