These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains C W  

E-print Network

The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G membranes, it does have localized domains with apparently specialized functions in its plasma membrane

Roegner, Matthias

2

Directed evolution of Gloeobacter violaceus rhodopsin spectral properties.  

PubMed

Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein. PMID:24979679

Engqvist, Martin K M; McIsaac, R Scott; Dollinger, Peter; Flytzanis, Nicholas C; Abrams, Michael; Schor, Stanford; Arnold, Frances H

2015-01-16

3

Structural Basis for Allosteric Coupling at the Membrane-Protein Interface in Gloeobacter violaceus Ligand-gated Ion Channel (GLIC)*  

PubMed Central

Ligand binding at the extracellular domain of pentameric ligand-gated ion channels initiates a relay of conformational changes that culminates at the gate within the transmembrane domain. The interface between the two domains is a key structural entity that governs gating. Molecular events in signal transduction at the interface are poorly defined because of its intrinsically dynamic nature combined with functional modulation by membrane lipid and water vestibules. Here we used electron paramagnetic resonance spectroscopy to delineate protein motions underlying Gloeobacter violaceus ligand-gated ion channel gating in a membrane environment and report the interface conformation in the closed and the desensitized states. Extensive intrasubunit interactions were observed in the closed state that are weakened upon desensitization and replaced by newer intersubunit contacts. Gating involves major rearrangements of the interfacial loops, accompanied by reorganization of the protein-lipid-water interface. These structural changes may serve as targets for modulation of gating by lipids, alcohols, and amphipathic drug molecules. PMID:24338475

Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Chakrapani, Sudha

2014-01-01

4

Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography  

PubMed Central

Cryoelectron microscopy and X-ray crystallography have recently been used to generate structural models that likely represent the unliganded closed-channel conformation and the fully liganded open-channel conformation of different members of the nicotinic-receptor superfamily. To characterize the structure of the closed-channel conformation in its liganded state, we identified a number of positions in the loop between transmembrane segments 2 (M2) and 3 (M3) of a proton-gated ortholog from the bacterium Gloeobacter violaceus (GLIC) where mutations to alanine reduce the liganded-gating equilibrium constant, and solved the crystal structures of two such mutants (T25?A and Y27?A) at pH ?4.0. At the level of backbone atoms, the liganded closed-channel model presented here differs from the liganded open-channel structure of GLIC in the pre-M1 linker, the M3–M4 loop, and much more prominently, in the extracellular half of the pore lining, where the more pronounced tilt of the closed-channel M2 ?-helices toward the pore’s long axis narrows the permeation pathway. On the other hand, no differences between the liganded closed-channel and open-channel models could be detected at the level of the extracellular domain, where conformational changes are expected to underlie the low-to-high proton-affinity switch that drives gating of proton-bound channels. Thus, the liganded closed-channel model is nearly indistinguishable from the recently described “locally closed” structure. However, because cross-linking strategies (which could have stabilized unstable conformations) and mutations involving ionizable side chains (which could have affected proton-gated channel activation) were purposely avoided, we favor the notion that this structure represents one of the end states of liganded gating rather than an unstable intermediate. PMID:24167270

Gonzalez-Gutierrez, Giovanni; Cuello, Luis G.; Nair, Satish K.; Grosman, Claudio

2013-01-01

5

Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis  

PubMed Central

A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (?max ?=?544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537

Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan

2014-01-01

6

Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.  

PubMed

Gloeobacter rhodopsin (GR) is a light-driven proton-pump protein similar to bacteriorhodopsin (BR), found in Gloeobacter violaceus PCC 7421, a primitive cyanobacterium. In this paper, structural changes of GR following retinal photoisomerization are studied by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy. The initial motivation was to test our hypothesis that proton-pumping rhodopsins possess strongly hydrogen-bonded water molecules in the active center. Water O-D stretching vibrations at <2400 cm(-1) in D(2)O have been regarded as coming from such strongly hydrogen-bonded water, and there is a strong correlation between the proton-pumping activity and the presence of such water molecule. Since GR pumps protons, we expected that GR also possesses strongly hydrogen-bonded water molecule(s), and the FTIR results clearly show that this is indeed the case. In addition, another unexpected finding was gained from the frequency region of protonated carboxylic acids in the GR(K) minus GR spectra at 77 K, where we observed the unique bands of a protonated carboxylic acid at 1735 (+)/1730 (-) cm(-1). Comprehensive mutation study revealed that the vibrational bands originate from the carboxylic C=O stretch of Glu132 at the position corresponding to Asp96 in BR. Glu132 presumably functions as an internal proton donor for the retinal Schiff base, but they may be located far apart (ca. 12 A in BR). The present study demonstrates the long-range structural changes of GR along the proton pathway, even though the protein matrix is frozen at 77 K. PMID:20230053

Hashimoto, Kyohei; Choi, Ah Reum; Furutani, Yuji; Jung, Kwang-Hwan; Kandori, Hideki

2010-04-20

7

Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in K?lauea Caldera, Hawai'i.  

PubMed

The ancestor of Gloeobacter violaceus PCC 7421(T) is believed to have diverged from that of all known cyanobacteria before the evolution of thylakoid membranes and plant plastids. The long and largely independent evolutionary history of G. violaceus presents an organism retaining ancestral features of early oxygenic photoautotrophs, and in whom cyanobacteria evolution can be investigated. No other Gloeobacter species has been described since the genus was established in 1974 (Rippka et al., Arch Microbiol 100:435). Gloeobacter affiliated ribosomal gene sequences have been reported in environmental DNA libraries, but only the type strain's genome has been sequenced. However, we report here the cultivation of a new Gloeobacter species, G. kilaueensis JS1(T), from an epilithic biofilm in a lava cave in K?lauea Caldera, Hawai'i. The strain's genome was sequenced from an enriched culture resembling a low-complexity metagenomic sample, using 9 kb paired-end 454 pyrosequences and 400 bp paired-end Illumina reads. The JS1(T) and G. violaceus PCC 7421(T) genomes have little gene synteny despite sharing 2842 orthologous genes; comparing the genomes shows they do not belong to the same species. Our results support establishing a new species to accommodate JS1(T), for which we propose the name Gloeobacter kilaueensis sp. nov. Strain JS1(T) has been deposited in the American Type Culture Collection (BAA-2537), the Scottish Marine Institute's Culture Collection of Algae and Protozoa (CCAP 1431/1), and the Belgian Coordinated Collections of Microorganisms (ULC0316). The G. kilaueensis holotype has been deposited in the Algal Collection of the US National Herbarium (US# 217948). The JS1(T) genome sequence has been deposited in GenBank under accession number CP003587. The G+C content of the genome is 60.54 mol%. The complete genome sequence of G. kilaueensis JS1(T) may further understanding of cyanobacteria evolution, and the shift from anoxygenic to oxygenic photosynthesis. PMID:24194836

Saw, Jimmy H W; Schatz, Michael; Brown, Mark V; Kunkel, Dennis D; Foster, Jamie S; Shick, Harry; Christensen, Stephanie; Hou, Shaobin; Wan, Xuehua; Donachie, Stuart P

2013-01-01

8

Gloeobacter Rhodopsin, Limitation of Proton Pumping at High Electrochemical Load  

PubMed Central

We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities. PMID:24209850

Vogt, Arend; Wietek, Jonas; Hegemann, Peter

2013-01-01

9

Photosynthesis Research 72: 307319, 2002. 2002 Kluwer Academic Publishers. Printed in the Netherlands.  

E-print Network

in the Netherlands. 307 Regular paper Photosystem I from the unusual cyanobacterium Gloeobacter violaceus Dedicated performance liquid chromatography; IEC ­ ion exchange chromatography; GF ­ gel filtration; LHC I ­ light

Roegner, Matthias

10

Conformational Transitions Underlying Pore Opening and Desensitization in Membrane-embedded Gloeobacter violaceus Ligand-gated Ion Channel (GLIC)  

PubMed Central

Direct structural insight into the mechanisms underlying activation and desensitization remain unavailable for the pentameric ligand-gated channel family. Here, we report the structural rearrangements underlying gating transitions in membrane-embedded GLIC, a prokaryotic homologue, using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. We particularly probed the conformation of pore-lining second transmembrane segment (M2) under conditions that favor the closed and the ligand-bound desensitized states. The spin label mobility, intersubunit spin-spin proximity, and the solvent-accessibility parameters in the two states clearly delineate the underlying protein motions within M2. Our results show that during activation the extracellular hydrophobic region undergoes major changes involving an outward translational movement, away from the pore axis, leading to an increase in the pore diameter, whereas the lower end of M2 remains relatively immobile. Most notably, during desensitization, the intervening polar residues in the middle of M2 move closer to form a solvent-occluded barrier and thereby reveal the location of a distinct desensitization gate. In comparison with the crystal structure of GLIC, the structural dynamics of the channel in a membrane environment suggest a more loosely packed conformation with water-accessible intrasubunit vestibules penetrating from the extracellular end all the way to the middle of M2 in the closed state. These regions have been implicated to play a major role in alcohol and drug modulation. Overall, these findings represent a key step toward understanding the fundamentals of gating mechanisms in this class of channels. PMID:22977232

Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Chakrapani, Sudha

2012-01-01

11

Propofol Binding to the Resting State of the Gloeobacter violaceus Ligand-gated Ion Channel (GLIC) Induces Structural Changes in the Inter- and Intrasubunit Transmembrane Domain (TMD) Cavities*  

PubMed Central

General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428–431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state. PMID:23640880

Ghosh, Borna; Satyshur, Kenneth A.; Czajkowski, Cynthia

2013-01-01

12

Draft Genome Sequence of Gephyronic Acid Producer Cystobacter violaceus Strain Cb vi76  

PubMed Central

A draft genome sequence of Cystobacter violaceus strain Cb vi76, which produces the eukaryotic protein synthesis inhibitor gephyronic acid, has been obtained. The genome contains numerous predicted secondary metabolite clusters, including the gephyronic acid biosynthetic pathway. This genome will contribute to the investigation of secondary metabolism in other Cystobacter strains. PMID:25502681

Stevens, D. Cole; Young, Jeanette; Carmichael, Rory; Tan, John

2014-01-01

13

Myoglobin in a Cyanobacterium  

Microsoft Academic Search

Myoglobin was found in the nitrogen-fixing cyanobacterium Nostoc commune. This cyanobacterial myoglobin, referred to as cyanoglobin, was shown to be a soluble hemoprotein of 12.5 kilodaltons with an amino acid sequence that is related to that of myoglobins from two lower eukaryotes, the ciliated protozoa Paramecium caudatum and Tetrahymena pyriformis. Cyanoglobin is encoded by the glbN gene, which is positioned

Malcolm Potts; Stephen V. Angeloni; Richard E. Ebel; Deeni Bassam

1992-01-01

14

Revision of Campsurus violaceus species group (Ephemeroptera: Polymitarcyidae) with new synonymies and nomina dubia in Campsurus Eaton, 1868.  

PubMed

The violaceus species group (formerly notatus species group) of Campsurus Eaton is revised. All the species in the violaceus group are diagnosed. A new species, C. molinai sp. nov. is described based on male imagos from Bolivia, characterized by their large and sclerotized penes. The violaceus group is proposed to include the following species: C. assimilis Traver, C. truncatus Ulmer (=C. mahunkai Puthz = C. melanocephalus Pereira & da Silva, new synonyms), C. violaceus Needham & Murphy (= C. meyeri Navás = C. notatus Needham & Murphy = C. paranensis Navás, new synonyms), C. emersoni Traver, C. decoloratus (Hagen), and C. molinai sp.nov. Additionally we consider the following species as nomina dubia: C. longicauda Navás, C. pfeifferi Navás, C. zikani Navás, C. albicans (orig. Ephemera albicans Percheron in Guerin & Percheron), C. burmeisteri Ulmer, C. dallasi Navás, C. quadridentatus Eaton, C. claudus Needham & Murphy, C. corumbanus Needham & Murphy, C. dorsalis (Burmeister), C. mutilus Needham & Murphy, and C. striatus Needham & Murphy. Given the results presented herein (five species synonymized and 12 proposed as nomina dubia), only 28 valid species remain in the genus Campsurus. Additionally, the nymphal stages of C. violaceus and C. truncatus are described and illustrated. Female adult genitalia (sockets) and eggs of C. decoloratus are described for the first time. Diagnoses, new country records, and redescriptions of selected characters of the imagos for the species of the violaceus group are given. PMID:25781239

Molineri, C; Salles, F F; Emmerich, D

2015-01-01

15

Male satin bowerbirds ( Ptilonorhynchus violaceus ) compensate for sexual signal loss by enhancing multiple display features  

Microsoft Academic Search

Numerous studies have focussed on the relationship between female choice and the multiple exaggerated sexual traits of males.\\u000a However, little is known about the ability of males to actively enhance specific components of their display in response to\\u000a the loss of one component. We investigated the capacity of male satin bowerbirds (Ptilonorhynchus violaceus) to respond to the loss of one

Benjamin D. Bravery; Anne W. Goldizen

2007-01-01

16

Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding  

Microsoft Academic Search

Protoplast fusions between Brassica napus and Orychophragmus violaceus for transfer of valuable traits to oilseed rape resulted in 257 somatic hybrid plants. Hybridity was confirmed by morphological, cytological and molecular means. Symmetric fusions gave rise to 131 plants. Fifty eight of these plants had an intermediate morphology and contained nuclear DNA corresponding to the sum of the parental species. All

Q. Hu; L. N. Hansen; J. Laursen; C. Dixelius; S. B. Andersen

2002-01-01

17

Structures of violaceusosides C, D, E and G, sulfated triterpene glycosides from the sea cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida).  

PubMed

Four new triterpene glycosides, violaceusosides C (1), D (2), E (3) and G (4) have been isolated from the sea cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Eight known glycosides, DS-holothurin A and holothurinoside A, isolated earlier from Holothuria forskalii (order Aspidochirotida); and violaceuside A, lefevreoside C, philinopside E, intercedenside B, violaceuside II and liovilloside A isolated earlier from representatives of the family Cucumariidae, order Dendrochirotida have also been found in P. violaceus. The chemical structures of the glycosides were elucidated by 2D NMR spectroscopy and mass spectrometry. Violaceusosides C (1), D (2), E (3) and G (4) have holostane-type aglycones and tetrasaccharide linear carbohydrate chains differing in the sugar composition and the number and position of sulfate groups. Violaceusosides E (3) and G (4) are characterized by the presence of a sulfate group at C-3 of the quinovose residue that is very rare among sea cucumber glycosides. Cytotoxic activities of the glycosides 1-4 against cells of the ascite form of mouse Ehrlich carcinoma and hemolytic activities against mouse erythrocytes have been studied. Violaceusosides C (1) and D (2) demonstrated moderate cytotoxic and hemolytic effects, while violaceusosides E (3) and G (4) have more powerful activities. PMID:24689225

Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Kalinin, Vladimir I; Yurchenko, Ekaterina A; Dautov, Salim S

2014-03-01

18

Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding.  

PubMed

Protoplast fusions between Brassica napus and Orychophragmus violaceus for transfer of valuable traits to oilseed rape resulted in 257 somatic hybrid plants. Hybridity was confirmed by morphological, cytological and molecular means. Symmetric fusions gave rise to 131 plants. Fifty eight of these plants had an intermediate morphology and contained nuclear DNA corresponding to the sum of the parental species. All 131 plants were sterile with no pollen grains observed upon flowering. Another 126 plants were derived from asymmetric fusions in which protoplasts of the donor parent O. violaceus were irradiated by 100 or 200-Gy X-rays prior to fusion. Morphologically these plants showed a larger variation compared to the plants regenerated from symmetric fusion experiments. In contrast to plants obtained from symmetric fusions, fertile hybrids were recovered among regenerants from the asymmetric fusions. Twenty four of these plants released viable pollen grains and 14 of the determined 17 plants set seeds after either selfing or backcrossing to B. napus. Fourteen male-sterile plants were identified with female fertility. This observed male sterility most-likely originated from alloplasmic recombination and would be of great potential for the development of a new cytoplasmic male sterility system. The fatty acid composition of the fertile hybrids and their progenies showed a biased distribution towards the B. napus parent, which has a high erucic acid-content type. However, increased levels of palmitic and linoleic acids compared to B. napus were found in subsequent generations, as well as a reduced level of erucic acid. PMID:12582907

Hu, Q.; Hansen, N.; Laursen, J.; Dixelius, C.; Andersen, B.

2002-11-01

19

Molecular diversity and relationships among Elymus trachycaulus, E. subsecundus, E. virescens, E. violaceus, and E. hyperarcticus (Poaceae: Triticeae) as determined by amplified fragment length polymorphism.  

PubMed

Morphological similarity among E. trachycaulus, E. virescens, E. violaceus, and E. hyperarcticus has often been noted. Taxonomists have tried to discriminate among these taxa using morphological characters and a number of different relationships among them have been suggested. However, the genetic relationships among these taxa are still unknown. AFLP analysis was used to characterize the molecular diversity of these taxa and to examine genetic relationships among them. A high degree of genetic identity was apparent among 7 accessions of E. virescens. The similarity values ranged from 0.90 to 0.99 with an average of 0.94. The mean similarity values among 3 E. hyperarcticus and among 5 E. violaceus accessions were 0.84 (0.81-0.87) and 0.77 (0.66-0.90), respectively. The similarity values among 17 E. trachycaulus accessions ranged from 0.49 to 0.92 with an average of 0.75. The 5 accessions of E. subsecundus displayed high variation, with similarity values between 0.52 and 0.68 and a mean value of 0.59. Both maximum-parsimony (MP) and neighbor-joining (NJ) analyses showed that all 7 accessions of E. virescens formed a clade, indicating a monophyletic origin. On the other hand, Elymus trachycaulus, E. subsecundus, and E. violaceus were each paraphyletic and separated into different genetically distinct groups. Among these 5 taxa, E. virescens was genetically similar to E. trachycaulus, and E. violaceus was genetically similar to E. hyperarcticus. PMID:17110996

Sun, Genlou; Shee, Jennifer; Salomon, Bjorn

2006-09-01

20

Variation of cuticular characters in the Nematomorpha: studies on Gordionus violaceus (Baird, 1853) and G. wolterstorffii (Camerano, 1888) from Britain and Ireland  

Microsoft Academic Search

Gordionus violaceus (Baird, 1853) and G. wolterstorffii (Camerano, 1888) are regarded as two species which are clearly separated by distinct cuticular patterns. A study of 59 specimens of these two species from Britain and Ireland revealed numerous transitional stages between the cuticular patterns that are regarded as being typical for each species. Variation was also found at the posterior end,

Andreas Schmidt-Rhaesa

2001-01-01

21

Historical ecology meets conservation and evolutionary genetics: a secondary contact zone between Carabus violaceus (Coleoptera, Carabidae) populations inhabiting ancient and recent woodlands in north-western Germany  

PubMed Central

Abstract Only very few cases have documented that an increase in connectivity after a period of fragmentation in ecological time has had an effect on the distribution, genetic structure and morphology of stenotopic species. In this study we present an example of clinal variability in a woodland ground beetle as a result of changes in the connectivity of a landscape during the last two centuries. The study area hosts both the nominate form Carabus violaceus s. str. and the subspecies Carabus violaceus purpurascens, which is ranked as a distinct species by some authors. We studied 12 Carabus violaceus populations from a 30 km transect of ancient and recent forests in north-western Germany. We analyzed three polymorphic enzyme loci, classified the elytron sculpture and measured the shape of the aedeagus tip of the specimens. Carabus violaceus showed secondary gradients both in allozyme markers and morphometric characters in our study area. A genetic differentiation of 16% between the populations is high but lies within the range of intraspecific variability in habitat specialists of the genus Carabus. Populations had no significant deficit of heterozygotes. We found many hybrid populations in terms of morphological properties. This study highlights the conservation value of ancient woodland and the consequences of landscape connectivity and defragmentation on the genetic setting of a ground beetle. Moreover, it shows that differences in the external shape of male genitalia do not prevent gene flow within the genus Carabus. Thus, the establishment of species status should not exclusively be based on this property. PMID:21738433

Matern, Andrea; Drees, Claudia; Härdtle, Werner; von Oheimb, Goddert; Assmann, Thorsten

2011-01-01

22

Inhibitory metabolites production by the cyanobacterium Fischerella muscicola.  

PubMed

Broad-spectrum inhibitory metabolites were produced by a benthic cyanobacterium Fischerella muscicola (UTEX 1829) in batch culture. These metabolites inhibited the growth of eukaryotic algae, cyanobacteria and eubacteria. The effect of culture age on the production and leakage of these inhibitory metabolites from the cyanobacterium was studied. Confirmation of the presence of an allelochemical, possibly fischerellin was achieved using high performance liquid chromatography (HPLC). The cyanobacterium produced inhibitory metabolites intracellularly at all stages of its growth cycle. PMID:10052156

Srivastava, V C; Manderson, G J; Bhamidimarri, R

1999-01-01

23

Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression  

Microsoft Academic Search

Many novel lines were established from an intergeneric mixoploid between Brassica rapa (2n = 20) and Orychophragmus violaceus (2n = 24) through successive selections for fertility and viability. Pedigrees of individual F2 plants were advanced to the 10th generation by selfing. Their breeding habit was self-compatible and different from the self-incompatibility\\u000a of their female parent B. rapa, and these lines

Chuan-Yuan Xu; Rui-Hong Wan-Yan; Zai-Yun Li

2007-01-01

24

Assimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of Alteromonas luteo-violaceus and Pseudomonas halodurans During Perturbed Batch Growth †  

PubMed Central

The antibiotic protein synthesis inhibitor chloramphenicol specifically blocked the incorporation of [35S]sulfate into the residue protein of two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus. Simultaneous inhibition of total protein synthesis occurred, but incorporation of 35S into low-molecular-weight organic compounds continued. A. luteo-violaceus rapidly autolyzed, with similar reduction in cell counts, total culture protein and cellular sulfur, whereas P. halodurans remained viable. Treatment with chloramphenicol, growth during nitrogen and carbon limitation, and the carbon and energy sources used for growth did not alter the sulfur content of P. halodurans protein. The mean value (1.09%, by weight), representing a wide variety of environmentally relevant growth conditions, was in agreement with model protein composition. The variability of cellular composition of P. halodurans and A. luteo-violaceus is discussed with respect to the measurement of bacterial growth in natural environments. Total carbon and nitrogen per cell varied greatly (coefficient of variation, ca. 100%) depending on growth conditions. Variation in total sulfur and protein per cell was much less (coefficient of variation, <50%), but the least variation was found for sulfate incorporation into residue protein (coefficient of variation, ca. 15%). Thus, sulfate incorporation into residue protein can be used as an accurate measurement of de novo protein synthesis in these bacteria. PMID:16345918

Cuhel, Russell L.; Taylor, Craig D.; Jannasch, Holger W.

1982-01-01

25

Synergistic allelochemicals from a freshwater cyanobacterium  

PubMed Central

The ability of cyanobacteria to produce complex secondary metabolites with potent biological activities has gathered considerable attention due to their potential therapeutic and agrochemical applications. However, the precise physiological or ecological roles played by a majority of these metabolites have remained elusive. Several studies have shown that cyanobacteria are able to interfere with other organisms in their communities through the release of compounds into the surrounding medium, a phenomenon usually referred to as allelopathy. Exudates from the freshwater cyanobacterium Oscillatoria sp. had previously been shown to inhibit the green microalga Chlorella vulgaris. In this study, we observed that maximal allelopathic activity is highest in early growth stages of the cyanobacterium, and this provided sufficient material for isolation and chemical characterization of active compounds that inhibited the growth of C. vulgaris. Using a bioassay-guided approach, we isolated and structurally characterized these metabolites as cyclic peptides containing several unusually modified amino acids that are found both in the cells and in the spent media of Oscillatoria sp. cultures. Strikingly, only the mixture of the two most abundant metabolites in the cells was active toward C. vulgaris. Synergism was also observed in a lung cancer cell cytotoxicity assay. The binary mixture inhibited other phytoplanktonic organisms, supporting a natural function of this synergistic mixture of metabolites as allelochemicals. PMID:20534563

Leão, Pedro N.; Pereira, Alban R.; Liu, Wei-Ting; Ng, Julio; Pevzner, Pavel A.; Dorrestein, Pieter C.; König, Gabriele M.; Vasconcelos, Vitor M.; Gerwick, William H.

2010-01-01

26

Synergistic allelochemicals from a freshwater cyanobacterium.  

PubMed

The ability of cyanobacteria to produce complex secondary metabolites with potent biological activities has gathered considerable attention due to their potential therapeutic and agrochemical applications. However, the precise physiological or ecological roles played by a majority of these metabolites have remained elusive. Several studies have shown that cyanobacteria are able to interfere with other organisms in their communities through the release of compounds into the surrounding medium, a phenomenon usually referred to as allelopathy. Exudates from the freshwater cyanobacterium Oscillatoria sp. had previously been shown to inhibit the green microalga Chlorella vulgaris. In this study, we observed that maximal allelopathic activity is highest in early growth stages of the cyanobacterium, and this provided sufficient material for isolation and chemical characterization of active compounds that inhibited the growth of C. vulgaris. Using a bioassay-guided approach, we isolated and structurally characterized these metabolites as cyclic peptides containing several unusually modified amino acids that are found both in the cells and in the spent media of Oscillatoria sp. cultures. Strikingly, only the mixture of the two most abundant metabolites in the cells was active toward C. vulgaris. Synergism was also observed in a lung cancer cell cytotoxicity assay. The binary mixture inhibited other phytoplanktonic organisms, supporting a natural function of this synergistic mixture of metabolites as allelochemicals. PMID:20534563

Leão, Pedro N; Pereira, Alban R; Liu, Wei-Ting; Ng, Julio; Pevzner, Pavel A; Dorrestein, Pieter C; König, Gabriele M; Vasconcelos, Vitor M; Gerwick, William H

2010-06-22

27

Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus  

PubMed Central

Background The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. Results The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. Conclusions DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus. PMID:24456102

2014-01-01

28

Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus  

E-print Network

The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 ...

Berube, Paul M.

29

Glyoxylate metabolism in the cyanobacterium Coccochloris peniocystis  

SciTech Connect

The possible metabolism of glyoxylate via an incomplete glycolate pathway and a glyoxylate cycle in the cyanobacterium C. peniocystis was investigated. Levels of enzyme activities determined from partially purified preparations were: glycolate dehydrogenase, 1.18; isocitrate lyase, 6.67; malate synthetase, 1.03. Metabolism of {sup 14}C glycolate by intact cells was inhibited by the glycolate dehydrogenase inhibitor {alpha}-hydroxypyridyl methane sulfonate. Metabolism of {sup 14}C-glyoxylate was not inhibited by the amino-transferase inhibitor, aminooxyacetate, suggesting that formation of glycine is not an absolute requirement for glyoxylate metabolism. The lack of formation of labelled serine from {sup 14}C glyoxylate or {sup 14}C-glycine indicates that the glycolate pathway is incomplete. These results suggest that a glycolate pathway, such as found in higher plants, is absent in cyanobacteria and that some alternate pathway, possible a glyoxylate cycle, operates in the metabolism of glycolate pathway intermediates.

Norman, E.G.; Colman, B. (York Univ., Toronto, Ontario (Canada))

1989-04-01

30

Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822  

Microsoft Academic Search

The hydrogenase-catalyzed hydrogen production exhibited by the unicellular cyanobacterium Cyanothece 7822 during anoxic incubation in the dark is a result of the fermentative degradation of carbon reserves. Simultaneously with hydrogen production, evolution of carbon dioxide was detected, and excretion of ethanol, lactate, formate and acetate was demonstrated. The fermentation balance indicates that carbohydrates are fermented via a branched pathway, in

J. van der Oost; B. A. Bulthuis; S. Feitz; K. Krab; R. Kraayenhof

1989-01-01

31

Adsorption of turbid materials by the cyanobacterium Phormidium parchydematicum  

Microsoft Academic Search

The present study investigated the adsorption of turbid materials such as clays, by microalgae. Among six tested microalgae,\\u000a including Chlorophyceae and Cyanophyceae, a cyanobacterium, Phormidium parchydematicum strain KCTC 10851BP, and unicellular alga, Chlorella vulgaris strain UTEX 265, showed a higher turbidity-removal efficiency (TRE) of 99% and 93%, respectively, for clay-containing water\\u000a after 24 h, which was much higher than the 36%

Choong-Jae Kim; Yun-Ho Jung; Chi-Yong Ahn; Young-Ki Lee; Hee-Mock Oh

2010-01-01

32

Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1  

PubMed Central

The nonheterocystous filamentous cyanobacterium strain ESFC-1 has recently been isolated from a marine microbial mat system, where it was identified as belonging to a recently discovered lineage of active nitrogen-fixing microorganisms. Here, we report the draft genome sequence of this isolate. The assembly consists of 3 scaffolds and contains 5,632,035 bp with a GC content of 46.5%. PMID:23908279

Everroad, R. Craig; Woebken, Dagmar; Singer, Steven W.; Burow, Luke C.; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Detweiler, Angela; Prufert-Bebout, Leslie

2013-01-01

33

Besarhanamides A and B from the marine cyanobacterium Lyngbya majuscula  

Microsoft Academic Search

Besarhanamides A (1) and B (2) are fatty acid amides purified from the marine cyanobacterium, Lyngbya majuscula, collected from Pulau Hantu, Singapore. The structure determination of these secondary metabolites was carried out using extensive 2D NMR spectral data as well as chemical manipulations including the Marfey’s method. In addition, besarhanamide A exhibited moderate toxicity with LD50 at 13?M in the

Lik Tong Tan; Ying Yan Chang; Tripathi Ashootosh

2008-01-01

34

Cytochemical changes in the developmental process of Nostoc sphaeroides (cyanobacterium)  

Microsoft Academic Search

There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kützing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental\\u000a stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased\\u000a with

Dunhai Li; Wei Xing; Genbao Li; Yongding Liu

2009-01-01

35

Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium.  

PubMed

Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch's Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

Richardson, Laurie L; Stani?, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R

2014-01-01

36

Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium  

PubMed Central

Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

Richardson, Laurie L.; Stani?, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R.

2014-01-01

37

Sheep mortality associated with paralytic shellfish poisons from the cyanobacterium Anabaena circinalis  

Microsoft Academic Search

This is the first report of sheep mortalities associated with paralytic shellfish poisons (PSPs) from the cyanobacterium Anabaena circinalis Rabenhorst. Fourteen sheep died within 150 m of a farm dam containing a dense bloom of A. circinalis. Extracts from both the cyanobacterium and small intestine from a dead ewe were analysed by high-performance liquid chromatography (HPLC) and found to contain

Andrew P Negri; Gary J Jones; Michael Hindmarsh

1995-01-01

38

Draft Genome Sequence of Exopolysaccharide-Producing Cyanobacterium Aphanocapsa montana BDHKU 210001  

PubMed Central

We report for the first time the draft genome sequence of Aphanocapsa montana BDHKU 210001, a halotolerant cyanobacterium isolated from India. This is a marine exopolysaccharide (EPS)-producing cyanobacterium. The genome of this species is assembled into 11.50 million bases, with 296 scaffolds carrying approximately 7,296 protein-coding genes. PMID:25744997

Bhattacharyya, Sourav; Chandrababunaidu, Mathu Malar; Sen, Deeya; Panda, Arijit; Ghorai, Arpita; Bhan, Sushma; Sanghi, Neha

2015-01-01

39

Draft Genome Sequence of Exopolysaccharide-Producing Cyanobacterium Aphanocapsa montana BDHKU 210001.  

PubMed

We report for the first time the draft genome sequence of Aphanocapsa montana BDHKU 210001, a halotolerant cyanobacterium isolated from India. This is a marine exopolysaccharide (EPS)-producing cyanobacterium. The genome of this species is assembled into 11.50 million bases, with 296 scaffolds carrying approximately 7,296 protein-coding genes. PMID:25744997

Bhattacharyya, Sourav; Chandrababunaidu, Mathu Malar; Sen, Deeya; Panda, Arijit; Ghorai, Arpita; Bhan, Sushma; Sanghi, Neha; Tripathy, Sucheta

2015-01-01

40

Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis  

NASA Technical Reports Server (NTRS)

Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

Richardson, Laurie L.; Castenholz, Richard W.

1989-01-01

41

Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures  

DOEpatents

A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

2014-09-30

42

Whole-Genome Shotgun Sequence of Arthrospira platensis Strain Paraca, a Cultivated and Edible Cyanobacterium  

PubMed Central

Here we report the whole-genome shotgun sequence of a Peruvian strain of Arthrospira platensis (Paraca), a cultivated and edible haloalkaliphilic cyanobacterium of great scientific, technical, and economic potential. PMID:25103760

Calmin, Gautier; Crovadore, Julien; Falquet, Jacques; Hurni, Jean-Pierre; Osteras, Magne; Haldemann, Francois; Farinelli, Laurent

2014-01-01

43

Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission  

NASA Astrophysics Data System (ADS)

A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

2013-11-01

44

Whole-Genome Shotgun Sequence of Arthrospira platensis Strain Paraca, a Cultivated and Edible Cyanobacterium.  

PubMed

Here we report the whole-genome shotgun sequence of a Peruvian strain of Arthrospira platensis (Paraca), a cultivated and edible haloalkaliphilic cyanobacterium of great scientific, technical, and economic potential. PMID:25103760

Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Falquet, Jacques; Hurni, Jean-Pierre; Osteras, Magne; Haldemann, Francois; Farinelli, Laurent

2014-01-01

45

Effects of Heavy-Metal Stress on Cyanobacterium Anabaena flos-aquae  

Microsoft Academic Search

The influence of two metals, copper and cadmium, was studied on the growth and ultrastructures of cyanobacterium Anabaena flos-aquae grown at three different temperatures: 10°C, 20°C, and 30°C. The highest concentration of chlorophyll a was observed at 20°C and the lowest at 10°C. Both toxic metal ions, Cu 2+ and Cd 2+, inhibited growth of the tested cyanobacterium. Chlorophyll a

W. Surosz; K. A. Palinska

2004-01-01

46

Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii.  

PubMed

Cylindrospermopsis raciborskii is a toxic cyanobacterium with an invasive nature. The species is found in all the main continents but its origin and dispersal routes on a worldwide perspective remain yet mostly unknown. In this study, 27 isolates of C. raciborskii gathered worldwide have been used for an in-deep phylogenetic analyses with a concatenated system of three genetic markers (16 rRNA, 16S-23S ITS larger subunit, and RNA polymerase rpoC1) comprehending 3,188 bp. Our results provide support for an origin of C. raciborskii in the American continent. Dispersal routes included afterward a spread into the African continent and then Asia and Australia, being Europe the last continent to be colonized by this species. Our phylogenetic inferences suggest that C. raciborskii seem to have a well-defined dispersal behavior with a well-established population structure around the world. PMID:25381137

Moreira, Cristiana; Fathalli, Afef; Vasconcelos, Vitor; Antunes, Agostinho

2015-01-01

47

Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis  

SciTech Connect

Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

Thiel, T.

1988-03-01

48

Interaction effects of mercury-pesticide combinations towards a cyanobacterium  

SciTech Connect

The present study supplies interaction data for combinations of mercuric ion (supplied as mercuric chloride), atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and permethrin (3-phenoxybenzyl-(1RS)-cis,trans-3-(2,2-dichloro-vinyl)-2,2-dimethyl cyclopropanecarboxylate) when tested towards growth of the cyanobacterium (blue-green alga) Anabaena inaequalis. Mercury is one of the most important heavy metal pollutants and has been widely used in toxicology research. Atrazine is the most heavily used pesticide in the United States and its residues are widely distributed in terrestrial and aquatic ecosystems. Permethrin is an important insecticide with expanding markets and is presently being evaluated for its environmental impact. A. inaequalis has been used extensively in this laboratory in previous interaction studies.

Stratton, G.W.

1985-05-01

49

Outdoor biophotolytic system using the cyanobacterium anabaena cylindrica B629  

SciTech Connect

The cyanobacterium Anabaena cylindrica B629 was suspended in small glass beads and incubated in a gas-tight glass vessel outdoors under a gas atmosphere comprising carbon monoxide (0.2%), acetylene (5%), oxygen (6.5%), and nitrogen. The solution phase initially contained sodium bicarbonate (10mM) at pH 7. Under these conditions the organism continuously produced hydrogen gas for over three weeks. The temperature of the culture was maintained below 30 /degree/C and the minimum night temperatures were recorded. The vessel was covered by a shadecloth, which reduced the natural illumination by approximately 70%. The system is an alternative to those requiring the strict absence of oxygen and little nitrogen, and requires virtually no attention during the incubation period. 18 refs.

Smith, G.D.; Lambert, G.R.

1981-01-01

50

Two New Lyngbyatoxin Derivatives from the Cyanobacterium, Moorea producens  

PubMed Central

The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as “swimmer’s itch”). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase C? (PKC?)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway. PMID:25470181

Jiang, Weina; Tan, Satoshi; Hanaki, Yusuke; Irie, Kazuhiro; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

2014-01-01

51

A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens.  

PubMed

Lyngbyatoxin A from the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) is known as the causative agent of "swimmer's itch" with its highly inflammatory effect. A new toxic compound was isolated along with lyngbyatoxin A from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies revealed the isolated compound had the same planar structure with that of lyngbyatoxin A. The results of optical rotation and CD spectra indicated that the compound was a new lyngbyatoxin A derivative, 12-epi-lyngbyatoxin A (1). While 12-epi-lyngbyatoxin A showed comparable toxicities with lyngbyatoxin A in cytotoxicity and crustacean lethality tests, it showed more than 100 times lower affinity for protein kinase C? (PKC?) using the PKC?-C1B peptide when compared to lyngbyatoxin A. PMID:24824022

Jiang, Weina; Zhou, Wei; Uchida, Hajime; Kikumori, Masayuki; Irie, Kazuhiro; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

2014-05-01

52

The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus.  

