Science.gov

Sample records for cyberknife radiotherapie robotisee

  1. [CyberKnife robotic stereotactic radiotherapy: technical aspects and medical indications].

    PubMed

    Bondiau, P-Y; Bénézery, K; Beckendorf, V; Peiffert, D; Gérard, J-P; Mirabel, X; Noël, A; Marchesi, V; Lacornerie, T; Dubus, F; Sarrazin, T; Herault, J; Marcié, S; Angellier, G; Lartigau, E

    2007-11-01

    In 2006, 3 sites have been selected by the Institut national of cancer (Lille, Nancy et Nice) to evaluate a radiotherapy robot, the CyberKnife. This machine, able to track mobile tumours in real time, gives new possibilities in the field of extra cranial stereotactic radiotherapy. Functionalities and medico economical issues of the machine will be evaluated during 2 years on the 3 sites. PMID:18029216

  2. A noninvasive eye fixation monitoring system for CyberKnife radiotherapy of choroidal and orbital tumors

    SciTech Connect

    Daftari, I. K.; Petti, P. L.; Larson, D. A.; O'Brien, J. M.; Phillips, T. L.

    2009-03-15

    A new noninvasive monitoring system for fixing the eye has been developed to treat orbital and choroidal tumors with CyberKnife-based radiotherapy. This device monitors the eye during CT/MRI scanning and during treatment. The results of this study demonstrate the feasibility of the fixation light system for CyberKnife-based treatments of orbital and choroidal tumors and supports the idea that larger choroidal melanomas and choroidal metastases could be treated with CyberKnife without implanting fiducial markers.

  3. Stereotactic ablative radiotherapy with CyberKnife for advanced thymic carcinoma: a case report

    PubMed Central

    Fan, C.Y.; Huang, W.Y.; Jen, Y.M.; Lin, M.J.; Lin, K.T.

    2015-01-01

    Thymic carcinoma is a rare but lethal mediastinal cancer. The optimal treatment for advanced thymic carcinoma is not yet established. This report is the first known of stereotactic ablative radiotherapy (sabr) with CyberKnife (Accuray, Sunnyvale, CA, U.S.A.) as definitive therapy for thymic carcinoma. The patient, a 70-year-old woman with thymic carcinoma, invasion into neighboring organs, and pleural metastases—underwent CyberKnife sabr at 40 Gy in 5 fractions for two lesions, one in the thymus and one in the right paraspinal pleura. After 61 months of observation, a partial response was observed in the irradiated fields. However, disease progression in the non-irradiated pleura was noted. The patient underwent salvage CyberKnife sabr for the four initially nonirradiated pleural lesions. Computed tomography images obtained 10 months after the salvage therapy revealed a partial response. The patient is living, with progression-free irradiated lesions and no radiation-related toxicity. CyberKnife sabr is feasible for patients who are unable to undergo either surgery or conventionally fractionated radiation therapy. PMID:26628883

  4. Stereotactic body radiotherapy using CyberKnife for locally advanced unresectable and metastatic pancreatic cancer

    PubMed Central

    Su, Ting-Shi; Liang, Ping; Lu, Huan-Zhen; Liang, Jian-Ning; Liu, Jian-Min; Zhou, Ying; Gao, Ying-Chuan; Tang, Min-Yang

    2015-01-01

    AIM: To evaluate the efficacy and toxicity of stereotactic body radiotherapy using CyberKnife for locally advanced unresectable and metastatic pancreatic cancer. METHODS: From June 2010 to May 2014, 25 patients with locally advanced unresectable and metastatic pancreatic cancer underwent stereotactic body radiotherapy. Nine patients presented with unresectable locally advanced disease and 16 had metastatic disease. Primary end-points of this study were overall survival, relief of abdominal pain, and toxicity. RESULTS: Fourteen patients were treated with a total dose of 30-36 Gy in three fractions and the remainder with 40-48 Gy in four fractions. Median follow-up was 11 mo (range: 2-25 mo). The median survival duration calculated from the time of stereotactic body radiotherapy for the entire group, the locally advanced group, and the metastatic group was 9.0 mo, 13.5 mo, and 8.5 mo, respectively. Overall survival was 37% and 18% at one and two years, respectively. Abdominal pain relief was achieved within 2 wk of completing radiotherapy in the patients who received successful palliation (13 of 20 patients had significant pain). Five patients (20%) had grade 1 nausea, and one (4%) had grade 2 nausea. No acute grade 3+ toxicity was seen. CONCLUSION: Stereotactic body radiotherapy using the CyberKnife system is a promising, noninvasive, palliative treatment with acceptable toxicity for locally advanced unresectable and metastatic pancreatic cancer. PMID:26185389

  5. Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy.

    PubMed

    Zytkovicz, A; Daftari, I; Phillips, T L; Chuang, C F; Verhey, L; Petti, P L

    2007-10-01

    Peripheral radiation can have deleterious effects on normal tissues throughout the body, including secondary cancer induction and cataractogenesis. The aim of this study is to evaluate the peripheral dose received by various regions of the body after ocular treatment delivered with the Model C Gamma Knife, proton radiotherapy with a dedicated ocular beam employing no passive-scattering system, or a CyberKnife unit before and after supplemental shielding was introduced. TLDs were used for stray gamma and x-ray dosimetry, whereas CR-39 dosimeters were used to measure neutron contamination in the proton experiments. Doses to the contralateral eye, neck, thorax and abdomen were measured on our anthropomorphic phantom for a 56 Gy treatment to a 588 mm(3) posterior ocular lesion. Gamma Knife (without collimator blocking) delivered the highest dose in the contralateral eye, with 402-2380 mSv, as compared with 118-234 mSv for CyberKnife pre-shielding, 46-255 mSv for CyberKnife post-shielding and 9-12 mSv for proton radiotherapy. Gamma Knife and post-shielding CyberKnife delivered comparable doses proximal to the treatment site, with 190 versus 196 mSv at the thyroid, whereas protons doses at these locations were less than 10 mSv. Gamma Knife doses decreased dramatically with distance from the treatment site, delivering only 13 mSv at the lower pelvis, comparable to the proton result of 4 to 7 mSv in this region. In contrast, CyberKnife delivered between 117 and 132 mSv to the lower pelvis. In conclusion, for ocular melanoma treatments, a proton beam employing no double scattering system delivers the lowest peripheral doses proximally to the contralateral eye and thyroid when compared to radiosurgery with the Model C Gamma Knife or CyberKnife. At distal locations in the pelvis, peripheral doses delivered with proton and Gamma Knife are of an order of magnitude smaller than those delivered with CyberKnife. PMID:17881812

  6. Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Zytkovicz, A.; Daftari, I.; Phillips, T. L.; Chuang, C. F.; Verhey, L.; Petti, P. L.

    2007-09-01

    Peripheral radiation can have deleterious effects on normal tissues throughout the body, including secondary cancer induction and cataractogenesis. The aim of this study is to evaluate the peripheral dose received by various regions of the body after ocular treatment delivered with the Model C Gamma Knife, proton radiotherapy with a dedicated ocular beam employing no passive-scattering system, or a CyberKnife unit before and after supplemental shielding was introduced. TLDs were used for stray gamma and x-ray dosimetry, whereas CR-39 dosimeters were used to measure neutron contamination in the proton experiments. Doses to the contralateral eye, neck, thorax and abdomen were measured on our anthropomorphic phantom for a 56 Gy treatment to a 588 mm3 posterior ocular lesion. Gamma Knife (without collimator blocking) delivered the highest dose in the contralateral eye, with 402-2380 mSv, as compared with 118-234 mSv for CyberKnife pre-shielding, 46-255 mSv for CyberKnife post-shielding and 9-12 mSv for proton radiotherapy. Gamma Knife and post-shielding CyberKnife delivered comparable doses proximal to the treatment site, with 190 versus 196 mSv at the thyroid, whereas protons doses at these locations were less than 10 mSv. Gamma Knife doses decreased dramatically with distance from the treatment site, delivering only 13 mSv at the lower pelvis, comparable to the proton result of 4 to 7 mSv in this region. In contrast, CyberKnife delivered between 117 and 132 mSv to the lower pelvis. In conclusion, for ocular melanoma treatments, a proton beam employing no double scattering system delivers the lowest peripheral doses proximally to the contralateral eye and thyroid when compared to radiosurgery with the Model C Gamma Knife or CyberKnife. At distal locations in the pelvis, peripheral doses delivered with proton and Gamma Knife are of an order of magnitude smaller than those delivered with CyberKnife.

  7. Clinical outcomes of CyberKnife stereotactic body radiotherapy for peripheral stage I non-small cell lung cancer.

    PubMed

    Shen, Ze-Tian; Wu, Xin-Hu; Li, Bing; Zhu, Xi-Xu

    2015-03-01

    The aim of this study was to evaluate the clinical outcome of CyberKnife stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). Fifty patients with peripheral stage I NSCLC who refused surgery or were medically inoperable were treated with 48-60 Gy (median dose: 57 Gy) in three divided doses. Histopathology was available in 86% of patients. Thirty patients had a T1 tumor, and 20 patients had T2 tumors. More than 95% of the target volume was covered by the 72% isodose surface. Fiducials were implanted in or near the tumors in all patients to track tumor movement and breathing patterns. The median follow-up time was 35 months (3-45 months). Based on computed tomography scans, 40 patients achieved complete remission, six patients achieved partial remission, two patients exhibited stable disease, and two patients had progressive disease. The local control rate (CR + PR) was 92%, and the 2-year disease control rate (CR + PR + SD) was 96%. Overall survival for the whole group was 86% at 1 year and 74% at 2 years. Grade III toxicity occurred in two patients (4%) after marker placement. Treatment-related late grade III toxicity occurred in five patients (10%). Toxicities greater than grade III were not observed. CyberKnife SBRT achieves a high rate of local control and long-term curative effect with acceptable toxicity for patients with inoperable stage I NSCLC. However, long-term follow-up is necessary to evaluate survival and late toxicity. PMID:25638468

  8. Long-term results of hypofractionated stereotactic radiotherapy with CyberKnife for growth hormone-secreting pituitary adenoma: evaluation by the Cortina consensus.

    PubMed

    Iwata, Hiromitsu; Sato, Kengo; Nomura, Ryutaro; Tabei, Yusuke; Suzuki, Ichiro; Yokota, Naoki; Inoue, Mitsuhiro; Ohta, Seiji; Yamada, Shozo; Shibamoto, Yuta

    2016-06-01

    The aim of the present study was to evaluate the safety and feasibility of hypofractionated stereotactic radiotherapy (SRT) with CyberKnife for growth hormone-secreting pituitary adenoma (GH-PA). Fifty-two patients with GH-PA were treated with hypofractionated SRT between September 2001 and October 2012. Eight patients had clinically silent GH-PA and 44 were symptomatic. Only 1 patient was inoperable. The other patients had recurrent or postoperative residual tumors on MRI. All patients had received pharmacotherapy prior to SRT with a somatostatin analog, dopamine agonist, and/or GH receptor antagonist. The marginal doses were 17.4-26.8 Gy for the 3-fraction schedule and 20.0-32.0 Gy for the 5-fraction schedule. Endocrinological remission was assessed by the Cortina consensus criteria 2010 (random GH <1 ng/ml or nadir GH after an oral glucose tolerance test <0.4 ng/ml and normalization of age- and sex-adjusted insulin-like growth factor-1). The median follow-up period was 60 months (range 27-137). The 5-year overall survival, local control, and disease-free survival rates were 100, 100, and 96 %, respectively. Nine patients (5 clinically silent and 4 symptomatic patients) satisfied the Cortina criteria without receiving further pharmacotherapy, whereas the remaining 43 patients did not. No post-SRT grade 2 or higher visual disorder occurred. Symptomatic post-SRT hypopituitarism was observed in 1 patient. CyberKnife hypofractionated SRT is safe and effective when judged by imaging findings for GH-PA. However, it may be difficult to satisfy the Cortina consensus criteria in most symptomatic patients with SRT alone. Further investigations of optimal treatments are warranted. PMID:26961771

  9. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife

    SciTech Connect

    Marants, R; Vandervoort, E; Cygler, J E

    2014-08-15

    Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.

  10. Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife.

    PubMed

    Kang, Ki Mun; Jeong, Bae Kwon; Choi, Hoon-Sik; Yoo, Seung Hoon; Hwang, Ui-Jung; Lim, Young Kyung; Jeong, Hojin

    2015-01-01

    We have investigated the combined effect of tissue heterogeneity and its variation associated with geometric error in stereotactic body radiotherapy (SBRT) for lung cancer. The treatment plans for eight lung cancer patients were calculated using effective path length (EPL) correction and Monte Carlo (MC) algorithms, with both having the same beam configuration for each patient. These two kinds of plans for individual patients were then subsequently recalculated with adding systematic and random geometric errors. In the ordinary treatment plans calculated with no geometric offset, the EPL calculations, compared with the MC calculations, largely overestimated the doses to PTV by ~ 21%, whereas the overestimation were markedly lower in GTV by ~ 12% due to relatively higher density of GTV than of PTV. When recalculating the plans for individual patients with assigning the systematic and random geometric errors, no significant changes in the relative dose distribution, except for overall shift, were observed in the EPL calculations, whereas largely altered in the MC calculations with a consistent increase in dose to GTV. Considering the better accuracy of MC than EPL algorithms, the present results demonstrated the strong coupling of tissue heterogeneity and geometric error, thereby emphasizing the essential need for simultaneous correction for tissue heterogeneity and geometric targeting error in SBRT of lung cancer. PMID:26699300

  11. Stereotactic radiosurgery - CyberKnife

    MedlinePlus

    ... slides into a machine that delivers radiation. A robotic arm controlled by a computer moves around you. ... Accuray Incorporated. CyberKnife robotic radiosurgery system patient brochure. 2012. ... Accessed ...

  12. Protecting a CT simulator room to accommodate a cyberknife facility.

    PubMed

    Sheridan, M E; Martin, M; Khalil, S; Galal, M; King, D; Rahill, C

    2015-07-01

    In 2012, a plan to develop Stereotactic treatments using a Cyberknife was unveiled at the Hermitage Medical Clinic, Dublin. Due to planning restrictions the new facility had to be contained in the existing hospital's blue print with the only available location being an unused CT simulation room. The room design would be different from conventional radiotherapy bunkers due to the fact the Cyberknife can fire an unfiltered beam in any direction bar the roof (restriction of 22° above the horizontal). Therefore all walls must be primary barriers with the roof designed to protect against the large leakage radiation resulting from the high MU's used during the treatments. Space consideration indicated that concrete alone could not be used to restrict the radiation beam to acceptable limits. To this end a combination of steel, lead, normal and heavy concrete were used to meet the dose constraints established by the Irish licensing authorities. PMID:25855074

  13. CyberKnife therapy of 24 multiple brain metastases from lung cancer: A case report

    PubMed Central

    YANG, GUIQING; WANG, YISHAN; WANG, YUANYUAN; LIN, SIXIANG; SUN, DONGNING

    2013-01-01

    Brain metastasis is a significant cause of morbidity and mortality and a critical complication of non-central nervous system primary carcinoma. The present study describes the clinical case of a 46-year-old male with lung cancer and life-threatening brain metastases. The patient was diagnosed with lung cancer with a clinical stage of T2N0M1 (stage IV). Six months after the initial diagnosis and administration of conformal radiotherapy combined with three cycles of chemotherapy, an enhanced computed tomography (CT) scan of the brain revealed abnormalities with double-dosing of intravenous contrast. The CT scan identified >24 lesions scattered in the whole brain. The patient was treated with three-fraction Cyberknife radiotherapy at 22 Gy, delivered to the brain metastases at the Center for Tumor Treatment of People’s Liberation Army 107th Hospital. Following CyberKnife therapy, a CT scan of the brain revealed that most of the tumors had disappeared with almost no residual traces. The stereotactic radiosurgery (SRS) conducted using CyberKnife, an image-guided frameless robotic technology for whole-body radiosurgery, had produced a marked response. The present case report demonstrates that CyberKnife therapy plays a significant role in the management of multiple meta-static brain tumors. PMID:24137362

  14. [Cyberknife surgery with a radio-scalpel: a new treatment option for patients with unresectable metastases].

    PubMed

    Rentsch, M; Winter, H; Bruns, C J; Stintzing, S; Angele, M K; Jauch, K-W; Muacevic, A

    2010-04-01

    Patients with non-resectable metastases of various diseases are today treated by one of several different techniques, such as radiofrequency ablation, laser-induced thermoablation or stereotactic radiotherapy. Frequently, the employment of these therapeutic strategies is limited due to their invasiveness and treatment-associated morbidity. Furthermore, stereotactic radiotherapy is associated with a high degree of patient discomfort due to the necessary fixation of moving inner organs (lung, liver). With the development of the cyberknife radiosurgery technique, an image-guided, superselective, robot-based radiotherapy, these problems seem to be resolved. With this technique, metastases may be treated in an outpatient single-treatment setting. PMID:20340074

  15. Synchrony - Cyberknife Respiratory Compensation Technology

    SciTech Connect

    Ozhasoglu, Cihat Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-07-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed.

  16. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  17. Stereotactic radiosurgery of prostate cancer - dose distribution for VMAT and CyberKnife techniques

    NASA Astrophysics Data System (ADS)

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Stąpór-Fudzińska, Małgorzata; Szlag, Marta

    2016-06-01

    New capabilities of biomedical accelerators allow for very precise depositing of the radiation dose and imaging verification during the therapy. In addition, computer algorithms calculating dose distributions are taking into account the increasing number of physical effects. Therefore, administration of high dose fractionation, which is consistent with radiobiology used in oncology, becomes safer and safer. Stereotactic radiosurgery (SRS), which is very precise irradiation with high dose fractionation is increasingly widespread use in radiotherapy of prostate cancer. For this purpose different biomedical accelerators are used. The aim of this study is to compare dose distributions for two techniques: VMAT and CyberKnife. Statistical analysis was performed for the two groups of patients treated by VMAT technique (25 patients), and CyberKnife technique (15 patients). The analysis shows that the dose distributions are comparable, both in the treated area (prostate) and in the critical organs (rectum, urinary bladder, femoral heads). The results show that stereotactic radiosurgery of prostate cancer can be carried out on CyberKnife accelerator as well as on the classical accelerator with the use of VMAT technique.

  18. Peripheral doses in patients undergoing Cyberknife treatment for intracranial lesions. A single centre experience

    PubMed Central

    2011-01-01

    Background Stereotactic radiosurgery/radiotherapy procedures are known to deliver a very high dose per fraction, and thus, the corresponding peripheral dose could be a limiting factor for the long term surviving patients. The aim of this clinical study was to measure the peripheral dose delivered to patients undergoing intracranial Cyberknife treatment, using the MOSFET dosimeters. The influence of the supplemental shielding, the number of monitor units and the collimator size to the peripheral dose were investigated. Methods MOSFET dosimeters were placed in preselected anatomical regions of the patient undergoing Cyberknife treatment, namely the thyroid gland, the nipple, the umbilicus and the pubic symphysis. Results The mean peripheral doses before the supplemental shielding was added to the Cyberknife unit were 51.79 cGy, 13.31 cGy and 10.07 cGy while after the shielding upgrade they were 38.40 cGy, 10.94 cGy, and 8.69 cGy, in the thyroid gland, the umbilicus and the pubic symphysis, respectively. The increase of the collimator size corresponds to an increase of the PD and becomes less significant at larger distances, indicating that at these distances the PD is predominate due to the head leakage and collimator scatter. Conclusion Weighting the effect of the number of monitor units and the collimator size can be effectively used during the optimization procedure in order to choose the most suitable treatment plan that will deliver the maximum dose to the tumor, while being compatible with the dose constraints for the surrounding organs at risk. Attention is required in defining the thyroid gland as a structure of avoidance in the treatment plan especially in patients with benign diseases. PMID:22082279

  19. Radiotherapy.

    PubMed

    Adamietz, Irenaus A

    2010-01-01

    The intrathoracic growth of the tumor causes several severe symptoms as cough, dyspnea, chest pain, hemoptysis, hoarseness, anorexia/nausea, and dysphagia. In patients with manifest or threatening symptoms radiotherapy (RT) as an effective measure should be implemented into the management concept. Palliative RT radiotherapy prefers short hypofractionated schemas (e.g. 10 x 3 Gy, 4 x 5 Gy, 2 x 8 Gy, 1 x 10 Gy). Careful radiation planning supports the precision of palliative RT and reduces significantly the complication rate. A good response and prolonged palliation effects (6-12 months) can be achieved in many cases. However, the minimum biologically equivalent dose should not be less than 35 Gy. RT produces a good outcome in all types of metastases of lung carcinoma. In emergencies like VCSS or spinal cord compression RT should be initiated immediately. The selection of the optimal therapy for locally advanced lung carcinoma with malignant airway obstruction is difficult. Both brachytherapy and percutaneous irradiation are effective, however published results including local a sum of response, functionality and life quality demonstrates more benefit by percutaneous RT. Due to different physical properties of these two methods the combination of brachytherapy and external beam irradiation may be advantageous. PMID:19955803

  20. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  1. Electromagnetic tracker accuracy in the CyberKnife suite

    NASA Astrophysics Data System (ADS)

    Wilson, Emmanuel; Slack, Rebecca; Banovac, Filip; Dieterich, Sonja; Zhang, Hui; Cleary, Kevin

    2006-03-01

    Electromagnetic trackers have found inroads into medical applications as a tool for navigation in recent years. Their susceptibility to interference from both electromagnetic and ferromagnetic sources have prompted several accuracy assessment studies in past years. To the best of our knowledge, this is the first accuracy study conducted to characterize measurement accuracy of an NDI AURORA electromagnetic tracker within a CyberKnife radiosurgery suite. CyberKnife is a frameless, stereotactic radiosurgery device used to ablate tumors within the brain, spine and in recent years, the chest and abdomen. This paper uses a data collection protocol to collect uniformly distributed data points within a subset of the AURORA measurement volume in a CyberKnife suite. The key aim of the study is to determine the extent to which large metal components of the CyberKnife stereotactic radiosurgery device and robot mount contribute to overall system performance for the AURORA electromagnetic device. A secondary goal of the work is to determine the variation in accuracy and device behavior with the presence of ionizing radiation when the LINAC is turned on.

  2. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy

    PubMed Central

    Haas, Jonathan Andrew; Witten, Matthew R.; Clancey, Owen; Episcopia, Karen; Accordino, Diane; Chalas, Eva

    2012-01-01

    Standard radiation therapy for patients undergoing primary chemosensitized radiation for carcinomas of the cervix usually consists of external beam radiation followed by an intracavitary brachytherapy boost. On occasion, the brachytherapy boost cannot be performed due to unfavorable anatomy or because of coexisting medical conditions. We examined the safety and efficacy of using CyberKnife stereotactic body radiotherapy (SBRT) as a boost to the cervix after external beam radiation in those patients unable to have brachytherapy to give a more effective dose to the cervix than with conventional external beam radiation alone. Six consecutive patients with anatomic or medical conditions precluding a tandem and ovoid boost were treated with combined external beam radiation and CyberKnife boost to the cervix. Five patients received 45 Gy to the pelvis with serial intensity-modulated radiation therapy boost to the uterus and cervix to a dose of 61.2 Gy. These five patients received an SBRT boost to the cervix to a dose of 20 Gy in five fractions of 4 Gy each. One patient was treated to the pelvis to a dose of 45 Gy with an external beam boost to the uterus and cervix to a dose of 50.4 Gy. This patient received an SBRT boost to the cervix to a dose of 19.5 Gy in three fractions of 6.5 Gy. Five percent volumes of the bladder and rectum were kept to ≤75 Gy in all patients (i.e., V75 Gy ≤ 5%). All of the patients remain locally controlled with no evidence of disease following treatment. Grade 1 diarrhea occurred in 4/6 patients during the conventional external beam radiation. There has been no grade 3 or 4 rectal or bladder toxicity. There were no toxicities observed following SBRT boost. At a median follow-up of 14 months, CyberKnife radiosurgical boost is well tolerated and efficacious in providing a boost to patients with cervix cancer who are unable to undergo brachytherapy boost. Further follow-up is required to see if these results remain

  3. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  4. CyberKnife Radiosurgery – Value as an Adjunct to Surgical Treatment of HCC?

    PubMed Central

    Schoenberg, Markus; Khandoga, Andrey; Stintzing, Sebastian; Trumm, Christoph; Schiergens, Tobias Simon; Angele, Martin; op den Winkel, Mark; Werner, Jens; Rentsch, Markus

    2016-01-01

    Introduction CyberKnife radiosurgery (CK) is an effective tool for the treatment of malignancies. Its greatest potential is in high-dose radiosurgery delivered to targets in organs that move with respiration, e.g., liver tumors. For hepatocellular carcinoma (HCC), however, surgical treatment (resection, transplantation) is most likely to produce long-term survival; for non-resectable tumors, therapies other than radiosurgery are typically recommended. This study evaluated the long-lasting anti-tumor effects of CK combined with surgery in patients with HCC. Materials and methods  Eighteen patients (three women, 15 men) were included in this prospective observational study. They received 21 single-fraction CK treatments (26 Gy). Patient characteristics, treatment effects, tumor response (according to the Response Evaluation Criteria In Solid Tumors (RECIST) grading) and survival were measured for a median period of 29 months. Results Local tumor control was achieved in 15 patients, with complete and partial remission observed in 10 and five patients, respectively. One patient was treated for two separate lesions in one session, and one received three treatments each separated by two-year intervals; both patients are tumor-free. Two patients showed minimal response, and in one patient local tumor viability could not be excluded by MRI. Nine patients had HCC recurrence, all distant to the treated site. Nine patients died during follow-up, including two with clear relation to tumor progress. Tumor-free survival was 79.4% after one year and 29.8% after three years, and the corresponding overall survival was 84.8% and 66%. Conclusion  This study shows the high effectiveness of single-session frameless CyberKnife radiosurgery for treatment of hepatocellular carcinoma and reconfirms previous results of fractioned radiotherapy of HCC. It also demonstrates the potential of radiosurgery to be combined with surgical concepts. PMID:27284498

  5. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  6. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    SciTech Connect

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-03-10

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The 'Synchrony'(Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  7. Performance of a Motion Tracking System During Cyberknife Robotic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Cavedon, Carlo; Francescon, Paolo; Cora, Stefania; Moschini, Giuliano; Rossi, Paolo

    2009-03-01

    Cyberknife (Accuracy Inc., Ca) is a robotic radio-surgery system that includes a compact 6 MV linac delivering up to 800 cGy per minute, and an automate arm to aim at any part of the body from any angle. An essential tool is the guidance system based on x-ray imaging cameras located on supports around the patient. A Cyberknife system has been operational at the Vicenza (Italy) Hospital for years and is mainly employed for treating benign and malignant tumors, and Arterior-Venous Malformations. In radiation therapy, delivery of high doses to targets that move with respiration is challenging because of possible spatial inaccuracies. The purpose of this work was to estimate the accuracy of the prediction algorithm used to compensate for system latency in a real-time respiratory tracking system. We have analyzed respiratory signals of 30 patients who had lung or liver Cyberknife treatments. The "Synchrony" (Accuracy Inc.) motion tracking system we use is based on the correlation between the position of LED markers, detected in real time, and the position of internal markers, sampled through x-ray imaging. The position of the external LED signals, though read in real time, must be predicted to compensate for a few hundred ms time lag in the feedback loop that redirects the beam to the current target position. The respiratory signals were described by employing their frequency power spectrum, as recently proposed by other authors. Prediction errors above 1.5 mm, lasting for periods longer than 5 seconds were observed for irregular breathers. These episodes correlate to the presence of a bimodal distribution in the power spectral density, and of very low frequencies contribution. A more refined approach would include a personalized choice of the prediction algorithm based on the very first minutes of treatment. Patient training aimed at reducing breathing irregularities might also result in improved spatial accuracy.

  8. Cyberknife treatment for advanced or terminal stage hepatocellular carcinoma

    PubMed Central

    Kato, Hiroyuki; Yoshida, Hideo; Taniguch, Hiroyoshi; Nomura, Ryutaro; Sato, Kengo; Suzuki, Ichiro; Nakata, Ryo

    2015-01-01

    AIM: To investigate the safety and efficacy of the Cyberknife treatment for patients with advanced or terminal stage hepatocellular carcinoma (HCC). METHODS: Patients with HCC with extrahepatic metastasis or vascular or bile duct invasion were enrolled between May 2011 and June 2015. The Cyberknife was used to treat each lesion. Treatment response scores were based on Response Evaluation Criteria in Solid Tumors v1.1. The trends of tumor markers, including alpha fetoprotein (AFP) and proteins induced by vitamin K absence II (PIVKA II) were assessed. Prognostic factors for tumor response and tumor markers were evaluated with Fisher’s exact test and a logistic regression model. Survival was evaluated with the Kaplan-Meier method and multivariate analysis was performed using the Cox proportional hazards model. RESULTS: Sixty-five patients with 95 lesions were enrolled. Based on the Barcelona Clinic Liver Cancer classification, all patients were either in the advanced or terminal stage of the disease. The target lesions were as follows: 52 were bone metastasis; 9, lung metastasis; 7, brain metastasis; 9, portal vein invasion; 4, hepatic vein invasion; 4, bile duct invasion; and 10 other lesion types. The response rate and disease control rate were 34% and 53%, respectively. None of the clinical factors correlated significantly with tumor response. Fiducial marker implantation was associated with better control of both AFP (HR = 0.152; 95%CI: 0.026-0.887; P = 0.036) and PIVKA II (HR = 0.035; 95%CI: 0.003-0.342; P = 0.004). The median survival time was 9 mo (95%CI: 5-15 mo). Terminal stage disease (HR = 9.809; 95%CI: 2.589-37.17, P < 0.001) and an AFP of more than 400 ng/mL (HR = 2.548; 95%CI: 1.070-6.068, P = 0.035) were associated with worse survival. A radiation dose higher than 30 Gy (HR = 0.274; 95%CI: 0.093-0.7541, P = 0.012) was associated with better survival. In the 52 cases of bone metastasis, 36 patients (69%) achieved pain relief. One patient had cerebral

  9. Evaluation of Photoneutron Dose Measured by Bubble Detectors in Conventional Linacs and Cyberknife Unit: Effective Dose and Secondary Malignancy Risk Estimation.

    PubMed

    Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan

    2016-08-01

    This study aims to reduce the uncertainty about the photoneutron dose produced over a course of radiotherapy with high-energy photon beams and evaluate photoneutron contamination-based secondary malignancy risk for different treatment modalities. Dosimetric measurements were taken in Philips SL25/75, Elekta Synergy Platform (Elekta AB, Stockholm, Sweden), Varian Clinac DHX High Performance systems (Varian Medical Systems, Palo Alto, CA), and Cyberknife Robotic Radiosurgery Unit (Accuray Inc., Sunnyvale, CA) using bubble detector for neutron dosimetry. The measurement data were used to determine in-field and out-of-field neutron equivalent dose in 6-MV 3D conformal radiotherapy, sliding window-intensity-modulated radiotherapy, and stereotactic body radiotherapy and to calculate the effective dose in 18-MV 3D conformal radiotherapy and sliding window-intensity-modulated radiotherapy techniques for patients with prostate cancer undergoing a standard treatment. For the 18-MV treatment techniques, the secondary malignancy risk due to the neutron contamination was estimated using the risk factors published by The International Commission on Radiological Protection. The neutron contamination-based secondary malignancy risk for the 18-MV 3D conformal radiotherapy and sliding window-intensity-modulated radiotherapy modalities was found to be 0.44% and 1.45% for Elekta Synergy Platform and 0.92% and 3.0% for the Varian Clinac DHX High Performance, respectively. For 6-MV 3D conformal radiotherapy, sliding window-intensity-modulated radiotherapy, and stereotactic body radiotherapy treatment techniques, neutron equivalent doses inside the treatment field were found to be lower than 40 mSv. Our measurements reveal that equivalent dose and effective dose due to the neutron contamination are at a considerable level for 18-MV sliding window-intensity-modulated radiotherapy treatments, while 6-MV photon beams used in different modalities still induce only negligible photoneutrons

  10. Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding.

    PubMed

    Chuang, Cynthia F; Larson, David A; Zytkovicz, Andrea; Smith, Vernon; Petti, Paula L

    2008-04-01

    The authors investigated the peripheral dose reduction for CyberKnife radiosurgery treatments after the installation of a linac shielding upgrade. As in a previous investigation, the authors considered two treatment plans, one for a hypothetical target in the brain and another for a target in the thorax, delivered to an anthropomorphic phantom. The results of the prior investigation showed that the CyberKnife delivered significantly higher peripheral doses than comparable model C Gamma Knife or IMRT treatments. Current measurements, after the linac shielding upgrade, demonstrate that the additional shielding decreased the peripheral dose, expressed as a percentage of the delivered monitor units (MU), by a maximum of 59%. The dose reduction was greatest for cranial-caudal distances from the field edge less than 30 cm, and at these distances, the CyberKnife peripheral dose, expressed as a percentage of the delivered MU, is now comparable to that measured for the other treatment modalities in our previous investigation. For distances between 30 and 70 cm from the field edge, the additional shielding reduced the peripheral dose by between 20% and 55%. At these distances, the CyberKnife peripheral dose remains higher than doses measured in our previous study for the model C Gamma Knife and IMRT. PMID:18491544

  11. Cyberknife radiosurgery for focal paravertebral recurrence after radical pleurectomy/decortication in malignant pleural mesothelioma.

    PubMed

    Lang-Lazdunski, Loïc; Barrington, Sally; Bille, Andrea; Bondiau, Pierre-Yves

    2012-06-01

    We present a case of malignant pleural mesothelioma with focal relapse in the Azygos arch region after radical pleurectomy/decortication and adjuvant chemotherapy. Tumour recurrence was successfully treated by Cyberknife radiosurgery (70 Gy in five fractions). Patient remains disease-free at 40 months without any other treatment. PMID:22290898

  12. CT-Guided Fiducial Placement for CyberKnife Stereotactic Radiosurgery: An Initial Experience

    SciTech Connect

    Sotiropoulou, Evangelia; Stathochristopoulou, Irene; Stathopoulos, Konstantinos; Verigos, Kosmas; Salvaras, Nikolaos; Thanos, Loukas

    2010-06-15

    CyberKnife frameless image-guided radiosurgery has become a widely used system for parenchymal extracranial lesions. Gold fiducials are required for the planning and aiming of CyberKnife therapy. We report our initial experience and describe the technique of positioning tumor markers, under CT guidance. We conducted a retrospective review of 105 patients who were referred for CyberKnife stereotactic radiosurgery at Iatropolis CyberKnife Center in Athens. All patients underwent percutaneous fiducial placement via CT guidance. At the desired location, the 18-G needle was advanced into or near the tumor. Data collected included number and locations of fiducials placed and complications experienced to date. One hundred five patients underwent fiducial placement under CT guidance and a total number of 319 gold seeds were implanted. We experienced one episode of pneumothorax that required drainage, one mild pneumothorax, and three episodes of perifocal pulmonary hemorrhage. In conclusion, fiducial implantation under CT guidance appears to be a safe and efficient procedure, as long as it is performed by an experienced interventional radiologist.

  13. Intrafractional Motion of the Prostate During Hypofractionated Radiotherapy

    SciTech Connect

    Xie Yaoqin; Djajaputra, David; King, Christopher R.; Hossain, Sabbir; Ma Lijun; Xing Lei

    2008-09-01

    Purpose: To report the characteristics of prostate motion as tracked by the stereoscopic X-ray images of the implanted fiducials during hypofractionated radiotherapy with CyberKnife. Methods and Materials: Twenty-one patients with prostate cancer who were treated with CyberKnife between January 2005 and September 2007 were selected for this retrospective study. The CyberKnife uses a stereoscopic X-ray system to obtain the position of the prostate target through the monitoring of implanted gold fiducial markers. If there is a significant deviation, the treatment is paused while the patient is repositioned by moving the couch. The deviations calculated from X-ray images acquired within the time interval between two consecutive couch motions constitute a data set. Results: Included in the analysis were 427 data sets and 4,439 time stamps of X-ray images. The mean duration for each data set was 697 sec. At 30 sec, a motion >2 mm exists in about 5% of data sets. The percentage is increased to 8%, 11%, and 14% at 60 sec, 90 sec, and 120 sec, respectively. A similar trend exists for other values of prostate motion. Conclusions: With proper monitoring and intervention during treatment, the prostate shifts observed among patients can be kept within the tracking range of the CyberKnife. On average, a sampling rate of {approx}40 sec between consecutive X-rays is acceptable to ensure submillimeter tracking. However, there is significant movement variation among patients, and a higher sampling rate may be necessary in some patients.

  14. Retrospective evaluation of CTV to PTV margins using CyberKnife in patients with thoracic tumors.

    PubMed

    Floriano, Alejandro; García, Rafael; Moreno, Ramon; Sánchez-Reyes, Alberto

    2014-01-01

    The objectives of this study were to estimate global uncertainty for patients with thoracic tumors treated in our center using the CyberKnife VSI after placement of fiducial markers and to compare our findings with the standard CTV to PTV margins used to date. Datasets for 16 patients (54 fractions) treated with the CyberKnife and the Synchrony Respiratory Tracking System were analyzed retrospectively based on CT planning, tracking information, and movement data generated and saved in the logs files by the system. For each patient, we analyzed all the main uncertainty sources and assigned a value. We also calculated an expanded global uncertainty to ensure a robust estimation of global uncertainty and to enable us to determine the position of 95% of the CTV points with a 95% confidence level during treatment. Based on our estimation of global uncertainty and compared with our general mar- gin criterion (5 mm in all three directions: superior/inferior [SI], anterior/posterior [AP], and lateral [LAT]), 100% were adequately covered in the LAT direction, as were 94% and 94% in the SI and AP directions. We retrospectively analyzed the main sources of uncertainty in the CyberKnife process patient by patient. This individualized approach enabled us to estimate margins for patients with thoracic tumors treated in our unit and compare the results with our standard 5 mm margin.  PMID:25493508

  15. Implementation of Fiducial-Based Image Registration in the Cyberknife Robotic System

    SciTech Connect

    Saw, Cheng B. Chen Hungcheng; Wagner, Henry

    2008-07-01

    Fiducial-based image registration methodology as implemented in the Cyberknife system is explored. The Cyberknife is a radiosurgery system that uses image guidance technology and computer-controlled robotics to determine target positions and adjust beam directions accordingly during the dose delivery. The image guidance system consists of 2 x-ray sources mounted on the ceiling and a detection system mounted on both sides of the treatment couch. Two orthogonal live radiographs are taken prior to and during patient treatment. Fiducial markers are identified on these radiographs and compared to a library of digital reconstructed radiographs (DRRs) using the fiducial extraction software. The fiducial extraction software initially sets an intensity threshold on the live radiographs to generate white areas on black images referred to as 'blobs.' Different threshold values are being used and blobs at the same location are assumed to originate from the same object. The number of blobs is then reduced by examining each blob against a predefined set of properties such as shape and exposure levels. The remaining blobs are further reduced by examining the location of the blobs in the inferior-superior patient axis. Those blobs that have the corresponding positions are assumed to originate from the same object. The remaining blobs are used to create fiducial configurations and are compared to the reference configuration from the computed tomography (CT) image dataset for treatment planning. The best-fit configuration is considered to have the appropriate fiducial markers. The patient position is determined based on these fiducial markers. During the treatment, the radiation beam is turned off when the Cyberknife changes nodes. This allows a time window to acquire live radiographs for the determination of the patient target position and to update the robotic manipulator to change beam orientations accordingly.

  16. Implementation of fiducial-based image registration in the Cyberknife robotic system.

    PubMed

    Saw, Cheng B; Chen, Hungcheng; Wagner, Henry

    2008-01-01

    Fiducial-based image registration methodology as implemented in the Cyberknife system is explored. The Cyberknife is a radiosurgery system that uses image guidance technology and computer-controlled robotics to determine target positions and adjust beam directions accordingly during the dose delivery. The image guidance system consists of 2 x-ray sources mounted on the ceiling and a detection system mounted on both sides of the treatment couch. Two orthogonal live radiographs are taken prior to and during patient treatment. Fiducial markers are identified on these radiographs and compared to a library of digital reconstructed radiographs (DRRs) using the fiducial extraction software. The fiducial extraction software initially sets an intensity threshold on the live radiographs to generate white areas on black images referred to as "blobs." Different threshold values are being used and blobs at the same location are assumed to originate from the same object. The number of blobs is then reduced by examining each blob against a predefined set of properties such as shape and exposure levels. The remaining blobs are further reduced by examining the location of the blobs in the inferior-superior patient axis. Those blobs that have the corresponding positions are assumed to originate from the same object. The remaining blobs are used to create fiducial configurations and are compared to the reference configuration from the computed tomography (CT) image dataset for treatment planning. The best-fit configuration is considered to have the appropriate fiducial markers. The patient position is determined based on these fiducial markers. During the treatment, the radiation beam is turned off when the Cyberknife changes nodes. This allows a time window to acquire live radiographs for the determination of the patient target position and to update the robotic manipulator to change beam orientations accordingly. PMID:18456167

  17. Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife.

    PubMed

    Fukuda, Shoichi; Seo, Yuji; Shiomi, Hiroya; Yamada, Yuji; Ogata, Toshiyuki; Morimoto, Masahiro; Konishi, Koji; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2014-11-01

    The purpose of this study was to perform dosimetry analyses comparing high-dose-rate brachytherapy (HDR-BT) with simulated stereotactic body radiotherapy (SBRT). We selected six consecutive patients treated with HDR-BT monotherapy in 2010, and a CyberKnife SBRT plan was simulated for each patient using computed tomography images and the contouring set used in the HDR-BT plan for the actual treatment, but adding appropriate planning target volume (PTV) margins for SBRT. Then, dosimetric profiles for PTVs of the rectum, bladder and urethra were compared between the two modalities. The SBRT plan was more homogenous and provided lower dose concentration but better coverage for the PTV. The maximum doses in the rectum were higher in the HDR-BT plans. However, the HDR-BT plan provided a sharper dose fall-off around the PTV, resulting in a significant and considerable difference in volume sparing of the rectum with the appropriate PTV margins added for SBRT. While the rectum D5cm(3) for HDR-BT and SBRT was 30.7 and 38.3 Gy (P < 0.01) and V40 was 16.3 and 20.8 cm(3) (P < 0.01), respectively, SBRT was significantly superior in almost all dosimetric profiles for the bladder and urethra. These results suggest that SBRT as an alternative to HDR-BT in hypofractionated radiotherapy for prostate cancer might have an advantage for bladder and urethra dose sparing, but for the rectum only when proper PTV margins for SBRT are adopted. PMID:24957754

  18. Radiation shielding evaluation based on five years of data from a busy CyberKnife center.

    PubMed

    Yang, Jun; Feng, Jing

    2014-01-01

    We examined the adequacy of existing shielding guidelines using five-year clinical data from a busy CyberKnife center. From June 2006 through July 2011, 1,370 patients were treated with a total of 4,900 fractions and 680,691 radiation beams using a G4 CyberKnife. Prescription dose and total monitor units (MU) were analyzed to estimate the shielding workload and modulation factor. In addition, based on the beam's radiation source position, targeting position, MU, and beam collimator size, the MATLAB program was used to project each beam toward the shielding barrier. The summation of the projections evaluates the distribution of the shielding load. On average, each patient received 3.6 fractions, with an average 9.1 Gy per fraction prescribed at the 71.1% isodose line, using 133.7 beams and 6,200 MU. Intracranial patients received an average of 2.7 fractions, with 8.6 Gy per fraction prescribed at the 71.4% isodose line, using 133 beams and 5,083 MU. Extracranial patients received an average of 3.94 fractions, with 9.2 Gy per frac- tion prescribed at the 71% isodose line, using 134 beams and 6,514 MU. Most- used collimator sizes for intracranial patients were smaller (7.5 to 20 mm) than for extracranial patients (20 to 40 mm). Eighty-five percent of the beams exited through the floor, and about 40% of the surrounding wall area received no direct beam. For the rest of the wall, we found "hot" areas that received above-average MU. The locations of these areas were correlated with the projection of the nodes for extracranial treatments. In comparison, the beam projections on the wall were more spread for intracranial treatments. The maximum MU any area received from intracranial treatment was less than 0.25% of total MU used for intracranial treatments, and was less than 1.2% of total MU used for extracranial treatments. The combination of workload, modulation factor, and use factor in our practice are about tenfold less than recommendations in the existing CyberKnife

  19. Successful CyberKnife Irradiation of 1000 cc Hemicranial Meningioma: 6-year Follow-up

    PubMed Central

    Golanov, Andrey V.; Antipina, Natalia; Gorlachev, Gennady

    2015-01-01

    Meningiomas are common benign tumors with accepted treatment approaches and usually don't challenge healthcare specialists. We present a case of a huge unresectable hemicranial meningioma, which was successfully treated with hypofractionated irradiation. A male patient, sixty-two years of age, suffered for over 12 years from headaches, facial deformity, right eye displacement, right eye movement restriction, right-sided ptosis, and facial hypoesthesia. MRI and CT studies revealed an extended hemicranial meningioma. Prior to irradiation, the patient underwent four operations. Eventually, the tumor was irradiated with the CyberKnife in August 2009. Tumor volume composed 1085 cc. The mean dose of 35.3 Gy was delivered in 7 fractions (31.5 Gy at 72% isodose line comprising 95% of tumor volume). The patient was followed during six years and experienced only mild (Grade 1-2 CTCAE) acute skin and mucosa reactions. During the follow-up period, we observed target volume shrinkage for 17% (for 26% after excluding hyperostosis) and regression of intracranial hypertension signs. Due to the extreme volume and complex shape of the tumor, spreading along the surface of the hemisphere as well as an optic nerve involvement, the case presented would not be generally considered suitable for irradiation, especially for hypofractionation. We regard this clinical situation not as a treatment recommendation, but as a demonstration of the underestimated possibilities of hypofractionation regimen and CyberKnife system, both of which are limited with our habit of conventional treatments. PMID:26719827

  20. Dose distribution transfer from CyberKnife to Varian treatment planning system

    NASA Astrophysics Data System (ADS)

    Osewski, W.; Ślosarek, K.; Karaszewska, B.

    2014-03-01

    The aim of this paper was to introduce one of the options of the locally developed DDcon.exe which gives the possibility to transfer the dose distribution from CyberKnife (Accuray) treatment planning system (CK TPS) to Varian treatment planning system (Eclipse TPS, Varian). DICOM format is known as a universal format for medical data. The dose distribution is stored as RTdose file in DICOM format, so there should be a possibility to transfer it between different treatment planning systems. Trying to transfer RTdose file from CK TPS to Eclipse TPS the error message occurs. That's because the RTdose file in CK TPS is connected with Structure_Set_Sequence against Eclipse TPS where it's connected with RT_Plan_Sequence. To make it transferable RTdose file from CK TPS have to be 'disconnected' from Structure_Set_Sequence and 'connected' with RT_Plan_Sequence. This is possible thanks DDcon software which creates new RTdose file by changing proper DICOM tags in original RTdose file. New homemade software gives us an opportunity to transfer dose distribution from CyberKnife TPS to TPS Eclipse. This method opens new possibilities to combine or compare different treatment techniques in Varian TPS.

  1. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels

    SciTech Connect

    Pantelis, E.; Antypas, C.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Kozicki, M.; Georgiou, E.; Sakelliou, L.; Seimenis, I.

    2008-06-15

    Dose distributions registered in water equivalent, polymer gel dosimeters were used to measure the output factors and off-axis profiles of the radiosurgical photon beams employed for CyberKnife radiosurgery. Corresponding measurements were also performed using a shielded silicon diode commonly employed for CyberKnife commissioning, the PinPoint ion chamber, and Gafchromic EBT films, for reasons of comparison. Polymer gel results of this work for the output factors of the 5, 7.5, and 10 mm diameter beams are (0.702{+-}0.029), (0.872{+-}0.039), and (0.929{+-}0.041), respectively. Comparison of polymer gel and diode measurements shows that the latter overestimate output factors of the two small beams (5% for the 5 mm beam and 3% for the 7.5 mm beams). This is attributed to the nonwater equivalence of the high atomic number silicon material of the diode detector. On the other hand, the PinPoint chamber is found to underestimate output factors up to 10% for the 5 mm beam due to volume averaging effects. Polymer gel and EBT film output factor results are found in close agreement for all beam sizes, emphasizing the importance of water equivalence and fine detector sensitive volume for small field dosimetry. Relative off-axis profile results are in good agreement for all dosimeters used in this work, with noticeable differences observed only in the PinPoint estimate of the 80%-20% penumbra width, which is relatively overestimated.

  2. Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system

    SciTech Connect

    Pepin, Eric W.; Wu, Huanmei; Zhang, Yuenian; Lord, Bryce

    2011-07-15

    Purpose: The CyberKnife uses an online prediction model to improve radiation delivery when treating lung tumors. This study evaluates the prediction model used by the CyberKnife radiation therapy system in terms of treatment margins about the gross tumor volume (GTV). Methods: From the data log files produced by the CyberKnife synchrony model, the uncertainty in radiation delivery can be calculated. Modeler points indicate the tracked position of the tumor and Predictor points predict the position about 115 ms in the future. The discrepancy between Predictor points and their corresponding Modeler points was analyzed for 100 treatment model data sets from 23 de-identified lung patients. The treatment margins were determined in each anatomic direction to cover an arbitrary volume of the GTV, derived from the Modeler points, when the radiation is targeted at the Predictor points. Each treatment model had about 30 min of motion data, of which about 10 min constituted treatment time; only these 10 min were used in the analysis. The frequencies of margin sizes were analyzed and truncated Gaussian normal functions were fit to each direction's distribution. The standard deviation of each Gaussian distribution was then used to describe the necessary margin expansions in each signed dimension in order to achieve the desired coverage. In this study, 95% modeler point coverage was compared to 99% modeler coverage. Two other error sources were investigated: the correlation error and the targeting error. These were added to the prediction error to give an aggregate error for the CyberKnife during treatment of lung tumors. Results: Considering the magnitude of 2{sigma} from the mean of the Gaussian in each signed dimension, the margin expansions needed for 95% modeler point coverage were 1.2 mm in the lateral (LAT) direction and 1.7 mm in the anterior-posterior (AP) direction. For the superior-inferior (SI) direction, the fit was poor; but empirically, the expansions were 3.5 mm

  3. Evaluation of GAFCHROMIC registered EBT film for CyberKnife registered dosimetry

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.

    2007-06-15

    External beam therapy (EBT) GAFCHROMIC registered film is evaluated for dosimetry and characterization of the CyberKnife registered radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC registered film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife registered (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with

  4. Virtual HDR{sup SM} CyberKnife Treatment for Localized Prostatic Carcinoma: Dosimetry Comparison With HDR Brachytherapy and Preliminary Clinical Observations

    SciTech Connect

    Fuller, Donald B. Naitoh, John; Lee, Charles; Hardy, Steven C.; Jin, Haoran

    2008-04-01

    Background: We tested our ability to approximate the dose (38 Gy), fractionation (four fractions), and distribution of high-dose-rate (HDR) brachytherapy for prostate cancer with CyberKnife (CK) stereotactic body radiotherapy (SBRT) plans. We also report early clinical observations of CK SBRT treatment. Methods and Materials: Ten patients were treated with CK. For each CK SBRT plan, an HDR plan was designed using common contour sets and simulated HDR catheters. Planning target volume coverage, intraprostatic dose escalation, and urethra, rectum, and bladder exposure were compared. Results: Planning target volume coverage by the prescription dose was similar for CK SBRT and HDR plans, whereas percent of volume of interest receiving 125% of prescribed radiation dose (V125) and V150 values were higher for HDR, reflecting higher doses near HDR source dwell positions. Urethra dose comparisons were lower for CK SBRT in 9 of 10 cases, suggesting that CK SBRT may more effectively limit urethra dose. Bladder maximum point doses were higher with HDR, but bladder dose falloff beyond the maximum dose region was more rapid with HDR. Maximum rectal wall doses were similar, but CK SBRT created sharper rectal dose falloff beyond the maximum dose region. Second CK SBRT plans, constructed by equating urethra radiation dose received by point of maximum exposure of volume of interest to the HDR plan, significantly increased V125 and V150. Clinically, 4-month post-CK SBRT median prostate-specific antigen levels decreased 86% from baseline. Acute toxicity was primarily urologic and returned to baseline by 2 months. Acute rectal morbidity was minimal and transient. Conclusions: It is possible to construct CK SBRT plans that closely recapitulate HDR dosimetry and deliver the plans noninvasively.

  5. Quality of life in the follow-up of uveal melanoma patients after CyberKnife treatment.

    PubMed

    Klingenstein, Annemarie; Fürweger, Christoph; Nentwich, Martin M; Schaller, Ulrich C; Foerster, Paul I; Wowra, Berndt; Muacevic, Alexander; Eibl, Kirsten H

    2013-12-01

    To assess quality of life in uveal melanoma patients within the first and second year after CyberKnife radiosurgery. Overall, 91 uveal melanoma patients were evaluated for quality of life through the Short-form (SF-12) Health Survey at baseline and at every follow-up visit over 2 years after CyberKnife radiosurgery. Statistical analysis was carried out using SF Health Outcomes Scoring Software and included subgroup analysis of patients developing secondary glaucoma and of patients maintaining a best corrected visual acuity (BCVA) of the treated eye of 0.5 log(MAR) or better. Analysis of variance, Greenhouse-Geisser correction, Student's t-test, and Fisher's exact test were used to determine statistical significance. Physical Functioning (PF) and Role Physical (RP) showed a significant decrease after CyberKnife radiosurgery, whereas Mental Health (MH) improved (P=0.007, P<0.0001 and P=0.023). MH and Social Functioning (SF) increased significantly (P=0.0003 and 0.026) in the no glaucoma group, MH being higher compared with glaucoma patients (P=0.02). PF and RP were significantly higher in patients with higher BCVA at the second follow-up (P=0.02). RP decreased in patients with BCVA<0.5 log(MAR) (P=0.013). Vitality (VT) increased significantly in patients whose BCVA could be preserved (P=0.031). Neither tumor localization nor size influenced the development of secondary glaucoma or change in BCVA. Although PF and RP decreased over time, MH improved continuously. Prevention of secondary glaucoma has a significant influence on both SF and MH, whereas preservation of BCVA affects VT. Emotional stability throughout follow-up contributes positively toward overall quality of life. CyberKnife radiosurgery may contribute to attenuation of emotional distress in uveal melanoma patients. PMID:24048223

  6. Integral dose: Comparison between four techniques for prostate radiotherapy

    PubMed Central

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Radwan, Michał; Dolla, Łukasz; Szlag, Marta; Stąpór-Fudzińska, Małgorzata

    2014-01-01

    Aim Comparisons of integral dose delivered to the treatment planning volume and to the whole patient body during stereotactic, helical and intensity modulated radiotherapy of prostate. Background Multifield techniques produce large volumes of low dose inside the patient body. Delivered dose could be the result of the cytotoxic injuries of the cells even away from the treatment field. We calculated the total dose absorbed in the patient body for four radiotherapy techniques to investigate whether some methods have a potential to reduce the exposure to the patient. Materials and methods We analyzed CyberKnife plans for 10 patients with localized prostate cancer. Five alternative plans for each patient were calculated with the VMAT, IMRT and TomoTherapy techniques. Alternative dose distributions were calculated to achieve the same coverage for PTV. Integral Dose formula was used to calculate the total dose delivered to the PTV and whole patient body. Results Analysis showed that the same amount of dose was deposited to the treated volume despite different methods of treatment delivery. The mean values of total dose delivered to the whole patient body differed significantly for each treatment technique. The highest integral dose in the patient's body was at the TomoTherapy and CyberKnife treatment session. VMAT was characterized by the lowest integral dose deposited in the patient body. Conclusions The highest total dose absorbed in normal tissue was observed with the use of a robotic radiosurgery system and TomoTherapy. These results demonstrate that the exposure of healthy tissue is a dosimetric factor which differentiates the dose delivery methods. PMID:25859398

  7. Patterns of care of radiotherapy in México

    PubMed Central

    Poitevin-Chacón, Adela; Hinojosa-Gómez, José

    2012-01-01

    Aim This survey is performed to learn about the structure of radiotherapy in México. Background Radiation oncology practice is increasing because of the higher incidence of cancer. There is no published data about radiotherapy in México. Materials and methods A questionnaire was sent to the 83 registered centers in the database of the Mexican regulatory agency. One out of the 32 states has no radiotherapy. 27 centers from 14 states provided their answers. Results 829 patients are treated annually with any radiotherapy modality in each center. Two centers have one cobalt machine, 7 have a cobalt and a linac and 10 have more than one linac. Five centers use 2D planning systems, 22 use 3D; 9, conventional simulators; 22, CT based simulation, and 1 center has no simulation. Most of the centers verify beams with films, electronic portal image devices and cone beam CTs are also used. Intensity modulated and image guided radiotherapy are performed in 5 states. Breast, prostate, cervix, lung, rectum and head and neck cancer are the six most common locations. There are 45 public and 38 private centers, 2 dedicated to children. Two gamma knife units, 5 Novalis systems, 1 tomotherapy and 2 cyberknife machines are working. All centers have at least one radiation oncologist, one physicist and one radiotherapist. Conclusions Definitive conclusions cannot be drawn from this limited feedback due to a low participation of centers. This survey about radiotherapy in Mexico shows the heterogeneity of equipment as well as medical and technical staff in the whole country. PMID:24416531

  8. Fiducial migration following small peripheral lung tumor image-guided CyberKnife stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Strulik, Konrad L.; Cho, Min H.; Collins, Brian T.; Khan, Noureen; Banovac, Filip; Slack, Rebecca; Cleary, Kevin

    2008-03-01

    To track respiratory motion during CyberKnife stereotactic radiosurgery in the lung, several (three to five) cylindrical gold fiducials are implanted near the planned target volume (PTV). Since these fiducials remain in the human body after treatment, we hypothesize that tracking fiducial movement over time may correlate with the tumor response to treatment and pulmonary fibrosis, thereby serving as an indicator of treatment success. In this paper, we investigate fiducial migration in 24 patients through examination of computed tomography (CT) volume images at four time points: pre-treatment, three, six, and twelve month post-treatment. We developed a MATLAB based GUI environment to display the images, identify the fiducials, and compute our performance measure. After we semi-automatically segmented and detected fiducial locations in CT images of the same patient over time, we identified them according to their configuration and introduced a relative performance measure (ACD: average center distance) to detect their migration. We found that the migration tended to result in a movement towards the fiducial center of the radiated tissue area (indicating tumor regression) and may potentially be linked to the patient prognosis.

  9. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  10. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms.

    PubMed

    Sothmann, T; Blanck, O; Poels, K; Werner, R; Gauer, T

    2016-02-21

    The purpose of this study was to evaluate and compare two clinical tracking systems for radiosurgery with regard to their dosimetric and geometrical accuracy in liver SBRT: the robot-based CyberKnife and the gimbal-based Vero. Both systems perform real-time tumour tracking by correlating internal tumour and external surrogate motion. CyberKnife treatment plans were delivered to a high resolution 2D detector array mounted on a 4D motion platform, with the platform simulating (a) tumour motion trajectories extracted from the corresponding CyberKnife predictor log files and (b) the tumour motion trajectories with superimposed baseline-drift. Static reference and tracked dose measurements were compared and dosimetric as well as geometrical uncertainties analyzed by a planning structure-based evaluation. For (a), γ-passing rates inside the CTV (γ-criteria of 1% / 1 mm) ranged from 95% to 100% (CyberKnife) and 98% to 100% (Vero). However, dosimetric accuracy decreases in the presence of the baseline-drift. γ-passing rates for (b) ranged from 26% to 92% and 94% to 99%, respectively; i.e. the effect was more pronounced for CyberKnife. In contrast, the Vero system led to maximum dose deviations in the OAR between  +1.5 Gy to +6.0 Gy (CyberKnife: +0.5 Gy to +3.5 Gy). Potential dose shifts were interpreted as motion-induced geometrical tracking errors. Maximum observed shift ranges were  -1.0 mm to  +0.7 mm (lateral) /-0.6 mm to +0.1 mm (superior-inferior) for CyberKnife and  -0.8 mm to +0.2 mm /-0.8 mm to +0.4 mm for Vero. These values illustrate that CyberKnife and Vero provide high precision tracking of regular breathing patterns. Even for the modified motion trajectory, the obtained dose distributions appear to be clinical acceptable with regard to literature QA γ-criteria of 3% / 3 mm. PMID:26836488

  11. SU-E-T-228: Liquid Ionisation Chamber Array and MicroDiamond Measurements with the CyberKnife System

    SciTech Connect

    Poppinga, D; Looe, H; Stelljes, T; Poppe, B; Blanck, O; Harder, D

    2014-06-01

    Purpose: The aim of this study was to measure the dose profile and output factors with a CyberKnife accelerator using a TM60019 microDiamond detector and a 1000SRS liquid chamber array (both PTW Freiburg, Germany). Methods: An MP3 water phantom (PTW, Freiburg) was positioned along the robotic world coordinate system. The TM60019 detector was adjusted to the center of the according fields and the semiconductor axis was aligned with the beam direction. Profiles at 5cm water depth and SSD = 80 cm were measured along the robotic x axis and y axis for the cylindrical collimators of the CyberKnife (diameter 60, 50, 40, 30, 20, 15, 12.5, 10, 7.5 and 5mm). To determine the output factors the dose profile was measured at 0.1 mm steps around the field center to find the maximum dose value. The liquid chamber array (1000SRS) measurement was performed with the same setup, but with RW3 buildup. Results: The 1000SRS measurements closely conform with the TM60019 profile measurement in all profile regions and for all collimator sizes. The profile measurement is influenced by the almost equal spatial resolution of the TM60019 detector (radius of the sensitive area 1.1mm) and of the 1000SRS liquid chamber array (single chamber width 2.3mm). The measured dose profiles have not been corrected for this limited spatial resolution. Rather we purpose to consider that spatial dose averaging over 2 mm wide regions might be justified in view of patient positioning inaccuracies and of the spaces in tissue participating in the biological radiation responses. Conclusion: The 1000SRS data points conform with the TM60019 profile measurements at all profile regions showing the applicability of liquid ion chamber arrays with the CyberKnife system.

  12. SU-E-T-258: Parallel Optimization of Beam Configurations for CyberKnife Treatments

    SciTech Connect

    Viulet, T; Blanck, O; Schlaefer, A

    2014-06-01

    Purpose: The CyberKnife delivers a large number of beams originating at different non-planar positions and with different orientation. We study how much the quality of treatment plans depends on the beams considered during plan optimization. Particularly, we evaluate a new approach to search for optimal treatment plans in parallel by running optimization steps concurrently. Methods: So far, no deterministic, complete and efficient method to select the optimal beam configuration for robotic SRS/SBRT is known. Considering a large candidate beam set increases the likelihood to achieve a good plan, but the optimization problem becomes large and impractical to solve. We have implemented an approach that parallelizes the search by solving multiple linear programming problems concurrently while iteratively resampling zero weighted beams. Each optimization problem contains the same set of constraints but different variables representing candidate beams. The search is synchronized by sharing the resulting basis variables among the parallel optimizations. We demonstrate the utility of the approach based on an actual spinal case with the objective to improve the coverage. Results: The objective function is falling and reaches a value of 5000 after 49, 31, 25 and 15 iterations for 1, 2, 4, and 8 parallel processes. This corresponds to approximately 97% coverage in 77%, 59%, and 36% of the mean number of iterations with one process for 2, 4, and 8 parallel processes, respectively. Overall, coverage increases from approximately 91.5% to approximately 98.5%. Conclusion: While on our current computer with uniform memory access the reduced number of iterations does not translate into a similar speedup, the approach illustrates how to effectively parallelize the search for the optimal beam configuration. The experimental results also indicate that for complex geometries the beam selection is critical for further plan optimization.

  13. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  14. P13.22CYBERKNIFE STEREOTACTIC RADIOSURGERY FOR THE RE-IRRADIATION OF BRAIN LESIONS: A SINGLE-CENTRE EXPERIENCE

    PubMed Central

    Greto, D.; Bonomo, P.; Detti, B.; Scoccianti, S.; Cipressi, S.; Cassani, S.; Giacomelli, I.; Cappelli, S.; Franceschini, D.; Livi, L.

    2014-01-01

    PURPOSE: The aim of our study was to retrospectively evaluate the feasibility and clinical benefit of cyberknife stereotactic radiosurgery (CSRS) in patients treated at Florence University for recurrent, pre-irradiated brain lesions. MATERIALS AND METHODS: Thirteen patients were retreated with cyberknife. Mean age was 47.1 years (range 33–77 years). Karnofsky Performance Status ranged from 60 to 100 (median 80). Eleven (84.6 %) out of 13 patients had metastatic lesions: four (36.4 %) had primary lung, three (27.2 %) had primary breast cancer and four (36.4 %) other types of solid malignancies. Two (15.4 %) out of 13 patients had recurrent of glioblastoma. RESULTS: In terms of compliance with CSRS, the majority of patients did not develop any acute side effects. However, two (15.4 %) out of 13 patients developed acute grade 2 toxicity requiring an increase of steroid medication. At the time of the last follow-up, response rates were as follows: complete response in one case (16.6 %), partial response in three (50 %) and stable disease in two (33.4 %). CONCLUSIONS: Re-irradiation with CSRS is a feasible and effective option for pre-irradiated, recurrent brain lesions to obtain clinical benefit without excessive acute toxicity.

  15. SU-E-T-516: Measurement of the Absorbed Dose Rate in Water Under Reference Conditions in a CyberKnife Unit

    SciTech Connect

    Aragon-Martinez, N; Hernandez-Guzman, A; Gomez-Munoz, A; Massillon-JL, G

    2014-06-01

    Purpose: This paper aims to measure the absorbed-dose-rate in a CyberKnife unit reference-field (6cm diameter) using three ionization chambers (IC) following the new IAEA/AAPM formalism and Gafchromic film (MD-V3-55 and EBT3) protocol according to our work reported previously. Methods: The absorbed-dose-rates were measured at 90cm and 70cm SSD in a 10cmx10cm field and at 70cm SSD in a 5.4cmx5.4cm equivalent to 6cm diameter field using a linac Varian iX. All measurements were performed at 10cm depth in water. The correction factors that account for the difference between the IC response on the reference field and the CyberKnife reference field, k-(Q-msr,Q)^(f-msr,f-ref), were evaluated and Gafchromic film were calibrated using the results obtained above. Under the CyberKnife reference conditions, the factors were used to measure the absorbed-dose-rate with IC according to the new formalism and the calibrated film was irradiated in water. The film calibration curve was used to evaluate the absorbed-dose-rate in the CyberKnife unit. Results: Difference up to 2.56% is observed between dose-rate measured with IC in the reference 10cmx10cm field, depending where the chamber was calibrated, which was not reflected in the correction factor k-(Q-msr,Q)^(f-msr,f-ref ) where variations of ~0.15%-0.5% were obtained. Within measurements uncertainties, maximum difference of 1.8% on the absorbed-dose-rate in the CyberKnife reference field is observed between all IC and the films Conclusion: Absorbed-dose-rate to water was measured in a CyberKnife reference field with acceptable accuracy (combined uncertainties ~1.32%-1.73%, k=1) using three IC and films. The MD-V3-55 film as well as the new IAEA/AAPM formalism can be considered as a suitable dosimetric method to measure absorbed-dose-rate to water in small and non-standard CyberKnife fields used in clinical treatments However, the EBT3 film is not appropriated due to the high uncertainty provided (combined uncertainty ~9%, k=1

  16. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms

    NASA Astrophysics Data System (ADS)

    Sothmann, T.; Blanck, O.; Poels, K.; Werner, R.; Gauer, T.

    2016-02-01

    The purpose of this study was to evaluate and compare two clinical tracking systems for radiosurgery with regard to their dosimetric and geometrical accuracy in liver SBRT: the robot-based CyberKnife and the gimbal-based Vero. Both systems perform real-time tumour tracking by correlating internal tumour and external surrogate motion. CyberKnife treatment plans were delivered to a high resolution 2D detector array mounted on a 4D motion platform, with the platform simulating (a) tumour motion trajectories extracted from the corresponding CyberKnife predictor log files and (b) the tumour motion trajectories with superimposed baseline-drift. Static reference and tracked dose measurements were compared and dosimetric as well as geometrical uncertainties analyzed by a planning structure-based evaluation. For (a), γ-passing rates inside the CTV (γ-criteria of 1% / 1 mm) ranged from 95% to 100% (CyberKnife) and 98% to 100% (Vero). However, dosimetric accuracy decreases in the presence of the baseline-drift. γ-passing rates for (b) ranged from 26% to 92% and 94% to 99%, respectively; i.e. the effect was more pronounced for CyberKnife. In contrast, the Vero system led to maximum dose deviations in the OAR between  +1.5 Gy to  +6.0 Gy (CyberKnife:  +0.5 Gy to  +3.5 Gy). Potential dose shifts were interpreted as motion-induced geometrical tracking errors. Maximum observed shift ranges were  -1.0 mm to  +0.7 mm (lateral) /-0.6 mm to  +0.1 mm (superior-inferior) for CyberKnife and  -0.8 mm to  +0.2 mm /-0.8 mm to  +0.4 mm for Vero. These values illustrate that CyberKnife and Vero provide high precision tracking of regular breathing patterns. Even for the modified motion trajectory, the obtained dose distributions appear to be clinical acceptable with regard to literature QA γ-criteria of 3% / 3 mm.

  17. Stereotactic Body Radiotherapy (SBRT) for Intrahepatic and Hilar Cholangiocarcinoma

    PubMed Central

    Mahadevan, Anand; Dagoglu, Nergiz; Mancias, Joseph; Raven, Kristin; Khwaja, Khalid; Tseng, Jennifer F; Ng, Kimmie; Enzinger, Peter; Miksad, Rebecca; Bullock, Andrea; Evenson, Amy

    2015-01-01

    Background: Unresectable intrahepatic and hilar cholangiocarcinomas carry a dismal prognosis. Systemic chemotherapy and conventional external beam radiation and brachytherapy have been used with limited success. We explored the use of stereotactic body radiotherapy (SBRT) for these patients. Methods: Patients with unresectable intrahepatic or hilar cholangiocarcinoma or those with positive margins were included in this study. Systemic therapy was used at the discretion of the medical oncologist. The CyberknifeTM stereotactic body radiotherapy system used to treat these patients. Patients were treated with three daily fractions. Clinical and radiological follow-up were performed every three months. Results: 34 patients (16 male and 18 female) with 42 lesions were included in this study. There were 32 unresectable tumors and two patients with resected tumors with positive margins. The median SBRT dose was 30Gy in three fractions. The median follow-up was 38 months (range 8-71 months). The actuarial local control rate was 79%. The median overall survival was 17 months and the median progression free survival was ten months. There were four Grade III toxicities (12%), including duodenal ulceration, cholangitis and liver abscess. Conclusions: SBRT is an effective and reasonably safe local therapy option for unresectable intrahepatic or hilar cholangiocarcinoma. PMID:26516357

  18. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    SciTech Connect

    Monterroso, M; Dogan, N; Yang, Y

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  19. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence; Chang, Stephanie; Kuo, Timothy; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Greco, Ralph; Yang, George P.; Koong, Albert C.

    2008-11-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife. Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.

  20. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.

    PubMed

    Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-01-01

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PMID:27074474

  1. Split-Volume Treatment Planning of Multiple Consecutive Vertebral Body Metastases for Cyberknife Image-Guided Robotic Radiosurgery

    SciTech Connect

    Sahgal, Arjun Chuang, Cynthia; Larson, David; Huang, Kim; Petti, Paula; Weinstein, Phil; Ma Lijun

    2008-10-01

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required.

  2. SU-E-J-64: Feasibility Study of Surgical Clips for Fiducial Tracking in CyberKnife System

    SciTech Connect

    Lee, H; Yoon, J; Lee, E; Cho, S; Park, K; Choi, W; Baek, J; Keum, K; Koom, W

    2015-06-15

    Purpose: To investigate the ability of CyberKnife to track surgical clips used as fiducial markers. Methods: The Octavius 1000SRS detector and solid water (RW3) slab phantom were used with motion platform to evaluate the study. The RW3 slab phantom was set up to measure the dose distribution from coronal plane. It consists of 9 plates and the thickness of each plate is 10mm. Among them, one plate was attached with 3 surgical clips, which are orthogonally positioned on outer region of array. The length of attached clip was represented as 1cm on planning CT. The clip plate was placed on the 1000SRS detector and 3 slabs were stacked up on the plate to build the measuring depth. Below the detector, 5 slabs were set. The two-axis motion platform was programmed with 1D sinusoidal movement (20mm peak-to-peak, 3s period) toward superior/inferior and left/right directions to simulate target motion. During delivery, two clips were extracted by two X-ray imagers, which led to translational error correction only. Synchrony was also used for dynamic tracking. After the irradiation, the measured dose distribution of coronal plane was compared with the planar dose distribution calculated by the CyberKnife treatment planning system (Multiplan) for cross verification. The results were assessed by comparing the absolute Gamma (γ) index. Results: The dose distributions measured by the 1000SRS detector were in good agreements with those calculated by Multiplan. In the dosimetric comparison using γ-function criteria based on the distance-to-agreement of 3mm and the local dose difference of 3%, the passing rate with γ- parameter ≤1 was 91% in coronal plane. Conclusion: The surgical clips can be considered as new fiducials for robotic radiosurgery delivery by considering the target margin with less than 5mm.

  3. Sci—Sat AM: Stereo — 09: Accuracy of Liver Cancer Treatment on Cyberknife® with Synchrony™ Optical Tracking Throughout the Respiratory Cycle

    SciTech Connect

    Winter, J.; Chow, T; Wong, R.

    2014-08-15

    The Cyberknife® robotic stereotactic body radiation therapy system is well-suited for treating liver lesions over the respiratory cycle as it includes room-mounted orthogonal x-ray tracking of internal fiducial markers and optical tracking of external markers. The Synchrony™ software generates a model of internal target positions during patient respiration and correlates it to the external optical tracking system for real-time optical-based position corrections of the linear accelerator during beam delivery. Although clinical studies have provided preliminary outcomes for liver lesions treated with the Cyberknife system, to date, there is little data demonstrating the ability of the Synchrony software to track targets in the liver, which deforms throughout the respiratory cycle. In this study, we investigated the respiratory motion model performance for predicting tumour motion. We conducted a retrospective analysis of fifteen liver cancer patients treated on the Cyberknife using the Synchrony optical tracking system. We analyzed Cyberknife tracking information stored in the log files to extract the left-right (LR), anterior-posterior (AP) and superior-inferior (SI) correlation errors between the model-predicted position and the internal fiducial centroid position determined by x-ray imaging. Only translational tracking and corrections were applied during treatment. Overall, the correlation errors were greatest in the SI direction. We calculated radial correlation errors, and determined that the 95{sup th}, 98{sup th} and 99{sup th} percentile errors were 3.4 mm, 4.4 mm and 5.1 mm, respectively. Based on translational correlation tracking errors we expect the clinical target volume will be within 3.4 mm of the planning target volume for 95 % of beam delivery time.

  4. SU-E-T-281: Reduction of Treatment Times in CyberKnife Prostate SBRT Using a Water Filled Rectal Balloon

    SciTech Connect

    Desai, P; Caroprese, B; McKellar, H

    2014-06-01

    Purpose: To illustrate 25% reduction in CyberKnife prostate SBRT treatment times using a water filled rectal balloon. Methods: We perform prostate SBRT using a 3800cGy in 4 fraction regimen prescribed between 51% 59% iso-dose lines to 95% of PTV using a CyberKnife System. The resultant heterogeneous dosimetry is analogous to HDR dosimetry. Our patients are treated in a feet first supine position to decrease treatment couch sag and also to position the prostate anatomy closer to the robot. CT imaging is performed with a Radiadyne Immobiloc rectal balloon filled with 45-50cc water placed firmly inside the patient's rectum. A treatment plan is developed from this CT study using Multiplan. The patient is treated every other day for 4 days using the rectal balloon for each fraction. Gold fiducials previously implanted inside the prostate are used for tracking by the CyberKnife system. Results: Critical structures comprise the usual GU anatomy of bladder, rectum, urethra, femoral-heads along with emphasis on doses to anterior rectal wall and rectal mucosa. The water filled rectal balloon localizes the rectum, which enables the physician to accurately contour both anterior rectal wall, and rectal mucosa. The balloon also has a gas release valve enabling better patient comfort. Rectum localization enables the CyberKnife system to make fewer corrections resulting in fewer treatment interruptions and time lost to re-adjustment for rectal motion, bowel filling and gas creation. Effective treatment times are reduced by 25% to approximately 45 minutes. Adoption of the balloon has required minimal change to our planning strategy and plan evaluation process. Conclusion: Patient follow-up comparisons show no difference in effectiveness of treatment with and without balloons We conclude that rectal balloons enhance patient comfort and decrease effective treatment times.

  5. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  6. Stereotactic Body Radiotherapy (SBRT) Reirradiation for Recurrent Pancreas Cancer

    PubMed Central

    Dagoglu, Nergiz; Callery, Mark; Moser, James; Tseng, Jennifer; Kent, Tara; Bullock, Andrea; Miksad, Rebecca; Mancias, Joseph D.; Mahadevan, Anand

    2016-01-01

    Objectives: After adjuvant or definitive radiation for pancreas cancer, there are limited conventional treatment options for recurrent pancreas cancer. We explored the role of (Stereotactic Body Radiotherapy) SBRT for reirradiation of recurrent pancreas Cancer. Methods: This is a retrospective study of patients reirradiated with SBRT for recurrent pancreas cancer. All patients were deemed unresectable and treated with systemic therapy. Fiducial gold markers were used. CT simulation was performed with oral and IV contrast and patients were treated with respiratory motion tracking in the CyberknifeTM system. Results: 30 patients (17 men and 13 women) with a median age of 67 years were included in the study. The median target volume was 41.29cc. The median prescription dose was 25Gy (24-36Gy) in a median of 5 fractions prescribed to a mean 78% isodose line. The median overall survival was 14 months. The 1 and 2 year local control was 78%. The worst toxicity included 3/30(10%) Grade III acute toxicity for pain, bleeding and vomiting. There was 2/30 (7%) Grade III long-term bowel obstructions. Conclusions: SBRT can be a useful and tolerable option for patients with recurrent pancreas cancer after prior radiation. PMID:26918041

  7. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  8. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    SciTech Connect

    Jung, Jinhong; Song, Si Yeol; Yoon, Sang Min; Kwak, Jungwon; Yoon, KyoungJun; Choi, Wonsik; Jeong, Seong-Yun; Choi, Eun Kyung; Cho, Byungchul

    2015-07-15

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors.

  9. Stereotactic body radiotherapy for primary prostate cancer: a systematic review.

    PubMed

    Tan, Tze-Jian; Siva, Shankar; Foroudi, Farshad; Gill, Suki

    2014-10-01

    Stereotactic body radiotherapy (SBRT) for prostate cancer allows overall treatment times to be reduced to as little as 1 week while maintaining a non-invasive approach. This study provides a comprehensive summary of the literature relating to SBRT in prostate cancer. A systematic review of the relevant literature was performed using structured search terms. Fourteen phase I-II trials and retrospective studies using SBRT for the treatment of prostate cancer were used. Three studies were identified which addressed cost. Dose fractionation, radiotherapy procedures, biochemical progression-free survival, toxicity, cost and quality of life were critically appraised. A total of 1472 patients were examined across studies. Median follow-up ranged from 11 to 60 months. The most common dose fractionation was 35-36.25 Gy in five fractions, used in nine out of 14 studies. Ten of 14 studies used CyberKnife. The overall biochemical progression-free survival ranged 81-100%. Acute grade 2 urinary and rectal toxicities were reported in 5-42% and 0-27% of patients, respectively. Acute grade 3 or more urinary and rectal toxicity were 0.5% and 0%, respectively. Late grade 2 urinary toxicity was reported in 0-29% of patients, while 1.3% had a late grade 3 urinary toxicity. There were no late grade 4 urinary toxicities seen. Late grade 2 rectal toxicity was reported in 0-11%, while 0.5% had a late grade 3 rectal toxicity. Late grade 4 rectal toxicity was reported in 0.2% of patients. PMID:25155286

  10. Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: theUniversity of California San Francisco preliminary experience.

    PubMed

    Sahgal, A; Chou, D; Ames, C; Ma, L; Lamborn, K; Huang, K; Chuang, C; Aiken, A; Petti, P; Weinstein, P; Larson, D

    2007-12-01

    We evaluate our preliminary experience using the Cyberknife Radiosurgery System in treating benign spinal tumors. A retrospective review of 16 consecutively treated patients, comprising 19 benign spinal tumors, was performed. Histologic types included neurofibroma [11], chordoma [4], hemangioma [2], and meningioma [2]. Three patients had Neurofibromatosis Type 1 (NF1). Only one tumor, recurrent chordoma, had been previously irradiated, and as such not considered in the local failure analysis. Local failure, for the remaining 18 tumors, was based clinically on symptom progression and/or tumor enlargement based on imaging. Indications for spine stereotactic body radiotherapy (SBRT) consisted of either adjuvant to subtotal resection (5/19), primary treatment alone (12/19), boost following external beam radiotherapy (1/19), and salvage following previous radiation (1/19). Median tumor follow-up is 25 months (2-37), and one patient (with NF1) died at 12 months from a stroke. The median total dose, number of fractions, and prescription isodose was 21 Gy (10-30 Gy), 3 fx (1-5 fx), 80% (42-87%). The median tumor volume was 7.6 cc (0.2-274.1 cc). The median V100 (volume V receiving 100% of the prescribed dose) and maximum tumor dose was 95% (77-100%) and 26.7 Gy (15.4-59.7 Gy), respectively. Three tumors progressed at 2, 4, and 36 months post-SR (n=18). Two tumors were neurofibromas (both in NF1 patients), and the third was an intramedullary hemangioblastoma. Based on imaging, two tumors had MRI documented progression, three had regressed, and 13 were unchanged (n=18). With short follow-up, local control following Cyberknife spine SBRT for benign spinal tumors appear acceptable. PMID:17994789

  11. Investigation of Linac-Based Image-Guided Hypofractionated Prostate Radiotherapy

    SciTech Connect

    Pawlicki, Todd . E-mail: tpaw@stanford.edu; Kim, Gwe-Ya; Hsu, Annie; Cotrutz, Cristian; Boyer, Arthur L.; Xing Lei; King, Christopher R.; Luxton, Gary

    2007-07-01

    A hypofractionation treatment protocol for prostate cancer was initiated in our department in December 2003. The treatment regimen consists of a total dose of 36.25 Gy delivered at 7.25 Gy per fraction over 10 days. We discuss the rationale for such a prostate hypofractionation protocol and the need for frequent prostate imaging during treatment. The CyberKnife (Accuray Inc., Sunnyvale, CA), a linear accelerator mounted on a robotic arm, is currently being used as the radiation delivery device for this protocol, due to its incorporation of near real-time kV imaging of the prostate via 3 gold fiducial seeds. Recently introduced conventional linac kV imaging with intensity modulated planning and delivery may add a new option for these hypofractionated treatments. The purpose of this work is to investigate the use of intensity modulated radiotherapy (IMRT) and the Varian Trilogy Accelerator with on-board kV imaging (Varian Medical Systems Inc., Palo Alto, CA) for treatment of our hypofractionated prostate patients. The dose-volume histograms and dose statistics of 2 patients previously treated on the CyberKnife were compared to 7-field IMRT plans. A process of acquiring images to observe intrafraction prostate motion was achieved in an average time of about 1 minute and 40 seconds, and IMRT beam delivery takes about 40 seconds per field. A complete 7-field IMRT plan can therefore be imaged and delivered in 10 to 17 minutes. The Varian Trilogy Accelerator with on-board imaging and IMRT is well suited for image-guided hypofractionated prostate treatments. During this study, we have also uncovered opportunities for improvement of the on-board imaging hardware/software implementation that would further enhance performance in this regard.

  12. [Radiotherapy for Thyroid Cancer].

    PubMed

    Jingu, Keiichi; Maruoka, Shin; Umezawa, Rei; Takahashi, Noriyoshi

    2015-06-01

    Radioactive 131I therapy for differentiated thyroid cancer has been used since the 1940s and is an established and effective treatment. In contrast, external beam radiotherapy (EBRT) was considered to be effective for achieving local control but not for prolonging survival. Although clinicians were hesitant to administer EBRT owing to the potential radiation-induced adverse effects of 2 dimensional (2D)-radiotherapy until 2000, it is expected that adverse effects will be reduced and treatment efficacy improved through the introduction of more advanced techniques for delivering radiation (eg, 3D-radiotherapy and intensity modulated radiotherapy [IMRT]). The prognosis of undifferentiated thyroid cancer is known to be extremely bad, although in very rare cases, multimodality therapy (total or subtotal resection, chemotherapy, and radiotherapy) has allowed long-term survival. Here, we report the preliminary results of using hypofractionated radiotherapy for undifferentiated thyroid cancer in our institution. PMID:26199238

  13. A phantom study to determine the optimum size of a single collimator for shortening the treatment time in CyberKnife stereotactic radiosurgery of spherical targets.

    PubMed

    Harikrishnaperumal, Sudahar; Kurup, Gopalakrishna; Venkatraman, Murali; Jagadeesan, Velmurugan

    2012-01-01

    Prolonged treatment execution time is a concern in CyberKnife robotic radiosurgery. Beam reduction and node reduction technique, and monitor unit optimization methods are adopted to reduce the treatment time. Usage of single collimator in the CyberKnife treatment plan can potentially reduce collimator exchange time. An optimal single collimator, which yields an acceptable dose distribution along with minimum number of nodes, beams, and monitor units, can be a versatile alternative for shortening treatment time. The aim of the present study is to find the optimal single collimator in CyberKnife treatment planning to shorten the treatment time with the acceptable dose distribution. A spherical planning target volume PTV1 was drawn in an anthropomorphic head and neck phantom. Plans with same treatment goals were generated for all the 12 collimators independently. D(95%) was selected as the prescribing isodose and the prescribed dose was 10 Gy. The plan of the optimal collimator size was evaluated for conformity, homogeneity, and dose spillage outside the target. The optimum collimator size and the target dimensions were correlated. The study was repeated with two other target volumes PTV2 and PTV3 for generalizing the results. Collimator sizes just above the diameter of the spherical PTVs were yielding least number of nodes and beams with acceptable dose distributions. The collimator size of 35 mm is optimum for the PTV1, whose diameter is 31.4 mm. Similarly, 50 mm collimator is optimum for PTV2 (diameter= 45.2 mm) and 20 mm collimator is optimum for PTV3 (Diameter = 17.3 mm). The total number of monitor units is found to reduce with increasing collimator size. Optimal single collimator is found to be useful for shortening the treatment time in spherical targets. Studies on two clinical targets, (a brain metastasis and a liver metastasis cases) show comparable results with the phantom study. PMID:22955653

  14. Evaluation of Dose Uncertainty to the Target Associated With Real-Time Tracking Intensity-Modulated Radiation Therapy Using the CyberKnife Synchrony System.

    PubMed

    Iwata, Hiromitsu; Inoue, Mitsuhiro; Shiomi, Hiroya; Murai, Taro; Tatewaki, Koshi; Ohta, Seiji; Okawa, Kohei; Yokota, Naoki; Shibamoto, Yuta

    2016-02-01

    We investigated the dose uncertainty caused by errors in real-time tracking intensity-modulated radiation therapy (IMRT) using the CyberKnife Synchrony Respiratory Tracking System (SRTS). Twenty lung tumors that had been treated with non-IMRT real-time tracking using CyberKnife SRTS were used for this study. After validating the tracking error in each case, we did 40 IMRT planning using 8 different collimator sizes for the 20 patients. The collimator size was determined for each planning target volume (PTV); smaller ones were one-half, and larger ones three-quarters, of the PTV diameter. The planned dose was 45 Gy in 4 fractions prescribed at 95% volume border of the PTV. Thereafter, the tracking error in each case was substituted into calculation software developed in house and randomly added in the setting of each beam. The IMRT planning incorporating tracking errors was simulated 1000 times, and various dose data on the clinical target volume (CTV) were compared with the original data. The same simulation was carried out by changing the fraction number from 1 to 6 in each IMRT plan. Finally, a total of 240 000 plans were analyzed. With 4 fractions, the change in the CTV maximum and minimum doses was within 3.0% (median) for each collimator. The change in D99 and D95 was within 2.0%. With decreases in the fraction number, the CTV coverage rate and the minimum dose decreased and varied greatly. The accuracy of real-time tracking IMRT delivered in 4 fractions using CyberKnife SRTS was considered to be clinically acceptable. PMID:25520272

  15. SU-E-T-642: Safety Procedures for Error Elimination in Cyberknife Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT)

    SciTech Connect

    Hussain, A; Alkafi, A; Al-Najjar, W; Moftah, B

    2014-06-15

    Purpose: Cyberknife system is used for providing stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) hypofractionation scheme. The whole treatment delivery is based on live imaging of the patient. The minor error made at any stage may bring severe radiation injury to the patient or damage to the system itself. Several safety measures were taken to make the system safer. Methods: The radiation treatment provided thru a 6MV linac attached to Kuka robot (Cyberknife G4, Accuray Inc. Sunnyvale, CA, USA). Several possible errors were identified related to patient alignment, treatment planning, dose delivery and physics quality assurance. During dose delivery, manual and visual checks were introduced to confirm pre and intra-treatment imaging to reduce possible errors. One additional step was introduced to confirm that software tracking-tools had worked correctly with highest possible confidence level. Robotic head move in different orientations over and around the patient body, the rigidity of linac-head cover and other accessories was checked periodically. The vender was alerted when a tiny or bigger piece of equipment needed additional interlocked support. Results: As of our experience treating 525 patients on Cyberknife during the last four years, we saw on and off technical issues. During image acquisition, it was made essential to follow the site-specific imaging protocols. Adequate anatomy was contoured to document the respective doses. Followed by auto-segmentation, manual tweaking was performed on every structure. The calculation box was enclosing the whole image during the final calculation. Every plan was evaluated on slice-by slice basis. To review the whole process, a check list was maintained during the physics 2nd-check. Conclusion: The implementation of manual and visual additional checks introduced along with automated checks for confirmation was found promising in terms of reduction in systematic errors and making the system

  16. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  17. Quality Assurance in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A common feature of the Radiotherapy Centres where there have been major accidents involving incorrect radiotherapy treatment is that they did not operate good Quality Assurance systems. A Quality Assurance system is sometimes called a Quality Management system, and it is designed to give assurance that quality standards are being met. One of the "spin offs" from operating a Quality Management system is that it reduces the likelihood of a radiotherapy accident. A detailed account of how to set up a quality system in radiotherapy has been given in an ESTRO booklet.2

  18. Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by Cyberknife

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.

    2008-06-15

    For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. These relatively large areas of electronic disequilibrium make accurate dosimetry as well as dose calculation more difficult, and this is exacerbated in regions of tissue heterogeneity. Tissue heterogeneity was considered insignificant in the brain where stereotactic radiosurgery was first used. However, as this technique is expanded to the head and neck and other body sites, dose calculations need to account for dose perturbations in and beyond air cavities, lung, and bone. In a previous study we have evaluated EBT Gafchromic film (International Specialty Products, Wayne, NJ) for dosimetry and characterization of the Cyberknife radiation beams and found that it was comparable to other common detectors used for small photon beams in solid water equivalent phantoms. In the present work EBT film is used to measure dose in heterogeneous slab phantoms containing lung and bone equivalent materials for the 6 MV radiation beams of diameter 7.5 to 40 mm produced by the Cyberknife (Accuray, Sunnyvale, CA). These measurements are compared to calculations done with both the clinically utilized Raytrace algorithm as well as the newly developed Monte Carlo based algorithm available on the Cyberknife treatment planning system. Within the low density material both the measurements and Monte Carlo calculations correctly model the decrease in dose produced by a loss of electronic equilibrium, whereas the Raytrace algorithm incorrectly predicts an enhancement of dose in this region. Beyond the low density material an enhancement of dose is correctly calculated by both algorithms. Within the high density bone heterogeneity the EBT film measurements represent dose to unit density tissue in bone and agree with the Monte Carlo results when corrected to dose

  19. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    SciTech Connect

    Wiegner, Ellen A.; King, Christopher R.

    2010-10-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged {>=}70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  20. The Continuous Assessment of Cranial Motion in Thermoplastic Masks During CyberKnife Radiosurgery for Trigeminal Neuralgia.

    PubMed

    Bichay, Tewfik J; Mayville, Alan

    2016-01-01

    Stereotactic radiosurgery (SRS) treatment is characterized by high doses per fraction and extremely steep dose gradients. This requires a great degree of accurate localization to the appropriate treatment position, and continuous immobilization during the treatment session. In the case of Trigeminal Neuralgia (TGN) treatment this is especially true as the very small target volume makes positional accuracy critical. In this study we carried out a quantitative analysis of patient motion during the full treatment fraction within a radiosurgery immobilization mask system. Patient cranial movement was assessed by using the image guidance stereo x-ray cameras on a CyberKnife (CK) M6 robotic radiosurgery system (Accuray, Sunnyvale, CA). A total of five patients received treatments for either right or left TGN. The duration of treatment varied from 24-64 minutes. Orthogonal images were taken every 15 seconds during the treatment to assess patient movement. Approximately 60 stereo images were taken per patient and a total of 560 images were analyzed in this study. The mean absolute movement in each of longitudinal, lateral or vertical directions was approximately 0.3 mm for the duration of the treatment; however, on occasion much greater movement was observed during a fraction. The maximum displacement was in the longitudinal direction and reached 2.4 mm compared to the initial setup. Images taken at the end of the treatment session showed that the patients typically return to a position closer to the original setup position than the maximum excursion that occurred. This data suggests that although this mask system appears stable during much of the treatment session; for some patients there may be momentary patient movements that take place. Frequent imaging and correction can help mitigate the effect of this movement. It is important to understand the limitations of non-invasive mask systems when used for very high precision treatment. PMID:27330875

  1. Improving plan quality and consistency by standardization of dose constraints in prostate cancer patients treated with CyberKnife.

    PubMed

    Descovich, Martina; Carrara, Mauro; Morlino, Sara; Pinnaduwage, Dilini S; Saltiel, Daniel; Pouliot, Jean; Nash, Marc B; Pignoli, Emanuele; Valdagni, Riccardo; Roach, Mack; Gottschalk, Alexander R

    2013-01-01

    Treatment plans for prostate cancer patients undergoing stereotactic body radiation therapy (SBRT) are often challenging due to the proximity of organs at risk. Today, there are no objective criteria to determine whether an optimal treatment plan has been achieved, and physicians rely on their personal experience to evaluate the plan's quality. In this study, we propose a method for determining rectal and bladder dose constraints achievable for a given patient's anatomy. We expect that this method will improve the overall plan quality and consistency, and facilitate comparison of clinical outcomes across different institutions. The 3D proximity of the organs at risk to the target is quantified by means of the expansion-intersection volume (EIV), which is defined as the intersection volume between the target and the organ at risk expanded by 5 mm. We determine a relationship between EIV and relevant dosimetric parameters, such as the volume of bladder and rectum receiving 75% of the prescription dose (V75%). This relationship can be used to establish institution-specific criteria to guide the treatment planning and evaluation process. A database of 25 prostate patients treated with CyberKnife SBRT is used to validate this approach. There is a linear correlation between EIV and V75% of bladder and rectum, confirming that the dose delivered to rectum and bladder increases with increasing extension and proximity of these organs to the target. This information can be used during the planning stage to facilitate the plan optimization process, and to standardize plan quality and consistency. We have developed a method for determining customized dose constraints for prostate patients treated with robotic SBRT. Although the results are technology specific and based on the experience of a single institution, we expect that the application of this method by other institutions will result in improved standardization of clinical practice. PMID:24036869

  2. The Continuous Assessment of Cranial Motion in Thermoplastic Masks During CyberKnife Radiosurgery for Trigeminal Neuralgia

    PubMed Central

    Mayville, Alan

    2016-01-01

    Stereotactic radiosurgery (SRS) treatment is characterized by high doses per fraction and extremely steep dose gradients. This requires a great degree of accurate localization to the appropriate treatment position, and continuous immobilization during the treatment session. In the case of Trigeminal Neuralgia (TGN) treatment this is especially true as the very small target volume makes positional accuracy critical. In this study we carried out a quantitative analysis of patient motion during the full treatment fraction within a radiosurgery immobilization mask system. Patient cranial movement was assessed by using the image guidance stereo x-ray cameras on a CyberKnife (CK) M6 robotic radiosurgery system (Accuray, Sunnyvale, CA). A total of five patients received treatments for either right or left TGN. The duration of treatment varied from 24-64 minutes. Orthogonal images were taken every 15 seconds during the treatment to assess patient movement. Approximately 60 stereo images were taken per patient and a total of 560 images were analyzed in this study. The mean absolute movement in each of longitudinal, lateral or vertical directions was approximately 0.3 mm for the duration of the treatment; however, on occasion much greater movement was observed during a fraction. The maximum displacement was in the longitudinal direction and reached 2.4 mm compared to the initial setup. Images taken at the end of the treatment session showed that the patients typically return to a position closer to the original setup position than the maximum excursion that occurred. This data suggests that although this mask system appears stable during much of the treatment session; for some patients there may be momentary patient movements that take place. Frequent imaging and correction can help mitigate the effect of this movement. It is important to understand the limitations of non-invasive mask systems when used for very high precision treatment. PMID:27330875

  3. Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife: Assessment by Analysis of Log Files

    SciTech Connect

    Hoogeman, Mischa Prevost, Jean-Briac; Nuyttens, Joost; Poell, Johan; Levendag, Peter; Heijmen, Ben

    2009-05-01

    Purpose: To quantify the clinical accuracy of the respiratory motion tracking system of the CyberKnife treatment device. Methods and Materials: Data in log files of 44 lung cancer patients treated with tumor tracking were analyzed. Errors in the correlation model, which relates the internal target motion with the external breathing motion, were quantified. The correlation model error was compared with the geometric error obtained when no respiratory tracking was used. Errors in the prediction method were calculated by subtracting the predicted position from the actual measured position after 192.5 ms (the time lag to prediction in our current system). The prediction error was also measured for a time lag of 115 ms and a new prediction method. Results: The mean correlation model errors were less than 0.3 mm. Standard deviations describing intrafraction variations around the whole-fraction mean error were 0.2 to 1.9 mm for cranio-caudal, 0.1 to 1.9 mm for left-right, and 0.2 to 2.5 mm for anterior-posterior directions. Without the use of respiratory tracking, these variations would have been 0.2 to 8.1 mm, 0.2 to 5.5 mm, and 0.2 to 4.4 mm. The overall mean prediction error was small (0.0 {+-} 0.0 mm) for all directions. The intrafraction standard deviation ranged from 0.0 to 2.9 mm for a time delay of 192.5 ms but was halved by using the new prediction method. Conclusions: Analyses of the log files of real clinical cases have shown that the geometric error caused by respiratory motion is substantially reduced by the application of respiratory motion tracking.

  4. Direct plan comparison of RapidArc and CyberKnife for spine stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Choi, Young Eun; Kwak, Jungwon; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Cho, Byungchul

    2015-07-01

    We compared the treatment planning performance of RapidArc (RA) vs. CyberKnife (CK) for spinal stereotactic body radiation therapy (SBRT). Ten patients with spinal lesions who had been treated with CK were re-planned with RA, which consisted of two complete arcs. Computed tomography (CT) and volumetric dose data of CK, generated using the Multiplan (Accuray) treatment planning system (TPS) and the Ray-trace algorithm, were imported to Varian Eclipse TPS in Dicom format, and the data were compared with the RA plan by using an analytical anisotropic algorithm (AAA) dose calculation. The optimized dose priorities for both the CK and the RA plans were similar for all patients. The highest priority was to provide enough dose coverage to the planned target volume (PTV) while limiting the maximum dose to the spinal cord. Plan quality was evaluated with respect to PTV coverage, conformity index (CI), high-dose spillage, intermediate-dose spillage (R50% and D2cm), and maximum dose to the spinal cord, which are criteria recommended by the RTOG 0631 spine and 0915 lung SBRT protocols. The mean CI' SD values of the PTV were 1.11' 0.03 and 1.17' 0.10 for RA and CK ( p = 0.02), respectively. On average, the maximum dose delivered to the spinal cord in CK plans was approximately 11.6% higher than that in RA plans, and this difference was statistically significant ( p < 0.001). High-dose spillages were 0.86% and 2.26% for RA and CK ( p = 0.203), respectively. Intermediate-dose spillage characterized by D2cm was lower for RA than for CK; however, R50% was not statistically different. Even though both systems can create highly conformal volumetric dose distributions, the current study shows that RA demonstrates lower high- and intermediate-dose spillages than CK. Therefore, RA plans for spinal SBRT may be superior to CK plans.

  5. SU-E-T-85: Comparison of Treatment Plans Calculated Using Ray Tracing and Monte Carlo Algorithms for Lung Cancer Patients Having Undergone Radiotherapy with Cyberknife

    SciTech Connect

    Pennington, A; Selvaraj, R; Kirkpatrick, S; Oliveira, S; Leventouri, T

    2014-06-01

    Purpose: The latest publications indicate that the Ray Tracing algorithm significantly overestimates the dose delivered as compared to the Monte Carlo (MC) algorithm. The purpose of this study is to quantify this overestimation and to identify significant correlations between the RT and MC calculated dose distributions. Methods: Preliminary results are based on 50 preexisting RT algorithm dose optimization and calculation treatment plans prepared on the Multiplan treatment planning system (Accuray Inc., Sunnyvale, CA). The analysis will be expanded to include 100 plans. These plans are recalculated using the MC algorithm, with high resolution and 1% uncertainty. The geometry and number of beams for a given plan, as well as the number of monitor units, is constant for the calculations for both algorithms and normalized differences are compared. Results: MC calculated doses were significantly smaller than RT doses. The D95 of the PTV was 27% lower for the MC calculation. The GTV and PTV mean coverage were 13 and 39% less for MC calculation. The first parameter of conformality, as defined as the ratio of the Prescription Isodose Volume to the PTV Volume was on average 1.18 for RT and 0.62 for MC. Maximum doses delivered to OARs was reduced in the MC plans. The doses for 1000 and 1500 cc of total lung minus PTV, respectively were reduced by 39% and 53% for the MC plans. The correlation of the ratio of air in PTV to the PTV with the difference in PTV coverage had a coefficient of −0.54. Conclusion: The preliminary results confirm that the RT algorithm significantly overestimates the dosages delivered confirming previous analyses. Finally, subdividing the data into different size regimes increased the correlation for the smaller size PTVs indicating the MC algorithm improvement verses the RT algorithm is dependent upon the size of the PTV.

  6. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  7. Planning National Radiotherapy Services

    PubMed Central

    Rosenblatt, Eduardo

    2014-01-01

    Countries, states, and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centers are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries, the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment. This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centers, equipment, staff, education programs, quality assurance, and sustainability aspects. Realistic budgetary and cost considerations must also be part of the project proposal or business plan. PMID:25505730

  8. 3.4 Radiotherapy

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.; Selbach, H.-J.; Vatnitsky, S.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.4 Radiotherapy' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  9. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  10. SU-E-T-224: Is Monte Carlo Dose Calculation Method Necessary for Cyberknife Brain Treatment Planning?

    SciTech Connect

    Wang, L; Fourkal, E; Hayes, S; Jin, L; Ma, C

    2014-06-01

    Purpose: To study the dosimetric difference resulted in using the pencil beam algorithm instead of Monte Carlo (MC) methods for tumors adjacent to the skull. Methods: We retrospectively calculated the dosimetric differences between RT and MC algorithms for brain tumors treated with CyberKnife located adjacent to the skull for 18 patients (total of 27 tumors). The median tumor sizes was 0.53-cc (range 0.018-cc to 26.2-cc). The absolute mean distance from the tumor to the skull was 2.11 mm (range - 17.0 mm to 9.2 mm). The dosimetric variables examined include the mean, maximum, and minimum doses to the target, the target coverage (TC) and conformality index. The MC calculation used the same MUs as the RT dose calculation without further normalization and 1% statistical uncertainty. The differences were analyzed by tumor size and distance from the skull. Results: The TC was generally reduced with the MC calculation (24 out of 27 cases). The average difference in TC between RT and MC was 3.3% (range 0.0% to 23.5%). When the TC was deemed unacceptable, the plans were re-normalized in order to increase the TC to 99%. This resulted in a 6.9% maximum change in the prescription isodose line. The maximum changes in the mean, maximum, and minimum doses were 5.4 %, 7.7%, and 8.4%, respectively, before re-normalization. When the TC was analyzed with regards to target size, it was found that the worst coverage occurred with the smaller targets (0.018-cc). When the TC was analyzed with regards to the distance to the skull, there was no correlation between proximity to the skull and TC between the RT and MC plans. Conclusions: For smaller targets (< 4.0-cc), MC should be used to re-evaluate the dose coverage after RT is used for the initial dose calculation in order to ensure target coverage.