PubMed

A collection of 93 Streptomyces reference strains were investigated using SDS-PAGE of whole-cell proteins. Computer-assisted numerical analysis revealed 24 clusters encompassing strains with very similar protein profiles. Five of them grouped several type strains with visually identical patterns. DNA-DNA hybridizations revealed homology values higher than 70% among these type strains. According to the current species concept, it is proposed that Streptomyces albosporeus subsp. albosporeus LMG 19403T is considered as a subjective synonym of Streptomyces aurantiacus LMG 19358T, that Streptomyces aminophilus LMG 19319T is considered as a subjective synonym of Streptomyces cacaoi subsp. cacaoi LMG 19320T, that Streptomyces niveus LMG 19395T and Streptomyces spheroides LMG 19392T are considered as subjective synonyms of Streptomyces caeruleus LMG 19399T, and that Streptomyces violatus LMG 19397T is considered as a subjective synonym of Streptomyces violaceus LMG 19360T. PMID:12054245

Lanoot, B; Vancanneyt, M; Cleenwerck, I; Wang, L; Li, W; Liu, Z; Swings, J

2002-05-01

53

Comparative amperometric study of uptake hydrogenase and hydrogen photoproduction activities between heterocystous cyanobacterium Anabaena cylindrica B629 and nonheterocystous cyanobacterium Oscillatoria sp. strain Miami BG7  

SciTech Connect

Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N/sub 2/ as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact that the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O/sub 2/ evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O/sub 2/ on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7. 32 references, 5 figures.

Kumazawa, S.; Mitsui, A.

1985-08-01

54

Article published in Nucleic Acids Research 2001, Vol. 29, No. 7 DNA methyltransferases of the cyanobacterium Anabaena PCC 7120  

E-print Network

of the cyanobacterium Anabaena PCC 7120 Andrey V. Matveyev, Kathryn T. Young, Andrew Meng, and Jeff Elhai* Department by the cyanobacterium Anabaena PCC 7120 has been deduced. Anabaena has nine DNA MTases. Four are associated with Type II/). The insensitivity of genomes of the filamentous cyanobacteria within the genera Anabaena and Nostoc to digestion

Elhai, Jeff

55

The Photocycle and Proton Translocation Pathway in a Cyanobacterial Ion-Pumping Rhodopsin  

PubMed Central

The genome of thylakoidless cyanobacterium Gloeobacter violaceus encodes a fast-cycling rhodopsin capable of light-driven proton transport. We characterize the dark state, the photocycle, and the proton translocation pathway of GR spectroscopically. The dark state of GR contains predominantly all-trans-retinal and, similar to proteorhodopsin, does not show the light/dark adaptation. We found an unusually strong coupling between the conformation of the retinal and the site of Glu132, the homolog of Asp96 of BR. Although the photocycle of GR is similar to that of proteorhodopsin in general, it differs in accumulating two intermediates typical for BR, the L-like and the N-like states. The latter state has a deprotonated cytoplasmic proton donor and is spectrally distinct from the strongly red-shifted N intermediate known for proteorhodopsin. The proton uptake precedes the release and occurs during the transition to the O intermediate. The proton translocation pathway of GR is similar to those of other proton-pumping rhodopsins, involving homologs of BR Schiff base proton acceptor and donor Asp85 and Asp96 (Asp121 and Glu132). We assigned a pair of FTIR bands (positive at 1749 cm?1 and negative at 1734 cm?1) to the protonation and deprotonation, respectively, of these carboxylic acids. PMID:19217863

Miranda, Mylene R.M.; Choi, Ah Rheum; Shi, Lichi; Bezerra, Arandi G.; Jung, Kwang-Hwan; Brown, Leonid S.

2009-01-01

56

Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan  

PubMed Central

Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20?m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

2014-01-01

57

Multiphase calcification associated with the atmophytic cyanobacterium Scytonema julianum  

NASA Astrophysics Data System (ADS)

Scytonema julianum, which is an atmophytic cyanobacterium that lives in small clusters in shaded vadose settings throughout the world, is prone to rapid calcification. Specimens found on cavity walls in an inactive spring tower located in Shiqiang (Stone Wall) in China and cavity walls in a breccia that fills sinkholes in dolostones of the Cayman Formation (Miocene) on Grand Cayman are morphologically identical. The microbes (4-11 ?m diameter) are encased with thick, well-developed calcified sheaths with external diameters of 11 to 25 ?m, which developed through the sequential precipitation of amorphous CaCO3 (ACC), acicular calcite crystals, triradiate calcite crystals, and dendrite calcite crystals. The paragenetic relationship of these precipitates to the skeletal rhombic crystals that cover some specimens is unknown. Precipitation probably took place in the extracellular polymeric substances (EPS) that covered the microbes when they were alive. Critically, the type of crystal evident on the surface of the sheath depends on the thickness of the calcified sheath, which is in accord with the sequential development of the different crystal forms. Available evidence indicates that precipitation was largely "microbially influenced" rather than "environment influenced" and also demonstrates that crystals commonly morphed from one crystal form into another as precipitation progressed. There is, for example, clear evidence that the dendrite crystals developed from the triradiate crystals. S. julianum can play a significant role in the development of microbialites in vadose settings by acting as nuclei for CaCO3 precipitation.

Jones, Brian; Peng, Xiaotong

2014-11-01

58

Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica.  

PubMed

This study presents experimental measurements of the absorption and scattering cross sections and the spectral complex index of refraction of filamentous cyanobacteria. Filamentous heterocystous cyanobacterium Anabaena cylindrica was chosen as a model organism. Its filaments consisted of long chains of polydisperse cells. Their average mass scattering and absorption cross sections were measured from 400 to 750 nm at four different times during their batch growth in medium BG-11(-N) under 3000 lux of white fluorescent light. The effective real (or refraction index) and imaginary (or absorption index) parts of the complex index of refraction were retrieved using an inverse method based on a genetic algorithm. The microorganisms were modeled as infinitely long and randomly oriented volume-equivalent cylinders. The absorption index featured peaks corresponding to chlorophyll a (Chl a) at 436 and 676 nm and phycocyanin (PCCN) at 630 nm and a shoulder around 480 nm, corresponding to photoprotective carotenoids. The absorption peaks of Chl a and PCCN concentrations increased and the shoulder due to carotenoids decreased in response to photolimitation caused by biomass growth. Subsequent nitrogen limitation caused the PCCN absorption peak to decrease significantly due to degradation of PCCN as an endogenous source of nitrogen for nitrogenase maintenance and synthesis, as confirmed by increasing heterocyst differentiation. The results can be used for predicting and optimizing light transfer in photobioreactors for wastewater treatment and ammonia or biofuel production. PMID:24695147

Heng, Ri-Liang; Lee, Euntaek; Pilon, Laurent

2014-04-01

59

Characterization of four superoxide dismutase genes from a filamentous cyanobacterium.  

PubMed

By using an oligonucleotide probe constructed from a conserved region of amino acids located in the carboxyl-terminal end of superoxide dismutase (SOD) proteins, four SOD genes were cloned from the cyanobacterium Plectonema boryanum UTEX 485. One of these genes, designated sodB, encoded an FeSOD enzyme, while the remaining three genes, designated sodA1, sodA2, and sodA3, encoded MnSOD enzymes. To investigate the expression of these four genes, total cellular RNA was isolated from P. boryanum UTEX 485 cells grown under various conditions and RNA gel blot analysis was carried out. Results indicated that sodB and sodA1 were constitutively expressed, although sodB expression was partially repressed in cells grown under conditions of iron stress. sodA2 transcripts, which were not detectable in control cells, accumulated to high levels in cells treated with methyl viologen or in cells grown under conditions of iron or nitrogen stress. However, under microaerobic conditions, iron and nitrogen stress failed to induce sodA2, indicating that multiple factors affect the regulation of sodA2. While discrete transcripts were not detected for sodA3, hybridization was observed under a number of conditions, including those which increased the accumulation of sodA2 transcripts. Additionally, there were high levels of the sodA3 transcript detected in a P. boryanum UTEX 485 mutant strain resistant to methyl viologen treatment. PMID:7860607

Campbell, W S; Laudenbach, D E

1995-02-01

60

Production of the Neurotoxin BMAA by a Marine Cyanobacterium  

PubMed Central

Diverse species of cyanobacteria have recently been discovered to produce the neurotoxic non-protein amino acid ?-methylamino-L-alanine (BMAA). In Guam, BMAA has been studied as a possible environmental toxin in the diets of indigenous Chamorro people known to have high levels of Amyotrophic Lateral Sclerosis/ Parkinsonism Dementia Complex (ALS/PDC). BMAA has been found to accumulate in brain tissues of patients with progressive neurodegenerative illness in North America. In Guam, BMAA was found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which live in specialized cycad roots. We here report detection of BMAA in laboratory cultures of a free-living marine species of Nostoc. We successfully detected BMAA in this marine species of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino Acid Analyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five different analytical methods unequivocally demonstrates the presence of BMAA in this marine cyanobacterium. Since protein-associated BMAA can accumulate in increasing levels within food chains, it is possible that biomagnification of BMAA could occur in marine ecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Production of BMAA by marine cyanobacteria may represent another route of human exposure to BMAA. Since BMAA at low concentrations causes the death of motor neurons, low levels of BMAA exposure may trigger motor neuron disease in genetically vulnerable individuals. PMID:18463731

Banack, Sandra Anne; Johnson, Holly E.; Cheng, Ran; Cox, Paul Alan

2007-01-01

61

Characterization of transposon Tn5469 from the cyanobacterium Fremyella diplosiphon.  

PubMed Central

A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469. PMID:8522506

Kahn, K; Schaefer, M R

1995-01-01

62

Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.  

SciTech Connect

The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

2014-01-02

63

Expression of the Escherichia coli lacZ Gene on a Plasmid Vector in a Cyanobacterium  

Microsoft Academic Search

A biphasic plasmid vector was used to introduce the Escherichia coli K-12 lac operon into the unicellular cyanobacterium Agmenellum quadruplicatum PR-6. The PR-6 transformants expressed beta -galactosidase at nearly as high a level as did Escherichia coli transformants. In order to accomplish this, it was necessary to obtain PR-6 mutants that could be transformed by plasmids with unmodified recognition sites

Jeffrey S. Buzby; Ronald D. Porter; S. Edward Stevens

1985-01-01

64

Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium  

E-print Network

Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Department of Geological Sciences, Rutgers University, Piscataway, NJ 08854, USA. Summary Iron deficiency the major iron-binding pro- teins, including psbA and psbE of photosystem II, psaA and psaC of photosystem I

65

Chemistry and biology of maculalactone A from the marine cyanobacterium Kyrtuthrix maculans  

Microsoft Academic Search

Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as ‘pure’ colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several

G. D. Brown; H.-F Wong; N Hutchinson; S.-C Lee; B. K. K Chan; G. A. Williams

2004-01-01

66

Draft Genome Sequence of Cyanobacterium Hassallia byssoidea Strain VB512170, Isolated from Monuments in India  

PubMed Central

The draft genome assembly of Hassallia byssoidea strain VB512170 with a genome size of ~13 Mb and 10,183 protein-coding genes in 62 scaffolds is reported here for the first time. This is a terrestrial hydrophobic cyanobacterium isolated from monuments in India. We report several copies of luciferase and antibiotic genes in this organism. PMID:25745001

Singh, Deeksha; Chandrababunaidu, Mathu Malar; Panda, Arijit; Sen, Diya; Bhattacharyya, Sourav

2015-01-01

67

Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893  

Microsoft Academic Search

Whole filaments of the N2-fixing cyanobacterium Anabaena ATCC 27893 have been immobilized by entrapment in calcium alginate gel beads. In a continuous flow fluidized bed reactor sustained photosynthesis, N2-fixation, and ammonia production have been achieved over a 130 hour period, the longest tested.

Stephan C. Musgrave; Nigel W. Kerby; Geoffrey A. Codd; William D. P. Stewart

1982-01-01

68

Deciphering the Genome Sequences of the Hydrophobic Cyanobacterium Scytonema tolypothrichoides VB-61278  

PubMed Central

Scytonema tolypothrichoides VB-61278, a terrestrial cyanobacterium, can be exploited to produce commercially important products. Here, we report for the first time a 10-Mb draft genome assembly of S. tolypothrichoides VB-61278, with 214 scaffolds and 7,148 putative protein-coding genes. PMID:25838486

Das, Abhishek; Panda, Arijit; Singh, Deeksha; Chandrababunaidu, Mathu Malar; Mishra, Gyan Prakash; Bhan, Sushma

2015-01-01

69

Causes for the Large Genome Size in a Cyanobacterium Anabaena sp. PCC7120  

Microsoft Academic Search

Three possible causes responsible for the large genome size of a cyanobacterium Anabaena sp. PCC7120 are investigated: 1) sequential tandem duplications of gene segments, genes or genomic segments, 2) horizontal gene transfers from other organisms, and 3) whole-genome duplication. We evaluated the frequency distribution of angles between paralog locations for the possibility 1), the fraction of genes deviated in GC

Nobuyoshi Sugaya; Makihiko Sato; Hiroo Murakami; Akira Imaizumi; Sachiyo Aburatani; Katsuhisa Horimoto

70

Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production  

Microsoft Academic Search

The aim of the study was to measure toxin production and growth of the cyanobacterium Anabaena sp. in the presence of competitor algae and grazers. The study was comparative, as it was repeated at two sites in the Baltic Sea. The results showed that growth and intracellular microcystin concentrations of Anabaena were significantly higher at the Bothnian Sea site than

Jonna Engström-Öst; Sari Repka; Mirva Mikkonen

2011-01-01

71

Draft Genome Sequence of Filamentous Marine Cyanobacterium Lyngbya confervoides Strain BDU141951  

PubMed Central

Lyngbya confervoides strain BDU141951 is a fast-growing, unicellular, marine, nonheterocystous cyanobacterium forming long unbranched filaments inside sheaths. Here, we report the draft genome assembly of Lyngbya confervoides BDU141951 for the first time. The genome size is 8,799,693 bp and has 6,093 putative protein-coding genes assembled into 298 scaffolds. PMID:25745003

Chandrababunaidu, Mathu Malar; Sen, Diya

2015-01-01

72

Curacin D, aN antimitotic agent from the marine Cyanobacterium Lyngbya majuscula  

Microsoft Academic Search

Curacin D is a novel brine shrimp toxic metabolite isolated from a Virgin Islands collection of the marine cyanobacterium Lyngbya majuscula. Structure elucidation of curacin D was accomplished through multidimensional NMR, GC\\/MS, and comparisons with curacin A. Curacin D provides new insights into structure–activity relationships in this natural product class as well as some aspects of the likely biosynthetic pathway

Brian Márquez; Pascal Verdier-Pinard; Ernest Hamel; William H. Gerwick

1998-01-01

73

Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a  

PubMed Central

The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified. PMID:24482507

Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margie F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

2014-01-01

74

Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.  

PubMed

The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified. PMID:24482507

Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P; Pinel, Nicolas; Nelson, William C; Lindemann, Stephen R; Romine, Margie F; Haruta, Shin; Schuster, Stephan C; Bryant, Donald A; Fredrickson, Jim K

2014-01-01

75

A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris  

Microsoft Academic Search

Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe

Remus Mohr; Björn Voß; Martin Schliep; Thorsten Kurz; Iris Maldener; David G Adams; Anthony D W Larkum; Min Chen; Wolfgang R Hess

2010-01-01

76

Draft Genome Sequence of Filamentous Marine Cyanobacterium Lyngbya confervoides Strain BDU141951.  

PubMed

Lyngbya confervoides strain BDU141951 is a fast-growing, unicellular, marine, nonheterocystous cyanobacterium forming long unbranched filaments inside sheaths. Here, we report the draft genome assembly of Lyngbya confervoides BDU141951 for the first time. The genome size is 8,799,693 bp and has 6,093 putative protein-coding genes assembled into 298 scaffolds. PMID:25745003

Chandrababunaidu, Mathu Malar; Sen, Diya; Tripathy, Sucheta

2015-01-01

77

Draft Genome Sequence of Cyanobacterium Hassallia byssoidea Strain VB512170, Isolated from Monuments in India.  

PubMed

The draft genome assembly of Hassallia byssoidea strain VB512170 with a genome size of ~13 Mb and 10,183 protein-coding genes in 62 scaffolds is reported here for the first time. This is a terrestrial hydrophobic cyanobacterium isolated from monuments in India. We report several copies of luciferase and antibiotic genes in this organism. PMID:25745001

Singh, Deeksha; Chandrababunaidu, Mathu Malar; Panda, Arijit; Sen, Diya; Bhattacharyya, Sourav; Adhikary, Siba Prasad; Tripathy, Sucheta

2015-01-01

78

Diversity of the marine cyanobacterium Trichodesmium : characterization of the Woods Hole culture collection and quantification of field populations  

E-print Network

Trichodesmium is a colonial, N2-fixing cyanobacterium found in tropical oceans. Species of Trichodesmium are genetically similar but several species exist together in the same waters. In order to coexist, Trichodesmium ...

Hynes, Annette Michelle

2009-01-01

79

TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803  

SciTech Connect

The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorption in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in cells with very low contrast produced principally by electron-dense manganese precipitates. Thin sections were imaged and analyzed using JEOL 2010 HRTEM coupled with EDS (Oxford) and EELS (Gatan) systems. Manganese uptake was measured using a colorimetric method. Cells incubated with Mn solutions were able to take up about 150uM of Mn(II) or Mn(IV) in 48 hours. The predominant accumulation of Mn was associated with the outer membrane for both Mn substrates. Massive deposits seemed to be related in a large extent to the external polymeric substances (EPS) as shown in Fig. 1A-C. Elemental analyses of these precipitates revealed a signal consistent with manganese phosphate. The potential of EPS such as polysaccharides for biosorption or reduction of metals has been described [4], however, the fact that Mn bound to the EPS withstood multiple washes during TEM sample processing is remarkable. From our work with Gram-negative soil bacteria, we hypothesized that the periplasm, an area between the outer and plasma membrane, might be the storage space for internal Mn in pool B. This phenomenon was not observed at any time point for either culture exposed to the Mn. Instead, thin layers of Mn deposits were often found lining the outer and plasma membrane (F). In the MnCl2 solution only, we also observed fine deposits of Mn precipitates along the thylakoid membranes deep inside the cells (Fig. E). Localization of Mn precipitation sites in Synechocystis has important implications for better understanding of the Mn transport and storage processes within cyanobacterial cells, as well as of metal precipitation, solubilization and cycling in the environment.

Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

2006-09-01

80

Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica  

Microsoft Academic Search

We cloned and characterized a genomic locus encoding a distinct member of the DnaK\\/Hsp70 family of molecular chaperones, dnaK1, from the halotolerant cyanobacterium Aphanothece halophytica. Co-expression of dnaK1 with a plant plastocyanin precursor in Escherichia coli resulted in a dramatic increase in the solubility of the plant protein. This indicates that A. halophytica dnaK1 encodes a functional protein possessing functions

Byung Hyun Lee; Takashi Hibino; Jinki Jo; Alejandro M. Viale; Teruhiro Takabe

1997-01-01

81

Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis  

Microsoft Academic Search

The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m² basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input

Yoshitomo Watanabe; D. O. Hall; J. De La Nouee

1995-01-01

82

Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions  

Microsoft Academic Search

Cylindrospermopsis raciborskii, an invasive freshwater cyanobacterium, originated from the tropics but has spread to temperate zones over the last few decades.\\u000a Its northernmost populations in Europe occur in North German lakes. How such dramatic changes in its biogeography are possible\\u000a and how its population dynamics in the newly invaded habitats are regulated are still unexplained. We therefore conducted\\u000a a long-term

Claudia Wiedner; Jacqueline Rücker; Rainer Brüggemann; Brigitte Nixdorf

2007-01-01

83

Draft Genome Sequence of the Toxic Bloom-Forming Cyanobacterium Aphanizomenon flos-aquae NIES-81  

PubMed Central

Aphanizomenon flos-aquae is a toxic filamentous cyanobacterium that causes water blooms in freshwaters across the globe. We present the draft genome sequence of the A. flos-aquae strain NIES-81, which was determined by 454 pyrosequencing technology. The draft genome is ~5.7 Mb, containing 5,802 predicted protein-coding genes and 58 RNA genes, with a G+C content of 38.5%. PMID:24526634

Cao, Huansheng; Shimura, Yohei; Masanobu, Kawachi

2014-01-01

84

Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413  

Microsoft Academic Search

A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation

THOMAS HAPPE; KATHRIN SCHUTZ; HERBERT BOHME

2000-01-01

85

Response of a rice field cyanobacterium Anabaena sp. to physiological stressors  

Microsoft Academic Search

The impact of physiological factors such as heat, salinity and L-methionine-DL-sulfoximine (MSO) on growth and total protein profile was studied in a rice field cyanobacterium, Anabaena sp. There was a gradual decrease in growth rate of the organism with increase in incubation time at 47°C; by 168 h of incubation there was essentially no growth. NaCl concentration > 5 mM

Rajeshwar P. Sinha; Donat-P. Häder

1996-01-01

86

Physiological and Biochemical Alterations in a Diazotrophic Cyanobacterium Anabaena cylindrica Under NaCl Stress  

Microsoft Academic Search

Growth, morphological variation, and liquid chromatography–photodiode array detection–mass spectrometric analysis of pigments\\u000a have been studied in a diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress. The chlorophyll and cellular protein contents increased initially in response to 50 mM NaCl. Further increment in NaCl concentration, however, resulted in a significant decrease in both chlorophyll and cellular\\u000a protein. A. cylindrica cells

Pratiksha Bhadauriya; Radha Gupta; Surendra Singh; Prakash Singh Bisen

2007-01-01

87

Factors modulating alkaline phosphatase activity in the diazotrophic rice-field cyanobacterium, Anabaena oryzae  

Microsoft Academic Search

Summary  Alkaline phosphatases (APase), both phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) were studied in the cyanobacterium Anabaena oryzae for their specific requirements of temperature, pH, micro- and macronutrients and their activities in the presence of salinity and heavy metal stress. The alkaline phosphatases (PMEase and PDEase) are quite stable enzymes and require a narrow range of pH (pH 10–10.2) and temperature (35–40 °C) for

S. K. Singh; S. S. Singh; V. D. Pandey; A. K. Mishra

2006-01-01

88

Cellular localization of cytochrome c 553 in the N 2 -fixing cyanobacterium Anabaena variabilis  

Microsoft Academic Search

The “in situ” location of the electron carrier protein cytochrome C553 (cyt c553) has been investigated in both vegetative cells and heterocysts of the cyanobacterium Anabaena variabilis ATCC 29413 using the antibody-gold technique, carried out as a post-ernbedding immunoelectron microscopy procedure. When using a rabbit polyclonal anti-cyt c553 specific antiserum an intense labelling, associated mainly with the cell periphery (cytoplasmic

Aurelio Serrano; Patricia Giménez; Siegfried Scherer; Peter Biiger

1990-01-01

89

Draft Genome Sequence of the Terrestrial Cyanobacterium Scytonema millei VB511283, Isolated from Eastern India  

PubMed Central

We report here the draft genome sequence of Scytonema millei VB511283, a cyanobacterium isolated from biofilms on the exterior of stone monuments in Santiniketan, eastern India. The draft genome is 11,627,246 bp long (11.63 Mb), with 118 scaffolds. About 9,011 protein-coding genes, 117 tRNAs, and 12 rRNAs are predicted from this assembly. PMID:25744984

Sen, Diya; Chandrababunaidu, Mathu Malar; Singh, Deeksha; Sanghi, Neha; Ghorai, Arpita; Mishra, Gyan Prakash; Madduluri, Madhavi

2015-01-01

90

Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803  

SciTech Connect

Fructose was bactericidal for the cyanobacterium Synechocystis sp. strain PCC 6803. Each of ten independently isolated fructose-resistant mutants had an alteration of the glucose transport system, measured as uptake of glucose or of 3-0-methyl-D-glucose. In the presence of the analog, the wild-type Synechocystis strain was protected against fructose. Two mutants altered in photoautotrophy were also isolated.

Flores, E.; Schmetterer, G.

1986-05-01

91

Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.  

PubMed

Pentachlorophenol (PCP) effects on a strain of the cyanobacterium Microcystis aeruginosa were investigated at laboratory scale. This is the first systematic ecotoxicity study of the effects of PCP on an aquatic cyanobacterium. The microalga Chlorella vulgaris was studied in the same conditions as the cyanobacterium, in order to compare the PCP toxicity and its removal by the species. The cells were exposed to environmental levels of PCP during 10 days, in Fraquil culture medium, at nominal concentrations from 0.01 to 1000 ?g L(-1), to the cyanobacterium, and 0.01 to 5000 ?g L(-1), to the microalga. Growth was assessed by area under growth curve (AUC, optical density vs time) and chlorophyll a content (chla). The toxicity profiles of the two species were very different. The calculated effective concentrations EC20 and EC50 were much lower to M. aeruginosa, and its growth inhibition expressed by chla was concentration-dependent while by AUC was not concentration-dependent. The cells might continue to divide even with lower levels of chla. The number of C. vulgaris cells decreased with the PCP concentration without major impact on the chla. The effect of PCP on M. aeruginosa is hormetic: every concentration studied was toxic except 1 ?g L(-1), which promoted its growth. The legal limit of PCP set by the European Union for surface waters (1 ?g L(-1)) should be reconsidered since a toxic cyanobacteria bloom might occur. The study of the removal of PCP from the culture medium by the two species is an additional novelty of this work. M. aeruginosa could remove part of the PCP from the medium, at concentrations where toxic effects were observed, while C. vulgaris stabilized it. PMID:24462928

de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Ramos, V; Vasconcelos, V M; Vasconcelos, M Teresa S D

2014-04-01

92

Functional Characterization of the slr1944 Gene of Cyanobacterium Synechocystis sp. PCC 6803  

Microsoft Academic Search

The properties of Slr1944 protein encoded by the slr1944 gene and participating in the metabolism of lipophilic compounds in a cyanobacterium Synechocystis were under study. Located in the periplasm, this protein comprises a conserved pentapeptide G-X-S-X-G characteristic of lipases, acetylcholinesterases, and thioesterases. An attempt to delete the gene from the cyanobacterial genome failed; this fact presumes an essential function of

T. S. Serebriiskaya; D. A. Los

2004-01-01

93

Draft Genome Sequence of the Terrestrial Cyanobacterium Scytonema millei VB511283, Isolated from Eastern India.  

PubMed

We report here the draft genome sequence of Scytonema millei VB511283, a cyanobacterium isolated from biofilms on the exterior of stone monuments in Santiniketan, eastern India. The draft genome is 11,627,246 bp long (11.63 Mb), with 118 scaffolds. About 9,011 protein-coding genes, 117 tRNAs, and 12 rRNAs are predicted from this assembly. PMID:25744984

Sen, Diya; Chandrababunaidu, Mathu Malar; Singh, Deeksha; Sanghi, Neha; Ghorai, Arpita; Mishra, Gyan Prakash; Madduluri, Madhavi; Adhikary, Siba Prasad; Tripathy, Sucheta

2015-01-01

94

Isolation and Characterization of thevnfENGenes of the CyanobacteriumAnabaena variabilis  

Microsoft Academic Search

Thefilamentous cyanobacteriumAnabaena variabilisfixes nitrogen in the presence of vanadium (V) and in the absence of molybdenum (Mo), using a V-dependent nitrogenase (V-nitrogenase) encoded by the vnfDGK genes.DownstreamfromthesegenesaretwogenesthataresimilartothevnfENgenesofAzotobactervinelandii. Like thevnfDGKgenes, thevnfENgenes were transcribed in the absence of Mo, whether or not V was present. A mutant with an insertion in thevnfNgene lacked V-nitrogenase activity; thus, thevnfENgenes were essential for the V-nitrogenase

TERESA THIEL

1996-01-01

95

Photosynthetic production of the filamentous cyanobacterium Spirulina platensis in a cone-shaped helical tubular photobioreactor  

Microsoft Academic Search

The photosynthetic productivity of the filamentous cyanobacterium Spirulina platensis was investigated in a cone-shaped helical tubular photobioreactor. A laboratory-scale photobioreactor was constructed with a 0.255-m2 basal area and a conical shape (0.64rm highǴ.57rm top diameter). The photostage comprised transparent reinforced polyvinyl chloride (PVC) tubing with spirally wound, metal-wire reinforcing in the tubing wall (31rm in length and 1.6rcm internal diameter

Y. Watanabe; D. O. Hall

1996-01-01

96

Aerobic hydrogen accumulation by a nitrogen-fixing Cyanobacterium, Anabaena sp  

SciTech Connect

Hydrogen evolution by a nitrogen-fixing cyanobacterium, Anabaena sp. strain N-7363, was tested in order to develop a water biophotolysis system under aerobic conditions. A culture of the strain supplemented with carbon dioxide under an air atmosphere evolved hydrogen and oxygen gas, which reached final concentrations of 9.7 and 69.8%, respectively, after 12 days of incubation. Hydrogen uptake activity was not observed during incubation, and nitrogenase was thought to be the sole enzyme responsible for the hydrogen evolution.

Asada, Y.; Kawamura, S.

1986-05-01

97

Inhibitory effect of petroleum oil on photosynthetic electron transport system in the cyanobacterium Anabaena doliolum  

SciTech Connect

Virtually nothing is known about the site of action of oil and the mechanism of inhibition of photosynthetic electron transport, a process responsible for the generation of ATP and NADPH, which are essential for carbon fixation. The present study was an attempt to learn something about these aspects. The influence of diesel on photosynthetic O{sub 2}-evolution, {sup 14}CO{sub 2} fixation, and electron transport system has been examined in Anabaena doliolum, a heterocystous cyanobacterium. A. doliolum and other heterocystous cyanobacteria are widely distributed in soil and aquatic ecosystems, and represent an important group of free-living nitrogen fixing microorganisms.

Singh, A.K.; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India))

1991-12-01

98

Complete Genomic Sequence of the Filamentous Nitrogen-fixing Cyanobacterium Anabaena sp. Strain PCC 7120  

Microsoft Academic Search

The nucleotide sequence of the entire genome of a filamentous cyanobacterium, Anabaena sp. strain PCC 7120, was determined. The genome of Anabaena consisted of a single chromosome (6,413,771 bp) and six plasmids, designated pCC7120? (408,101 bp), pCC7120? (186,614 bp), pCC7120? (101,965 bp), pCC7120? (55,414 bp), pCC7120? (40,340 bp), and pCC7120? (5,584 bp). The chromosome bears 5368 po- tential protein-encoding genes,

Takakazu Kaneko; Yasukazu Nakamura; C. Peter Wolk; Tanya Kuritz; Shigemi Sasamoto; Akiko Watanabe; Mayumi Iriguchi; Atsuko Ishikawa; Kumiko Kawashima; Takaharu Kimura; Yoshie Kishida; Mitsuyo Kohara; Midori Matsumoto; Ai Matsuno; Akiko Muraki; Naomi Nakazaki; Sayaka Shimpo; Masako Sugimoto; Masaki Takazawa; Manabu Yamada; Miho Yasuda; Satoshi Tabata

2001-01-01

99

A new open reading frame in the genome of the cyanobacterium Synechocystis sp. PCC 6803  

SciTech Connect

A new open reading frame ORF242, coding for a 26.47-kDa polypeptide, was found in a DNA fragment of the cyanobacterium Synechocystis 6803, transforming a photosynthetic mutant to photoautotrophy and having homology with plant chloroplast DNA. In the 5{prime} flanking region of ORF242, consensus sequences characteristic of a functioning gene were found. One copy of ORF242 is present in the Synechocystis 6803 genome. Insertion inactivation of ORF242 does not lead to a decrease in photosynthetic activity in cells of cyanobacteria but may influence the ratio between active complexes of photosystems I and II. 22 refs., 6 figs., 2 tabs.

Lysenko, E.S.; Ogarkova, O.A.; Tarasov, V.A. [Vavilov Institute of General Genetics, Moscow (Russian Federation); Elanskaya, I.V.; Shestakov, S.V. [Moscow State Univ. (Russian Federation)

1995-02-01

100

The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae  

PubMed Central

Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL?1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to ?-N-Methylamino-l-alanine are discussed. PMID:24662524

Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

2014-01-01

101

Draft genome sequence of calothrix strain 336/3, a novel h2-producing cyanobacterium isolated from a finnish lake.  

PubMed

We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications. PMID:25614574

Isojärvi, Janne; Shunmugam, Sumathy; Sivonen, Kaarina; Allahverdiyeva, Yagut; Aro, Eva-Mari; Battchikova, Natalia

2015-01-01

102

Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels  

Microsoft Academic Search

To examine the hypothesis that invasion by zebra mussels (Dreissena polymorpha) promotes phytoplankton dominance by the noxious cyanobacterium Microcystis aeruginosa, 61 Michigan lakes of varying nutrient levels that contain or lack zebra mussels were surveyed during late summer. After accounting for variation in total phos- phorus (TP) concentrations, lakes with Dreissena had lower total phytoplankton biomass, as measured by chloro-

David F. Raikow; Orlando Sarnelle; Alan E. Wilson; Stephen K. Hamilton

2004-01-01

103

First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated  

E-print Network

First report in a river in France of the benthic cyanobacterium Phormidium favosum producing , Aure´lie Ledreuxa , Jean-Claude Druartc , Jean-Franc¸ois Humbertc , Catherine Guettea , Ce´cile Bernarda a USM0505 Ecosyste`mes et interactions toxiques, M.N.H.N., 12 rue Buffon, 75005 Paris, France b

Jacquet, Stéphan

104

Response to Oxidative Stress Involves a Novel Peroxiredoxin Gene in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803  

Microsoft Academic Search

; Exposure to methyl viologen in the presence of light facilitates the production of superoxide that gives severe damage on photosynthetic apparatus as well as many cellu- lar processes in cyanobacteria and plants. The effects of methyl viologen on global gene expression of a unicellular cyanobacterium Synechocystis sp. strain PCC 6803 were determined by DNA microarray. The ORFs sll1621, slr1738,

Mari Kobayashi; Tomokazu Ishizuka; Mitsunori Katayama; Minoru Kanehisa; Maitrayee Bhattacharyya-Pakrasi; Himadri B. Pakrasi; Masahiko Ikeuchi

2004-01-01

105

Cloning of salinity stress-induced genes from the salt-tolerant nitrogen-fixing cyanobacterium Anabaena torulosa  

Microsoft Academic Search

A subtractive hybridization procedure was used to clone genes of the cyanobacterium Anabaena torulosa expressed in response to salt stress. The method uses total RNA from salt-treated cells, labeled in vitro, as the probe. Hybridization to restriction digests of total DNA was used for interspecies comparison; the procedure was also successful for isolation of cosmids by colony hybridization, semiquantitative dot

ShreeKumar Apte; Robert Haselkorn

1990-01-01

106

Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production  

Microsoft Academic Search

Photoproduction of hydrogen has been studied as one of the ways to produce a clean, renewable energy source. Ultrastructure of the selected strain Anabaena variabilis SPU 003, a heterocystous cyanobacterium, has been done to understand the cell structure. The organism was found to be essentially a dark hydrogen producer. While pH had no significant effect on hydrogen production, optimum temperature

Vishal Shah; Nikki Garg; Datta Madamwar

2001-01-01

107

Discovery of an Endosymbiotic Nitrogen-Fixing Cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae)  

PubMed Central

Braarudosphaera bigelowii (Prymnesiophyceae) is a coastal coccolithophore with a long fossil record, extending back to the late Cretaceous (ca. 100 Ma). A recent study revealed close phylogenetic relationships between B. bigelowii, Chrysochromulina parkeae (Prymnesiophyceae), and a prymnesiophyte that forms a symbiotic association with the nitrogen-fixing cyanobacterium UCYN-A. In order to further examine these relationships, we conducted transmission electron microscopic and molecular phylogenetic studies of B. bigelowii. TEM studies showed that, in addition to organelles, such as the nucleus, chloroplasts and mitochondria, B. bigelowii contains one or two spheroid bodies with internal lamellae. In the 18S rDNA tree of the Prymnesiophyceae, C. parkeae fell within the B. bigelowii clade, and was close to B. bigelowii Genotype III (99.89% similarity). Plastid 16S rDNA sequences obtained from B. bigelowii were close to the unidentified sequences from the oligotrophic SE Pacific Ocean (e.g. HM133411) (99.86% similarity). Bacterial16S rDNA sequences obtained from B. bigelowii were identical to the UCYN-A sequence AY621693 from Arabian Sea, and fell in the UCYN-A clade. From these results, we suggest that; 1) C. parkeae is the alternate life cycle stage of B. bigelowii sensu stricto or that of a sibling species of B. bigelowii, and 2) the spheroid body of B. bigelowii originated from endosymbiosis of the nitrogen-fixing cyanobacterium UCYN-A. PMID:24324722

Hagino, Kyoko; Onuma, Ryo; Kawachi, Masanobu; Horiguchi, Takeo

2013-01-01

108

Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the ?-olefin biosynthesis pathway.  

PubMed

The production of alkanes in a marine cyanobacterium possessing the ?-olefin biosynthesis pathway was achieved by introducing an exogenous alkane biosynthesis pathway. Cyanobacterial hydrocarbons are synthesized via two separate pathways: the acyl-acyl carrier protein (ACP) reductase/aldehyde-deformylating oxygenase (AAR/ADO) pathway for the alkane biosynthesis and the ?-olefin synthase (OLS) pathway for the ?-olefin biosynthesis. Coexistence of these pathways has not yet been reported. In this study, the marine cyanobacterium Synechococcus sp. NKBG15041c was shown to produce ?-olefins similar to those of Synechococcus sp. PCC7002 via the ?-olefin biosynthesis pathway. The production of heptadecane in Synechococcus sp. NKBG15041c was achieved by expressing the AAR/ADO pathway genes from Synechococcus elongatus PCC 7942. The production yields of heptadecane in Synechococcus sp. NKBG15041c varied with the expression level of the aar and ado genes. The maximal yield of heptadecane was 4.2?±?1.2 ?g/g of dried cell weight in the transformant carrying a homologous promoter. Our results also suggested that the effective activation of ADO may be more important for the enhancement of alkane production by cyanobacteria. PMID:25527377

Yoshino, Tomoko; Liang, Yue; Arai, Daichi; Maeda, Yoshiaki; Honda, Toru; Muto, Masaki; Kakunaka, Natsumi; Tanaka, Tsuyoshi

2015-02-01

109

Aluminum effects on uptake and metabolism of phosphorus by the Cyanobacterium Anabaena cylindrica  

SciTech Connect

Aluminum severely affects the growth of the cyanobacterium Anabaena cylindrica and induces symptoms indicating phosphorus starvation. Pre- or post-treating the cells with high (90 micromolar) phosphorus reduces the toxicity of aluminum compared to cells receiving a lower orthophosphate concentration. In this study aluminum (ranging from 9 to 36 micromolar) and phosphorus concentrations were chosen so that the precipitation of insoluble AlPO/sub 4/ never exceeded 10% of the total phosphate concentration. The uptake of /sup 32/P-phosphorus is not disturbed by aluminium either at high (100 micromolar) or low (10 micromolar) concentrations of phosphate. Also, the rapid accumulation of polyphosphate granules in cells exposed to aluminum indicates that the incorporation of phosphate is not disturbed. However, a significant decrease in the mobilization of the polyphosphates is observed, as is a lowered activity of the enzyme acid phosphatase, in aluminum treated cells. We conclude that aluminum acts on the intracellular metabolism of phosphate, which eventually leads to phosphorus starvation rather than on its uptake in the cyanobacterium A. cylindrica.

Pettersson, A.; Haellbom, L. Bergman, B.

1988-01-01

110

Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142  

SciTech Connect

Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

2011-02-22

111

Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean Eutrophic Reservoir  

PubMed Central

Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = ?0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L?1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

Fadel, Ali; Atoui, Ali; Lemaire, Bruno J.; Vinçon-Leite, Brigitte; Slim, Kamal

2014-01-01

112

Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography  

SciTech Connect

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

2011-04-01

113

Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography  

SciTech Connect

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

2010-01-01

114

Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer.  

PubMed

Cyanobacteria contain up to three highly divergent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes: gap1, gap2, and gap3. Genes gap1 and gap2 are closely related at the sequence level to the nuclear genes encoding cytosolic and chloroplast GAPDH of higher plants and have recently been shown to play distinct key roles in catabolic and anabolic carbon flow, respectively, of the unicellular cyanobacterium Synechocystis sp. PCC6803. In the present study, sequences of 10 GAPDH genes distributed across the cyanobacteria Prochloron didemni, Gloeobacter violaceus PCC7421, and Synechococcus PCC7942 and the alpha-proteobacterium Paracoccus denitrificans and the beta-proteobacterium Ralstonia solanacearum were determined. Prochloron didemni possesses homologs to the gap2 and gap3 genes from Anabaena, Gloeobacter harbors gap1 and gap2 homologs, and Synechococcus possesses gap1, gap2, and gap3. Paracoccus harbors two highly divergent gap genes that are related to gap3, and Ralstonia possesses a homolog of the gap1 gene. Phylogenetic analyses of these sequences in the context of other eubacterial and eukaryotic GAPDH genes reveal that divergence across eubacterial gap1, and gap2, and gap3 genes is greater than that between eubacterial gap1 and eukaroytic glycolytic GapC or between eubacterial gap2 and eukaryotic Calvin cycle GapAB. These data strongly support previous analyses which suggested that eukaryotes acquired their nuclear genes for GapC and GapAB via endosymbiotic gene transfer from the antecedents of mitochondria and chloroplasts, and extend the known range of sequence diversity of the antecedent eubacterial genes. Analyses of available GAPDH sequences from other eubacterial sources indicate that the glycosomal gap gene from trypanosomes (cytosolic in Euglena) and the gap gene from the spirochete Treponema pallidum are each other's closest relatives. This specific relationship can therefore not reflect organismal evolution but must be the result of an interkingdom gene transfer, the direction of which cannot be determined with certainty at present. Contrary to this, the origin of the cytosolic Gap gene from trypanosomes can now be clearly defined as gamma-proteobacterial, since the newly established Ralstonia sequence (beta-proteobacteria) branches basally to the gamma-proteobacterial/trypanosomal assemblage. PMID:10331270

Figge, R M; Schubert, M; Brinkmann, H; Cerff, R

1999-04-01

115

Effect of UV-B and monocrotophos, singly and in combination, on photosynthetic activity and growth of non-heterocystous cyanobacterium Plectonema boryanum  

Microsoft Academic Search

The impact of artificial ultraviolet-B (UV-B 280–315nm) irradiation and monocrotophos (an organophosphorus insecticide), singly and in combination, on survival, growth and photosynthetic activities and energy transfer within the pigments has been studied in a non-heterocystous cyanobacterium Plectonema boryanum. Survival and growth of the cyanobacterium decreased with selected dose of UV-B (30min and 90min) and monocrotophos (5?gml?1). The various doses of

Sheo Mohan Prasad; Mohd Zeeshan

2004-01-01

116

Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature  

PubMed Central

In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

2011-01-01

117

Oxidative stress management in the filamentous, heterocystous, diazotrophic cyanobacterium, Anabaena PCC7120.  

PubMed

Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120. PMID:24122336

Banerjee, Manisha; Raghavan, Prashanth S; Ballal, Anand; Rajaram, Hema; Apte, S K

2013-10-10

118

Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus.  

PubMed

Microalgae cultivation has recently been recognized as an important issue to deal with the increasingly prominent resource and environmental problems. In this study, desert cyanobacterium Microcoleus vaginatus was open cultivated in 4 different cultivation conditions in Qubqi Desert, and it was found Chlorella sp., Scenedesmus sp. and Navicula sp. were the main contaminating microalgal species during the cultivation. High light intensity alone was responsible for the green algae contamination, but the accompanied high temperature was beneficial to cyanobacterial growth, and the maximum biomass productivity acquired was 41.3mgL(-1)d(-1). Low temperature was more suitable for contaminating diatoms' growth, although all the microalgae (including the target and contaminating) are still demand for a degree of light intensity, at least average daily light intensity >5?Em(-2)s(-1). As a whole, cultivation time, conditions and their interaction had a significant impact on microalgal photosynthetic activity (Fv/Fm), biomass and exopolysaccharides content (P<0.001). PMID:25689308

Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

2015-04-01

119

Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum.  

PubMed

Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1), as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption. PMID:25161741

Oku, Naoya; Matsumoto, Miyako; Yonejima, Kohsuke; Tansei, Keijiroh; Igarashi, Yasuhiro

2014-01-01

120

Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum  

PubMed Central

Summary Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1), as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption. PMID:25161741

Oku, Naoya; Matsumoto, Miyako; Yonejima, Kohsuke; Tansei, Keijiroh

2014-01-01

121

Period doubling observed in the circadian photosynthetic rhythm of the prokaryotic cyanobacterium Cyanothece RF-1  

NASA Astrophysics Data System (ADS)

The circadian rhythm is an endogenous biological clock that governs biochemical phenomena or behavior in organisms. The Cyanothece RF-1 is the first prokaryote shown to exhibit circadian nitrogen-fixing rhythm. The observation of the circadian photosynthetic rhythm of this strain was recently reported by the authors. In this work, the dissolved-oxygen variation in the culture of Cyanothece RF-1 was recorded, which would reveal the photosynthetic activity of the strain. For a culture of about 1x10^8 cells/ml in concentration, a period-doubling pattern was clearly displayed in the circadian photosynthetic rhythm signals. The mechanism corresponding to this nonlinear effect will be discussed. These results represent the first observation of the period doubling in the circadian rhythm of a prokaryotic cyanobacterium.

Yen, Tsu-Chiang; Cheng, Da-Long

2005-03-01

122

Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis.  

PubMed Central

A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system. Images PMID:3032896

Owttrim, G W; Coleman, J R

1987-01-01

123

Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113.  

PubMed

The marine cyanobacterium Synechococcus strain WH8113 swims in the absence of any recognizable organelles of locomotion. We have found that calcium is required for this motility. Cells deprived of calcium stopped swimming, while addition of calcium completely restored motility. No other divalent ions tested could replace calcium. Terbium, a lanthanide ion, blocked motility even when calcium was present at 10(5)-fold-higher concentrations, presumably by occupying calcium binding sites. Calcium chelators, EGTA or EDTA, blocked motility, even when calcium was present at 25-fold-higher concentrations, presumably by acting as calcium ionophores. Finally, motility was blocked by verapamil and nitrendipine, molecules known to block voltage-gated calcium channels of eukaryotic cells by an allosteric mechanism. These results suggest that a calcium potential is involved in the mechanism of motility. PMID:9098048

Pitta, T P; Sherwood, E E; Kobel, A M; Berg, H C

1997-04-01

124

Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803.  

PubMed

The oxygenic phototrophic cyanobacterium Synechocystis sp. strain PCC 6803 inevitably evolves superoxide during photosynthesis. Synechocystis 6803 contains only one type of superoxide dismutase, designated as SodB; therefore, this protein plays an important role in preventing oxidative damages caused by light. Because there was no direct evidence that SodB in Synechocystis 6803 could be regulated by light, the relationship between SodB and light was investigated in the present study. The activity of SodB from the cells grown in continuous light culture was about 3.5-fold higher than that from the cells cultivated in continuous dark. Illumination maximally activated SodB within 12 h. The level of sodB mRNA increased 12-fold by light, and that of SodB protein proportionally. Therefore, the expression and activity of SodB from Synechocystis 6803 were dependent on the light. PMID:15744484

Kim, Jae-Hyun; Suh, Kyong Hoon

2005-03-01

125

Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation  

NASA Astrophysics Data System (ADS)

Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

2013-03-01

126

Effects of Iron Starvation on the Ultrastructure of the Cyanobacterium Agmenellum quadruplicatum  

PubMed Central

The effects of iron starvation on the ultrastructure of the unicellular cyanobacterium Agmenellum quadruplicatum were studied by using thin sectioning and transmission electron microscopy. Intracellular polysaccharide began to accumulate at the onset of iron limitation. This was followed by degradation of ribosomes and (later) degradation of the thylakoid membranes, both of which were virtually absent by 200 h. The thylakoids underwent structural modifications and rearrangements before they actually began to break down. Iron starvation did not appear to affect carboxysomes or the extracellular glyocalyx. On the other hand, polyphosphate bodies may have been partially degraded, and an electrontransparent gap eventually appeared between the cell wall and the cytoplasmic membrane. All of these changes were reversed when iron was added back to 200-h starved cultures. The sequence of ultrastructural changes observed during iron starvation clearly differed from those previously reported to occur during nitrogen, phosphorous, or carbon limitation. Images PMID:16346226

Hardie, L. P.; Balkwill, D. L.; Stevens, S. E.

1983-01-01

127

Regulatory effect of hydrogen on nitrogenase activity of the blue-green alga (cyanobacterium) Nostoc muscorum.  

PubMed

Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under an atmosphere of argon plus acetylene in the light led to a greater than fourfold increase of light-induced hydrogen evolution and to a 50% increase of acetylene reduction, as compared to cells that had not been preconditioned. The basic and the increased hydrogen evolution were both due to nitrogenase activity. Furthermore, after preincubation the hydrogen uptake, usually observed with unconditional cells, was abolished. Nostoc preincubated under acetylene evolved hydrogen in the light even in the presence of nitrogen for at least 2 h, with a 15-fold increase as compared to the unconditioned cells. These acetylene effects could be completely abolished by the presence of hydrogen during acetylene preincubation. These findings indicate that the hydrogen concentration in N. muscorum cells plays a role in regulation of nitrogenase activity. PMID:6767700

Scherer, S; Kerfin, W; Böger, P

1980-03-01

128

Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.  

PubMed

Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), ?-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

Peramuna, Anantha; Summers, Michael L

2014-12-01

129

Antimalarial Linear Lipopeptides from a Panamanian Strain of the Marine Cyanobacterium Lyngbya majuscula  

PubMed Central

As part of the Panama International Cooperative Biodiversity Groups (ICBG) project, two new (2, 4) and two known (1, 3) linear alkynoic lipopeptides have been isolated from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. Carmabin A (1), dragomabin (2), and dragonamide A (3) showed good antimalarial activity (IC50 4.3, 6.0, and 7.7 ?M, respectively) whereas the non-aromatic analog, dragonamide B (4), was inactive. The planar structures of all four compounds were determined by NMR spectroscopy in combination with mass spectrometry, and their stereoconfigurations were established by chiral HPLC and by comparison of their optical rotations and NMR data with literature values. PMID:17441769

McPhail, Kerry L.; Correa, Jhonny; Linington, Roger G.; González, José; Ortega-Barría, Eduardo; Capson, Todd L.; Gerwick, William H.

2009-01-01

130

Physiological effects of nickel chloride on the freshwater cyanobacterium Synechococcus sp. IU 625  

PubMed Central

Harmful algal blooms (HABs) are a serious environmental problem globally. The ability of cyanobacteria, one of the major causative agents of HABs, to grow in heavy metal polluted areas is proving a challenge to environmental restoration initiatives. Some cyanobacteria secrete toxins, such as microcystin, that are potentially dangerous to animals and humans. In this study, the physiology of a cyanobacterium was assessed to nickel chloride exposure. Cell growths were monitored throughout the study with various nickel chloride concentrations (0, 10, 25 or 50 mg/L). Morphological abnormalities were observed with microscopic image analyses. Inductively coupled plasma mass spectrometry (ICP-MS) was carried out to trace the distribution of nickel during the growth period. This study provides insight on potential nickel response mechanisms in freshwater cyanobacteria, which may lead to effective HAB prevention strategy development. PMID:24073357

Nohomovich, Brian; Nguyen, Bao T.; Quintanilla, Michael; Lee, Lee H.; Murray, Sean R.; Chu, Tin-Chun

2013-01-01

131

Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis  

SciTech Connect

A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system.

Owttrim, G.W.; Coleman, J.R.

1987-05-01

132

Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119  

SciTech Connect

An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive

Serrano, A.; Rivas, J.; Losada, M.

1984-04-01

133

nifH,D,K gene organization in the cyanobacterium, Plectonema boryanum  

SciTech Connect

Cyanobacteria are a diverse group of Gram-negative oxygenic photosynthetic prokaryotes with some species capable of fixing atmospheric nitrogen. Detailed studies dealing with the organization of nitrogen fixation genes have been limited to Anabaena, a filamentous, heterocystous cyanobacterium. The authors have determined the organization of nifH,D,K in Plectonema boryanum, a filamentous, nonheterocystous species that fixes nitrogen microaerophilically. It has been demonstrated that nifH,D,K genes are contiguous in cells grown under non-nitrogen fixing conditions using Anabaena nif genes as probes in Southern observed for all three nif genes as probes in southern hybridizations. A change in the pattern of hybridization was observed for all three nif genes isolated from cells grown under nitrogen fixing conditions. Restriction enzyme digestion experiments and analysis of cloned Plectonema nif genes are being used to determine the type of DNA modification and the location.

Barnum, S.R.; Gendel, S.M.

1986-04-01

134

The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120.  

PubMed

In response to deprivation of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops heterocyst, which is specifically involved in the nitrogen fixation. In this study, we focused on the regulation of HanA, a histone-like protein, in heterocyst development. Electrophoretic mobility shift assay results showed that NtcA, a global nitrogen regulator necessary for heterocyst differentiation, could bind to two NtcA-binding motifs in the hanA promoter region. qPCR results also showed that NtcA may regulate the expression of hanA. By using the hanA promoter-controlled gfp as a reporter gene and performing western blot we found that the amount of HanA in mature heterocysts was decreased gradually. PMID:24980942

Lu, Jing-Jing; Shi, Lei; Chen, Wen-Li; Wang, Li

2014-10-01

135

Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors.  

PubMed

During the last decade there has been a significant rise in observations of blooms of the toxic cyanobacterium Lyngbya majuscula along the east coast of Queensland, Australia. Whether the increase in cyanobacterial abundance is a biological indicator of widespread water quality degradation or also a function of other environmental change is unknown. A bioassay approach was used to assesses the potential for runoff from various land uses to stimulate productivity of L. majuscula. In Moreton Bay, L. majuscula productivity was significantly (p<0.05) stimulated by soil extracts, which were high in phosphorus, iron and organic carbon. Productivity of L. majuscula from the Great Barrier Reef was also significantly (p<0.05) elevated by iron and phosphorus rich extracts, in this case seabird guano adjacent to the bloom site. Hence, it is possible that other L. majuscula blooms are a result of similar stimulating factors (iron, phosphorus and organic carbon), delivered through different mechanisms. PMID:15757741

Albert, Simon; O'Neil, Judith M; Udy, James W; Ahern, Kathleen S; O'Sullivan, Cherie M; Dennison, William C

2005-01-01

136

BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120  

PubMed Central

Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid ?-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

2013-01-01

137

Causes for the large genome size in a cyanobacterium Anabaena sp. PCC7120.  

PubMed

Three possible causes responsible for the large genome size of a cyanobacterium Anabaena sp. PCC7120 are investigated: 1) sequential tandem duplications of gene segments, genes or genomic segments, 2) horizontal gene transfers from other organisms, and 3) whole-genome duplication. We evaluated the frequency distribution of angles between paralog locations for the possibility 1), the fraction of genes deviated in GC content, GC skew, AT skew and codon adaptation index for the 2) and the gene-configuration comparison of paralogs for the 3). As a result, the possibility 3), the whole-genome duplication, was more reasonable as a molecular cause than the other causes for the large genome size in Anabaena sp. PCC7120. In addition, the whole-genome duplication was supported by the analysis of distribution pattern of protein genes with respect to functional categories. PMID:15712125

Sugaya, Nobuyoshi; Sato, Makihiko; Murakami, Hiroo; Imaizumi, Akira; Aburatani, Sachiyo; Horimoto, Katsuhisa

2004-01-01

138

Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia  

PubMed Central

Toxic algal blooms are an important problem worldwide. The literature on toxic cyanobacteria blooms in inland waters reports widely divergent results on whether zooplankton can control cyanobacteria blooms or cyanobacteria suppress zooplankton by their toxins. Here we test whether this may be due to genotype × genotype interactions, in which interactions between the large-bodied and efficient grazer Daphnia and the widespread cyanobacterium Microcystis are not only dependent on Microcystis strain or Daphnia genotype but are specific to genotype × genotype combinations. We show that genotype × genotype interactions are important in explaining mortality in short-time exposures of Daphnia to Microcystis. These genotype × genotype interactions may result in local coadaptation and a geographic mosaic of coevolution. Genotype × genotype interactions can explain why the literature on zooplankton–cyanobacteria interactions is seemingly inconsistent, and provide hope that zooplankton can contribute to the suppression of cyanobacteria blooms in restoration projects. PMID:25568039

Lemaire, Veerle; Brusciotti, Silvia; van Gremberghe, Ineke; Vyverman, Wim; Vanoverbeke, Joost; De Meester, Luc

2012-01-01

139

Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium  

SciTech Connect

Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ~5-10 fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium, Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 seconds after nutrient perturbation, and oscillations in reduction and oxidation for 60 minutes following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins, in addition to validating those previously identified in vitro.

Sadler, Natalie C.; Melnicki, Matthew R.; Serres, Margrethe H.; Merkley, Eric D.; Chrisler, William B.; Hill, Eric A.; Romine, Margaret F.; Kim, Sangtae; Zink, Erika M.; Datta, Suchitra; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

2014-01-01

140

Isolation and characterization of multiple adenylate cyclase genes from the cyanobacterium Anabaena sp. strain PCC 7120.  

PubMed Central

Adenylate cyclase genes, designated cyaA, cyaB1, cyaB2, cyaC, and cyaD, were isolated from the filamentous cyanobacterium Anabaena sp. strain PCC 7120 by complementation of a strain of Escherichia coli defective for the presence of cya. These genes encoded polypeptides consisting of 735, 859, 860, 1,155, and 546 amino acid residues, respectively. Deduced amino acid sequences of the regions near the C-terminal ends of these cya genes were similar to those of catalytic domains of eukaryotic adenylate cyclases. The remaining part of each cya gene towards its N-terminal end showed a characteristic structure. CyaA had two putative membrane-spanning regions. Both CyaB1 and CyaB2 had regions that were very similar to the cyclic GMP (cGMP)-binding domain of cGMP-stimulated cGMP phosphodiesterase. CyaC consisted of four distinct domains forming sequentially from the N terminus: a response regulator-like domain, a histidine kinase-like domain, a response regulator-like domain, and the catalytic domain of adenylate cyclase. CyaD contained the forkhead-associated domain in its N-terminal region. Expression of these genes was examined by reverse transcription-PCR. The transcript of cyaC was shown to be predominant in this cyanobacterium. The cellular cyclic AMP level in the disruptant of the cyaC mutant was much lower than that in the wild type. PMID:9171404

Katayama, M; Ohmori, M

1997-01-01

141

Pseudoscillatoria coralii gen. nov., sp. nov., a cyanobacterium associated with coral black band disease (BBD).  

PubMed

Black band disease (BBD) is a widespread coral disease which mainly infects massive framework-building corals. BBD is believed to be caused by a consortium of microorganisms and may not result from the actions of a primary pathogen. The BBD microbial community is dominated, in terms of biomass, by filamentous cyanobacteria. Here we describe a cyanobacterial strain, designated BgP10_4S(T), cultured from a BBD-affected Favia sp. 25 degreesoal from the northern Red Sea (Gulf of Eilat, Israel). This dark-green pigmented cyanobacterium showed optimal growth at salinities of 5.0 to 5.5% (w/v), pH of 7 to 8 and cultivation temperatures of 25 0C. Morphological examination revealed cylindrical, unbranched trichomes with tapering and blunt cells at the ends which leave a thin mucilaginous trail as they glide. No sheath was evident under these conditions. Inclusion bodies and straight thylakoids were clearly discerned by transmission electron microscopy. Pigment analysis revealed absorption spectra for phycocyanin, carotenoid and chlorophyll a. The sequence of the 16S rRNA gene in this cyanobac(t)erium isolate showed high similarity (99%) to cyanobacterial sequences retrieved from BBD-affected corals from different geographical sites (i.e. the Caribbean Sea, Palau and the Red Sea). The BgP10_4ST strain is observed to be a persisten(t) component of the BBD mat of Faviid corals and may thus be an important agent in the disease etiology. On the basis (of its morphological, physiological and phylogenetic distinctiveness, strain BgP10_4ST represents a novel genus and species of Subsection III (formerly Oscillatoriales), for which the name Pseudoscillatoria coralii gen. nov., sp. nov. is proposed. PMID:20095244

Rasoulouniriana, Diana; Siboni, Nachshon; Ben-Dov, Eitan; Kramarsky-Winter, Esti; Loya, Yossi; Kushmaro, Ariel

2009-11-16

142

Gas Exchange in the Filamentous Cyanobacterium Nostoc punctiforme Strain ATCC 29133 and Its Hydrogenase-Deficient Mutant Strain NHM5  

Microsoft Academic Search

Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H2), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O2 ,C O 2 ,N 2, and H2 was followed simultaneously with a mass

Pia Lindberg; Peter Lindblad; Laurent Cournac

2004-01-01

143

The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants  

Microsoft Academic Search

The Clp family consists of large, ubiquitous proteins that function as molecular chaperones and\\/or regulators of ATP-dependent proteolysis. A single copy gene coding for one of these proteins, ClpC, was cloned from the unicellular cyanobacterium Synechococcus sp. PCC 7942. The predicted polypeptide is most similar (ca. 88%) to the chloroplast-localized ClpC protein from higher plants. Using degenerate PCR primers specific

Adrian K. Clarke; Mats-Jerry Eriksson

1996-01-01

144

Massive breakdown of the Photosystem II polypeptides in a mutant of the cyanobacterium Synechocystis sp. PCC 6803  

Microsoft Academic Search

Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6\\/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and

Eira Kanervo; Norio Murata; Eva-Mari Aro

1998-01-01

145

Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola  

Microsoft Academic Search

The Australian fresh-water mussel Alathyria condola accumulated high levels of paralytic shellfish poisoning (PSP) toxins when fed the neurotoxic cyanobacterium Anabaena circinalis, shown recently to contain high concentrations of C-toxins and gonyautoxins. Significant accumulation (>; 80 ?g\\/100 g of mussel flesh) was detected following 2–3 days exposure to water containing 2 × 105 cells\\/mlA. circinalis. Only trace accumulation of PSP

Andrew P. Negri; Gary J. Jones

1995-01-01

146

Purification and properties of a glyphosate-tolerant 5-enolpyruvylshikimate 3-phosphate synthase from the cyanobacterium Anabaena variabilis  

Microsoft Academic Search

5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.9) from the glyphosate-tolerant cyanobacterium Anabaena variabilis (ATCC 29413) was purified to homogeneity. The enzyme had a similar relative molecular mass to other EPSP synthases and showed similar kinetic properties except for a greatly elevated Ki for the herbicide glyphosate (approximately ten times higher than that of enzymes from other sources). With whole

Hilary A. Powell; Nigel W. Kerby; Peter Rowell; David M. Mousdale; John R. Coggins

1992-01-01

147

Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803  

Microsoft Academic Search

Expression of the isiA and isiB genes was analysed in the cyanobacterium Synechocystis sp. PCC 6803 grown in high salt or in iron-deficient medium. The detection of a 2.3-knt transcript in Northern blot experiments indicated cotranscription of isiAB in an operon, which was confirmed by reverse transcriptase PCR. The abundance of a monocistronic 1.25-knt isiA-specific mRNA was about 10-fold higher

Josef Vinnemeier; Anja Kunert; Martin Hagemann

1998-01-01

148

Ultraviolet stress delays chromosome replication in light\\/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511  

Microsoft Academic Search

BACKGROUND: The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about

Christian Kolowrat; Frédéric Partensky; Daniella Mella-Flores; Gildas Le Corguillé; Christophe Boutte; Nicolas Blot; Morgane Ratin; Martial Ferréol; Xavier Lecomte; Priscillia Gourvil; Jean-François Lennon; David M Kehoe; Laurence Garczarek

2010-01-01

149

Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100  

Microsoft Academic Search

We report the transfer of cellulose synthesis genes (acsAB?C) from the heterotropic alpha proteobacterium, Gluconacetobacter xylinus strain ATCC 53582 to a photosynthetic microbe (Synechococcus leopoliensis strain UTCC 100). These genes were functionally expressed in this cyanobacterium, resulting in the production of non-crystalline\\u000a cellulose. Although the cellulose lacks the structural integrity of the product synthesized by G. xylinus, the non-crystalline nature

David R. Nobles Jr; R. M. Brown Jr

2008-01-01

150

Identification of an Na+Dependent Transporter Associated with Saxitoxin-Producing Strains of the Cyanobacterium Anabaena circinalis  

Microsoft Academic Search

Blooms of the freshwater cyanobacterium Anabaena circinalis are recognized as an important health risk worldwide due to the production of a range of toxins such as saxitoxin (STX) and its derivatives. In this study we used HIP1 octameric-palindrome repeated-sequence PCR to compare the genomic structure of phyloge- netically similar Australian isolates of A. circinalis. STX-producing and nontoxic cyanobacterial strains showed

Francesco Pomati; Brendan P. Burns; Brett A. Neilan

2004-01-01

151

Crossbyanols A–D, Toxic Brominated Polyphenyl Ethers from the Hawai'ian Bloom-forming Cyanobacterium Leptolyngbya crossbyana  

PubMed Central

Periodically, the marine cyanobacterium Leptolyngbya crossbyana forms extensive blooms on Hawai'ian coral reefs, and results in significant damage to the subtending corals. Additionally, corals near to mats of this cyanobacterium, but not directly overgrown, have been observed to undergo bleaching. Therefore, samples of this cyanobacterium were chemically investigated for bioactive secondary metabolites that might underlie this toxicity phenomenon. 1H NMR spectroscopy-guided fractionation led to the isolation of four hepta-brominated polyphenolic ethers, crossbyanols A–D (1–4). Structure elucidation of these compounds was made challenging by their very low proton to carbon (H/C) ratio, but was completed by combining standard NMR and MS data with 2 Hz-optimized HMBC data. Derivatization of crossbyanol A as the diacetate assisted in the assignment of its structure. Crossbyanol B (2) showed antibiotic activity with an MIC value between 2.0–3.9 ?g/mL against methicillin-resistant Staphylococcus aureus (MRSA) and relatively potent brine shrimp toxicity (IC50 2.8 ppm). PMID:20170122

Choi, Hyukjae; Engene, Niclas; Smith, Jennifer E.; Preskitt, Linda B.; Gerwick, William H.

2010-01-01

152

Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.  

PubMed

The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant. PMID:25128787

Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

2014-10-15

153

Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005  

NASA Astrophysics Data System (ADS)

Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA following respectively 3200 Gy and 5000 Gy. Furthermore proteomics analysis confirmed the presence of proteins for a set of the genes overexpressed in mRNA level. The results allowed to identify the network of genes, involved in antioxidant production and damage repair, and to map the mechanistic response used by Arthrospira sp. PCC8005 to cope with high doses ionizing radiation. This advanced integration between transcriptomic data and proteomics analysis, allowed also the identification of new set of conserved proteins which were never reported or described, and which were found to be expressed in a dose dependent manner upon exposure to ionising radiation in Arthrospira sp. PCC8005. The exact role of this new set of genes and proteins in the radiation resistance of Arthrospira needs to be further elucidated. Nevertheless, this finding of high radiation resistance of an edible bacterium, that can also be used for life support, is peculiar and opens new horizons to perused further research into its possible function in radiation protection. This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the ARTEMISS project, which is part of the MELiSSA program.

Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

154

Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum  

NASA Technical Reports Server (NTRS)

Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was likely less saline. The division of marine cyanobacterium P. subcapitatum is associated with periodic deposition and dissolution of CaCO3, the rhythms and intensity of which are dependent on concentrations of both OH(-) and Na(+). Thus, the role of present-day marine cyanobacteria in the global carbonate cycle might be reduced to aggregation and recrystallization of available CaCO3 particles in marine water rather than long-term precipitation and accumulation of CaCO3 deposits. For lower Na(+) concentrations, precipitation of carbonates by cyanobacteria would be even less significant. These results suggest that the lack of calcified cyanobacteria in stromatalite-bearing Precambrian sequences can be explained not only by high dissolved inorganic carbon concentrations but also by lower salinity, as well as possible lower pH compared to present-day oceans.

Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

2006-01-01

155

Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.  

PubMed

Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

2015-03-15

156

Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.  

PubMed

The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state. PMID:24832956

Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

2014-09-01

157

Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis.  

PubMed

Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. PMID:22467177

Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack

2012-01-01

158

Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005  

PubMed Central

The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

2014-01-01

159

Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511.  

PubMed

Exclusion of combined nitrogen (NaNO3) from the growth medium caused certain changes in metabolic processes leading to cessation in growth of the non-heterocystous, non nitrogen-fixing marine cyanobacterium Oscillatoria willei BDU 130511. But antioxidative enzymes, namely superoxide dismutase and peroxidase, helped the organism to survive the nitrogen stress. Prominent effects observed during nitrogen starvation/limitation were: (i) reduction of major and accessory photosynthetic pigments, (ii) impairment of photosynthesis due to loss of one major Rubisco isoenzyme, (iii) reduced synthesis of lipids and fatty acids, (iv) modifications of protein synthesis leading to the repression of three polypeptides and synthesis of two new polypeptides, (v) enhanced glutamine synthetase and reduced nitrate reductase activities, (vi) enhanced production of hydrogen peroxide and (vii) induced appearance of four new peroxidase isoenzymes. The observed metabolic changes were reversible, and the arrested growth under prolonged nitrogen deficiency could be fully restored upon subculturing in freshly prepared ASN III medium containing nitrogen (NaNO3). The present study demonstrates the capability of a non-nitrogen-fixer to withstand nitrogen stress making it an ecologically successful organism in the marine environment. The above pleiotropic effects of nitrogen deficiency also demonstrate that nitrogen plays a crucial role in growth and metabolism of marine cyanobacteria. PMID:19719595

Kumar Saha, Sushanta; Uma, Lakshmanan; Subramanian, Gopalakrishnan

2003-08-01

160

Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505  

PubMed Central

The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy). Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end) that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot) were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning) demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR) and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy). These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells). Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen. PMID:23405062

Plominsky, Álvaro M.; Larsson, John; Bergman, Birgitta; Delherbe, Nathalie; Osses, Igor; Vásquez, Mónica

2013-01-01

161

Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification.  

PubMed

Cyanobacteria are able to form stable nitrogen-fixing symbioses with diverse eukaryotes. To extend our understanding of adaptations imposed by plant hosts, two-dimensional gel electrophoresis and mass spectrometry (MS) were used for comparative protein expression profiling of a cyanobacterium (cyanobiont) dwelling in leaf cavities of the water-fern Azolla filiculoides. Homology-based protein identification using peptide mass fingerprinting [matrix-assisted laser desorption ionization-time of flight (MALDI-TOF-MS)], tandem MS analyses, and sequence homology searches resulted in an identification success rate of 79% of proteins analysed in the unsequenced cyanobiont. Compared with a free-living strain, processes related to energy production, nitrogen and carbon metabolism, and stress-related functions were up-regulated in the cyanobiont while photosynthesis and metabolic turnover rates were down-regulated, stressing a slow heterotrophic mode of growth, as well as high heterocyst frequencies and nitrogen-fixing capacities. The first molecular data set on the nature of the NifH post-translational modification in cyanobacteria was also obtained: peptide mass spectra of the protein demonstrated the presence of a 300-400 Da protein modification localized to a specific 13 amino acid sequence, within the part of the protein that is ADP-ribosylated in other bacteria and close to the active site of nitrogenase. Furthermore, the distribution of the highest scoring database hits for the identified proteins points to the possibility of using proteomic data in taxonomy. PMID:18065763

Ekman, Martin; Tollbäck, Petter; Bergman, Birgitta

2008-01-01

162

An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803  

SciTech Connect

The broader goal of this project was to merge knowledge from genomic, metabolic, ultrastructural and other perspectives to understand how cyanobacteria live, adapt and are regulated. This understanding aids in metabolic engineering and synthetic biology efforts using this group of organisms that contribute greatly to global photosynthetic CO2 fixation and that are closely related to the ancestors of chloroplasts. This project focused on photosynthesis and respiration in the cyanobacterium Synechocystis sp. PCC 6803, which is spontaneously transformable and has a known genome sequence. Modification of these fundamental processes in this organism can lead to improved carbon sequestration and hydrogen production, as well as to generation of high-quality biomass. In our GTL-supported studies at Arizona State University we focus on cell structure and cell physiology in Synechocystis, with particular emphasis on thylakoid membrane formation and on metabolism related to photosynthesis and respiration. Results on (a) thylakoid membrane biogenesis, (b) fluxes through central carbon utilization pathways, and (c) distribution mechanisms between carbon storage compounds are presented. Together, these results help pave the way for metabolic engineering efforts that are likely to result in improved solar-powered carbon sequestration and bioenergy conversion. Fueled by the very encouraging results obtained in this project, we already have attracted interest from major companies in the use of cyanobacteria for biofuel production.

Vermaas, Willem F.J.

2006-03-14

163

Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803.  

PubMed

In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

2014-01-01

164

Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark.  

PubMed Central

The cyanobacterium Synechocystis sp. strain PCC 6803 exhibited circadian rhythms in complete darkness. To monitor a circadian rhythm of the Synechocystis cells in darkness, we introduced a PdnaK1::luxAB gene fusion (S. Aoki, T. Kondo, and M. Ishiura, J. Bacteriol. 177:5606-5611, 1995), which was composed of a promoter region of the Synechocystis dnaK1 gene and a promoterless bacterial luciferase luxAB gene set, as a reporter into the chromosome of a dark-adapted Synechocystis strain. The resulting dnaK1-reporting strain showed bioluminescence rhythms with a period of 25 h (on agar medium supplemented with 5 mM glucose) for at least 7 days in darkness. The rhythms were reset by 12-h-light-12-h-dark cycles, and the period of the rhythms was temperature compensated for between 24 and 31 degrees C. These results indicate that light is not necessary for the oscillation of the circadian clock in Synechocystis. PMID:9294431

Aoki, S; Kondo, T; Wada, H; Ishiura, M

1997-01-01

165

GABA accumulation in response to different nitrogenous compounds in unicellular cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

GABA accumulation and glutamate decarboxylase (GAD) activity, the principal enzyme involved in GABA formation, was investigated in cyanobacterium Synechocystis sp. PCC 6803 wild-type (WT) and gad knockout mutant strains grown in medium containing different nitrogenous compounds. Nitrate was the best nitrogen source for GAD activity and GABA accumulation followed by nitrite, ammonium, and urea. An increase in the accumulation of GABA was observed in WT and mutant cells grown for 24 h in medium supplemented with 0.5 mM putrescine or spermidine with a parallel increase in GAD activity. The mutant could not accumulate GABA at all the conditions tested except when supplemented with putrescine or spermidine, where high GABA levels were observed in both WT and mutant strains. Glutamate supplementation up to 10 mM for 24 h resulted in a significant increase in both GAD activity and GABA content. Overall results suggested that optimization of nitrogen source and nitrogenous compounds supplementation was effective for the enhancement of GABA accumulation in Synechocystis. PMID:25212770

Kanwal, Simab; Khetkorn, Wanthanee; Incharoensakdi, Aran

2015-01-01

166

CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.  