  11. SU-E-T-619: Comparison of CyberKnife Versus HDR (SAVI) for Partial Breast Irradiation

    SciTech Connect

    Mooij, R; Ding, X; Nagda, S

    2014-06-15

    Purpose: Compare SAVI plans and CyberKnife (CK) plans for the same accelerated course. Methods and Materials: Three SAVI patients were selected. Pre-SAVI CTs were used for CK planning. All prescriptions are 3400cGy in 10 fractions BID. Max dose to skin and chestwall is 425cGy. For SAVI, PTV is a 1cm expansion of the cavity minus the cavity. For CK, CTV is a 1cm expansion of the seroma, with 2mm margin. CK plans are normalized to SAVI, so that in both cases the 323cGy isodose line covers the same percentage of PTV. For CK Fiducial/Synchrony tracking is used. Results: In the following, all doses are per fraction and results are averaged. The PTVs for the CK plans are 2.4 times larger than the corresponding SAVI PTVs. Nonetheless the CK plans meet all constraints and are superior to SAVI plans in several respects. Max skin dose for SAVI vs CK is 332cGy vs 337cGy. Max dose to chestwall is 252cGy vs 286cGy. The volume of lung over 125cGy is 6.4cc for SAVI and 2.5cc for CK. Max heart dose is 60cGy for SAVI and 83cGy for CK. The volume of PTV receiving over 425cGy is 49cc for SAVI and 1.3cc for CK. Max dose to contra-lateral breast is 16cGy for SAVI and 4.5cGy for CK. Conclusion: CK PTVs are directly derived from the seroma. Corresponding SAVI PTVs tend to be much smaller. Dosimetrically, CK plans are equivalent or superior to SAVI plans despite the larger PTVs. Interestingly, the dose delivered to the lung is higher in SAVI vs CK. Fiducial/Synchrony tracking employed by CK might reduce errors in delivery compared to errors associated with shifts of the SAVI implant. In conclusion, when CK is an option for partial breast irradiation it may preferable to SAVI.

  12. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    SciTech Connect

    Stiebel-Kalish, Hadas; Reich, Ehud; Gal, Lior; Rappaport, Zvi Harry; Nissim, Ouzi; Pfeffer, Raphael; Spiegelmann, Roberto

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  13. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  14. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    SciTech Connect

    Sullivan, A; Ding, G

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  15. A Retrospective Comparison of Robotic Stereotactic Body Radiotherapy and Three-Dimensional Conformal Radiotherapy for the Reirradiation of Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Ozyigit, Gokhan; Cengiz, Mustafa; Yazici, Gozde; Yildiz, Ferah; Gurkaynak, Murat; Zorlu, Faruk; Yildiz, Demet; Hosal, Sefik; Gullu, Ibrahim; Akyol, Fadil

    2011-11-15

    Purpose: We assessed therapeutic outcomes of reirradiation with robotic stereotactic radiotherapy (SBRT) for locally recurrent nasopharyngeal carcinoma (LRNPC) patients and compared those results with three-dimensional conformal radiotherapy (CRT) with or without brachytherapy (BRT). Methods and Materials: Treatment outcomes were evaluated retrospectively in 51 LRNPC patients receiving either robotic SBRT (24 patients) or CRT with or without BRT (27 patients) in our department. CRT was delivered with a 6-MV linear accelerator, and a median total reirradiation dose of 57 Gy in 2 Gy/day was given. Robotic SBRT was delivered with CyberKnife (Accuray, Sunnyvale, CA). Patients in the SBRT arm received 30 Gy over 5 consecutive days. We calculated actuarial local control and cancer-specific survival rates for the comparison of treatment outcomes in SBRT and CRT arms. The Common Terminology Criteria for Adverse Events v3.0 was used for toxicity evaluation. Results: The median follow-up was 24 months for all patients. Two-year actuarial local control rates were 82% and 80% for SBRT and CRT arms, respectively (p = 0.6). Two-year cancer-specific survival rates were 64% and 47% for the SBRT and CRT arms, respectively (p = 0.4). Serious late toxicities (Grade 3 and above) were observed in 21% of patients in the SBRT arm, whereas 48% of patients had serious toxicity in the CRT arm (p = 0.04). Fatal complications occurred in three patients (12.5%) of the SBRT arm, and four patients (14.8%) of the CRT arm (p = 0.8). T stage at recurrence was the only independent predictor for local control and survival. Conclusion: Our robotic SBRT protocol seems to be feasible and less toxic in terms of late effects compared with CRT arm for the reirradiation of LRNPC patients.

  16. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines. PMID:27521037

  17. Radiotherapy of malignant melanoma

    SciTech Connect

    Cooper, J.S.

    1985-04-01

    The role of radiotherapy in the treatment of malignant melanoma is limited, and surgery generally forms the mainstay of medical practice. However, there are some circumstances in which radiotherapy should be considered the treatment of choice. Symptomatic metastatic lesions in bone or brain can effectively be palliated in a substantial proportion of instances. At the current stage of our knowledge, conventionally fractionated treatment of such lesions forms the standard against which other treatments should be measured. In contrast, metastatic lesions to skin or lymph nodes that do not overlie critical normal structures probably are better treated by high-dose-per-fraction techniques. Radiotherapy may play a definitive role in the treatment of lentigo maligna. The precise optimal energy of the beam to be used remains to be defined. Slightly more penetrating radiation appears to be required for lentigo maligna melanomas. Here, too, the optimal energy remains to be defined. The treatment of nonlentigenous melanomas primarily by radiotherapy is unproved in my opinion. Certainly, the data from the Princess Margaret Hospital is exciting, but I believe it must be corroborated by a well-designed trial before it can be accepted without question. Future directions in treatment of malignant melanoma are likely to include further trials of unconventional fractionation and the use of radiosensitizing agents in conjunction with radiotherapy. The time for dermatologists and radiation therapists to cooperate in such studies is at hand.

  18. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  19. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  20. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  1. [Radiotherapy in Europe].

    PubMed

    Verheij, M; Slotman, B J

    2016-01-01

    Radiotherapy plays an important part in the curing of cancer patients and is an effective treatment for tumour-related symptoms. However, in many countries the level of access to this treatment modality is unacceptably low due to shortage of infrastructure, modern apparatus and trained staff. In Europe it is mainly the Eastern European countries that are behind in the provision of and accessibility to radiotherapy. Worldwide investment to narrow the gap would put an end to these undesirable differences. In addition, these investments would deliver economic benefits, especially in low-to-middle income countries. In this article, on the basis of a number of recently published reports, we discuss the differences that exist in the geographical spread of radiotherapy departments and the availability of apparatus within Europe. In conclusion we also take a short look at the Dutch situation. PMID:27334085

  2. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  3. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    SciTech Connect

    King, Christopher R.; Brooks, James D.; Gill, Harcharan; Presti, Joseph C.

    2012-02-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 {+-} 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%-102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  4. [Stereotactic radiotherapy in brain metastases].

    PubMed

    Dhermain, F; Reyns, N; Colin, P; Métellus, P; Mornex, F; Noël, G

    2015-02-01

    Stereotactic radiotherapy of brain metastases is increasingly proposed after polydisciplinary debates among experts. Its definition and modalities of prescription, indications and clinical interest regarding the balance between efficacy versus toxicity need to be discussed. Stereotactic radiotherapy is a 'high precision' irradiation technique (within 1mm), using different machines (with invasive contention or frameless, photons X or gamma) delivering high doses (4 to 25Gy) in a limited number of fractions (usually 1 to 5, ten maximum) with a high dose gradient. Dose prescription will depend on materials, dose constraints to organs at risk varying with fractionation. Stereotactic radiotherapy may be proposed: (1) in combination with whole brain radiotherapy with the goal of increasing (modestly) overall survival of patients with a good performance status, 1 to 3 brain metastases and a controlled extracranial disease; (2) for recurrence of 1-3 brain metastases after whole brain radiotherapy; (3) after complete resection of a large and/or symptomatic brain metastases; (4) after diagnosis of 3-5 asymptomatic new or progressing brain metastases during systemic therapy, with the aim of delaying whole brain radiotherapy (avoiding its potential neurotoxicity) and maintaining a high focal control rate. Only a strict follow-up with clinical and MRI every 3 months will permit to deliver iterative stereotactic radiotherapies without jeopardizing survival. Simultaneous delivering of stereotactic radiotherapy with targeted medicines should be carefully discussed. PMID:25640215

  5. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  6. Comparing the clinical outcomes in stereotactic body radiotherapy for lung tumors between Ray-Tracing and Monte-Carlo algorithms

    PubMed Central

    Song, Jin Ho; Kang, Ki Mun; Choi, Hoon-Sik; Jeong, Hojin; Ha, In Bong; Lee, Jong Deog; Kim, Ho Cheol; Jeong, Yi Yeong; Cho, Yu Ji; Lee, Seung Jun; Kim, Sung Hwan; Jang, In-Seok; Jeong, Bae Kwon

    2016-01-01

    Purpose The purpose of this study was to compare the clinical outcomes between the groups using Ray-Tracing (RAT) and Monte-Carlo (MC) calculation algorithms for stereotactic body radiotherapy (SBRT) of lung tumors. Materials and Methods Thirty-five patients received SBRT with CyberKnife for 47 primary or metastatic lung tumors. RAT was used for 22 targets in 12 patients, and MC for 25 targets in 23 patients. Total dose of 48 to 60 Gy was prescribed in 3 to 5 fractions on median 80% isodose line. The response rate, local control rate, and toxicities were compared between RAT and MC groups. Results The response rate was lower in the RAT group (77.3%) compared to the MC group (100%) (p = 0.008). The response rates showed an association with the mean dose to the gross tumor volume, which the doses were re-calculated with MC algorithm in both groups. However, the local control rate and toxicities did not differ between the groups. Conclusions The clinical outcome and toxicity of lung SBRT between the RAT and MC groups were similar except for the response rate when the same apparent doses were prescribed. The lower response rate in the RAT group, however, did not compromise the local control rates. As such, reducing the prescription dose for MC algorithm may be performed but done with caution. PMID:26544622

  7. Salvage Reirradiaton With Stereotactic Body Radiotherapy for Locally Recurrent Head-and-Neck Tumors

    SciTech Connect

    Cengiz, Mustafa; Ozyigit, Goekhan; Yazici, Goezde; Dogan, Ali; Yildiz, Ferah; Zorlu, Faruk; Guerkaynak, Murat; Gullu, Ibrahim H.; Hosal, Sefik; Akyol, Fadil

    2011-09-01

    Purpose: In this study, we present our results of reirradiation of locally recurrent head-and-neck cancer with image-guided, fractionated, frameless stereotactic body radiotherapy technique. Methods and Materials: From July 2007 to February 2009, 46 patients were treated using the CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey. All patients had recurrent, unresectable, and previously irradiated head-and-neck cancer. The most prominent site was the nasopharynx (32.6%), and the most common histopathology was epidermoid carcinoma. The planning target volume was defined as the gross tumor volume identified on magnetic resonance imaging and computed tomography. There were 22 female and 24 male patients. Median age was 53 years (range, 19-87 years). The median tumor dose with stereotactic body radiotherapy was 30 Gy (range, 18-35 Gy) in a median of five (range, one to five) fractions. Results: Of 37 patients whose response to therapy was evaluated, 10 patients (27%) had complete tumor regression, 11 (29.8%) had partial response, and 10 (27%) had stable disease. Ultimate local disease control was achieved in 31 patients (83.8%). The overall survival was 11.93 months in median (ranged, 11.4 - 17.4 months), and the median progression free survival was 10.5 months. One-year progression-free survival and overall survival were 41% and 46%, respectively. Grade II or greater long-term complications were observed in 6 (13.3%) patients. On follow-up, 8 (17.3%) patients had carotid blow-out syndrome, and 7 (15.2%) patients died of bleeding from carotid arteries. We discovered that this fatal syndrome occurred only in patients with tumor surrounding carotid arteries and carotid arteries receiving all prescribed dose. Conclusions: Stereotactic body radiotherapy is an appealing treatment option for patients with recurrent head-and-neck cancer previously treated with radiation to high doses. Good local control with

  8. Robotic Image-Guided Stereotactic Radiotherapy, for Isolated Recurrent Primary, Lymph Node or Metastatic Prostate Cancer

    SciTech Connect

    Jereczek-Fossa, Barbara Alicja; Beltramo, Giancarlo; Fariselli, Laura; Fodor, Cristiana; Santoro, Luigi; Vavassori, Andrea; Zerini, Dario; Gherardi, Federica; Ascione, Carmen; Bossi-Zanetti, Isa; Mauro, Roberta; Bregantin, Achille; Bianchi, Livia Corinna; De Cobelli, Ottavio; Orecchia, Roberto

    2012-02-01

    Purpose: To evaluate the outcome of robotic CyberKnife (Accuray, Sunnyvale, CA)-based stereotactic radiotherapy (CBK-SRT) for isolated recurrent primary, lymph node, or metastatic prostate cancer. Methods and Materials: Between May 2007 and December 2009, 34 consecutive patients/38 lesions were treated (15 patients reirradiated for local recurrence [P], 4 patients reirradiated for anastomosis recurrence [A], 16 patients treated for single lymph node recurrence [LN], and 3 patients treated for single metastasis [M]). In all but 4 patients, [{sup 11}C]choline positron emission tomography/computed tomography was performed. CBK-SRT consisted of reirradiation and first radiotherapy in 27 and 11 lesions, respectively. The median CBK-SRT dose was 30 Gy in 4.5 fractions (P, 30 Gy in 5 fractions; A, 30 Gy in 5 fractions; LN, 33 Gy in 3 fractions; and M, 36 Gy in 3 fractions). In 18 patients (21 lesions) androgen deprivation was added to CBK-SRT (median duration, 16.6 months). Results: The median follow-up was 16.9 months. Acute toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event). Late toxicity included urinary events (3 Grade 1, 2 Grade 2, and 2 Grade 3 events) and rectal events (1 Grade 1 event and 1 Grade 2 event). Biochemical response was observed in 32 of 38 evaluable lesions. Prostate-specific antigen stabilization was seen for 4 lesions, and in 2 cases prostate-specific antigen progression was reported. The 30-month progression-free survival rate was 42.6%. Disease progression was observed for 14 lesions (5, 2, 5, and 2 in Groups P, A, LN, and M respectively). In only 3 cases, in-field progression was seen. At the time of analysis (May 2010), 19 patients are alive with no evidence of disease and 15 are alive with disease. Conclusions: CyberKnife-based stereotactic radiotherapy is a feasible approach for isolated recurrent primary, lymph node, or metastatic prostate cancer, offering excellent in-field tumor

  9. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  10. A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: The case of the CyberKnife

    SciTech Connect

    Morin, J.; Beliveau-Nadeau, D.; Chung, E.; Seuntjens, J.; Theriault, D.; Archambault, L.; Beddar, S.; Beaulieu, L.

    2013-01-15

    Purpose: Small-field dosimetry is challenging, and the main limitations of most dosimeters are insufficient spatial resolution, water nonequivalence, and energy dependence. The purpose of this study was to compare plastic scintillation detectors (PSDs) to several commercial stereotactic dosimeters by measuring total scatter factors and dose profiles on a CyberKnife system. Methods: Two PSDs were developed, having sensitive volumes of 0.196 and 0.785 mm{sup 3}, and compared with other detectors. The spectral discrimination method was applied to subtract Cerenkov light from the signal. Both PSDs were compared to four commercial stereotactic dosimeters by measuring total scatter factors, namely, an IBA dosimetry stereotactic field diode (SFD), a PTW 60008 silicon diode, a PTW 60012 silicon diode, and a microLion. The measured total scatter factors were further compared with those of two independent Monte Carlo studies. For the dose profiles, two commercial detectors were used for the comparison, i.e., a PTW 60012 silicon diode and Gafchromics EBT2. Total scatter factors for a CyberKnife system were measured in circular fields with diameters from 5 to 60 mm. Dose profiles were measured for the 5- and 60-mm cones. The measurements were performed in a water tank at a 1.5-cm depth and an 80-cm source-axis distance. Results: The total scatter factors measured using all the detectors agreed within 1% with the Monte Carlo values for cones of 20 mm or greater in diameter. For cones of 10-20 mm in diameter, the PTW 60008 silicon diode was the only dosimeter whose measurements did not agree within 1% with the Monte Carlo values. For smaller fields (<10 mm), each dosimeter type showed different behaviors. The silicon diodes over-responded because of their water nonequivalence; the microLion and 1.0-mm PSD under-responded because of a volume-averaging effect; and the 0.5-mm PSD was the only detector within the uncertainties of the Monte Carlo simulations for all the cones. The

  11. Dosimetric and radiobiological comparison of CyberKnife M6™ InCise multileaf collimator over IRIS™ variable collimator in prostate stereotactic body radiation therapy

    PubMed Central

    Kathriarachchi, Vindu; Shang, Charles; Evans, Grant; Leventouri, Theodora; Kalantzis, Georgios

    2016-01-01

    The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC) (Accuray Inc. Synnyvale, CA) for prostate stereotactic body radiation therapy (SBRT). Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV) was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI), Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR) dose sparing was analyzed by the bladder wall Dmax and V37Gy, rectum Dmax and V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs) and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time. PMID:27217626

  12. Sci—Sat AM: Stereo — 07: Suitability of a plastic scintillator dosimeter for composite clinical fields delivered using the Cyberknife robotic radiosurgery system

    SciTech Connect

    Vandervoort, E.; Szanto, J.; Christiansen, E.

    2014-08-15

    Plastic scintillation dosimeters (PSDs) have favourable characteristics for small and composite field dosimetry in radiosurgery, however, imperfect corrections for the Cerenkov radiation contamination could limit their accuracy for complex deliveries. In this work, we characterize the dose and dose-rate linearity, directional dependence, and compare output factors with other stereotactic detectors for a new commercially available PSD (Exradin W1). We provide some preliminary comparisons of planned and measured dose for composite fields delivered clinically by a Cyberknife radiosurgery system. The W1 detector shows good linearity with dose (<0.5%) and dose rate (<0.8%) relative to the signal obtained using an ion chamber under the same conditions. A maximum difference of 2% was observed depending on the detector's angular orientation. Output factors for all detectors agree within a range of ±3.2% and ±1.5% for the 5 and 7.5 mm collimators, respectively, provided Monte-Carlo corrections for detector effects are applied to diode and ion chambers (without corrections the range is ±5.5% and ±3.1% for these two collimators). For clinical beam deliveries using 5 and 7.5 mm collimators, four of the six patients showed better agreement with planned dose for the PSD detector compared to a micro ion chamber. Two of the six patients investigated, however, showed 5% differences between PSD and planned dose, film measurements and the ratio of PSD and micro ion chamber signal suggest that further investigation is warranted for these plans. The W1 detector is a promising tool for stereotactic plan verification under the challenging dosimetric conditions of stereotactic radiosurgery.

  13. Dosimetric and radiobiological comparison of CyberKnife M6™ InCise multileaf collimator over IRIS™ variable collimator in prostate stereotactic body radiation therapy.

    PubMed

    Kathriarachchi, Vindu; Shang, Charles; Evans, Grant; Leventouri, Theodora; Kalantzis, Georgios

    2016-01-01

    The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC) (Accuray Inc. Synnyvale, CA) for prostate stereotactic body radiation therapy (SBRT). Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV) was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI), Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR) dose sparing was analyzed by the bladder wall Dmax and V37Gy, rectum Dmax and V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs) and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time. PMID:27217626

  14. Prostate-specific antigen kinetics after stereotactic body radiotherapy as monotherapy or boost after whole pelvic radiotherapy for localized prostate cancer

    PubMed Central

    Kim, Hun Jung; Phak, Jung Hoon; Kim, Woo Chul

    2015-01-01

    Purpose Stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. However, prostate-specific antigen (PSA) kinetics after SBRT has not been well characterized. The purpose of the current study is to assess the kinetics of PSA for low- and intermediate-risk prostate cancer patients treated with SBRT using Cyberknife as both monotherapy and boost after whole pelvic radiotherapy (WPRT) in the absence of androgen deprivation therapy. Methods A total of 61 patients with low- and intermediated-risk prostate cancer treated with SBRT as monotherapy (36.25 Gy in 5 fractions in 32 patients) and SBRT (21 Gy in 3 fractions in 29 patients) boost combined with WPRT (45 Gy in 25 fractions). Patients were excluded if they failed therapy by the Phoenix definition or had androgen deprivation therapy. PSA nadir and rate of change in PSA over time (slope) were calculated and compared. Results With a median follow-up of 52.4 months (range, 14–74 months), for SBRT monotherapy, the median PSA nadir was 0.31 ng/mL (range, 0.04–1.15 ng/mL) and slopes were –0.41 ng/mL/mo, –0.17 ng/mL/mo, –0.12 ng/mL/mo, and –0.09 ng/mL/mo, respectively, for durations of 1 year, 2 years, 3 years, and 4 years postradiotherapy. Similarly, for SBRT boost after WPRT, the median PSA nadir was 0.34 ng/mL (range, 0.04–1.44 ng/mL) and slopes were –0.53 ng/mL/mo, –0.25 ng/mL/mo, –0.14 ng/mL/mo, and –0.09 ng/mL/mo, respectively. The median nadir and slopes of SBRT monotherapy did not differ significantly from those of SBRT boost after WPRT. Benign PSA bounces were common in 30.4% of all cohorts, and the median time to PSA bounce was 12 months (range, 6–25 months). Conclusions In this report of low- and intermediate-risk prostate cancer patients, an initial period of rapid PSA decline was followed by a slow decline, which resulted in a lower PSA nadir. The PSA kinetics of SBRT monotherapy appears to be comparable to those achieved

  15. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT. PMID:27521035

  16. Radiotherapy planning using MRI

    NASA Astrophysics Data System (ADS)

    Schmidt, Maria A.; Payne, Geoffrey S.

    2015-11-01

    The use of magnetic resonance imaging (MRI) in radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimized, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT.

  17. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  18. Stereotactic Body Radiotherapy for Localized Prostate Cancer: Interim Results of a Prospective Phase II Clinical Trial

    SciTech Connect

    King, Christopher R. Brooks, James D.; Gill, Harcharan; Pawlicki, Todd; Cotrutz, Cristian; Presti, Joseph C.

    2009-03-15

    Purpose: The radiobiology of prostate cancer favors a hypofractionated dose regimen. We report results of a prospective Phase II clinical trial of stereotactic body radiotherapy (SBRT) for localized prostate cancer. Methods and Materials: Forty-one low-risk prostate cancer patients with 6 months' minimum follow-up received 36.25 Gy in five fractions of 7.25 Gy with image-guided SBRT alone using the CyberKnife. The early (<3 months) and late (>6 months) urinary and rectal toxicities were assessed using validated quality of life questionnaires (International Prostate Symptom Score, Expanded Prostate Cancer Index Composite) and the Radiation Therapy Oncology Group (RTOG) toxicity criteria. Patterns of prostate-specific antigen (PSA) response are analyzed. Results: The median follow-up was 33 months. There were no RTOG Grade 4 acute or late rectal/urinary complications. There were 2 patients with RTOG Grade 3 late urinary toxicity and none with RTOG Grade 3 rectal complications. A reduced rate of severe rectal toxicities was observed with every-other-day vs. 5 consecutive days treatment regimen (0% vs. 38%, p = 0.0035). A benign PSA bounce (median, 0.4 ng/mL) was observed in 12 patients (29%) occurring at 18 months (median) after treatment. At last follow-up, no patient has had a PSA failure regardless of biochemical failure definition. Of 32 patients with 12 months minimum follow-up, 25 patients (78%) achieved a PSA nadir {<=}0.4 ng/mL. A PSA decline to progressively lower nadirs up to 3 years after treatment was observed. Conclusions: The early and late toxicity profile and PSA response for prostate SBRT are highly encouraging. Continued accrual and follow-up will be necessary to confirm durable biochemical control rates and low toxicity profiles.

  19. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    SciTech Connect

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-15

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS{sub 2} algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  20. Indications for Salivary Gland Radiotherapy.

    PubMed

    Thomson, David J; Slevin, Nick J; Mendenhall, William M

    2016-01-01

    There is an established role for post-operative radiotherapy in the treatment of benign and malignant salivary gland tumours. For benign disease, the addition of radiotherapy improves local tumour control in cases with incomplete excision, involved surgical margins or multi-focal disease recurrence. After capsule rupture or spillage alone, surveillance should usually be advised. For malignant disease, post-operative radiotherapy is recommended for an advanced tumour stage, high-grade tumour, perineural or lympho-vascular invasion, close or positive resection margins, extra-parotid extension or lymph node involvement. The main benefit is increased loco-regional tumour control, although this may translate into a modest improvement in survival. The possible late side effects of parotid bed irradiation include skin changes, chronic otitis externa, sensorineural hearing loss, osteoradionecrosis and secondary malignancy. Severe complications are rare, but patients should be counselled carefully about the risks. Primary radiotherapy is unlikely to be curative and is reserved to cases in which resection would cause unacceptable functional or cosmetic morbidity or would likely result in subtotal resection (R2) or to patients with distant metastases to gain local tumour control. There are provisional data on the use of charged particle radiotherapy in this setting. Some patients may benefit from synchronous chemotherapy with radiotherapy, but this group is not defined, and data from comparative prospective studies are required before routine clinical use of this treatment. PMID:27093301

  1. 4D ultrasound speckle tracking of intra-fraction prostate motion: a phantom-based comparison with x-ray fiducial tracking using CyberKnife

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan P.; Garcia, Leo J.; Rosser, Karen E.; Harris, Emma J.; Evans, Philip M.; Bamber, Jeffrey C.

    2014-04-01

    This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (˜2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging

  2. SU-E-T-587: Monte Carlo Versus Ray-Tracing for Treatment Planning Involving CNS Tumors On the MultiPlan System for CyberKnife Radiosurgery

    SciTech Connect

    Forbang, R Teboh

    2014-06-01

    Purpose: MultiPlan, the treatment planning system for the CyberKnife Robotic Radiosurgery system offers two approaches to dose computation, namely Ray-Tracing (RT), the default technique and Monte Carlo (MC), an option. RT is deterministic, however it accounts for primary heterogeneity only. MC on the other hand has an uncertainty associated with the calculation results. The advantage is that in addition, it accounts for heterogeneity effects on the scattered dose. Not all sites will benefit from MC. The goal of this work was to focus on central nervous system (CNS) tumors and compare dosimetrically, treatment plans computed with RT versus MC. Methods: Treatment plans were computed using both RT and MC for sites covering (a) the brain (b) C-spine (c) upper T-spine (d) lower T-spine (e) L-spine and (f) sacrum. RT was first used to compute clinically valid treatment plans. Then the same treatment parameters, monitor units, beam weights, etc., were used in the MC algorithm to compute the dose distribution. The plans were then compared for tumor coverage to illustrate the difference if any. All MC calculations were performed at a 1% uncertainty. Results: Using the RT technique, the tumor coverage for the brain, C-spine (C3–C7), upper T-spine (T4–T6), lower T-spine (T10), Lspine (L2) and sacrum were 96.8%, 93.1%, 97.2%, 87.3%, 91.1%, and 95.3%. The corresponding tumor coverage based on the MC approach was 98.2%, 95.3%, 87.55%, 88.2%, 92.5%, and 95.3%. It should be noted that the acceptable planning target coverage for our clinical practice is >95%. The coverage can be compromised for spine tumors to spare normal tissues such as the spinal cord. Conclusion: For treatment planning involving the CNS, RT and MC appear to be similar for most sites but for the T-spine area where most of the beams traverse lung tissue. In this case, MC is highly recommended.

  3. Predictive Parameters of CyberKnife Fiducial-less (XSight Lung) Applicability for Treatment of Early Non-Small Cell Lung Cancer: A Single-Center Experience

    SciTech Connect

    Bahig, Houda; Campeau, Marie-Pierre; Vu, Toni; Doucet, Robert; Béliveau Nadeau, Dominic; Fortin, Bernard; Roberge, David; Lambert, Louise; Carrier, Jean-François; Filion, Edith

    2013-11-01

    Purpose: To determine which parameters allow for CyberKnife fiducial-less tumor tracking in stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer. Methods and Materials: A total of 133 lung SBRT patients were preselected for direct soft-tissue tracking based on manufacturer recommendations (peripherally located tumors ≥1.5 cm with a dense appearance) and staff experience. Patients underwent a tumor visualization test to verify adequate detection by the tracking system (orthogonal radiographs). An analysis of potential predictors of successful tumor tracking was conducted looking at: tumor stage, size, histology, tumor projection on the vertebral column or mediastinum, distance to the diaphragm, lung-to-soft tissue ratio, and patient body mass index. Results: Tumor visualization was satisfactory for 88 patients (66%) and unsatisfactory for 45 patients (34%). Median time to treatment start was 6 days in the success group (range, 2-18 days) and 15 days (range, 3-63 days) in the failure group. A stage T2 (P=.04), larger tumor size (volume of 15.3 cm{sup 3} vs 6.5 cm{sup 3} in success and failure group, respectively) (P<.0001), and higher tumor density (0.86 g/cm{sup 3} vs 0.79 g/cm{sup 3}) were predictive of adequate detection. There was a 63% decrease in failure risk with every 1-cm increase in maximum tumor dimension (relative risk for failure = 0.37, CI=0.23-0.60, P=.001). A diameter of 3.6 cm predicted a success probability of 80%. Histology, lung-to-soft tissue ratio, distance to diaphragm, patient's body mass index, and tumor projection on vertebral column and mediastinum were not found to be predictive of success. Conclusions: Tumor size, volume, and density were the most predictive factors of a successful XSight Lung tumor tracking. Tumors >3.5 cm have ≥80% chance of being adequately visualized and therefore should all be considered for direct tumor tracking.

  4. [Postoperative radiotherapy of prostate cancer].

    PubMed

    Guérif, S; Latorzeff, I; Lagrange, J-L; Hennequin, C; Supiot, S; Garcia, A; François, P; Soulié, M; Richaud, P; Salomon, L

    2014-10-01

    Between 10 and 40% of patients who have undergone a radical prostatectomy may have a biologic recurrence. Local or distant failure represents the possible patterns of relapse. Patients at high-risk for local relapse have extraprostatic disease, positive surgical margins or seminal vesicles infiltration or high Gleason score at pathology. Three phase-III randomized clinical trials have shown that, for these patients, adjuvant irradiation reduces the risk of tumoral progression without higher toxicity. Salvage radiotherapy for late relapse allows a disease control in 60-70% of the cases. Several research in order to improve the therapeutic ratio of the radiotherapy after prostatectomy are evaluate in the French Groupe d'Étude des Tumeurs Urogénitales (Gétug) and of the French association of urology (Afu). The Gétug-Afu 17 trial will provide answers to the question of the optimal moment for postoperative radiotherapy for pT3-4 R1 pN0 Nx patients, with the objective of comparing an immediate treatment to a differed early treatment initiated at biological recurrence. The Gétug-Afu 22 questions the place of a short hormonetherapy combined with image-guided, intensity-modulated radiotherapy (IMRT) in adjuvant situation for a detectable prostate specific antigen (PSA). The implementation of a multicenter quality control within the Gétug-Afu in order to harmonize a modern postoperative radiotherapy will allow the development of a dose escalation IMRT after surgery. PMID:25195116

  5. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  6. Monte Carlo calculation based on hydrogen composition of the tissue for MV photon radiotherapy.

    PubMed

    Demol, Benjamin; Viard, Romain; Reynaert, Nick

    2015-01-01

    The purpose of this study was to demonstrate that Monte Carlo treatment planning systems require tissue characterization (density and composition) as a function of CT number. A discrete set of tissue classes with a specific composition is introduced. In the current work we demonstrate that, for megavoltage photon radiotherapy, only the hydrogen content of the different tissues is of interest. This conclusion might have an impact on MRI-based dose calculations and on MVCT calibration using tissue substitutes. A stoichiometric calibration was performed, grouping tissues with similar atomic composition into 15 dosimetrically equivalent subsets. To demonstrate the importance of hydrogen, a new scheme was derived, with correct hydrogen content, complemented by oxygen (all elements differing from hydrogen are replaced by oxygen). Mass attenuation coefficients and mass stopping powers for this scheme were calculated and compared to the original scheme. Twenty-five CyberKnife treatment plans were recalculated by an in-house developed Monte Carlo system using tissue density and hydrogen content derived from the CT images. The results were compared to Monte Carlo simulations using the original stoichiometric calibration. Between 300 keV and 3 MeV, the relative difference of mass attenuation coefficients is under 1% within all subsets. Between 10 keV and 20 MeV, the relative difference of mass stopping powers goes up to 5% in hard bone and remains below 2% for all other tissue subsets. Dose-volume histograms (DVHs) of the treatment plans present no visual difference between the two schemes. Relative differences of dose indexes D98, D95, D50, D05, D02, and Dmean were analyzed and a distribution centered around zero and of standard deviation below 2% (3 σ) was established. On the other hand, once the hydrogen content is slightly modified, important dose differences are obtained. Monte Carlo dose planning in the field of megavoltage photon radiotherapy is fully achievable using

  7. Fractionated beam radiotherapy is a special case of continuous beam radiotherapy when irradiation time is small.

    PubMed

    Biswas, Jayanta; Rajguru, Tapan K; Choudhury, Krishnangshu B; Dutta, Sumita; Sharma, Shyam; Sarkar, Aniruddha

    2013-01-01

    Fractionated beam radiotherapy, in other terms, external beam radiotherapy (EBRT) and continuous beam radiotherapy or Brachytherapy are two modes of radiotherapy techniques. Although in many ways, they appear to be different, radiobiologically, with the help of mathematics, it can be proved that the biological effective dose (BED) of EBRT is similar to BED of Brachytherapy, when irradiation time is small. Here an attempt is made to correlate these two predominant modes of radiotherapy techniques. PMID:24125964

  8. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  9. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  10. Radiotherapy for ocular tumours.

    PubMed

    Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

    2013-02-01

    Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25-30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

  11. Radiotherapy for ocular tumours

    PubMed Central

    Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

    2013-01-01

    Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25–30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

  12. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  13. Radiotherapy. Gazing at the crystal ball of European radiotherapy.

    PubMed

    Overgaard, Jens

    2015-01-01

    Although radiotherapy is a key component of cancer treatment, provision of this modality is not immune to limits placed on health-care expenditure. Recent studies suggest European radiation oncology resources will generally be insufficient to meet future, and in some cases current, needs. This challenge and how it might be addressed is discussed herein. PMID:25421280

  14. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification. PMID:26321647

  15. Intraoperative radiotherapy: the Japanese experience. [Betatron

    SciTech Connect

    Abe, M.; Takahashi, M.

    1981-07-01

    Clinical results of intraoperative radiotherapy (IOR) which have been obtained since 1964 in Japan were reviewed. In this radiotherapy a cancerocidal dose can be delivered safely to the lesions, since critical organs are shifted from the field so that the lesions may be exposed directly to radiation. Intraoperative radiotherapy has spread in Japan and the number of institutions in which this radiotherapy is performed has continued to increase to a total of 26 in 1979. The total number of patients treated was 717. It has been demonstrated that intraoperative radiotherapy has definite effects on locally advanced abdominal neoplasms and unresectable radioresistant tumors.

  16. Validation of GEANT4 simulations for percentage depth dose calculations in heterogeneous media by using small photon beams from the 6-MV Cyberknife: Comparison with photon beam dosimetry with EBT2 film

    NASA Astrophysics Data System (ADS)

    Lee, Chung Il; Yoon, Sei-Chul; Shin, Jae Won; Hong, Seung-Woo; Suh, Tae Suk; Min, Kyung Joo; Lee, Sang Deok; Chung, Su Mi; Jung, Jae-Yong

    2015-04-01

    Percentage depth dose (PDD) distributions in heterogeneous phantoms with lung and soft bone equivalent media are studied by using the GEANT4 Monte Carlo code. For lung equivalent media, Balsa wood is used, and for soft bone equivalent media, a compound material with epoxy resin, hardener and calcium carbonate is used. Polystyrene slabs put together with these materials are used as a heterogeneous phantom. Dose measurements are performed with Gafchromic EBT2 film by using photon beams from the 6-MV CyberKnife at the Seoul Uridul Hospital. The cone sizes of the photon beams are varied from 5 to 10 to 30 mm. When the Balsa wood is inserted in the phantom, the dose measured with EBT2 film is found to be significantly different from the dose without the EBT2 film in and the dose beyond the Balsa wood region, particularly for small field sizes. On the other hand, when the soft bone equivalent material is inserted in the phantom, the discrepancy between the dose measured with EBT2 film and the dose without EBT2 film can be seen only in the region of the soft bone equivalent material. GEANT4 simulations are done with and without the EBT2 film to compare the simulation results with measurements. The GEANT4 simulations including EBT2 film are found to agree well with the measurements for all the cases within an error of 2.2%. The results of the present study show that GEANT4 gives reasonable results for the PDD calculations in heterogeneous media when using photon beams produced by the 6-MV CyberKnife

  17. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  18. Pancreatic cancer: chemotherapy and radiotherapy

    PubMed Central

    Andrén-Sandberg, Åke

    2011-01-01

    Pancreatic cancer in many cases appears in a non-curatively resectable stage when the diagnosis is made. Palliative treatment become an option in the patients with advanced stage. The present article reviewed chemotherapy and radiotherapy in various advanced stage of pancreatic cancer. PMID:22540056

  19. Preoperative radiotherapy for colorectal cancer.

    PubMed Central

    Higgins, G A; Conn, J H; Jordan, P H; Humphrey, E W; Roswit, B; Keehn, R J

    1975-01-01

    In a prospective randomized trial, 700 patients with a confirmed histological diagnosis of adenocarcinoma of the rectum or rectosigmoid were randomized to receive radiotherapy prior to operation (2000 to 2500 rads in two weeks) or surgery alone. Five year observed survival in the 453 patients on whom "curative" resection was possible was 48.5% in the X-ray treated group compared with 38.8% in controls, while in the 305 having low lying lesions requiring abdominoperineal resection, survival in the treated group was 46.9% compared with 34.3% in controls. Although suggestive of a treatment benefit, neither is considered statistically significant. Histologically positive lymph nodes were found in 41.2% of the control group and in only 27.8% of the patients receiving radiotherapy. Reveiw of all patients who died during the study shows a consistently lower death rate from cancer in the radiotherapy group. Although this study suggests a treatment benefit from preoperative radiotherapy, further studies now in progress by this group and others are necessary to determine the optimal dose regimen. PMID:805571

  20. Clinical study on the influence of motion and other factors on stereotactic radiotherapy in the treatment of adrenal gland tumor

    PubMed Central

    Wang, Jingsheng; Li, Fengtong; Dong, Yang; Song, Yongchun; Yuan, Zhiyong

    2016-01-01

    Background The aim of this study was to investigate the adrenal tumor motion law and influence factors in the treatment of adrenal gland tumor and provide a reference value basis for determining the planning target volume margins for therapy. Materials and methods The subjects considered in this study were 38 adrenal tumor patients treated with CyberKnife with the placement of 45 gold fiducials. Fiducials were implanted into each adrenal tumor using β-ultrasonic guidance. Motion amplitudes of gold fiducials were measured with a Philips SLS simulator and motion data in the left–right, anterior–posterior, and cranio–caudal directions were obtained. Multiple linear regression models were used to analyze influencing factors. t-Test was used for motion amplitude comparison of different tumor locations along the z-axis. Results The motion distances were 0.1–0.4 cm (0.27±0.07 cm), 0.1–0.5 cm (0.31±0.11 cm), and 0.5–1.2 cm (0.87±0.21 cm) along the x-, y-, and z-axes, respectively. Motion amplitude along the z-axis may be affected by tumor location, but movement along the other axes was not affected by age, height, body mass, location, and size. Conclusion The maximum motion distance was along the z-axis. Therefore, this should be the main consideration when defining the planning target volume safety margin. Due to the proximity of the liver, adrenal gland tumor motion amplitude was smaller on the right than the left. This study analyzed adrenal tumor motion amplitude data to evaluate how motion and other factors influence the treatment of adrenal tumor with a goal of providing a reference for stereotactic radiotherapy boundary determination. PMID:27486331

  1. Palliative radiotherapy: current status and future directions.

    PubMed

    Sharma, Sonam; Hertan, Lauren; Jones, Joshua

    2014-12-01

    For nearly 100 years, palliative radiotherapy has been a time-efficient, effective treatment for patients with metastatic or advanced cancer in any area where local tumors are causing symptoms. Short courses including a single fraction of radiotherapy may be effective for symptom relief with minimal side effects and maximization of convenience for patient and family. With recent advances in imaging, surgery, and other local therapies as well as systemic cancer therapies, palliative radiotherapy has been used frequently in patients who may not yet have symptoms of advanced or metastatic cancer. In this setting, more prolonged radiotherapy courses and advanced radiotherapy techniques including intensity-modulated radiotherapy (IMRT) or stereotactic radiotherapy (SRT) may be useful in obtaining local control and durable palliative responses. This review will explore the use of radiotherapy across the spectrum of patients with advanced and metastatic cancer and delineate an updated, rational approach for the use of palliative radiotherapy that incorporates symptoms, prognosis, and other factors into the delivery of palliative radiotherapy. PMID:25499634

  2. SU-E-T-545: A MLC-Equipped Robotic Radiosurgery-Radiotherapy Combined System in Treating Hepatic Lesions: Delivery Efficiency as Compared to a Standard Linac for Treating Hepatic Lesions

    SciTech Connect

    Jin, L; Price, R; Wang, L; Meyer, J; Ma, C; Fan, J

    2014-06-01

    Purpose: The CyberKnife (CK) M6 Series introduced a mulitleaf collimator (MLC) beam for extending its capability to the conventional radiotherapy. This work is to investigate delivery efficiency of this system as compared to a standard Varian linac when treating hepatic lesions. Methods: Nine previously treated patients were divided into three groups with three patients in each. Group one: fractionated radiotherapy; Group two: SBRT-like treatments and Group three: fractionated radiotherapy targeting two PTVs. The clinically used plans were generated with the Eclipse treatment planning system (TPS). We re-planned these cases using a Mulitplan (MP) TPS for the CK M6 and normalized to the same PTV dose coverage. CK factors (CF) (defined as modulation scaling factor in this work), number of nodes (NN), number of MLC segments (NS) and beam delivery time (BT) with an estimated image interval of 60 seconds, were used for evaluation of delivery efficiency. Results: Generated plans from the MP and Eclipse TPS demonstrated the similar quality in terms of PTV confomality index, minimum and maximum PTV doses, and doses received by critical structures. Group one: CF ranged from 8.1 to 8.7, NN from 30 to 40, NS from 120 to 155 and BT from 20 to 23 minutes; group two: CF from 4.7 to 8.5, NN from 15 to 19, NS from 82 to 141 and BT from 18 to 24 minutes; and group three: CF from 7.9 to 10, NN from 47 to 49, NS from 110 to 113 and BT from 20 to 22 minutes. Conclusions: Delivery time is longer for the CK M6 than for the Varian linac (7.8 to 13.7 minutes). Further investigation will be necessary to determine if a PTV reduction from the tracking feature will shorten the delivery time without decreasing plan quality.

  3. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  4. [Palliative Radiotherapy for Bone Metastases].

    PubMed

    Nagakura, Hisayasu

    2015-11-01

    Bone metastasis is associated with many symptoms such as bone pain, pathological fracture, and spinal cord compression. Especially, pain secondary to bone metastases is a serious problem in many patients with metastatic cancer. Radiotherapy can provide remarkable pain relief, reduce the requirement for analgesic drugs, and prevent pathological fracture or spinal cord compression with few complications in most patients. Many randomized controlled trials have shown equivalent extent of pain relief between single-fraction and multiple-fraction regimens. Reirradiation of painful bone metastases is effective for palliation of pain in non-responders or patients with recurrent pain after an initial satisfactory response to a previous radiation therapy. Systemic administration of radioisotopes is an important palliative care option for painful multifocal bone metastases detected on nuclear imaging; however, the application of this option depends on the histologic features of the tumor and distribution of the metastases. Metastatic spinal cord compression is the most frequent oncologic emergency and necessitates timely and appropriate treatment. External beam radiotherapy is commonly used for the treatment of metastatic spinal cord compression. Surgical decompression and stabilization should be considered for metastatic spinal cord compression or pathological fracture in select patients. Postoperative radiotherapy should be administered to patients who have undergone surgical intervention for bone metastases. For patients at a high risk for oncologic emergency, optimal prophylactic management is highly recommended. PMID:26602393

  5. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  6. Treatment and technical intervention time analysis of a robotic stereotactic radiotherapy system.

    PubMed

    Crop, F; Lacornerie, T; Szymczak, H; Felin, A; Bailleux, C; Mirabel, X; Lartigau, E

    2014-02-01

    The purpose of this study is to obtain a better operational knowledge of Stereotactic Body Radiotherapy (SBRT) treatments with CyberKnife(r). An analysis of both In-room Times (IRT) and technical interventions of 5 years of treatments was performed, during which more than 1600 patients were treated for various indications, including liver (21%), lung (29%), intracranial (13%), head and neck (11%) and prostate (7%). Technical interventions were recorded along with the time of the failure, time to the intervention, and the complexity and duration of the repair. Analyses of Time Between Failures (TBF) and Service Disrupting TBF(disr) were performed. Treatment time data and variability per indication and following different system upgrades were evaluated. Large variations of IRTs were found between indications, but also large variations for each indication. The combination of the time reduction Tool (using Iris(r)) and Improved Stop Handling was of major impact to shortening of treatment times. The first implementation of the Iris collimator alone did not lead to significantly shorter IRTs for us except during prostate treatments. This was mostly due to the addition at the same time of larger rotational compensation for prostate treatments (58 instead of 1.58). Significant differences of duration between the first fraction and following fractions of a treatment, representing the necessity of defining imaging parameters and explanation to patients, were found for liver (12 min) and lung treatments using Xsight(r) Spine (5 min). Liver and lung treatments represent the longest IRT's and involve the largest variability's in IRT. The malfunction rate of the system followed a Weibull distribution with the shape and scale parameters of 0.8 and 39.7. Mean TBF(disr) was 68 work hours. 60 to 80% of the service disrupting interventions were resolved within 30-60 min, 5% required external intervention and 30% occurred in the morning. The presented results can be applied in the

  7. Innovative radiotherapy of sarcoma: Proton beam radiation.

    PubMed

    DeLaney, Thomas F; Haas, Rick L M

    2016-07-01

    This review on proton beam radiotherapy (PBT) focusses on an historical overview, cost-effectiveness, techniques, acute and late toxicities and clinical results of PBT for sarcoma patients. PBT has gained its place among the armamentarium of modern radiotherapy techniques. For selected patients, it can be cost-effective. PMID:27258968

  8. Microcystic adnexal carcinoma following radiotherapy in childhood

    SciTech Connect

    Borenstein, A.; Seidman, D.S.; Trau, H.; Tsur, H. )

    1991-04-01

    A 36-year-old man was treated by radiotherapy for tinea capitis many years before discovery of microcystic adnexal carcinoma (MAC). Because of patient's refusal of any surgical intervention, we were able to follow the natural course of this tumor for 13 years. This case emphasizes the typical slow development of (MAC). The implication of the association of MAC and radiotherapy are discussed.

  9. Radiotherapy for Head and Neck Cancer

    PubMed Central

    Yeh, Shyh-An

    2010-01-01

    Treatment for patients with head and neck cancer requires a multidisciplinary approach. Radiotherapy is employed as a primary treatment or as an adjuvant to surgery. Each specific subsite dictates the appropriate radiotherapy techniques, fields, dose, and fractionation scheme. Quality of life is also an important issue in the management of head and neck cancer. The radiation-related complications have a tremendous impact on the quality of life. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and image-guided radiotherapy, can offer precise radiation delivery and reduce the dose to the surrounding normal tissues without compromise of target coverage. In the future, efforts should be made in the exploration of novel strategies to improve treatment outcome in patients with head and neck cancer. PMID:22550433

  10. Successful radiotherapy of facial angiosarcoma.

    PubMed

    Gkalpakiotis, S; Arenberger, P; Vohradnikova, O; Arenbergerova, M

    2008-11-01

    Cutaneous angiosarcoma of the face and scalp is a rare malignant vascular tumor that affects mostly Caucasian elderly males. At present, connections concerning the etiology of this neoplasm with radiation therapy, exposure to environmental carcinogens and chronic lymphedema have been described. Due to the difficult histologic evaluation, high local recurrence and tendency to early metastasing, angiosarcoma poses generally a very poor prognosis. We report the case of an 80-year-old patient who experienced successful removal of large, exophytic growing angiosarcoma of the face achieved with radiotherapy with long-term relapse-free survival. PMID:18986458

  11. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  12. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  13. Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.; Lincoln, Holly; Shumway, Richard C.; Kaplan, Bruce M.; Colasanto, Joseph M.

    2010-05-01

    Purpose: To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods: An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results: The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions: We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.

  14. Evaluation of the peripheral dose in stereotactic radiotherapy and radiosurgery treatments

    SciTech Connect

    Di Betta, Erika; Fariselli, Laura; Bergantin, Achille; Locatelli, Federica; Del Vecchio, Antonella; Broggi, Sara; Fumagalli, Maria Luisa

    2010-07-15

    Purpose: The main purpose of this work was to compare peripheral doses absorbed during stereotactic treatment of a brain lesion delivered using different devices. These data were used to estimate the risk of stochastic effects. Methods: Treatment plans were created for an anthropomorphic phantom and delivered using a LINAC with stereotactic cones and a multileaf collimator, a CyberKnife system (before and after a supplemental shielding was applied), a TomoTherapy system, and a Gamma Knife unit. For each treatment, 5 Gy were prescribed to the target. Measurements were performed with thermoluminescent dosimeters inserted roughly in the position of the thyroid, sternum, upper lung, lower lung, and gonads. Results: Mean doses ranged from of 4.1 (Gamma Knife) to 62.8 mGy (LINAC with cones) in the thyroid, from 2.3 (TomoTherapy) to 30 mGy (preshielding CyberKnife) in the sternum, from 1.7 (TomoTherapy) to 20 mGy (preshielding CyberKnife) in the upper part of the lungs, from 0.98 (Gamma Knife) to 15 mGy (preshielding CyberKnife) in the lower part of the lungs, and between 0.3 (Gamma Knife) and 10 mGy (preshielding CyberKnife) in the gonads. Conclusions: The peripheral dose absorbed in the sites of interest with a 5 Gy fraction is low. Although the risk of adverse side effects calculated for 20 Gy delivered in 5 Gy fractions is negligible, in the interest of optimum patient radioprotection, further studies are needed to determine the weight of each contributor to the peripheral dose.

  15. Radiotherapy in patients with cardiac pacemakers.

    PubMed

    Last, A

    1998-01-01

    Patients with permanent cardiac pacemakers occasionally require radiotherapy. Therapeutic irradiation may cause pacemakers to malfunction due to the effects of ionizing radiation or electromagnetic interference. Modern pacemakers, using complementary metal oxide semiconductor (CMOS) circuitry, differ from older bipolar semiconductor devices both in their sensitivity to damage and the types of malfunction observed. The mechanisms and types of radiotherapy-induced pacemaker malfunction are described and in vitro and in vivo studies of pacemaker irradiation are reviewed. Some simple precautions are recommended during the planning and administration of radiotherapy to minimize the risk of harm to patients with pacemakers. PMID:9534692

  16. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  17. Radiotherapy for Pancreatic Neuroendocrine Tumors

    SciTech Connect

    Contessa, Joseph N.; Griffith, Kent A.; Wolff, Elizabeth; Ensminger, William; Zalupski, Mark; Ben-Josef, Edgar

    2009-11-15

    Purpose: Pancreatic neuroendocrine tumors (PNTs) are rare malignant neoplasms considered to be resistant to radiotherapy (RT), although data on efficacy are scarce. We reviewed our institutional experience to further delineate the role of RT for patients with PNTs. Methods and Materials: Between 1986 and 2006, 36 patients with PNTs were treated with RT to 49 sites. Of these 36 patients, 23 had radiographic follow-up data, which were used to determine the tumor response rate and freedom from local progression. Long-term toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events. Results: The overall response rate to RT was 39% (13% complete response, 26% partial response, 56% stable disease, and 4% progressive disease). A significant difference in the freedom from local progression between the groups receiving either greater than or less than the median 2 Gy/fraction biologically equivalent dose of 49.6 Gy was found, with all radiographic progression occurring in patients who had received <=32 Gy. The actuarial 3-year local freedom from progression rate was 49%. Palliation was achieved in 90% of patients, with either improvement or resolution of symptoms after RT. Of 35 patients, 33 had metastatic disease at their referral for RT, and the median overall survival for this patient population was 2 years. Three long-term Grade 3 or greater toxicities were recorded. Conclusion: RT is an effective modality for achieving local control in patients with PNTs. RT produces high rates of symptomatic palliation and freedom from local progression. Prospective trials of radiotherapy for PNTs are warranted.

  18. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  19. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  20. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  1. Intraoperative Radiotherapy in Childhood Malignant Astrocytoma

    PubMed Central

    Rana, Sohail R.; Haddy, Theresa B.; Ashayeri, Ebrahim; Goldson, Alfred L.

    1984-01-01

    A 12-year-old black male patient with glioblastoma multiforme was treated with intraoperative radiotherapy followed by conventional external beam radiation and chemotherapy. The authors' clinical experience with these therapeutic measures is discussed. PMID:6330375

  2. Blisters - an unusual effect during radiotherapy.

    PubMed

    Höller, U; Schubert, T; Budach, V; Trefzer, U; Beyer, M

    2013-11-01

    The skin reaction to radiation is regularly monitored in order to detect enhanced radiosensitivity of the patient, unexpected interactions (e.g. with drugs) or any inadvertent overdosage. It is important to distinguish secondary disease from radiation reaction to provide adequate treatment and to avoid unnecessary discontinuation of radiotherapy. A case of bullous eruption or blisters during radiotherapy of the breast is presented. Differential diagnoses bullous pemphigoid, pemphigus vulgaris, and bullous impetigo are discussed and treatment described. PMID:24158604

  3. Experimental chemotherapy and radiotherapy to paratesticular rhabdomyosarcoma

    SciTech Connect

    Motoyama, T.; Watanabe, H.; Watanabe, T.; Yamamoto, T.

    1989-01-01

    Experimental chemotherapy and radiotherapy were tried in transplanted tumors derived from a paratesticular embryonal rhabdomyosarcoma. There was no significant difference on the therapeutic effect between a combination chemotherapy composed of vincristine, actinomycin D and cyclophosphamide, so-called VAC regimen, and a single therapy of radiation. However, morphologic analyses suggest that VAC is effective in embryonal rhabdomyosarcomas in which undifferentiated rhabdomyoblasts predominate, while radiotherapy is preferable for those containing variously differentiated rhabdomyoblasts.

  4. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  5. [Prophylactic axillary radiotherapy for breast cancer].

    PubMed

    Rivera, S; Louvel, G; Rivin Del Campo, E; Boros, A; Oueslati, H; Deutsch, É

    2015-06-01

    Adjuvant radiotherapy, after breast conserving surgery or mastectomy for breast cancer, improves overall survival while decreasing the risk of recurrence. However, prophylactic postoperative radiotherapy of locoregional lymph nodes for breast cancer, particularly of the axillary region, is still controversial since the benefits and the risks due to axillary irradiation have not been well defined. To begin with, when performing conformal radiotherapy, volume definition is crucial for the analysis of the risk-benefit balance of any radiation treatment. Definition and contouring of the axillary lymph node region is discussed in this work, as per the recommendations of the European Society for Radiotherapy and Oncology (ESTRO). Axillary recurrences are rare, and the recent trend leads toward less aggressive surgery with regard to the axilla. In this literature review we present the data that lead us to avoid adjuvant axillary radiotherapy in pN0, pN0i+ and pN1mi patients even without axillary clearance and to perform it in some other situations. Finally, we propose an update about the potential toxicity of adjuvant axillary irradiation, which is essential for therapeutic decision-making based on current evidence, and to guide us in the evolution of our techniques and indications of axillary radiotherapy. PMID:26044178

  6. SU-E-T-604: Penumbra Characteristics of a New InCiseâ„¢ Multileaf Collimator of CyberKnife M6â„¢ System

    SciTech Connect

    Hwang, M; Jang, S; Ozhasoglu, C; Lalonde, R; Heron, D; Huq, M

    2015-06-15

    Purpose: The InCise™ Multileaf Collimator (MLC) of CyberKnife M6™ System has been released recently. The purpose of this study was to explore the dosimetric characteristics of the new MLC. In particular, the penumbra characteristics of MLC fields at varying locations are evaluated. Methods: EBT3-based film measurements were performed with varying MLC fields ranging from 7.5 mm to 27.5 mm. Seventeen regions of interests (ROIs) were identified for irradiation. These are regions located at the central area (denoted as reference field), at the left/right edge areas of reference open field, at an intermediate location between central and edge area. Single beam treatment plans were designed by using the MultiPlan and was delivered using the Blue Phantom. Gafchromic films were irradiated at 1.5 cm depth in the Blue Phantom and analyzed using the Film Pro software. Variation of maximum dose, penumbra of MLC-defined fields, and symmetry/flatness were calculated as a function of locations of MLC fields. Results: The InCise™ MLC System showed relatively consistent dose distribution and penumbra size with varying locations of MLC fields. The measured maximum dose varied within 5 % at different locations compared to that at the central location and agreed with the calculated data well within 2%. The measured penumbrae were in the range of 2.9 mm and 3.7 mm and were relatively consistent regardless of locations. However, dose profiles in the out-of-field and in-field regions varied with locations and field sizes. Strong variation was seen for all fields located at 55 mm away from the central field. The MLC leakage map showed that the leakage is dependent on position. Conclusion: The size of penumbra and normalized maximum dose for MLC-defined fields were consistent in different regions of MLC. However, dose profiles in the out-field region varied with locations and field sizes.

  7. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  8. Modelling and simulation of radiotherapy

    NASA Astrophysics Data System (ADS)

    Kirkby, Norman F.

    2007-02-01

    In this paper, models are described which have been developed to model both the way in which a population of cells respond to radiation and the way in which a population of patients respond to radiotherapy to assist the conduct of clinical trials in silico. Population balance techniques have been used to simulate the age distribution of tumour cells in the cell cycle. Sensitivity to radiation is not constant round the cell cycle and a single fraction of radiation changes the age distribution. Careful timing of further fractions of radiation can be used to maximize the damage delivered to the tumour while minimizing damage to normal tissue. However, tumour modelling does not necessarily predict patient outcome. A separate model has been established to predict the course of a brain cancer called glioblastoma multiforme (GBM). The model considers the growth of the tumour and its effect on the normal brain. A simple representation is included of the health status of the patient and hence the type of treatment offered. It is concluded that although these and similar models have a long way yet to be developed, they are beginning to have an impact on the development of clinical practice.

  9. Current advances in radiotherapy of head and neck malignancies.

    PubMed

    Roopashri, G; Baig, Muqeet

    2013-12-01

    Necessity is the mother of all inventions. This is also true in case of cancer therapy. With increasing incidence of head and neck malignancies, remarkable developments have been made towards cancer development and treatment which continues to be a major challenge. Approximately fifty percent of all cancer patients receive radiotherapy which contributes towards forty percent of curative treatment for cancer. New developments in radiation oncology have helped to improve outlook for patients and find more effective treatment. With the advent of new technologies, radiotherapy seems to be promising in patients with head and neck malignancies these advancements include Altered fractionation, Three-dimensional conformal radiotherapy, Intensity-modulated radiotherapy, Image Guided Radiotherapy, Stereotactic radiation, Charged-particle radiotherapy, and Intraoperative radiotherapy. How to cite this article: Roopashri G, Baig M. Current advances in radiotherapy of head and neck malignancies. J Int Oral Health 2013; 5(6):119-23 . PMID:24453456

  10. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  11. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  12. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  13. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. PMID:24011600

  14. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  15. Respiration gated radiotherapy treatment: a technical study

    NASA Astrophysics Data System (ADS)

    Kubo, Hideo D.; Hill, Bruce C.

    1996-01-01

    In order to optimize external-beam conformal radiotherapy, patient movement during treatment must be minimized. For treatment on the upper torso, the target organs are known to move substantially due to patient respiration. This paper deals with the technical aspects of gating the radiotherapy beam synchronously with respiration: the optimal respiration monitoring system, measurements of organ displacement and linear accelerator gating. Several respiration sensors including a thermistor, a thermocouple, a strain gauge and a pneumotachograph were examined to find the optimal sensor. The magnitude of breast, chest wall and lung motion were determined using playback of fluoroscopic x-ray images recorded on a VCR during routine radiotherapy simulation. Total dose, beam symmetry and beam uniformity were examined to determine any effects on the Varian 2100C linear accelerator due to gating.

  16. Differences in breast tissue oxygenation following radiotherapy.

    PubMed

    Dornfeld, Ken; Gessert, Charles E; Renier, Colleen M; McNaney, David D; Urias, Rodolfo E; Knowles, Denise M; Beauduy, Jean L; Widell, Sherry L; McDonald, Bonita L

    2011-08-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n=16) had an average oxygenation level of 64.8 ± 19.9mmHg in the irradiated breast and an average of 72.3 ± 18.1mmHg (p=0.018) at the corresponding location in the control breast. Patients with diabetes (n=4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy. PMID:21356563

  17. Rationale for intraoperative radiotherapy in glioblastoma.

    PubMed

    Giordano, Frank A; Wenz, Frederik; Petrecca, Kevin

    2016-09-01

    Glioblastoma is the most common and aggressive adult primary brain cancer. Despite multimodal therapy, it is associated with a survival of less than two years. Greater than 85% of recurrences occur within the original area of surgery and radiotherapy, suggesting a potential for improved local treatments. In addition to cancer cell invasion beyond surgical margins, a plethora of postinjury pro-proliferative stimuli are released from local healing brain, which both protect and nourish remaining cancer cells. This review compiles preclinical and clinical evidence for a dedicated treatment of both residual cancer cells and regional microenvironment using intraoperative radiotherapy (IORT). PMID:26824195

  18. Subacute Cutaneous Lupus Erythematosus Triggered by Radiotherapy

    PubMed Central

    Kolm, I.; Pawlik, E.; Eggmann, N.; Kamarachev, J.; Kerl, K.; French, L.E.; Hofbauer, G.F.L.

    2013-01-01

    Background The origin of collagen autoimmune diseases is not fully understood. Some studies postulate a mechanism of molecular mimicry or heterologous immunity following viral infections triggering autoimmunity. Apart from infections, other exogenous factors such as visible light or X-rays have been reported to incite autoimmunity. Case Report We report a case of histologically and serologically confirmed subacute lupus erythematosus (SCLE) following radiotherapy for breast cancer. Discussion The close temporal and spatial correlation between radiotherapy and onset of SCLE in this patient suggests that an autoimmune reaction may have been triggered locally by functionally altering the immune system and breaking self-tolerance. PMID:24019776

  19. Remote delayed recurrence of craniopharyngioma after radiotherapy.

    PubMed

    Balasubramaniam, Chidambaram; Mohan, Santosh Rao; Subramaniam, K

    2015-01-01

    The aim was to present a rare case of recurrent craniopharyngioma remote from the primary site of origin. A young girl was operated for sellar region craniopharyngioma. For a small residual tumor, she underwent radiotherapy. Follow-up imaging did not reveal any residual tumor or recurrence. Surveillance magnetic resonance imaging after 5 years revealed a recurrence in the right Sylvian fissure. This tumor was totally excised. Recurrence of craniopharyngioma is well-known, but recurrence at a site remote from the original site after radiotherapy is extremely rare. One such case is being presented. PMID:25878741

  20. Remote delayed recurrence of craniopharyngioma after radiotherapy

    PubMed Central

    Balasubramaniam, Chidambaram; Mohan, Santosh Rao; Subramaniam, K.

    2015-01-01

    The aim was to present a rare case of recurrent craniopharyngioma remote from the primary site of origin. A young girl was operated for sellar region craniopharyngioma. For a small residual tumor, she underwent radiotherapy. Follow-up imaging did not reveal any residual tumor or recurrence. Surveillance magnetic resonance imaging after 5 years revealed a recurrence in the right Sylvian fissure. This tumor was totally excised. Recurrence of craniopharyngioma is well-known, but recurrence at a site remote from the original site after radiotherapy is extremely rare. One such case is being presented. PMID:25878741

  1. Time to demand dosimetry for molecular radiotherapy?

    PubMed Central

    Guy, M J

    2015-01-01

    Molecular radiotherapy (MRT) has been used clinically for around 75 years. Despite this long history of clinical use, there is no established dosimetry practice for calculating the absorbed dose delivered to tumour targets or to organs at risk. As a result, treatment protocols have often evolved based on experience with relatively small numbers of patients, each receiving a similar administered activity but, potentially, widely varying doses. This is in stark contrast to modern external-beam radiotherapy practice. This commentary describes some of the barriers to MRT dosimetry and gives some opinions on the way forward. PMID:25571916

  2. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  3. [Current situation and future prospects of radiotherapy for malignant gliomas].

    PubMed

    Terahara, Atsuro

    2013-10-01

    Prognosis of malignant gliomas remains poor, although adjuvant radiotherapy increases survival time. To improve treatment outcomes, high-precision radiotherapy techniques such as three-dimensional conformal radiotherapy, stereotactic irradiation, intensity modulated radiotherapy, and charged particle radiotherapy have been developed for dose distribution optimization and dose escalation. Improvements in clinical outcomes with these new treatment strategies have been reported; however, the efficacy of these treatment strategies has not yet been verified in randomized trials. Further development of radiation delivery techniques, including boron neutron capture therapy, and ways of achieving more adequate target volume delineation using modern multimodality imaging technology are currently being intensively investigated to further improve patient outcomes. PMID:24105051

  4. Evaluation of the peripheral dose in stereotactic radiotherapy and radiosurgery treatments1

    PubMed Central

    Di Betta, Erika; Fariselli, Laura; Bergantin, Achille; Locatelli, Federica; Del Vecchio, Antonella; Broggi, Sara; Fumagalli, Maria Luisa

    2010-01-01

    Purpose: The main purpose of this work was to compare peripheral doses absorbed during stereotactic treatment of a brain lesion delivered using different devices. These data were used to estimate the risk of stochastic effects. Methods: Treatment plans were created for an anthropomorphic phantom and delivered using a LINAC with stereotactic cones and a multileaf collimator, a CyberKnife® system (before and after a supplemental shielding was applied), a TomoTherapy® system, and a Gamma Knife® unit. For each treatment, 5 Gy were prescribed to the target. Measurements were performed with thermoluminescent dosimeters inserted roughly in the position of the thyroid, sternum, upper lung, lower lung, and gonads. Results: Mean doses ranged from of 4.1 (Gamma Knife) to 62.8 mGy (LINAC with cones) in the thyroid, from 2.3 (TomoTherapy) to 30 mGy (preshielding CyberKnife) in the sternum, from 1.7 (TomoTherapy) to 20 mGy (preshielding CyberKnife) in the upper part of the lungs, from 0.98 (Gamma Knife) to 15 mGy (preshielding CyberKnife) in the lower part of the lungs, and between 0.3 (Gamma Knife) and 10 mGy (preshielding CyberKnife) in the gonads. Conclusions: The peripheral dose absorbed in the sites of interest with a 5 Gy fraction is low. Although the risk of adverse side effects calculated for 20 Gy delivered in 5 Gy fractions is negligible, in the interest of optimum patient radioprotection, further studies are needed to determine the weight of each contributor to the peripheral dose. PMID:20831066

  5. Targeted radiotherapy of bone malignancies.

    PubMed

    Jansen, David R; Krijger, Gerard C; Kolar, Zvonimir I; Zonnenberg, Bernard A; Zeevaart, Jan Rijn

    2010-12-01

    and (68)Ga. The current status in the development and application of internal radiotherapy for the palliative treatment of bone pain will be discussed, summarizing the progress made and challenges encountered in the process to realizing an effective drug candidate. PMID:21034411

  6. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  7. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  8. Radiotherapy for breast cancer and erythrokeratodermia variabilis.

    PubMed

    Pernin, V; Kirova, Y; Campana, F

    2014-12-01

    We report the first case report indicating that locoregional radiotherapy provide acceptable early and late toxicities in patient with erythrokeratodermia variabilis after 2 years of follow-up. However, preclinical data showing radiation-induced tumor genesis in case of deficiency of some connexins point out the need of a careful surveillance of these patients. PMID:25306447

  9. The Role of Radiotherapy in Acromegaly.

    PubMed

    Hannon, Mark J; Barkan, Ariel L; Drake, William M

    2016-01-01

    Radiotherapy has, historically, played a central role in the management of acromegaly, and the last 30 years have seen substantial improvements in the technology used in the delivery of radiation therapy. More recently, the introduction of highly targeted radiotherapy, or 'radiosurgery', has further increased the therapeutic options available in the management of secretory pituitary tumors. Despite these developments, improvements in primary surgical outcomes, an increase in the range and effectiveness of medical therapy options, and long-term safety concerns have combined to dictate that, although still deployed in selected cases, the use of radiotherapy in the management of acromegaly has declined steadily over the past 2 decades. In this article, we review some of the main studies that have documented the efficacy of pituitary radiotherapy on growth hormone hypersecretion and summarize the data around its potential deleterious effects, including hypopituitarism, cranial nerve damage, and the development of radiation-related intracerebral tumors. We also give practical recommendations to guide its future use in patients with acromegaly, generally, as a third-line intervention after neurosurgical intervention in combination with various medical therapy options. PMID:26088716

  10. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  11. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  12. Evidence-based estimates of the demand for radiotherapy.

    PubMed

    Delaney, G P; Barton, M B

    2015-02-01

    There are different methods that may be used to estimate the future demand for radiotherapy services in a population ranging from expert opinion through to complex modelling techniques. This manuscript describes the use of evidence-based treatment guidelines to determine indications for radiotherapy. It also uses epidemiological data to estimate the proportion of the population who have attributes that suggest a benefit from radiotherapy in order to calculate the overall proportion of a population of new cases of cancer who appropriately could be recommended to undergo radiotherapy. Evidence-based methods are transparent and adaptable to different populations but require extensive information about the indications for radiotherapy and the proportion of cancer cases with those indications in the population. In 2003 this method produced an estimate that 52.4% of patients with a registered cancer-type had an indication for radiotherapy. The model was updated in 2012 because of changes in cancer incidence, stage distributions and indications for radiotherapy. The new estimate of the optimal radiotherapy utilisation rate was 48.3%. The decrease was due to changes in the relative frequency of cancer types and some changes in indications for radiotherapy. Actual rates of radiotherapy utilisation in most populations still fall well below this benchmark. PMID:25455408

  13. Technical advances in external radiotherapy for hepatocellular carcinoma.

    PubMed

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  14. Neutrons and charged particles in radiotherapy. Oncology overview

    SciTech Connect

    Not Available

    1984-10-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Neutrons and charged particles in radiotherapy of head and neck cancer; Neutrons and charged particles in radiotherapy of central nervous system cancer; Neutrons and charged particles in radiotherapy of digestive cancer; Neutrons and charged particles in radiotherapy of gynecologic cancer; Neutrons and charged particles in radiotherapy of musculoskeletal cancer; Neutrons and charged particles in radiotherapy of other organ site cancer; Neutrons and charged particles in radiotherapy of multiple site cancer; Neutrons and charged particles in radiotherapy--relative biological effectiveness; Neutrons and charged particles in radiotherapy--instrumentation and technology; Neutrons and charged particles in radiotherapy--reviews.

  15. Adjuvant Radiotherapy with Three-Dimensional Conformal Radiotherapy of Lacrimal Gland Adenoid Cystic Carcinoma

    PubMed Central

    Roshan, Vikas; Mallick, Supriya; Chander, Subhash; Sen, Seema; Chawla, Bhavna

    2015-01-01

    Background & Aim Adenoid cystic carcinoma (ACC) of lacrimal gland is a rare tumour with aggressive behaviour. There is sparse data to address optimum therapy for such tumours. So, the present study was aimed at evaluating the role of adjuvant three dimensional conformal radiotherapy (3D-CRT) in cases of incomplete (R1) resection along with review of literature pertaining to management of lacrimal adenoid cystic carcinoma Materials and Methods We retrospectively reviewed the demographic and treatment data of 10 biopsy proven ACC of lacrimal gland patients, treated from December 2006 to June 2013. They were treated with radiotherapy following surgical resection. Eight patients underwent gross total excision of the tumour mass (enbloc excision) followed by conformal radiotherapy to a dose of 60 Gray/30fractions/ 6 weeks. Two patients with advanced disease were treated with palliative radiotherapy after biopsy. Results The median age was 32 years. There were equal numbers of male and female patients. The median duration of symptoms was 7 months. At a median follow up of 21 months, eight patients had no evidence of disease and had complete tumour response, two patients worsened, and one of the two had systemic failure with bone metastasis. Conclusion Despite a small sample size and short follow, enbloc surgical excision with adjuvant radiotherapy is well tolerated and shows good control in ACC of lacrimal gland. PMID:26557600

  16. Review of photon and proton radiotherapy for skull base tumours.

    PubMed

    Fossati, Piero; Vavassori, Andrea; Deantonio, Letizia; Ferrara, Eleonora; Krengli, Marco; Orecchia, Roberto

    2016-01-01

    An extremely large variety of benign and malignant tumours occur at skull base; these tumour lesions are in the proximity to structures deputed to relevant physiologic functions, limiting extensive surgical approaches to this body district. Most recent progresses of surgery and radiotherapy have allowed to improve local control with acceptable rates of side effects. Various photon radiotherapy techniques are employed, including 3-dimensional conformal radiotherapy, intensity modulated radiotherapy (IMRT), stereotactic radiotherapy (SRT) and brachytherapy that is manly limited to the treatment of primary or recurrent nasopharyngeal carcinoma. Proton beam radiotherapy is also extensively used thanks to its physical characteristics. Our review, focusing in particular on meningioma, chordoma, and chondrosarcoma, suggests that proton therapy plays a major role in the treatment of malignant tumours whereas photon therapy still plays a relevant role in the treatment of benign tumour lesions. PMID:27330419

  17. [How to maximize skin care during radiotherapy?].

    PubMed

    Fromantin, I; Lesport, G; Le Mée, M

    2015-10-01

    No consensual guidelines exist regarding the management of early effects of radiotherapy. But preventive and curative care strategies could be adapted in the aim to delay erythema, limit complications and improve patients' comfort. Prevention involves encouraging patients to take care of their skin, avoid moisture, frictions, sun exposition and dry soap. When these rules seem insufficient, products (dressings, solution, or cream) could be prescribed, according to the individual risk of each patient. Preventive measures are accentuated when radiodermatitis appears and/or topics indicated for wound healing could be applied. Care (education, dressing, observation) needs a multidisciplinary approach. Improvements of radiotherapy treatments (methods, techniques) have been the most effective evolution on radiodermatitis. PMID:26344433

  18. Stereotactic body radiotherapy for prostate cancer.

    PubMed

    Henderson, D R; Tree, A C; van As, N J

    2015-05-01

    The use of stereotactic body radiotherapy (SBRT) for localised prostate cancer is now supported by a substantial body of non-randomised data, with medium-term outcomes consistent with current standard radiotherapy. The ability to deliver profoundly hypofractionated treatment, combined with the relatively low α/β ratio of prostate cancer, may result in a more favourable therapeutic ratio, presenting an opportunity for isotoxic dose escalation. Furthermore, as treatment can be given in five attendances, SBRT has the potential both to reduce costs and improve patient quality of life. However, in a treatment landscape with many competing options of broadly similar efficacy, randomised trials are essential to define the relative benefits of this approach. SBRT also has an emerging application in oligometastatic prostate cancer, with promising early outcomes for delaying disease progression and deferring the need for androgen deprivation therapy. PMID:25707911

  19. Complications of surgery for radiotherapy skin damage

    SciTech Connect

    Rudolph, R.

    1982-08-01

    Complications of modern surgery for radiotherapy skin damage reviewed in 28 patients who had 42 operations. Thin split-thickness skin grafts for ulcer treatment had a 100 percent complication rate, defined as the need for further surgery. Local flaps, whether delayed or not, also had a high rate of complications. Myocutaneous flaps for ulcers had a 43 percent complication rate, with viable flaps lifting off radiated wound beds. Only myocutaneous flaps for breast reconstruction and omental flaps with skin grafts and Marlex mesh had no complications. The deeper tissue penetration of modern radiotherapy techniques may make skin grafts and flaps less useful. In reconstruction of radiation ulcers, omental flaps and myocutaneous flaps are especially useful, particularly if the radiation damage can be fully excised. The pull of gravity appears detrimental to myocutaneous flap healing and, if possible, should be avoided by flap design.

  20. [Personalized medicine in radiotherapy: practitioners' perception].

    PubMed

    Britel, Manon; Foray, Nicolas; Préau, Marie

    2015-01-01

    This exploratory study was designed to investigate the representations of radiotherapists in relation to personalized medicine. On the basis of current?>' available radiotherapy predictive tests, we tried to understand how these tests could be used in routine radiotherapy practice and in what way this possible change of practices could affect the role of radiotherapists in treatment protocols. In the absence of any available data allowing the construction of a quantitative tool, qualitative data were recorded by individual interviews with radiotherapists. Based on textual data analysis, a second national quantitative phase was conducted using a self-administered questionnaire. Crossover analysis of the two datasets highlighted the interest of radiotherapists in personalized medicine and the use of predictive tests, while indicating certain limitations and concerns in relation to ethical issues related to personalized medicine in oncology and the physician's position. PMID:26752033

  1. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  2. [Difficult situations in radiotherapy: agitated adult patients].

    PubMed

    Noël, S; Noël, G

    2013-10-01

    The causes of agitation in adult patients are numerous. Agitation may cause difficulty or impossibility to initiate the radiotherapy technique but also can lead to accidents harmful to patients. However, the decision to not irradiate agitated patients may lead to a loss of curability chance or chance to palliate symptoms. Before taking such a decision, thinking about the possibilities available to calm the patient should be undertaken with the patient and the referring practitioners to attempt to make this therapy if it is considered major in the management of cancer. In all cases, current adaptations of radiotherapy should be used to deliver an effective radiation of a suitable time and safely. It is notable that the medical literature is extremely rare on this subject. PMID:23932645

  3. Radiation transport in a radiotherapy room

    SciTech Connect

    Agosteo, S.; Para, A.F.; Maggioni, B.

    1995-01-01

    The photoneutron dose equivalent in a linac radio-therapy room and its entrance maze was investigated by means of Monte Carlo simulations under different conditions. Particularly, the effect of neutron absorbers and moderator layers placed on the maze walls was considered. The contribution of prompt gamma rays emitted in absorption reactions of thermal neutrons was also taken into account. The simulation results are compared with some experimental measurements in the therapy room and in the maze. 13 refs., 5 figs., 5 tabs.

  4. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  5. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  6. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract. PMID:11511499

  7. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  8. Whole body radiotherapy: A TBI-guideline

    PubMed Central

    Quast, Ulrich

    2006-01-01

    Total Body Irradiation (TBI) is one main component in the interdisciplinary treatment of widely disseminated malignancies predominantly of haematopoietic diseases. Combined with intensive chemotherapy, TBI enables myeloablative high dose therapy and immuno-ablative conditioning treatment prior to subsequent transplantation of haematopoietic stem cells: bone marrow stem cells or peripheral blood progenitor stem cells. Jointly prepared by DEGRO and DGMP, the German Society of Radio-Oncology, and the German Association of Medical Physicists, this DEGRO/DGMP-Leitlinie Ganzkoerper-Strahlenbehandlung - DEGRO/DGMP Guideline Whole Body Radiotherapy, summarises the concepts, principles, facts and common methods of Total Body Irradiation and poses a set of recommendations for reliable and successful application of high dose large-field radiotherapy as essential part of this interdisciplinary, multi-modality treatment concept. The guideline is geared towards radio-oncologists, medical physicists, haematooncolo-gists, and all contributing to Whole Body Radiotherapy. To guide centres intending to start or actualise TBI criteria are included. The relevant treatment parameters are defined and a sample of a form is given for reporting TBI to international registries. PMID:21206634

  9. Contemporary Breast Radiotherapy and Cardiac Toxicity.

    PubMed

    Yeboa, Debra Nana; Evans, Suzanne Buckley

    2016-01-01

    Long-term cardiac effects are an important component of survivorship after breast radiotherapy. The pathophysiology of cardiotoxicity, history of breast radiotherapy, current methods of cardiac avoidance, modern outcomes, context of historical outcomes, quantifying cardiac effects, and future directions are reviewed in this article. Radiation-induced oxidative stress induces proinflammatory cytokines and is a process that potentiates late effects of fibrosis and intimal proliferation in endothelial vasculature. Breast radiation therapy has changed substantially in recent decades. Several modern technologies exist to improve cardiac avoidance such as deep inspiration breath hold, gating, accelerated partial breast irradiation, and use of modern 3-dimensional planning. Modern outcomes may vary notably from historical long-term cardiac outcomes given the differences in cardiac dose with modern techniques. Methods of quantifying radiation-related cardiotoxicity that correlate with future cardiac risks are needed with current data exploring techniques such as measuring computed tomography coronary artery calcium score, single-photon emission computed tomography imaging, and biomarkers. Placing historical data, dosimetric correlations, and relative cardiac risk in context are key when weighing the benefits of radiotherapy in breast cancer control and survival. Estimating present day cardiac risk in the modern treatment era includes challenges in length of follow-up and the use of confounding cardiotoxic agents such as evolving systemic chemotherapy and targeted therapies. Future directions in both multidisciplinary management and advancing technology in radiation oncology may provide further improvements in patient risk reduction and breast cancer survivorship. PMID:26617212

  10. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  11. Personalized radiotherapy: concepts, biomarkers and trial design.

    PubMed

    Ree, A H; Redalen, K R

    2015-07-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  12. Multimedia educational services in stereotactic radiotherapy.

    PubMed

    Bazioglou, M; Theodorou, K; Kappas, C

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is one of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding high costs of computer-based training systems and database development). PMID:10394345

  13. Personalized radiotherapy: concepts, biomarkers and trial design

    PubMed Central

    Redalen, K R

    2015-01-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points—given the imperative development of open-source data repositories to allow investigators the access to the complex data sets—will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  14. Anal Cancer: An Examination of Radiotherapy Strategies

    SciTech Connect

    Glynne-Jones, Rob; Lim, Faye

    2011-04-01

    The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are no meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.

  15. New Strategies in Stereotactic Radiotherapy for Oligometastases.

    PubMed

    Palma, David A; Louie, Alexander V; Rodrigues, George B

    2015-12-01

    Patients with metastatic solid tumors are usually treated with palliative intent. Systemic therapy and palliative radiation are often used, with the goals of prolonging survival or maintaining quality of life, but not of cure. In contrast to this paradigm, the theory of oligometastasis suggests that some patients who have a small number of metastases may be amenable to cure if all lesions can be eradicated. Aggressive treatment of patients with oligometastases, using either surgery or radiotherapy, has become more common in the past decade, yet in most situations, no randomized evidence is available to support such an approach. Stereotactic ablative radiotherapy (SABR) is a novel treatment for oligometastases, delivering large doses of radiotherapy in only a few treatments, with excellent rates of local control, and appears to be an excellent noninvasive alternative to surgical resection of metastases. This article reviews recent biologic and clinical data that support the existence of the oligometastatic state and discusses gaps in this evidence base. The emerging role for SABR in the management of this challenging patient population is discussed with a focus on ongoing clinical trials in an attempt to improve overall survival, delay progression, or induce immunologic anticancer effects through the abscopal effect. PMID:26626571

  16. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  17. Dynamic targeting image-guided radiotherapy

    SciTech Connect

    Huntzinger, Calvin; Munro, Peter; Johnson, Scott; Miettinen, Mika; Zankowski, Corey; Ahlstrom, Greg; Glettig, Reto; Filliberti, Reto; Kaissl, Wolfgang; Kamber, Martin; Amstutz, Martin; Bouchet, Lionel; Klebanov, Dan; Mostafavi, Hassan; Stark, Richard

    2006-07-01

    Volumetric imaging and planning for 3-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) have highlighted the need to the oncology community to better understand the geometric uncertainties inherent in the radiotherapy delivery process, including setup error (interfraction) as well as organ motion during treatment (intrafraction). This has ushered in the development of emerging technologies and clinical processes, collectively referred to as image-guided radiotherapy (IGRT). The goal of IGRT is to provide the tools needed to manage both inter- and intrafraction motion to improve the accuracy of treatment delivery. Like IMRT, IGRT is a process involving all steps in the radiotherapy treatment process, including patient immobilization, computed tomogaphy (CT) simulation, treatment planning, plan verification, patient setup verification and correction, delivery, and quality assurance. The technology and capability of the Dynamic Targeting{sup TM} IGRT system developed by Varian Medical Systems is presented. The core of this system is a Clinac (registered) or Trilogy{sup TM} accelerator equipped with a gantry-mounted imaging system known as the On-Board Imager{sup TM} (OBI). This includes a kilovoltage (kV) x-ray source, an amorphous silicon kV digital image detector, and 2 robotic arms that independently position the kV source and imager orthogonal to the treatment beam. A similar robotic arm positions the PortalVision{sup TM} megavoltage (MV) portal digital image detector, allowing both to be used in concert. The system is designed to support a variety of imaging modalities. The following applications and how they fit in the overall clinical process are described: kV and MV planar radiographic imaging for patient repositioning, kV volumetric cone beam CT imaging for patient repositioning, and kV planar fluoroscopic imaging for gating verification. Achieving image-guided motion management throughout the radiation oncology process

  18. Conformal Radiotherapy Facilitates the Delivery of Concurrent Chemotherapy and Radiotherapy: A Case of Primitive Neuroectodermal Tumour of the Chest Wall

    PubMed Central

    Twyman, N.; Earl, H. M.; Burnet, N. G.

    2000-01-01

    We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume (PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field that ‘conforms’ to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT. PMID:18521292

  19. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    SciTech Connect

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash; Yu, Hsiang-Hsuan Michael

    2011-09-01

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysis included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions: Elderly

  20. The launch of the first UK charity devoted to radiotherapy: ACORRN — Action Radiotherapy

    PubMed Central

    Price, P

    2011-01-01

    The Academic Clinical Oncology and Radiobiology Research Network (ACORRN) was set up to support research and development in radiotherapy in the UK. This innovative networking initiative was launched initially by the National Cancer Research Institute in 2005 to harness the power of the radiation research base in the UK. Through an interactive website a co-ordinated network of multidisciplinary radiation researchers has been established. The network has developed to a stage where it can be self-g0unding and dedicated to improving radiotherapy for cancer. A patient interactive section and extended support for service development will ensure that anyone treated in the UK will have immediate access to the best knowledge in the country. This provides a solution for cost-effectiveness and future improvement of cancer care and is seen as a new model to support healthcare development and delivery. The charity ACORRN — Action Radiotherapy aims to support radiotherapy research and development and was launched in the House of Lords in July 2010. PMID:21172963

  1. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  2. Children Undergoing Radiotherapy: Swedish Parents' Experiences and Suggestions for Improvement.

    PubMed

    Ångström-Brännström, Charlotte; Engvall, Gunn; Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80-90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child's and the parent's view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents' experience when their child undergoes radiotherapy treatment, and to report parents' suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2-16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people's lives upside down, affecting the entire family. Further, the parents experience the child's suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process. PMID:26509449

  3. A rare case of unusual gingival enlargement post radiotherapy

    PubMed Central

    Singh, Vishal; Bhat, G. Subraya; Bhat, K. Mahalinga

    2011-01-01

    Oral changes following radiotherapy are not uncommon. Oral mucositis, alteration in salivary gland function, radiation caries, and gingival changes have all been reported following radiotherapy and chemotherapy. The gingival changes seen after radiotherapy may be unusual and often cause diagnostic dilemma. Metastasis to the gingiva has also to be ruled out in these cases. A 30-year-old female patient presented with enlargement of the gingiva of 6 months’ duration and lower lip swelling of 7 months’ duration. She was a known case of carcinoma of nasopharynx and had received radiotherapy and chemotherapy. Based on the history, the clinical appearance of the gingiva, and the other oral changes we considered both post-radiotherapy gingival enlargement and secondary metastasis to gingiva as possibilities. An incisional biopsy was performed (internal bevel gingivectomy). The histopathological report did not reveal any metastatic changes. Thus, we diagnosed post-radiotherapy gingival enlargement. For the multiple carious teeth, extraction and root canal treatment was carried out as necessary. The patient was referred to the department of Oral and Maxillofacial Surgery for management of swelling of the lips, which was diagnosed as lymphedema of the lip. Gingival enlargement is rare post radiotherapy. Such nonplaque-associated gingival enlargement in a patient who has undergone radiotherapy should be subjected to biopsy and histopathological examination to distinguish between secondary metastasis and post-radiation changes. PMID:22028519

  4. Optimal radiotherapy utilisation rate in developing countries: An IAEA study.

    PubMed

    Rosenblatt, Eduardo; Barton, Michael; Mackillop, William; Fidarova, Elena; Cordero, Lisbeth; Yarney, Joel; Lim, Gerard; Abad, Anthony; Cernea, Valentin; Stojanovic-Rundic, Suzana; Strojan, Primoz; Kobachi, Lotfi; Quarneti, Aldo

    2015-07-01

    Optimal radiotherapy utilisation rate (RTU) is the proportion of all cancer cases that should receive radiotherapy. Optimal RTU was estimated for 9 Middle Income Countries as part of a larger IAEA project to better understand RTU and stage distribution. PMID:26164776

  5. Children Undergoing Radiotherapy: Swedish Parents’ Experiences and Suggestions for Improvement

    PubMed Central

    Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80–90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child’s and the parent’s view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents’ experience when their child undergoes radiotherapy treatment, and to report parents’ suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2–16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people’s lives upside down, affecting the entire family. Further, the parents experience the child’s suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process. PMID:26509449

  6. Leukemia risk following radiotherapy for breast cancer

    SciTech Connect

    Curtis, R.E.; Boice, J.D. Jr.; Stovall, M.; Flannery, J.T.; Moloney, W.C.

    1989-01-01

    To evaluate further the relationship between high-dose radiotherapy and leukemia incidence, a nested case-control study was conducted in a cohort of 22,753 women who were 18-month survivors of invasive breast cancer diagnosed from 1935 to 1972. Women treated for breast cancer after 1973 were excluded to minimize the possible confounding influence of treatment with chemotherapeutic agents. The cases had histologically confirmed leukemia reported to the Connecticut Tumor Registry (CTR) between 1935 and 1984. A total of 48 cases of leukemia following breast cancer were included in the study. Two controls were individually matched to each leukemia case on the basis of age, calendar year when diagnosed with breast cancer, and survival time. Leukemia diagnoses were verified by one hematologist. Radiation dose to active bone marrow was estimated by medical physicists on the basis of the original radiotherapy records of study subjects. Local radiation doses to each of the 16 bone marrow components for each patient were reconstructed; the dose averaged over the entire body was 530 rad (5.3 Gy). Based on this dosage and assuming a linear relationship between dose and affect, a relative risk (RR) in excess of 10 would have been expected. However, there was little evidence that radiotherapy increased the overall risk of leukemia (RR = 1.16; 90% confidence interval (CI), 0.6 to 2.1). The risk of chronic lymphocytic leukemia, one of the few malignancies without evidence for an association with ionizing radiation, was not significantly increased (RR = 1.8; n = 10); nor was the risk for all other forms of leukemia (RR = 1.0; n = 38). There was no indication that risk varied over categories of radiation dose.

  7. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. PMID:25848119

  8. Hypofractionated Radiotherapy for Favorable Risk Prostate Cancer

    SciTech Connect

    Rene, Nicholas; Faria, Sergio; Cury, Fabio; David, Marc; Duclos, Marie; Shenouda, George; Souhami, Luis

    2010-07-01

    Purpose: Since the recognition that prostate cancer probably has a low {alpha}/{beta} ratio, hypofractionated radiotherapy has become an attractive treatment option for localized prostate cancer. However, there is little experience with the use of hypofractionation delivering a high biologically equivalent dose. We report our experience with high-dose hypofractionated radiotherapy. Material and Methods: A total of 129 patients with favorable risk prostate cancer were treated with three-dimensional conformal radiotherapy treatment plans to the dose of 66 Gy in 22 fractions, prescribed at the isocenter. Planning target volume consisted of the prostate plus a uniform 7-mm margin, including the rectal margin. No patient received hormonal therapy. Toxicity was prospectively graded by the Common Toxicity Criteria version3. Biochemical relapse was defined as postradiotherapy nadir prostate-specific antigen + 2 ng/mL. Results: With a median follow-up of 51 months, the 5-year actuarial biochemical control rate is 98%. The only 3 cases with biochemical failure did not have a clinical local relapse. More than 50% of patients did not develop acute toxicity. For late toxicity, the worst crude rate of Grade {>=}2 genitourinary (GU) and gastrointestinal (GI) toxicity seen at any time during follow-up were 32% and 25%, respectively. There was no Grade 4 or 5 toxicity. At the last follow-up, persistent Grade {>=}2 late GU and GI toxicity were 2% and 1.5%, respectively. Conclusions: This hypofractionated regimen provides excellent biochemical control in favorable risk prostate cancer with an acceptable rate of late toxicity. Further studies exploring this hypofractionation regimen are warranted.

  9. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  10. Understanding Radiotherapy-Induced Second Cancers

    NASA Astrophysics Data System (ADS)

    Brenner, David

    2007-03-01

    There is increasing concern regarding radiation-related second-cancer risks in long-term radiotherapy survivors, and a corresponding need to be able to predict cancer risks at high radiation doses. While cancer risks at moderately low radiation doses are reasonably understood from A-bomb survivor studies, there is much more uncertainty at the high doses used in radiotherapy. It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However, most recent studies of radiation-induced second cancers in the lung and breast, covering a very wide range of doses, contradict this assumption. A likely resolution of this disagreement comes from considering cellular repopulation during and after radiation exposure. Repopulation / proliferation with a significant number radiation-induced pre-malignant cells, tends to counteract the effect of cell killing, and keeps the induced cancer risks higher at high doses. We describe and apply a biologically based, minimally parameterized model of dose-dependent cancer risks, incorporating carcinogenic effects, cell killing and, additionally, proliferation / repopulation effects. The situation is somewhat different for radiation-induced leukemia, as repopulation via the blood stream tends to be with cells that originated father away from the treatment volume than is the case for solid second cancers, thus containing a smaller proportion of radiation-damaged cells. The model predictions agree well with recent data on second cancer risks, both for radiation-induced solid cancers and for radiation-induced leukemias. Incorporating repopulation effects provides both a mechanistic understanding of cancer risks at high doses, as well as providing a practical methodology for predicting, and therefore potentially minimizing, cancer risks in organs exposed to high radiation doses during radiotherapy.

  11. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  12. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  13. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  14. Image-Guided Radiotherapy and -Brachytherapy for Cervical Cancer

    PubMed Central

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  15. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    PubMed

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  16. Oral mucositis. A complication of radiotherapy

    SciTech Connect

    Rider, C.A. )

    1990-11-01

    Oral mucositis is a complication of head and neck radiotherapy. It is understood what causes the inflammation and what biological tissue changes occur, however, a definite cure for oral mucositis has not yet been found. Supportive treatments, analgesics, antimicrobials and anti-inflammatory agents have been prescribed, none of which has been a thorough measure of treatment. An effective cure for oral mucositis is still in the midst of scientific research. In the interim local palliative treatments will help to alleviate the patients', debilitating symptoms.

  17. Basic immunology of antibody targeted radiotherapy

    SciTech Connect

    Wong, Jeffrey Y.C. . E-mail: jwong@coh.org

    2006-10-01

    Antibody targeted radiotherapy brings an important new treatment modality to Radiation oncology clinic. Radiation dose to tumor and normal tissues are determined by a complex interplay of antibody, antigen, tumor, radionuclide, and host-related factors. A basic understanding of these immunologic and physiologic factors is important to optimally utilize this therapy in the clinic. Preclinical and clinical studies need to be continued to broaden our understanding and to develop new strategies to further improve the efficacy of this promising form of targeted therapy.

  18. Ichthyosiform scaling secondary to megavoltage radiotherapy

    SciTech Connect

    Ross, E.V. )

    1991-07-01

    Acquired ichthyosis is a rare dermatosis associated with a number of malignancies. Side effects seen on the skin secondary to megavoltage radiotherapy are uncommon but may include fine dry desquamation and tanning. The authors present a case of ichthyosiform scaling limited to the radiation fields in a patient treated for brain metastases of a primary small cell lung carcinoma. The reader is reminded that side effects of megavoltage treatment do occur on the skin. A brief review of these effects is included. 5 references.

  19. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy.

    PubMed

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D; Shrivastava, Shyam K; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  20. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  1. Cardiac Side-effects From Breast Cancer Radiotherapy.

    PubMed

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. PMID:26133462

  2. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  3. Cerebral aneurysms following radiotherapy for medulloblastoma

    SciTech Connect

    Benson, P.J.; Sung, J.H.

    1989-04-01

    Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebral arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.

  4. [Antalgic radiotherapy in lumbosacral carcinomatous neuropathies].

    PubMed

    Russi, E G; Gaeta, M; Pergolizzi, S; Settineri, N; Frosina, P; De Renzis, C

    1994-06-01

    Lumbosacral carcinomatous neuropathy (LCN) may be caused by infiltration or compression of the lumbosacral plexi and nerves from intrapelvic or paraaortic neoplasms. The authors submitted 23 patients complaining of LCN with CT documented intrapelvic or paraaortic tumors to palliative radiotherapy. Megavoltage external beam irradiation was administered using a 6-MV linear accelerator. Treatment field sizes ranged from 56 cm2 to 235 cm2 (mean: 150.54 cm2) and encompassed only the site where the disease involved the lumbosacral plexus or its branches. > or = 3 Gy/day fractions were used. Twenty-one of 22 assessable patients (95.4%) obtained LCN pain relief; 19 (86.3%) obtained complete LCN pain relief. The median time to pain progression (TPP) was 150 days (range: 39-510 days). The median survival was 165 days. Seven patients were LCN pain-free at death. Two patients are alive and LCN pain-free. The remaining 12 patients had recurrent LCN pain: four of them were reirradiated at the site of previous neuropathy and only two had partial relief again. The authors conclude that it is advisable to submit to palliative radiotherapy the inoperable disseminated and/or recurrent cancer patients complaining of LCN, to use large fractions not to occupy the extant time of their already short life-expectancy, and to design small fields to avoid acute side-effects. PMID:7518934

  5. Predicting toxicity in radiotherapy for prostate cancer.

    PubMed

    Landoni, Valeria; Fiorino, Claudio; Cozzarini, Cesare; Sanguineti, Giuseppe; Valdagni, Riccardo; Rancati, Tiziana

    2016-03-01

    This comprehensive review addresses most organs at risk involved in planning optimization for prostate cancer. It can be considered an update of a previous educational review that was published in 2009 (Fiorino et al., 2009). The literature was reviewed based on PubMed and MEDLINE database searches (from January 2009 up to September 2015), including papers in press; for each section/subsection, key title words were used and possibly combined with other more general key-words (such as radiotherapy, dose-volume effects, NTCP, DVH, and predictive model). Publications generally dealing with toxicity without any association with dose-volume effects or correlations with clinical risk factors were disregarded, being outside the aim of the review. A focus was on external beam radiotherapy, including post-prostatectomy, with conventional fractionation or moderate hypofractionation (<4Gy/fraction); extreme hypofractionation is the topic of another paper in this special issue. Gastrointestinal and urinary toxicity are the most investigated endpoints, with quantitative data published in the last 5years suggesting both a dose-response relationship and the existence of a number of clinical/patient related risk factors acting as dose-response modifiers. Some results on erectile dysfunction, bowel toxicity and hematological toxicity are also presented. PMID:27068274

  6. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  7. Cataractogenesis after Cobalt-60 eye plaque radiotherapy

    SciTech Connect

    Kleineidam, M.; Augsburger, J.J. ); Hernandez, C.; Glennon, P.; Brady, L.W. )

    1993-07-15

    This study was designed to estimate the actuarial incidence of typical postirradiation cataracts and to identify prognostic factors related to their development in melanoma-containing eyes treated by Cobalt-60 plaque radiotherapy. A special interest was the impact of calculated radiation dose and dose-rate to the lens. The authors evaluated the actuarial occurrence of post-irradiation cataract in 365 patients with primary posterior uveal melanoma treated by Cobalt-60 plaque radiotherapy between 1976 and 1986. Only 22% (S.E. = 4.6%) of the patients who received a total dose of 6 to 20 Gy at the center of the lens developed a visually significant cataract attributable to the radiation within 5 years after treatment. Using multivariate Cox proportional hazards modeling, the authors identified thickness of the tumor, location of the tumor's anterior margin relative to the equatorward and the ora serrata, and diameter of the eye plaque used as the best combination of covariables for predicting length of time until development of cataract. Surprisingly, the dose of radiation delivered to the lens, which was strongly correlated to all of these covariables, was not a significant predictive factor in multivariate analysis. The results suggest that success of efforts to decrease the occurrence rate of post-irradiation cataracts by better treatment planning might be limited in patients with posterior uveal melanoma. 21 refs., 2 figs., 5 tabs.

  8. Radiobiologic Modeling of Cytoprotection Effects in Radiotherapy

    SciTech Connect

    Plataniotis, George A. . E-mail: gplatan@med.uth.gr; Dale, Roger G.

    2007-05-01

    Purpose: To investigate the potential for mathematical modeling of the normal tissue-sparing effects of cytoprotective agents used in conjunction with radiotherapy and chemotherapy. Methods and Materials: The linear quadratic model was modified to include a 'cytoprotection factor,' in two alternative ways. The published results on the incidence of treatment-related oral mucositis in patients treated for head-and-neck carcinoma using radiotherapy alone or combined with chemotherapy were assessed against the model to determine the likely values of the cytoprotection factor required to confer a reasonable degree of cytoprotection. Results: In both of the model alternatives considered, a cytoprotection factor value of {<=}0.85 was required for a clinically detectable degree of cytoprotection to be realized. A cytoprotection factor value of 0.85 would mean that the radiation sensitivity coefficients would be effectively reduced by 15% on account of the action of the cytoprotector. Conclusion: The incorporation of a cytoprotection factor into an existing linear quadratic method would allow a quantitative assessment of cytoprotection and could be useful in the design of future clinical studies.

  9. A scintillating fiber dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  10. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  11. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally

  12. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone.

    PubMed

    Shahid, Saman

    2016-09-01

    We observed the outcomes of chemotherapy with radiotherapy (CR) or radiotherapy (RT) alone for cancer patients of larynx, breast, blood and brain origins through complete blood count (CBC). Following were more depressed in CR patients: mean corpuscular hemoglobin-MCH & lymphocytes-LYM, hematocrit, mean corpuscular hemoglobin concentration-MCHC, hemoglobin-HB and red blood cells-RBC. In RT patients, following were more depressed: LYM, MCH and MCHC. Overall, in all cancer patients, the lymphocytes were depressed 52%. There existed a significant difference between white blood cells and RBC in both CR and RT patients. A significant moderate negative correlation is found in HB with the dose range 30-78 (Gray) given to the CR cancer patients. More number of CBC parameters affected in patients treated with CR and RT; but in less percentage as compared to patients who treated with RT alone. The cancer patients suffered from anemia along with immune modulations from the treatments. PMID:27423975

  13. Radiotherapy for Graves' disease. The possible role of low-dose radiotherapy.

    PubMed

    Arenas, Meritxell; Sabater, Sebastià; Jiménez, Pedro Lara; Rovirosa, Àngels; Biete, Albert; Linares, Victoria; Belles, Montse; Panés, Julià

    2016-01-01

    Immunomodulatory effects of low-dose radiotherapy (LD-RT) have been used for the treatment of several benign diseases, including arthrodegenerative and inflammatory pathologies. Graves' disease is an autoimmune disease and radiotherapy (RT) is a therapeutic option for ocular complications. The dose recommended in the clinical practice is 20 Gy (2 Gy/day). We hypothesized that lower doses (<10 Gy total dose, <1 Gy/day) could results in higher efficacy if we achieved anti-inflammatory and immunomodulatory effects of LD-RT. We review current evidence on the effects of RT in the treatment of Graves' disease and the possible use of LD-RT treatment strategy. PMID:27601953

  14. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy

    PubMed Central

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-01-01

    Abstract The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0–III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8–2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  15. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy.