PubMed

Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics's usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics. PMID:25632108

Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

2015-01-01

167

Apratoxin H and apratoxin A sulfoxide from the Red Sea cyanobacterium Moorea producens.  

PubMed

Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B, and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC?? = 3.4 and 89.9 nM, respectively) provides further insight into the structure-activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

Thornburg, Christopher C; Cowley, Elise S; Sikorska, Justyna; Shaala, Lamiaa A; Ishmael, Jane E; Youssef, Diaa T A; McPhail, Kerry L

2013-09-27

168

Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica  

NASA Technical Reports Server (NTRS)

The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

1989-01-01

169

Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.  

PubMed

The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0??M, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties. PMID:25182484

Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang Tl; Heiden, Stefan E; Füssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo Hj; Müller, Rolf; Mundt, Sabine

2015-03-01

170

Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa.  

PubMed

An important objective in understanding harmful phytoplankton blooms is determining how environmental factors influence the toxicity of bloom-forming species. We examined how nutrients and grazers (dreissenid mussels) affect the production of microcystin (a liver toxin) by the cyanobacterium Microcystis aeruginosa, via a combination of field and laboratory experiments, and field observations in Lake Erie. The field experiment revealed no effect of mussel density on microcystin quota (particulate microcystin per unit Microcystis biomass). In contrast, in both field and laboratory experiments, nitrogen-limited conditions led to substantially reduced microcystin quota relative to phosphorus-limited or nutrient-saturated conditions. In the field experiment, microcystin per unit of mcyB gene was strongly reduced under nitrogen-limited conditions, indicating a phenotypic response. Results from a seasonal survey in the western basin of Lake Erie revealed a similar negative influence of nitrogen limitation (as indexed by nitrate concentration) on microcystin quota. Our results are consistent with stoichiometric considerations in that the cell quota of a nitrogen-rich secondary metabolite, microcystin, was reduced disproportionately under nitrogen limitation. PMID:24568788

Horst, Geoffrey P; Sarnelle, Orlando; White, Jeffrey D; Hamilton, Stephen K; Kaul, Rajreni B; Bressie, Julianne D

2014-05-01

171

Comparative studies on two ferredoxins from the cyanobacterium Nostoc strain MAC.  

PubMed Central

Two ferredoxins were isolated from the cyanobacterium Nostoc strain MAC grown autotrophically in the light or heterotrophically in the dark. In either case approximately three times as much ferredoxin I as ferredoxin II was obtained. Both ferredoxins had absorption maxima at 276, 282 (shoulder), 330, 423 and 465 nm in the oxidized state, and each possessed a single 2 Fe-2S active centre. Their isoelectric points were approx. 3.2. The midpoint redox potentials of the ferredoxins differed markedly; that of ferredoxin I was --350mV and that of ferredoxin II was --445mV, at pH 8.0. The midpoint potential of ferredoxin II was unusual in being pH dependent. Ferredoxin I was most active in supporting NADP+ photoreduction by chloroplasts, whereas ferredoxin II was somewhat more active in pyruvate decarboxylation by the phosphoroclastic system of Clostridum pasteurianum. Though the molecular weights of the ferredoxins determined by ultracentrifugation were the same within experimetnal error, the amino acid compositions showed marked differences. The N-terminal amino acid sequences of ferredoxins I and II were determined by means of an automatic sequencer. There are 11--12 differences between the sequences of the first 32 residues. It appears that the two ferredoxins have evolved separately to fulfil different roles in the organism. PMID:99139

Hutson, K G; Rogers, L J; Haslett, B G; Boulter, D; Cammack, R

1978-01-01

172

Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.  

PubMed

Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme. PMID:25624477

Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

2015-02-10

173

Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis  

SciTech Connect

The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.

Watanabe, Yoshitomo; Hall, D.O. [Univ. of London (United Kingdom); Nouee, J. De La [Univ. Laval, Quebec City, Quebec (Canada). Dept. of Food Science and Technology

1995-07-20

174

Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations.  

PubMed

We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118-125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 ?mol quanta m(-2) s(-1)) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and ?-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 ?mol quanta m(-2) s(-1)) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 ?mol quanta m(-2) s(-1)) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II. PMID:24158260

Hou, Xuejing; Raposo, Aaron; Hou, Harvey J M

2013-11-01

175

Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505.  

PubMed

Cylindrospermopsis raciborskii CS-505 is an invasive freshwater filamentous cyanobacterium that when grown diazotrophically may develop trichomes of up to 100 vegetative cells while differentiating only two end heterocysts, the sole sites for their N2-fixation process. We examined the diazotrophic growth and intercellular transfer mechanisms in C. raciborskii CS-505. Subjecting cultures to a combined-nitrogen-free medium to elicit N2 fixation, the trichome length remained unaffected while growth rates decreased. The structures and proteins for intercellular communication showed that while a continuous periplasmic space was apparent along the trichomes, the putative septal junction sepJ gene is divided into two open reading frames and lacks several transmembrane domains unlike the situation in Anabaena, differentiating a 5-fold higher frequency of heterocysts. FRAP analyses also showed that the dyes calcein and 5-CFDA were taken up by heterocysts and vegetative cells, and that the transfer from heterocysts and 'terminal' vegetative cells showed considerably higher transfer rates than that from vegetative cells located in the middle of the trichomes. The data suggest that C. raciborskii CS-505 compensates its low-frequency heterocyst phenotype by a highly efficient transfer of the fixed nitrogen towards cells in distal parts of the trichomes (growing rapidly) while cells in central parts suffers (slow growth). PMID:25757729

Plominsky, Álvaro M; Delherbe, Nathalie; Mandakovic, Dinka; Riquelme, Brenda; González, Karen; Bergman, Birgitta; Mariscal, Vicente; Vásquez, Mónica

2015-03-01

176

Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120  

SciTech Connect

The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

Wolk, C. Peter Wolk [Michigan State University, East Lansing; Fan, Qing [Northwestern University, Evanston; Zhou, Ruanbao [Anhui Normal University, People's Republic of China; Huang, Guocun [University of Texas Southwestern Medical; Lechno-Yossef, Sigal [Michigan State University, East Lansing; Kuritz, Tanya [ORNL; Wojciuch, Elizabeth [Michigan State University, East Lansing

2007-01-01

177

Fluorapatite as Inorganic Phosphate Source for the Cyanobacterium Anabaena PCC 7120  

NASA Astrophysics Data System (ADS)

We investigated the hypothesis that the cyanobacterium Anabaena PCC 7120 is able to use fluorapatite (FAP) as sole phosphate source for growth. In the experimental setup the dissolution of FAP was tested in a phosphate free growth medium in the presence and absence of the Anabaena, as well as the cell free supernatant of an Anabaena culture. The results were compared with that of an Anabaena culture grown without fluorapatite. Parameters measured were pH, dissolved P and Ca, as well as cell density. The FAP grains were analyzed using SEM and XPS. Additionally, the differential expression of secreted proteins in cultures with and without dissolved phosphate was examined. P-limited Anabaena cultures tend to aggregate and in the presence of FAP the cells attached themselves to the mineral grains. The cultures benefit from the presence of FAP. The cells have a very effective P-uptake system that is able to take up dissolved phosphate very efficiently and draw the concentrations down to very low levels. Furthermore, the SEM analysis of FAP showed an etching of the mineral grains in the samples from the Anabaena cultures. The mechanism of apatite dissolution with and without Anabaena will be discussed in terms of these experimental observations.

Schaperdoth, I.; Brantley, S.

2003-12-01

178

Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.  

PubMed

Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

Li, Meng; Semchonok, Dmitry A; Boekema, Egbert J; Bruce, Barry D

2014-03-01

179

Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii.  

PubMed

Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions. PMID:24735048

Burford, Michele A; Davis, Timothy W; Orr, Philip T; Sinha, Rati; Willis, Anusuya; Neilan, Brett A

2014-07-01

180

A biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina  

PubMed Central

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d–bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light–absorbing form (Pfr, ?max = 697?nm) and an orange light–absorbing form (Po, ?max = 622?nm). At room temperature, Pfr fluoresces with a maximum at 730?nm. These spectral features are red-shifted by 48~77?nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

2015-01-01

181

Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803.  

PubMed Central

The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent Km ranging from 6 to 60 microM) and of Vmax. PMID:3115962

Labarre, J; Thuriaux, P; Chauvat, F

1987-01-01

182

Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula.  

PubMed

Cyanobacteria, or blue-green algae, are a rich source of novel bioactive secondary metabolites that have potential applications as antimicrobial or anticancer agents or useful probes in cell biology studies. A Jamaican collection of the cyanobacterium Lyngbya majuscula has yielded several unique compounds including hectochlorin ( 1) and the jamaicamides A-C ( 5- 7). Hectochlorin has remarkable antifungal and cytotoxic properties. In this study, we have isolated the hectochlorin biosynthetic gene cluster ( hct) from L. majuscula to obtain details regarding its biosynthesis at the molecular genetic level. The genetic architecture and domain organization appear to be colinear with respect to its biosynthesis and consists of eight open reading frames (ORFs) spanning 38 kb. An unusual feature of the cluster is the presence of ketoreductase (KR) domains in two peptide synthetase modules, which are predicted to be involved in the formation of the two 2,3-dihydroxyisovaleric acid (DHIV) units. This biosynthetic motif has only recently been described in cereulide, valinomycin, and cryptophycin biosynthesis, and hence, this is only the second such report of an embedded ketoreductase in a cyanobacterial secondary metabolite gene cluster. Also present at the downstream end of the cluster are two cytochrome P450 monooxygenases, which are likely involved in the formation of the DHIV units. A putative halogenase, at the beginning of the gene cluster, is predicted to form 5,5-dichlorohexanoic acid. PMID:18001088

Ramaswamy, Aishwarya V; Sorrels, Carla M; Gerwick, William H

2007-12-01

183

Exposure of mallards (Anas platyrhynchos) to the hepatotoxic cyanobacterium Nodularia spumigena  

USGS Publications Warehouse

Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which forms extensive blooms during the summer in the Baltic Sea. Nodularin was detected in liver, muscle and/or feather samples of several common eiders (Somateria mollissima) from the Gulf of Finland (northern Baltic Sea) in 2002-2005. Published information on the adverse effects of NODLN in marine birds is scarce. The aim of this study was to evaluate the toxicity of NODLN, and determine the concentrations of NODLN in liver and muscle tissue in mallards (Anas platyrhynchos) exposed to N. spumigena. Mallards received a single or multiple exposure via oral gavage with an aqueous slurry containing toxic N. spumigena. Dosages ranged from 200 to 600 ??g NODLN per kg body weight (bw). There were minimal histopathological changes in liver tissue, and brain cholinesterase activity did not differ among treatment groups. Concentrations of NODLN measured by LC-MS in liver varied between approximately 3-120 ??g kg-1 dry weight (dw) and ducks receiving multiple exposures had significantly greater liver toxin levels than ducks receiving the two lowest single exposures. In muscle, NODLN concentrations were approximately 2-6 ??g kg-1 dw, but did not differ significantly among exposure groups. This is the first in vivo lab study examining the effects and bioaccumulation of NODLN from N. spumigena in birds. The mallards in this study were resistant to adverse effects and did not bioaccumulate substantial levels of NODLN at the doses given. ?? 2008 Taylor & Francis.

Sipia, V.O.; Franson, J.C.; Sjovall, O.; Pflugmacher, S.; Shearn-Bochsler, V.; Rocke, T.E.; Meriluoto, J.A.O.

2008-01-01

184

Electron transport kinetics in the diazotrophic cyanobacterium Trichodesmium spp. grown across a range of light levels.  

PubMed

The diazotrophic cyanobacterium Trichodesmium is a major contributor to marine nitrogen fixation. We analyzed how light acclimation influences the photophysiological performance of Trichodesmium IMS101 during exponential growth in semi-continuous nitrogen fixing cultures under light levels of 70, 150, 250, and 400 ?mol photons m(-2) s(-1), across diel cycles. There were close correlations between growth rate, trichome length, particulate organic carbon and nitrogen assimilation, and cellular absorbance, which all peaked at 150 ?mol photons m(-2) s(-1). Growth rate was light saturated by about 100 ?mol photons m(-2) s(-1) and was photoinhibited above 150 ?mol photons m(-2) s(-1). In contrast, the light level (I k) to saturate PSII electron transport (e (-)  PSII(-1) s(-1)) was much higher, in the range of 450-550 ?mol photons m(-2) s(-1), and increased with growth light. Growth rate correlates with the absorption cross section as well as with absorbed photons per cell, but not to electron transport per PSII; this disparity suggests that numbers of PSII in a cell, along with the energy allocation between two photosystems and the state transition mechanism underlie the changes in growth rates. The rate of state transitions after a transfer to darkness increased with growth light, indicating faster respiratory input into the intersystem electron transport chain. PMID:25616859

Cai, Xiaoni; Gao, Kunshan; Fu, Feixue; Campbell, Douglas A; Beardall, John; Hutchins, David A

2015-04-01

185

Functions of a hemolysin-like protein in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

A glucose-tolerant strain of the cyanobacterium Synechocystis sp. PCC 6803, generally referred to as wild type, produces a hemolysin-like protein (HLP) located on the cell surface. To analyze the function of HLP, we constructed a mutant in which the hlp gene was disrupted. The growth rate of the mutant was reduced when the cells were stressed by treatment with CuSO(4), CdCl(2), ZnCl(2), ampicillin, kanamycin, or sorbitol in liquid medium, suggesting that HLP may increase cellular resistance to the inhibitory effects of these compounds. Uptake assays with (109)Cd(2+) using the silicone-oil layer centrifugation technique revealed that both wild type and mutant cells were labeled with (109)Cd(2+) within 1 min. Although the total radioactivity was much higher in the wild-type cells, (109)Cd(2+) incorporation was clearly much higher in the mutant cells after adsorbed (109)Cd(2+) was removed from the cell surface by washing with EDTA. These findings suggest that HLP functions as a barrier against the adsorption of toxic compounds. PMID:21475984

Sakiyama, Tetsushi; Araie, Hiroya; Suzuki, Iwane; Shiraiwa, Yoshihiro

2011-08-01

186

Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142  

NASA Technical Reports Server (NTRS)

Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

1997-01-01

187

Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803  

NASA Astrophysics Data System (ADS)

Many microorganisms have long been known to be able to synthesize nanoparticles either in extracellular media or inside cells but the biochemical mechanisms involved in biomineralization are still poorly understood. In this paper we report the intracellular synthesis of gold nanoparticles (GNPs) by the cyanobacterium Synechocystis sp. PCC 6803 exposed to an aqueous solution of chloroauric acid. We assess the interplay between the biomineralization process and the metabolic activities (i.e. photosynthesis and respiration) of cyanobacteria cells by correlating the GNP synthesis yield with the amount of respiratory and photosynthetic oxygen exchange. The biogenic GNPs are compared in terms of their internalization and biological effects to GNPs synthesized by a standard citrate reduction procedure (cGNPs). The TEM analysis, in conjunction with spectroscopic measurements (i.e. surface plasmon resonance, fluorescence quenching and surface-enhanced Raman scattering, SERS), reveals the localization of biogenic GNPs at the level of intracytoplasmic membranes whereas the pre-formed cGNPs are located at the level of external cellular membrane. Our findings have implications for better understanding the process of biomineralization and assessing the potential risks associated with the accumulation of nanomaterials by various biological systems.

Focsan, Monica; Ardelean, Ioan I.; Craciun, Constantin; Astilean, Simion

2011-12-01

188

Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.  

PubMed

An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO? concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 ?mol m?² s?¹ and air enriched with 3.18% (v/v) CO? supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors. PMID:23732832

Ketseoglou, Irene; Bouwer, Gustav

2013-08-10

189

Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803  

PubMed Central

In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

2014-01-01

190

Glycosylated Porphyra-334 and Palythine-Threonine from the Terrestrial Cyanobacterium Nostoc commune  

PubMed Central

Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments. PMID:24065157

Nazifi, Ehsan; Wada, Naoki; Yamaba, Minami; Asano, Tomoya; Nishiuchi, Takumi; Matsugo, Seiichi; Sakamoto, Toshio

2013-01-01

191

Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes.  

PubMed

Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like complex of two ethylene-generating enzymes from tomato using cohesin-dockerins from the bacteria Clostridium thermocellum and Acetivibrio cellulolyticus. This complex was transformed into Escherichia coli to analyze kinetic parameters and enzyme complex formation and into the cyanobacterium Synechococcus elongatus PCC 7942, which was then grown with and without 0.1 mM isopropyl ?-D-1-thiogalactopyranoside (IPTG) induction. Only at minimal protein expression levels (without IPTG), the chimeric complex produced 3.7 times more ethylene in vivo than did uncomplexed enzymes. Thus, cyanobacteria can be used to sustainably generate ethylene, and the synthetic enzyme complex greatly enhanced production efficiency. Artificial synthetic enzyme complexes hold great promise for improving the production efficiency of other industrial compounds. PMID:24933350

Jindou, Sadanari; Ito, Yuki; Mito, Natsumi; Uematsu, Keiji; Hosoda, Akifumi; Tamura, Hiroto

2014-07-18

192

Cyclic Depsipeptides, Grassypeptolides D, E and Ibu epidemethoxylyngbyastatin 3, from a Red Sea Leptolyngbya Cyanobacterium  

PubMed Central

Two new grassypeptolides and a lyngbyastatin analogue, together with the known dolastatin 12, have been isolated from field collections and laboratory cultures of the marine cyanobacterium Leptolyngbya sp. collected from the SS Thistlegorm shipwreck in the Red Sea. The overall stereostructures of grassypeptolides D (1) and E (2) and Ibu-epidemethoxylyngbyastatin 3 (3) were determined by a combination of 1D and 2D NMR experiments, MS analysis, Marfey's methodology, and HPLC-MS. Compounds 1 and 2 contain 2-methyl-3-aminobutyric acid (Maba) and 2-aminobutyric acid (Aba), while biosynthetically distinct 3 contains 3-amino-2-methylhexanoic acid (Amha) and the ?-keto amino acid 4-amino-2,-2-dimethyl-3-oxopentanoic acid (Ibu). Grassypeptolides D (1) and E (2) showed significant cytotoxicity to HeLa (IC50 = 335 and 192 nM, respectively) and mouse neuro-2a blastoma cells (IC50 = 599 and 407 nM, respectively), in contrast to Ibu-epidemethoxylyngbyastatin 3 (neuro-2a cells, IC50 > 10 ?M) and dolastatin 12 (neuro-2a cells, IC50 > 1 ?M). PMID:21806012

Thornburg, Christopher C.; Thimmaiah, Muralidhara; Shaala, Lamiaa A.; Hau, Andrew M.; Malmo, Jay M.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

2011-01-01

193

Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity  

NASA Technical Reports Server (NTRS)

In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

1988-01-01

194

Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action.  

PubMed

Sanguinarine showed strong inhibitory effect against Microcystis aeruginosa, a typical water bloom-forming and microcystins-producing cyanobacterium. The EC50 of sanguinarine against the growth of M. aeruginosa NIES-843 was 34.54±1.17 ?g/L. Results of chlorophyll fluorescence transient analysis indicated that all the electron donating side, accepting side, and the reaction center of the Photosystem II (PS II) were the targets of sanguinarine against M. aeruginosa NIES-843. The elevation of reactive oxygen species (ROS) level in the cells of M. aeruginosa NIES-843 upon exposure indicated that sanguinarine induced oxidative stress in the active growing cells of M. aeruginosa NIES-843. Further results of gene expression analysis indicated that DNA damage and cell division inhibition were also involved in the inhibitory action mechanism of sanguinarine against M. aeruginosa NIES-843. The inhibitory characteristics of sanguinarine against M. aeruginosa suggest that the ecological- and public health-risks need to be evaluated before its application in cyanobacterial bloom control to avoid devastating events irreversibly. PMID:24060579

Shao, Jihai; Liu, Deming; Gong, Daoxin; Zeng, Qingru; Yan, Zhiyong; Gu, Ji-Dong

2013-10-15

195

Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum  

PubMed Central

Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 ?M and 2.7 ?M, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R.; Chu, Justin Jang Hann

2014-01-01

196

Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.  

PubMed

The mode of Fe uptake by the cyanobacterium Microcystis aeruginosa cultured in Fraquil* (pH 8) containing Suwannee River fulvic acid (SRFA) was examined using short-term radiolabeled (55)Fe uptake assays and a kinetic model that describes extracellular Fe transformations. Both Fe(II) and Fe(III) uptake rates decreased substantially with increasing SRFA concentration as the availability of unchelated Fe decreased due to complexation by SRFA. Fe uptake rates under illuminated conditions were comparable to or slightly higher than those observed in the dark at the same Fe:SRFA concentration ratio, in contrast to results for systems containing ethylenediaminetetraacetic acid where Fe uptake rates were much greater under illumination than in the dark. The limited effect of light principally resulted from the relatively high rates of thermal dissociation and dark reduction of Fe(III) bound to SRFA and complexation of photogenerated Fe(II) by SRFA. Our findings imply that Fe uptake by M. aeruginosa at a fixed total Fe concentration of 200 nM is close to saturation when fulvic acid is present at concentrations near those typically found in natural waters (< ?5 mg·L(-1)), with cellular growth likely to be limited by Fe availability only when natural organic matter is present at very high concentrations (>25 mg·L(-1)). PMID:24261844

Fujii, M; Dang, T C; Bligh, M W; Rose, A L; Waite, T D

2014-01-01

197

Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatus.  

PubMed

Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 microg x L(-1) significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (F(v)/F(m)) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. PMID:15526266

Hu, Zhi-quan; Liu, Yong-ding; Li, Dun-hai

2004-12-01

198

Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed Central

Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I. PMID:10354453

Savikhin, S; Xu, W; Soukoulis, V; Chitnis, P R; Struve, W S

1999-01-01

199

Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047.  

PubMed

Optimization of conditions for outdoor production of the nitrogen-fixing cyanobacterium Anabaena sp. ATCC 33047 has been pursued. In open ponds operated under semi-continuous regime biomass productivity values achieved ranged from 9 g (dry weight) m(-2) per day, in winter, to over 20 g m(-2) per day, in summer, provided that key operation parameters, including cell density, were optimized. Under these conditions the efficiency of solar energy conversion by the cells was fairly constant throughout the year, with photosynthetic efficiency values higher than 2%. The cyanobacterial biomass was rich in high-value phycobiliproteins, namely allophycocyanin and phycocyanin, for which open cultures of marine Anabaena represent a most interesting production system. The performance of Anabaena cultures operated under continuous regime in a closed tubular reactor has also been assessed outdoors, in winter. Biomass productivity values similar to those obtained in the ponds have been recorded for the closed system. Additionally, under these conditions, the cells excreted to the medium large amounts of a previously characterized exopolysaccharide, at production rates as high as 35 g m(-2) per day (1.4 g l(-1) per day). Properly operated closed cultures of this strain of Anabaena appear most suitable for outdoor mass production of valuable extracellular polysaccharides. PMID:12919797

Moreno, José; Vargas, M Angeles; Rodríguez, Herminia; Rivas, Joaquín; Guerrero, Miguel G

2003-07-01

200

CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002  

PubMed Central

Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics’s usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics PMID:25632108

Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

2015-01-01

201

Biochemical effect of carbaryl on oxidative stress, antioxidant enzymes and osmolytes of cyanobacterium Calothrix brevissima.  

PubMed

Carbaryl is used in Indian agriculture for control of rice field pests and it is next to Benzene hexachloride in pesticide consumption. In present study, carbaryl (0, 10, 20, 30 and 40 mg/L) induced toxic effects were observed after 21 days exposure on a non target rice field biofertilizer Calothrix brevissima with special reference to oxidative stress, antioxidant enzymes and osmolytes. At 40 mg/L carbaryl the decrease in carotenoid, chlorophyll, phycobilin and protein were 63%, 43%, 40% and 40% respectively in comparison to control. Total carbohydrate, malondialdehyde, superoxide dismutase, ascorbate peroxidase, catalase and osmolytes showed enhancement at all the treated concentration. Increased amount of MDA (46% at 40 mg/L) indicated free radical mediated deleterious effect of carbaryl. Enhancement of SOD, APX, CAT and osmolytes in presence of carbaryl indicated their involvement in free radical scavenging. SOD, CAT and APX showed maximum activities (79%, 64% and 39% respectively) at 40 mg/L carbaryl. The order of enhancement in osmolytes was glycine-betaine (66%) > proline (54%) > sucrose (50%) at 40 mg/L which might be another adaptive defense strategy of the cyanobacterium against the pesticide. PMID:21979138

Habib, Khalid; Kumar, Satyendra; Manikar, Ningthoujam; Zutshi, Sunaina; Fatma, Tasneem

2011-12-01

202

Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium.  

PubMed

The filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest models of a multicellular system showing cellular differentiation. In nitrogen-deprived culture, undifferentiated vegetative cells differentiate into heterocysts at ~10-cell intervals along the cellular filament. As undifferentiated cells divide, the number of cells between heterocysts (segment length) increases, and a new heterocyst appears in the intermediate region. To understand how the heterocyst pattern is formed and maintained, we constructed a one-dimensional cellular automaton (CA) model of the heterocyst pattern formation. The dynamics of vegetative cells is modeled by a stochastic transition process including cell division, differentiation and increase of cell age (maturation). Cell division and differentiation depend on the time elapsed after the last cell division, the "cell age". The model dynamics was mathematically analyzed by a two-step Markov approximation. In the first step, we determined steady state of cell age distribution among vegetative cell population. In the second step, we determined steady state distribution of segment length among segment population. The analytical solution was consistent with the results of numerical simulations. We then compared the analytical solution with the experimental data, and quantitatively estimated the immeasurable intercellular kinetics. We found that differentiation is initially independent of cellular maturation, but becomes dependent on maturation as the pattern formation evolves. Our mathematical model and analysis enabled us to quantify the internal cellular dynamics at various stages of the heterocyst pattern formation. PMID:25665721

Ishihara, Jun-Ichi; Tachikawa, Masashi; Iwasaki, Hideo; Mochizuki, Atsushi

2015-04-21

203

Sulfonamide inhibition studies of the ?-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.  

PubMed

A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the ?-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the ?-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and ?-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. PMID:25773015

Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

2015-04-15

204

Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process.  

PubMed

In this work, a recombinant cyanobacterium strain with increased photosynthesis rate, cell growth and carbohydrate production efficiency was genetically engineered by co-expressing ictB, ecaA, and acsAB (encoded for bacterial cellulose) in Synechococcus elongatus PCC7942. The resulting cyanobacterial biomass could be effectively hydrolyzed with dilute acid (2% sulfuric acid), achieving a nearly 90% glucose recovery at a biomass concentration of 80g/L. Bioethanol can be produced from fermenting the acidic hydrolysate of S. elongatus PCC7942 via separate hydrolysis and fermentation (SHF) process at a concentration of 7.2g/L and with a 91% theoretical yield. PMID:25453434

Chow, Te-Jin; Su, Hsiang-Yen; Tsai, Tsung-Yu; Chou, Hsiang-Hui; Lee, Tse-Min; Chang, Jo-Shu

2015-05-01

205

Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production.  

PubMed

Photoproduction of hydrogen has been studied as one of the ways to produce a clean, renewable energy source. Ultrastructure of the selected strain Anabaena variabilis SPU 003, a heterocystous cyanobacterium, has been done to understand the cell structure. The organism was found to be essentially a dark hydrogen producer. While pH had no significant effect on hydrogen production, optimum temperature was found to be 30 degrees C. Various sugars increased the production of hydrogen while the presence of various nitrogen sources inhibits the production. The production of hydrogen is highly sensitive to salinity and micronutrients. PMID:11150668

Shah, V; Garg, N; Madamwar, D

2001-01-01

206

Cloning of salinity stress-induced genes from the salt-tolerant nitrogen-fixing cyanobacterium Anabaena torulosa.  

PubMed

A subtractive hybridization procedure was used to clone genes of the cyanobacterium Anabaena torulosa expressed in response to salt stress. The method uses total RNA from salt-treated cells, labeled in vitro, as the probe. Hybridization to restriction digests of total DNA was used for interspecies comparison; the procedure was also successful for isolation of cosmids by colony hybridization, semiquantitative dot blots, and cosmid characterization by Southern blotting. Analysis of eleven independent cosmids containing genes whose transcription is abundantly induced by salt suggests that a substantial portion of the A. torulosa genome, probably in excess of 100 kilobases, responds to salt. PMID:2129399

Apte, S K; Haselkorn, R

1990-11-01

207

Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413  

PubMed Central

The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

Thiel, Teresa; Pratte, Brenda S.

2014-01-01

208

Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).  

PubMed

Microcystis aeruginosa is generally dominant in many Mexican freshwater ecosystems interacting with zooplankton species. Hence, feeding and filtration rates were quantified for three cladoceran (Daphnia pulex, Moina micrura and Ceriodaphnia dubia) and three rotifer species (Brachionus calyciflorus, Brachionus rubens and Plationus patulus) using sonicated M. aeruginosa alone or mixed with Scenedesmus acutus in different proportions (25, 50 and 75%, based on cell density), offering a combined initial density of 100,000 cells·ml(-1). All the three cladoceran species ingested M. aeruginosa (100-300 cells ind(-1) min(-1)) when fed exclusively with cyanobacterium. When green alga offered as exclusive diet, the number of cells ingested by the tested cladocerans varied from 80 to 400 cells ind(-1) min(-1). Compared to cladocerans, rotifers in general consumed much lower quantity (< 200 cells ind(-1) min(-1)) of M. aeruginosa and S. acutus. The filtration rate for Daphnia pulex was inversely related to the proportion of green alga in the diet. For other tested cladocerans, no such clear trend was evident. In mixed treatments containing M. aeruginosa, the filtration rate of Daphnia was highest (about 220 ?l ind(-1) min(-1)) when the medium contained 75% of S. acutus. Among the rotifer species, P. patulus filtered highest volume (100 ?l ind(-1) min(-1) from mixed diets containing higher proportions (50 or 75%) of M. aeruginosa. Thus, there were species-specific differences in the filtration and feeding rates of zooplankton when offered mixed diets of green algae and toxic cyanobacteria. These probably explain the coexistence of different zooplankton species in Microcystis-dominant waterbodies. PMID:25522500

Pérez-Morales, Alfredo; Sarma, S S S; Nandini, S

2014-11-01

209

Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*  

PubMed Central

In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ?340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

2013-01-01

210

Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa  

NASA Astrophysics Data System (ADS)

At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

211

DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F.  

PubMed Central

An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution. Images PMID:2880834

Chen, C H; Van Baalen, C; Tabita, F R

1987-01-01

212

Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes  

PubMed Central

The mat-building cyanobacterium Microcoleus chthonoplastes carried out a mixed-acid fermentation when incubated under anoxic conditions in the dark. Endogenous storage carbohydrate was fermented to acetate, ethanol, formate, lactate, H(inf2), and CO(inf2). Cells with a low glycogen content (about 0.3 (mu)mol of glucose per mg of protein) produced acetate and ethanol in equimolar amounts. In addition to glycogen, part of the osmoprotectant, glucosyl-glycerol, was degraded. The glucose component of glucosyl-glycerol was fermented, whereas glycerol was released into the medium. Cells with a high content of glycogen (about 2 (mu)mol of glucose per mg of protein) did not utilize glucosyl-glycerol. These cells produced more acetate than ethanol. M. chthonoplastes was also capable of using elemental sulfur as the electron acceptor during fermentation, resulting in the production of sulfide. With sulfur present, acetate production increased whereas ethanol production decreased. Also, less formate was produced and the evolution of hydrogen ceased completely. In general, the carbon recoveries were satisfactory but the oxidation-reduction balances were too high. The latter could be explained by assuming the reduction of ferric iron, which is associated with the cells, mediated by the oxidation of formate. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately upon transfer to dark anoxic conditions. From the molar ratios of the fermentation products and from measurement of enzyme activities in cell extracts, we concluded that glucose derived from glycogen and glucosyl-glycerol is degraded via the Embden-Meyerhof-Parnas pathway. PMID:16535319

Moezelaar, R.; Bijvank, S. M.; Stal, L. J.

1996-01-01

213

Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation  

PubMed Central

Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria. PMID:25873915

Spät, Philipp; Ma?ek, Boris; Forchhammer, Karl

2015-01-01

214

Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ?sigCDE contains the stress responsive SigB as the only functional group 2 ? factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required. PMID:24275086

Hakkila, Kaisa; Antal, Taras; Rehman, Ateeq Ur; Kurkela, Juha; Wada, Hajime; Vass, Imre; Tyystjärvi, Esa; Tyystjärvi, Taina

2014-02-01

215

Increase of nitrogenase activity in the blue-green alga Nostoc muscorum (Cyanobacterium).  

PubMed

Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under hydrogen or argon (nongrowing conditions, neither CO(2) nor N(2) or bound nitrogen present) in the light resulted in a two- to fourfold increase of light-induced hydrogen evolution and a 30% increase of acetylene reduction. Preincubation under the same gases in the dark led to a decrease of both activities. Cultivation of algae under a hydrogen-containing atmosphere (N(2), H(2), CO(2)) increased neither hydrogen nor ethylene evolution by the cells. Formation of both ethylene and hydrogen is due to nitrogenase activity, which apparently was induced by the absence of N(2) or bound nitrogen and not by the presence of hydrogen. Inhibitors of protein biosynthesis prevented the increase of nitrogenase activity. Hydrogen uptake by the cells was almost unaffected under all of these conditions. With either ammonia or chloramphenicol present, nitrogenase activity decreased under growing conditions (i.e., an atmosphere of N(2) and CO(2)). The kinetics of decrease were the same with ammonia or chloramphenicol, which was interpreted as being due to rapid protein breakdown with a half-life of approximately 4 h. The decay of nitrogenase activity caused by chloramphenicol could be counteracted by nitrogenase-inducing conditions, i.e., by the absence of N(2) or bound nitrogen. A cell-free system from preconditioned algae with an adenosine 5'-triphosphate-generating system exhibited the same increase or decrease of nitrogenase activity as the intact cell filaments, indicating that this effect resided in the nitrogenase complex only. We tentatively assume that not the whole nitrogenase complex, but merely a subunit or a special protein with regulatory function, is susceptible to fast turnover. PMID:6777364

Scherer, S; Kerfin, W; Böger, P

1980-12-01

216

DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F  

SciTech Connect

An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-(/sup 14/C)glutamate from 2-keto-(1-/sup 14/C)glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with (/sup 14/C)bicarbonate and L-(1-/sup 14/C)ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.

Chen, C.H.; Van Baalen, C.; Tabita, F.R.

1987-03-01

217

Temporal dynamics of ROS biogenesis under simulated solar radiation in the cyanobacterium Anabaena variabilis PCC 7937.  

PubMed

We studied the temporal generation of reactive oxygen species (ROS) in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation using WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400 nm cut-off filters to find out the minimum exposure time and most effective region of the solar spectrum inducing highest level of ROS. There was no significant generation of ROS in all treatments in comparison to the samples kept in the dark during the first 8 h of exposure; however, after 12 h of exposure, ROS were significantly generated in samples covered with 305, 295, or 280 nm cut-off filters. In contrast with ROS, the fragmentation of filaments was predominantly seen in 280 nm cut-off filter covered samples after 12 h of exposure. After 24 h of exposure, ROS levels were significantly higher in all samples than in the dark; however, the ROS signals were more pronounced in 320, 305, 295, or 280 nm cut-off filter covered samples. In contrast, the length of filaments was reduced in 305, 295, or 280 nm cut-off filter covered samples after 24 h of exposure. Thus, fragmentation of the filament was induced by all wavelengths of the UV-B region contrary to the UV-A region where only shorter wavelengths were able to induce the fragmentation. In contrast, ROS were generated by all wavelengths of the solar spectrum after 24 h of exposure; however, shorter wavelengths of both the UV-A and the UV-B regions were more effective in generating ROS in comparison to their higher wavelengths and photosynthetic active radiation (PAR). Moreover, lower wavelengths of UV-B were more efficient than the lower wavelengths of the UV-A radiation. Findings from this study suggest that certain threshold levels of ROS are required to induce the fragmentation of filaments. PMID:24633292

Singh, Shailendra P; Rastogi, Rajesh P; Häder, Donat-P; Sinha, Rajeshwar P

2014-09-01

218

Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413.  

PubMed

The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

Thiel, Teresa; Pratte, Brenda S

2014-01-01

219

Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803  

PubMed Central

Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

2014-01-01

220

Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes.  