    PubMed

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-03-01

    The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0-III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8-2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  16. Optimisation in radiotherapy. II: Programmed and inversion optimisation algorithms.

    PubMed

    Ebert, M

    1997-12-01

    This is the second article in a three part examination of optimisation in radiotherapy. The previous article established the bases of optimisation in radiotherapy, and the formulation of the optimisation problem. This paper outlines several algorithms that have been used in radiotherapy, for searching for the best irradiation strategy within the full set of possible strategies. Two principle classes of algorithm are considered--those associated with mathematical programming which employ specific search techniques, linear programming-type searches or artificial intelligence--and those which seek to perform a numerical inversion of the optimisation problem, finishing with deterministic iterative inversion. PMID:9503694

  17. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  18. Blood lymphocyte subpopulations in breast cancer patients following radiotherapy.

    PubMed Central

    Petrini, B; Wasserman, J; Blomgren, H; Baral, E

    1977-01-01

    Both T and non-T lymphocytes decreased immediately following radiotherapy in breast cancer patients. The relative depletion of non-T lymphocytes, however, was more marked than that of T cells. 3 years later the number and the proportion of non-T lymphocytes was higher than immediately after radiotherapy, while T lymphocytes were still depressed. The proportion of cells with membrane-associated Ig was higher in patients 3 years following radiotherapy than in non-treated patients and healthy controls. There was no difference in the proportion of T and non-T lymphocytes between patients with and without metastases, respectively. PMID:330065

  19. Which Patients With Rectal Cancer Do Not Need Radiotherapy?

    PubMed

    Joye, Ines; Haustermans, Karin

    2016-07-01

    According to current guidelines, the standard treatment for locally advanced rectal cancer patients is preoperative (chemo)radiotherapy followed by total mesorectal excision surgery and adjuvant chemotherapy. Improvements in surgical techniques, imaging modalities, chemotherapy regimens, and radiotherapy delivery have reduced local recurrence rates to less than 10%. The current challenge in rectal cancer treatment lies in the prevention of distant metastases, which still occur in more than 25% of the patients. The decrease in local recurrence rates, the need for more effective systemic treatments, and the increased awareness of treatment-induced toxicity raise the question as to whether a more selective use of radiotherapy is advocated. PMID:27238471

  20. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment.

    PubMed

    Zhang, Ai-Wei; Guo, Wei-Hua; Qi, Ya-Fei; Wang, Jian-Zhen; Ma, Xiang-Xing; Yu, De-Xin

    2016-12-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect. PMID:27255899

  1. Radiotherapy cost-calculation and its impact on capacity planning.

    PubMed

    Lievens, Yolande; Slotman, Berend Jan

    2003-08-01

    The rapid rise in health care expenses has resulted in an increased interest in the cost of treatments from a cost-effectiveness point of view for management purposes and in a reimbursement setting. The economics of radiotherapy within the global context of health care, and more specifically of cancer therapy, are discussed in this review. Furthermore, the calculation of radiotherapy costs from an institutional perspective using activity-based costing and on capacity planning in radiotherapy - at the departmental as well as at the national level - by integrating cost, epidemiological and scientifico-technological data are focused on. PMID:19807460

  2. Excellent Local Control With Stereotactic Radiotherapy Boost After External Beam Radiotherapy in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Hara, Wendy; Loo, Billy W.; Goffinet, Don R.; Chang, Steven D.; Adler, John R.; Pinto, Harlan A.; Fee, Willard E.; Kaplan, Michael J.; Fischbein, Nancy J.; Le, Quynh-Thu

    2008-06-01

    Purpose: To determine long-term outcomes in patients receiving stereotactic radiotherapy (SRT) as a boost after external beam radiotherapy (EBRT) for locally advanced nasopharyngeal carcinoma (NPC). Methods and Materials: Eight-two patients received an SRT boost after EBRT between September 1992 and July 2006. Nine patients had T1, 30 had T2, 12 had T3, and 31 had T4 tumors. Sixteen patients had Stage II, 19 had Stage III, and 47 had Stage IV disease. Patients received 66 Gy of EBRT followed by a single-fraction SRT boost of 7-15 Gy, delivered 2-6 weeks after EBRT. Seventy patients also received cisplatin-based chemotherapy delivered concurrently with and adjuvant to radiotherapy. Results: At a median follow-up of 40.7 months (range, 6.5-144.2 months) for living patients, there was only 1 local failure in a patient with a T4 tumor. At 5 years, the freedom from local relapse rate was 98%, freedom from nodal relapse 83%, freedom from distant metastasis 68%, freedom from any relapse 67%, and overall survival 69%. Late toxicity included radiation-related retinopathy in 3, carotid aneurysm in 1, and radiographic temporal lobe necrosis in 10 patients, of whom 2 patients were symptomatic with seizures. Of 10 patients with temporal lobe necrosis, 9 had T4 tumors. Conclusion: Stereotactic radiotherapy boost after EBRT provides excellent local control for patients with NPC. Improved target delineation and dose homogeneity of radiation delivery for both EBRT and SRT is important to avoid long-term complications. Better systemic therapies for distant control are needed.

  3. Combined radiotherapy and chemotherapy versus radiotherapy alone in locally advanced epidermoid bronchogenic carcinoma. A randomized study

    SciTech Connect

    Trovo, M.G.; Minatel, E.; Veronesi, A.; Roncadin, M.; De Paoli, A.; Franchin, G.; Magri, D.M.; Tirelli, U.; Carbone, A.; Grigoletto, E. )

    1990-02-01

    Between June 1980 and December 1983, 111 patients with inoperable epidermoid bronchogenic carcinoma (limited disease) were entered into a randomized trial comparing radiotherapy alone versus radiotherapy and combination chemotherapy with cyclophosphamide, Adriamycin (doxorubicin), methotrexate, and procarbazine. Thirty-five of 62 (56.4%) patients treated with 4500 rad in 15 fractions in 3 weeks and 19 of 49 (38.8%) patients treated with the same radiation treatment and chemotherapy had an objective response. The difference in response rate was not significant (P = 0.900). Median time to progression was 5.9 and 7.02 months, respectively, for the radiation treatment and the combined treatment. Median survival was 11.74 and 10.03 months, respectively, without statistically significant differences between the two groups of patients. The toxicity was acceptable and no treatment-related death occurred in either treatment schedule. In this study no significant superiority of combined radiotherapy and chemotherapy treatment over radiation therapy alone was evidenced. Whether different chemotherapy regimens may prove more effective in this context should be clarified by further studies.

  4. Radiotherapy considerations in patients with Hodgkin's disease who receive mediastinal radiotherapy and anthracycline-containing chemotherapy.

    PubMed

    Plowman, P N

    1998-01-01

    Recent clinical work in breast cancer patients has demonstrated that increasing the cardiac volume encompassment within radiotherapy portals leads to greater cardiac morbidity. In Hodgkin's disease, anthracycline chemotherapy is currently favoured, although mantle radiotherapy after anthracycline chemotherapy carries enhanced cardiac toxicity risks. Where anthracycline-based chemotherapy has produced a good response, with centripetal shrinkage of mediastinal disease, considerable cardiac protection is afforded by subcarinal blocking, either after a specific radiation dose or even by truncating the radiation portal in the subcarinal region from the outset. In the eight patients presented here, standard mantle blocks screened 35% (+/-3.2 SE) of the cardiac volume, particularly the left ventricle, throughout radiotherapy. Subcarinal blocks screened an increasing proportion of the cardiac volume as the spinal level of the blocks became higher. This was shown to occur most steeply over the spinal level D9 to D7, the mean extracardiac volume protection over this range being 21% (+/-3.7% SE) to 56% (+/-4.1% SE). These cardiac protection data were calculated for other block placement levels. The routine adoption of subcarinal/ cardiac blocking is advocated, particularly in conjunction with anthracycline-based chemotherapy, in an attempt to reduce late cardiac morbidity resulting from chemoradiotherapy for Hodgkin's disease. PMID:9890541

  5. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  6. Integrating Geriatric Assessment into Decision-Making after Prostatectomy: Adjuvant Radiotherapy, Salvage Radiotherapy, or None?

    PubMed Central

    Goineau, Aurore; d’Aillières, Bénédicte; de Decker, Laure; Supiot, Stéphane

    2015-01-01

    Despite current advancements in the field, management of older prostate cancer patients still remains a big challenge for Geriatric Oncology. The International Society of Geriatric Oncology (ISGO) has recently updated its recommendations in this area, and these have been widely adopted, notably by the European Association of Urology. This article outlines the principles that should be observed in the management of elderly patients who have recently undergone prostatectomy for malignancy or with a biochemical relapse following prostatectomy. Further therapeutic intervention should not be considered in those patients who are classified as frail in the geriatric assessment. In patients presenting better health conditions, salvage radiotherapy is to be preferred to adjuvant radiotherapy, which is only indicated in certain exceptional cases. Radiotherapy of the operative bed presents a higher risk to the elderly. Additionally, hormone therapy clearly shows higher side effects in older patients and therefore it should not be administered to asymptomatic patients. We propose a decision tree based on the ISGO recommendations, with specific modifications for patients in biochemical relapse. PMID:26528437

  7. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  8. Emerging applications of stereotactic body radiotherapy.

    PubMed

    Lo, Simon S; Loblaw, Andrew; Chang, Eric L; Mayr, Nina A; Teh, Bin S; Huang, Zhibin; Yao, Min; Ellis, Rodney J; Biswas, Tithi; Sohn, Jason W; Machtay, Mitchell; Sahgal, Arjun

    2014-05-01

    Stereotactic body radiotherapy (SBRT) has been used extensively in patients with lung, liver and spinal tumors, and the treatment outcomes are very favorable. For certain conditions such as medically inoperable stage I non-small-cell lung cancer, liver and lung oligometastases, primary liver cancer and spinal metastases, SBRT is regarded as one of the standard therapies. In the recent years, the use of SBRT has been extended to other disease conditions and sites such as recurrent head and neck cancer, renal cell carcinoma, prostate cancer, adrenal metastasis, pancreatic cancer, gynecological malignancies, spinal cord compression, breast cancer, and stage II-III non-small-cell lung cancer. Preliminary data in the literature show promising results but the follow-up intervals are short for most studies. This paper will provide an overview of these emerging applications. PMID:24947266

  9. Breast cellulitis after conservative surgery and radiotherapy

    SciTech Connect

    Rescigno, J.; McCormick, B.; Brown, A.E.; Myskowski, P.L. )

    1994-04-30

    Cellulitis is a previously unreported complication of conservative surgery and radiation therapy for early stage breast cancer. Patients who presented with breast cellulitis after conservative therapy are described. Eleven patients that developed cellulitis of the breast over a 38-month period of observation are the subject of this report. Clinical characteristics of patients with cellulitis and their treatment and outcome are reported. Potential patient and treatment-related correlates for the development of cellulitis are analyzed. The risk of cellulitis persists years after initial breast cancer therapy. The clinical course of the patients was variable: some patients required aggressive, long-duration antibiotic therapy, while others had rapid resolution with antibiotics. Three patients suffered from multiple episodes of cellulitis. Patients with breast cancer treated with conservative surgery and radiotherapy are at risk for breast cellulitis. Systematic characterization of cases of cellulitis may provide insight into diagnosis, prevention, and more effective therapy for this uncommon complication. 15 refs., 1 fig., 2 tabs.

  10. Radiotherapy Dose Fractionation under Parameter Uncertainty

    SciTech Connect

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-30

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  11. [Palliative radiotherapy for metastatic bone tumor].

    PubMed

    Yoshida, Kenji; Hiratsuka, Junichi

    2006-04-01

    Bone metastases are one of the most common conditions requiring radiation therapy today. Its main aim is relief of bone pain, prevention of pathological bone fractures as well as its healing, with anticipated effect upon improving mobility, function, and quality of life. For localized bone pain, external beam radiation therapy (EBRT) will be successful in reducing pain in some 80% of patients. However, optimal fraction dose and total doses of EBRT required for pain relief have been unknown. According to the recent reports, carbon ion radiotherapy seems to be a safe and effective modality in the management of metastatic bone tumor not eligible for conventional EBRT. For scattered painful metastases, the systemic administration of radioisotopes is thought to be effective. PMID:16582516

  12. Tsallis entropy approach to radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Sotolongo-Costa, O.; Antoranz, J. C.

    2013-05-01

    The biological effect of one single radiation dose on a living tissue has been described by several radiobiological models. However, the fractionated radiotherapy requires to account for a new magnitude: time. In this paper we explore the biological consequences posed by the mathematical prolongation of a previous model to fractionated treatment. Nonextensive composition rules are introduced to obtain the survival fraction and equivalent physical dose in terms of a time dependent factor describing the tissue trend towards recovering its radioresistance (a kind of repair coefficient). Interesting (known and new) behaviors are described regarding the effectiveness of the treatment which is shown to be fundamentally bound to this factor. The continuous limit, applicable to brachytherapy, is also analyzed in the framework of nonextensive calculus. Here a coefficient that rules the time behavior also arises. All the results are discussed in terms of the clinical evidence and their major implications are highlighted.

  13. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  14. Biologically Optimized Treatments for Hadron Radiotherapy

    NASA Astrophysics Data System (ADS)

    Nazaryan, Vahagn; Keppel, Cynthia; Britten, Richard; George, Jerry; Nie, Xiliang

    2008-10-01

    Near future advances in proton radiotherapy technology will increasingly require complex, conformal treatment planning. However, the current state of knowledge of the biological efficiency of proton beams may be inadequate to facilitate precision, and reduced margins. A new project at the Hampton University Proton Therapy Institute and the Eastern Virginia Medical School aims to facilitate the expected benefits of increasingly conformal treatment capabilities. Specifically, we seek to establish with measurements the biological depth dose profile of protons with incident energies in the range 62-210 MeV, and to utilize these also to provide vastly improved model algorithms for patient treatment planning based on biological, rather than simply physical, depth dose profiles. A progress report on a model for proton biological efficiency calculations as an input algorithm for treatment planning with protons will be presented. The planned measurements will be discussed.

  15. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  16. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  17. Intensity-Modulated Radiotherapy for Pancreatic Adenocarcinoma

    SciTech Connect

    Abelson, Jonathan A.; Murphy, James D.; Minn, Ann Yuriko; Chung, Melody; Fisher, George A.; Ford, James M.; Kunz, Pamela; Norton, Jeffrey A.; Visser, Brendan C.; Poultsides, George A.; Koong, Albert C.; Chang, Daniel T.

    2012-03-15

    Purpose: To report the outcomes and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for pancreatic adenocarcinoma. Methods and Materials: Forty-seven patients with pancreatic adenocarcinoma were treated with IMRT between 2003 and 2008. Of these 47 patients, 29 were treated adjuvantly and 18 definitively. All received concurrent 5-fluorouracil chemotherapy. The treatment plans were optimized such that 95% of the planning target volume received the prescription dose. The median delivered dose for the adjuvant and definitive patients was 50.4 and 54.0 Gy, respectively. Results: The median age at diagnosis was 63.9 years. For adjuvant patients, the 1- and 2-year overall survival rate was 79% and 40%, respectively. The 1- and 2-year recurrence-free survival rate was 58% and 17%, respectively. The local-regional control rate at 1 and 2 years was 92% and 80%, respectively. For definitive patients, the 1-year overall survival, recurrence-free survival, and local-regional control rate was 24%, 16%, and 64%, respectively. Four patients developed Grade 3 or greater acute toxicity (9%) and four developed Grade 3 late toxicity (9%). Conclusions: Survival for patients with pancreatic cancer remains poor. A small percentage of adjuvant patients have durable disease control, and with improved therapies, this proportion will increase. Systemic therapy offers the greatest opportunity. The present results have demonstrated that IMRT is well tolerated. Compared with those who received three-dimensional conformal radiotherapy in previously reported prospective clinical trials, patients with pancreatic adenocarcinoma treated with IMRT in our series had improved acute toxicity.

  18. Use of Postmastectomy Radiotherapy in Older Women

    SciTech Connect

    Smith, Benjamin D. Haffty, Bruce G.; Smith, Grace L.; Hurria, Arti; Buchholz, Thomas A.; Gross, Cary P.

    2008-05-01

    Purpose: Clinical trials and guidelines published between 1997 and 2001 concluded that postmastectomy radiotherapy (PMRT) improves overall survival for women with high-risk breast cancer. However, the effect of these findings on current practice is not known. Using the Surveillance, Epidemiology, and End Results-Medicare cohort, we sought to characterize the adoption of PMRT from 1992 to 2002 and identify risk factors for PMRT omission among high-risk older patients. Methods and Materials: We identified 28,973 women aged {>=}66 years who had been treated with mastectomy for invasive breast cancer between 1992 and 2002. Trends in the adoption of PMRT for low- (T1-T2N0), intermediate- (T1-T2N1), and high- (T3-T4 and/or N2-N3) risk patients were characterized using a Monte Carlo permutation algorithm. Multivariate logistic regression identified the risk factors for PMRT omission and calculated the adjusted use rates. Results: Postmastectomy radiotherapy use increased gradually and consistently for low-risk (+2.16%/y) and intermediate-risk (+7.20%/y) patients throughout the study interval. In contrast, PMRT use for high-risk patients increased sharply between 1996 and 1997 (+30.99%/y), but subsequently stabilized. Between 1998 and 2002, only 53% of high-risk patients received PMRT. The risk factors for PMRT omission included advanced age, moderate to severe comorbidity, smaller tumor size, fewer positive lymph nodes, and geographic region, with adjusted use rates ranging from 63.5% in San Francisco to 44.9% in Connecticut. Conclusion: Among the high-risk patients, PMRT use increased sharply in 1997 after the initial clinical trial publication. Despite subsequent guidelines recommending the use of PMRT, no further increase in PMRT use has occurred, and nearly 50% of high-risk patients still do not receive PMRT.

  19. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  20. Gonadal damage from chemotherapy and radiotherapy.

    PubMed

    Howell, S; Shalet, S

    1998-12-01

    Treatment with cytotoxic chemotherapy and radiotherapy is associated with significant gonadal damage in men and women. Alkylating agents such as cyclophosphamide and procarbazine are the most common agents implicated. The vast majority of men receiving procarbazine-containing regimens for the treatment of lymphomas become permanently infertile. Cisplatin-based chemotherapy for testicular cancer results in temporary azoospermia in most men, with a recovery of spermatogenesis in about 50% after 2 years and in 80% after 5 years. There is also evidence of Leydig cell impairment in a proportion of these men, although the clinical significance of this is not clear. The germinal epithelium is very sensitive to radiation-induced damage, with changes to spermatogonia occurring following as little as 0.1 Gy and permanent infertility after fractionated doses of 2 Gy and above. Cytotoxic-induced premature ovarian failure is age- and drug-dependent and ensues in approximately half of women treated with procarbazine-containing chemotherapy for lymphomas. High-dose chemotherapy, total body irradiation, and irradiation at an ovarian dose above 6 Gy usually result in permanent ovarian failure. The course of ovarian function after chemotherapy is variable, and late recovery occurs in some patients. Several methods of preserving gonadal function during potentially sterilizing treatment have been considered. Currently, sperm banking remains the only proven method in men, although hormonal manipulation to enhance the recovery of spermatogenesis and cryopreservation of testicular germ cells are possibilities for the future. Transposition of the ovaries to allow better shielding during radiotherapy is of use in some women, and the prospect of cryopreservation and reimplantation of ovarian tissue is promising. PMID:9922915

  1. Magnetic resonance imaging for prostate cancer radiotherapy.

    PubMed

    Dinh, Cuong V; Steenbergen, Peter; Ghobadi, Ghazaleh; Heijmink, Stijn W T J P; Pos, Floris J; Haustermans, Karin; van der Heide, Uulke A

    2016-03-01

    For radiotherapy of prostate cancer, MRI is used increasingly for delineation of the prostate gland. For focal treatment of low-risk prostate cancer or focal dose escalation for intermediate and high-risk cancer, delineation of the tumor is also required. While multi-parametric MRI is well established for detection of tumors and for staging of the disease, delineation of the tumor inside the prostate is not common practice. Guidelines, such as the PI-RADS classification, exist for tumor detection and staging, but no such guidelines are available for tumor delineation. Indeed, interobserver studies show substantial variation in tumor contours. Computer-aided tumor detection and delineation may help improve the robustness of the interpretation of multi-parametric MRI data. Comparing the performance of an earlier developed model for tumor segmentation with expert delineations, we found a significant correlation between tumor probability in a voxel and the number of experts identifying this voxel as tumor. This suggests that the model agrees with 'the wisdom of the crowd', and thus could serve as a reference for individual physicians in their decision making. With multi-parametric MRI it becomes feasible to revisit the GTV-CTV concept in radiotherapy of prostate cancer. While detection of index lesions is quite reliable, contouring variability and the low sensitivity to small lesions suggest that the remainder of the prostate should be treated as CTV. Clinical trials that investigate the options for dose differentiation, for example with dose escalation to the visible tumor or dose reduction to the CTV, are therefore warranted. PMID:26858164

  2. Molecular Imaging and Radiotherapy: Theranostics for Personalized Patient Management

    PubMed Central

    Velikyan, Irina

    2012-01-01

    This theme issue presents current achievements in the development of radioactive agents, pre-clinical and clinical molecular imaging, and radiotherapy in the context of theranostics in the field of oncology. PMID:22768022

  3. Adenocarcinoma of the ethmoid following radiotherapy for bilateral retinoblastoma

    SciTech Connect

    Rowe, L.D.; Lane, R.; Snow, J.B. Jr.

    1980-01-01

    Adenocarcinoma of the ethmoid sinus is rare, representing only 4 to 8% of malignancies of the paranasal sinuses. An extraordinary case of papillary adenocarcinoma of the ethmoid sinus arising 30 years following high-dose radiotherapy for bilateral retinoblastoma is presented. Second fatal mesenchymal and epithelial primaries have been described in 8.5% of patients with bilateral retinoblastomas previously treated with radiotherapy; however, papillary adenocarcinoma arising within the paranasal sinuses has not been reported. Aggressive treatment including partial maxillectomy, radical pansinusectomy, radical neck dissection followed by regional radiotherapy and systemic chemotherapy failed to prevent the development of fatal hepatic metastases. The high incidence of second fatal primary neoplasms in patients with bilateral retinoblastomas receiving radiation suggests an innate susceptibility that may add to the risk of radiotherapy.

  4. Radiochromic Film Dosimetry and its Applications in Radiotherapy

    SciTech Connect

    Williams, Matthew; Metcalfe, Peter

    2011-05-05

    Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.

  5. Stereotactic body radiotherapy in lung cancer: an update *

    PubMed Central

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; de Moraes, Fabio Ynoe; Neves, Wellington Furtado Pimenta; Gadia, Rafael; Carvalho, Heloisa de Andrade

    2015-01-01

    Abstract For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. PMID:26398758

  6. Implementing radiotherapy in Africa: Focus on the needs in Rwanda.

    PubMed

    Kamanzi, J-B; Adeduntan, R; Antoni, D; Musafiri, S; Noël, G

    2016-05-01

    Cancer care is a concern in low- and middle-income countries. The needs of structure to treat patients are huge. Because of the cost of radiotherapy, and the need for highly specialized workers, providing radiation therapy in these nations is a challenge. However, some solutions exist that can dramatically improve future care. In this article, we reviewed the plight of cancer treatment organization in Africa, and more specifically, the status of radiotherapy needs and concerns within Rwanda. PMID:27133894

  7. Reirradiation using robotic image-guided stereotactic radiotherapy of recurrent head and neck cancer

    PubMed Central

    Yamazaki, Hideya; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo

    2016-01-01

    The purpose of this study was to examine the prognosis for patients with head and neck cancer after reirradiation using Cyberknife stereotactic body irradiation with special focus on mucosal ulceration. We conducted a retrospective multi-institutional review of 107 patients with previously irradiated head and neck cancer. The median follow-up time for all patients was 15 months, and the 2-year overall survival rate was 35%. Significant prognostic factors for overall survival were primary site (nasopharynx versus other sites), presence of ulceration, and PTV volume. Detailed analysis of ulceration showed a lower response rate (28%) in the ulceration (+) group than the ulceration (−) group (63%; P = 0.0045). The 2-year overall survival rates were 8% in the ulceration (+) group and 42.7% (P = 0.0001) in the ulceration (−) group, respectively. We recorded 22 severe toxicities, including 11 patients with carotid blow-out syndrome (CBOS), which was fatal in 9 patients. CBOS occurred in 6 patients with ulceration (6/25; 24%), and 5 patients experienced CBOS without ulceration (5/82; 6%; P=0.027). In conclusion, ulceration is an important prognostic factor, not only for adverse events but also for survival after reirradiation using CyberKnife. PMID:26983982

  8. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy.

    PubMed

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan; Kuo, Sung-Hsin

    2016-06-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward "field in field" intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  9. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    SciTech Connect

    Eldebawy, Eman; Parker, William; Abdel Rahman, Wamied; Freeman, Carolyn R.

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  10. Applications of Nanomaterials in Radiotherapy for Malignant Tumors.

    PubMed

    Wang, Yanchao; Liang, Ruichao; Fang, Fang

    2015-08-01

    Malignant tumors are tremendous heath problems facing by the medical world. In order to achieve the purpose of curing malignant tumor, numerous therapeutic strategies have been developed. Radiotherapy is one of the main therapeutic strategies for malignant tumors. Current imaging strategies cannot display exact infiltrating margins, radio-resistance generated by irradiated tissue, and intercurrent damage to healthy tissues during radiotherapy. Therefore, novel strategies to solve these problems are urgently needed. Nanomaterials have specific physical and biological properties that can help clinician to distinguish margins of infiltrating tumors as a novel contrast agent. Besides, nanoparticles can significantly enhance the effect of radiotherapy by generating reactive oxygen species (ROS) or influence cell cycle. In addition, nanomaterials can also help in diminishing the intercurrent damage caused by radiotherapy. So nanomaterials have very promising prospect in the radiotherapy of malignant tumors. This review mainly focuses on the applications of nanomaterials in radiotherapy for malignant tumors; especially it applies to lesion imaging and their radiosensitizing effects. PMID:26369108

  11. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  12. Nutritional consequences of the radiotherapy of head and neck cancer

    SciTech Connect

    Chencharick, J.D.; Mossman, K.L.

    1983-03-01

    Nutrition-related complications of radiotherapy were evaluated in 74 head and neck cancer patients. Subjective changes of mouth dryness, taste, dysphagia, appetite, and food preferences were determined by questionnaire before and at weekly intervals during curative radiotherapy. Changes in body weight during therapy were also recorded. In addition, 24-hour dietary histories were taken from eight patients at the beginning and end of treatment. Results of the study indicate that patients were subjectively aware of nutritional problems prior to therapy and that therapy exacerbated these problems. As many as 25% of the patients experienced oral complications such as taste loss and/or dry mouth prior to initiation of radiotherapy. By the end of radiotherapy, over 80% of the patients were aware of oral and nutritional problems. Patients had an average weight loss of 5 kg prior to therapy; this loss of weight did not change during therapy. Diet histories of eight patients indicate significant caloric deficiencies early and late in radiotherapy. The oral and nutritional problems experienced by patients, even prior to therapy, support the idea that nutritional evaluation and maintenance are important not only during therapy, but prior to radiotherapy as well. Nutritional evaluation should be made a routine, integral part of therapy for every cancer patient.

  13. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  14. Treatment of brain metastases of renal cell cancer with combined hypofractionated stereotactic radiotherapy and whole brain radiotherapy with hippocampal sparing

    PubMed Central

    VRÁNA, DAVID; ŠTUDENTOVÁ, HANA; MATZENAUER, MARCEL; VLACHOVÁ, ZUZANA; CWIERTKA, KAREL; GREMLICA, DAVID; KALITA, ONDŘEJ

    2016-01-01

    Renal cell cancer patients with brain metastatic disease generally have poor prognosis. Treatment options include surgery, radiotherapy, targeted therapy or best supportive care with respect to disease burden, patient preference and performance status. In the present case report the radiotherapy technique combining whole brain radiotherapy with hippocampal sparing (hippocampal avoidance whole brain radiotherapy HA-WBRT) and hypofractionated stereotactic radiotherapy (SRT) of the brain metastases is performed in a patient with metastatic renal cell carcinoma. HA-WBRT was administered to 30 Gy in 10 fractions with sparing of the hippocampal structures and SRT of 21 Gy in 3 fractions to brain metastases which has preceded the HA-WBRT. Two single arc volumetric modulated arc radiotherapy (VMAT) plans were prepared using Monaco planning software. The HA-WBRT treatment plan achieved the following results: D2=33.91 Gy, D98=25.20 Gy, D100=14.18 Gy, D50=31.26 Gy. The homogeneity index was calculated as a deduction of the minimum dose in 2% and 98% of the planning target volume (PTV), divided by the minimum dose in 50% of the PTV. The maximum dose to the hippocampus was 17.50 Gy and mean dose was 11.59 Gy. The following doses to organs at risk (OAR) were achieved: Right opticus Dmax, 31.96 Gy; left opticus Dmax, 30.96 Gy; chiasma D max, 32,76 Gy. The volume of PTV for stereotactic radiotherapy was 3,736 cm3, with coverage D100=20.95 Gy and with only 0.11% of the PTV being irradiated to dose below the prescribed dose. HA-WBRT with SRT represents a feasible technique for radiotherapy of brain metastatic disease, however this technique is considerably demanding on departmental equipment and staff time/experience. PMID:27313693

  15. Cost-effectiveness of radical hysterectomy with adjuvant radiotherapy versus radical radiotherapy for FIGO stage IIB cervical cancer

    PubMed Central

    Chai, Yanlan; Wang, Juan; Wang, Tao; Shi, Fan; Wang, Jiquan; Su, Jin; Yang, Yunyi; Zhou, Xi; Ma, Hailin; He, Bin; Liu, Zi

    2016-01-01

    Objective Recent literature reports that radical hysterectomy followed by adjuvant radiotherapy has comparable progression-free survival and overall survival compared to radical radiotherapy for International Federation of Gynecology and Obstetrics stage IIB cervical cancer. Now, we evaluate the cost-effectiveness (CE) of these two treatment regimens. Primary and secondary outcome measures A decision-tree model was constructed comparing CE between treatment arms using the published studies for overall survival rates and treatment-related toxicity rates for 5 years. The cost data were obtained from the hospital system of the First Affiliated Hospital of Xi’an Jiaotong University. Effectiveness was measured as quality-adjusted life year (QALY). Treatment arms were compared with regard to costs and life expectancy using incremental CE ratio, and the results were presented using costs per QALY. Results The mean cost was $10,872 for radical hysterectomy followed by adjuvant radiotherapy versus $5,702 for radical radiotherapy. The incremental CE ratio for surgery-based treatment compared to radiotherapy-based treatment was –$76,453 per QALY. Conclusion Radical radiotherapy would be a cost-effective method for FIGO stage IIB cervical cancer and would be favored in settings where resources are limited. PMID:26855584

  16. Cost-effectiveness of surgery plus radiotherapy versus radiotherapy alone for metastatic epidural spinal cord compression

    SciTech Connect

    Thomas, Kenneth C.; Nosyk, Bohdan; Fisher, Charles G.; Dvorak, Marcel; Patchell, Roy A.; Regine, William F.; Loblaw, Andrew; Bansback, Nick; Guh, Daphne; Sun, Huiying; Anis, Aslam . E-mail: aslam.anis@ubc.ca

    2006-11-15

    Purpose: A recent randomized clinical trial has demonstrated that direct decompressive surgery plus radiotherapy was superior to radiotherapy alone for the treatment of metastatic epidural spinal cord compression. The current study compared the cost-effectiveness of the two approaches. Methods and Materials: In the original clinical trial, clinical effectiveness was measured by ambulation and survival time until death. In this study, an incremental cost-effectiveness analysis was performed from a societal perspective. Costs related to treatment and posttreatment care were estimated and extended to the lifetime of the cohort. Weibull regression was applied to extrapolate outcomes in the presence of censored clinical effectiveness data. Results: From a societal perspective, the baseline incremental cost-effectiveness ratio (ICER) was found to be $60 per additional day of ambulation (all costs in 2003 Canadian dollars). Using probabilistic sensitivity analysis, 50% of all generated ICERs were lower than $57, and 95% were lower than $242 per additional day of ambulation. This analysis had a 95% CI of -$72.74 to 309.44, meaning that this intervention ranged from a financial savings of $72.74 to a cost of $309.44 per additional day of ambulation. Using survival as the measure of effectiveness resulted in an ICER of $30,940 per life-year gained. Conclusions: We found strong evidence that treatment of metastatic epidural spinal cord compression with surgery in addition to radiotherapy is cost-effective both in terms of cost per additional day of ambulation, and cost per life-year gained.

  17. Planning tools for modulated electron radiotherapy

    SciTech Connect

    Surucu, Murat; Klein, Eric E.; Mamalui-Hunter, Maria; Mansur, David B.; Low, Daniel A.

    2010-05-15

    Purpose: To develop tools to plan modulated electron radiotherapy (MERT) and to compare the MERT plans to conventional or intensity modulated radiotherapy (IMRT) treatment plans. Methods: Monte Carlo dose calculations of electron fields shaped with the inherent photon multileaf collimators (MLCs) were investigated in this study. Treatment plans for four postmastectomy breast cancer patients were generated using MERT. The distances from the patient skin surfaces to the distal planning target volume surfaces were computed along the beam axis direction to determine the physical depth. Electron beam energies were selected to provide target coverage at these depths and energy bins were generated. A custom built MERT treatment planning graphical user interface (MERTgui) was used to shape the electron bins into deliverable electron segments. Monte Carlo dose distribution simulations were performed using the MLC-defined segments generated from the MERTgui. A custom built superposition gui was used to combine doses for each segment using relative weights and final MERT treatment plans were compared to the conventional or IMRT treatment plans. In addition, a demonstration of combined MERT and IMRT treatment plans was performed. Results: The MERT treatment plans provided acceptable target organ coverage in all cases. Relative to 3D conventional or IMRT treatment plans, the MERT plans predicted lower heart doses in all cases; average of the heart D{sub 20} of all plans was reduced from 14.1 to 3.3 Gy. The contralateral breast and contralateral lung doses decreased substantially with MERT planning compared to IMRT (on average, contralateral breast heart D{sub 20} was reduced from 8.7 to 0.7 Gy and contralateral lung D{sub 20} was reduced from 8.4 to 1.2 Gy with MERT). Ipsilateral lung D{sub 20} was lower with MERT than with the conventional plans (44.6 vs 29.2 Gy with MERT), but greater when compared against IMRT treatment plans (25.4 vs 28.9 Gy with MERT). A MERT and IMRT

  18. New Methods for Targeted Alpha Radiotherapy

    NASA Astrophysics Data System (ADS)

    Robertson, J. David

    2014-03-01

    Targeted radiotherapies based on alpha emitters are a promising alternative to beta emitting radionuclides. Because of their much shorter range, targeted α-radiotherapy (TAT) agents have great potential for application to small, disseminated tumors and micro metastases and treatment of hematological malignancies consisting of individual, circulating neoplastic cells. A promising approach to TAT is the use of the in vivo α-generator radionuclides 223 = 11.4 d) and 225Ac 1/2 = 10.0 d). In addition to their longer half-lives, these two isotopes have the potential of dramatically increasing the therapeutic efficacy of TAT as they each emit four α particles in their decay chain. This principle has recently been exploited in the development of Xofigo®, the first TAT agent approved for clinical use by the U.S. FDA. Xofigo, formulated as 223RaCl2, is used for treatment of metastatic bone cancer in men with castration-resistant prostate cancer. TAT with 223Ra works, however, only in the case of bone cancer because radium, as a chemical analogue of calcium, efficiently targets bone. In order to bring the benefits of TAT with 223Ra or 225Ac to other tumor types, a new delivery method must be devised. Retaining the in vivo α generator radionuclides at the target site through the decay process is one of the major challenges associated with the development of TAT. Because the recoil energy of the daughter radionuclides from the α-emission is ~ 100 keV - a value which is four orders of magnitude greater than the energy of a covalent bond - the daughters will not remain bound to the bioconjugate at the targeting site. Various approaches have been attempted to achieve retention of the α-generator daughter radionuclides at the target site, including incorporation of the in vivo generator into liposomes and fullerenes. Unfortunately, to date single wall liposomes and fullerenes are able to retain less than 10% of the daughter radionuclides. We have recently demonstrated that a

  19. Waiting time for radiotherapy in women with cervical cancer

    PubMed Central

    do Nascimento, Maria Isabel; Azevedo e Silva, Gulnar

    2016-01-01

    ABSTRACT OBJECTIVE To describe the waiting time for radiotherapy for patients with cervical cancer. METHODS This descriptive study was conducted with 342 cervical cancer cases that were referred to primary radiotherapy, in the Baixada Fluminense region, RJ, Southeastern Brazil, from October 1995 to August 2010. The waiting time was calculated using the recommended 60-day deadline as a parameter to obtaining the first cancer treatment and considering the date at which the diagnosis was confirmed, the date of first oncological consultation and date when the radiotherapy began. Median and proportional comparisons were made using the Kruskal Wallis and Chi-square tests. RESULTS Most of the women (72.2%) began their radiotherapy within 60 days from the diagnostic confirmation date. The median of this total waiting time was 41 days. This median worsened over the time period, going from 11 days (1995-1996) to 64 days (2009-2010). The median interval between the diagnostic confirmation and the first oncological consultation was 33 days, and between the first oncological consultation and the first radiotherapy session was four days. The median waiting time differed significantly (p = 0.003) according to different stages of the tumor, reaching 56 days, 35 days and 30 days for women whose cancers were classified up to IIA; from IIB to IIIB, and IVA-IVB, respectively. CONCLUSIONS Despite most of the women having had access to radiotherapy within the recommended 60 days, the implementation of procedures to define the stage of the tumor and to reestablish clinical conditions took a large part of this time, showing that at least one of these intervals needs to be improved. Even though the waiting times were ideal for all patients, the most advanced cases were quickly treated, which suggests that access to radiotherapy by women with cervical cancer has been reached with equity. PMID:26786473

  20. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  1. Fractionated Stereotactic Radiotherapy for Facial Nerve Schwannomas.

    PubMed

    Shi, Wenyin; Jain, Varsha; Kim, Hyun; Champ, Colin; Jain, Gaurav; Farrell, Christopher; Andrews, David W; Judy, Kevin; Liu, Haisong; Artz, Gregory; Werner-Wasik, Maria; Evans, James J

    2016-02-01

    Purpose Data on the clinical course of irradiated facial nerve schwannomas (FNS) are lacking. We evaluated fractionated stereotactic radiotherapy (FSRT) for FNS. Methods Eight consecutive patients with FNS treated at our institution between 1998 and 2011 were included. Patients were treated with FSRT to a median dose of 50.4 Gy (range: 46.8-54 Gy) in 1.8 or 2.0 Gy fractions. We report the radiographic response, symptom control, and toxicity associated with FSRT for FNS. Results The median follow-up time was 43 months (range: 10-75 months). All patients presented with symptoms including pain, tinnitus, facial asymmetry, diplopia, and hearing loss. The median tumor volume was 1.57 cc. On the most recent follow-up imaging, five patients were noted to have stable tumor size; three patients had a net reduction in tumor volume. Additionally, six patients had improvement in clinical symptoms, one patient had stable clinical findings, and one patient had worsened House-Brackmann grade due to cystic degeneration. Conclusion FSRT treatment of FNS results in excellent control of growth and symptoms with a small rate of radiation toxicity. Given the importance of maintaining facial nerve function, FSRT could be considered as a primary management modality for enlarging or symptomatic FNS. PMID:26949592

  2. Leukemia following radiotherapy for uterine bleeding

    SciTech Connect

    Inskip, P.D.; Monson, R.R.; Wagoner, J.K.; Stovall, M.; Davis, F.G.; Kleinerman, R.A.; Boice, J.D. Jr. )

    1990-05-01

    Mortality due to leukemia among 4483 women treated with radiation to control uterine bleeding between 1925 and 1965 was twice as high as expected based on U.S. population rates (standardized mortality ratio (SMR) = 2.0; 95% confidence interval (CI): 1.4 to 2.8). Women were followed for an average of 26.4 years. Relative risk was highest 2 to 5 years after treatment (SMR = 8.1) and among women over 55 years at irradiation (SMR = 5.8). The usual method of treatment was intrauterine radium. Average radiation dose to active bone marrow was estimated on the basis of original radiotherapy records (median, 53 cGy). A linear dose-response model provided an adequate fit to the data. The average excess relative risk was 1.9% per cGy (95% CI: 0.8 to 3.2), and the average absolute risk was 2.6 excess leukemia deaths per million women per year per cGy (95% CI: 0.9 to 4.8). Chronic myeloid leukemia predominated during the first 15 years following exposure, whereas acute leukemias and chronic lymphatic leukemia were most common thereafter. The radiation doses experienced during treatment of benign gynecologic disease appear to result in greater leukemia risk per cGy average marrow dose than the considerably higher doses used to treat malignant disease, perhaps because of a decreased likelihood of killing potentially leukemic cells.

  3. Nanodosimetry and RBE values in radiotherapy.

    PubMed

    Lindborg, Lennart; Hultqvist, Martha; Carlsson Tedgren, Å; Nikjoo, Hooshang

    2015-09-01

    In a recent paper, the authors reported that the dose mean lineal energy, [Formula: see text] in a volume of about 10-15 nm is approximately proportional to the α-parameter in the linear-quadratic relation used in fractionated radiotherapy in both low- and high-LET beams. This was concluded after analyses of reported radiation weighting factors, WisoE (clinical RBE values), and [Formula: see text] values in a large range of volumes. Usually, microdosimetry measurements in the nanometer range are difficult; therefore, model calculations become necessary. In this paper, the authors discuss the calculation method. A combination of condensed history Monte Carlo and track structure techniques for calculation of mean lineal energy values turned out to be quite useful. Briefly, the method consists in weighting the relative dose fractions of the primary and secondary charged particles with their respective energy-dependent dose mean lineal energies. The latter were obtained using a large database of Monte Carlo track structure calculations. PMID:25953788

  4. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    SciTech Connect

    Norihisa, Yoshiki; Nagata, Yasushi Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-10-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases.

  5. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  6. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  7. [Stereotactically targeted radiotherapy of cerebral arteriovenous malformations].

    PubMed

    Kimmig, B; Engenhart, R; Wowra, B; Höver, K H; Marin-Grez, M; Sturm, V

    1989-09-01

    A report is given about radiotherapy in 41 patients suffering from cerebral vessel anomalies. A modified linear accelerator was used in a moving field technique with multiple pendulum planes to apply single doses between 8 and 28 Gy by means of stereotaxis into the angiographically determined target volume. The medium follow-up is 23 months. The latency of radiogenic effects is between one and two years. Radiological controls with an interval of more than 18 months after therapy are available in 17 out of 41 patients. Angiographic investigation showed complete obliterations of pathological vessels in six out of these patients and partial obliterations in six patients; five patients remained unchanged. There were no acute complications. Seven patients presented neurological deficiencies with a latency of 6 to 12 months, however, in all cases but one they regressed completely. Even taking into consideration the small number of patients and the short time of observation, a comparison with the results of other radiotherapeutical proceedings allows to draw the conclusion that the presented technique of stereotaxic convergent-beam irradiation represents a relatively simple, reliable and, in case of precise indication, efficient method for the therapy of cerebral arteriovenous malformations. PMID:2678547

  8. Radiotherapy treatments using Tsallis entropy statistical approach

    NASA Astrophysics Data System (ADS)

    D, Rodríguez-Pérez; O, Sotolongo-Grau; O, Sotolongo-Costa; C, Antoranz J.

    2014-03-01

    Several radiobiological models mimic the biologic effect of one single radiation dose on a living tissue. However, the actual fractionated radiotherapy requires accounting for a new magnitude, i.e., time. Here, we explore the biological consequences posed by the mathematical prolongation of a previous single radiation model to fractionated treatment. The survival fraction is obtained, together with the equivalent physical dose, in terms of a time dependent factor (similar to a repair coefficient) describing the tissue trend to recovering its radioresistance. The model describes how dose fractions add up to obtain the equivalent dose and how the repair coefficient poses a limit to reach an equivalent dose equal to the critical one that would completely annihilate the tumor. On the other hand, the surrounding healthy tissue is a limiting factor to treatment planning. This tissue has its own repair coefficient and thus should limit the equivalent dose of a treatment. Depending on the repair coefficient and the critical dose of each tissue, unexpected results (failure to fully remove the tumor) can be obtained. To illustrate these results and predictions, some realistic example calculations will be performed using parameter values within actual clinical ranges. In conclusion, the model warns about treatment limitations and proposes ways to overcome them.

  9. Online Adaptive Replanning Method for Prostate Radiotherapy

    SciTech Connect

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-08-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  10. Hypnotherapy in radiotherapy patients: A randomized trial

    SciTech Connect

    Stalpers, Lukas J.A. . E-mail: l.stalpers@amc.uva.nl; Costa, Hanna C. da; Merbis, Merijn A.E.; Fortuin, Andries A.; Muller, Martin J.; Dam, Frits van

    2005-02-01

    Purpose: To determine whether hypnotherapy reduces anxiety and improves the quality of life in cancer patients undergoing curative radiotherapy (RT). Methods and materials: After providing written informed consent, 69 patients were randomized between standard curative RT alone (36 controls) and RT plus hypnotherapy (33 patients). Patients in the hypnotherapy group received hypnotherapy at the intake, before RT simulation, before the first RT session, and halfway between the RT course. Anxiety was evaluated by the State-Trait Anxiety Inventory DY-1 form at six points. Quality of life was measured by the Rand Medical Outcomes Study 36-item Health Survey (SF-36) at five points. Additionally, patients answered a questionnaire to evaluate their experience and the possible benefits of this research project. Results: No statistically significant difference was found in anxiety or quality of life between the hypnotherapy and control groups. However, significantly more patients in the hypnotherapy group indicated an improvement in mental (p < 0.05) and overall (p < 0.05) well-being. Conclusion: Hypnotherapy did not reduce anxiety or improve the quality of life in cancer patients undergoing curative RT. The absence of statistically significant differences between the two groups contrasts with the hypnotherapy patients' own sense of mental and overall well-being, which was significantly greater after hypnotherapy. It cannot be excluded that the extra attention by the hypnotherapist was responsible for this beneficial effect in the hypnotherapy group. An attention-only control group would be necessary to control for this effect.

  11. Second cancers following radiotherapy for cervical cancer

    SciTech Connect

    Kleinerman, R.A.; Curtis, R.E.; Boice, J.D. Jr.; Flannery, J.T.; Fraumeni, J.F. Jr.

    1982-11-01

    Incidence of second primary cancers was evaluated in 7,127 women with invasive cancer of the cervix uteri, diagnosed between 1935 and 1978, and followed up to 38 years (average, 8.9 yr) in Connecticut. Among 5,997 women treated with radiation, 449 developed second primary cancers compared with 313 expected (relative risk . 1.4) on the basis of rates from the Connecticut Tumor Registry. Excess incidence was noticeable 15 years or more after radiotherapy and attributed mostly to cancers of sites in or near the radiation field, especially the bladder, kidneys, rectum, corpus uteri, and ovaries. No excess was found for these sites among the 1,130 nonirradiated women. The ratio of observed to expected cancers for these sites did not vary appreciably by age at irradiation. The data suggested that high-dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but, apparently, not leukemia, Hodgkin's disease, breast cancer, or colon cancer.

  12. Chemically enhanced radiotherapy: visions for the future

    PubMed Central

    Susheela, Sridhar P.

    2016-01-01

    Radiotherapy (RT) is an important part of cancer management, with more than a third of all cancer cures being attributable to RT. Despite the advances in RT over the past century, the overall outcomes in a majority of malignancies are still unsatisfactory. There has been a constant endeavor to enhance the outcome of RT, and this has been in the form of altered fractionation, oxymimetic radiosensitizers, the use of concurrent chemotherapy, anti-angiogenic therapy and anti-growth factor receptor targeted therapies. This article presents a vision for the future, with emphasis upon emerging prospects which could enhance RT outcomes. Positive speculations regarding the use of immunological aspects, the use of nanoscale technology and the adoption of metronomic concurrent chemotherapy have been presented. Also, the potential with the use of low dose hyperradiosensitivity in enhancing chemotherapy outcomes too has been discussed. In this era of evidence based clinical practise, there exists a strong obsession towards the ‘present’ with ‘contempt towards the future’. Accepting the shortcomings of the existing modalities, there must be a strong zeal towards discovering better methodologies to enhance radiotherapeutic outcomes for the sake of a better future. PMID:26904574

  13. Systemic Targeted Alpha Radiotherapy for Cancer

    PubMed Central

    Allen, BJ

    2013-01-01

    Background: The fundamental principles of internal targeted alpha therapy forcancer were established many decades ago.The high linear energy transfer (LET) ofalpha radiation to the targeted cancer cellscauses double strand breaks in DNA. Atthe same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and chemotherapy. Such therapies fail on several fronts, such as lack of control of some primary cancers (e.g. glioblastoma multiforme) and to inhibit the development of lethal metastaticcancer after successful treatment of the primary cancer. Objective: This review charts the developing role of systemic high LET, internalradiation therapy. Method: Targeted alpha therapy is a rapidly advancing experimental therapy thatholds promise to deliver high cytotoxicity to targeted cancer cells. Initially thoughtto be indicated for leukemia and micrometastases, there is now evidence that solidtumors can also be regressed. Results: Alpha therapy may be molecular or physiological in its targeting. Alphaemitting radioisotopes such as Bi-212, Bi-213, At-211 and Ac-225 are used to labelmonoclonal antibodies or proteins that target specific cancer cells. Alternatively, Radium-233 is used for palliative therapy of breast and prostate cancers because of its bone seeking properties. Conclusion: Preclinical studies and clinical trials of alpha therapy are discussedfor leukemia, lymphoma, melanoma, glioblastoma multiforme, bone metastases, ovarian cancer, pancreatic cancer and other cancers. PMID:25505750

  14. System Toward Automation in Radiotherapy Treatment: START

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Tsoi, Kenneth Y. P.

    1994-10-01

    START is a new automation system invented for nasopharyngeal carcinoma treatment. A laser scanner system capable of non-contact digitization of 3D surface is used to digitize the contours of the patient's face, shoulder and special landmark reference features of the patient. These features are stored in the computer in 3D digitized format. The digitized facial features with traced landmark reference features are used for fabrication of a true sized wood-particle laminates mould by a computer numerical controlled milling system. A Cobex mask is formed on this mould by using vacuum forming technique. With an image analysis and computer aided design system, the X-ray film with treatment window marked is traced automatically and converted to match the prescanned 3D information. A computer controlled 6-axis robot can precisely mark out the required areas on the Cobex cast for treatment. Finally, the patient receives radiotherapy treatment with the Cobex case as a positioning registration device. The new system will replace the manual procedure with better patient comfort, higher efficiency and enhanced accuracy.

  15. Automated radiotherapy treatment plan integrity verification

    SciTech Connect

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  16. Geometrical pre-planning for conformal radiotherapy.

    PubMed

    Tsougos, Ioannis; Schreibmann, Eduard; Lahanas, Michael; Theodorou, Kiki; Kappas, Constantin; Baltas, Dimos

    2007-01-01

    The optimum selection of beams and arcs in conformal techniques is of the outmost importance in modern radiotherapy. In this work we give a description of an analytic method to aid optimum selection, which is based on minimizing the intersection between beams and organs at risk (OAR) and on minimizing the intersection between the beam and the planning target volume (PTV). An arc-selection function that permits selection of irradiation arcs based on individual beam feasibility is introduce. The method simulates the treatment process by defining a computed beam feasibility, for every possible set of gantry-table angles, by taking into account accurately computer intersection volumes between the OAR and beams. The beams are shaped to conform the target using realistic parameters for the treatment process. The results are displayed on a virtual sphere centred at the isocenter with color-coded regions indicating beam feasibility. Arcs selections are performed by searching the map for successive gantry positions at a certain table angle, with feasibility values greater than a user-specified threshold. The accuracy of the method was confirmed by using geometrical regular shapes, as well as real clinical cases. PMID:17851850

  17. Osteoradionecrosis of the Ribs following Breast Radiotherapy

    PubMed Central

    Nicholls, Luke; Gorayski, Peter; Harvey, Jennifer

    2015-01-01

    Introduction Osteoradionecrosis (ORN) of the chest wall is a rare complication after whole-breast radiotherapy (RT). Herein, we report a case of ORN involving the underlying ribs following adjuvant whole-breast RT using standard fractionation and conduct a review of the literature. Case Report A previously well 43-year-old female with right-sided, early-stage, node-negative breast cancer was treated with breast-conserving surgery. She subsequently underwent adjuvant whole-breast RT receiving 50 Gy in 25 fractions over 5 weeks using standard tangential photon fields with 6 MV photons followed by an electron boost of 10 Gy in 5 fractions according to International Commission on Radiation Units (ICRU) requirements. Eleven months after RT, the patient developed right lateral chest wall pain, with magnetic resonance imaging (MRI) demonstrating two fractures involving the underlying right fifth and sixth ribs associated with fatty marrow changes in the second to sixth ribs, thus raising the possibility of ORN. Treatments including hyperbaric oxygen, pentoxifylline and vitamin E were used with symptomatic improvements. There was demonstrable resolution on follow-up MRI at 2.5 years. Conclusion The incidence of ORN utilising modern RT techniques and standard fractionation is rare. Numerous treatments are available, with variable response rates. Emerging evidence of predictive gene profiling to estimate the risk of radiation sensitivity may assist in individualising preventative strategies to mitigate the risk of ORN. PMID:26351442

  18. Inflammatory breast carcinoma treated by radical radiotherapy

    SciTech Connect

    Chu, A.M.; Wood, W.C.; Doucette, J.A.

    1980-06-01

    Sixty-two patients with localized clinical inflammatory breast carcinoma were treated with curative, radical radiotherapy doses to the breast and draining lymphatics. Fifty patients have died from disease, 7 are alive with disease, and 5 are free of disease at time of reporting, thus indicating the fulminant nature of this rare form of breast cancer. Median survival is approximately 18 months. A five-year actuarial survival and relapse-free survival of 14% and 6%, respectively, are obtained. Local and regional recurrence was noted in 43 of 62 patients (69%). Twelve patients (19%) failed in the locally irradiated area only, 31 patients (50%) failed in both local, regional, and distant sites, and 14 patients (23%) failed with distant metastases only. Due to the complex dosimetry required in the treatment of breast cancer, retrospective analysis was made of actual tumor doses delivered before 1972. The breast was oftentimes calculated to receive 20 to 35% less than the stated dose. Doses in excess of 6000 rads tumor dose seem necessary since 14 of the 15 patients with persistent disesase had received less than this dose. However, once tumor exceeded 10 cm increasing dose within clinical therapeutic ranges failed to control disease, although the recurrence-free interval was somewhat prolonged. Since 1976, twice-a-day fractionation has been used in larger tumors, and this appears to have decreased the local recurrence rate to 33% (2/6) patients. Preliminary results of adjuvant multiple drug therapy appear encouraging.

  19. Modeling the risk of secondary malignancies after radiotherapy.

    PubMed

    Schneider, Uwe

    2011-01-01

    In developed countries, more than half of all cancer patients receive radiotherapy at some stage in the management of their disease. However, a radiation-induced secondary malignancy can be the price of success if the primary cancer is cured or at least controlled. Therefore, there is increasing concern regarding radiation-related second cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Of particular interest are second cancer risk estimates for new radiation treatment modalities such as intensity modulated radiotherapy, intensity modulated arc-therapy, proton and heavy ion radiotherapy. The long term risks from such modern radiotherapy treatment techniques have not yet been determined and are unlikely to become apparent for many years, due to the long latency time for solid tumor induction. Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors who were exposed to γ-rays and neutrons. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. With increasing cure rates, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this review, emphasis was placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. Simple radiation protection models should be used only with extreme care for risk estimates in radiotherapy, since they are developed exclusively for low dose. When applied to scatter radiation, such models can predict only a fraction of observed second malignancies. Better semi-empirical models include the effect of dose fractionation and represent the dose-response relationships more accurately. The involved uncertainties are still huge for most of the organs and tissues. A major reason for this is that the

  20. Esophageal perforation during or after conformal radiotherapy for esophageal carcinoma

    PubMed Central

    Chen, Hai-yan; Ma, Xiu-mei; Ye, Ming; Hou, Yan-li; Xie, Hua-Ying; Bai, Yong-rui

    2014-01-01

    The aim of this study was to analyze the risk factors and prognosis for patients with esophageal perforation occurring during or after radiotherapy for esophageal carcinoma. We retrospectively analyzed 322 patients with esophageal carcinoma. These patients received radiotherapy for unresectable esophageal tumors, residual tumors after operation, or local recurrence. Of these, 12 had radiotherapy to the esophagus before being admitted, 68 patients had concurrent chemoradiotherapy (CRT), and 18 patients had esophageal perforation after RT (5.8%). Covered self-expandable metallic stents were placed in 11 patients. Two patients continued RT after stenting and control of infection; one of these suffered a new perforation, and the other had a massive hemorrhage. The median overall survival was 2 months (0–3 months) compared with 17 months in the non-perforation group. In univariate analysis, the Karnofsky performance status (KPS) being ≤70, age younger than 60, T4 stage, a second course of radiotherapy to the esophagus, extracapsular lymph nodes (LN) involving the esophagus, a total dose >100 Gy (biologically effective dose−10), and CRT were risk factors for perforation. In multivariate analysis, age younger than 60, extracapsular LN involving the esophagus, T4 stage, and a second course of radiotherapy to the esophagus were risk factors. In conclusion, patients with T4 stage, extracapsular LN involving the esophagus, and those receiving a second course of RT should be given particular care to avoid perforation. The prognosis after perforation was poor. PMID:24914102

  1. [Description of latest generation equipment in external radiotherapy].

    PubMed

    Pellejero, S; Lozares, S; Mañeru, F

    2009-01-01

    Both the planning systems and the form of administering radiotherapy have changed radically since the introduction of 3D planning. At present treatment planning based on computerised axial tomography (CAT) images is standard practice in radiotherapy services. In recent years lineal accelerators for medical use have incorporated technology capable of administering intensity modulated radiation beams (IMRT). With this mode distributions of conformed doses are generated that adjust to the three dimensional form of the white volume, providing appropriate coverage and a lower dose to nearby risk organs. The use of IMRT is rapidly spreading amongst radiotherapy centres throughout the world. This growing use of IMRT has focused attention on the need for greater control of the geometric uncertainties in positioning the patient and control of internal movements. To this end, both flat and volumetric image systems have been incorporated into the treatment equipment, making image-guided radiotherapy (IGRT) possible. This article offers a brief description of the latest advances included in the planning and administration of radiotherapy treatment. PMID:19738655

  2. Improved outcome of nasopharyngeal carcinoma treated with conventional radiotherapy

    SciTech Connect

    Palazzi, Mauro . E-mail: mauro.palazzi@istitutotumori.mi.it; Guzzo, Marco; Tomatis, Stefano Ph.D.; Cerrotta, Annamaria; Potepan, Paolo; Quattrone, Pasquale; Cantu, Giulio

    2004-12-01

    Purpose: To describe the outcome of patients with nonmetastatic nasopharyngeal carcinoma (NPC) treated with conventional radiotherapy at a single institution. Methods and materials: From 1990 to 1999, 171 consecutive patients with NPC were treated with conventional (two-dimensional) radiotherapy. Tumor histology was undifferentiated in 82% of cases. Tumor-node-metastasis Stage (American Joint Committee on Cancer/International Union Against Cancer 1997 system) was I in 6%, II in 36%, III in 22%, and IV in 36% of patients. Mean total radiation dose was 68.4 Gy. Chemotherapy was given to 62% of the patients. The median follow-up for surviving patients was 6.3 years (range, 3.1-13.1 years). Results: The 5-year overall survival, disease-specific survival, and disease-free survival rates were 72%, 74%, and 62%, respectively. The 5-year local, regional, and distant control rates were 84%, 80%, and 83% respectively. Late effects of radiotherapy were prospectively recorded in 100 patients surviving without relapse; 44% of these patients had Grade 3 xerostomia, 33% had Grade 3 dental damage, and 11% had Grade 3 hearing loss. Conclusions: This analysis shows an improved outcome for patients treated from 1990 to 1999 compared with earlier retrospective series, despite the use of two-dimensional radiotherapy. Late toxicity, however, was substantial with conventional radiotherapy.

  3. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy.

    PubMed

    Hidaka, Takako; Chuman, Hideki; Nao-I, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  4. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J. . E-mail: amdurrj@ufl.edu; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-06-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element.

  5. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy

    PubMed Central

    Hidaka, Takako; Chuman, Hideki; Nao-i, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  6. Intensity-modulated radiotherapy in the treatment of breast cancer.

    PubMed

    Dayes, I; Rumble, R B; Bowen, J; Dixon, P; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses beams with multiple intensity levels for any single beam, allowing concave dose distributions and tighter margins than those possible using conventional radiotherapy. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of breast cancer to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Providing that avoidance of acute adverse effects associated with radiation is an outcome of interest, then IMRT is recommended over tangential radiotherapy after breast-conserving surgery, based on a review of six published reports including 2012 patients. There were insufficient data to recommend IMRT over standard tangential radiotherapy for reasons of oncological outcomes or late toxicity. Future research should focus on studies with longer follow-up and provide data on late toxicity and disease recurrence rates. PMID:22748561

  7. Can fentanyl transdermal patches prevent the cutaneous hyperpigmentation related to radiotherapy in patients with cancer?

    PubMed

    Mutlu, Hasan

    2016-04-01

    Dermatologic adverse effects related to radiotherapy are one of the most important cosmetic problems and affect the quality of life in patients with cancer. In a male patient with non-small cell lung cancer who received palliative radiotherapy, the hyperpigmentation related to radiotherapy was examined two months later except for fentanyl transdermal patch area. The inhibitory effect of fentanyl on cell cycle may prevent hyperpigmentation related to radiotherapy. PMID:25233883

  8. Optimization approaches for planning external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Gozbasi, Halil Ozan

    Cancer begins when cells grow out of control as a result of damage to their DNA. These abnormal cells can invade healthy tissue and form tumors in various parts of the body. Chemotherapy, immunotherapy, surgery and radiotherapy are the most common treatment methods for cancer. According to American Cancer Society about half of the cancer patients receive a form of radiation therapy at some stage. External beam radiotherapy is delivered from outside the body and aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissue unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system parameters to deliver sufficient dose to target structures while avoiding damage to healthy tissue. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop automated treatment planning technology for IMRT that produces several high-quality treatment plans satisfying provided clinical requirements in a single invocation and without human guidance. A novel bi-criteria scoring based beam selection algorithm is part of the planning system and produces better plans compared to those produced using a well-known scoring-based algorithm. Our algorithm is very efficient and finds the beam configuration at least ten times faster than an exact integer programming approach. Solution times range from 2 minutes to 15 minutes which is clinically acceptable. With certain cancers, especially lung cancer, a patient's anatomy changes during treatment. These anatomical changes need to be considered in treatment planning. Fortunately, recent advances in imaging technology can provide multiple images of the treatment region taken at different points of the breathing cycle, and deformable image registration algorithms can

  9. Regression of posterior uveal melanomas following cobalt-60 plaque radiotherapy

    SciTech Connect

    Cruess, A.F.; Augsburger, J.J.; Shields, J.A.; Brady, L.W.; Markoe, A.M.; Day, J.L.

    1984-12-01

    A method has been devised for evaluating the rate and extent of regression of the first 100 consecutive patients with a posterior uveal melanoma that had been managed by Cobalt-60 plaque radiotherapy at Wills Eye Hospital. It was found that the average posterior uveal melanoma in the series did not regress rapidly to a flat, depigmented scar but shrank slowly and persisted as a residual mass approximately 50% of the thickness of the original tumor at 54 months following Cobalt-60 plaque radiotherapy. The authors also found that the rate and extent of regression of the tumors in patients who subsequently developed metastatic melanoma were not appreciably different from the rate and extent of regression of the tumors in patients who remained well systemically. These observations indicate that the rate and extent of regression of posterior uveal melanomas following Cobalt-60 plaque radiotherapy are poor indicators of the prognosis of the affected patients for subsequent development of clinical metastatic disease.

  10. Prostaglandin inhibitor and radiotherapy in advanced head and neck cancers

    SciTech Connect

    Pillsbury, H.C. III; Webster, W.P.; Rosenman, J.

    1986-05-01

    Radiotherapy is the usual mode of treatment for unresectable head and neck cancer. To improve cure rates, extend survival, and reduce morbidity, we use accelerated hyperfractionation radiotherapy and an adjuvant drug to inhibit prostaglandin synthesis. In this study, 19 patients received 300 rad/day of radiotherapy in two equally divided doses to a total dose averaging 6,200 rad. Either indomethacin, 25 mg, or placebo was given four times a day in a double-blind fashion during therapy. Radiation mucositis was graded as 0 to 4+; pain, nutritional status, and tumor status were monitored daily and recorded biweekly. Evaluation of the data showed delayed mucositis in the experimental group for grades 1 to 3, with a significant difference at grade 3 compared with controls. The significance of a long-term comparison of cure rates would be doubtful considering the heterogeneity of the primary sites and regional disease in this group coupled with the small size of our study.

  11. Radiotherapy of metastatic seminoma in the dog. Case reports

    SciTech Connect

    McDonald, R.K.; Walker, M.; Legendre, A.M.; vanEe, R.T.; Gompf, R.E.

    1988-04-01

    Four dogs with metastatic seminoma were treated with cesium 137 teleradiotherapy. Minimum total tumor dose ranged from 17 to 40 gray (Gy) and was usually given through bilateral opposing sublumbar ports in eight to ten fractions, with three fractions given weekly. The tumor regressed in all four dogs. The first dog (case 1) was free of tumor and died of non-tumor related causes at 57 months. The second dog (case 2) was free of tumor but was euthanatized at 37 months for a limb fracture. The third dog (case 3) was euthanatized for undertermined pulmonary disease 43 months after radiotherapy. The fourth dog (case 4) was euthanatized 6 months following radiotherapy because of transitional cell carcinoma and renal failure. No evidence of seminoma was found at necropsy. Radiotherapy was shown to be effective treatment for seminoma with regional metastasis.

  12. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  13. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  14. The Three Dimensional Conformal Radiotherapy for Hyperkeratotic Plantar Mycosis Fungoides

    PubMed Central

    Lee, Sun Young; Kwon, Hyoung Cheol; Cho, Yong-Sun; Nam, Kyung-Hwa; Ihm, Chull-Wan

    2011-01-01

    The localized early-stage of Mycosis fungoides (MF) (stage IA-IIA) is usually treated with topical agents, such as nitrogen mustard, steroids, and phototherapy (UVB/PUVA) as first line therapy; response to these initial treatments is usually good. However, hyperkeratotic plantar lesions are clinically rare and have decreased responsiveness to topical agents. For such cases, physicians may consider local radiotherapy. Here, a case of an 18-year-old Korean woman who was treated with three-dimensional conformal radiotherapy (3D-CRT) for hyperkeratotic plantar lesions that were refractory to UVA-1, methotrexate, and topical steroids is reported. Complete remission was attained after radiotherapy. During the one-year follow-up period, there has been no evidence of disease recurrence and no chronic complications have been observed. PMID:22028574

  15. Frontiers in Radiotherapy for Early-Stage Invasive Breast Cancer

    PubMed Central

    Fisher, Christine M.; Rabinovitch, Rachel

    2014-01-01

    The development of breast-conserving treatment for early-stage breast cancer is one of the most important success stories in radiation oncology in the latter half of the twentieth century. Lumpectomy followed by radiotherapy provides an appealing alternative to mastectomy for many women. In recent years, there has been a shift in clinical investigational focus toward refinements in the methods of delivering adjuvant radiotherapy that provide shorter, more convenient schedules of external-beam radiotherapy and interstitial treatment. Expedited courses of whole-breast treatment have been demonstrated to be equivalent to traditional lengthier courses in terms of tumor control and cosmetic outcome and to provide an opportunity for cost efficiencies. PMID:25113764

  16. Graves disease with ophthalmopathy following radiotherapy for Hodgkin's disease

    SciTech Connect

    Jacobson, D.R.; Fleming, B.J.

    1984-12-01

    The number of patients achieving long-term survival following neck irradiation for Hodgkin's disease and other malignancies is increasing. Paralleling this increase in survivors is the development of late complications of the therapy itself. Eleven patients have previously been reported who developed Graves ophthalmopathy 18 months to seven years after receiving neck radiotherapy for nonthyroidal malignancies. The seven patients who had HLA typing were all HLA-B8 negative, despite the reported association of the HLA-B8 antigen with Graves disease. A patient who is HLA-B8 positive who developed Graves ophthalmopathy and hyperthyroidism nine years after receiving mantle radiotherapy for Hodgkin's disease is reported. It is recommended that Graves disease be included among the thyroid diseases that receive consideration during follow-up of patients who have received mantle radiotherapy.

  17. Recent advancements in toxicity prediction following prostate cancer radiotherapy.

    PubMed

    Ospina, J D; Fargeas, A; Dréan, G; Simon, A; Acosta, O; de Crevoisier, R

    2015-01-01

    In external beam radiotherapy for prostate cancer limiting toxicities for dose escalation are bladder and rectum toxicities. Normal tissue complication probability models aim at quantifying the risk of developping adverse events following radiotherapy. These models, originally proposed in the context of uniform irradiation, have evolved to implementations based on the state-of-the-art classification methods which are trained using empirical data. Recently, the use of image processing techniques combined with population analysis methods has led to a new generation of models to understand the risk of normal tissue complications following radiotherapy. This paper overviews those methods in the case of prostate cancer radiation therapy and propose some lines of future research. PMID:26737471

  18. CERR: a computational environment for radiotherapy research.

    PubMed

    Deasy, Joseph O; Blanco, Angel I; Clark, Vanessa H

    2003-05-01

    A software environment is described, called the computational environment for radiotherapy research (CERR, pronounced "sir"). CERR partially addresses four broad needs in treatment planning research: (a) it provides a convenient and powerful software environment to develop and prototype treatment planning concepts, (b) it serves as a software integration environment to combine treatment planning software written in multiple languages (MATLAB, FORTRAN, C/C++, JAVA, etc.), together with treatment plan information (computed tomography scans, outlined structures, dose distributions, digital films, etc.), (c) it provides the ability to extract treatment plans from disparate planning systems using the widely available AAPM/RTOG archiving mechanism, and (d) it provides a convenient and powerful tool for sharing and reproducing treatment planning research results. The functional components currently being distributed, including source code, include: (1) an import program which converts the widely available AAPM/RTOG treatment planning format into a MATLAB cell-array data object, facilitating manipulation; (2) viewers which display axial, coronal, and sagittal computed tomography images, structure contours, digital films, and isodose lines or dose colorwash, (3) a suite of contouring tools to edit and/or create anatomical structures, (4) dose-volume and dose-surface histogram calculation and display tools, and (5) various predefined commands. CERR allows the user to retrieve any AAPM/RTOG key word information about the treatment plan archive. The code is relatively self-describing, because it relies on MATLAB structure field name definitions based on the AAPM/RTOG standard. New structure field names can be added dynamically or permanently. New components of arbitrary data type can be stored and accessed without disturbing system operation. CERR has been applied to aid research in dose-volume-outcome modeling, Monte Carlo dose calculation, and treatment planning optimization

  19. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  20. Predicting radiotherapy outcomes using statistical learning techniques*

    PubMed Central

    El Naqa, Issam; Bradley, Jeffrey D; Lindsay, Patricia E; Hope, Andrew J; Deasy, Joseph O

    2013-01-01

    Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for ‘generalizabilty’ validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model

  1. Pattern of radiotherapy care in Bulgaria.

    PubMed

    Hadjieva, Tatiana

    2015-01-01

    The paper reveals the changing pattern of Bulgarian Radiotherapy (RT) care after the successful implementation of 15 projects for 100 million euro under the European Regional Development Fund in Operational Programme for Regional Development 2007-2013. The project enables a total one-step modernization of 14 Bulgarian RT Centres and creation of a new one. At the end of the Programme (mid 2015), 16 new Linacs and 2 modern cobalt machines will be available together with 11 virtual CT simulators, 5 CT simulators, 1 MRI and 1 PET CT for RT planning and all dosimetry facilities needed. Such a modernization has moved Bulgarian RT forward, with 2.7 MV units per one million of population (MV/mln.inh) in comparison with 0.9 MV/mln.inh in 2012. Guild of Bulgarian Radiotherapists includes 70 doctors, 46 physicists and 10 engineers, together with 118 RTTs and 114 nurses and they all have treated 16,447 patients in 2013. Major problems are inadequate reimbursement from the monopolistic Health Insurance Fund (900 euro for 3D conformal RT and 1500 euro for IMRT); fragmentation of RT care with 1-2 MV units per Centre; no payment for patient travel expenses; need for quick and profound education of 26% of doctors and 46% of physicists without RT license, along with continuous education for all others; and resource for 5000-9000 more patients to be treated yearly by RT in order to reach 45-50% from current service of 32%. After 15 years of struggle of RT experts, finally the pattern of Bulgarian RT care at 2014-2015 is approaching the level of modern European RT. PMID:26549991

  2. Stereotactic Body Radiotherapy for Primary Hepatocellular Carcinoma

    SciTech Connect

    Andolino, David L.; Johnson, Cynthia S.; Maluccio, Mary; Kwo, Paul; Tector, A. Joseph; Zook, Jennifer; Johnstone, Peter A.S.; Cardenes, Higinia R.

    2011-11-15

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) for the treatment of primary hepatocellular carcinoma (HCC). Methods and Materials: From 2005 to 2009, 60 patients with liver-confined HCC were treated with SBRT at the Indiana University Simon Cancer Center: 36 Child-Turcotte-Pugh (CTP) Class A and 24 CTP Class B. The median number of fractions, dose per fraction, and total dose, was 3, 14 Gy, and 44 Gy, respectively, for those with CTP Class A cirrhosis and 5, 8 Gy, and 40 Gy, respectively, for those with CTP Class B. Treatment was delivered via 6 to 12 beams and in nearly all cases was prescribed to the 80% isodose line. The records of all patients were reviewed, and treatment response was scored according to Response Evaluation Criteria in Solid Tumors v1.1. Toxicity was graded according to the Common Terminology Criteria for Adverse Events v4.0. Local control (LC), time to progression (TTP), progression-free survival (PFS), and overall survival (OS) were calculated according to the method of Kaplan and Meier. Results: The median follow-up time was 27 months, and the median tumor diameter was 3.2 cm. The 2-year LC, PFS, and OS were 90%, 48%, and 67%, respectively, with median TTP of 47.8 months. Subsequently, 23 patients underwent transplant, with a median time to transplant of 7 months. There were no {>=}Grade 3 nonhematologic toxicities. Thirteen percent of patients experienced an increase in hematologic/hepatic dysfunction greater than 1 grade, and 20% experienced progression in CTP class within 3 months of treatment. Conclusions: SBRT is a safe, effective, noninvasive option for patients with HCC {<=}6 cm. As such, SBRT should be considered when bridging to transplant or as definitive therapy for those ineligible for transplant.

  3. Radiotherapy Issues in Elderly Breast Cancer Patients

    PubMed Central

    Kunkler, Ian

    2012-01-01

    Summary Breast cancer in the elderly is a rising health care challenge. Under-treatment is common. While the proportion of older patients receiving adjuvant radiotherapy (RT) is rising, the proportion undergoing breast-conserving surgery without irradiation has also risen. The evidence base for loco-regional treatment is limited, reflecting the historical exclusion of older patients from randomised trials. The 2011 Oxford overview shows that the risk of first recurrence is halved in all age groups by adjuvant RT after breast-conserving surgery, although the absolute benefit in older ‘low-risk’ patients is small. There is level 1 evidence that a breast boost after breast-conserving surgery and whole-breast irradiation reduces local recurrence in older as in younger women, although in the former the absolute reduction is modest. Partial breast irradiation (external beam or intraoperative or postoperative brachytherapy) is potentially an attractive option for older patients, but the evidence base is insufficient to recommend it routinely. Similarly, shortened (hypofractionated) dose fraction schedules may be more convenient for older patients and are supported by level 1 evidence. There remains uncertainty about whether there is a subgroup of older low-risk patients in whom postoperative RT can be omitted after breast-conserving surgery. Biomarkers of ‘low risk’ are needed to refine the selection of patients for the omission of adjuvant RT. The role of postmastectomy irradiation is well established for ‘high-risk’ patients but uncertain in the intermediate-risk category of patients with 1–3 involved axillary nodes or node-negative patients with other risk factors where its role is investigational. PMID:24715826

  4. Predicting radiotherapy outcomes using statistical learning techniques

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Bradley, Jeffrey D.; Lindsay, Patricia E.; Hope, Andrew J.; Deasy, Joseph O.

    2009-09-01

    Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model

  5. Organizational, technical, physical and clinical quality standards for radiotherapy

    PubMed Central

    Bogusz-Czerniewicz, Marta; Kaźmierczak, Daniel

    2012-01-01

    Background Indisputably, radiotherapy has become an entirely interdisciplinary specialty. This situation requires efficient planning, verification, monitoring, quality control and constant improvement of all aspects of service delivery, referring both to patients’ (including diagnosis, prescription and method of treatment, its justification, realization and follow up) and organizational, technical and physics matters. Aim The aim of this work was to develop technical, physics and clinical quality standards for radiotherapy. This paper presents chosen standards for each of the aforementioned category. Materials and methods For the development of quality standards the comparison analysis of EU and Polish acts of law passed between 1980 and 2010 was conducted, the universal industrial ISO norm 9001:2008 referring to quality management system was reviewed. Recommendations of this norm were completed with detailed quality standards based on the author's 11 year work experience and the review of articles on quality assurance and quality control standards for radiotherapy published between 1984 and 2009 and the review of current recommendations and guidelines of American, International, European and National bodies (associations, societies, agencies such as AAPM, ESTRO, IAEA, and OECI) for quality assurance and quality management in radiotherapy. Results As a result 352 quality standards for radiotherapy were developed and categorized into the following three groups: (1) organizational standards, (2) physics and technical standards and (3) clinical standards. Conclusions Proposed quality standards for radiotherapy, can be used by any institution using ionizing radiation for medical procedures. Nevertheless standards are only of value if they are implemented, reviewed, audited and improved and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:24377023

  6. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  7. Genetics and genomics of radiotherapy toxicity: towards prediction

    PubMed Central

    2011-01-01

    Radiotherapy is involved in many curative treatments of cancer; millions of survivors live with the consequences of treatment, and toxicity in a minority limits the radiation doses that can be safely prescribed to the majority. Radiogenomics is the whole genome application of radiogenetics, which studies the influence of genetic variation on radiation response. Work in the area focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation, which is important for effective, safe treatment. In this review, we highlight recent advances in radiotherapy and discuss results from four genome-wide studies of radiotoxicity. PMID:21861849

  8. The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence

    PubMed Central

    Barker, Holly E.; Paget, James T. E.; Khan, Aadil A.; Harrington, Kevin J.

    2016-01-01

    Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focussed on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes induced in the tumour microenvironment by irradiation and discuss how they may promote radioresistance and tumour recurrence. Subsequently, we highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy. PMID:26105538

  9. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.

    PubMed

    Barker, Holly E; Paget, James T E; Khan, Aadil A; Harrington, Kevin J

    2015-07-01

    Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focused on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes that are induced in the tumour microenvironment by irradiation and discuss how these changes may promote radioresistance and tumour recurrence. We also highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy. PMID:26105538

  10. A new fixation aid for the radiotherapy of eye tumors

    SciTech Connect

    Buchgeister, Markus; Grisanti, Salvatore; Suesskind, Daniela; Bamberg, Michael; Paulsen, Frank

    2007-12-15

    A modified swim goggle holding a light spot as an optical guide for actively aligning the eye in a reproducible orientation has been constructed to perform radiotherapy of ocular tumors. This device is compatible with computed tomography (CT) and magnetic resonance imaging systems. Image fusion of these data sets yielded clinically acceptable results. The reproducibility of the eye's positioning is tested by repeated CT. The eye's alignment during radiotherapy is monitored by an infrared TV camera with individual markings of the eye's position on the TV-monitor screen. From 2003-2006, 50 patients were treated with this fixation aid by radiosurgery with good patient compliance.

  11. Hypofractionated Radiotherapy for Children With Diffuse Intrinsic Pontine Gliomas.

    PubMed

    Hankinson, Todd C; Patibandla, Mohana Rao; Green, Adam; Hemenway, Molly; Foreman, Nicholas; Handler, Michael; Liu, Arthur K

    2016-04-01

    Children with diffuse intrinsic pontine gliomas have very poor outcomes, with nearly all children dying from disease. Standard therapy includes 6 weeks of radiation. There have been descriptions of using a shortened course of radiation. We describe our experience with a hypofractionated radiotherapy approach delivered over five treatments. In seven children, hypofractionated radiotherapy was well tolerated, but symptomatic radiation necrosis was seen in three of the children. Overall survival was slightly shorter than previously described in the literature. We are developing a prospective dose-finding protocol with the goal of tolerable short-course radiation treatment with outcomes comparable to conventional radiation. PMID:26544789

  12. Radiotherapy for a phalanx bone metastasis of a lung adenocarcinoma.

    PubMed

    Sumodhee, Shakeel; Huchot, Eric; Peret, Gaelle; Marchal, Christian; Paganin, Fabrice; Magnin, Valerie

    2014-09-01

    Phalanx bone metastasis as the initial presenting sign of lung cancer is a rare presentation. Lung cancer is known to metastasize to the bone, but rarely to the fingers. A 61-year-old male smoker presented with pain in the left ring finger. Severe pain discouraged the patient from using his left hand. An X-ray of the left hand showed a lytic bone lesion. The patient was treated with finger radiotherapy. Analgesics were no longer needed and the patient was able to reuse his left hand in his everyday life. Palliative radiotherapy relieved our patient and improved his quality of life. PMID:25493086

  13. [Biochemical recurrence criteria after radiotherapy (external beam, brachytherapy). Natural history of the disease after radiotherapy].

    PubMed

    Villoslada, Carmen Ibáñez; Olombrada, Maria Victoria de Torres; San Segundo, Carmen González

    2012-01-01

    Prostate specific antigen (PSA) is the main tool in the follow-up of prostate cancer patients after definitive therapy. It's widely used as an early marker to value treatment success. Biochemical recurrence predicts metastatic disease progression and prostate cancer-specific mortality. In 1996, the American Society for Therapeutic Radiology and Oncology (ASTRO) provided a definition of biochemical failure after radiotherapy, based on three consecutive increases in PSA after nadir. As more experience was gained using the proposed definition and follow up duration in the PSA era matured, deficiencies and controversial issues emerged, so more recently proposed candidate definitions have provided consistent outcome. In view of the criticisms, a second consensus conference was held on 2005, with "nadir + 2 ng/ml" accepted as standard definition. The natural history and evidence of PSA kinetic parameters and different definitions of biochemical failure after external beam radiation therapy and/or brachytherapy are reviewed in the following article. PMID:22318174

  14. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  15. Stereotactic Radiotherapy of Intracranial Tumors: A Comparison of Intensity-Modulated Radiotherapy and Dynamic Conformal Arc

    SciTech Connect

    Wiggenraad, Ruud G.J. Petoukhova, Anna L.; Versluis, Lia; Santvoort, Jan P.C. van

    2009-07-15

    Purpose: Intensity-modulated radiotherapy (IMRT) and dynamic conformal arc (DCA) are two state-of-the-art techniques for linac-based stereotactic radiotherapy (SRT) using the micromultileaf collimator. The purpose of this planning study is to examine the relative merits of these techniques in the treatment of intracranial tumors. Materials and Methods: SRT treatment plans were made for 25 patients with a glioma or meningioma. For all patients, we made an IMRT and a DCA plan. Plans were evaluated using: target coverage, conformity index (CI), homogeneity index (HI), doses in critical structures, number of monitor units needed, and equivalent uniform dose (EUD) in planning target volume (PTV) and critical structures. Results: In the overall comparison of both techniques, we found adequate target coverage in all cases; a better mean CI with IMRT in concave tumors (p = 0.027); a better mean HI with DCA in meningiomas, complex tumors, and small (< 92 mL) tumors (p = 0.000, p = 0.005, and p = 0.005, respectively); and a higher EUD in the PTV with DCA in convex tumors (gliomas) and large tumors (p = 0.000 and p = 0.003, respectively). In all patients, significantly more monitor units were needed with IMRT. The results of the overall comparison did not enable us to predict the preference for one of the techniques in individual patients. The DCA plan was acceptable in 23 patients and the IMRT plan in 19 patients. DCA was preferred in 18 of 25 patients. Conclusions: DCA is our preferred SRT technique for most intracranial tumors. Tumor type, size, or shape do not predict a preference for DCA or IMRT.

  16. Large Cohort Dose-Volume Response Analysis of Parotid Gland Function After Radiotherapy: Intensity-Modulated Versus Conventional Radiotherapy

    SciTech Connect

    Dijkema, Tim Terhaard, Chris H.J.; Roesink, Judith M.; Braam, Petra M.; Gils, Carla H. van; Moerland, Marinus A.; Raaijmakers, Cornelis P.J.

    2008-11-15

    Purpose: To compare parotid gland dose-volume response relationships in a large cohort of patients treated with intensity-modulated (IMRT) and conventional radiotherapy (CRT). Methods and materials: A total of 221 patients (64 treated with IMRT, 157 with CRT) with various head-and-neck malignancies were prospectively evaluated. The distribution of tumor subsites in both groups was unbalanced. Stimulated parotid flow rates were measured before and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from computed tomography-based treatment planning. The normal tissue complication probability (NTCP) model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow ratio <25% of the pretreatment flow rate. The relative risk of complications was determined for IMRT vs. CRT and adjusted for the mean parotid gland dose using Poisson regression modeling. Results: One year after radiotherapy, NTCP curves for IMRT and CRT were comparable with a TD{sub 50} (uniform dose leading to a 50% complication probability) of 38 and 40 Gy, respectively. Until 6 months after RT, corrected for mean dose, different complication probabilities existed for IMRT vs. CRT. The relative risk of a complication for IMRT vs. CRT after 6 weeks was 1.42 (95% CI 1.21-1.67), after 6 months 1.41 (95% CI; 1.12-1.77), and at 1 year 1.21 (95% CI 0.87-1.68), after correcting for mean dose. Conclusions: One year after radiotherapy, no difference existed in the mean dose-based NTCP curves for IMRT and CRT. Early after radiotherapy (up to 6 months) mean dose based (Lyman) models failed to fully describe the effects of radiotherapy on the parotid glands.

  17. Radiotherapy and chemoradiation after surgery for early cervical cancer

    PubMed Central

    Rogers, Linda; Siu, Shing Shun N; Luesley, David; Bryant, Andrew; Dickinson, Heather O

    2014-01-01

    Background This is an updated version of the original Cochrane review first published in Issue 4, 2009. There is an ongoing debate about the indications for, and value of, adjuvant pelvic radiotherapy after radical surgery in women with early cervical cancer. Certain combinations of pathological risk factors are thought to represent sufficient risk for recurrence, that they justify the use of postoperative pelvic radiotherapy, though this has never been shown to improve overall survival, and use of more than one type of treatment (surgery and radiotherapy) increases the risks of side effects and complications. Objectives To evaluate the effectiveness and safety of adjuvant therapies (radiotherapy, chemotherapy followed by radiotherapy, chemoradiation) after radical hysterectomy for early-stage cervical cancer (FIGO stages IB1, IB2 or IIA). Search methods For the original review, we searched the Cochrane Central Register of Controlled Trials (CENTRAL), Issue 4, 2008. The Cochrane Gynaecological Cancer Group Trials Register, MEDLINE (January 1950 to November 2008), EMBASE (1950 to November 2008). We also searched registers of clinical trials, abstracts of scientific meetings, reference lists of included studies and contacted experts in the field. For this update, we extended the database searches to September 2011 and searched the MetaRegister for ongoing trials. Selection criteria Randomised controlled trials (RCTs) that compared adjuvant therapies (radiotherapy, chemotherapy followed by radiotherapy, or chemoradiation) with no radiotherapy or chemoradiation, in women with a confirmed histological diagnosis of early cervical cancer who had undergone radical hysterectomy and dissection of the pelvic lymph nodes. Data collection and analysis Two review authors independently abstracted data and assessed risk of bias. Information on grade 3 and 4 adverse events was collected from the trials. Results were pooled using random-effects meta-analyses. Main results Two RCTs

  18. Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma

    PubMed Central

    Nath, Sameer K.; Simpson, Daniel R.; Rose, Brent S.; Sandhu, Ajay P.

    2009-01-01

    Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement. PMID:19644564

  19. Stereotactic radiotherapy of meningiomas compressing optical pathways

    SciTech Connect

    Hamm, Klaus-Detlef . E-mail: khamm@erfurt.helios-kliniken.de; Henzel, Martin; Gross, Markus W.; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2006-11-15

    Purpose: Microsurgical resection is usually the treatment of choice for meningiomas, especially for those that compress the optical pathways. However, in many cases of skull-base meningiomas a high risk of neurological deficits and recurrences exist in cases where the complete tumor removal was not possible. In such cases (fractionated) stereotactic radiotherapy (SRT) can offer an alternative treatment option. We evaluated the local control rate, symptomatology, and toxicity. Patients and Methods: Between 1997 and 2003, 183 patients with skull-base meningiomas were treated with SRT, among them were 65 patients with meningiomas that compressed optical pathways (64 benign, 1 atypical). Of these 65 cases, 20 were treated with SRT only, 27 were subtotally resected before SRT, and 18 underwent multiple tumor resections before SRT. We investigated the results until 2005, with a median follow-up of 45 months (range, 22-83 months). The tumor volume (TV = gross tumor volume) ranged from 0.61 to 90.20 cc (mean, 18.9 cc). Because of the risk of new visual disturbances, the dose per fraction was either 2 or 1.8 Gy for all patients, to a total dose of 50 to 60 Gy. Results: The overall survival and the progression-free survival rates for 5 years were assessed to 100% in this patient group. To date, no progression for these meningiomas have been observed. Quantitatively, tumor shrinkage of more than 20%, or more than 2 mm in diameter, was proved in 35 of the 65 cases after SRT. In 29 of the 65 patients, at least 1 of the symptoms improved. On application of the Common Toxicity Criteria (CTC), acute toxicity (Grade 3) was seen in 1 case (worsening of conjunctivitis). Another 2 patients developed late toxicity by LENT-SOMA score, 1 x Grade 1 and 1 x Grade 3 (field of vision loss). Conclusion: As a low-risk and effective treatment option for tumor control, SRT with 1.8 to 2.0 Gy per fraction can also be recommended in case of meningiomas that compress optical pathways. An

  20. Collision prediction software for radiotherapy treatments

    SciTech Connect

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A.

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  1. Tomographic Imaging on a Cobalt Radiotherapy Machine

    NASA Astrophysics Data System (ADS)

    Marsh, Matthew Brendon

    Cancer is a global problem, and many people in low-income countries do not have access to the treatment options, such as radiation therapy, that are available in wealthy countries. Where radiation therapy is available, it is often delivered using older Co-60 equipment that has not been updated to modern standards. Previous research has indicated that an updated Co-60 radiation therapy machine could deliver treatments that are equivalent to those performed with modern linear accelerators. Among the key features of these modern treatments is a tightly conformal dose distribution-- the radiation dose is shaped in three dimensions to closely match the tumour, with minimal irradiation of surrounding normal tissues. Very accurate alignment of the patient in the beam is therefore necessary to avoid missing the tumour, so all modern radiotherapy machines include imaging systems to verify the patient's position before treatment. Imaging with the treatment beam is relatively cost-effective, as it avoids the need for a second radiation source and the associated control systems. The dose rate from a Co-60 therapy source, though, is more than an order of magnitude too high to use for computed tomography (CT) imaging of a patient. Digital tomosynthesis (DT), a limited-arc imaging method that can be thought of as a hybrid of CT and conventional radiography, allows some of the three-dimensional selectivity of CT but with shorter imaging times and a five- to fifteen-fold reduction in dose. In the present work, a prototype Co-60 DT imaging system was developed and characterized. A class of clinically useful Co-60 DT protocols has been identified, based on the filtered backprojection algorithm originally designed for CT, with images acquired over a relatively small arc. Parts of the reconstruction algorithm must be modified for the DT case, and a way to reduce the beam intensity will be necessary to reduce the imaging dose to acceptable levels. Some additional study is required to

  2. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    SciTech Connect

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Soren M.

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  3. Early and late toxicity of radiotherapy for rectal cancer.

    PubMed

    Joye, Ines; Haustermans, Karin

    2014-01-01

    With the implementation of total mesorectal excision surgery and neoadjuvant (chemo) radiotherapy, the outcome of rectal cancer patients has improved and a substantial proportion of them have become long-term survivors. These advances come at the expense of radiation- and chemotherapy-related toxicity which remains an underestimated problem. Radiation-induced early toxicity in rectal cancer treatment mainly includes diarrhea, cystitis, and perineal dermatitis, while bowel dysfunction, fecal incontinence, bleeding, and perforation, genitourinary dysfunction, and pelvic fractures constitute the majority of late toxicity. It is now generally accepted that short-course radiotherapy (SCRT) and immediate surgery is associated with less early toxicity compared to conventionally fractionated chemoradiotherapy with delayed surgery. There are no significant differences in late toxicity between both treatment regimens. While there is hardly an increase in early toxicity after preoperative SCRT with immediate surgery, late toxicity is substantial compared to surgery alone. Early toxicity is more frequent when a longer interval between SCRT and surgery is used and is comparable to the toxicity observed with conventionally fractionated radiotherapy except that it occurs after the end of the radiotherapy. So far, randomized phase III trials failed to demonstrate a substantial gain in tumoural response when oxaliplatin or molecular agents are added to the multimodality treatment. Moreover, the addition of these drugs increases toxicity and remains therefore experimental. PMID:25103006

  4. Stereotactic radiosurgery and stereotactic radiotherapy for brain metastases.

    PubMed

    Halasz, Lia M; Rockhill, Jason K

    2013-01-01

    Stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HFSRT) have become important treatment modalities for brain metastases. While effective, there are still areas of extensive debate on its appropriate use in patients with life-limiting diseases. This review provides an overview of the indications and challenges of SRS and HFSRT in the management of brain metastases. PMID:23717789

  5. X-ray volume imaging in bladder radiotherapy verification

    SciTech Connect

    Henry, Ann M. . E-mail: amhenry@doctors.net.uk; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-03-15

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology.

  6. A new lead-free radiation shielding material for radiotherapy.

    PubMed

    Yue, Kun; Luo, Wenyun; Dong, Xiaoqing; Wang, Chuanshan; Wu, Guohua; Jiang, Mawei; Zha, Yuanzi

    2009-02-01

    Lead has recently been recognised as a source of environmental pollution, including the lead used for radiation shielding in radiotherapy. The bremsstrahlung radiation caused by the interaction between the electron beam and lead may reduce the accuracy of radiotherapy. To avoid the use of lead, a new material composed of tungsten and hydrogenated styrene-butadiene-styrene copolymer is studied with the Monte Carlo (MC) method and experiment in this paper. The component of the material is chosen after simulation with the MC method and the practical measurement is taken to validate the shielding ability of the material. The result shows that the shielding ability of the new material is good enough to fulfill the requirement for application in radiotherapy. Compared with lead alloy, the present new material is so flexible that can be easily customized into arbitrary shapes. Moreover, the material is environmentally friendly and can be recycled conveniently. Therefore, the material can be used as an effective lead substitute for shielding against electron beams in radiotherapy. PMID:19329510

  7. Radiotherapy-related intracranial aneurysms: A role for conservative management

    PubMed Central

    Parag, Sayal; Arif, Zafar; Chittoor, Rajaraman

    2016-01-01

    Background: Radiotherapy-related intracranial aneurysms are a recognized but rare phenomenon and often present following rupture leading to subarachnoid hemorrhage. Treatment poses a particular dilemma and both endovascular, and surgical approaches have been used with varied success. We present the case of a radiotherapy-related aneurysm treated conservatively with a favorable outcome. Case Description: A 37-year-old man was diagnosed with a left temporal lobe mass for which he underwent an uneventful craniotomy and debulking. Histology revealed Grade III anaplastic astrocytoma following which he received radiotherapy. Three years later, he presented with subacute headache and transient dysphasia. Computed tomography and catheter angiography revealed a fusiform aneurysm of the supramarginal branch of the left middle cerebral artery with probable intra-aneurysmal thrombus. Adjacent vessels also showed mild vasculitic changes. Trial balloon occlusion of the parent vessel resulted in profound dysphasia and was therefore abandoned. Bypass surgery or stent placement was deemed to have too high a risk of neurological deficit, and keeping in mind, the diagnosis of anaplastic astrocytoma, conservative management was pursued with partial thrombosis noted on serial imaging and stable appearances subsequently at 42 months’ follow-up. Conclusion: Conservative management can be pursued in selective cases of radiotherapy-related aneurysms, particularly if the risk of treating is too high and in the context of intracranial malignancy with limited lifespan. PMID:27313964

  8. Response of lymphangiectasis to radiotherapy. [X-ray

    SciTech Connect

    Kurczynski, E.; Horwitz, S.J.

    1981-07-15

    A 14-year-old girl with lymphangiectasis of the skull causing rapid extensive destruction of the left orbit, zygoma, mandible, sphenoid, and occiput underwent radiotherapy with 2000 rad to the entire skull, mandible, and upper cervical vertebrae. Three years later, progression of the disease has ceased, and the involved bone is slowly remineralizing.

  9. Xeroderma pigmentosum and medulloblastoma: chromosomal damage to lymphocytes during radiotherapy

    SciTech Connect

    Gianneli, F.; Avery, J.; Polani, P.E.; Terrell, C.; Giammusso, V.

    1981-10-01

    The effects of radiotherapy on a patient with xeroderma pigmentosum (XP) of complementation group C and medulloblastoma are reported. His lymphocytes showed no x-ray-induced chromatid damage, but unstable chromosomal aberrations increased throughout the course of radiotherapy as observed also in two other children (patients 2 and 3) with a similar tumor. Such damage was more dependent on spinal than cranial irradiation, lowest in the XP patient and highest in patient 3. Interindividual differences seemed largely due to the relative volume of body irradiated, but the damage in patient 3 remained relatively high even after accounting for such a factor. A maximum of 36, 68, and 77% of lymphocytes had aberrations in the XP and patients 2 and 3, respectively, but chromosomal damage did not show a Poisson distribution and indicated admixture of irradiated and nonirradiated cells. The relative frequency of the irradiated cells was estimated and seemed proportional to the ratios of the average irradiated field to the total body area. The XP patient showed no preferential loss of highly damaged cells and seemed not to suffer excessive chromosomal damage; he had a normal clinical response to and a favorable outcome of radiotherapy. These findings reduce anxiety on the use of radiotherapy in XP patients or at least in those of group C.

  10. Treatment of Retinoblastoma: The Role of External Beam Radiotherapy

    PubMed Central

    Park, Younghee

    2015-01-01

    The risk of radiotherapy-related secondary cancers in children with constitutional retinoblastoma 1 (RB1) mutations has led to reduced use of external beam radiotherapy (EBRT) for RB. Presently, tumor reduction with chemotherapy with or without focal surgery (chemosurgery) is most commonly undertaken; EBRT is avoided as much as possible and is considered only as the last treatment option prior to enucleation. Nevertheless, approximately 80% of patients are diagnosed at a locally advanced stage, and only 20-25% of early stage RB patients can be cured with a chemosurgery strategy. As a whole, chemotherapy fails in more than two-thirds of eyes with advanced stage disease, requiring EBRT or enucleation. Radiotherapy is still considered necessary for patients with large tumor(s) who are not candidates for chemosurgery but who have visual potential. When radiation therapy is indicated, the lowest possible radiation dose combined with systemic or local chemotherapy and focal surgery may yield the best clinical outcomes in terms of local control and treatment-related toxicity. Proton beam therapy is one EBRT method that can be used for treatment of RB and reduces the radiation dose delivered to the adjacent orbital bone while maintaining an adequate dose to the tumor. To maximize the therapeutic success of treatment of advanced RB, the possibility of integrating radiotherapy at early stages of treatment may need to be discussed by a multidisciplinary team, rather than considering EBRT as only a last treatment option. PMID:26446627

  11. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  12. Insufficiency Fractures After Pelvic Radiotherapy in Patients With Prostate Cancer

    SciTech Connect

    Igdem, Sefik; Alco, Guel; Ercan, Tuelay; Barlan, Metin; Ganiyusufoglu, Kuersat; Unalan, Buelent; Turkan, Sedat; Okkan, Sait

    2010-07-01

    Purpose: To assess the incidence, predisposing factors, and clinical characteristics of insufficiency fractures (IF) in patients with prostate cancer, who received pelvic radiotherapy as part of their definitive treatment. Methods and Materials: The charts of 134 prostate cancer patients, who were treated with pelvic radiotherapy between 1998 and 2007 were retrospectively reviewed. IF was diagnosed by bone scan and/or CT and/or MRI. The cumulative incidence of symptomatic IF was estimated by actuarial methods. Results: Eight patients were identified with symptomatic IF after a median follow-up period of 68 months (range, 12-116 months). The 5-year cumulative incidence of symptomatic IF was 6.8%. All patients presented with lower back pain. Insufficiency fracture developed at a median time of 20 months after the end of radiotherapy and was managed conservatively without any need for hospitalization. Three patients were thought to have metastatic disease because of increased uptake in their bone scans. However, subsequent CT and MR imaging revealed characteristic changes of IF, avoiding any further intervention. No predisposing factors for development of IF could be identified. Conclusions: Pelvic IF is a rare complication of pelvic radiotherapy in prostate cancer. Knowledge of pelvic IF is essential to rule out metastatic disease and prevent unnecessary treatment, especially in a patient cohort with high-risk features for distant spread.

  13. Late effects of radiotherapy on oral mucosa in humans.

    PubMed

    Handschel, J; Sunderkötter, C; Kruse-Lösler, B; Prott, F J; Meyer, U; Piffko, J; Joos, U

    2001-04-01

    In order to gain further understanding of the late effects of radiotherapy on oral mucosa, we analysed the histomorphological alterations, the cell populations in the subepithelial tissue, and the endothelial expression pattern of different adhesion molecules. Biopsies were taken from patients before irradiation, directly after 60 Gy, and 6-12 months after radiotherapy. Besides the histomorphological evaluation of the vessels, the endothelial expression of ICAM-1, VCAM-1 and E-selectin was determined as well as the distribution of LFA-1-, Mac-1-, VLA-4-, RM3/1-, 27E10- and 25F9-bearing cells in the subepithelial tissue. The expression of ICAM-1 was downregulated after radiotherapy, whereas the percentage of LFA-1- and VLA-4-bearing cells increased. VCAM-1 remained at low levels. The subepithelial infiltration was still dominated by RM3/1-positive macrophages. The number of vessels decreased, while the lumen of the remaining vessels increased. In conclusion, the late effects of radiotherapy are characterized by a decreased number of blood vessels and by significantly different expression patterns of the adhesion molecules studied, and of integrins and macrophage subpopulations, compared to the conditions before irradiation and directly after irradiation with 60 Gy. PMID:11347662

  14. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    PubMed

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  15. Late sensorial alterations in different radiotherapy techniques for nasopharyngeal cancer.

    PubMed

    Riva, Giuseppe; Raimondo, Luca; Ravera, Mattia; Moretto, Francesco; Boita, Monica; Potenza, Ilenia; Rampino, Monica; Ricardi, Umberto; Garzaro, Massimiliano

    2015-05-01

    Intensity-modulated radiation therapy (IMRT) for nasopharyngeal cancer (NPC) allowed a better distribution of the dose to the tumor volume, sparing surrounding structures. Aim of the study is the objective evaluation of olfactory and gustatory impairments in patients who underwent chemo-radiotherapy for NPC. Correlation between smell and taste alterations, xerostomy, and radiation technique was investigated. Thirty healthy subjects and 30 patients treated with chemo-radiation therapy for NPC, with at least a 2-years follow-up period, were evaluated. All subjects underwent symptoms evaluation, endoscopic fiber optic nasal examination, taste strips, Sniffin' sticks tests, Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer late radiation morbidity scoring system. Patients were divided in 2 groups: 2-dimensional radiotherapy/conformal 3-dimensional radiotherapy and IMRT. A higher percentage of rhinorrhea, nasal obstruction, xerostomy, hyposmia, hypogeusia, mucosal hyperemia, and presence of nasopharyngeal secretions was found in irradiated subjects (P < 0.05). Concerning olfactory and gustatory scores, we demonstrated a statistically significant difference between healthy subjects and irradiated patients (P < 0.05), with lower gustatory total score in IMRT group (P < 0.01). In conclusion, chemo-radiotherapy for NPC induces long-term smell and taste impairments, which can compromise quality of life. Although based on small samples, it is also important to consider that IMRT can induce higher taste dysfunction compared with traditional techniques. PMID:25800268

  16. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  17. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  18. Radiotherapy in cancer management at Mulago Hospital, Kampala, Uganda.