PubMed

The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been assigned as a diazotrophic organism. None of the strains that were correctly identified as M. chthonoplastes has been shown to fix dinitrogen and it has repeatedly been reported that these organisms lacked the cyanobacterial nifH, the structural gene for dinitrogenase reductase. In this study, we show that a complete nif-gene cluster is present in the genome of M. chthonoplastes PCC 7420 and that the three structural nitrogenase genes, nifHDK, are present in a collection of axenic strains of M. chthonoplastes from distant locations. Phylogenetic analysis of nifHDK revealed that they cluster with the Deltaproteobacteria and that they are closely related to Desulfovibrio. The nif operon is flanked by typical cyanobacterial genes, suggesting that it is an integral part of the M. chthonoplastes genome. In this study, we provide evidence that the nif operon of M. chthonoplastes is acquired through horizontal gene transfer. Moreover, the presence of the same nif-cluster in M. chthonoplastes isolates derived from various sites around the world suggests that this horizontal gene transfer event must have occurred early in the evolution of M. chthonoplastes. We have been unable to express nitrogenase in cultures of M. chthonoplastes, but we show that these genes were expressed under natural conditions in the field. PMID:19741736

Bolhuis, Henk; Severin, Ina; Confurius-Guns, Veronique; Wollenzien, Ute I A; Stal, Lucas J

2010-01-01

221

Diazotrophy under continuous light in a marine unicellular diazotrophic cyanobacterium, Gloeothece sp. 68DGA.  

PubMed

Nitrogenase is extremely sensitive to molecular oxygen (O(2)), and unicellular diazotrophic cyanobacteria separate nitrogen (N(2))-fixation and photosynthesis to protect nitrogenase from O(2) produced by photosynthesis. When grown under 12 h light/12 h dark cycles (LD), the marine unicellular diazotrophic cyanobacterium Gloeothece sp. 68DGA expressed the nitrogenase protein and its activity (acetylene reduction activity) only during the dark phase. However, this strain was able to grow diazotrophically under continuous light (CL). To determine whether nitrogenase synthesis and N(2)-fixation are temporally separated from photosynthesis in the Gloeothece cells that have fully acclimated to CL, the proportion of cells containing nitrogenase (the Fe-protein of nitrogenase) in the culture was measured using an immunocytochemical technique. Cells were grown in a continuous-culture device to maintain constant cell density. Under LD, the cells showed diurnal oscillation of nitrogenase activity, photosynthesis, respiration and the expression and the abundance of the Fe-protein. The oscillation was gradually reduced after the transfer of the cells to CL, and was lost after 23-25 days of cultivation under CL. In CL-acclimated cultures, the Fe-protein was always detected in about 94 % of the cells, although the nitrogenase activity was about one-third of the maximum activity in LD-acclimated cultures. These results suggest that synthesis of nitrogenase proceeds without diurnal oscillation in the CL-acclimated cells of Gloeothece sp. 68DGA. As the respiration rate in CL-acclimated culture was as high as the maximum rate observed in LD-acclimated culture, O(2)-uptake mechanism(s) may have been upregulated to maintain low intracellular pO(2). PMID:18599815

Taniuchi, Yukiko; Yoshikawa, Shinya; Maeda, Shin-Ichi; Omata, Tatsuo; Ohki, Kaori

2008-07-01

222

Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community  

PubMed Central

N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

Brauer, Verena S.; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J.; Stal, LucasJ.; Huisman, Jef

2014-01-01

223

Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece  

PubMed Central

Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of argumentation for the globally important group of unicellular diazotrophic cyanobacteria, and pose the following two hypotheses: (i) nitrogen fixation is limited by nitrogenase activity at low temperature and by oxygen diffusion at high temperature, which is manifested by a shift from strong to weak temperature dependence of nitrogenase activity, and (ii) high respiration rates are required to maintain very low levels of oxygen for nitrogenase, which results in enhanced respiratory cost per molecule of fixed nitrogen at low temperature. We tested these hypotheses in laboratory experiments with the unicellular cyanobacterium Cyanothece sp. BG043511. In line with the first hypothesis, the specific growth rate increased strongly with temperature from 18 to 30?°C, but leveled off at higher temperature under nitrogen-fixing conditions. As predicted by the second hypothesis, the respiratory cost of nitrogen fixation and also the cellular C:N ratio rose sharply at temperatures below 21?°C. In addition, we found that low temperature caused a strong delay in the onset of the nocturnal nitrogenase activity, which shortened the remaining nighttime available for nitrogen fixation. Together, these results point at a lower temperature limit for unicellular nitrogen-fixing cyanobacteria, which offers an explanation for their (sub)tropical distribution and suggests expansion of their biogeographical range by global warming. PMID:23823493

Brauer, Verena S; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan AM; Emmerich, Barbara; Stal, Lucas J; Huisman, Jef

2013-01-01

224

Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide.  

PubMed

Mixotrophic cultivation of cyanobacteria in wastewaters with flue gas sparging has the potential to simultaneously sequester carbon content from gaseous and aqueous streams and convert to biomass and biofuels. Therefore, it was of interest to study the effect of mixotrophy and elevated CO2 on metabolism, morphology and rhythm of gene expression under diurnal cycles. We chose a diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 as a model, which is a known hydrogen producer with robust circadian rhythm. Cyanothece 51142 grows faster with nitrate and/or an additional carbon source in the growth medium and at 3 % CO2. Intracellular glycogen contents undergo diurnal oscillations with greater accumulation under mixotrophy. While glycogen is exhausted by midnight under autotrophic conditions, significant amounts remain unutilized accompanied by a prolonged upregulation of nifH gene under mixotrophy. This possibly supports nitrogen fixation for longer periods thereby leading to better growth. To gain insights into the influence of mixotrophy and elevated CO2 on circadian rhythm, transcription of core clock genes kaiA, kaiB1 and kaiC1, the input pathway, cikA, output pathway, rpaA and representatives of key metabolic pathways was analyzed. Clock genes' transcripts were lower under mixotrophy suggesting a dampening effect exerted by an external carbon source such as glycerol. Nevertheless, the genes of the clock and important metabolic pathways show diurnal oscillations in expression under mixotrophic and autotrophic growth at ambient and elevated CO2, respectively. Taken together, the results indicate segregation of light and dark associated reactions even under mixotrophy and provide important insights for further applications. PMID:23881383

Gaudana, Sandeep B; Alagesan, Swathi; Chetty, Madhu; Wangikar, Pramod P

2013-11-01

225

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle  

SciTech Connect

Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

2008-09-30

226

Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium  

PubMed Central

ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400 µmol ? mg Chl?1 ? h?1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ? mg Chl?1 ? h?1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. PMID:22872781

Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alexander S.

2012-01-01

227

Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.  

PubMed

Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. PMID:25303871

Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

2014-12-15

228

Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

2014-01-01

229

Characterization of the Response to Zinc Deficiency in the Cyanobacterium Anabaena sp. Strain PCC 7120  

PubMed Central

Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium. PMID:22389488

Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J.

2012-01-01

230

Isolation, sequence and expression of two members of the 32 kd thylakoid membrane protein gene family from the cyanobacterium Anabaena 7120  

Microsoft Academic Search

The cyanobacterium Anabaena contains at least three copies of DNA sequences related to the unique gene encoding the 32 kd thylakoid membrane protein in spinach chloroplast DNA, based on hybridization with the cloned spinach probe. Two of the identified Anabaena DNA fragments were isolated from a recombinant lambda library and the complete nucleotide sequences of the coding regions were determined.

Stephanie E. Curtis; Robert Haselkorn

1984-01-01

231

Evaluation of free radical-generating compounds for toxicity towards the cyanobacterium Planktothrix perornata which causes musty off-flavor in pond-raised channel catfish (Ictalurus punctatus)  

Technology Transfer Automated Retrieval System (TEKTRAN)

The cyanobacterium Planktothrix perornata grows in channel catfish (Ictalurus punctatus) production ponds in the southeastern United States and produces the musty-odor compound 2-methylisoborneol (MIB). MIB can rapidly accumulate in the flesh of the catfish, thereby rendering the fish unpalatable a...

232

Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.  

PubMed

Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium. PMID:24521880

Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

2014-04-01

233

A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W  

PubMed Central

In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

2013-01-01

234

Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.  

PubMed

Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP. PMID:22670754

Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

2012-10-01

235

Application of Real-Time PCR To Estimate Toxin Production by the Cyanobacterium Planktothrix sp.? †  

PubMed Central

Quantitative real-time PCR methods are increasingly being applied for the enumeration of toxic cyanobacteria in the environment. However, to justify the use of real-time PCR quantification as a monitoring tool, significant correlations between genotype abundance and actual toxin concentrations are required. In the present study, we aimed to explain the concentrations of three structural variants of the hepatotoxin microcystin (MC) produced by the filamentous cyanobacterium Planktothrix sp., [Asp, butyric acid (Dhb)]-microcystin-RR (where RR means two arginines), [Asp, methyl-dehydro-alanine (Mdha)]-microcystin-RR, and [Asp, Dhb]-microcystin-homotyrosine-arginine (HtyR), by the abundance of the microcystin genotypes encoding their synthesis. Three genotypes of microcystin-producing cyanobacteria (denoted the Dhb, Mdha, and Hty genotypes) in 12 lakes of the Alps in Austria, Germany, and Switzerland from 2005 to 2007 were quantified by means of real-time PCR. Their absolute and relative abundances were related to the concentration of the microcystin structural variants in aliquots determined by high-performance liquid chromatography (HPLC). The total microcystin concentrations varied from 0 to 6.2 ?g liter?1 (mean ± standard error [SE] of 0.6 ± 0.1 ?g liter?1) among the samples, in turn resulting in an average microcystin content in Planktothrix of 3.1 ± 0.7 ?g mm?3 biovolume. Over a wide range of the population density (0.001 to 3.6 mm3 liter?1 Planktothrix biovolume), the Dhb genotype and [Asp, Dhb]-MC-RR were most abundant, while the Hty genotype and MC-HtyR were found to be in the lowest proportion only. In general, there was a significant linear relationship between the abundance/proportion of specific microcystin genotypes and the concentration/proportion of the respective microcystin structural variants on a logarithmic scale. We conclude that estimating the abundance of specific microcystin genotypes by quantitative real-time PCR is useful for predicting the concentration of microcystin variants in water. PMID:20363794

Ostermaier, Veronika; Kurmayer, Rainer

2010-01-01

236

Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer  

PubMed Central

The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 ?m wide trichomes, composed of stacked disk-like short cells (2 ?m long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity. PMID:24376438

Kothari, Ankita; Vaughn, Michael; Garcia-Pichel, Ferran

2013-01-01

237

Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer.  

PubMed

The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 ?m wide trichomes, composed of stacked disk-like short cells (2 ?m long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity. PMID:24376438

Kothari, Ankita; Vaughn, Michael; Garcia-Pichel, Ferran

2013-01-01

238

Two independent, light-sensing two-component systems in a filamentous cyanobacterium.  

PubMed

Two ORFs, cphA and cphB, encoding proteins CphA and CphB with strong similarities to plant phytochromes and to the cyanobacterial phytochrome Cph1 of Synechocystis sp. PCC 6803 have been identified in the filamentous cyanobacterium Calothrix sp. PCC7601. While CphA carries a cysteine within a highly conserved amino-acid sequence motif, to which the chromophore phytochromobilin is covalently bound in plant phytochromes, in CphB this position is changed into a leucine. Both ORFs are followed by rcpA and rcpB genes encoding response regulator proteins similar to those known from the bacterial two-component signal transduction. In Calothrix, all four genes are expressed under white light irradiation conditions, albeit in low amounts. For heterologous expression and convenient purification, the cloned genes were furnished with His-tag encoding sequences at their 3' end and expressed in Escherichia coli. The two recombinant apoproteins CphA and CphB bound the chromophore phycocyanobilin (PCB) in a covalent and a noncovalent manner, respectively, and underwent photochromic absorption changes reminiscent of the P(r) and P(fr) forms (red and far-red absorbing forms, respectively) of the plant phytochromes and Cph1. A red shift in the absorption maxima of the CphB/PCB complex (lambda(max) = 685 and 735 nm for P(r) and P(fr), respectively) is indicative for a noncovalent incorporation of the chromophore (lambda(max) of P(r), P(fr) of CphA: 663, 700 nm). A CphB mutant generated at the chromophore-binding position (Leu246-->Cys) bound the chromophore covalently and showed absorption spectra very similar to its paralog CphA, indicating the noncovalent binding to be the only cause for the unexpected absorption properties of CphB. The kinetics of the light-induced P(fr) formation of the CphA-PCB chromoprotein, though similar to that of its ortholog from Synechocystis, showed differences in the kinetics of the P(fr) formation. The kinetics were not influenced by ATP (probing for autophosphorylation) or by the response regulator. In contrast, the light-induced kinetics of the CphB-PCB complex was markedly different, clearly due to the noncovalently bound chromophore. PMID:12047374

Jorissen, Helena J M M; Quest, Benjamin; Remberg, Anja; Coursin, Thérèse; Braslavsky, Silvia E; Schaffner, Kurt; de Marsac, Nicole Tandeau; Gärtner, Wolfgang

2002-06-01

239

Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043.  

PubMed

Allelopathy is considered to be one of the factors underlying the global expansion of the toxic cyanobacterium Cylindrospermopsis raciborskii. Although the production and release of allelopathic compounds by cyanobacteria is acknowledged to be influenced by environmental parameters, the response of C. raciborskii remains generally unrecognized. Here, the growth and allelopathic potential of C. raciborskii strain LEGE 99043 towards the ubiquitous microalga Ankistrodesmus falcatus were analyzed under different biotic and abiotic conditions. Filtrates from C. raciborskii cultures growing at different cell densities displayed broad inhibitory activity. Moreover, higher temperature, higher light intensity as well phosphate limitation further enhanced this activity. The distinct and comprehensive patterns of inhibition verified during the growth phase, and under the tested parameters, suggest the action of several, still unidentified allelopathic compounds. It is expectable that the observed increase in allelopathic activity can result in distinct ecological advantages to C. raciborskii. PMID:22562107

Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M

2012-10-01

240

Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942.  

PubMed Central

The PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular N status by being phosphorylated or dephosphorylated at a seryl residue. Here we show that the PII-modifying system responds to the activity of ammonium assimilation via the glutamine synthase-glutamate synthase pathway and to the state of CO2 fixation. To identify possible functions of PII in this microorganism, a PII-deficient mutant was created and its general phenotype was characterized. The analysis shows that the PII protein interferes with the regulation of enzymes required for nitrogen assimilation, although ammonium repression is still detectable in the PII-deficient mutant. We suggest that the phosphorylation and dephosphorylation of PII are part of a complex signal transduction network involved in global nitrogen control in cyanobacteria. In this regulatory process, PII might be involved in mediating the tight coordination between carbon and nitrogen assimilation. PMID:7721695

Forchhammer, K; Tandeau de Marsac, N

1995-01-01

241

The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens.  

PubMed

We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution. PMID:11887207

Silva, L B; Santos, S S S; Azevedo, C R; Cruz, M A L; Venâncio, T M; Cavalcante, C P; Uchôa, A F; Astolfi Filho, S; Oliveira, A E A; Fernandes, K V S; Xavier-Filho, J

2002-03-01

242

High Titer Heterologous Production of Lyngbyatoxin in E. coli, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium  

PubMed Central

Many chemically-complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L-1) and its precursor indolactam-V (150 mg L-1). Production, isolation and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization and exploitation of other cyanobacterial natural product pathways. PMID:23751865

Ongley, Sarah E.; Bian, Xiaoying; Zhang, Youming; Chau, Rocky; Gerwick, William H.; Müller, Rolf; Neilan, Brett A.

2013-01-01

243

Design, operation, and modeling of a membrane photobioreactor to study the growth of the Cyanobacterium Arthrospira platensis in space conditions.  

PubMed

A membrane photobioreactor was designed, implemented and used to grow the cyanobacterium Arthrospira platensis PCC 8005 in batch mode. Growth was followed directly by monitoring optical density and indirectly by measuring pressure increase due to the oxygen produced and separated from the liquid phase by diffusion through a hydrophobic membrane, and pH increase due to carbon consumption. When the pressure attained an upper limit, valves opened automatically, and the oxygen in the gas chamber was flushed out with nitrogen. As expected, two growth phases were observed, a short exponential phase followed by a linear phase, indicating limitation by light transfer. Growth rate during the second phase was measured easily and accurately, and consistency of optical density, pressure and pH data values was checked using a model of the system. Pressure measurement was found best suited to monitoring and measuring growth rate in space in terms of accuracy, precision and reliability. PMID:15932251

Cogne, Guillaume; Cornet, Jean-François; Gros, Jean-Bernard

2005-01-01

244

Characterization of the IS895 family of insertion sequences from the cyanobacterium Anabaena sp. strain PCC 7120  

SciTech Connect

A family of repetitive elements from the cyanobacterium Anabaena sp. strain PCC 7120 was identified through the proximity of one element to the psbAI gene. Four members of this seven-member family were isolated and shown to have structures characteristic of bacterial insertion sequences. Each element is approximately 1,200 bp in length, is delimited by a 30-bp inverted repeat, and contains two open reading frames in tandem on the same DNA strand. The four copies differ from each other by small insertions or deletions, some of which alter the open reading frames. By using a system designed to trap insertion elements, one of the elements, denoted IS895, was shown to be mobile. The target site was not duplicated upon insertion of the element. Two other filamentous cyanobacterial strains were also found to contain sequences homologous to IS895.

Alam, J.; Vrba, J.M.; Martin, J.A.; Weislo, L.J.; Curtis, S.E. (North Carolina State Univ., Raleigh (United States)); Yuping Cai (Michigan State Univ. Plant Research Lab., East Lansing (United States))

1991-09-01

245

Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis  

NASA Astrophysics Data System (ADS)

We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (??) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1? 155?6? 155 (2? 155?5? 155 and 3? 155?4? 155) and 2? 84?5? 84 (3? 84?6? 84 and 1? 84?4? 84) channels and these could be described by Föster dipole-dipole resonance mechanism.

Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

1999-05-01

246

Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium  

SciTech Connect

Anabaena, a filamentous cyanobacterium, is of developmental interest because, when deprived of fixed nitrogen, it shows patterned differentiation of N{sub 2}-fixing cells called heterocysts. To help elucidate its early responses to a decrease in nitrogen, the authors used a derivative of transposon Tn5 to generate transcriptional fusions of promoterless bacterial luciferase genes, luxAB, to the Anabaena genome. Genes that responded to removal of fixed nitrogen or to other environmental shifts by increased or decreased transcription were identified by monitoring the luminescence of colonies from transposon-generated libraries. The Tn5 derivative transposed in Anabaena at ca. 1-4 {times} 10{sup {minus}5} per cell and permitted high-resolution mapping of its position and orientation in the genome and facile cloning of contiguous genomic DNA.

Wolk, C.P.; Yuping Cai; Panoff, J.M. (Michigan State Univ., East Lansing (United States))

1991-06-15

247

Identification of a glucokinase that generates a major glucose phosphorylation activity in the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

In silico analysis of genome of the cyanobacterium Synechocystis sp. PCC 6803 identified two genes, slr0329 and sll0593, that might participate in glucose (Glc) phosphorylation (www.kazusa.or.jp/cyano). In order to determine the functions of these two genes, we generated deletion mutants, and analyzed their phenotypes and enzymatic activities. In the presence of 10 mM Glc, wild-type (WT) and slr0329 defective strain (M1) grew fast with increased respiratory activity and NADPH production, whereas the sll0593 deletion mutant (M2) failed to show any of the Glc responses. WT and M1 were not significantly different in their glucokinase activity, but M2 had 90% less activity. Therefore, we propose that Sll0593 plays a major role in the phosphorylation of glucose in Synechocystis cells. PMID:15879711

Lee, Jung-Mi; Ryu, Jee-Youn; Kim, Hyong-Ha; Choi, Sang-Bong; de Marsac, Nicole Tandeau; Park, Youn-Il

2005-04-30

248

Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa.  

PubMed

We tested the hypothesis that zebra mussels (Dreissena polymorpha) have positive effects on the toxin-producing cyanobacterium, Microcystis aeruginosa, at low phosphorus (P) concentrations, but negative effects on M. aeruginosa at high P, with a large-scale enclosure experiment in an oligotrophic lake. After three weeks, mussels had a significantly positive effect on M. aeruginosa at ambient P (total phosphorus, TP ?10 ?g L?¹), and a significantly negative effect at high P (simulating a TP of ?40 ?g L?¹ in lakes). Positive and negative effects were strong and very similar in magnitude. Thus, we were able to ameliorate a negative effect of Dreissena invasion on water quality (i.e., promotion of Microcystis) by adding P to water from an oligotrophic lake. Our results are congruent with many field observations of Microcystis response to Dreissena invasion across ecosystems of varying P availability. PMID:22507249

Sarnelle, Orlando; White, Jeffrey D; Horst, Geoffrey P; Hamilton, Stephen K

2012-07-01

249

Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina.  

PubMed

This mini review presents current topics of discussion about photosystem (PS) I and PS II of photosynthesis in the Acaryochloris marina. A. marina is a photosynthetic cyanobacterium in which chlorophyll (Chl) d is the major antenna pigment (>95%). However, Chl a is always present in a few percent. Chl d absorbs light with a wavelength up to 30 nm red-shifted from Chl a. Therefore, the chlorophyll species of the special pair in PS II has been a matter of debate because if Chl d was the special pair component, the overall energetics must be different in A. marina. The history of this field indicates that a purified sample is necessary for the reliable identification and characterization of the special pair. In view of the spectroscopic data and the redox potential of pheophytin, we discuss the nature of special pair constituents and the localization of the enigmatic Chl a. PMID:21530298

Tomo, Tatsuya; Allakhverdiev, Suleyman I; Mimuro, Mamoru

2011-01-01

250

Using photosystem I as a reporter protein for (13)C analysis in a coculture containing cyanobacterium and a heterotrophic bacterium.  

PubMed

(13)C metabolism analysis of a microbial community is often hindered by the time-consuming and complicated separation procedure for a single species. However, a "reporter protein," produced uniquely by one cell type, retains (13)C fingerprint information in microbial consortia. This study describes the use of photosystem I (PSI), a multi-subunit protein complex universally found in oxygenic phototrophs, as a reliable reporter protein to probe microalgal metabolism (i.e., cyanobacterium Synechocystis sp. PCC 6803) in a mixed culture with heterotrophic bacteria (i.e., Escherichia coli). We demonstrate that efficient purification of PSI and subsequent (13)C-based amino acid analyses may decipher photomixotrophic metabolism of Synechocystis 6803 in the coculture. This study also indicates that a supplement of NaHCO3 at high concentration could significantly improve the robustness of cyanobacterial growth against bacterial contamination. PMID:25527068

You, Le; Liu, Haijun; Blankenship, Robert E; Tang, Yinjie J

2015-05-15

251

Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina  

NASA Technical Reports Server (NTRS)

Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

2012-01-01

252

Proteomic Strategy for the Analysis of the Polychlorobiphenyl-Degrading Cyanobacterium Anabaena PD-1 Exposed to Aroclor 1254  

PubMed Central

The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase ? subunit, FOF1 ATP synthase subunit beta, ATP synthase ? subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1. PMID:24618583

Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

2014-01-01

253

Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium  

PubMed Central

Background Cyanobacteria are solar-powered prokaryotes useful for sustainable production of valuable molecules, but orthogonal and regulated promoters are lacking. The Lac repressor (LacI) from Escherichia coli is a well-studied transcription factor that is orthogonal to cyanobacteria and represses transcription by binding a primary lac operator (lacO), blocking RNA-polymerase. Repression can be enhanced through DNA-looping, when a LacI-tetramer binds two spatially separated lacO and loops the DNA. Ptrc is a commonly used LacI-repressed promoter that is inefficiently repressed in the cyanobacterium Synechocystis PCC 6803. Ptrc2O, a version of Ptrc with two lacO, is more efficiently repressed, indicating DNA-looping. To investigate the inefficient repression of Ptrc and cyanobacterial DNA-looping, we designed a Ptrc-derived promoter library consisting of single lacO promoters, including a version of Ptrc with a stronger lacO (Ptrc1O-proximal), and dual lacO promoters with varying inter-lacO distances (the Ptrc2O-library). Results We first characterized artificial constitutive promoters and used one for engineering a LacI-expressing strain of Synechocystis. Using this strain, we observed that Ptrc1O-proximal is similar to Ptrc in being inefficiently repressed. Further, the Ptrc2O-library displays a periodic repression pattern that remains for both non- and induced conditions and decreases with longer inter-lacO distances, in both E. coli and Synechocystis. Repression of Ptrc2O-library promoters with operators out of phase is less efficient in Synechocystis than in E. coli, whereas repression of promoters with lacO in phase is efficient even under induced conditions in Synechocystis. Two well-repressed Ptrc2O promoters were highly active when tested in absence of LacI in Synechocystis. Conclusions The artificial constitutive promoters herein characterized can be utilized for expression in cyanobacteria, as demonstrated for LacI. The inefficient repression of Ptrc and Ptrc1O-proximal in Synechocystis, as compared to E. coli, may be due to insufficient LacI expression, or differences in RNAP subunits. DNA-looping works as a transcriptional regulation mechanism similarly as in E. coli. DNA-looping contributes strongly to Ptrc2O-library repression in Synechocystis, even though they contain the weakly-repressed primary lacO of Ptrc1O-proximal and relatively low levels of LacI/cell. Hence, Synechocystis RNAP may be more sensitive to DNA-looping than E. coli RNAP, and/or the chromatin torsion resistance could be lower. Two strong and highly repressed Ptrc2O promoters could be used without induction, or together with an unstable LacI. PMID:24467947

2014-01-01

254

An Alkaline Phosphatase/Phosphodiesterase, PhoD, Induced by Salt Stress and Secreted Out of the Cells of Aphanothece halophytica, a Halotolerant Cyanobacterium ? †  

PubMed Central

Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoDAp). The deduced protein, PhoDAp, contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoDAp enzyme was activated by Ca2+ and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoDAp in a transformed cyanobacterium. Expression of the phoDAp gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress. PMID:21666012

Kageyama, Hakuto; Tripathi, Keshawanand; Rai, Ashwani K.; Cha-um, Suriyan; Waditee-Sirisattha, Rungaroon; Takabe, Teruhiro

2011-01-01

255

Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea).  

PubMed

We report here the de novo genome assembly of a cyanobacterium, Aphanizomenon flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7 Mb with a G+C content of 38.2%, and it is enriched mostly with genes involved in amino acid and carbohydrate metabolism. PMID:25593252

Šul?ius, Sigitas; Alzbutas, Gediminas; Kvederavi?i?t?, Kotryna; Koreivien?, Judita; Zakrys, Linas; Lubys, Arvydas; Paškauskas, Ri?ardas

2015-01-01

256

Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature  

Microsoft Academic Search

The ability of a photobioreactor to fix CO2 was evaluated with the thermophilic cyanobacterium, Synechocystis aquatilis SI-2. The reactor consisted of three to five flat plates of transparent acrylic plastic standing upright and in parallel\\u000a and giving a 0.015-m light path. The reactor was 0.8?m high and 1?m long with 9?l working volume. The effects of the orientation\\u000a of the

K. Zhang; N. Kurano; S. Miyachi

1999-01-01

257

Global Gene Expression Profiles of the Cyanobacterium Synechocystis sp. Strain PCC 6803 in Response to Irradiation with UV-B and White Light  

Microsoft Academic Search

We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvest- ing, photosynthesis,

Lixuan Huang; Michael P. McCluskey; Hao Ni; Robert A. LaRossa

2002-01-01

258

Proteomic analysis of the cyanobacterium Anabaena sp. strain PCC7120 with two-dimensional gel electrophoresis and amino-terminal sequencing  

Microsoft Academic Search

A protein–gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the\\u000a cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined.\\u000a By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation\\u000a sites of 87 genes

Takashi Sazuka

2003-01-01

259

Purification of iron superoxide dismutase from the cyanobacterium Anabaena cylindrica Lemm. and localization of the enzyme in heterocysts by immunogold labeling  

Microsoft Academic Search

Iron superoxide dismutase (Fe-SOD; EC 1.15.1.1) was isolated from the nitrogen-fixing cyanobacterium Anabaena cylindrica Lemm. Polyacrylamide gel electrophoresis separated the purified protein into three closely running, enzymatically active bands. The molecular weight of the enzyme was estimated by gel filtration to be about 40 kDa. Polyclonal antibodies were produced by immunization of rabbits with the isolated enzyme, and were purified

A. Canini; P. Civitareale; S. Marini; M. Grilli Caiola; G. Rotilio

1992-01-01

260

Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea)  

PubMed Central

We report here the de novo genome assembly of a cyanobacterium, Aphanizomenon flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7 Mb with a G+C content of 38.2%, and it is enriched mostly with genes involved in amino acid and carbohydrate metabolism. PMID:25593252

Alzbutas, Gediminas; Kvederavi?i?t?, Kotryna; Koreivien?, Judita; Zakrys, Linas; Lubys, Arvydas; Paškauskas, Ri?ardas

2015-01-01

261

Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances growth rate as well as abiotic stress tolerance of poplar plants  

Microsoft Academic Search

The DnaK\\/Hsp70 family is a molecular chaperone that binds non-native states of other proteins, and concerns to various physiological\\u000a processes in the bacterial, plant and animal cells. Previously, we showed that overexpression of DnaK from a halotolerant\\u000a cyanobacterium Aphanothece halophytica (ApDnaK) enhances tolerance to abiotic stresses such as high salinity and high temperature in tobacco plants. Here, we tested\\u000a the

Tomoko Takabe; Akio Uchida; Fumi Shinagawa; Yasutaka Terada; Hiroshi Kajita; Yoshito Tanaka; Teruhiro Takabe; Takahisa Hayashi; Takayoshi Kawai; Tetsuko Takabe

2008-01-01

262

The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena.  

PubMed

Nodularia spumigena is a filamentous nitrogen-fixing cyanobacterium that forms toxic blooms in brackish water bodies worldwide. Spumigins are serine protease inhibitors reported from a single strain of N. spumigena isolated from the Baltic Sea. These linear tetrapeptides contain non-proteinogenic amino acids including a C-terminal alcohol derivative of arginine. However, very little is known about these compounds despite the ecological importance of N. spumigena. We show that spumigins are assembled by two non-ribosomal peptide synthetases encoded in a 21 kb biosynthetic gene cluster. The compact non-ribosomal peptide synthetase features a reductive loading and release mechanism. Our analyses demonstrate that the bulk of spumigins produced by N. spumigena are released as peptide aldehydes in contrast to earlier findings. The main spumigin E variant contains an argininal residue and is a potent trypsin inhibitor. Spumigins were present in all of the N. spumigena strains isolated from the Baltic Sea and comprised up to 1% of the dry weight of the cyanobacterium. Our results demonstrate that bloom-forming N. spumigena strains produce a cocktail of enzyme inhibitors, which may explain in part the ecological success of this cyanobacterium in brackish water bodies worldwide. PMID:19691450

Fewer, David P; Jokela, Jouni; Rouhiainen, Leo; Wahlsten, Matti; Koskenniemi, Kerttu; Stal, Lucas J; Sivonen, Kaarina

2009-09-01

263

The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.  

PubMed

Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline ? betaine aldehyde ? GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine ? sarcosine ? dimethylglycine ? GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture. PMID:23329680

Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

2013-03-01

264

Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore.  

PubMed

Bacteriophytochromes constitute a light-sensing subgroup of sensory kinases with a chromophore-binding motif in the N-terminal half and a C-terminally located histidine kinase activity. The cyanobacterium Fremyella diplosiphon (also designated Calothrix sp.) expresses two sequentially very similar bacteriophytochromes, cyanobacterial phytochrome A (CphA) and cyanobacterial phytochrome B (CphB). Cyanobacterial phytochrome A has the canonical cysteine residue, by which covalent chromophore attachment is accomplished in the same manner as in plant phytochromes; however, its paralog cyanobacterial phytochrome B carries a leucine residue at that position. On the basis of in vitro experiments that showed, for both cyanobacterial phytochrome A and cyanobacterial phytochrome B, light-induced autophosphorylation and phosphate transfer to their cognate response regulator proteins RcpA and RcpB [Hübschmann T, Jorissen HJMM, Börner T, Gärtner W & deMarsac NT (2001) Eur J Biochem268, 3383-3389], we aimed at the identification of a chromophore that is incorporated in vivo into cyanobacterial phytochrome B within the cyanobacterial cell. The approach was based on the introduction of a copy of cphB into the cyanobacterium via triparental conjugation. The His-tagged purified, recombinant protein (CphBcy) showed photoreversible absorption bands similar to those of plant and bacterial phytochromes, but with remarkably red-shifted maxima [lambda(max) 700 and 748 nm, red-absorbing (P(r)) and far red-absorbing (P(fr)) forms of phytochrome, respectively]. A comparison of the absorption maxima with those of the heterologously generated apoprotein, assembled with phycocyanobilin (lambda(max) 686 and 734 nm) or with biliverdin IXalpha (lambda(max) 700 and 750 +/- 2 nm), shows biliverdin IXalpha to be a genuine chromophore. The kinase activity of CphBcy and phosphotransfer to its cognate response regulator was found to be strictly P(r)-dependent. As an N-terminally located cysteine was found as an alternative covalent binding site for several bacteriophytochrome photoreceptors that bind biliverdin and lack the canonical cysteine residue (e.g. Agrobacterium tumefaciens and Deinococcus radiodurans), this corresponding residue in heterologously expressed cyanobacterial phytochrome B was mutated into a serine (C24S); however, there was no change in its spectral properties. On the other hand, the mutation of His267, which is located directly after the canonical cysteine, into alanine (H267A), caused complete loss of the capability of cyanobacterial phytochrome B to form a chromoprotein. PMID:17388813

Quest, Benjamin; Hübschmann, Thomas; Sharda, Shivani; Tandeau de Marsac, Nicole; Gärtner, Wolfgang

2007-04-01

265

Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy.  

PubMed

In photosynthetic organisms, the interactions among pigment-protein complexes change in response to light conditions. In the present study, we analyzed the transfer of excitation energy from the phycobilisome (PBS) and photosystem (PS) II to PSI in the cyanobacterium Synechocystis sp. PCC 6803. After 20 min of dark adaptation, Synechocystis cells were illuminated for 5 min with strong light with different spectral profiles, blue, green, two kinds of red, and white light. After illumination, the energy-transfer characteristics were evaluated using steady-state fluorescence and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra, followed by spectral component analysis. Under illumination with strong light, the contribution of the energy transfer from the PSII to PSI (spillover) became greater, and that of the energy transfer from the PBS to PSI decreased; the former change was larger than the latter. The energy transfer pathway to PSI was sensitive to red light. We discuss the short-term adaptation of energy-transfer processes in Synechocystis under strong-light conditions. PMID:24495908

Akimoto, Seiji; Yokono, Makio; Yokono, Erina; Aikawa, Shimpei; Kondo, Akihiko

2014-08-01

266

UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune.  

PubMed Central

Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors. PMID:9068639

Ehling-Schulz, M; Bilger, W; Scherer, S

1997-01-01

267

Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters  

PubMed Central

Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100??g/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100??g/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

2011-01-01

268

Genome-wide analysis of diel gene expression in the unicellular N(2)-fixing cyanobacterium Crocosphaera watsonii WH 8501.  

PubMed

The unicellular cyanobacterium Crocosphaera watsonii is an important nitrogen fixer in oligotrophic tropical and subtropical oceans. Metabolic, energy and cellular processes in cyanobacteria are regulated by the circadian mechanism, and/or follow the rhythmicity of light-dark cycles. The temporal separation of metabolic processes is especially essential for nitrogen fixation because of inactivation of the nitrogenase by oxygen. Using a microarray approach, we analyzed gene expression in cultures of Crocosphaera watsonii WH 8501 (C. watsonii) over a 24-h period and compared the whole-genome transcription with that in Cyanothece sp. ATCC 51142 (Cyanothece), a unicellular diazotroph that inhabits coastal marine waters. Similar to Cyanothece, regulation at the transcriptional level in C. watsonii was observed for all major metabolic and energy processes including photosynthesis, carbohydrate and amino acid metabolisms, respiration, and nitrogen fixation. Increased transcript abundance for iron acquisition genes by the end of the day appeared to be a general pattern in the unicellular diazotrophs. In contrast, genes for some ABC transporters (for example, phosphorus acquisition), DNA replication, and some genes encoding hypothetical proteins were differentially expressed in C. watsonii only. Overall, C. watsonii showed a higher percentage of genes with light-dark cycling patterns than Cyanothece, which may reflect the habitats preferences of the two cyanobacteria. This study represents the first whole-genome expression profiling in cultivated Crocosphaera, and the results will be useful in determining the basal physiology and ecology of the endemic Crocosphaera populations. PMID:20107492

Shi, Tuo; Ilikchyan, Irina; Rabouille, Sophie; Zehr, Jonathan P

2010-05-01

269

Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I  

PubMed Central

The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

2004-01-01

270

Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.  

PubMed Central

A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat®], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

2013-01-01

271

Synergistic effect of deoxyanthocyanins from symbiotic fern Azolla spp. on hrmA gene induction in the cyanobacterium Nostoc punctiforme.  