    PubMed

    Kigula-Mugambe, J B; Durosinmi-Etti, F A

    1996-09-01

    Five hundred and seven cancer patients who received radiotherapy using the newly upgraded facilities at the Mulago Hospital over a 16 month period following the inception of the services are reviewed. Previously available facilities had been limited to teletherapy using only a 300 KV orthovoltage X-ray machine which had proved inadequate to cope with the current needs at the department. The International Atomic Energy Agency (IAEA) in Vienna recently upgraded the available services through the provision of facilities for cobalt-60 teletherapy, brachytherapy and computerised treatment planning and dosimetry as well as providing training for all cadres of the radiotherapy department. We review the impact of this new service on the referral pattern and types of patients who received radiotherapy since inception. Over 60% of all the patients were women who presented with carcinoma of the cervix and breast. Apart from the apparent increase in cases of cervical carcinoma, the current AIDS pandemic in Uganda did not appear to reflect any increase in the incidence of other AIDS-related cancers such as Kaposi's sarcoma and non-Hodgkins lymphomas treated at the department. The need for more patients and earlier referrals to the department is stressed in order to maximise the use of the improved radiotherapy services. PMID:8991245

  19. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  20. Treatment outcome of postoperative radiotherapy for retroperitoneal sarcoma

    PubMed Central

    Lee, Hyun Jin; Kwon, Tae-Won; Yook, Jeong Hwan; Kim, Song-Cheol; Han, Duck-Jong; Kim, Choung-Soo; Ahn, Hanjong; Chang, Heung Moon; Ahn, Jin-Hee; Jwa, Eun Jin; Lee, Sang-Wook; Kim, Jong Hoon; Choi, Eun Kyung; Shin, Seong Soo; Ahn, Seung Do

    2011-01-01

    Purpose To evaluate the treatment outcome and prognostic factor after postoperative radiotherapy in retroperitoneal sarcoma. Materials and Methods Forty patients were treated with surgical resection and postoperative radiotherapy for retroperitoneal sarcoma from August 1990 to August 2008. Treatment volume was judged by the location of initial tumor and surgical field, and 45-50 Gy of radiation was basically delivered and additional dose was considered to the high-risk area. Results The median follow-up period was 41.4 months (range, 3.9 to 140.6 months). The 5-year overall survival (OS) was 51.8% and disease free survival was 31.5%. The 5-year locoregional recurrence free survival was 61.9% and distant metastasis free survival was 50.6%. In univariate analysis, histologic type (p = 0.006) was the strongest prognostic factor for the OS and histologic grade (p = 0.044) or resection margin (p = 0.032) had also effect on the OS. Histologic type (p = 0.004) was unique significant prognostic factor for the actuarial local control. Conclusion Retroperitoneal sarcoma still remains as a poor prognostic disease despite the combined modality treatment including surgery and postoperative radiotherapy. Selective dose-escalation of radiotherapy or combination of effective chemotherapeutic agent must be considered to improve the treatment result especially for the histopathologic type showing poor prognosis. PMID:22984679

  1. Second primary tumors following radiotherapy for childhood cancer

    SciTech Connect

    Hawkins, M.M. )

    1990-11-01

    Among a cohort of 9,279 survivors of childhood neoplasms other than retinoblastoma treated in Britain before 1980, the cumulative risk of a second primary tumor (SPT) by 25 years from 3-year survival was 3.7%. This corresponds to about five times the number expected from rates of cancer occurring in the general population. In the absence of both radiotherapy and chemotherapy, there was four times the expected number of subsequent cancers. The risk of an SPT associated with radiotherapy but not chemotherapy and both radiotherapy and chemotherapy were 6 and 9 times that expected, respectively. There is evidence that radiotherapy was involved in the development of many of the SPT's observed. However, case-control investigations are required to examine the relationship between relative risk of an SPT and therapy in detail. Secondary leukemia appears to occur more frequently among more recently diagnosed children with cancer. It is important to continue to monitor the occurrence of SPT's with a view to identifying the least carcinogenic therapies that are consistent with not compromising survival prospects.

  2. Technical Advances and Pitfalls in Head and Neck Radiotherapy

    PubMed Central

    Parvathaneni, Upendra; Laramore, George E.; Liao, Jay J.

    2012-01-01

    Intensity Modulated Radiotherapy (IMRT) is the standard of care in the treatment of head and neck squamous cell carcinomas (HNSCC) based on level 1 evidence. Technical advances in radiotherapy have revolutionized the treatment of HNSCC, with the most tangible gain being a reduction in long term morbidity. However, these benefits come with a serious and sobering price. Today, there is a greater chance of missing the target/tumor due to uncertainties in target volume definition by the clinician that is demanded by the highly conformal planning process involved with IMRT. Unless this is urgently addressed, our patients would be better served with the historically practiced non conformal radiotherapy, than IMRT which promises lesser morbidity. Image guided radiotherapy (IGRT) ensures the level of set up accuracy warranted to deliver a highly conformal treatment plan and should be utilized with IMRT, where feasible. Proton therapy has a theoretical physical advantage over photon therapy due to a lack of “exit dose”. However, clinical data supporting the routine use of this technology for HNSCC are currently sparse. The purpose of this article is to review the literature, discuss the salient issues and make recommendations that address the gaps in knowledge. PMID:22701482

  3. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  4. Radiotherapy for Extramedullary Plasmacytoma of the Head and Neck

    SciTech Connect

    Creach, Kimberly M.; Foote, Robert L. Neben-Wittich, Michelle A.; Kyle, Robert A.

    2009-03-01

    Purpose: To define the effectiveness of radiotherapy in the treatment of patients with extramedullary plasmacytoma of the head and neck (EMPHN). Methods and Materials: We searched the Mayo Clinic Rochester Department of Radiation Oncology electronic Tumor Registry and identified 18 consecutive patients with a diagnosis of solitary EMPHN. Sixteen patients were treated with radiotherapy at initial diagnosis and 2 received salvage radiotherapy for local failure after surgery. Median dose administered was 50.4 Gy. Median follow-up was 6.8 years. Results: One patient (6%) developed a marginal recurrence 12 months after treatment. Six patients (33%) developed multiple myeloma (2 patients) or plasmacytomas at distant sites (4 patients) at a median of 3.1 years after diagnosis (range, 0.02 to 9.6 years). Median and 5- and 10-year overall survival rates from the date of diagnosis are 12.5 years, 88%, and 55%, respectively. Two patients (11%) developed a radiation-induced malignancy at 6.5 and 6.9 years after treatment. Conclusions: Radiotherapy provides excellent local and regional tumor control and survival in patients with EMPHN. To the best of our knowledge, this is the first report of presumed radiation-induced malignancy in this patient population.

  5. Second neoplasms following radiotherapy or chemotherapy for cancer

    SciTech Connect

    Penn, I.

    1982-02-01

    While radiotherapy and antineoplastic chemotherapy often control malignancies they may, paradoxically, cause new cancers to develop as long-term complications. Although almost any type of neoplasm can occur, radiation-induced malignancies are most likely to affect the myelopoietic tissues and the thyroid gland. The former tissues are also most frequently involved by chemotherapy. The combination of intensive radiotherapy and intensive chemotherapy is particularly leukemogenic. Acute myeloid leukemia has occurred with increased frequency following treatment of Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma, ovarian cancer, polycythemia vera, carcinoma of the thyroid gland, and carcinoma of the breast. Radiation-induced malignancies usually occur in the field of irradiation. Tumors developing in an irradiated field include a substantial number of soft tissue sarcomas or osteosarcomas. There is a 20-fold increase of second cancers following treatment of childhood malignancies, mostly sarcomas of bone and soft tissues, but including leukemia, and carcinomas of the thyroid gland, skin, and breast. The latent period between radiotherapy and the appearance of a second cancer ranges from 2 years to several decades, often being 10-15 years. With chemotherapy the mean latent period is shorter, approximately 4 years. The mechanism of oncogenesis by radiotherapy or chemotherapy is poorly understood and probably involves a complex interplay of somatic mutation, co-oncogenic effects, depression of host immunity, stimulation of cellular proliferation, and genetic susceptibility.

  6. Fractionated Stereotactic Radiotherapy as Reirradiation for Locally Recurrent Head and Neck Cancer

    SciTech Connect

    Roh, Kwang-Won; Jang, Ji-Sun; Kim, Min-Sik; Sun, Dong-Il; Kim, Bum-Soo; Jung, So-Lyoung; Kang, Jin-Hyoung; Yoo, Eun-Jung; Yoon, Sei-Chul; Jang, Hong-Seok; Chung, Su-Mi; Kim, Yeon-Sil

    2009-08-01

    Purpose: We report early preliminary experience with CyberKnife radiosurgery (RS) as salvage treatment for locally recurrent head and neck cancer (HNC). Methods and Materials: Between March 2004 and August 2006, 36 patients (44 sites) were treated with CyberKnife RS as reirradiation for locally recurrent HNC. Treatment sites were as follows: nasopharynx (8), maxillary sinus (8), neck lymph nodes (8), skull base (7), nasal cavity (4), retropharyngeal lymph nodes (3), orbit (2), and others (4). Total doses administered were 18-40 Gy (median, 30 Gy) in 3 to 5 fractions to the 65%-85% isodose line for 3-5 consecutive days. Previous external radiation dose ranged from 39.6 to 134.4 Gy (median, 70.2 Gy). Gross tumor volume ranged from 0.2 to 114.9 cm{sup 3} (median, 22.6 cm{sup 3}). Median follow-up was 17.3 months. Results: Thirty-five of 44 sites were evaluated for response. Fifteen (42.9%) sites achieved complete response, 13 sites (37.1%) achieved a partial response, 3 (8.6%) sites maintained stable disease, and 4 sites (11.4%) showed tumor progression. Grade III acute complications were noted in 13 patients. Late complications were observed in three patients (1 bone necrosis, 2 soft tissue necrosis) during follow-up. Conclusion: These preliminary results suggest that fractionated stereotactic radiosurgery is an effective treatment modality as a salvage treatment with good short-term local control. The early overall response rate is encouraging. However, more experience and a longer follow-up are necessary to determine the role of fractionated stereotactic radiosurgery as a salvage treatment of locally recurrent HNC and to define long-term complications.

  7. Genome Damage in Oropharyngeal Cancer Patients Treated by Radiotherapy

    PubMed Central

    Gamulin, Marija; Kopjar, Nevenka; Grgić, Mislav; Ramić, Snježana; Bišof, Vesna; Garaj-Vrhovac, Vera

    2008-01-01

    Aim To estimate genome damage in oropharyngeal cancer patients before, during, and after radiotherapy and to measure the persistence of caused genome damage relevant in the evaluation of secondary cancer risk. Methods DNA damage was evaluated in peripheral blood lymphocytes of 10 oropharyngeal cancer patients using alkaline comet assay, analysis of structural chromosome aberrations, and micronucleus assay. Blood samples were taken 2 hours before irradiation on day 1 of the first radiotherapy cycle, 2 hours after the application of the first dose, in the middle of the radiotherapy cycle, within 2 hours after the last received radiotherapy dose, and after 6 and 12 months after radiotherapy. Results In most participants, the highest level of primary DNA damage was recorded in blood samples collected after the administration of first radiation dose (mean tail length 25.04 ± 6.23 μm). Most patients also had increased frequency of comets with long tail-nucleus (LTN comets) after the administration of the first radiation dose (mean, 10.50 ± 7.71 per 100 comets), which remained increased in the middle of radiotherapy (mean, 18.30 ± 27.62 per 100 comets). Later on, the levels of primary DNA damage as recorded by the comet assay, slightly diminished. The frequency of structural chromosome aberrations in lymphocytes gradually increased during the radiation cycle (26.50 ± 27.72 per 100 metaphases at the end of the therapy), as well as the frequency of micronuclei (mean total number of micronuclei 167.20 ± 35.69; per 1000 binuclear cells). Conclusion Oropharyngeal cancer patients had relatively high levels of primary DNA damage in their peripheral blood lymphocytes even before therapy. The frequency of complex structural chromosome aberrations and the frequency of micronuclei increased with the progression of the radiation cycle and the doses delivered. As the frequency of chromosomal aberrations a year after radiotherapy mostly did not return to pre

  8. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  9. Bayesian network models for error detection in radiotherapy plans

    NASA Astrophysics Data System (ADS)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  10. Recommendations for safer radiotherapy: what’s the message?

    PubMed Central

    Dunscombe, Peter

    2012-01-01

    Radiotherapy, with close to a million courses delivered per year in North America, is a very safe and effective intervention for a devastating disease. However, although rare, several deeply regrettable incidents have occurred in radiotherapy and have rightly been the subject of considerable public interest. Partly in response to reports of these incidents a variety of authoritative organizations across the globe has harnessed the expertise amongst their members in attempts to identify the measures that will make radiotherapy safer. While the intentions of all these organizations are clearly good it is challenging for the health care providers in the clinic to know where to start with so much advice coming from so many directions. Through a mapping exercise we have identified commonalities between recommendations made in seven authoritative documents and identified those issues most frequently cited. The documents reviewed contain a total of 117 recommendations. Using the 37 recommendations in “Towards Safer Radiotherapy” as the initial base layer, recommendations in the other documents were mapped, adding to the base layer to accommodate all the recommendations from the additional six documents as necessary. This mapping exercise resulted in the distillation of the original 117 recommendations down to 61 unique recommendations. Twelve topics were identified in three or more of the documents as being pertinent to the improvement of patient safety in radiotherapy. They are, in order of most to least cited: training, staffing, documentation, incident learning, communication, check lists, quality control and preventive maintenance, dosimetric audit, accreditation, minimizing interruptions, prospective risk assessment, and safety culture. This analysis provides guidance for the selection of those activities most likely to enhance safety and quality in radiotherapy based on the frequency of citation in selected recent authoritative literature. PMID:23061045

  11. Optimum dose of radiotherapy for chemodectomas of the middle ear

    SciTech Connect

    Kim, J.A.; Elkon, D.; Lim, M.L.; Constable, W.C.

    1980-07-01

    Forty patients with chemodectomas of the middle ear were seen at the University of Virginia Hospital from 1932 to 1978. Surgery, post-operative radiotherapy or radiotherapy alone were the treatment modalities employed depending on the extent of the disease. These have been reviewed with regard to the clinical presentation and results of treatment with long term follow-up of 1 to 30 years. An attempt was made to determine the optimum dose of radiotherapy based on our data and reported cases in the literature. The majority of patients complaining of tinnitus, otalgia and pulsation obtained significant if not complete relief of symptoms. Cranial nerve defects, however, ofter persisted after therapy. Tumor was considered to be controlled if there was no increase in its size or progression of symptoms. Tumor control was obtained in eight of 10 early patients but only in two of seven more patients with advanced disease with total resection. Control rate with post-operative radiotherapy after subtotal resection was 85%. Radiotherapy alone was used for inoperable or recurrent tumors and control was obtained in 88% of them. In addition to our data, the radiation dose used in over 200 patients reported in the literature was analyzed. There was only a 2% recurrence rate in patients who received 4000 rad/4 weeks or higher. Twenty-two percent of patients treated with less than 4000 rad developed recurrence. The tendency is to use a lower dose of postoperative treatment and a higher dose for gross inoperable tumors. 4000 rad/4 weeks seems to be adequate for control of postoperative residual disease and no more than 5000 rad/5 weeks are required even for advanced inoperable cases. By keeping the dose below 5000 rad/5 weeks, the incidence of complications such as brain necrosis is greatly decreased.

  12. Proton Radiotherapy for Parameningeal Rhabdomyosarcoma: Clinical Outcomes and Late Effects

    SciTech Connect

    Childs, Stephanie K.; Kozak, Kevin R.; Friedmann, Alison M.; Yeap, Beow Y.; Adams, Judith; MacDonald, Shannon M.; Liebsch, Norbert J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-02-01

    Purpose: To report the clinical outcome and late side effect profile of proton radiotherapy in the treatment of children with parameningeal rhabdomyosarcoma (PM-RMS). Methods and Materials: Seventeen consecutive children with PM-RMS were treated with proton radiotherapy at Massachusetts General Hospital between 1996 and 2005. We reviewed the medical records of all patients and asked referring physicians to report specific side effects of interest. Results: Median patient age at diagnosis was 3.4 years (range, 0.4-17.6). Embryonal (n = 11), alveolar (n = 4), and undifferentiated (n = 2) histologies were represented. Ten patients (59%) had intracranial extension. Median prescribed dose was 50.4 cobalt gray equivalents (GyRBE) (range, 50.4-56.0 GyRBE) delivered in 1.8-2.0-GyRBE daily fractions. Median follow-up was 5.0 years for survivors. The 5-year failure-free survival estimate was 59% (95% confidence interval, 33-79%), and overall survival estimate was 64% (95% confidence interval, 37-82%). Among the 7 patients who failed, sites of first recurrence were local only (n = 2), regional only (n = 2), distant only (n = 2), and local and distant (n = 1). Late effects related to proton radiotherapy in the 10 recurrence-free patients (median follow-up, 5 years) include failure to maintain height velocity (n = 3), endocrinopathies (n = 2), mild facial hypoplasia (n = 7), failure of permanent tooth eruption (n = 3), dental caries (n = 5), and chronic nasal/sinus congestion (n = 2). Conclusions: Proton radiotherapy for patients with PM-RMS yields tumor control and survival comparable to that in historical controls with similar poor prognostic factors. Furthermore, rates of late effects from proton radiotherapy compare favorably to published reports of photon-treated cohorts.

  13. Bayesian network models for error detection in radiotherapy plans.

    PubMed

    Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. PMID:25768885

  14. Survival and Symptom Relief after Palliative Radiotherapy for Esophageal Cancer

    PubMed Central

    Welsch, Julia; Kup, Philipp Günther; Nieder, Carsten; Khosrawipour, Veria; Bühler, Helmut; Adamietz, Irenäus A.; Fakhrian, Khashayar

    2016-01-01

    Purpose: The aim of this study was to assess the 6-months dysphagia-free survival, improvement in swallowing function, complication rate, and overall survival in patients with incurable esophageal cancer treated with palliative radiotherapy. Methods: We retrospectively reviewed data from 139 patients (median age 72 years) with advanced/recurrent incurable esophageal cancer, who were referred to 3 German radiation oncology centers for palliative radiotherapy between 1994 and 2014. Radiotherapy consisted of external beam radiotherapy (EBRT) with 30 - 40.5 Gy/2.5 - 3 Gy per fraction, brachytherapy alone (BT) with 15 - 25 Gy/5 - 7Gy per fraction/weekly and EBRT + BT (30 - 40.5 Gy plus 10 - 14 Gy with BT) in 65, 46, and 28 patients, respectively. Dysphagia-free survival (Dy-PFS) was defined as the time to worsening of dysphagia for at least one point, a new loco-regional failure or death of any cause. Results: Median follow-up time was 6 months (range 1-6 months). Subjective symptom relief was achieved in 72 % of patients with median response duration of 5 months. The 1-year survival rate was 30%. The 6-months Dy-PFS time for the whole group was 73 ± 4%. The 6-months Dy-PFS was 90 ± 4% after EBRT, 92 ± 5% after EBRT + BT and 37 ± 7% after BT, respectively (p<0.001). Five patients lived for more than 2 years, all of them were treated with EBRT ± BT. Ulceration, fistula and stricture developed in 3, 6 and 7 patients, respectively. Conclusions: Radiotherapy leads to symptom improvement in the majority of patients with advanced incurable esophageal cancer. The present results favor EBRT ± BT over BT alone. Due to the retrospective nature of this study, imbalances in baseline characteristics might have contributed to this finding, and further trials appear necessary. PMID:26819634

  15. Clinical radiotherapy audits in Belgium, 2011-2014.

    PubMed

    Scalliet, P G M

    2015-10-01

    Systematic clinical radiotherapy audits have been introduced in Belgium in 2011, as part of the Federal Cancer Plan. This is in compliance with article 11 of the 97/43 Council directive of Euratom states, translated into the Belgian legislation by royal decree in 2002. The principle of clinical audits has thus been part of the federal legal requirements for more than 10 years. However, its application had to wait for the development of a practical approach: what authority will audit, who will be the auditors, along which methodology, at what frequency, etc. Since 2002, the Federal College of Radiotherapy has the mission to monitor quality of radiotherapy at large. It was therefore decided after discussions with the relevant administration at the Ministry of Health and the Federal Agency for Nuclear Control that the College would practically organise the audits. Early in the 2000s, the IAEA developed a manual for comprehensive audits, as a tool for quality improvement. Auditors were professionals of the domain and the audit visit took the form of a peer review. Great care was taken to assemble an audit party able to cover all aspects of clinical radiotherapy with a radiation oncologist, a medical physicist, a radiation therapist and, on demand, a quality officer. The IAEA manual contains a series of questionnaires to be prepared by the audited centre in advance (pre-audit and self-assessment), indicating what specific areas the auditors would assess. It is also a template for the auditors, ensuring that no area is left aside or forgotten during the site visit. The report, at the end of the visit, is drafted according to a specific report template, also developed by IAEA. Several members of the Belgian radiotherapy community have developed their auditor's skills by participating to the IAEA audit program; they are the core of the auditor Belgian team. PMID:26321683

  16. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    SciTech Connect

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-02-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  17. A Comparison of Gastrointestinal Toxicities between Intensity-Modulated Radiotherapy and Three-Dimensional Conformal Radiotherapy for Pancreatic Cancer

    PubMed Central

    Lee, Kyong Joo; Yoon, Hong In; Chung, Moon Jae; Park, Jeong Youp; Bang, Seungmin; Park, Seung-woo; Seong, Jin Sil; Song, Si Young

    2016-01-01

    Background/Aims Concurrent chemoradiotherapy (CCRT) is considered the treatment option for locally advanced pancreatic cancer, but accompanying gastrointestinal toxicities are the most common complication. With the introduction of three-dimensional conformal radiotherapy (3-D CRT) and intensity-modulated radiotherapy (IMRT), CCRT-related adverse events are expected to diminish. Here, we evaluated the benefits of radiation modalities by comparing gastrointestinal toxicities between 3-D CRT and IMRT. Methods Patients who received CCRT between July 2010 and June 2012 in Severance Hospital, Yonsei University College of Medicine, were enrolled prospectively. The patients underwent upper endoscopy before and 1 month after CCRT. Results A total of 84 patients were enrolled during the study period. The radiotherapy modalities delivered included 3D-CRT (n=40) and IMRT (n=44). The median follow-up period from the start of CCRT was 10.6 months (range, 3.8 to 29.9 months). The symptoms of dyspepsia, nausea/vomiting, and diarrhea did not differ between the groups. Upper endoscopy revealed significantly more gastroduodenal ulcers in the 3-D CRT group (p=0.003). The modality of radiotherapy (3D-CRT; odds ratio [OR], 11.67; p=0.011) and tumor location (body of pancreas; OR, 11.06; p=0.009) were risk factors for gastrointestinal toxicities. Conclusions IMRT is associated with significantly fewer gastroduodenal injuries among patients treated with CCRT for pancreatic cancer. PMID:26470767

  18. Temozolomide and Radiotherapy versus Radiotherapy Alone in High Grade Gliomas: A Very Long Term Comparative Study and Literature Review

    PubMed Central

    Parisi, Salvatore; Corsa, Pietro; Raguso, Arcangela; Perrone, Antonio; Cossa, Sabrina; Munafò, Tindara; Sanpaolo, Gerardo; Donno, Elisa; Clemente, Maria Antonietta; Piombino, Michele; Parisi, Federico; Valle, Guido

    2015-01-01

    Temozolomide (TMZ) is the first line drug in the care of high grade gliomas. The combined treatment of TMZ plus radiotherapy is more effective in the care of brain gliomas then radiotherapy alone. Aim of this report is a survival comparison, on a long time (>10 years) span, of glioma patients treated with radiotherapy alone and with radiotherapy + TMZ. Materials and Methods. In this report we retrospectively reviewed the outcome of 128 consecutive pts with diagnosis of high grade gliomas referred to our institutions from April 1994 to November 2001. The first 64 pts were treated with RT alone and the other 64 with a combination of RT and adjuvant or concomitant TMZ. Results. Grade 3 (G3) haematological toxicity was recorded in 6 (9%) of 64 pts treated with RT and TMZ. No G4 haematological toxicity was observed. Age, histology, and administration of TMZ were statistically significant prognostic factors associated with 2 years overall survival (OS). PFS was for GBM 9 months, for AA 11. Conclusions. The combination of RT and TMZ improves long term survival in glioma patients. Our results confirm the superiority of the combination on a long time basis. PMID:25815327

  19. Commissioning of intensity modulated neutron radiotherapy (IMNRT)

    SciTech Connect

    Burmeister, Jay; Snyder, Michael; Spink, Robyn; Liang Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan

    2013-02-15

    Purpose: Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center/Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. Methods: IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. Results: While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate/five head and neck) agreed to within -0.8 {+-} 1.4% and 5.0 {+-} 6.0% within and outside the target, respectively. Nearly all (22/24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)/prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max

  20. SU-E-J-206: Adaptive Radiotherapy for Gynecological Malignancies with MRIGuided Cobolt-60 Radiotherapy

    SciTech Connect

    Lamb, J; Kamrava, M; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-06-15

    Purpose: Even in the IMRT era, bowel toxicity and bone marrow irradiation remain concerns with pelvic irradiation. We examine the potential gain from an adaptive radiotherapy workflow for post-operative gynecological patients treated to pelvic targets including lymph nodes using MRI-guided Co-60 radiation therapy. Methods: An adaptive workflow was developed with the intent of minimizing time overhead of adaptive planning. A pilot study was performed using retrospectively analyzed images from one patient’s treatment. The patient’s treated plan was created using conventional PTV margins. Adaptive treatment was simulated on the patient’s first three fractions. The daily PTV was created by removing non-target tissue, including bone, muscle and bowel, from the initial PTV based on the daily MRI. The number of beams, beam angles, and optimization parameters were kept constant, and the plan was re-optimized. Normal tissue contours were not adjusted for the re-optimization, but were adjusted for evaluation of plan quality. Plan quality was evaluated based on PTV coverage and normal tissue DVH points per treatment protocol. Bowel was contoured as the entire bowel bag per protocol at our institution. Pelvic bone marrow was contoured per RTOG protocol 1203. Results: For the clinically treated plan, the volume of bowel receiving 45 Gy was 380 cc, 53% of the rectum received 30 Gy, 35% of the bladder received 45 Gy, and 28% of the pelvic bone marrow received 40 Gy. For the adaptive plans, the volume of bowel receiving 45 Gy was 175–201 cc, 55–62% of the rectum received 30 Gy, 21– 27% of the bladder received 45 Gy, and 13–17% of the pelvic bone marrow received 40 Gy. Conclusion: Adaptive planning led to a large reduction of bowel and bone marrow dose in this pilot study. Further study of on-line adaptive techniques for the radiotherapy of pelvic lymph nodes is warranted. Dr. Low is a member of the scientific advisory board of ViewRay, Inc.

  1. Intraoperative Radiotherapy Versus Whole-Breast External Beam Radiotherapy in Early-Stage Breast Cancer

    PubMed Central

    Zhang, Li; Zhou, Zhirui; Mei, Xin; Yang, Zhaozhi; Ma, Jinli; Chen, Xingxing; Wang, Junqi; Liu, Guangyu; Yu, Xiaoli; Guo, Xiaomao

    2015-01-01

    Abstract There has not been a clear answer about the efficacy of intraoperative radiotherapy (IORT) for women with early-stage breast cancer. The aim of this meta-analysis was to summarize the available evidence comparing the efficacy and safety of IORT with those of whole-breast external beam radiotherapy (EBRT) for women with early-stage breast cancer. MEDLINE, EMBASE, the Web of Science, and the Cochrane Library were searched up to October 2014. Two authors independently conducted the literature selection and data extraction. Studies that compared IORT with whole-breast EBRT were included in the systematic review. IORT was defined as a single dose of irradiation to the tumor bed during breast-conserving surgery rather than whole-breast irradiation. Qualities of RCTs were evaluated according to the PEDro scale. Qualities of non-RCTs were evaluated according to the Methodological Index for Non-Randomized Studies (MINORS). The risk ratios (RRs) of ipsilateral breast tumor recurrence, overall mortality, breast cancer mortality, non-breast cancer mortality, and distant metastasis were pooled using a random-effects model. Four studies with 5415 patients were included in this meta-analysis, including 2 randomized controlled trials (RCTs) and 2 non-RCTs. Ipsilateral breast tumor recurrence was significantly higher in patients with IORT compared to those with whole-breast EBRT (RR 2.83, 95% CI 1.23–6.51), but with significant heterogeneity (I2 = 58.5%, P = 0.065). Comparing IORT with whole-breast EBRT, the pooled RRs for overall mortality, breast cancer mortality, non-breast cancer mortality, and distant metastasis were 0.88 (95% CI: 0.66–1.17), 1.20 (95% CI: 0.77–1.86), 0.76 (95% CI: 0.44–1.31), and 0.95 (95% CI: 0.61–1.49), respectively. IORT had a significantly higher risk of ipsilateral breast tumor recurrence than whole-breast EBRT. Overall mortality did not differ significantly. IORT should be used in conjunction with the prudent selection of

  2. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsui, Yuki; Matsushita, Kaoru; Yamashita, Haruo; Numano, Masumi; Sakae, Takeji; Terunuma, Toshiyuki; Nishio, Teiji; Kohno, Ryosuke; Akagi, Takashi

    2008-11-15

    Secondary neutron ambient dose equivalents per the treatment absorbed dose in passive carbon-ion and proton radiotherapies were measured using a rem meter, WENDI-II at two carbon-ion radiotherapy facilities and four proton radiotherapy facilities in Japan. Our measured results showed that (1) neutron ambient dose equivalent in carbon-ion radiotherapy is lower than that in proton radiotherapy, and (2) the difference to the measured neutron ambient dose equivalents among the facilities is within a factor of 3 depending on the operational beam setting used at the facility and the arrangement of the beam line, regardless of the method for making a laterally uniform irradiation field: the double scattering method or the single-ring wobbling method. The reoptimization of the beam line in passive particle radiotherapy is an effective way to reduce the risk of secondary cancer because installing an adjustable precollimator and designing the beam line devices with consideration of their material, thickness and location, etc., can significantly reduce the neutron exposure. It was also found that the neutron ambient dose equivalent in passive particle radiotherapy is equal to or less than that in the photon radiotherapy. This result means that not only scanning particle radiotherapy but also passive particle radiotherapy can provide reduced exposure to normal tissues around the target volume without an accompanied increase in total body dose.

  3. Clinical Results of a Pilot Study on Stereovision-Guided Stereotactic Radiotherapy and Intensity Modulated Radiotherapy

    PubMed Central

    Li, Shidong; Kleinberg, Lawrence R.; Rigamonti, Daniele; Wharam, Moody D.; Rashid, Abdul; Jackson, Juan; Djajaputra, David; He, Shenjen; Creasey, Tunisia; DeWeese, Theodore L.

    2011-01-01

    Real-time stereovision-guidance has been introduced for efficient and convenient fractionated stereotactic radiotherapy (FSR) and image-guided intensity-modulated radiation therapy (IMRT). This first pilot study is to clinically evaluate its accuracy and precision as well as impact on treatment doses. Sixty-one FSR patients wearing stereotactic masks (SMs) and nine IMRT patients wearing flexible masks (FMs), were accrued. Daily target reposition was initially based-on biplane-radiographs and then adjusted in six degrees of freedom under real-time stereovision guidance. Mean and standard deviation of the head displacements measured the accuracy and precision. Head positions during beam-on times were measured with real-time stereovisions and used for determination of delivered doses. Accuracy ± precision in direction with the largest errors shows improvement from 0.4 ± 2.3 mm to 0.0 ± 1.0 mm in the inferior-to-superior direction for patients wearing SM or from 0.8 ± 4.3 mm to 0.4 ± 1.7 mm in the posterior-to-anterior direction for patients wearing FM. The image-guidance increases target volume coverage by >30% for small lesions. Over half of head position errors could be removed from the stereovision-guidance. Importantly, the technique allows us to check head position during beam-on time and makes it possible for having frameless head refixation without tight masks. PMID:21070083

  4. The role of intensity modulated radiotherapy in gynecological radiotherapy: Present and future

    PubMed Central

    Fernandez-Ots, Ana; Crook, Juanita

    2013-01-01

    Aim This manuscript reviews the English language literature on the use of intensity modulated radiation therapy (IMRT) for gynecologic malignancies, focusing on the treatment cervical cancer. Background Radiation therapy plays a key role in both definitive and adjuvant treatment of these patients, although efforts continue to minimize acute and chronic toxicity. IMRT is an attractive option because of the potential to dose escalate to the target while sparing organs at risk. Methods and Materials The English language literature was reviewed for relevant studies. Results Multiple heterogeneous studies have showed dosimetric and clinical benefits with reduction in acute and late gastrointestinal, genitourinary and hematologic toxicity, especially in the post hysterectomy scenario and for dose escalation to para-aortic nodes. Consensus is evolving regarding necessary margins and target delineation in the context of organ movement and tumor shrinkage during the course of radiotherapy. Protocols with daily soft-tissue visualization are being investigated. Conclusions Consistency in approach and reporting are vital in order to acquire the data to justify the considerable increased expense of IMRT. PMID:24416580

  5. Biological dose volume histograms during conformal hypofractionated accelerated radiotherapy for prostate cancer

    SciTech Connect

    Koukourakis, Michael I.; Abatzoglou, Ioannis; Touloupidis, Stavros; Manavis, Ioannis

    2007-01-15

    Radiobiological data suggest that prostate cancer has a low {alpha}/{beta} ratio. Large radiotherapy fractions may, therefore, prove more efficacious than standard radiotherapy, while radiotherapy acceleration should further improve control rates. This study describes the radiobiology of a conformal hypofractionated accelerated radiotherapy scheme for the treatment of high risk prostate cancer. Anteroposterior fields to the pelvis deliver a daily dose of 2.7 Gy, while lateral fields confined to the prostate and seminal vesicles deliver an additional daily dose of 0.7 Gy. Radiotherapy is accomplished within 19 days (15 fractions). Dose volume histograms, calculated for tissue specific {alpha}/{beta} ratios and time factors, predict a high biological dose to the prostate and seminal vesicles (77-93 Gy). The biological dose to normal pelvic tissues is maintained at standard levels. Radiobiological dosimetry suggests that, using hypofractionated and accelerated radiotherapy, high biological radiation dose can be given to the prostate without overdosing normal tissues.

  6. Efficacy of the Radiotherapy on Darier's Disease: An Indirect Evidence

    PubMed Central

    Podgornii, Ala; Ciammella, Patrizia; Ramundo, Dafne; Iotti, Cinzia

    2013-01-01

    Darier's disease (DD) is an autosomal dominant dermatosis characterized by hyperkeratotic papules that are mainly located in the seborrheic areas and pushups, handheld wells, and nails. The disease often appears at a young age, typically by the third decade, with no sex predilection. There is currently no standard therapy and there are usually topical palliative therapies. We present the case of an affected 42-year-old woman treated with radiation therapy for early breast cancer. Before the radiotherapy, the patient showed hyperkeratotic, brownish papules extending in a linear pattern for the neck to the abdomen, especially on both breasts and inframammary area. During the radiation, she developed grade 1 to 2 dermatitis in the irradiated area. At a followup of 6 months, the patient has no skin lesions in the irradiated zone. This report suggests that the radiotherapy is not contraindicated and may indeed be effective in local control of skin lesions in DD. PMID:24078886

  7. Non-targeted effects of ionising radiation and radiotherapy.

    PubMed

    Sjostedt, Svetlana; Bezak, Eva

    2010-09-01

    Modern radiobiology is undergoing rapid change due to new discoveries contradicting the target concept which is currently used to predict dose-response relationships. Thus relatively recently discovered radiation-induced bystander effects (RIBEs), that include additional death, mutation and radio-adaptation in non-irradiated cells, change our understanding of the target concept and broadens its boundaries. This can be significant from a radioprotection point of view and also has the potential to reassess radiation damage models currently used in radiotherapy. This article reviews briefly the general concepts of RIBEs such as the proposed underlying mechanisms of signal induction and propagation, experimental approaches and biological end points used to investigate these phenomena. It also summarises several mathematical models currently proposed in an attempt to quantify RIBE. The main emphasis of this article is to review and highlight the potential impact of the bystander phenomena in radiotherapy. PMID:20857259

  8. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  9. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  10. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  11. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  12. Anaplastic thyroid carcinoma: 91 patients treated by surgery and radiotherapy.

    PubMed

    Junor, E J; Paul, J; Reed, N S

    1992-04-01

    Ninety-one patients with histologically proven anaplastic carcinoma of the thyroid were referred to the Beatson Oncology Centre between 1961 and 1986. The female:male ratio was 2.4:1 and the median age at presentation was 70 (range 38-92) years. All patients had a thyroid mass at presentation and the most common symptoms were dyspnoea, dysphagia and dysphonia. Five patients had a total thyroidectomy and 28 partial thyroidectomy. Ninety five per cent of patients received external beam radiotherapy. Results show dyspnoea to be the only symptom strongly influencing survival. Total or partial thyroidectomy is associated with increased survival. This association is most marked for patients presenting without dyspnoea. Eighty per cent of patients responded to radiotherapy. PMID:1582515

  13. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  14. Vesicocutaneous fistula following adjuvant radiotherapy for prostate cancer

    PubMed Central

    Hennessey, Derek Barry; Bolton, Eva; Thomas, Arun Z; Lynch, Thomas H

    2013-01-01

    Vesicocutaneous fistulas (VCF) are a rare complication of radical radiotherapy to the pelvis. Timely diagnosis and management are often difficult and complex. We report the unusual case of a 64-year-old gentleman who presented to the emergency department with worsening sepsis and profuse discharge from a cutaneous opening in the left groin. This presentation was 6 weeks following the completion of external beam radiotherapy for apical margin-positive prostate cancer (pT3a). A diagnosis of a VCF was confirmed after CT scanning of the abdomen and pelvis with contrast. Urinary diversion was achieved by a temporary urethral catheter insertion. Full resolution of this gentleman's symptoms was accomplished. In this article, we present a non-invasive approach to the management of VCF. This case raises intricate management issues in the atypical development of an early urinary tract fistula postradiotherapy. PMID:23625668

  15. Adenocarcinoma of the ethmoid following radiotherapy for bilateral retinoblastoma

    SciTech Connect

    Rowe, L.D.; Lane, R.; Snow, J.B. Jr.

    1980-01-01

    Adenocarcinoma of the ethmoid sinus is rare, representing only 4 to 8% of malignancies of the paranasal sinuses. An extraordinary case of papillary adenocarcinoma of the ethmoid sinus arising 30 years following high-dose radiotherapy for bilateral retinoblastoma is presented. Histologically, the findings of a papillary pattern of poorly differentiated, mucicarmine-staining cells enclosing gland-like spaces, and the absence of pseudorosettes, melanin, mesenchymal and peripheral neural elements supports an epithelial origin of this tumor. The high incidence of second fatal primary neoplasms in patients with bilateral retinoblastomas receiving radiation suggests an innate susceptibility that may add to the risk of radiotherapy. Careful long-term head and neck surveillance is mandatory if early aggressive management of these extremely lethal tumors is to be successful.

  16. Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours

    NASA Astrophysics Data System (ADS)

    Boudou, Caroline; Balosso, Jacques; Estève, François; Elleaume, Hélène

    2005-10-01

    A radiation dose enhancement can be obtained in brain tumours after infusion of an iodinated contrast agent and irradiation with kilovoltage x-rays in tomography mode. The aim of this study was to assess dosimetric properties of the synchrotron stereotactic radiotherapy technique applied to humans (SSR) for preparing clinical trials. We designed an interface for dose computation based on a Monte Carlo code (MCNPX). A patient head was constructed from computed tomography (CT) data and a tumour volume was modelled. Dose distributions were calculated in SSR configuration for various energy beam and iodine content in the target volume. From the calculations, it appears that the iodine-filled target (10 mg ml-1) can be efficiently irradiated by a monochromatic beam of energy ranging from 50 to 85 keV. This paper demonstrates the feasibility of stereotactic radiotherapy for treating deep-seated brain tumours with monoenergetic x-rays from a synchrotron.

  17. Current Concepts in Osteoradionecrosis after Head and Neck Radiotherapy.

    PubMed

    Dhanda, J; Pasquier, D; Newman, L; Shaw, R

    2016-07-01

    Osteoradionecrosis (ORN) of the jaws is a feared complication of head and neck radiotherapy. ORN causes significant morbidity for patients and controversy among clinicians. This overview considers the variations in definition and classification of the condition that affect estimates of incidence and also the interpretation of evidence. The influence of newer radiotherapy techniques in reducing ORN through reduced dose and xerostomia is balanced against a probable increase in a vulnerable population through a rising head and neck cancer incidence. Theories of pathophysiology of ORN include radiation-induced osteomyelitis, hypoxic and hypovascular theory and fibroatrophic theory. Prevention strategies include restorative dentistry and radiation planning techniques. Treatments range from conservative 'watch and wait' through to more radical surgical strategies. Newer medical management strategies are available with a limited evidence base. The use of hyperbaric oxygen therapy remains controversial and the background and need for newer hyperbaric oxygen trials is discussed. PMID:27038708

  18. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    SciTech Connect

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K.S. Clifford; Nam, Jiho; Eisbruch, Avraham

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.

  19. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    PubMed Central

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K. S. Clifford; Nam, Jiho; Eilsbruch, Avraham

    2013-01-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than ≈20 Gy or if both glands are spared to less than ≈25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk. PMID:20171519

  20. Stereotactic body radiotherapy: current strategies and future development.

    PubMed

    Tsang, Maverick W K

    2016-07-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  1. Image-guided radiotherapy and motion management in lung cancer

    PubMed Central

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps of the treatment chain are explained, including imaging techniques and beam delivery techniques. Clinical studies using different motion management techniques are reviewed, and finally future directions for image guidance and motion management are outlined. PMID:25955231

  2. Second Malignant Neoplasms and Cardiovascular Disease Following Radiotherapy

    PubMed Central

    Ng, Andrea K.; Allan, James M.; Pui, Ching-Hon; Kennedy, Ann R.; Xu, X. George; Purdy, James A.; Applegate, Kimberly; Yahalom, Joachim; Constine, Louis S.; Gilbert, Ethel S.; Boice, John D.

    2012-01-01

    Second malignant neoplasms (SMNs) and cardiovascular disease (CVD) are among the most serious and life-threatening late adverse effects experienced by the growing number of cancer survivors worldwide and are due in part to radiotherapy. The National Council on Radiation Protection and Measurements (NCRP) convened an expert scientific committee to critically and comprehensively review associations between radiotherapy and SMNs and CVD, taking into account radiobiology; genomics; treatment (ie, radiotherapy with or without chemotherapy and other therapies); type of radiation; and quantitative considerations (ie, dose–response relationships). Major conclusions of the NCRP include: 1) the relevance of older technologies for current risk assessment when organ-specific absorbed dose and the appropriate relative biological effectiveness are taken into account and 2) the identification of critical research needs with regard to newer radiation modalities, dose–response relationships, and genetic susceptibility. Recommendation for research priorities and infrastructural requirements include 1) long-term large-scale follow-up of extant cancer survivors and prospectively treated patients to characterize risks of SMNs and CVD in terms of radiation dose and type; 2) biological sample collection to integrate epidemiological studies with molecular and genetic evaluations; 3) investigation of interactions between radiotherapy and other potential confounding factors, such as age, sex, race, tobacco and alcohol use, dietary intake, energy balance, and other cofactors, as well as genetic susceptibility; 4) focusing on adolescent and young adult cancer survivors, given the sparse research in this population; and 5) construction of comprehensive risk prediction models for SMNs and CVD to permit the development of follow-up guidelines and prevention and intervention strategies. PMID:22312134

  3. The Efficacy of Radiotherapy in the Treatment of Orbital Pseudotumor

    SciTech Connect

    Matthiesen, Chance; Bogardus, Carl; Thompson, J. Spencer; Farris, Bradley; Hildebrand, Lloyd; Wilkes, Byron; Syzek, Elizabeth; Algan, Ozer; Ahmad, Salahuddin; Herman, Terence

    2011-04-01

    Purpose: To review institutional outcomes for patients treated with external-beam radiotherapy (EBRT) for orbital pseudotumor. Methods and Materials: This is a single-institution retrospective review of 20 orbits in 16 patients diagnosed with orbital pseudotumor that received EBRT at the University of Oklahoma, Department of Radiation Oncology. Treated patients had a median follow-up of 16.5 months. Results: Fifteen patients (93.7%) were initially treated with corticosteroids. Eight had recurrence after steroid cessation, six were unable to taper corticosteroids completely or partially, and one experienced progression of symptoms despite corticosteroid therapy. Fourteen patients (87.5%) initially responded to radiotherapy indicated by clinical improvement of preradiation symptoms and/or tapering of corticosteroid dose. Mean EBRT dose was 20 Gy (range, 14-30 Gy). Thirteen patients (81.2%) continued to improve after radiation therapy. Patient outcomes were complete cessation of corticosteroid therapy in nine patients (56.3%) and reduced corticosteroid dose in four patients (25%). Radiotherapy did not achieve long-term control for three patients (18.7%), who still required preradiation corticosteroid dosages. Three patients received retreatment(s) of four orbits, of which two patients achieved long-term symptom control without corticosteroid dependence. One patient received retreatment to an orbit three times, achieving long-term control without corticosteroid dependence. No significant late effects have been observed in retreated patients. Conclusions: Radiotherapy is an effective treatment for acute symptomatic improvement and long-term control of orbital pseudotumor. Orbital retreatment can be of clinical benefit, without apparent increase in morbidity, when initial irradiation fails to achieve complete response.

  4. Merkel Cell Carcinoma: When Does Size Matter for Radiotherapy?

    PubMed Central

    Roach, Michelle; Lee, Mark T

    2015-01-01

    Merkel cell carcinoma is a very aggressive, rare cancer of the skin. It has a high propensity for local, regional, and distant recurrence and has recently been associated with a viral etiology from the recently diagnosed Merkel Cell Polyoma Virus. The optimal management remains controversial. We discuss the case of a man with a 26 cm axillary lymph node metastasis of unknown primary treated with radiotherapy. PMID:26858924

  5. Early adjuvant radiotherapy in the treatment of atypical meningioma.

    PubMed

    Jenkinson, Michael D; Waqar, Mueez; Farah, Jibril Osman; Farrell, Michael; Barbagallo, Giuseppe M V; McManus, Robin; Looby, Seamus; Hussey, Deirdre; Fitzpatrick, David; Certo, Francesco; Javadpour, Mohsen

    2016-06-01

    Atypical meningiomas have a greater propensity to recur than benign meningiomas and the benefits of early adjuvant radiotherapy are unclear. Existing studies report conflicting results. This retrospective cohort study evaluated the role of early adjuvant radiotherapy following surgical resection of atypical meningioma. A triple center case-note review of adults with newly-diagnosed atypical meningiomas between 2001 and 2010 was performed. Pathology diagnosis was made according to the World Health Organization classification in use at the time of surgery. Patients with multiple meningiomas, neurofibromatosis type 2 and radiation-induced meningiomas were excluded. Extent of resection was defined as gross total resection (GTR; Simpson Grade I-III) or subtotal resection (STR; Simpson Grade IV-V). Survival analysis was performed using the Kaplan-Meier method. One hundred thirty-three patients were identified with a median age of 62years (range 22-86years) and median follow-up of 57.4months (range 0.1-152.2months). Tumors were mostly located in the convexity (50.4%) or falcine/parasagittal regions (27.1%). GTR (achieved in 85%) was associated with longer progression free survival (PFS) (5year PFS 81.2% versus 40.08%, log-rank=11.117, p=0.001) but not overall survival (OS) (5year OS 76.6% versus 39.7%, log-rank=3.652, p=0.056). Following GTR, early adjuvant radiotherapy was administered to 28.3% of patients and did not influence OS (5year OS 77.0% versus 75.7%, log-rank=0.075, p=0.784) or PFS (5year PFS 82.0% versus 79.3%, log-rank=0.059, p=0.808). Although extent of resection emerged as an important prognostic variable, early adjuvant radiotherapy did not influence outcome following GTR of atypical meningiomas. Prospective randomized controlled trials are planned. PMID:26775147

  6. Hypofractionated External-Beam Radiotherapy for Prostate Cancer

    PubMed Central

    Cho, L. Chinsoo; Timmerman, Robert; Kavanagh, Brian

    2013-01-01

    There are radiobiological rationales supporting hypofractionated radiotherapy for prostate cancer. The recent advancements in treatment planning and delivery allow sophisticated radiation treatments to take advantage of the differences in radiobiology of prostate cancer and the surrounding normal tissues. The preliminary results from clinical studies indicate that abbreviated fractionation programs can result in successful treatment of localized prostate cancer without escalation of late toxicity. PMID:23533777

  7. The Emerging Role of Carbon-Ion Radiotherapy

    PubMed Central

    Ebner, Daniel K.; Kamada, Tadashi

    2016-01-01

    Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption. PMID:27376030

  8. Single fraction radiotherapy for bone metastases: are all questions answered?

    PubMed

    Chander, S S; Sarin, R

    1999-08-01

    All randomized trials show comparable pain relief rates with single or fractionated radiotherapy (RT) in selected patients. Further studies are required to determine the optimal single dose (our analysis suggests 6-8 Gy), its efficacy in preventing fractures/cord compression and defining criteria for recommending fractionated RT for a select few. Besides this, a 'lingua franca' for pain assessment tools is urgently required. PMID:10577706

  9. The Emerging Role of Carbon-Ion Radiotherapy.

    PubMed

    Ebner, Daniel K; Kamada, Tadashi

    2016-01-01

    Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption. PMID:27376030

  10. Rapid onset of cutaneous angiosarcoma after radiotherapy for breast carcinoma

    SciTech Connect

    Otis, C.N.; Peschel, R.; McKhann, C.; Merino, M.J.; Duray, P.H.

    1986-06-01

    Malignant neoplasms known to develop following external beam radiation include squamous cell carcinoma, osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma, mixed mullerian tumors, malignant schwannoma, myelogenous leukemia and angiosarcoma. Latency periods of many years characterize the onset of these tumors following the exposure. Cutaneous angiosarcoma following radiotherapy for breast carcinoma has been rarely documented, occurring up to 13 years postirradiation. Two cases of this entity are reported occurring 37 months postradiotherapy at the site of mastectomy performed for mammary duct carcinoma.