PubMed

The hrmA gene of the N2-fixing cyanobacterium Nostoc punctiforme functions in repressing the formation of transitory motile filaments, termed hormogonia, by plant-associated vegetative filaments. Here, we report that anthocyanins can contribute to induction of hrmA expression. Aqueous extract from fronds of the fern Azolla pinnata, a host of symbiotic Nostoc spp., was found to be a potent inducer of hrmA-luxAB in N. punctiforme strain UCD 328. The hrmA-luxAB inducing activities of A. pinnata, as well as Azolla filiculoides, were positively correlated with levels of frond deoxyanthocyanins. Analyses of the deoxyanthocyanins in frond extracts revealed, in order of predominance, an acetylated glycoside derivative of luteolinidin (m/z 475) and of apigeninidin (m/z 459) and minor amounts of a second luteolinidin derivative. At up to 150 microM, a purified preparation of deoxyanthocyanins only weakly induced hrmA-luxAB on its own, but mixtures with hrmA-luxAB inducers (A. filiculoides extract or the flavonoid naringin) synergistically doubled to tripled their inducing activities. These results suggest that appropriately localized deoxyanthocyanins could function in plant-mediated mechanisms for repressing Nostoc spp. hormogonium formation. PMID:12236594

Cohen, Michael F; Sakihama, Yasuko; Takagi, Yojiro C; Ichiba, Toshio; Yamasaki, Hideo

2002-09-01

272

Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune.  

PubMed

Mycosporine-like amino acids (MAAs) are UV-absorbing pigments, and structurally unique glycosylated MAAs are found in the terrestrial cyanobacterium Nostoc commune. In this study, we examined two genotypes of N.commune colonies with different water extract UV-absorption spectra. We found structurally distinct MAAs in each genotype. The water extract from genotype A showed a UV-absorbing spectrum with an absorption maximum at 335nm. The extract contained the following compounds: 7-O-(?-arabinopyranosyl)-porphyra-334 (478Da), pentose-bound shinorine (464Da), hexose-bound porphyra-334 (508Da) and porphyra-334 (346Da). The water extract from genotype B showed a characteristic UV-absorbing spectrum with double absorption maxima at 312 and 340nm. The extract contained hybrid MAAs (1050Da and 880Da) with two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen linked to 2-O-(?-xylopyranosyl)-?-galactopyranoside. A novel 273-Da MAA with an absorption maximum at 310nm was also identified in genotype B. The MAA consisted of a 3-aminocyclohexen-1-one linked to a ?-aminobutyric acid chain. These MAAs had potent radical scavenging activities in vitro and the results confirmed that the MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune. The two genotypes of N. commune exclusively produced their own characteristic glycosylated MAAs, which supports that MAA composition could be a chemotaxonomic marker for the classification of N. commune. PMID:25543549

Nazifi, Ehsan; Wada, Naoki; Asano, Tomoya; Nishiuchi, Takumi; Iwamuro, Yoshiaki; Chinaka, Satoshi; Matsugo, Seiichi; Sakamoto, Toshio

2015-01-01

273

In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns  

PubMed Central

Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

Hofmann, Hilmar; Peeters, Frank

2013-01-01

274

Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa  

NASA Astrophysics Data System (ADS)

A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5-1 ?m, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others.

Takemoto, K.; Mizuta, G.; Yamamoto, A.; Yoshimura, M.; Ichise, S.; Namba, H.; Kihara, H.

2013-10-01

275

Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.  

PubMed

A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. PMID:24140001

Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

2014-02-15

276

Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047  

SciTech Connect

Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

Ramos, J.L.; Guerrero, M.G.; Losada, M.

1984-07-01

277

Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.  

PubMed

Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the ?flv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in ?flv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

2014-07-29

278

Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa  

PubMed Central

Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L?1, but not at 1 and 2 mg L?1. Peroxide dosed at 4 or 8 mg L?1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L?1) and 12-times (8 mg L?1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

2014-01-01

279

Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142  

NASA Technical Reports Server (NTRS)

It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

1994-01-01

280

Cyclic depsipeptides, grassypeptolides D and E and Ibu-epidemethoxylyngbyastatin 3, from a Red Sea Leptolyngbya cyanobacterium.  

PubMed

Two new grassypeptolides and a lyngbyastatin analogue, together with the known dolastatin 12, have been isolated from field collections and laboratory cultures of the marine cyanobacterium Leptolyngbya sp. collected from the SS Thistlegorm shipwreck in the Red Sea. The overall stereostructures of grassypeptolides D (1) and E (2) and Ibu-epidemethoxylyngbyastatin 3 (3) were determined by a combination of 1D and 2D NMR experiments, MS analysis, Marfey's methodology, and HPLC-MS. Compounds 1 and 2 contain 2-methyl-3-aminobutyric acid and 2-aminobutyric acid, while biosynthetically distinct 3 contains 3-amino-2-methylhexanoic acid and the ?-keto amino acid 4-amino-2,2-dimethyl-3-oxopentanoic acid (Ibu). Grassypeptolides D (1) and E (2) showed significant cytotoxicity to HeLa (IC?? = 335 and 192 nM, respectively) and mouse neuro-2a blastoma cells (IC?? = 599 and 407 nM, respectively), in contrast to Ibu-epidemethoxylyngbyastatin 3 (neuro-2a cells, IC?? > 10 ?M) and dolastatin 12 (neuro-2a cells, IC?? > 1 ?M). PMID:21806012

Thornburg, Christopher C; Thimmaiah, Muralidhara; Shaala, Lamiaa A; Hau, Andrew M; Malmo, Jay M; Ishmael, Jane E; Youssef, Diaa T A; McPhail, Kerry L

2011-08-26

281

Genetic diversity along the life cycle of the cyanobacterium Microcystis: highlight on the complexity of benthic and planktonic interactions.  

PubMed

Microcystis is a toxic freshwater cyanobacterium with an annual life cycle characterized by the alternation of a planktonic proliferation stage in summer and a benthic resting stage in winter. Given the importance of both stages for the development and the survival of the population, we investigated the genotypic composition of the planktonic and benthic Microcystis subpopulations from the Grangent reservoir (France) during two distinct proliferation periods. Our results showed a succession of different dominant genotypes in the sediment as well as in the water all along the study periods with some common genotypes to both compartments. Analysis of molecular variance and UniFrac analysis confirmed the similarity between some benthic and planktonic samples, thus evidencing exchanges of genotypes between water and sediment. Thanks to these data, recruitment and sedimentation were proven not to be restricted to spring and autumn, contrary to what was previously thought. Finally, genetic diversity was significantly higher in the sediment than in the water (P?

Sabart, Marion; Misson, Benjamin; Jobard, Marlène; Bronner, Gisèle; Donnadieu-Bernard, Florence; Duffaud, Emilie; Salençon, Marie-José; Amblard, Christian; Latour, Delphine

2015-03-01

282

Effect of Nitrogen on Cellular Production and Release of the Neurotoxin Anatoxin-A in a Nitrogen-Fixing Cyanobacterium  

PubMed Central

Anatoxin-a (ANTX) is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply (as 1, 5, and 100% N of standard cyanobacterial medium corresponding to 15, 75, and 1500?mg?L?1 of NaNO3 respectively) on ANTX production and release in a toxic strain of the planktonic cyanobacterium Aphanizomenon issatschenkoi (Nostocales). We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146??g/L and 1683??g?g?1 dry weight) at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nitrogen stress. Maximal cellular contents of other cyanotoxins have recently been reported under severe stress conditions in another Nostocales species. PMID:22701451

Gagnon, Alexis; Pick, Frances R.

2012-01-01

283

Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources  

PubMed Central

The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences. PMID:22514553

Ludwig, Marcus; Bryant, Donald A.

2012-01-01

284

Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum.  

PubMed

The interactions between redox proteins are transient in nature. Therefore, very few crystal structures are available for the complexes formed between these proteins. Computational docking simulations thus provide a useful alternative method for studying the interactions between electron transfer proteins. In this paper, we have studied the interactions between the aa(3)-type cytochrome c oxidase of the cyanobacterium Phormidium laminosum and its redox partners plastocyanin and cytochrome c(6) using a combination of comparative modelling techniques and docking simulations. Rigid-body docking orientations were scored with a combined energy function that accounts for electrostatics and desolvation. These simulations have identified two plausible docking sites, one of which appears to be unique to the binding of plastocyanin to the oxidase. This unique binding site may be due to the presence of a long loop region in the subunit II of cyanobacterial oxidases. Control simulations were performed with the ba(3)-type cytochrome c oxidase and its redox partner cytochrome c(552) from Thermus thermophilus. The docking between cytochrome c oxidase and its redox partners plastocyanin and cytochrome c(6) is dominated by hydrophobic residues, a feature already observed from kinetic and structural studies in other complexes of P. laminosum (e.g. plastocyanin or cytochrome c(6) with cytochrome f and photosystem I). PMID:18824464

Hart, Sarah E; Howe, Christopher J; Mizuguchi, Kenji; Fernandez-Recio, Juan

2008-12-01

285

Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena.  

PubMed Central

Depriving the cyanobacterium Anabaena of fixed nitrogen induces the differentiation of heterocysts at intervals along its filaments. To test whether the oxygen-deficient conditions believed to prevail within mature heterocysts are sufficient, in the absence of fixed nitrogen, to elicit the expression of nitrogenase, PnifHDK was fused transcriptionally to luxAB (encoding luciferase). Expression, monitored from individual cells as light emission, was localized (with a resolution of approximately 1 micron) to differentiated cells, whether or not oxygen was present. Anabaena PCC 7118 is a heterocystless mutant strain that is known to fix nitrogen when deprived of combined nitrogen under anaerobic conditions. Three lines of evidence indicate that the mutant has retained the ability to develop a pattern despite its inability to make heterocysts. First, morphologically distinct cells appear at nonrandom intervals when filaments are starved of nitrogen. Second, these cells, like heterocysts, have little or no phycocyanin-dependent fluorescence. Third, nitrogen-starved filaments fragment, with fragment lengths similar to the spacing normally seen between heterocysts. Expression of PnifHDK-luxAB was largely confined to differentiated cells in the mutant as in the wild-type strain. These results provide evidence for a causal relationship between development and transcriptional events in Anabaena. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 9. Fig. 10. Fig. 11. PMID:2120040

Elhai, J; Wolk, C P

1990-01-01

286

Ecological physiology of Synechococcus sp. strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation  

NASA Technical Reports Server (NTRS)

Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.

Miller, S. R.; Castenholz, R. W.

2001-01-01

287

Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120  

PubMed Central

Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the ?flv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in ?flv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

2014-01-01

288

Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.  

PubMed

We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii. PMID:25176411

Airs, R L; Temperton, B; Sambles, C; Farnham, G; Skill, S C; Llewellyn, C A

2014-10-16

289

CO 2 removal by high-density culture of a marine cyanobacterium synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers  

Microsoft Academic Search

A light diffusing optical fiber (LDOF) photobioreactor with an improved gas input system has been used for the high-density\\u000a culture of a marine cyanobacterium Synechococcus sp. Optimum conditions for CO2 removal and biomass production were investigated.\\u000a Maximum CO2 removal of 4.44 g\\/L\\/d was achieved using an initial cell concentration of 6.8 g\\/L. The biomass yield was 0.97\\u000a g\\/L for a

Hiroyuki Takano; Haruko Takeyama; Noriyuki Nakamura; Koji Sode; J. Grant BURGESS; Eichi Manabe; Morio Hirano; Tadashi Matsunaga

1992-01-01

290

Mycosporine-like amino acids (MAAs) profile of a rice-field cyanobacterium Anabaena doliolum as influenced by PAR and UVR  

Microsoft Academic Search

The mycosporine-like amino acid (MAA) profile of a rice-field cyanobacterium, Anabaena doliolum, was studied under PAR and PAR + UVR conditions. The high-performance liquid chromatographic analysis of water-soluble compounds\\u000a reveals the biosynthesis of three MAAs, mycosporine-glycine (?\\u000a max = 310 nm), porphyra-334 (?\\u000a max = 334 nm) and shinorine (?\\u000a max = 334 nm), with retention times of 4.1, 3.5 and 2.3 min, respectively. This is the first report for the occurrence

Shailendra P. Singh; Rajeshwar P. Sinha; Manfred Klisch; Donat-P. Häder

2008-01-01

291

Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations  

SciTech Connect

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental conditions, such as temperature and nutrient availability. However the global protein responses of Synechocystis 6803 under physiological relevant environmental stresses have not been characterized. Here we present the first global proteome analysis of a photoautotrophic bacteria and the most complete coverage to date of a photosynthetic prokaryotic proteome. To obtain a more complete description of the protein components of Synechocystis 6803, we have performed an in-depth proteome analysis of this organism utilizing the Accurate Mass and Time (AMT) tag approach1 utilizing 33 growth conditions and timepoints. The resulting proteome consists of 22,318 unique peptides, corresponding to 2,369 unique proteins, covering 65% of the predicted proteins. Quantitative analysis of protein abundance ratios under nutrient stress revealed that Synechocystis 6803 resorts to a universal mechanism for nitrogen utilization under phosphate, sulfate, iron, and nitrogen depletion. Comparison of this proteomic data with previously published microarray studies under similar environmental conditions showed that the general response predicted by both types of analyses are common but that the actual levels of protein expression can not be inferred from gene expression data. Our results demonstrate a global nitrogen response to multiple stressors that may be similar to that used by other cyanobacteria under various stress conditions. We anticipate that this protein expression data will be a foundation for the photosynthetic and biofuel communities to better understand metabolic changes under physiological conditions relevant to global productivity. Further more, this comparison of correlation between gene and protein expression data provides deeper insight into the ongoing debate as to whether gene expression can be used to infer cellular response.

Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

2010-12-01

292

Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata  

PubMed Central

Musty “off-flavor” in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 ?M (125 ?g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1?-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 ?M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.

2003-01-01

293

Sheathless Mutant of Cyanobacterium Gloeothece sp. Strain PCC 6909 with Increased Capacity To Remove Copper Ions from Aqueous Solutions?  

PubMed Central

The cyanobacterium Gloeothece sp. strain PCC 6909 and its sheathless mutant were tested for their abilities to remove copper ions from aqueous solutions, with the aim of defining the role of the various outermost polysaccharidic investments in the removal of the metal ions. Microscopy studies and chemical analyses revealed that, although the mutant does not possess a sheath, it releases large amounts of polysaccharidic material (released exocellular polysaccharides [RPS]) into the culture medium. The RPS of the wild type and the mutant are composed of the same 11 sugars, although they are present in different amounts, and the RPS of the mutant possesses a larger amount of acidic sugars and a smaller amount of deoxysugars than the wild type. Unexpectedly, whole cultures of the mutant were more effective in the removal of the heavy metal than the wild type (46.3 ± 3.1 and 26.7 ± 1.5 mg of Cu2+ removed per g of dry weight, respectively). Moreover, we demonstrated that the contribution of the sheath to the metal-removal capacity of the wild type is scarce and that the RPS of the mutant is more efficient in removing copper. This suggests that the metal ions are preferably bound to the cell wall and to RPS functional groups rather than to the sheath. Therefore, the increased copper binding efficiency observed with the sheathless mutant can be attributed to the release of a polysaccharide containing larger amounts and/or more accessible functional groups (e.g., carboxyl and amide groups). PMID:18326679

Micheletti, Ernesto; Pereira, Sara; Mannelli, Francesca; Moradas-Ferreira, Pedro; Tamagnini, Paula; De Philippis, Roberto

2008-01-01

294

Wastewater Utilization for Poly-?-Hydroxybutyrate Production by the Cyanobacterium Aulosira fertilissima in a Recirculatory Aquaculture System?  

PubMed Central

Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-?-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter?1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter?1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m?2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ?17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242

Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

2011-01-01

295

Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803  

PubMed Central

Protoporphyrinogen oxidase (Protox) catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX during the synthesis of tetrapyrrole molecules. Protox is encoded by the hemY gene in eukaryotes and by the hemG gene in many ?-proteobacteria, including Escherichia coli. It has been suggested that other bacteria possess a yet unidentified type of Protox. To identify a unique bacterial gene encoding Protox, we first introduced the Arabidopsis hemY gene into the genome of the cyanobacterium, Synechocystis sp. PCC6803. We subsequently mutagenized the cells by transposon tagging and screened the tagged lines for mutants that were sensitive to acifluorfen, which is a specific inhibitor of the hemY-type Protox. Several cell lines containing the tagged slr1790 locus exhibited acifluorfen sensitivity. The slr1790 gene encodes a putative membrane-spanning protein that is distantly related to the M subunit of NADH dehydrogenase complex I. We attempted to disrupt this gene in the wild-type background of Synechocystis, but we were only able to obtain heteroplasmic disruptants. These cells accumulated a substantial amount of protoporphyrin IX, suggesting that the slr1790 gene is essential for growth and Protox activity of cells. We found that most cyanobacteria and many other bacteria possess slr1790 homologs. We overexpressed an slr1790 homolog of Rhodobacter sphaeroides in Escherichia coli and found that this recombinant protein possesses Protox activity in vitro. These results collectively demonstrate that slr1790 encodes a unique Protox enzyme and we propose naming the slr1790 gene “hemJ.” PMID:20823222

Kato, Kazushige; Tanaka, Ryouichi; Sano, Shinsuke; Tanaka, Ayumi; Hosaka, Hideo

2010-01-01

296

Identification of OmpR-Family Response Regulators Interacting with Thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803  

PubMed Central

The redox state of the photosynthetic electron transport chain is known to act as a signal to regulate the transcription of key genes involved in the acclimation responses to environmental changes. We hypothesized that the protein thioredoxin (Trx) acts as a mediator connecting the redox state of the photosynthetic electron transport chain and transcriptional regulation, and established a screening system to identify transcription factors (TFs) that interact with Trx. His-tagged TFs and S-tagged mutated form of Trx, TrxMC35S, whose active site cysteine 35 was substituted with serine to trap the target interacting protein, were co-expressed in E. coli cells and Trx-TF complexes were detected by immuno-blotting analysis. We examined the interaction between Trx and ten OmpR family TFs encoded in the chromosome of the cyanobacterium Synechocystis sp. PCC 6803 (S.6803). Although there is a highly conserved cysteine residue in the receiver domain of all OmpR family TFs, only three, RpaA (Slr0115), RpaB (Slr0946) and ManR (Slr1837), were identified as putative Trx targets. The recombinant forms of wild-type TrxM, RpaA, RpaB and ManR proteins from S.6803 were purified following over-expression in E. coli and their interaction was further assessed by monitoring changes in the number of cysteine residues with free thiol groups. An increase in the number of free thiols was observed after incubation of the oxidized TFs with Trx, indicating the reduction of cysteine residues as a consequence of interaction with Trx. Our results suggest, for the first time, the possible regulation of OmpR family TFs through the supply of reducing equivalents from Trx, as well as through the phospho-transfer from its cognate sensor histidine kinase. PMID:25774906

Kadowaki, Taro; Nishiyama, Yoshitaka; Hisabori, Toru; Hihara, Yukako

2015-01-01

297

Photoinhibition and Recovery of Photosynthesis in psbA Gene-Inactivated Strains of Cyanobacterium Anacystis nidulans1  

PubMed Central

The susceptibility of photosynthesis to photoinhibition and the rate of its recovery were studied in cyanobacterium Anacystis nidulans strain R2 and its two psbA gene-inactivated mutants R2S2C3 and R2K1. Changes in the fluorescence kinetics at 77K as well as the rate of O2 evolution were measured when cells were exposed to high photosynthetic photon flux densities in the range of 0 to 2,000 micromoles per square meter per second. The R2S2C3 mutant has an active psbAI gene highly expressed under low and normal light intensities, whereas R2K1 possesses psbAII and psbAIII genes highly expressed under very high light intensities. The level of overall susceptibility of photosynthesis to photoinhibition was more pronounced in the wild type and the mutant R2S2C3 than in the mutant R2K1, especially at higher light intensities. In constrast, all three strains showed an increased but similar sensitivity to photoinhibition after addition of the translational inhibitor streptomycin; mutant R2K1 being slightly less sensitive at lower light intensities. The result is interpreted as demonstrating similar intrinsic susceptibility to photoinhibition of the two different forms of the D1 protein, form I and form II, encoded by the psbAI and psbAII/psbAIII genes, respectively. The increased resistance to photoinhibition of the R2K1 mutant was ascribed to an approximately 3 times higher rate of recovery than the wild type and the mutant R2S2C3. On the basis of our experiments we conclude that the susceptibilities to photoinhibition of the Anacystis nidulans psbA genes mutants studied are regulated mainly by modifying the rate of repair, i.e. the rate of turnover of the D1 protein. PMID:16667418

Krupa, Zbigniew; Öquist, Gunnar; Gustafsson, Petter

1990-01-01

298

Balticidins A-D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33.  

PubMed

Balticidins A-D (1-4), four new antifungal lipopeptides, were isolated from the laboratory-cultivated cyanobacterium Anabaena cylindrica strain Bio33 isolated from a water sample collected from the Baltic Sea, Rügen Island, Germany. Fractionation of the 50% aqueous MeOH extract was performed by bioassay-guided silica gel column chromatography followed by SPE and repeated reversed-phase HPLC. The main fraction containing the compounds exhibited a strong and specific antifungal activity with inhibition zones in an agar-diffusion assay from 21 to 32 mm against Candida albicans, Candida krusei, Candida maltosa, Aspergillus fumigatus, Microsporum gypseum, Mucor sp., and Microsporum canis. The structures were elucidated by multidimensional (1)H and (13)C NMR spectroscopy, HRESIMS, amino acid analysis, and sugar analysis. Spectroscopic data analysis afforded an unambiguous sequence of R.CHO(S1).CHOH.CONH-Thr(1)-Thr(2)-Thr(3)-HOTyr(4)-Dhb(5)-D-Gln(6)-Gly(7)-NMeThr(8)(S2)-L-Gln COOH(9), in which Dhb is dehydroaminobutyric acid, S1 is d(-)-arabinose-(3-1)-D-(+)-galacturonic acid, S2 is D-(+)-mannose, and R is the aliphatic residue -C13H26Cl or -C13H27. Besides NMeThr, D-allo-Thr, D-Thr, and L-Thr were identified, but the position of the enantiomers in the sequence is not clear. The four balticidins differ in their cyclic (2, 4)/linear (1, 3) core and the presence (1, 2)/absence (3, 4) of chlorine in the aliphatic unit. PMID:24937366

Bui, Thanh-Huong; Wray, Victor; Nimtz, Manfred; Fossen, Torgils; Preisitsch, Michael; Schröder, Gudrun; Wende, Kristian; Heiden, Stefan E; Mundt, Sabine

2014-06-27

299

Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.  

PubMed

Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

2014-12-01

300

Morphological and genetic evidence that the cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck encompasses at least two species.  

PubMed

Dense blooms of the cyanobacterium Lyngbya wollei are increasingly responsible for declining water quality and habitat degradation in numerous springs, rivers, and reservoirs. This research represents the first molecular phylogenetic analysis of L. wollei in comparison with the traditional morphological characterization of this species. Specimens were collected from several springs in Florida and a reservoir in North Carolina. Segments of the small-subunit (SSU) rRNA and nifH genes were PCR amplified, cloned, and sequenced. The phylogenetic analysis of the SSU rRNA gene revealed sequences that fell into three distinct subclusters, each with >97% sequence similarity. These were designated operational taxonomic unit 1 (OTU1), OTU2, and OTU3. Similarly, the nifH sequences fell into three distinct subclusters named S1, S2, and S3. When either bulk samples or individual filaments were analyzed, we recovered OTU1 with S1, OTU2 with S2, and OTU3 with S3. The coherence between the three SSU rRNA gene and nifH subclusters was consistent with genetically distinct strains or species. Cells associated with subclusters OTU3 and S3 were significantly wider and longer than those associated with other subclusters. The combined molecular and morphological data indicate that the species commonly identified as L. wollei in the literature represents two or possibly more species. Springs containing OTU3 and S3 demonstrated lower ion concentrations than other collection sites. Geographical locations of Lyngbya subclusters did not correlate with residual dissolved inorganic nitrogen or phosphorus concentrations. This study emphasizes the need to complement traditional identification with molecular characterization to more definitively detect and characterize harmful cyanobacterial species or strains. PMID:18441114

Joyner, Jennifer J; Litaker, R Wayne; Paerl, Hans W

2008-06-01

301

Gene Transfer in Leptolyngbya sp. Strain BL0902, a Cyanobacterium Suitable for Production of Biomass and Bioproducts  

PubMed Central

Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22°C to 40°C and tolerated up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled Arthrospira (“pirulina” strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a “elper”plasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial production strain. PMID:22292073

Taton, Arnaud; Lis, Ewa; Adin, Dawn M.; Dong, Guogang; Cookson, Scott; Kay, Steve A.; Golden, Susan S.; Golden, James W.

2012-01-01

302

Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process.  

PubMed Central

A glucose-tolerant strain of Synechocystis sp. strain 6803 will not grow on glucose under complete darkness unless given a daily pulse of white light, typically 5 min of 40 mumol m-2 s-1 (light-pulsed conditions). The light pulse is insufficient for photoautotrophy, as glucose is required and growth yield is dependent on glucose concentration. Growth rate is independent of fluence, but growth yield is dependent on fluence, saturating at 40 to 75 mumol m-2 s-1. A Synechocystis strain 6803 psbA mutant strain grows under light-pulsed conditions at rates similar to those for the glucose-tolerant strain, indicating that photosystem II is not required for growth. The relative spectral sensitivity of the growth of light-pulsed cultures (growth only in blue light, 400 to 500 nm, maximum at 450 nm) precludes energetic contribution from cyclic electron transport around photosystem I. Pulses of long-wavelength light (i.e., 550 and 650 nm) did not support the growth of Synechocystis strain 6803 and, when supplied before or after a blue-light pulse, did not inhibit blue-light-stimulated growth of Synechocystis strain 6803. We conclude that the required blue-light pulse does not support growth via photosynthetic electron transport but appears instead to function as an environmental signal regulating heterotrophic metabolism, cell division, or other photomorphogenic processes. We have termed the growth of Synechocystis strain 6803 pulsed with light and kept otherwise in complete darkness light-activated heterotrophic growth. This observation of a blue-light requirement for the growth of Synechocystis strain 6803 represents a novel blue light effect on the growth of a cyanobacterium. PMID:1902208

Anderson, S L; McIntosh, L

1991-01-01

303

Photochromic biliproteins from the cyanobacterium Anabaena sp. PCC 7120: lyase activities, chromophore exchange, and photochromism in phytochrome AphA.  

PubMed

Photochromic biliproteins can be switched by light between two states, initiated by Z/E photoisomerization of the linear tetrapyrrole chromophore. The cyanobacterium Anabaena sp. PCC 7120 contains three genes coding for such biliproteins, two coding for phytochromes (aphA/B) and one for the alpha subunit of phycoerythrocyanin (pecA). (a) aphA was overexpressed in Escherichia coli with N-terminal His and S tags, and the protein was reconstituted by an optimized protocol with phycocyanobilin (PCB), to yield the photochromic chromoprotein, PCB-AphA, carrying the PCB chromophore. (b) AphA chromophorylation is autocatalytic such as in other phytochromes. (c) AphA chromophorylation is also possible by chromophore transfer from the PCB-carrying biliprotein, phycocyanin (CPC). The autocatalytic transfer is very slow, and it is enhanced more than 100-fold by catalysis of PCB:CpcA lyase and alpha-CPC as donor. (d) Through deletion mutations of aphA, a short sequence IQPHGV [amino acids (aa) 26-31] was found essential for the lyase activity of AphA, indicating an interaction of the N terminus with the chromophore-binding domain around cysteine 259. (e) A motif of at least 23 aa, starting with this sequence and located approximately 250 aa N terminal of the chromophore-binding cysteine, is proposed to relate to the lyase function in plant and most prokaryotic phytochromes. (f) Long-range interactions in AphA are further supported by blue-shifted absorptions (

Zhao, Kai-Hong; Ran, Yong; Li, Mei; Sun, Ya-Nan; Zhou, Ming; Storf, Max; Kupka, Michaela; Böhm, Stefan; Bubenzer, Claudia; Scheer, Hugo

2004-09-14

304

Transcriptional regulation of the respiratory genes in the cyanobacterium Synechocystis sp. PCC 6803 during the early response to glucose feeding.  

PubMed

The coordinated expression of the genes involved in respiration in the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 during the early period of glucose (Glc) treatment is poorly understood. When photoautotrophically grown cells were supplemented with 10 mm Glc in the light or after a dark adaptation period of 14 h, significant increases in the respiratory activity, as determined by NAD(P)H turnover, respiratory O(2) uptake rate, and cytosolic alkalization, were observed. At the same time, the transcript levels of 18 genes coding for enzymes associated with respiration increased with differential induction kinetics; these genes were classified into three groups based on their half-rising times. Transcript levels of the four genes gpi, zwf, pdhB, and atpB started to increase along with a net increase in NAD(P)H, while the onset of net NAD(P)H consumption coincided with an increase in those of the genes tktA, ppc, pdhD, icd, ndhD2, ndbA, ctaD1, cydA, and atpE. In contrast, the expression of the atpI/G/D/A/C genes coding for ATP synthase subunits was the slowest among respiratory genes and their expression started to accumulate only after the establishment of cytosolic alkalization. These differential effects of Glc on the transcript levels of respiratory genes were not observed by inactivation of the genes encoding the Glc transporter or glucokinase. In addition, several Glc analogs could not mimic the effects of Glc. Our findings suggest that genes encoding some enzymes involved in central carbon metabolism and oxidative phosphorylation are coordinately regulated at the transcriptional level during the switch of nutritional mode. PMID:17827271

Lee, Sanghyeob; Ryu, Jee-Youn; Kim, Soo Youn; Jeon, Jae-Heung; Song, Ji Young; Cho, Hyung-Taeg; Choi, Sang-Bong; Choi, Doil; de Marsac, Nicole Tandeau; Park, Youn-Il

2007-11-01

305

The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity  

PubMed Central

Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (?hupL), and we determined how this would affect the amount of H2 produced. The ?hupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

Zhang, Xiaohui; Sherman, Debra M.

2014-01-01

306

Salinity Tolerance of Picochlorum atomus and the Use of Salinity for Contamination Control by the Freshwater Cyanobacterium Pseudanabaena limnetica  

PubMed Central

Microalgae are ideal candidates for waste-gas and –water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles – an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass. PMID:23667639

von Alvensleben, Nicolas; Stookey, Katherine; Magnusson, Marie; Heimann, Kirsten

2013-01-01

307

Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles  

SciTech Connect

Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

2009-06-01

308

Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the Chlorophyll d-Containing Cyanobacterium Acaryochloris marina  

PubMed Central

The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ?700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 ?mol photons m?2 s?1 for blue light but no clear saturation at 365 ?mol photons m?2 s?1 for NIR. The maximal gross photosynthesis rates in the aggregates were ?1,272 ?mol O2 mg Chl d?1 h?1 (NIR) and ?1,128 ?mol O2 mg Chl d?1 h?1 (VIS). The photosynthetic efficiency (?) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10?6 m2 mg Chl d?1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10?6 m2 mg Chl d?1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions. PMID:22467501

Behrendt, Lars; Schrameyer, Verena; Qvortrup, Klaus; Lundin, Luisa; Sørensen, Søren J.; Larkum, Anthony W. D.

2012-01-01

309

Net light-induced oxygen evolution in photosystem I deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (?PSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30 min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ?PSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ?PSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ?PSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme. PMID:22266340

Wang, Qing Jun; Singh, Abhay; Li, Hong; Nedbal, Ladislav; Sherman, Louis A; Govindjee; Whitmarsh, John

2012-05-01

310

Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756.  

PubMed

Starch and glycogen are widespread storage polysaccharides in bacteria, plants, and animals. Recently, some cyanobacteria were found to accumulate water-insoluble ?-glucan similar to amylopectin rather than glycogen, the latter of which is more commonly produced in these organisms. The amylopectin-producing species including Cyanobacterium sp. NBRC 102756 invariably have three branching enzyme (BE) homologs, BE1, BE2, and BE3, all belonging to the glycoside hydrolase family 13. Multiple BE isoforms in prokaryotes have not been previously studied. In the present work, we carried out functional characterization of these enzymes expressed in Escherichia coli. The recombinant enzymes were all active, although the specific activity of BE3 was much lower than those of BE1 and BE2. After the incubation of the enzymes with amylopectin or amylose, the reaction products were analyzed by fluorophore-assisted carbohydrate capillary electrophoresis method. BE1 and BE2 showed similar chain-length preference to BEIIb isoform of rice (Oryza sativa L.), while the catalytic specificity of BE3 was similar to that of rice BEI. These results indicate that starch-producing cyanobacteria have both type-I BE (BE3) and type-II BEs (BE1 and BE2) in terms of chain-length preferences, as is the case of plants. All BE isoforms were active against phosphorylase limit dextrin, in which outer branches had been uniformly diminished to 4 glucose residues. Based on its catalytic properties, BE3 was assumed to have a role to transfer the glucan chain bearing branch(es) to give rise to a newly growing unit, or cluster as observed in amylopectin molecule. PMID:25731081

Suzuki, Ryuichiro; Koide, Keiichi; Hayashi, Mari; Suzuki, Tomoko; Sawada, Takayuki; Ohdan, Takashi; Takahashi, Hidekazu; Nakamura, Yasunori; Fujita, Naoko; Suzuki, Eiji

2015-05-01

311

Persistent Phytoplankton Bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) Caused by a Cyanobacterium Closely Associated with the Genus Cyanothece (Synechococcaceae, Chroococcales) ?  

PubMed Central

Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped. PMID:21742912

Muir, David G.; Perissinotto, Renzo

2011-01-01

312

Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.  

PubMed

Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ?alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ?alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. PMID:25209059

Burnat, Mireia; Flores, Enrique

2014-10-01

313

Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis.  

PubMed

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

Voss, Björn; Bolhuis, Henk; Fewer, David P; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J; Hagemann, Martin; Stal, Lucas J; Hess, Wolfgang R

2013-01-01

314

Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena  

PubMed Central

Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [14C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ?alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [14C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ?alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. PMID:25209059

Burnat, Mireia; Flores, Enrique

2014-01-01

315

Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis  

PubMed Central

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

2013-01-01

316

PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 (Nostocales) can be induced by sodium and potassium ions.  

PubMed

Paralytic shellfish poisoning (PSP) toxins are a group of naturally occurring neurotoxic alkaloids produced among several genera of primarily freshwater cyanobacteria and marine dinoflagellates. Although saxitoxin (STX) and analogs are all potent Na(+) channel blockers in vertebrate cells, the functional role of these compounds for the toxigenic microorganisms is unknown. Based upon the known importance of monovalent cations (such as sodium) in the maintenance of cellular homeostasis and ion channel function, we examined the effect of high extracellular concentrations of these ions on growth, cellular integrity, toxin production and release to the external medium in the filamentous freshwater cyanobacterium, Raphidiopsis brookii D9; a gonyautoxins (GTX2/3) and STX producing toxigenic strain. We observed a toxin export in response to high (17 mM) NaCl and KCl concentrations in the growth medium that was not primarily related to osmotic stress effects, compared to the osmolyte mannitol. Addition of exogenous PSP toxins with the same compositional profile as the one produced by R. brookii D9 was able to partially mitigate this effect of high Na? (17 mM). The PSP toxin biosynthetic gene cluster (sxt) in D9 has two genes (sxtF and sxtM) that encode for a MATE (multidrug and toxic compound extrusion) transporter. This protein family, represented by NorM in the bacterium Vibrio parahaemolyticus, confers resistance to multiple cationic toxic agents through Na?/drug antiporters. Conserved domains for Na? and drug recognition have been described in NorM. For the D9 sxt cluster, the Na? recognition domain is conserved in both SxtF and SxtM, but the drug recognition domain differs between them. These results suggest that PSP toxins are exported directly in response to the presence of monovalent cations (Na?, K?) at least at elevated concentrations. Thus, the presence of both genes in the sxt cluster from strain D9 can be explained as a selective recognition mechanism by the SxtF/M transporters for GTX2/3 and STX. We propose that these toxins in cyanobacteria could act extracellularly as a protective mechanism to ensure homeostasis against extreme salt variation in the environment. PMID:22983012

Soto-Liebe, Katia; Méndez, Marco A; Fuenzalida, Loreto; Krock, Bernd; Cembella, Allan; Vásquez, Mónica

2012-12-01

317

Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa  

PubMed Central

Background The water-bloom-forming cyanobacterium Microcystis aeruginosa is a known producer of various kinds of toxic and bioactive chemicals. Of these, hepatotoxic cyclic heptapeptides microcystins have been studied most intensively due to increasing concerns for human health risks and environmental damage. More than 70 variants of microcystins are known, and a single microcystin synthetase (mcy) gene cluster consisting of 10 genes (mcyA to mcyJ) has been identified to be responsible for the production of all known variants of microcystins. Our previous multilocus sequence typing (MLST) analysis of the seven housekeeping genes indicated that microcystin-producing strains of M. aeruginosa are classified into two phylogenetic groups. Results To investigate whether the mcy genes are genetically structured similarly as in MLST analysis of the housekeeping genes and to identify the evolutionary forces responsible for the genetic divergence of these genes, we used 118 mcy-positive isolates to perform phylogenetic and population genetic analyses of mcy genes based on three mcy loci within the mcy gene cluster (mcyD, mcyG, and mcyJ), none of which is involved in the production of different microcystin variants. Both individual phylogenetic analysis and multilocus genealogical analysis of the mcy genes divided our isolates into two clades, consistent with the MLST phylogeny based on seven housekeeping loci. No shared characteristics within each clade are known, and microcystin analyses did not identify any compositional trend specific to each clade. Statistical analyses for recombination indicated that recombination among the mcy genes is much more frequent within clades than between, suggesting that recombination has been an important force maintaining the cryptic divergence of mcy genes. On the other hand, a series of statistical tests provided no strong evidence for selection to explain the deep divergence of the mcy genes. Furthermore, analysis of molecular variance (AMOVA) indicated a low level of geographic structuring in the genetic diversity of mcy. Conclusion Our phylogenetic analyses suggest that the mcy genes of M. aeruginosa are subdivided into two cryptic clades, consistent with the phylogeny determined by MLST. Population genetic analyses suggest that these two clades have primarily been maintained as a result of homology-dependent recombination and neutral genetic drift. PMID:19463155

Tanabe, Yuuhiko; Sano, Tomoharu; Kasai, Fumie; Watanabe, Makoto M

2009-01-01

318

Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content  

NASA Astrophysics Data System (ADS)

The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all detected proteins in each photosystem was only 1.2, and the median was only 0.72 based on the median. These results contradict the earlier predication of a biochemical basis for a high cellular iron in Synechococcus and may extend to the marine cyanobacteria in general.

Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

2008-12-01

319

Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: analysis of the slow fluorescence transient.  

PubMed

At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at approximately 0.2-1 and M at approximately 100-500 s, with a minimum S at approximately 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS-->Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS-->PS I excitation transfer. Blocking the PBS-->PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobacterial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P-->T fluorescence decay, reminiscent of the typical P-->T fluorescence decay of higher plants and algae. A similar P-->T decay was also displayed by DCMU-treated Synechococcus cells at 2 degrees C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2-->1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P-->T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1-->2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS-->PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like. PMID:17448439

Stamatakis, Kostas; Tsimilli-Michael, Merope; Papageorgiou, George C

2007-06-01

320

Elucidation of Insertion Elements Carried on Plasmids and In Vitro Construction of Shuttle Vectors from the Toxic Cyanobacterium Planktothrix  

PubMed Central

Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6K? origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

Christiansen, Guntram; Goesmann, Alexander

2014-01-01

321

Halotolerant Cyanobacterium Aphanothece halophytica Contains NapA-Type Na+/H+ Antiporters with Novel Ion Specificity That Are Involved in Salt Tolerance at Alkaline pH  

PubMed Central

Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow at NaCl concentrations up to 3.0 M and at pH values up to 11. The genome sequence revealed that the cyanobacterium Synechocystis sp. strain PCC 6803 contains five putative Na+/H+ antiporters, two of which are homologous to NhaP of Pseudomonas aeruginosa and three of which are homologous to NapA of Enterococcus hirae. The physiological and functional properties of NapA-type antiporters are largely unknown. One of NapA-type antiporters in Synechocystis sp. strain PCC 6803 has been proposed to be essential for the survival of this organism. In this study, we examined the isolation and characterization of the homologous gene in Aphanothece halophytica. Two genes encoding polypeptides of the same size, designated Ap-napA1-1 and Ap-napA1-2, were isolated. Ap-NapA1-1 exhibited a higher level of homology to the Synechocystis ortholog (Syn-NapA1) than Ap-NapA1-2 exhibited. Ap-NapA1-1, Ap-NapA1-2, and Syn-NapA1 complemented the salt-sensitive phenotypes of an Escherichia coli mutant and exhibited strongly pH-dependent Na+/H+ and Li+/H+ exchange activities (the highest activities were at alkaline pH), although the activities of Ap-NapA1-2 were significantly lower than the activities of the other polypeptides. Only one these polypeptides, Ap-NapA1-2, complemented a K+ uptake-deficient E. coli mutant and exhibited K+ uptake activity. Mutagenesis experiments suggested the importance of Glu129, Asp225, and Asp226 in the putative transmembrane segment and Glu142 in the loop region for the activity. Overexpression of Ap-NapA1-1 in the freshwater cyanobacterium Synechococcus sp. strain PCC 7942 enhanced the salt tolerance of cells, especially at alkaline pH. These findings indicate that A. halophytica has two NapA1-type antiporters which exhibit different ion specificities and play an important role in salt tolerance at alkaline pH. PMID:16085800

Wutipraditkul, Nuchanat; Waditee, Rungaroon; Incharoensakdi, Aran; Hibino, Takashi; Tanaka, Yoshito; Nakamura, Tatsunosuke; Shikata, Masamitsu; Takabe, Tetsuko; Takabe, Teruhiro

2005-01-01

322

Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin  

NASA Astrophysics Data System (ADS)

Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 ? M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further required a growth term to adequately model As(III) excretion by the cyanobacterium. The impact of N:P ratios on As reduction rates implies that N:P cycling can be coupled to As biogeochemistry in surface waters through the action of phytoplankton.

Markley, C. T.; Herbert, B. E.

2004-12-01

323

Looking at the stability of life-support microorganisms in space : the MELGEN activity highlights the cyanobacterium Arthrospira sp. PCC8005  

NASA Astrophysics Data System (ADS)

The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of Arthrospira sp. PCC 8005, fully annotated. This genomic information opens the gates to a better understanding of the biology of this cyanobacterium and will be a key to the development of appropriate derivatives that provide enhanced performances (e.g. radiation resistance, genetic stability, photosynthesis and nutritive properties).

Morin, Nicolas

324

Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species  

NASA Technical Reports Server (NTRS)

The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

2011-01-01

325

Investigation and modeling of biomass decay rate in the dark and its potential influence on net productivity of solar photobioreactors for microalga Chlamydomonas reinhardtii and cyanobacterium Arthrospira platensis.  

PubMed

Biomass decay rate (BDR) in the dark was investigated for Chlamydomonas reinhardtii (microalga) and Arthrospira platensis (cyanobacterium). A specific setup based on a torus photobioreactor with online gas analysis was validated, enabling us to follow the time course of the specific BDR using oxygen monitoring and mass balance. Various operating parameters that could limit respiration rates, such as culture temperature and oxygen deprivation, were then investigated. C. reinhardtii was found to present a higher BDR in the dark than A. platensis, illustrating here the difference between eukaryotic and prokaryotic cells. In both cases, temperature proved an influential parameter, and the Arrhenius law was found to efficiently relate specific BDR to culture temperature. The utility of decreasing temperature at night to increase biomass productivity in a solar photobioreactor is also illustrated. PMID:23619140

Le Borgne, François; Pruvost, Jérémy

2013-06-01

326

?pH-dependent non-photochemical quenching (qE) of excited chlorophylls in the photosystem II core complex of the freshwater cyanobacterium Synechococcus sp PCC 7942.  

PubMed

Light-induced and lumen acidity-dependent quenching (qE) of excited chlorophylls (Chl) in vivo has been amply documented in plants and algae, but not in cyanobacteria, using primarily the saturation pulse method of quenching analysis which is applied to continuously illuminated samples. This method is unsuitable for cyanobacteria because the background illumination elicits in them a very large Chl a fluorescence signal, due to a state 2 to state 1 transition, which masks fluorescence changes due to other causes. We investigated the qE problem in the cyanobacterium Synechococcus sp. PCC 7942 using a kinetic method (Chl a fluorescence induction) with which qE can be examined before the onset of the state 2 to state 1 transition and the attendant rise of Chl a fluorescence. Our results confirm the existence of a qE mechanism that operates on excited Chls a in Photosystem II core complexes of cyanobacteria. PMID:24793104

Stamatakis, Kostas; Papageorgiou, George C

2014-08-01

327

Regulation of Genes Involved in Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120 by a Group 2 Sigma Factor SigC.  

PubMed

The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates specialized cells for nitrogen fixation called heterocysts upon limitation of combined nitrogen in the medium. During heterocyst differentiation, expression of approximately 500 genes is upregulated with spatiotemporal regulation. In the present study, we investigated the functions of sigma factors of RNA polymerase in the regulation of heterocyst differentiation. The transcript levels of sigC, sigE, and sigG were increased during heterocyst differentiation, while expression of sigJ was downregulated. We carried out DNA microarray analysis to identify genes regulated by SigC, SigE, and SigG. It was indicated that SigC regulated the expression of genes involved in heterocyst differentiation and functions. Moreover, genes regulated by SigC partially overlapped with those regulated by SigE, and deficiency of SigC was likely to be compensated by SigE. PMID:25692906

Ehira, Shigeki; Miyazaki, Shogo

2015-01-01

328

Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis.  

PubMed

Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%-65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%-26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%-36.38%), ?-linolenic acid (C18:3(n-3); 0.00%-21.29%), ?-linolenic acid (C18:3(n-6); 1.94%-17.36%), and arachidonic acid (C20:4(n-6); 0.00%-15.37%). The highest content of ?-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ?-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent. PMID:24566307

Ambrozova, Jarmila Vavra; Misurcova, Ladislava; Vicha, Robert; Machu, Ludmila; Samek, Dusan; Baron, Mojmir; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

2014-01-01

329

Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India.  

PubMed

Nostoc muscorum was isolated from a coal mining pit in Chiehruphi, Meghalaya, India, and its potential to remove Zn(II) and Cu(II) from media and the various biochemical alterations it undergoes during metal stress were studied. Metal uptake measured as a function of the ions removed by N. muscorum from media supplemented independently with 20 ?mol/L ZnSO4 and CuSO4 established the ability of this cyanobacterium to remove 66% of Zn(2+) and 71% of Cu(2+) within 24 h of contact time. Metal binding on the cell surface was found to be the primary mode of uptake, followed by internalization. Within 7 days of contact, Zn(2+) and Cu(2+) mediated dissimilar effects on the organism. For instance, although chlorophyll a synthesis was increased by 12% in Zn(2+)-treated cells, it was reduced by 26% in Cu(2+)-treated cells. Total protein content remained unaltered in Zn(2+)-supplemented medium; however, a 15% reduction was noticed upon Cu(2+) exposure. Copper enhanced both photosynthesis and respiration by 15% and 19%, respectively; in contrast, photosynthesis was unchanged and respiration dropped by 11% upon Zn(2+) treatment. Inoculum age also influenced metal removal ability. Experiments in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosynthetic inhibitor), carbonyl cyanide m-chlorophenyl hydrazone (an uncoupler), and exogenous ATP established that metal uptake was energy dependent, and photosynthesis contributed significantly towards the energy pool required to mediate metal removals. PMID:25670258

Goswami, Smita; Diengdoh, Omega L; Syiem, Mayashree B; Pakshirajan, Kannan; Kiran, Mothe Gopi

2015-03-01

330

Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803*S?  

PubMed Central

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed. PMID:18502765

Kopycki, Jakub Grzegorz; Stubbs, Milton T.; Brandt, Wolfgang; Hagemann, Martin; Porzel, Andrea; Schmidt, Jürgen; Schliemann, Willibald; Zenk, Meinhart H.; Vogt, Thomas

2008-01-01

331

Two Members of a Network of Putative Na+/H+ Antiporters Are Involved in Salt and pH Tolerance of the Freshwater Cyanobacterium Synechococcus elongatus? †  

PubMed Central

Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na+/H+ antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na+/H+ antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na+/H+ antiporter activity of the Na+-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (?nha1, ?nha2, ?nha3, ?nha4, ?nha5, and ?nha7) had a phenotype different from that of the wild type. In particular, ?nhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while ?nha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions. PMID:18641132

Billini, Maria; Stamatakis, Kostas; Sophianopoulou, Vicky

2008-01-01

332

Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth.  

PubMed

Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

Aguirre von Wobeser, Eneas; Ibelings, Bas W; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C P

2011-03-01

333

Inactivation of the petE gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus.  

PubMed Central

We describe the identification and expression of a petE gene in Synechococcus sp. PCC 7942, a cyanobacterium previously thought to lack plastocyanin. The petE gene is a 420-bp open reading frame that encodes a protein 70 to 75% similar to plastocyanins from other cyanobacteria. Synechococcus possesses a single genomic copy of petE located immediately upstream of the clpB gene. It is transcribed as a single mRNA (550 bases) and, in contrast to most other photobionts, the level of petE expression in Synechococcus is unaffected by variable copper concentrations during acclimated growth. Inactivation of petE does not prevent photoautotrophic growth, but does induce a dramatic increase in mRNA for the alternative electron carrier cytochrome C6. Despite this adjustment, loss of plastocyanin results in slower growth, lower photosystem I content, and a decreased maximum capacity for photosynthetic electron transport. The mutant is also more susceptible to chilling-induced photoinhibition during a shift from 37 to 25 degrees C, at which temperature its inherently lower photosynthetic capacity exacerbates the normal slowing of electron transfer reactions at low temperatures. Under similar conditions, the amount of petE message in the wild type decreases by 50% in the 1st h, but then increases dramatically to almost three times the 37 degrees C level by 9 h. PMID:8972599

Clarke, A K; Campbell, D

1996-01-01

334

Structural and Synthetic Investigations of Tanikolide Dimer, a SIRT2 Selective Inhibitor, and Tanikolide Seco Acid from the Madagascar Marine Cyanobacterium Lyngbya majuscula  

PubMed Central

Tanikolide seco acid 2 and tanikolide dimer 3, the latter a novel and selective SIRT2 inhibitor, were isolated from the Madagascar marine cyanobacterium Lyngbya majuscula. The structure of 2, isolated as the pure R enantiomer, was elucidated by an X-ray experiment in conjunction with NMR and optical rotation data, whereas the depside molecular structure of 3 was initially thought to be a meso compound as established by NMR, MS and chiral HPLC analyses. Subsequent total synthesis of the three tanikolide dimer stereoisomers 4, 5, and ent-5, followed by chiral GC-MS comparisons with the natural product, showed it to be exclusively the R,R-isomer 5. Tanikolide dimer 3 (=5) inhibited SIRT2 with an IC50 = 176 nM in one assay format, and 2.4 µM in another. Stereochemical determination of symmetrical dimers such as compound 3 pose intriguing and subtle questions in structure elucidation, and as shown in the current work, are perhaps best answered in conjunction with total synthesis. PMID:19572575

Gutiérrez, Marcelino; Andrianasolo, Eric H.; Shin, Won Kyo; Goeger, Douglas E.; Yokochi, Alexandre; Schemies, Jörg; Jung, Manfred; France, Dennis; Cornell-Kennon, Susan; Lee, Eun; Gerwick, William H.

2009-01-01

335

Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance.  

PubMed

Serine hydroxymethyltransferase (SHMT) is a key enzyme in cellular one-carbon pathway and has been studied in many living organisms from bacteria to higher plants and mammals. However, biochemical and molecular characterization of SHMT from photoautotrophic microorganisms remains a challenge. Here, we isolated the SHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (ApSHMT) and expressed it in Escherichia coli. Purified recombinant ApSHMT protein exhibited catalytic reactions for dl-threo-3-phenylserine as well as for l-serine. Catalytic reaction for l-serine was strongly inhibited by NaCl, but not to that level with glycine betaine. Overexpression of ApSHMT in E. coli resulted in the increased accumulation of glycine and serine. Choline and glycine betaine levels were also significantly increased. Under high salinity, the growth rate of ApSHMT-expressing cells was faster compared to its respective control. High salinity also strongly induced the transcript level of ApSHMT in A. halophytica. Our results indicate the importance of a novel pathway; salt-induced ApSHMT increased the level of glycine betaine via serine and choline and conferred the tolerance to salinity stress. PMID:22587350

Waditee-Sirisattha, Rungaroon; Sittipol, Daungjai; Tanaka, Yoshito; Takabe, Teruhiro

2012-08-01

336

Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein.  

PubMed

In the filamentous heterocyst-forming cyanobacterium Anabaena PCC 7120, vegetative cells and heterocysts are interdependent on each other and engaged in exchanges of metabolites for survival when grown under diazotrophic conditions. In this organism, the periplasm appears to be continuous along each filament, with a shared outer membrane; however, barriers exist preventing free diffusion of the fluorescent protein GFP (27 kDa) targeted into the periplasmic space. Here we expressed a smaller fluorescent protein iLOV (? 13 kDa) fused to the All3333 (a putative homologue of NrtA) signal sequence corresponding to those recognized by the TAT protein translocation system, which exports iLOV to the periplasm of either heterocysts or vegetative cells. Fluorescence microscopy and immunoblot analysis indicated that the iLOV protein is translocated into the periplasm of the producing cell and properly processed, but does not diffuse to neighboring cells via the periplasm. Thus, periplasmic barriers appear to block diffusion of molecules with a size of 13 kDa, the minimum size tested thus far. Assuming that the physical barrier is the peptidoglycan sacculus, its pores might allow diffusion of molecules within the size range between the PatS pentapeptide and iLOV, thus between 0.53 kDa and 13 kDa. PMID:23748014

Zhang, Li-Chen; Risoul, Véronique; Latifi, Amel; Christie, John M; Zhang, Cheng-Cai

2013-09-01

337

Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC, a strain incapable of glycogen storage.  

PubMed

A key objective in microbial biofuels strain development is to maximize carbon flux to target products while minimizing cell biomass accumulation, such that ideally the algae and bacteria would operate in a photo-catalytic state. A brief period of such a physiological state has recently been demonstrated in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC strain incapable of glycogen storage. When deprived of nitrogen, the ?glgC excretes the organic acids alpha-ketoglutarate and pyruvate for a number of days without increasing cell biomass. This study examines the relationship between the growth state and the photo-catalytic state, and characterizes the metabolic adaptability of the photo-catalytic state to increasing light intensity. It is found that the culture can transition naturally from the growth state into the photo-catalytic state when provided with limited nitrogen supply during the growth phase. Photosynthetic capacity and pigments are lost over time in the photo-catalytic state. Reversal to growth state is observed with re-addition of nitrogen nutrient, accompanied by restoration of photosynthetic capacity and pigment levels in the cells. While the overall productivity increased under high light conditions, the ratio of alpha-ketoglutarate/pyruvate is altered, suggesting that carbon partition between the two products is adaptable to environmental conditions. PMID:25616027

Carrieri, Damian; Broadbent, Charlie; Carruth, David; Paddock, Troy; Ungerer, Justin; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

2015-03-01

338

An Rrf2-Type Transcriptional Regulator Is Required for Expression of psaAB Genes in the Cyanobacterium Synechocystis sp. PCC 68031[W][OA  

PubMed Central

Photosynthetic organisms must regulate photosystem stoichiometry (photosystem I-to-photosystem II ratio) under various light conditions. Transcriptional regulation of the psaAB genes is a critical process for this photoacclimation in cyanobacteria. In the course of our screening of transcriptional regulators in the cyanobacterium Synechocystis sp. PCC 6803, we found that chlorophyll accumulation was impaired in an Rrf2-type regulator Slr0846 mutant. DNA microarray and primer extension analyses showed that the expression of psaAB genes was markedly decreased in the mutant. Consistently, the mutant exhibited lower photosystem I-to-photosystem II ratio under normal light conditions, suggestive of decreased accumulation of the photosystem I reaction center. Gel-shift assay confirmed that the Slr0846 protein bound to a far upstream promoter region of psaAB. These phenotypes of the mutant varied substantially with light conditions. These results suggest that Slr0846 is a novel transcriptional regulator for optimal expression of psaAB. PMID:19692537

Midorikawa, Takafumi; Matsumoto, Koji; Narikawa, Rei; Ikeuchi, Masahiko

2009-01-01

339

Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142  

PubMed Central

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. PMID:22529767

Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei; Fredrickson, Jim K.; Konopka, Allan E.; Beliaev, Alexander S.; Reed, Jennifer L.

2012-01-01

340

Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA.  

PubMed

The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2. PMID:25002430

Ehira, Shigeki; Kimura, Satoshi; Miyazaki, Shogo; Ohmori, Masayuki

2014-09-01

341

Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp.  

PubMed

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N(2) in differentiated cells called heterocysts, which exchange nutritional and regulatory compounds with the neighbouring photosynthetic vegetative cells. The cells in the filament appear to be joined by some protein structures, of which SepJ (FraG) that is located at the cell poles in the intercellular septa and is needed for filament integrity seems to be a component. Other known proteins required for filament integrity include FraC and FraH. Whereas fraC (alr2392) was constitutively expressed as an operon together with two downstream genes, alr2393 (fraD) and alr2394 (fraE), fraH (alr1603) was induced under nitrogen deprivation. Single mutants of these genes showed filament fragmentation under nitrogen deprivation and did not grow diazotrophically, although they formed heterocysts. The fraC and fraD mutants showed an impaired localization of SepJ at the intercellular septa and were hampered in the intercellular transfer of the fluorescent probe calcein. As shown with GFP fusions, FraC and FraD are also located at the intercellular septa. Therefore, at least three different proteins, SepJ, FraC and FraD, influence the architecture and function of the intercellular septa in the Anabaena filaments. PMID:20487302

Merino-Puerto, Victoria; Mariscal, Vicente; Mullineaux, Conrad W; Herrero, Antonia; Flores, Enrique

2010-03-01

342

Identification of the correct form of the mis-annotated response regulator Rre1 from the cyanobacterium Synechocystis sp. PCC 6803.  

PubMed

Two-component systems have been extensively described in the control of gene expression in response to different environmental signals in the cyanobacterium Synechocystis sp. PCC 6803. The Hik34-Rre1 two-component system has been shown to regulate a set of genes under certain stress conditions. Some evidence indicates that another histidine kinase, probably Hik2, is acting upstream of Rre1 in the regulation of some genes in response to hyperosmotic and salt stress. In the present study, a mis-annotation of the Rre1 protein has been identified and the correct version has been functionally characterized in vitro. By using EMSA assays, we have demonstrated that phosphorylation of Rre1 by Hik2 increases the affinity of the response regulator for the adhA promoter region, a gene that has been demonstrated previously to be specifically regulated by the Hik34-Rre1 system. These results suggest that Hik2 might cooperate with Hik34 in the regulation of the adhA gene by transferring the phosphoryl group to Rre1 under salt and hyperosmotic stress conditions. PMID:25714549

Vidal, Rebeca

2015-04-01

343

Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica.  

PubMed

Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 ?mol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source. PMID:24375141

Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Sopun, Warangkana; Tanaka, Yoshito; Takabe, Teruhiro

2014-03-01

344

Plasmid Stability in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis and its Potential for GFP Imaging of Survivors on Earth and in Space  

NASA Astrophysics Data System (ADS)

Two GFP-based plasmids, namely pTTQ18-GFP-pDU1mini and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1mini-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecASyn distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecASyn structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

Billi, Daniela

2012-06-01

345

Identification and Upregulation of Biosynthetic Genes Required for Accumulation of Mycosporine-2-Glycine under Salt Stress Conditions in the Halotolerant Cyanobacterium Aphanothece halophytica  

PubMed Central

Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 ?mol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source. PMID:24375141

Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Sopun, Warangkana; Tanaka, Yoshito

2014-01-01

346

Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 ?glgC, a strain incapable of glycogen storage  

PubMed Central

A key objective in microbial biofuels strain development is to maximize carbon flux to target products while minimizing cell biomass accumulation, such that ideally the algae and bacteria would operate in a photo-catalytic state. A brief period of such a physiological state has recently been demonstrated in the cyanobacterium Synechocystis sp.?PCC 6803 ?glgC strain incapable of glycogen storage. When deprived of nitrogen, the ?glgC excretes the organic acids alpha-ketoglutarate and pyruvate for a number of days without increasing cell biomass. This study examines the relationship between the growth state and the photo-catalytic state, and characterizes the metabolic adaptability of the photo-catalytic state to increasing light intensity. It is found that the culture can transition naturally from the growth state into the photo-catalytic state when provided with limited nitrogen supply during the growth phase. Photosynthetic capacity and pigments are lost over time in the photo-catalytic state. Reversal to growth state is observed with re-addition of nitrogen nutrient, accompanied by restoration of photosynthetic capacity and pigment levels in the cells. While the overall productivity increased under high light conditions, the ratio of alpha-ketoglutarate/pyruvate is altered, suggesting that carbon partition between the two products is adaptable to environmental conditions. PMID:25616027

Carrieri, Damian; Broadbent, Charlie; Carruth, David; Paddock, Troy; Ungerer, Justin; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

2015-01-01

347

Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean.  

PubMed

The globally abundant, uncultured unicellular cyanobacterium UCYN-A was recently discovered living in association with a eukaryotic cell closely related to a prymnesiophyte. Here, we established a double CAtalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) approach to identify both partners and provided quantitative information on their distribution and abundance across distinct water masses along a transect in the North Atlantic Ocean. The N2 fixation activity coincided with the detection of UCYN-A cells and was only observed in oligotrophic (?18°C) surface waters. Parallel 16S ribosomal RNA gene analyses among unicellular diazotrophs indicated that only UCYN-A cells were present. UCYN-A cells were associated with an algal partner or non-associated using the double CARD-FISH approach. We demonstrated that UCYN-A cells living in association with Haptophyta were the dominant form (87.0?±?6.1%), whereas non-associated UCYN-A cells represented only a minor fraction (5.2?±?3.9%). Interestingly, UCYN-A cells were also detected living in association with unknown single-celled eukaryotes in small amounts (7.8?±?5.2%), presumably Alveolata. The proposed ecological niche of UCYN-A as an oligotrophic, mesophilic and obligate symbiotic nitrogen-fixing microorganism is evident for the North Atlantic Ocean. PMID:24612325

Krupke, Andreas; Lavik, Gaute; Halm, Hannah; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

2014-10-01

348

2,3-Seco-2,3-dioxo-lyngbyatoxin A from a Red Sea strain of the marine cyanobacterium Moorea producens.  

PubMed

Chemical investigation of the organic extract of a Red Sea strain of the cyanobacterium Moorea producens has afforded 2,3-seco-2,3-dioxo-lyngbyatoxin A (1). Five known compounds including lyngbyatoxin A (2), majusculamides A and B (3 and 4), aplysiatoxin (5) and debromoaplysiatoxin (6) were also isolated. Their structures were elucidated by using HR-FAB-MS, 1D and 2D NMR analyses. The compounds were evaluated for antiproliferative activity against HeLa cancer cells. Lyngbyatoxin A (2) showed potent activity, with an IC50 of 9.2 nM, while 5 and 6 displayed modest activity with IC50 values of 13.3 and 3.03 ?M, respectively. In contrast, compounds 1, 3 and 4 were inactive, with IC50 values greater than 50 ?M. The lack of cytotoxicity for 2,3-seco-2,3-dioxo-lyngbyatoxin A (1) demonstrates that the indole moiety in lyngbyatoxin (2) is essential for its cytotoxicity, and suggests that detoxification of 2 may be carried out by biological oxidation of the indole moiety to yield 1. PMID:25421266

Youssef, Diaa T A; Shaala, Lamiaa A; Mohamed, Gamal A; Ibrahim, Sabrin R M; Banjar, Zainy M; Badr, Jihan M; McPhail, Kerry L; Risinger, April L; Mooberry, Susan L

2015-04-01

349

Expression of the ggpS Gene, Involved in Osmolyte Synthesis in the Marine Cyanobacterium Synechococcus sp. Strain PCC 7002, Revealed Regulatory Differences between This Strain and the Freshwater Strain Synechocystis sp. Strain PCC 6803  

PubMed Central

Synthesis of the osmolyte glucosylglycerol (GG) in the marine cyanobacterium Synechococcus sp. strain PCC 7002 was characterized. The ggpS gene, which encodes the key enzyme (GG-phosphate synthase [GgpS]) in GG biosynthesis, was cloned by using PCR. A 2,030-bp DNA sequence which contained one open reading frame (ORF) was obtained. The protein deduced from this ORF exhibited 85% similarity to the GgpS of the freshwater cyanobacterium Synechocystis sp. strain PCC 6803. The function of the protein was confirmed by generating a ggpS null mutant, which was not able to synthesize GG and thus exhibited a salt-sensitive phenotype. Expression of the ggpS gene was analyzed in salt-shocked cells by performing Northern blot and immunoblot experiments. While almost no expression was detected in cells grown in low-salt medium, immediately after a salt shock the amounts of ggpS mRNA and GgpS protein increased up to 100-fold. The finding that salt-induced expression occurred was confirmed by measuring enzyme activities, which were negligible in control cells but clearly higher in salt-treated Synechococcus sp. cells. The salt-induced increase in GgpS activity could be inhibited by adding chloramphenicol, while in protein extracts of the freshwater cyanobacterium Synechocystis sp. strain PCC 6803 a constitutive, high level of enzyme activity that was not affected by chloramphenicol was found. A comparison of GG accumulation in the two cyanobacteria revealed that in the marine strain osmolyte synthesis seemed to be regulated mainly by transcriptional control, whereas in the freshwater strain control seemed to be predominantly posttranslational. PMID:10543792

Engelbrecht, Friederike; Marin, Kay; Hagemann, Martin

1999-01-01

350

The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the gene for the large subunit in the cyanobacterium Anacystis nidulans 6301.  

PubMed Central

The gene for the small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from a cyanobacterium, Anacystis nidulans 6301, has been cloned and subjected to sequence analysis. The SS coding region is located close to and downstream from the large subunit (LS) coding region on the same DNA strand. The spacer region between the LS and the SS coding regions contains 93 base pairs (bp), and has no promoter-like sequences. The coding region of A. nidulans SS gene contains 333 bp (111 codons). The deduced amino acid sequence of the A. nidulans SS protein shows 40% homology with those of higher plants. Images PMID:6415615

Shinozaki, K; Sugiura, M

1983-01-01

351

Chorismate Pyruvate-Lyase and 4-Hydroxy-3-solanesylbenzoate Decarboxylase Are Required for Plastoquinone Biosynthesis in the Cyanobacterium Synechocystis sp. PCC6803  

PubMed Central

Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated. PMID:24337576

Pfaff, Christian; Glindemann, Niels; Gruber, Jens; Frentzen, Margrit; Sadre, Radin

2014-01-01

352

Acclimation Processes in the Light-Harvesting System of the Cyanobacterium Anacystis nidulans following a Light Shift from White to Red Light 1  

PubMed Central

Cyanobacteria acclimate to changes in light by adjusting the amounts of different cellular compounds, for example the light-harvesting macromolecular complex. Described are the acclimatization responses in the light-harvesting system of the cyanobacterium Anacystis nidulans following a shift from high intensity, white light to low intensity, red light. The phycocyanin and chlorophyll content and the relative amount of the two linker peptides (33 and 30 kilodaltons) in the phycobilisome were studied. Both the phycocyanin and chlorophyll content per cell increased after the shift, although the phycocyanin increased relatively more. The increase in phycocyanin was biphasic in nature, a fast initial phase and a slower second phase, while the chlorophyll increase was completed in one phase. The phycocyanin and chlorophyll responses to red light were immediate and were completed within 30 and 80 hours for chlorophyll and phycocyanin, respectively. An immediate response was also seen for the two phycobilisome linker peptides. The amount of both of them increased after the shift, although the 33 kilodalton linker peptide increased faster than the 30 kilodalton linker peptide. The increase of the content of the two linker peptides stopped when the phycocyanin increase shifted from the first to the second phase. We believe that the first phase of phycocyanin increase was due mainly to an increase in the phycobilisome size while the second phase was caused only by an increase in the amount of phycobilisomes. The termination of chlorophyll accumulation, which indicates that no further reaction center chlorophyll antennae were formed, occurred parallel to the onset of the second phase of phycocyanin accumulation. Images Fig. 7 PMID:16664182

Lönneborg, Anders; Lind, Lisbet K.; Kalla, S. Roger; Gustafsson, Petter; Öquist, Gunnar

1985-01-01

353

Glutamate production from CO{sub 2} by marine cyanobacterium synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers  

SciTech Connect

A photobioreactor was constructed in the form of a Perspex column 900 mm tall with an internal diameter of 70 mm. The reactor volume was 1.8 L and the light source consisted of a metal-halide lamp to reproduce sunlight. Light was distributed through the culture using a new type of optical fiber that diffuses light out through its surface, perpendicular to the fiber axis. A cluster of 661 light-diffusing optical fibers (LDOFs) pass from the light source through the reactor column (60-cm culture depth) and are connected to a mirror at the top of the reactor. This biosolar reactor has been used for the production of glutamate from CO{sub 2} by the marine cyanobacterium Synechococcus sp. NKBG040607. We present here details of the construction of the biosolar reactor and characterization of its properties. The effect of light intensity on glutamate production was measured. Carbon dioxide-to-glutarnate conversion ratios were determined at different cell densities: the maximum conversion ratio (28%) was achieved at a cell density of 3{times}10{sup 8} cells/mL. A comparison of glutamate production using the LDOF biosolar reactor described here with production by batch culture using free or immobilized cells showed that use of an optical-fiber biosolar reactor increased glutamate-production efficiency 6.75-fold. We conclude that as a result of its high surface-to-volume ratio (692/m) increased photoproduction of useful compounds may be achieved. Such a system is generally applicable to all aspects of photobiotechnology.

Matsunaga, Tadashi; Takeyama, Haruko; Sudo, Hiroaki [Tokyo Univ. of Agriculture and Technology (Japan)] [and others

1991-12-31

354

Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine.  

PubMed

In the present work, we describe a cheap, unexplored and simple procedure for the synthesis of zinc oxide nanoparticles (ZnONPs) using the cell extract of the cyanobacterium, Anabaena strain L31. An attempt was also made to conjugate synthesized ZnONPs with a UV-absorbing water soluble compound shinorine. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and TEM-selected area electron diffraction (SAED) analyses were made to elucidate the formation and characterization of ZnONPs and ZnONPs-shinorine conjugate. The synthesized ZnONPs were characterized by a sharp peak at 370 nm in UV-vis spectrum. TEM images showed the formation of spherical shaped nanoparticles with an average size of 80 nm. Results of selective area electron diffraction (SAED) pattern showed a set of rings which suggested uniform shape with hexagonal structure of ZnONPs. XRD spectra confirmed the crystalline structure of particles. Conjugation of ZnONPs with shinorine was successfully achieved at pH 7.0 and 10mM concentration of shinorine. The conjugate showed a zeta potential value of -3.75 mV as compared to +30.25 mV of ZnONPs. The change in zeta potential value of ZnONPs-shinorine conjugate was attributed to the changes in the surface functionalities after conjugation. The generation of in vivo reactive oxygen species (ROS) by Anabaena strain L31 with treatment of ZnONPs-shinorine conjugate showed approximately 75% less ROS generation as compared to ZnONPs. Properties exhibited by the ZnONPs-shinorine conjugate suggest that it may be used as a potential agent in developing environmental-friendly sunscreen filters of biological origin. PMID:24911272

Singh, Garvita; Babele, Piyoosh K; Kumar, Ashok; Srivastava, Anup; Sinha, Rajeshwar P; Tyagi, Madhu B

2014-09-01

355

Proteomic analysis of the cyanobacterium Anabaena sp. strain PCC7120 with two-dimensional gel electrophoresis and amino-terminal sequencing.  

PubMed

A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation. PMID:16245056

Sazuka, Takashi

2003-01-01

356

Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.  

PubMed

The sensitivity to high light conditions of Photosystem II with either PsbA1 (WT*1) or PsbA3 (WT*3) as the D1 protein was studied in whole cells of the thermophilic cyanobacterium Thermosynechococcus elongatus. When the cells are cultivated under high light conditions the following results were found: (i) The O(2) evolution activity decreases faster in WT*1 cells than in WT*3 cells both in the absence and in the presence of lincomycin, a protein synthesis inhibitor; (ii) In WT*1 cells, the rate constant for the decrease of the O(2) evolution activity is comparable in the presence and in the absence of lincomycin; (iii) The D1 content revealed by western blot analysis decays similarly in both WT*1 and WT*3 cells and much slowly than O(2) evolution; (iv) The faster decrease in O(2) evolution in WT*1 than in WT*3 cells correlates with a much faster inhibition of the S(2)-state formation; (v) The shape of the WT*1 cells is altered. All these results are in agreement with a photo-inhibition process resulting in the loss of the O(2) activity much faster than the D1 turnover in PsbA1-PSII and likely to a greater production of reactive oxygen species under high light conditions in WT*1 than in WT*3. This latter result is discussed in view of the known effects of the PsbA1 to PsbA3 substitution on the redox properties of the Photosystem II cofactors. The observation that under low light conditions WT*3 cells are able to express the psbA(3) gene, whereas under similar conditions wild type cells are expressing mainly the psbA(1) gene is also discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22326861

Ogami, Shogo; Boussac, Alain; Sugiura, Miwa

2012-08-01

357

Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.  

PubMed

In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm?¹, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm?¹ appear to reflect CNH? and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. PMID:24560813

Gryliuk, G; Rätsep, M; Hildebrandt, S; Irrgang, K-D; Eckert, H-J; Pieper, J

2014-09-01

358

Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the cytoplasmic-side of cytochrome b559 in photosystem II.  

PubMed

We performed spectroscopic and functional characterization on cyanobacterium Synechocystis PCC6803 with mutations of charged residues of the cytoplasmic side of cytochrome (Cyt) b559 in photosystem II (PSII). All of the mutant cells grew photoautotrophically and assembled stable PSII. However, R7E?, R17E? and R17L? mutant cells grew significantly slower and were more susceptible to photoinhibition than wild-type cells. The adverse effects of the arginine mutations on the activity and the stability of PSII were in the following order (R17L?>R7E?>R17E? and R17A?). All these arginine mutants exhibited normal period-four oscillation in oxygen yield. Thermoluminescence characteristics indicated a slight decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the R7E? and R17L? mutant cells. R7E? and R17L? PSII core complexes contained predominantly the low potential form of Cyt b559. EPR results indicated the displacement of one of the two axial ligands to the heme of Cyt b559 in R7E? and R17L? mutant reaction centers. Our results demonstrate that the electrostatic interactions between these arginine residues and the heme propionates of Cyt b559 are important to the structure and redox properties of Cyt b559. In addition, the blue light-induced nonphotochemical quenching was significantly attenuated and its recovery was accelerated in the R7L? and R17L? mutant cells. Furthermore, ultra performance liquid chromatography-mass spectrometry results showed that the PQ pool was more reduced in the R7E? and R17L? mutant cells than wild-type cells in the dark. Our data support a functional role of Cyt b559 in protection of PSII under photoinhibition conditions in vivo. PMID:23399490

Chiu, Yi-Fang; Chen, Yung-Han; Roncel, Mercedes; Dilbeck, Preston L; Huang, Jine-Yung; Ke, Shyue-Chu; Ortega, José M; Burnap, Robert L; Chu, Hsiu-An

2013-04-01

359

A Novel Allele of kaiA Shortens the Circadian Period and Strengthens Interaction of Oscillator Components in the Cyanobacterium Synechococcus elongatus PCC 7942?  