  11. Clinical commissioning of online seed matching protocol for prostate radiotherapy

    PubMed Central

    Duffton, A; McNee, S; Muirhead, R; Alhasso, A

    2012-01-01

    Objectives Our aim was to clinically commission an online seed matching image-guided radiotherapy (IGRT) protocol using modern hardware/software for patients undergoing prostate radiotherapy. An essential constraint was to achieve this within a busy centre without reducing patient throughput, which had been reported with other techniques. Methods 45 patients had 3 fiducial markers inserted into the prostate and were imaged daily using kilovoltage orthogonal images with online correction applied before treatment. A total of 1612 image pairs were acquired and analysed to identify interfractional motion, seed migration and interobserver variability, and assess ease of use. Results This method of IGRT was implemented successfully in our centre with no impact on treatment times and patient throughput. Systematic (Σ) interfractional set-up errors were 2.2, 2.7 and 3.9 mm in right–left (RL), superoinferior (SI) and anteroposterior (AP) directions, respectively. Random (σ) interfractional set-up errors were 3.2 (RL), 3.7 (SI) and 5.7 mm (AP). There were significant differences between patients. Seed migration and interobserver variability were not significant issues. Conclusions The described technique is facilitated by the advanced imaging system, allowing a fast and effective method of correcting set-up errors before treatment. Extended implementation of this technique has improved treatment delivery to the majority of our prostate radiotherapy patients. The measurement of interfractional motion in this study is potentially valuable for margin reduction in intensity-modulated radiotherapy/volumetric arc therapy. Advances in knowledge This technique can be used within treatment time constraints, benefiting large numbers of patients by helping to avoid geographical miss and potentially reducing toxicity to organs at risk. PMID:23175493

  12. Nimotuzumab in combination with radiotherapy in high grade glioma patients

    PubMed Central

    Solomon, Maria Teresa; Miranda, Nederlay; Jorrín, Eugenia; Chon, Ivonne; Marinello, Jorge Juan; Alert, José; Lorenzo-Luaces, Patricia; Crombet, Tania

    2014-01-01

    Nimotuzumab, a humanized antibody targeting epidermal growth factor receptor, has potent anti-proliferative, anti-angiogenic, and pro-apoptotic effects in vitro and in vivo. It also reduces the number of radio-resistant CD133+ glioma stem cells. The antibody has been extensively evaluated in patients with advanced head and neck, glioma, lung, esophageal, pancreatic, and gastric cancer. In this single institution experience, 35 patients with anaplastic astrocytoma (AA) or glioblastoma multiforme (GBM) were treated with irradiation and 200 mg doses of nimotuzumab. The first 6 doses were administered weekly, together with radiotherapy, and then treatment continued every 21 days until 1 year. The median number of doses was 12, and the median cumulative dose was thus 2400 mg of nimotuzumab. The most frequent treatment-related toxicities were increase in liver function tests, fever, nausea, anorexia, asthenia, dizziness, and tremors. These adverse reactions were classified as mild and moderate. The median survival time was 12.4 mo or 27.0 mo for patients with GBM or AA patients, respectively, who received curative-intent radiotherapy in combination with the antibody. The survival time of a matched population treated at the same hospital with irradiation alone was decreased (median 8.0 and 12.2 mo for GBM and AA patients, respectively) compared with that of the patients who received nimotuzumab and curative-intent radiotherapy. We have thus confirmed that nimotuzumab is a very well-tolerated drug, lacking cumulative toxicity after maintenance doses. This study, in a poor prognosis population, validates the previous data of survival gain after combining nimotuzumab and radiotherapy, in newly diagnosed high-grade glioma patients. PMID:24521695

  13. A Mathematical Model of Cancer Treatment by Radiotherapy

    PubMed Central

    Yang, Chenxue

    2014-01-01

    A periodic mathematical model of cancer treatment by radiotherapy is presented and studied in this paper. Conditions on the coexistence of the healthy and cancer cells are obtained. Furthermore, sufficient conditions on the existence and globally asymptotic stability of the positive periodic solution, the cancer eradication periodic solution, and the cancer win periodic solution are established. Some numerical examples are shown to verify the validity of the results. A discussion is presented for further study. PMID:25478002

  14. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  15. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    SciTech Connect

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-05-09

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  16. Proton Radiotherapy for Pediatric Ewing's Sarcoma: Initial Clinical Outcomes

    SciTech Connect

    Rombi, Barbara; DeLaney, Thomas F.; MacDonald, Shannon M.; Huang, Mary S.; Ebb, David H.; Liebsch, Norbert J.; Raskin, Kevin A.; Yeap, Beow Y.; Marcus, Karen J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-03-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing's sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing's sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  17. Radioiodine and radiotherapy in the management of thyroid cancers

    SciTech Connect

    Simpson, W.J. )

    1990-06-01

    Radioiodine is an important adjuvant treatment in the management of resectable papillary and follicular thyroid cancers in all patients except those with the best prognostic features. External radiation is also an important adjuvant therapy in these patients, especially those with tumors that extend beyond the thyroid gland and invade the trachea, esophagus, nerves, and blood vessels; it is especially important in treating patients whose tumors do not concentrate radioiodine. Radioiodine may be curative in patients with microscopic distant metastases demonstrated by radioiodine scanning. Even unresectable primary papillary and follicular cancers may be eradicated by combined therapy with radioiodine and radiotherapy. Radioiodine plays no significant role in the treatment of medullary or anaplastic thyroid cancers, but external radiation may eradicate microscopic thyroid bed or nodal disease when persistent disease is indicated by elevated calcitonin levels in medullary thyroid cancer patients. Anaplastic thyroid cancers are usually unresectable and are not eradicated by conventional radiotherapy or by any of the novel radiation techniques, with or without chemotherapy. In all types of thyroid cancer, external radiotherapy may produce beneficial palliative results in patients with distant metastases, but the use of radioiodine should always be explored in papillary and follicular thyroid cancer patients. 30 references.

  18. Radiotherapy of advanced laryngeal cancer using three small fractions daily

    SciTech Connect

    Bradley, P.J.; Morgan, D.A. )

    1991-06-01

    Since 1983, the authors have treated advanced (UICC stages 3 and 4) squamous carcinomas of the larynx by primary radiotherapy, using three small fractions a day, 3-4 h interfraction interval, 5 days per week. The early patients received doses per fraction of 1.5 Gy, and a total dose of approximately 70 Gy, given as a split-course over 6 to 7 weeks. While overall tumor control and laryngeal preservation was good, a number of severe late radiation reactions were seen. The schedule was then modified, with a reduction in the fraction size to 1.1 Gy, the total dose to 60 Gy, and the overall time to 4 weeks, with omission of the mid-treatment split. Since 1986, we have treated 26 patients in this way. Acute reactions are brisk, but rapidly healing. Loco-regional control was achieved in 22 patients, only one of whom has relapsed to date, in a solitary node, salvaged by radical neck dissection. Four have died of uncontrolled loco-regional malignancy, and three of intercurrent disease while in clinical remission. No serious late morbidity has been observed in surviving patients, and vocal quality is good in the majority. These results suggest that this hyperfractionated and accelerated radiotherapy schedule may offer an acceptable nonsurgical, voice-preserving treatment for advanced laryngeal carcinoma; it can be used in a normally working radiotherapy department.

  19. Evaluation of targeting errors in ultrasound-assisted radiotherapy

    PubMed Central

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2014-01-01

    A method for validating the start-to-end accuracy of a 3D ultrasound-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3D ultrasound guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3D ultrasound guidance, and finally delivery of radiation, to be evaluated. The 3D ultrasound patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, automatic 3D ultrasound-to-ultrasound registration, and use of infra-red LED (IRED) markers of the optical position sensing system for registering simulation CT to ultrasound data. The mean target localization accuracy of this system was 2.5mm for four target locations inside the phantom, compared to 1.6mm obtained using the conventional patient positioning method of laser alignment. Since the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3D ultrasound-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1mm in magnitude. PMID:18723271

  20. Evaluation of targeting errors in ultrasound-assisted radiotherapy.

    PubMed

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2008-12-01

    A method for validating the start-to-end accuracy of a 3-D ultrasound (US)-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3-D US guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3-D US guidance, and finally delivery of radiation, to be evaluated. The 3-D US patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3-D US scans of the target anatomy acquired using a dedicated 3-D ultrasound probe during both the simulation and treatment sessions, automatic 3-D US-to-US registration and use of infrared LED (IRED) markers of the optical position-sensing system for registering simulation computed tomography to US data. The mean target localization accuracy of this system was 2.5 mm for four target locations inside the phantom, compared with 1.6 mm obtained using the conventional patient positioning method of laser alignment. Because the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3-D US-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1 mm in magnitude. PMID:18723271

  1. Stereotactic fractionated radiotherapy for the treatment of benign meningiomas

    SciTech Connect

    Candish, Charles; McKenzie, Michael . E-mail: mmckenzi@bccancer.bc.edu; Clark, Brenda G.; Ma, Roy; Lee, Richard; Vollans, Emily; Robar, James; Gete, Ermias; Martin, Monty

    2006-11-15

    Purpose: To assess the use of stereotactic fractionated radiotherapy (SRT) for the treatment of meningiomas. Methods and Materials: Between April 1999 and October 2004, 38 patients underwent SRT. Of 34 patients (36 tumors) assessed, the median age was 53 years. The indication was primary treatment in 26 cases (no histology) and postoperative in 10 cases. The most common sites were cavernous sinus (17), optic nerve (6), and cerebellopontine angle (5). The median gross target volume and planning target volume were 8.9 cm{sup 3} and 18.9 cm{sup 3}, respectively. Stereotactic treatment was delivered with 6-MV photons with static conformal fields (custom-made blocks, 9 patients, and micromultileaf collimator, 25 patients). Median number of fields was six. The median dose prescribed was 50 Gy (range, 45-50.4 Gy) in 28 fractions. The median homogeneity and conformality indices were 1.1 and 1.79, respectively. Results: Treatment was well tolerated. Median follow-up was 26 months with 100% progression-free survival. One patient developed an area of possible radionecrosis related to previous radiotherapy, and 2 men developed mild hypogonadism necessitating testosterone replacement. The vision of 5 of 6 patients with optic pathway meningiomas improved or remained static. Conclusions: Stereotactic fractionated radiotherapy for the treatment of meningiomas is practical, and with early follow-up, seems to be effective.

  2. Improving external beam radiotherapy by combination with internal irradiation

    PubMed Central

    Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-01-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed. PMID:25782328

  3. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    PubMed Central

    McLaughlin, Mark F.; Woodward, Jonathan; Boll, Rose A.; Wall, Jonathan S.; Rondinone, Adam J.; Kennel, Stephen J.; Mirzadeh, Saed; Robertson, J. David

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the 225Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of 225Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties. PMID:23349921

  4. Characteristic evaluation of photoneutron in radiotherapy room using MCNPX

    NASA Astrophysics Data System (ADS)

    Park, E.-T.; Kim, J.-H.; Kim, C.-S.; Kang, S.-S.

    2015-08-01

    Linear accelerators are now playing a pivotal role in radiotherapy and high energy photon beams of a strength exceeding 8 MV have recently been mainly used. However, when using high energy photons, neutron contamination due to photonuclear reaction develops. This study focused on the dose distribution of photoneutrons emitted from a linear accelerator using Monte Carlo MCNPX code. MCNPX was used to simulate transportation of photoneutrons in the linear accelerator and the entire space of the radiotherapy room and is useful for calculating the flux, spectrum and absorbed dose. As result of the simulation, we could know that the neutron absorbed dose was as less as negligible when comparing to the photon absorbed dose in radiotherapy room. And it was found that the photoneutron flux increased substantially starting from 10 MV while the absorbed dose rose sharply between 10 MV and 12 MV. It was observed that although the ratio of thermal neutrons to fast neutrons was not altered as the energy increased, it was found that as the distance from the source increased the ratio of thermal neutrons rose markedly.

  5. Radiotherapy Adapted to Spatial and Temporal Variability in Tumor Hypoxia

    SciTech Connect

    Sovik, Aste; Malinen, Eirik . E-mail: emalinen@fys.uio.no; Skogmo, Hege K.; Bentzen, Soren M.; Bruland, Oyvind S.; Olsen, Dag Rune

    2007-08-01

    Purpose: To explore the feasibility and clinical potential of adapting radiotherapy to temporal and spatial variations in tumor oxygenation. Methods and Materials: Repeated dynamic contrast enhanced magnetic resonance (DCEMR) images were taken of a canine sarcoma during the course of fractionated radiation therapy. The tumor contrast enhancement was assumed to represent the oxygen distribution. The IMRT plans were retrospectively adapted to the DCEMR images by employing tumor dose redistribution. Optimized nonuniform tumor dose distributions were calculated and compared with a uniform dose distribution delivering the same integral dose to the tumor. Clinical outcome was estimated from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Results: The biologically adapted treatment was found to give a substantial increase in TCP compared with conventional radiotherapy, even when only pretreatment images were used as basis for the treatment planning. The TCP was further increased by repeated replanning during the course of treatment, and replanning twice a week was found to give near optimal TCP. Random errors in patient positioning were found to give a small decrease in TCP, whereas systematic errors were found to reduce TCP substantially. NTCP for the adapted treatment was similar to or lower than for the conventional treatment, both for parallel and serial normal tissue structures. Conclusion: Biologically adapted radiotherapy is estimated to improve treatment outcome of tumors having spatial and temporal variations in radiosensitivity.

  6. Botanicals: an alternative remedy to radiotherapy-induced dysuria.

    PubMed

    Jaladat, Amir Mohammad; Atarzadeh, Fatemeh; Rezaeizadeh, Hossein; Mofid, Bahram; Mosalaie, Ahmad; Farhan, Farshid; Amin, Gholamreza

    2015-02-01

    Everyday, many patients get radiotherapy for prostatic, rectal, uterine cervix and other pelvic organs cancer. Dysuria is common in pelvic, especially prostate radiotherapy, but there is not any established and confirmed treatment for this therapeutic side effect. Therefore, an alternative therapeutic method, using herbal preparation, may be an effective solution. This study seeks a defensible suggestion in Iranian Traditional Medicine (ITM). In ITM, a few medicinal herbs such as Plantago psyllium, Cydonia oblonga, Portulaca oleracea and some species of Malvaceae and Cucurbitaceae family are indicated in treating dysuria secondary to urethral moisturizing layer defect and inflammatory disorders. Most of these herbs have mucilaginous characteristics and tissue regeneration ability. This choice can be an appropriate one for radiotherapy-induced dysuria as it is produced by a similar pathophysiology with bladder cell layer injury and urethritis. Pharmacological properties such as anti-oxidant, anti-inflammatory, and anti-ulcerogenic activity of the offered herbs make its use justifiable. In lack of sufficient clinical trials to clarify the clinical outcome, further clinical investigation seems to be necessary. PMID:25637157

  7. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

    SciTech Connect

    Vlad, Roxana M.; Alajez, Nehad M.; Giles, Anoja B.Sc.; Kolios, Michael C.; Czarnota, Gregory J.

    2008-11-15

    Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. Methods and Materials: Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. Results: A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo.

  8. [3rd Hungarian Breast Cancer Consensus Conference - Radiotherapy Guidelines].

    PubMed

    Polgár, Csaba; Kahán, Zsuzsanna; Csejtei, András; Gábor, Gabriella; Landherr, László; Mangel, László; Mayer, Árpád; Fodor, János

    2016-09-01

    The radiotherapy expert panel revised and updated the radiotherapy (RT) guidelines accepted in 2009 at the 2nd Hungarian Breast Cancer Consensus Conference based on new scientific evidence. Radiotherapy of the conserved breast is indicated in ductal carcinoma in situ (St. 0), as RT decreases the risk of local recurrence by 60%. In early stage (St. I-II) invasive breast cancer RT remains a standard treatment following breast conserving surgery. However, in elderly (≥70 years) patients with stage I, hormone receptor positive tumour hormonal therapy without RT can be considered. Hypofractionated (15×2.67 Gy) whole breast irradiation and for selected cases accelerated partial breast irradiation are validated treatment alternatives of conventional (25×2 Gy) whole breast irradiation. Following mastectomy RT significantly decreases the risk of locoregional recurrence and improves overall survival of patients having 1 to 3 (pN1a) or ≥4 (pN2a, pN3a) positive axillary lymph nodes. In selected cases of patients with 1 to 2 positive sentinel lymph nodes axillary dissection can be omitted and substituted with axillary RT. After neoadjuvant chemotherapy (NAC) followed by breast conserving surgery whole breast irradiation is mandatory, while after NAC followed by mastectomy locoregional RT should be given in cases of initial stage III-IV and ypN1 axillary status. PMID:27579722

  9. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  10. CT Imaging Findings after Stereotactic Radiotherapy for Liver Tumors

    PubMed Central

    Brook, Olga R.; Thornton, Eavan; Mendiratta-Lala, Mishal; Mahadevan, Anand; Raptopoulos, Vassilious; Brook, Alexander; Najarian, Robert; Sheiman, Robert; Siewert, Bettina

    2015-01-01

    Purpose. To study radiological response to stereotactic radiotherapy for focal liver tumors. Materials and Methods. In this IRB-approved, HIPAA-compliant study CTs of 68 consecutive patients who underwent stereotactic radiotherapy for liver tumors between 01/2006 and 01/2010 were retrospectively reviewed. Two independent reviewers evaluated lesion volume and enhancement pattern of the lesion and of juxtaposed liver parenchyma. Results. 36 subjects with hepatocellular carcinoma (HCC), 25 with liver metastases, and seven with cholangiocarcinoma (CCC) were included in study. Mean follow-up time was 5.6 ± 7.1 months for HCC, 6.4 ± 5.1 months for metastases, and 10.1 ± 4.8 months for the CCC. Complete response was seen in 4/36 (11.1%) HCCs and 1/25 (4%) metastases. Partial response (>30% decrease in long diameter) was seen in 25/36 (69%) HCCs, 14/25 (58%) metastases, and 7/7 (100%) of CCCs. Partial response followed by local recurrence (>20% increase in long diameter from nadir) occurred in 2/36 (6%) HCCs and 4/25 (17%) metastases. Liver parenchyma adjacent to the lesion demonstrated a prominent halo of delayed enhancement in 27/36 (78%) of HCCs, 19/21 (91%) of metastases, and 7/7 (100%) of CCCs. Conclusion. Sustainable radiological partial response to stereotactic radiotherapy is most frequent outcome seen in liver lesions. Prominent halo of delayed enhancement of the adjacent liver is frequent finding. PMID:26221135

  11. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study.

    PubMed

    Zhang, Ying; Feng, Yuanming; Ming, Xin; Deng, Jun

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  12. Toxic Epidermal Necrolysis in Polymedicated Patient Treated With Radiotherapy

    PubMed Central

    Pérez-Calderón, Remedios; Corrales-Vargas, Silvia; Jiménez-Ferrera, Gloria; Rodríguez-Nevado, Isabel; Díaz-Delgado, Mario

    2015-01-01

    Temozolomide is an oral alkylating agent indicated for the treatment of patients with glioblastoma multiforme concomitantly with radiotherapy and subsequently as monotherapy treatment. We report the case of a patient who developed toxic epidermal necrolysis (TEN) while she was being treated with chemoradiotherapy and several drugs. Cutaneous tests were performed with the drugs involved with negative result. Although the occurrence of TEN contraindicates suspected drug readministration, we based the decision to perform the controlled administration of temozolomide on the following reasons: (1) the poor prognosis of the underlying disease, (2) the lack of therapeutic alternatives, (3) the suspicion that other drugs taken by the patient simultaneously may be responsible (as anticonvulsants and trimethoprim sulfamethoxazole [TMP-SMX]), and (4) temozolomide was the first choice for treating the patient's disease. The administration of a cumulative dose of 60 mg of temozolomide caused a slight skin reaction. Given this result, we conducted controlled administration of other drugs involved. Dexamethasone, codeine, omeprazole and levetiracetam were well tolerated. However, TMP-SMX produced a similar reaction to that caused by temozolomide. In conclusion, we present the first case of TEN induced by temozolomide and TMP-SMX associated with cranial radiotherapy confirmed by controlled administration. Radiotherapy in combination with these drugs could have favored TEN, as some authors have postulated, but we cannot prove this. PMID:25729629

  13. Cancer risk following radiotherapy for infertility or menstrual disorders.

    PubMed

    Ron, E; Auvinen, A; Alfandary, E; Stovall, M; Modan, B; Werner, A

    1999-09-01

    A cohort of 968 Israeli women treated with radiotherapy for infertility was followed up for cancer incidence. The majority of the subjects were irradiated to both the ovaries and the pituitary gland. Mean doses to the brain, colon, ovary and bone marrow were 0. 8, 0.6, 1.0 and 0.4 Gy, respectively. More than 10 years after radiation treatment, 60 cancers were observed compared with 74.5 expected based on national cancer incidence rates (standardized incidence ratio 0.81, 95% confidence interval 0.61-1.04). No statistically significant excess or deficit was seen for any individual type of cancer; however, a non-significant 60% increased risk of colon cancer was observed. Risk of colon cancer was higher among women with 2 or more treatments and increased with length of follow-up. A decreased risk of breast cancer was suggested. Neither age at exposure nor attained age modified subsequent cancer risk. No clear excess of any cancer site was observed among women at organ doses above the median compared with subjects at doses below the median, except a slight increase in colon cancer. No significant excess incidence of cancer was demonstrated in this small cohort of patients treated with radiotherapy for infertility. Our results are consistent with those from an earlier study of cancer mortality among women receiving radiotherapy for infertility conducted in New York City. Int. J. Cancer 82:795-798, 1999. Published 1999 Wiley-Liss, Inc. PMID:10446443

  14. Radiotherapy Combined With Androgen Deprivation for Bone Oligometastases After Primary Curative Radiotherapy for Prostate Cancer

    PubMed Central

    Wu, Jun-Xin; Lin, Li-Mei; He, Jun-Yan; Hong, Liang; Li, Jin-Luan

    2016-01-01

    Abstract To evaluate the effects and toxicity of radiotherapy (RT) combined with androgen deprivation (AD) for bone oligometastases after primary curative RT for prostate cancer (PCa). We retrospectively analyzed 30 consecutively treated PCa patients with bone oligometastases from April 2005 to July 2014. All patients underwent RT combined with AD for oligometastatic bones after curative RT for PCa. Measured outcomes included overall survival (OS) rate, local control (LC), progression-free survival (PFS), pain relief, and toxicities. Statistical analysis was performed with SPSS17.0. The median follow-up was 32.5 months (range, 0.6–50.3). The 3-year PFS and OS rates were 22.8% (95% CI, 13.4–37.5%) and 69% (95% CI, 51.7–81.1%), respectively. The number of bone oligometastases and RT schedule were found to be significantly associated with OS on univariate analysis (P < 0.05, respectively). The 3-year OS for patients with 1 and >1 metastases was 78.8% versus 42.2%, respectively (P = 0.037). The long-course RT was associated with better 3-year OS compared with short-course (76.4% vs 44.1%, P = 0.03). A total of 15 (83.3%, 15/18) patients achieved pain relief. No grade 3 toxicity was observed. Long-course RT combined with ADT was effective and well-tolerated in PCa patients with bone oligometastases after curative RT for PCa. Further randomized controlled trials are needed to corroborate the findings. PMID:26871838

  15. Consensus statement on palliative lung radiotherapy: third international consensus workshop on palliative radiotherapy and symptom control.

    PubMed

    Rodrigues, George; Macbeth, Fergus; Burmeister, Bryan; Kelly, Karie-Lynn; Bezjak, Andrea; Langer, Corey; Hahn, Carol; Movsas, Benjamin

    2012-01-01

    The purpose of this work is to disseminate a consensus statement on palliative radiotherapy (RT) of lung cancer created in conjunction with the Third International Lung Cancer Consensus Workshop. The palliative lung RT workshop committee agreed on 5 questions relating to (1) patient selection, (2) thoracic external-beam radiation therapy (XRT) fractionation, (3) endobronchial brachytherapy (EBB), (4) concurrent chemotherapy (CC), and (5) palliative endpoint definitions. A PubMed search for primary/cross-referenced practice guidelines, consensus statements, meta-analyses, and/or systematic reviews was conducted. Final consensus statements were created after review and discussion of the available evidence. The following summary statements reflect the consensus of the international working group. 1. Key factors involved in the decision to deliver palliative RT include performance status, tumor stage, pulmonary function, XRT volume, symptomatology, weight loss, and patient preference. 2. Palliative thoracic XRT is generally indicated for patients with stage IV disease with current/impending symptoms and for patients with stage III disease treated for palliative intent. 3. There is no evidence to routinely recommend EBB alone or in conjunction with other palliative maneuvers in the initial palliative management of endobronchial obstruction resulting from lung cancer. 4. There is currently no evidence to routinely recommend CC with palliative-intent RT. 5. Standard assessment of symptoms and health-related quality of life (QOL) using validated questionnaires should be carried out in palliative RT lung cancer trials. Despite an expanding literature, continued prospective randomized investigations to better define the role of XRT, EBB, and CC in the context of thoracic palliation of patients with lung cancer is needed. PMID:21729656

  16. Osteoradionecrosis Following Carbon Ion Radiotherapy: Case History Report of a Soft Palate Defect.

    PubMed

    Oki, Meiko; Kanazaki, Ayako; Taniguchi, Hisashi

    2016-01-01

    Carbon ion radiotherapy, a form of charged particle radiotherapy that has been used to treat various inoperable and radio-resistant tumors, has been associated with less severe late effects than conventional radiotherapy. A 63-year-old woman with a soft palate defect received carbon ion radiotherapy (total dose: 64 Gray equivalents). Several late effects were observed, and osteoradionecrosis was observed not only on the tumor side but also on the other side and gradually expanded during maxillofacial prosthetic rehabilitation. While the definitive prosthesis improved her speech and eating ability, careful adjustments and close follow-up should continue with respect to postradiation effects. PMID:27611746

  17. Palliative radiotherapy for advanced malignancies in a changing oncologic landscape: guiding principles and practice implementation.

    PubMed

    Jones, Joshua A; Simone, Charles B

    2014-07-01

    Radiotherapy can provide safe, cost-effective, efficient palliation of various symptoms of advanced cancer with minimal side effects. Radiotherapy can palliate pain related to bone metastases and growing visceral metastases or primary cancers, neurologic symptoms related to brain and spine metastases, other symptoms including cough and dyspnea from advanced cancers in the lung, bleeding from various internal and external tumors, and obstructive symptoms. Palliative radiotherapy should be offered in the context of a multidisciplinary oncology team including medical oncologists, palliative care clinicians and various surgical and interventional subspecialists. The prescription of radiotherapy should balance the convenience and fewer side effects associated with short, hypofractionated courses of radiotherapy with the potential greater durability associated with longer courses of radiotherapy in patients with more prolonged life expectancies. The judicious use of advanced techniques in radiotherapy, including intensity-modulated radiotherapy and stereotactic radiotherapy (SRT), may be warranted in select patients, and they can potentially improve symptom control and durability but are associated with increased technical and economic costs. PMID:25841695

  18. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review. PMID:25918298

  19. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    PubMed

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. PMID:25913714

  20. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    SciTech Connect

    Koukourakis, Michael I.

    2015-05-29

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopy on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after

  1. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy

    PubMed Central

    2014-01-01

    The goal of this review is to summarize the rationale for and feasibility of hippocampal sparing techniques during brain irradiation. Radiotherapy is the most effective non-surgical treatment of brain tumors and with the improvement in overall survival for these patients over the last few decades, there is an effort to minimize potential adverse effects leading to possible worsening in quality of life, especially worsening of neurocognitive function. The hippocampus and associated limbic system have long been known to be important in memory formation and pre-clinical models show loss of hippocampal stem cells with radiation as well as changes in architecture and function of mature neurons. Cognitive outcomes in clinical studies are beginning to provide evidence of cognitive effects associated with hippocampal dose and the cognitive benefits of hippocampal sparing. Numerous feasibility planning studies support the feasibility of using modern radiotherapy systems for hippocampal sparing during brain irradiation. Although results of the ongoing phase II and phase III studies are needed to confirm the benefit of hippocampal sparing brain radiotherapy on neurocognitive function, it is now technically and dosimetrically feasible to create hippocampal sparing treatment plans with appropriate irradiation of target volumes. The purpose of this review is to provide a brief overview of studies that provide a rationale for hippocampal avoidance and provide summary of published feasibility studies in order to help clinicians prepare for clinical usage of these complex and challenging techniques. PMID:24935286

  2. Locally Advanced Stage IV Squamous Cell Carcinoma of the Head and Neck: Impact of Pre-Radiotherapy Hemoglobin Level and Interruptions During Radiotherapy

    SciTech Connect

    Rades, Dirk Stoehr, Monika; Kazic, Nadja; Hakim, Samer G.; Walz, Annette; Schild, Steven E.; Dunst, Juergen

    2008-03-15

    Purpose: Stage IV head and neck cancer patients carry a poor prognosis. Clear understanding of prognostic factors can help to optimize care for the individual patient. This study investigated 11 potential prognostic factors including pre-radiotherapy hemoglobin level and interruptions during radiotherapy for overall survival (OS), metastases-free survival (MFS), and locoregional control (LC) after radiochemotherapy. Methods and Materials: Eleven factors were investigated in 153 patients receiving radiochemotherapy for Stage IV squamous cell head and neck cancer: age, gender, Karnofsky performance score (KPS), tumor site, grading, T stage, N stage, pre-radiotherapy hemoglobin level, surgery, chemotherapy type, and interruptions during radiotherapy >1 week. Results: On multivariate analysis, improved OS was associated with KPS 90-100 (relative risk [RR], 2.36; 95% confidence interval [CI], 1.20-4.93; p = .012), hemoglobin {>=}12 g/dL (RR, 1.88; 95% CI, 1.01-3.53; p = .048), and no radiotherapy interruptions (RR, 2.59; 95% CI, 1.15-5.78; p = .021). Improved LC was significantly associated with lower T stage (RR, 2.17; 95% CI, 1.16-4.63; p = .013), hemoglobin {>=}12 g/dL (RR, 4.12; 95% CI, 1.92-9.09; p < .001), surgery (RR, 2.67; 95% CI, 1.28-5.88; p = .008), and no radiotherapy interruptions (RR, 3.32; 95% CI, 1.26-8.79; p = .015). Improved MFS was associated with KPS 90-100 (RR, 3.41; 95% CI, 1.46-8.85; p = .012). Conclusions: Significant predictors for outcome in Stage IV head and neck cancer were performance status, stage, surgery, pre-radiotherapy hemoglobin level, and interruptions during radiotherapy >1 week. It appears important to avoid anemia and radiotherapy interruptions to achieve the best treatment results.

  3. Cerebrovascular Disease Risk in Older Head and Neck Cancer Patients After Radiotherapy

    PubMed Central

    Smith, Grace L.; Smith, Benjamin D.; Buchholz, Thomas A.; Giordano, Sharon H.; Garden, Adam S.; Woodward, Wendy A.; Krumholz, Harlan M.; Weber, Randal S.; Ang, K.-Kian; Rosenthal, David I.

    2008-01-01

    Purpose Cerebrovascular disease is common in head and neck cancer patients, but it is unknown whether radiotherapy increases the cerebrovascular disease risk in this population. Patients and Methods We identified 6,862 patients (age > 65 years) from the Surveillance, Epidemiology, and End Results (SEER) –Medicare cohort diagnosed with nonmetastatic head and neck cancer between 1992 and 2002. Using proportional hazards regression, we compared risk of cerebrovascular events (stroke, carotid revascularization, or stroke death) after treatment with radiotherapy alone, surgery plus radiotherapy, or surgery alone. To further validate whether treatment groups had equivalent baseline risk of vascular disease, we compared the risks of developing a control diagnosis, cardiac events (myocardial infarction, percutaneous coronary intervention, coronary artery bypass graft, or cardiac death). Unlike cerebrovascular risk, no difference in cardiac risk was hypothesized. Results Mean age was 76 ± 7 years. Ten-year incidence of cerebrovascular events was 34% in patients treated with radiotherapy alone compared with 25% in patients treated with surgery plus radiotherapy and 26% in patients treated with surgery alone (P < .001). After adjusting for covariates, patients treated with radiotherapy alone had increased cerebrovascular risk compared with surgery plus radiotherapy (hazard ratio [HR] = 1.42; 95% CI, 1.14 to 1.77) and surgery alone (HR = 1.50; 95% CI, 1.18 to 1.90). However, no difference was found for surgery plus radiotherapy versus surgery alone (P = .60). As expected, patients treated with radiotherapy alone had no increased cardiac risk compared with the other treatment groups (P = .63 and P = .81). Conclusion Definitive radiotherapy for head and neck cancer, but not postoperative radiotherapy, was associated with excess cerebrovascular disease risk in older patients. PMID:18725647

  4. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery. PMID

  5. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  6. Misonidazole and radiotherapy in lung cancer: a randomized double-blind trial

    SciTech Connect

    Mantyla, M.J.; Norman, E.M.; Ruotsalainen, P.J.; Kylmamaa, T.T.

    1982-10-01

    Forty-six patients with inoperable bronchial cancer have been treated by a fractionated course of radiotherapy with misonidazole or placebo. The main purpose of the administration of the drug to these patients was to determine tumor response and safe dosage in clinical radiotherapy. It seems possible to enhance the radiosensitivity of human squamous cell cancer by misonidazole.

  7. Combinations of Radiotherapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    PubMed Central

    Barker, Christopher A.; Postow, Michael A.

    2015-01-01

    Radiotherapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiotherapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiotherapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiotherapy. The cytokines interferon-alpha and interleukin-2 have been combined with radiotherapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiotherapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested radiotherapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiotherapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study. PMID:24661650

  8. Ultrasonographic changes in the normal and malignant prostate after definitive radiotherapy

    SciTech Connect

    Egawa, S.; Carter, S.S.; Wheeler, T.M.; Scardino, P.T. )

    1989-11-01

    As treatments for early localized prostate cancer come under closer scrutiny, the fundamental problem of documenting the success of radiotherapy becomes more obvious. Currently, no satisfactory method exists to determine tumor viability after radiotherapy. Transrectal ultrasonography is particularly valuable for monitoring the response of prostate cancer to radiotherapy. Persistent cancer retains its hypoechoic appearance after definitive radiotherapy. Hypoechoic lesions greater than 5 mm in diameter found more than 12 months after radiotherapy should be suspected of representing persistent local disease. In our study, albeit in a selected group of patients undergoing salvage radical prostatectomy, 92 per cent of such findings were associated with what we interpreted as viable tumor by light microscopy. Ultrasound-guided biopsy should be considered in such circumstances. The persistence of hypoechoic lesions in more than 65 per cent of patients 12 to 36 months after radiotherapy also suggests that local treatment failure may be underestimated by digital rectal examination and random digitally guided biopsy. Serial measurement of the diameter of hypoechoic lesions may provide a valuable indicator of progress in an individual patient. Patients with enlarging foci of tumor within the prostate after radiotherapy might be selected for biopsy and further treatment. If such a policy is employed, it is likely that a higher incidence of persistent cancer will be found after radiotherapy than has previously been discovered by random digitally guided biopsy.

  9. Stereotactic ablative body radiotherapy (SABR) for primary and secondary lung tumours

    PubMed Central

    Gaya, Andrew

    2012-01-01

    Abstract Stereotactic ablative body radiotherapy (SABR) represents a technological breakthrough in radiotherapy technique, with proven benefits to patients in terms of improved tumour control and overall survival. The key components of SABR are described. The current evidence base for SABR for the treatment of primary and secondary lung tumours is appraised, and key ongoing trials are identified. PMID:23023165

  10. Radiotherapy for Management of Extremity Soft Tissue Sarcomas: Why, When, and Where?

    SciTech Connect

    Haas, Rick L.M.; DeLaney, Thomas F.; O'Sullivan, Brian; Keus, Ronald B.; Le Pechoux, Cecile; Olmi, Patricia; Poulsen, Jan-Peter; Seddon, Beatrice; Wang, Dian

    2012-11-01

    This critical review will focus on published data on the indications for radiotherapy in patients with extremity soft tissue sarcomas and its role in local control, survival, and treatment complications. The differences between pre- and postoperative radiotherapy will be discussed and consensus recommendations on target volume delineation proposed.

  11. Human Collagen Injections to Reduce Rectal Dose During Radiotherapy

    SciTech Connect

    Noyes, William R.; Hosford, Charles C.; Schultz, Steven E.

    2012-04-01

    Objectives: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. Methods: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectal space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. Results: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. Conclusions: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.

  12. The role of PET/CT scanning in radiotherapy planning.

    PubMed

    Jarritt, P H; Carson, K J; Hounsell, A R; Visvikis, D

    2006-09-01

    The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using 18F-Fluorodeoxyglucose (18F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. PMID:16980683

  13. Ototoxicity after radiotherapy for head and neck tumors

    SciTech Connect

    Bhandare, Niranjan; Antonelli, Patrick J.; Morris, Christopher G.; Malayapa, Robert S.; Mendenhall, William M. . E-mail: mendewil@shands.ufl.edu

    2007-02-01

    Purpose: To investigate the incidence of radiation-induced ototoxicity according to the total dose delivered to specific parts of the auditory system, fractionation, and chemotherapy. Methods and Materials: Records of 325 patients treated for primary extracranial head and neck tumors with curative intent who received radiotherapy between 1964 and 2000 (median follow-up, 5.4 years) were retrospectively reviewed. Reconstructions of the treatment plans were generated to estimate the doses received by components of the auditory system. Results: Radiotherapy-induced morbidity developed in 41.8% of patients (external ear, 33.2%; middle ear, 28.6%; and inner ear, 26.8%). Univariate/multivariate analyses indicate that total dose received by parts of the auditory system seem to be significant, though fractionation and chemoradiation may contribute to the incidence of ototoxicities. Sensorineural hearing loss (SNHL) was observed in 49 patients (15.1%). Univariate and multivariate analyses indicated that age (p = 0.0177 and p = 0.005) and dose to cochlea (p < 0.0001 and p < 0.0001) were significant, and chemoradiation (p = 0.0281 and p = 0.006) may increase the incidence of SNHL. Five-year and 10-year actuarial risk of clinically overt SNHL increased to 37% (p > 0.0001) above doses of 60.5 Gy compared to 3% at doses below 60.5 Gy. For patients treated with adjuvant chemotherapy, clinically overt SNHL increased to 30% compared to 18% in the no-chemotherapy group at 10 years (p = 0.0281). Conclusion: Radiotherapy toxicity was observed in all parts of the auditory system with median doses for incidence varying between 60 Gy to 66 Gy. Total dose to organ seems to be a significant factor though fractionation and chemo-radiation may contribute to ototoxicities.

  14. Navigated marker placement for motion compensation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Winterstein, A.; März, K.; Franz, A. M.; Hafezi, M.; Fard, N.; Sterzing, F.; Mehrabi, A.; Maier-Hein, L.

    2015-03-01

    Radiotherapy is frequently used to treat unoperated or partially resected tumors. Tumor movement, e.g. caused by respiration, is a major challenge in this context. Markers can be implanted around the tumor prior to radiation therapy for accurate tracking of tumor movement. However, accurate placement of these markers while keeping a secure margin around the target and while taking into account critical structures is a difficult task. Computer-assisted needle insertion has been an active field of research in the past decades. However, the challenge of navigated marker placement for motion compensated radiotherapy has not yet been addressed. This work presents a system to support marker implantation for radiotherapy under consideration of safety margins and optimal marker configuration. It is designed to allow placement of markers both percutaneously and during an open liver surgery. To this end, we adapted the previously proposed EchoTrack system which integrates ultrasound (US) imaging and electromagnetic (EM) tracking in a single mobile modality. The potential of our new marker insertion concept was evaluated in a phantom study by inserting sets of three markers around dedicated targets (n=22) simultaneously spacing the markers evenly around the target as well as placing the markers in a defined distance to the target. In all cases the markers were successfully placed in a configuration fulfilling the predefined criteria. This includes a minimum distance of 18.9 ± 2.4 mm between marker and tumor as well as a divergence of 2.1 ± 1.5 mm from the planned marker positions. We conclude that our system has high potential to facilitate the placement of markers in suitable configurations for surgeons without extensive experience in needle punctions as high quality configurations were obtained even by medical non-experts.

  15. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy.

    PubMed

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  16. Single-Dose Versus Fractionated Stereotactic Radiotherapy for Brain Metastases

    SciTech Connect

    Kim, Yeon-Joo; Cho, Kwan Ho; Kim, Joo-Young; Lim, Young Kyung; Min, Hye Sook; Lee, Sang Hyun; Kim, Ho Jin; Gwak, Ho Shin; Yoo, Heon; Lee, Seung Hoon

    2011-10-01

    Purpose: To evaluate the efficacy of stereotactic radiotherapy in patients with brain metastases by comparing two different treatment regimens, single-dose radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Between November 2003 and December 2008, 98 patients with brain metastases were included. Fifty-eight patients were treated with SRS, and forty were treated with FSRT. Fractionated stereotactic radiotherapy was used for large lesions or lesions located near critical structures. The median doses were 20 Gy for the SRS group and 36 Gy in 6 fractions for the FSRT group. Results: With a median follow-up period of 7 months, the median survival was 7 months for all patients, with a median of 6 months for the SRS group and 8 months for the FSRT group (p = 0.89). Local progression-free survival (LPFS) rates at 6 months and 1 year were 81% and 71%, respectively, for the SRS group and 97% and 69%, respectively, for the FSRT group (p = 0.31). Despite the fact that FSRT was used for large lesions and lesions in adverse locations, LPFS was not inferior to SRS. Toxicity was more frequently observed in the SRS group than in the FSRT group (17% vs. 5%, p = 0.05). Conclusions: Because patients treated with FSRT exhibited similar survival times and LPFS rates with a lower risk of toxicity in comparison to those treated with SRS, despite the fact that FSRT was used for large lesions and lesions in adverse locations, we find that FSRT can particularly be beneficial for patients with large lesions or lesions located near critical structures. Further investigation is warranted to determine the optimal dose/fractionation.

  17. Descriptive Study of Patients Receiving Excision and Radiotherapy for Keloids

    SciTech Connect

    Speranza, Giovanna Sultanem, Khalil M.D.; Muanza, Thierry

    2008-08-01

    Purpose: To review and describe our institution's outcomes in patients treated with external beam radiotherapy after keloid excision. Methods and Materials: This was a retrospective study. Patients who received radiotherapy between July 1994 and January 2004 after keloid excision were identified. A questionnaire was mailed regarding sociodemographic factors, early and late radiation toxicities, the need for additional therapy, and satisfaction level. All patients had received a total of 15 Gy in three daily 5-Gy fractions. Treatment started within 24 h after surgery and was delivered on a Siemens orthovoltage machine. The data were analyzed using the STATA statistical package. Results: A total of 234 patients were approached. The response rate was 41%, and 75% were female. The mean age was 36.5 years (range, 16-69 years). The patients were mainly of European (53.1%) or African (19.8%) descent. For early toxicity outcomes, 54.2% reported skin redness and 24% reported skin peeling. For late toxicity outcomes, 27% reported telangiectasia and 62% reported permanent skin color changes. No association was found with gender, skin color, or age for the late toxicity outcomes. Of the patients responding, 14.6% required adjuvant treatment. On a visual scale of 1-10 for the satisfaction level, 60% reported a satisfaction level of {>=}8. Telangiectasia was the most significant predictor of a low satisfaction level ({<=}3, p < 0.005). Conclusion: The results of our study have shown that orthovoltage-based radiotherapy after surgical excision for keloids is a good method for the prevention of relapse. It is well tolerated, causes little toxicity, and leads to a high patient satisfaction level.

  18. Melanin content in melanoma metastases affects the outcome of radiotherapy.

    PubMed

    Brożyna, Anna A; Jóźwicki, Wojciech; Roszkowski, Krzysztof; Filipiak, Jan; Slominski, Andrzej T

    2016-04-01

    Melanin possess radioprotective and scavenging properties, and its presence can affect the behavior of melanoma cells, its surrounding environment and susceptibility to the therapy, as showed in vitro experiments. To determine whether melanin presence in melanoma affects the efficiency of radiotherapy (RTH) we evaluated the survival time after RTH treatment in metastatic melanoma patients (n = 57). In another cohort of melanoma patients (n = 84), the relationship between melanin level and pT and pN status was determined. A significantly longer survival time was found in patients with amelanotic metastatic melanomas in comparison to the melanotic ones, who were treated with either RTH or chemotherapy (CHTH) and RTH. These differences were more significant in a group of melanoma patients treated only with RTH. A detailed analysis of primary melanomas revealed that melanin levels were significantly higher in melanoma cells invading reticular dermis than the papillary dermis. A significant reduction of melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and T2 tumors was observed. However, melanin levels measured in pT3-pT4 melanomas developing metastases (pN1-3, pM1) were higher than in pN0 and pM0 cases. The presence of melanin in metastatic melanoma cells decreases the outcome of radiotherapy, and melanin synthesis is related to higher disease advancement. Based on our previous cell-based and clinical research and present research we also suggest that inhibition of melanogenesis can improve radiotherapy modalities. The mechanism of relationship between melanogenesis and efficacy of RTH requires additional studies, including larger melanoma patients population and orthotopic, imageable mouse models of metastatic melanoma. PMID:26910282

  19. Intraoperative Radiotherapy for Parotid Cancer: A Single-Institution Experience

    SciTech Connect

    Zeidan, Youssef H.; Shiue, Kevin; Weed, Daniel; Johnstone, Peter A.; Terry, Colin; Freeman, Stephen; Krowiak, Edward; Borrowdale, Robert; Huntley, Tod; Yeh, Alex

    2012-04-01

    Purpose: Our practice policy has been to provide intraoperative radiotherapy (IORT) at resection to patients with head-and-neck malignancies considered to be at high risk of recurrence. The purpose of the present study was to review our experience with the use of IORT for primary or recurrent cancer of the parotid gland. Methods and Materials: Between 1982 and 2007, 96 patients were treated with gross total resection and IORT for primary or recurrent cancer of the parotid gland. The median age was 62.9 years (range, 14.3-88.1). Of the 96 patients, 33 had previously undergone external beam radiotherapy as a component of definitive therapy. Also, 34 patients had positive margins after surgery, and 40 had perineural invasion. IORT was administered as a single fraction of 15 or 20 Gy with 4-6-MeV electrons. The median follow-up period was 5.6 years. Results: Only 1 patient experienced local recurrence, 19 developed regional recurrence, and 12 distant recurrence. The recurrence-free survival rate at 1, 3, and 5 years was 82.0%, 68.5%, and 65.2%, respectively. The 1-, 3-, and 5-year overall survival rate after surgery and IORT was 88.4%, 66.1%, and 56.2%, respectively. No perioperative fatalities occurred. Complications developed in 26 patients and included vascular complications in 7, trismus in 6, fistulas in 4, radiation osteonecrosis in 4, flap necrosis in 2, wound dehiscence in 2, and neuropathy in 1. Of these 26 patients, 12 had recurrent disease, and 8 had undergone external beam radiotherapy before IORT. Conclusions: IORT results in effective local disease control at acceptable levels of toxicity and should be considered for patients with primary or recurrent cancer of the parotid gland.

  20. Fast neutron radiotherapy: For equal or for better

    SciTech Connect

    Broerse, J.J.; Battermann, J.J.

    1981-11-01

    The renewed application of fast neutrons in clinical radiotherapy has been stimulated by fundamental radiobiological findings. The biological effects of high LET radiation, including fast neutrons, are different from those obtained with x rays in at least three respects: the oxygen enhancement ratio, the sensitivity of cells at different phases of the cell cycle, and the contribution of sublethal damage to cell reproductive death. Furthermore, wide variations in relative biological effectiveness (RBE) have been observed for different tumors and normal tissues. Measurements of volume changes in human pulmonary metastases indicate that the RBE for slowly growing tumors which are generally well-differentiated is higher than that for poorly differentiated lesions. Six thousand patients have now been treated with fast neutron beams. The results of the clinical applications vary according to the method of application and to the type of cancer involved: treatment of inoperable malignancies of the salivary gland is very encouraging; the therapeutic gain is rather small for bladder and rectal cancers, soft tissue sarcomas and advanced carcinomas of the cervix; the responses of brain tumors are very disappointing. Most neutron radiotherapy applications have been less than optimal because of inadequate physical and technical conditions. Despite these difficulties, some interesting clinical data have become available. Due to the technical shortcomings, the possible advantages of fast neutrons are probably underestimated for many tumor sites. Well-designed clinical trials, preferably performed with high energy cyclotrons in clinical environments, will provide a decisive answer to the question of the usefulness of the new radiation modality. Key words: fast neutrons, radiotherapy, radiobiology

  1. Melanin content in melanoma metastases affects the outcome of radiotherapy

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Roszkowski, Krzysztof; Filipiak, Jan; Slominski, Andrzej T.

    2016-01-01

    Melanin possess radioprotective and scavenging properties, and its presence can affect the behavior of melanoma cells, its surrounding environment and susceptibility to the therapy, as showed in vitro experiments. To determine whether melanin presence in melanoma affects the efficiency of radiotherapy (RTH) we evaluated the survival time after RTH treatment in metastatic melanoma patients (n = 57). In another cohort of melanoma patients (n = 84), the relationship between melanin level and pT and pN status was determined. A significantly longer survival time was found in patients with amelanotic metastatic melanomas in comparison to the melanotic ones, who were treated with either RTH or chemotherapy (CHTH) and RTH. These differences were more significant in a group of melanoma patients treated only with RTH. A detailed analysis of primary melanomas revealed that melanin levels were significantly higher in melanoma cells invading reticular dermis than the papillary dermis. A significant reduction of melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and T2 tumors was observed. However, melanin levels measured in pT3-pT4 melanomas developing metastases (pN1-3, pM1) were higher than in pN0 and pM0 cases. The presence of melanin in metastatic melanoma cells decreases the outcome of radiotherapy, and melanin synthesis is related to higher disease advancement. Based on our previous cell-based and clinical research and present research we also suggest that inhibition of melanogenesis can improve radiotherapy modalities. The mechanism of relationship between melanogenesis and efficacy of RTH requires additional studies, including larger melanoma patients population and orthotopic, imageable mouse models of metastatic melanoma. PMID:26910282

  2. Clinical Outcomes and Toxicity of Proton Radiotherapy for Breast Cancer.

    PubMed

    Verma, Vivek; Shah, Chirag; Mehta, Minesh P

    2016-06-01

    Proton beam radiotherapy (PBT) represents a rapidly expanding modality for the treatment of several malignancies. We examined the current state of PBT for breast cancer to evaluate its role in the modern era of breast radiotherapy. Systematic searches were performed using PubMed, EMBASE, and abstracts from the American Society for Radiation Oncology, American Society of Clinical Oncology, and Particle Therapy Co-Operative Group of North America annual meetings, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Nine original investigations were analyzed. Despite the dearth of overall data, skin toxicity after PBT might be equivalent or better than that of photons. Conventionally fractionated breast/chest wall PBT produces grade 1 dermatitis rates of approximately 25% and grade 2 dermatitis in 71% to 75%. This is comparable or improved over the published rates for photons. The incidence of esophagitis was decreased if the target coverage was compromised in the medial supraclavicular volume, a finding that echoes previous results with photon radiotherapy. The rates of esophagitis were also comparable to the previous data for photons. Using PBT-based accelerated partial breast irradiation, the rates of seroma/hematoma and fat necrosis were comparable to those reported in the existing data. Radiation pneumonitis and rib fractures remain rare. PBT offers excellent potential to minimize the risk of cardiac events, keeping the mean heart dose at ≤ 1 Gy. However, definitive clinical experiences remain sparse. The recently begun randomized trial of protons versus photons will further aid in providing robust conclusions. PMID:26995159

  3. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  4. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

    PubMed Central

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  5. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  6. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2014-06-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.

  7. The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy

    PubMed Central

    De Wolf, Katrien; Vermaelen, Karim; De Meerleer, Gert; Lambrecht, Bart N; Ost, Piet

    2015-01-01

    Renal cell carcinoma (RCC) is an immunogenic tumor, but uses several immune-suppressive mechanisms to shift the balance from tumor immune response toward tumor growth. Although RCC has traditionally been considered to be radiation resistant, recent evidence suggests that hypofractionated radiotherapy contributes to systemic antitumor immunity. Because the efficacy of antitumor immune responses depends on the complex balance between diverse immune cells and progressing tumor cells, radiotherapy alone is unlikely to induce persistent antitumor immunity. Therefore, the combination of radiotherapy with drugs having synergistic immunomodulatory properties holds great promise with the optimal timing and sequence of modalities depending on the agent used. We highlight the immunomodulatory properties of targeted therapies, such as tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (VEGF) neutralizing antibodies, and will suggest a combination schedule with radiotherapy based on the available literature. We also address the combination of radiotherapy with innovative treatments in the field of immunotherapy. PMID:26464810

  8. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  9. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy

    PubMed Central

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533

  10. Tattoo allergy in patients receiving adjuvant radiotherapy for breast cancer.

    PubMed

    Sewak, S; Graham, P; Nankervis, J

    1999-11-01

    Tattooing is routinely employed prior to radiotherapy treatment but allergies to tattoos are rare. New information on the incidence of tattoo allergy at St George Hospital is presented with details of two clinical cases. The literature on tattoo allergy has been unable to estimate the incidence of allergic reaction to tattoos because the total number of patients treated is unknown and not all patients were followed up. Our radiation oncology population for the first time has provided a known denominator, but wide confidence intervals prevent an accurate estima