PubMed Central

The basic circadian oscillator of the unicellular fresh water cyanobacterium Synechococcus elongatus PCC 7942, the model organism for cyanobacterial circadian clocks, consists of only three protein components: KaiA, KaiB, and KaiC. These proteins, all of which are homomultimers, periodically interact to form large protein complexes with stoichiometries that depend on the phosphorylation state of KaiC. KaiA stimulates KaiC autophosphorylation through direct physical interactions. Screening a library of S. elongatus transposon mutants for circadian clock phenotypes uncovered an atypical short-period mutant that carries a kaiA insertion. Genetic and biochemical analyses showed that the short-period phenotype is caused by the truncation of KaiA by three amino acid residues at its C terminus. The disruption of a negative element upstream of the kaiBC promoter was another consequence of the insertion of the transposon; when not associated with a truncated kaiA allele, this mutation extended the circadian period. The circadian rhythm of KaiC phosphorylation was conserved in these mutants, but with some modifications in the rhythmic pattern of KaiC phosphorylation, such as the ratio of phosphorylated to unphosphorylated KaiC and the relative phase of the circadian phosphorylation peak. The results showed that there is no correlation between the phasing of the KaiC phosphorylation pattern and the rhythm of gene expression, measured as bioluminescence from luciferase reporter genes. The interaction between KaiC and the truncated KaiA was stronger than normal, as shown by fluorescence anisotropy analysis. Our data suggest that the KaiA-KaiC interaction and the circadian pattern of KaiC autophosphorylation are both important for determining the period, but not the relative phasing, of circadian rhythms in S. elongatus. PMID:19395479

Chen, You; Kim, Yong-Ick; Mackey, Shannon R.; Holtman, C. Kay; LiWang, Andy; Golden, Susan S.

2009-01-01

360

Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b(6)f complex from spinach and the cyanobacterium Mastigocladus laminosus.  

PubMed

Highly active cytochrome b(6)f complexes from spinach and the cyanobacterium Mastigocladus laminosus have been analyzed by liquid chromatography with electrospray ionization mass spectrometry (LCMS+). Both size-exclusion and reverse-phase separations were used to separate protein subunits allowing measurement of their molecular masses to an accuracy exceeding 0.01% (+/-3 Da at 30,000 Da). The products of petA, petB, petC, petD, petG, petL, petM, and petN were detected in complexes from both spinach and M. laminosus, while the spinach complex also contained ferredoxin-NADP(+) oxidoreductase (Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Flavonucleotide:ferredoxin reductase is a subunit of the plant cytochrome b(6)f complex. J. Biol. Chem. 276, 38159-38165). While the measured masses of PetC and PetD (18935.8 and 17311.8 Da, respectively) from spinach are consistent with the published primary structure, the measured masses of cytochrome f (31934.7 Da, PetA) and cytochrome b (24886.9 Da, PetB) modestly deviate from values calculated based upon genomic sequence and known post-translational modifications. The low molecular weight protein subunits have been sequenced using tandem mass spectrometry (MSMS) without prior cleavage. Sequences derived from the MSMS spectra of these intact membrane proteins in the range of 3.2-4.2 kDa were compared with translations of genomic DNA sequence where available. Products of the spinach chloroplast genome, PetG, PetL, and PetN, all retained their initiating formylmethionine, while the nuclear encoded PetM was cleaved after import from the cytoplasm. While the sequences of PetG and PetN revealed no discrepancy with translations of the spinach chloroplast genome, Phe was detected at position 2 of PetL. The spinach chloroplast genome reports a codon for Ser at position 2 implying the presence of a DNA sequencing error or a previously undiscovered RNA editing event. Clearly, complete annotation of genomic data requires detailed expression measurements of primary structure by mass spectrometry. Full subunit coverage of an oligomeric intrinsic membrane protein complex by LCMS+ presents a new facet to intact mass proteomics. PMID:12438564

Whitelegge, Julian P; Zhang, Huamin; Aguilera, Rodrigo; Taylor, Ross M; Cramer, William A

2002-10-01

361

LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity.  

PubMed

The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca(2+) and in the temperature range of 30-57°C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, (86)GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress. PMID:25523083

Kumar, Arvind; Kirti, Anurag; Rajaram, Hema

2015-02-01

362

HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU  

SciTech Connect

The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 ?mole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 ?mole m-2 s-1. Excessive light at 400 ?mole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal at an initial nitrate concentration of 1 mM and a light intensity of 100 ?mole m-2 s-1. DCMU was shown in all experiments to severely decrease hydrogen production as time progressed. With the information acquired so far, future experiments with reducing substances could determine maximum rates of hydrogen production. If maximum hydrogen production rates proved to be large enough, Plectonema boryanum could be grown on an industrial scale to provide hydrogen gas as a renewable fuel.

Carter, B.; Huesemann, M.

2008-01-01

363

Stability of toxin gene proportion in red-pigmented populations of the cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich  

PubMed Central

Background Harmful algal blooms deteriorate the services of aquatic ecosystems. They are often formed by cyanobacteria composed of genotypes able to produce a certain toxin, for example, the hepatotoxin microcystin (MC), but also of nontoxic genotypes that either carry mutations in the genes encoding toxin synthesis or that lost those genes during evolution. In general, cyanobacterial blooms are favored by eutrophication. Very little is known about the stability of the toxic/nontoxic genotype composition during trophic change. Results Archived samples of preserved phytoplankton on filters from aquatic ecosystems that underwent changes in the trophic state provide a so far unrealized possibility to analyze the response of toxic/nontoxic genotype composition to the environment. During a period of 29 years of re-oligotrophication of the deep, physically stratified Lake Zürich (1980 to 2008), the population of the stratifying cyanobacterium Planktothrix was at a minimum during the most eutrophic years (1980 to 1984), but increased and dominated the phytoplankton during the past two decades. Quantitative polymerase chain reaction revealed that during the whole observation period the proportion of the toxic genotype was strikingly stable, that is, close to 100%. Inactive MC genotypes carrying mutations within the MC synthesis genes never became abundant. Unexpectedly, a nontoxic genotype, which lost its MC genes during evolution, and which could be shown to be dominant under eutrophic conditions in shallow polymictic lakes, also co-occurred in Lake Zürich but was never abundant. As it is most likely that this nontoxic genotype contains relatively weak gas vesicles unable to withstand the high water pressure in deep lakes, it is concluded that regular deep mixing selectively reduced its abundance through the destruction of gas vesicles. Conclusions The stability in toxic genotype dominance gives evidence for the adaptation to deep mixing of a genotype that retained the MC gene cluster during evolution. Such a long-term dominance of a toxic genotype draws attention to the need to integrate phylogenetics into ecological research as well as ecosystem management. PMID:23216925

2012-01-01

364

Stoichiometry of the Photosynthetic Apparatus and Phycobilisome Structure of the Cyanobacterium Plectonema boryanum UTEX 485 Are Regulated by Both Light and Temperature1  

PubMed Central

The role of growth temperature and growth irradiance on the regulation of the stoichiometry and function of the photosynthetic apparatus was examined in the cyanobacterium Plectonema boryanum UTEX 485 by comparing mid-log phase cultures grown at either 29°C/150 ?mol m?2 s?1, 29°C/750 ?mol m?2 s?1, 15°C/150 ?mol m?2 s?1, or 15°C/10 ?mol m?2 s?1. Cultures grown at 29°C/750 ?mol m?2 s?1 were structurally and functionally similar to those grown at 15°C/150 ?mol m?2 s?1, whereas cultures grown at 29°C/150 ?mol m?2 s?1 were structurally and functionally similar to those grown at 15°C/10 ?mol m?2 s?1. The stoichiometry of specific components of the photosynthetic apparatus, such as the ratio of photosystem (PS) I to PSII, phycobilisome size and the relative abundance of the cytochrome b6/f complex, the plastoquinone pool size, and the NAD(P)H dehydrogenase complex were regulated by both growth temperature and growth irradiance in a similar manner. This indicates that temperature and irradiance may share a common sensing/signaling pathway to regulate the stoichiometry and function of the photosynthetic apparatus in P. boryanum. In contrast, the accumulation of neither the D1 polypeptide of PSII, the large subunit of Rubisco, nor the CF1 ?-subunit appeared to be regulated by the same mechanism. Measurements of P700 photooxidation in vivo in the presence and absence of inhibitors of photosynthetic electron transport coupled with immunoblots of the NAD(P)H dehydrogenase complex in cells grown at either 29°C/750 ?mol m?2 s?1 or 15°C/150 ?mol m?2 s?1 are consistent with an increased flow of respiratory electrons into the photosynthetic intersystem electron transport chain maintaining P700 in a reduced state relative to cells grown at either 29°C/150 ?mol m?2 s?1 or 15°C/10 ?mol m?2 s?1. These results are discussed in terms of acclimation to excitation pressure imposed by either low growth temperature or high growth irradiance. PMID:12428006

Miskiewicz, Ewa; Ivanov, Alexander G.; Huner, Norman P.A.

2002-01-01

365

PsaE Is Required for in Vivo Cyclic Electron Flow around Photosystem I in the Cyanobacterium Synechococcus sp. PCC 7002.  

PubMed Central

Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I. PMID:12231924

Yu, L.; Zhao, J.; Muhlenhoff, U.; Bryant, D. A.; Golbeck, J. H.

1993-01-01

366

Simultaneous production of H{sub 2} and O{sub 2} in closed vessels by marine cyanobacterium Anabaena sp. TU37-1 under high-cell-density conditions  

SciTech Connect

A marine cyanobacterium, Anabaena sp. TU37-1, exhibited stable production of hydrogen and oxygen in closed vessels. About 8.4 and 4.3 mL (at atmospheric pressure) of hydrogen and oxygen accumulated, respectively, in flasks with 20 mL gas phase during 48 h incubation. Thus, concentration of H{sub 2} and O{sub 2} became 26 and 13% of the gas phase, respectively. Duration of hydrogen production was prolonged by the periodic gas replacement in the reaction vessel. The conversion efficiencies of photosynthetically active radiation (fluorescent light, 22 W/m{sup 2}) to hydrogen were 2.4 and 2.2% during the initial 12- and 24-h incubation periods respectively.

Kumazawa, Shuzo; Asakawa, Hidenori [Tokai Univ., Shizuoka (Japan)

1995-05-20

367

The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes.  

NASA Astrophysics Data System (ADS)

The proposed space experiments BOSS (Biofilm Organisms Surfing Space) and BIOMEX (BIOlogy and Mars experiment) will take place on the space exposure facility EXPOSE-R2 on the International Space Station (ISS), which is set to be launched in 2014. In BOSS the hypothesis to be tested is that microorganisms grown as biofilms, hence embedded in self-produced extracellular polymeric substances, are more tolerant to space and Martian conditions compared to their planktonic counterparts. Various microbial biofilms have been developed including those obtained from the cyanobacterium Chroococcidiopsis isolated from hot and cold deserts. The prime objective of BIOMEX is to evaluate to what extent biomolecules are resistant to, and can maintain their stability under, space and Mars-like conditions; therefore a variety of pigments and cell components are under investigation to establish a biosignature data base; e.g. a Raman spectral library to be used for extraterrestrial life biosignatures. The secondary objective of BIOMEX is to investigate the endurance of extremophiles, focusing on their interactions with Lunar and Martian mineral analogues. Ground-based studies are currently being carried out in the framework of EVTs (Experiment Verification Tests) by exposing selected organisms to space and Martian simulations. Results on a desert strain of Chroococcidiopsis obtained from the first set of EVT, e.g. space vacuum, Mars atmosphere, UVC radiation, temperature cycles and extremes, suggested that dried biofilms exhibited an enhanced survival compared to planktonic lifestyle. Moreover the protection provided by a Martian mineral analogue (S-MRS) to the sub-cellular integrities of Chroococcidiopsis against UVC radiation supports the endurance of this cyanobacterium under extraterrestrial conditions and its relevance in the development of life detection strategies.

Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela

2013-10-01

368

First record of a Mermithidae (Nematoda) from the meloid beetle Meloe violaceus Marsham, 1802 (Coleoptera: Meloidae)  

Microsoft Academic Search

A new record of nematode parasitism of meloid beetles is reported and all earlier records are summarised. Rates of parasitism could be influenced by the toxic compound cantharidin that these beetles possess.

Johannes Lückmann; George O. Poinar

2003-01-01

369

First record of a Mermithidae (Nematoda) from the meloid beetle Meloe violaceus Marsham, 1802 (Coleoptera: Meloidae).  

PubMed

A new record of nematode parasitism of meloid beetles is reported and all earlier records are summarised. Rates of parasitism could be influenced by the toxic compound cantharidin that these beetles possess. PMID:12743809

Lückmann, Johannes; Poinar, George O

2003-05-01

370

The putative eukaryote-like O-GlcNAc transferase of the cyanobacterium Synechococcus elongatus PCC 7942 hydrolyzes UDP-GlcNAc and is involved in multiple cellular processes.  

PubMed

The posttranslational addition of a single O-linked ?-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes. PMID:25384478

Sokol, Kerry A; Olszewski, Neil E

2015-01-01

371

Mutation of sepJ reduces the intercellular signal range of a hetN-dependent paracrine signal, but not of a patS-dependent signal, in the filamentous cyanobacterium Anabaena sp. strain PCC 7120.  

PubMed

Formation and maintenance of a periodic pattern of nitrogen-fixing cells called heterocysts by the filamentous cyanobacterium Anabaena sp. strain PCC 7120 is dependent on regulators encoded by patS and hetN. In this study, genetic mosaic filaments that consisted of cells engineered to produce one of the developmental regulators flanked by target cells capable of reporting the activity of the developmental regulator were used to investigate the intercellular movement of patS- and hetN-dependent activity. We provide evidence that hetN encodes a paracrine signal with a signal range of several cells. The signal that moved between cells did not include the C-terminus of the annotated HetN protein as indicated by similar signal ranges from source cells expressing either hetN-YFP or hetN alone, despite a lack of intercellular exchange of the HetN-YFP fusion protein. Deletion of sepJ, which has been shown to encode a component of intercellular channels, caused a significant decrease in the signal range of hetN expressed from source cells but not of patS. These results are consistent with symplastic transport of a paracrine hetN-dependent signal between vegetative cells of Anabaena. PMID:25336355

Rivers, Orion S; Videau, Patrick; Callahan, Sean M

2014-12-01

372

Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth1[W][OA  

PubMed Central

Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.

2011-01-01

373

The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120*  

PubMed Central

The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component “AB-D” systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox? phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ?acrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120. PMID:24014018

Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Lytvynenko, Iryna; Pos, Klaas Martinus; Schleiff, Enrico

2013-01-01

374

The Hypothetical Protein ‘All4779’, and Not the Annotated ‘Alr0088’ and ‘Alr7579’ Proteins, Is the Major Typical Single-Stranded DNA Binding Protein of the Cyanobacterium, Anabaena sp. PCC7120  

PubMed Central

Single-stranded DNA binding (SSB) proteins are essential for all DNA-dependent cellular processes. Typical SSB proteins have an N-terminal Oligonucleotide-Binding (OB) fold, a Proline/Glycine rich region, followed by a C-terminal acidic tail. In the genome of the heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120, alr0088 and alr7579 are annotated as coding for SSB, but are truncated and have only the OB-fold. In silico analysis of whole genome of Anabaena sp. strain PCC7120 revealed the presence of another ORF ‘all4779’, annotated as a hypothetical protein, but having an N-terminal OB-fold, a P/G-rich region and a C-terminal acidic tail. Biochemical characterisation of all three purified recombinant proteins revealed that they exist either as monomer or dimer and bind ssDNA, but differently. The All4779 bound ssDNA in two binding modes i.e. (All4779)35 and (All4779)66 depending on salt concentration and with a binding affinity similar to that of Escherichia coli SSB. On the other hand, Alr0088 bound in a single binding mode of 50-mer and Alr7579 only to large stretches of ssDNA, suggesting that All4779, in all likelihood, is the major typical bacterial SSB in Anabaena. Overexpression of All4779 in Anabaena sp. strain PCC7120 led to enhancement of tolerance to DNA-damaging stresses, such as ?-rays, UV-irradiation, desiccation and mitomycinC exposure. The tolerance appears to be a consequence of reduced DNA damage or efficient DNA repair due to increased availability of All4779. The ORF all4779 is proposed to be re-annotated as Anabaena ssb gene. PMID:24705540

Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

2014-01-01

375

The outer membrane TolC-like channel HgdD is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the Cyanobacterium Anabaena sp. PCC7120.  

PubMed

The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ?acrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120. PMID:24014018

Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Lytvynenko, Iryna; Pos, Klaas Martinus; Schleiff, Enrico

2013-10-25

376

Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress.  

PubMed

Higher plants and cyanobacteria metabolize sucrose (Suc) by a similar set of enzymes. Suc synthase (SuS, A/UDP-glucose: D: -fructose 2-?-D: -glucosyl transferase) catalyzes a reversible reaction. However, it is in the cleavage of Suc that this enzyme plays an important role in vivo, providing sugar nucleotides for polysaccharide biosynthesis. In cyanobacteria, SuS occurrence has been reported in heterocyst-forming strains, where it was shown to be involved also in nitrogen fixation. We investigated the presence of sequences homologous to SuS-encoding genes (sus) in recently sequenced cyanobacterial genomes. In this work, we show for the first time the presence of SuS in unicellular cyanobacterium strains (Microcystis aeruginosa PCC 7806, Gloebacter violaceus PCC 7421, and Thermosynechococcus elongatus BP-1). After functional characterization of SuS encoding genes, we demonstrated an increase in their transcript levels after a salt treatment or hypoxic stress in M. aeruginosa and G. violaceus cells. Based on phylogenetic analysis and on the presence of sus homologs in the most recently radiated cyanobacterium strains, we propose that sus genes in unicellular cyanobacteria may have been acquired through horizontal gene transfer. Taken together, our data indicate that SuS acquisition by cyanobacteria might be related to open up new ecological niches. PMID:22113826

Kolman, María A; Torres, Leticia L; Martin, Mariana L; Salerno, Graciela L

2012-05-01

377

Plastocyanin-ferredoxin oxidoreduction and endosymbiotic gene transfer.  

PubMed

Sequence similarities of proteins associated with plastocyanin-ferredoxin oxidoreduction (PcFdOR) activity of Photosystem I (PSI) were grouped and compared. PsaA, psaB, psaC, and petG represent genes that have been retained in the chloroplasts of both green- and red-lineage species. PsaD, psaE, psaF, and petF represent genes that have been retained in the chloroplast of red-lineage species, but have been transferred to the nuclear genome of green-lineage species. Translated sequences from red- and green-lineage proteins were compared to that of contemporary cyanobacteria, Synechocystis PCC 6803, and Gloeobacter violaceus PCC 7421. Within the green lineage, a lower level of sequence conservation coincided with gene transfer to the nuclear genome. Surprisingly, a similar pattern of sequence conservation existed for the same set of genes found in the red lineage even though all those genes were retained in their chloroplast genomes. This discrepancy between green and red lineage is discussed in terms of endosymbiotic gene transfer. PMID:18661249

Carter, Douglas R

2008-09-01

378

Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels  

PubMed Central

GABAA receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABAA receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABAA receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABAA, and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor’s conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABAA receptor ligands. PMID:23950219

Heusser, Stephanie A.; Howard, Rebecca J.; Borghese, Cecilia M.; Cullins, Madeline A.; Broemstrup, Torben; Lee, Ui S.; Lindahl, Erik; Carlsson, Jens

2013-01-01

379

Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC).  

PubMed

Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, ?-aminobutyric acid GABA(A/C) receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the ?7-?10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels. PMID:23364792

Spurny, Radovan; Billen, Bert; Howard, Rebecca J; Brams, Marijke; Debaveye, Sarah; Price, Kerry L; Weston, David A; Strelkov, Sergei V; Tytgat, Jan; Bertrand, Sonia; Bertrand, Daniel; Lummis, Sarah C R; Ulens, Chris

2013-03-22

380

Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel  

PubMed Central

Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. PMID:23591864

Sauguet, Ludovic; Howard, Rebecca J.; Malherbe, Laurie; Lee, Ui S.; Corringer, Pierre-Jean; Harris, R. Adron; Delarue, Marc

2014-01-01

381

Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC)*  

PubMed Central

Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, ?-aminobutyric acid GABAA/C receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the ?7–?10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels. PMID:23364792

Spurny, Radovan; Billen, Bert; Howard, Rebecca J.; Brams, Marijke; Debaveye, Sarah; Price, Kerry L.; Weston, David A.; Strelkov, Sergei V.; Tytgat, Jan; Bertrand, Sonia; Bertrand, Daniel; Lummis, Sarah C. R.; Ulens, Chris

2013-01-01

382

Proton gradients in intact cyanobacteria  

NASA Technical Reports Server (NTRS)

The internal pH values of two unicellular cyanobacterial strains were determined with electron spin resonance probes, over an external pH range of 6 to 9, in the light and in the dark. The slow growing, thylakoid-lacking Gloeobacter violaceus was found to have a low capacity for maintaining a constant internal pH. The distribution pattern of weak acid and amine nitroxide spin probes across the cell membranes of this organism, in the light and in the dark, was consistent with the assumption that it contains a single intracellular compartment. At an external pH of 7.0, intracellular pH was 6.8 in the dark and 7.2 in the light. The cells of Agmenellum quadruplicatum, a marine species, were found to contain two separate compartments; in the dark, the pH of the cytoplasmic and the intrathylakoid spaces were calculated to be 7.2 and 5.5, respectively. Upon illumination, the former increased and the latter decreased by about 0.5 pH units.

Belkin, S.; Mehlhorn, R. J.; Packer, L.

1987-01-01

383

Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors.  

PubMed

Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two ?, and one each of ?, ?, and ? subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four ?-helical segments (M1-M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel ? (GluCl?) showed the same overall architecture. However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here, we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluCl? structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2-M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel and GluCl? are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

Mnatsakanyan, Nelli; Jansen, Michaela

2013-06-01

384

A Cannabinomimetic Lipid from a Marine Cyanobacterium  

PubMed Central

NMR-guided fractionation of two independent collections of the marine cyanobacteria Lyngbya majuscula obtained from Papua New Guinea and Oscillatoria sp. collected in Panama led to the isolation of the new lipids, serinolamide A (3) and propenediester (4). Their structures were determined by NMR and MS data analysis. Serinolamide A (3) exhibited a moderate agonist effect and selectivity for the CB1 cannabinoid receptor (EC50 2.3 µM, >10-fold), and represents the newest addition to the known cannabinomimetic natural products of marine origin. PMID:21999614

Gutiérrez, Marcelino; Pereira, Alban R.; Debonsi, Hosana M.; Ligresti, Alessia; Di Marzo, Vincenzo; Gerwick, William H.

2011-01-01

385

Phosphorus physiology of the marine cyanobacterium Trichodesmium  

E-print Network

Primary producers play a critical role in the oceanic food chain and the global cycling of carbon. The marine diazotroph Trichodesmium is a major contributor to both primary production and nitrogen fixation in the tropical ...

Orchard, Elizabeth Duncan

2010-01-01

386

Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus  

E-print Network

online 21 March 2011 MS. number: A10-00875 Keywords: cognition cognitive evolution general cognitive; Dunbar 1998; Bond et al. 2003; Holekamp et al. 2007). Mate choice and mate attraction are significant with better cognitive performance for a number of reasons (reviewed by Keagy et al. 2009). The most commonly

Borgia, Gerald

387

Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17(+)ROR?t(+)/IL-10(+)FoxP3(+) ratio in CD4(+) T cells.  

PubMed

Regular bathing in the Blue Lagoon in Iceland has beneficial effects on psoriasis. Cyanobacterium aponinum is a dominating member of the Blue Lagoon's microbial ecosystem. The aim of the study was to determine whether exopolysaccharides (EPSs) secreted by C. aponinum (EPS-Ca) had immunomodulatory effects in vitro. Human monocyte-derived dendritic cells (DCs) were matured in the absence or presence of EPS-Ca and the effects were determined by measuring the secretion of cytokines by ELISA and the expression of surface molecules by flow cytometry. DCs matured with EPS-Ca at 100?g/ml secreted higher levels of IL-10 than untreated DCs. Subsequently, DCs matured in the presence or absence of EPS-Ca were co-cultured with allogeneic CD4(+) T cells and their effects on T cell activation analysed by measuring expression of intracellular and surface molecules and cytokine secretion. Supernatant from allogeneic T cells co-cultured with EPS-Ca-exposed DCs had raised levels of IL-10 compared with control. A reduced frequency of IL-17(+)ROR?t(+) T cells was observed when co-cultured with EPS-Ca-exposed DCs and a tendency towards increased frequency of FoxP3(+)IL-10(+) T cells, resulting in a lower IL-17(+)ROR?t(+)/FoxP3(+)IL-10(+) ratio. The study shows that EPSs secreted by C. aponinum stimulate DCs to produce vast amounts of the immunosuppressive cytokine IL-10. These DCs induce differentiation of allogeneic CD4(+) T cells with an increased Treg but decreased Th17 phenotype. These data suggest that EPSs from C. aponinum may play a role in the beneficial clinical effect on psoriasis following bathing in the Blue Lagoon. PMID:25499021

Gudmundsdottir, Asa B; Omarsdottir, Sesselja; Brynjolfsdottir, Asa; Paulsen, Berit S; Olafsdottir, Elin S; Freysdottir, Jona

2015-02-01

388

Molecular Dynamics and Brownian Dynamics Investigation of Ion Permeation and Anesthetic Halothane Effects on a Proton-gated Ion Channel  

PubMed Central

Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity and halothane modulation mechanisms in GLIC, based on recently resolved x-ray crystal structures of the open-channel GLIC. MD calculations of the potential mean force (PMF) for a Na+ revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na+ was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl? was found to be 3–4 times higher than that for Na+. Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (PCl/PNa) were comparable to experimental data. Based on these calculations we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl? ions. The effect of halothane on the Na+ PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles. PMID:20979415

Cheng, Mary Hongying; Coalson, Rob D.; Tang, Pei

2011-01-01

389

Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel  

SciTech Connect

The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

Fritsch, Sebastian M [ORNL; Ivanov, Ivaylo N [ORNL; Wang, Hailong [Mayo Clinic College of Medicine; Cheng, Xiaolin [ORNL

2011-01-01

390

Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel  

SciTech Connect

The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.

Fritsch, Sebastian [University of Heidelberg; Ivanov, Ivaylo [Georgia State University, Atlanta; Wang, Hailong [Mayo Clinic College of Medicine; Cheng, Xiaolin [ORNL

2010-01-01

391

Modular Design of Cys-loop Ligand-gated Ion Channels: Functional 5-HT3 and GABA ?1 Receptors Lacking the Large Cytoplasmic M3M4 Loop  

PubMed Central

Cys-loop receptor neurotransmitter-gated ion channels are pentameric assemblies of subunits that contain three domains: extracellular, transmembrane, and intracellular. The extracellular domain forms the agonist binding site. The transmembrane domain forms the ion channel. The cytoplasmic domain is involved in trafficking, localization, and modulation by cytoplasmic second messenger systems but its role in channel assembly and function is poorly understood and little is known about its structure. The intracellular domain is formed by the large (>100 residues) loop between the ?-helical M3 and M4 transmembrane segments. Putative prokaryotic Cys-loop homologues lack a large M3M4 loop. We replaced the complete M3M4 loop (115 amino acids) in the 5-hydroxytryptamine type 3A (5-HT3A) subunit with a heptapeptide from the prokaryotic homologue from Gloeobacter violaceus. The macroscopic electrophysiological and pharmacological characteristics of the homomeric 5-HT3A-glvM3M4 receptors were comparable to 5-HT3A wild type. The channels remained cation-selective but the 5-HT3A-glvM3M4 single channel conductance was 43.5 pS as compared with the subpicosiemens wild-type conductance. Coexpression of hRIC-3, a protein that modulates expression of 5-HT3 and acetylcholine receptors, significantly attenuated 5-HT–induced currents with wild-type 5-HT3A but not 5-HT3A-glvM3M4 receptors. A similar deletion of the M3M4 loop in the anion-selective GABA-?1 receptor yielded functional, GABA-activated, anion-selective channels. These results imply that the M3M4 loop is not essential for receptor assembly and function and suggest that the cytoplasmic domain may fold as an independent module from the transmembrane and extracellular domains. PMID:18227272

Jansen, Michaela; Bali, Moez; Akabas, Myles H.

2008-01-01

392

Photoaffinity Labeling the Propofol Binding Site in GLIC†  

PubMed Central

Propofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homolog from Gloeobacter violaceus. In the structure of GLIC co-crystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane ?-helices [Nury, H, et. al. (2011) Nature 469, 428–431]. To identify propofol binding sites in GLIC in solution, we used a recently developed photoreactive propofol analog (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol or AziPm) which acts as an anesthetic in vivo and potentiates GABAAR in vitro. For GLIC expressed in Xenopus oocytes, propofol and AziPm inhibited current responses at pH 5.5 (EC20) with IC50s of 20 and 50 ?M, respectively. When [3H]AziPm (7 ?M) was used to photolabel detergent-solubilized, affinity-purified GLIC at pH 4.4, protein microsequencing identified propofol-inhibitable photolabeling of three residues in the GLIC transmembrane domain: Met-205, Tyr-254, and Asn-307 in the M1, M3, and M4 transmembrane helices, respectively. Thus, in GLIC in solution, propofol and AziPm bind competitively to a site in proximity to these residues, which in the GLIC crystal structure are in contact with the propofol bound in the intrasubunit pocket. PMID:24341978

Chiara, David C.; Gill, Jonathan F.; Chen, Qiang; Tillman, Tommy; Dailey, William P.; Eckenhoff, Roderic G.; Xu, Yan; Tang, Pei; Cohen, Jonathan B.

2014-01-01

393

Assessment of Homology Templates and an Anesthetic Binding Site within the ?-Aminobutyric Acid Receptor  

PubMed Central

Background Anesthetics mediate portions of their activity via modulation of the ?-aminobutyric acid receptor (GABAaR). While its molecular structure remains unknown, significant progress has been made towards understanding its interactions with anesthetics via molecular modeling. Methods The structure of the torpedo acetylcholine receptor (nAChR?), the structures of the ?4 and ?2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50’s. Results Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between alpha and beta subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Conclusion Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed correlation of ligand docking scores with experimentally measured GABAaR potentiation. PMID:23770602

Bertaccini, Edward J.; Yoluk, Ozge; Lindahl, Erik R.; Trudell, James R.

2013-01-01

394

Signal transduction pathways in the pentameric ligand-gated ion channels.  

PubMed

The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the ?1-?2 loop or through pre-TM1. The ?1-?2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. PMID:23667707

Mowrey, David; Chen, Qiang; Liang, Yuhe; Liang, Jie; Xu, Yan; Tang, Pei

2013-01-01

395

Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels  

PubMed Central

The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the ?1–?2 loop or through pre-TM1. The ?1–?2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. PMID:23667707

Mowrey, David; Chen, Qiang; Liang, Yuhe; Liang, Jie; Xu, Yan; Tang, Pei

2013-01-01

396

A gating mechanism of pentameric ligand-gated ion channels  

PubMed Central

Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we present atomistic molecular dynamics simulations of the prokaryotic channels from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC), whose crystal structures are thought to represent the active and the resting states of pLGICs, respectively, and of the eukaryotic glutamate-gated chloride channel from Caenorhabditis elegans (GluCl), whose open-channel structure was determined complexed with the positive allosteric modulator ivermectin. Structural observables extracted from the trajectories of GLIC and ELIC are used as progress variables to analyze the time evolution of GluCl, which was simulated in the absence of ivermectin starting from the structure with bound ivermectin. The trajectory of GluCl with ivermectin removed shows a sequence of structural events that couple agonist unbinding from the extracellular domain to ion-pore closing in the transmembrane domain. Based on these results, we propose a structural mechanism for the allosteric communication leading to deactivation/activation of the GluCl channel. This model of gating emphasizes the coupling between the quaternary twisting and the opening/closing of the ion pore and is likely to apply to other members of the pLGIC family. PMID:24043807

Calimet, Nicolas; Simoes, Manuel; Changeux, Jean-Pierre; Karplus, Martin; Taly, Antoine; Cecchini, Marco

2013-01-01

397

Toxicity of the cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna.  

PubMed

The effect of two strains of Cylindrospermopsis raciborskii on the survivorship, somatic growth, and detoxification processes of juvenile Daphnia magna were investigated. Both strains of C. raciborskii (and also Ankistrodesmus falcatus, used as the control) were given to newborn D. magna at equivalent biovolumes. The survival curves for D. magna subjected to the two C. raciborskii treatments differed from those of the starved and fed treatments. After 48 h of exposure, the percentage of D. magna surviving after exposure to Cylin-A (a cylindrospermopsin-producing strain isolated from Australia) and Cylin-P (a non-cylindrospermopsin-producing strain isolated from Portugal) was 10.00% and 93.33%, respectively. The strain that produces cylindrospermopsin caused the greatest toxic effect in juvenile D. magna. Statistically significant differences in D. magna body size between the four treatments (Cylin-A, Cylin-P, A. falcatus, and starved) were detected after 48 h of exposure. The juvenile D. magna that received the two C. raciborskii treatments showed an increase in size (relative to their size at T(0)) of 2.54% and 38.14%, respectively. These values were statistically significantly different than those of the A. falcatus-fed control (55.54%) and the starved control (11.47%). In both C. raciborskii treatments there was a tendency for increased GST enzyme activities after 24 h of exposure. Cylindrospermopsin was detected (HPLC-MS/MS) in D. magna tissues after 24 and 48 h (0.025 and 0.02 ng animal(-)1, respectively). The results of this study indicate that C. raciborskii can affect the fitness and growth potential of juvenile D. magna. PMID:15352261

Nogueira, Isabel C G; Saker, Martin L; Pflugmacher, Stephan; Wiegand, Claudia; Vasconcelos, Vítor M

2004-10-01

398

Functional genomics of the unicellular cyanobacterium Synechococcus elongatus PCC 7942  

E-print Network

in transformation competence of S. elongatus cells. Functional analysis of an atypical short period kaiA insertional mutant showed that the short period phenotype is caused mainly by the truncation of KaiA by three amino acid residues. The interaction between KaiC...

Chen, You

2009-05-15

399

Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua.  

PubMed

Ambiguines belong to a family of hapalindole-type indole alkaloid natural products, with many of the members possessing up to eight consecutive carbon stereocenters in a fused pentacyclic 6-6-6-5-7 ring scaffold. Here, we report the identification of a 42 kbp ambiguine (amb) biosynthetic gene cluster that harbors 32 protein-coding genes in its native producer Fischerella ambigua UTEX1903. Association of the amb cluster with ambiguine biosynthesis was confirmed by both bioinformatic analysis and in vitro characterizations of enzymes responsible for 3-((Z)-2'-isocyanoethenyl) indole and geranyl pyrophosphate biosynthesis and a C-2 indole dimethylallyltransferase that regiospecifically tailors hapalindole G to ambiguine A. The presence of five nonheme iron-dependent oxygenase coding genes (including four Rieske-type oxygenases) within the amb cluster suggests late-stage C-H activations are likely responsible for the structural diversities of ambiguines by regio- and stereospecific chlorination, hydroxylation, epoxidation, and sp(2)-sp(3) C-C bond formation. PMID:24180436

Hillwig, Matthew L; Zhu, Qin; Liu, Xinyu

2014-02-21

400

Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1  

NASA Technical Reports Server (NTRS)

Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

Cumbers, John Robert; Rothschild, Lynn J.

2014-01-01

401

Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica  

E-print Network

Plaza, Eng. IV 37-132, Los Angeles, California 90095, USA *Corresponding author: pilon in photobioreactors for wastewater treatment and ammonia or biofuel production. © 2014 Optical Society of America OCIS seeking to ensure their energy security. Hence, finding sustainable solutions to meet global demands

Pilon, Laurent

402

Host/virus interactions in the marine cyanobacterium prochlorococcus  

E-print Network

Bacterial viruses shape the diversity, metabolic function, and community dynamics of their microbial hosts. As microbes drive many major biogeochemical cycles, viral infection is therefore a phenomenon of global significance. ...

Frois-Moniz, Katya

2014-01-01

403

Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity  

SciTech Connect

Light intensity adaptation (20 to 565 microeinsteins per square meter per second) of Microcystis aeruginosa (UV-027) was examined in turbidostat culture. Chlorophyll a and phycocyanin concentrations decreased with increasing light intensity while carotenoid, cellular carbon, and nitrogen contents did not vary. Variation in the number but not the size of photosynthetic units per cell, based on chlorophyll a/P/sub 700/ ratios, occurred on light intensity adaptation. Changes in the numbers of photosynthetic units partially dampened the effects of changes in light intensity on growth rates.

Raps, S.; Wyman, K.; Siegelman, H.W.; Falkowski, P.G.

1983-01-01