Science.gov

Sample records for cycle assessments lca

  1. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    PubMed

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. PMID:26826362

  2. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect

    Reardon, P.T.

    1995-03-01

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  3. Personal Metabolism (PM) coupled with Life Cycle Assessment (LCA) model: Danish Case Study.

    PubMed

    Kalbar, Pradip P; Birkved, Morten; Kabins, Simon; Nygaard, Simon Elsborg

    2016-05-01

    Sustainable and informed resource consumption is the key to make everyday living sustainable for entire populations. An intelligent and strategic way of addressing the challenges related with sustainable development of the everyday living of consumers is to identify consumption-determined hotspots in terms of environmental and health burdens, as well as resource consumptions. Analyzing consumer life styles in terms of consumption patterns in order to identify hotspots is hence the focus of this study. This is achieved by taking into account the entire value chain of the commodities consumed in the context of environmental and human health burdens, as well as resource consumptions. A systematic commodity consumption, commodity disposal, and life style survey of 1281 persons living in urbanized Danish areas was conducted. The findings of the survey showed new impact dimensions in terms of Personal Metabolism (PM) patterns of residents living in urbanized areas of Denmark. Extending the PM analysis with Life Cycle Assessment (LCA) provided a clear picture of the per capita environmental and human health burdens, as well as resource consumptions, and the exact origin hereof. A generic PM-LCA Model for all the 1281 persons was set-up in Gabi 6. The assessment results obtained applying the model on all 1281 personal consumption scenarios yielded the 1281 Personal Impact Profiles (PIPs). Consumption of food and energy (electricity and thermal energy) proved to be the primary impact sources of PM, followed by transport. The PIPs further revealed that behavioral factors (e.g. different diets, use of cars, household size) affect the profiles. Hence, behavioral changes are one means out of many that humanity will most likely have to rely on during the sustainable development process. The results of this study will help the Danish and other comparable populations to identify and prioritize the steps towards reducing their environmental, human health, and resource consumption

  4. Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA).

    PubMed

    Haye, Sébastien; Slaveykova, Vera I; Payet, Jérôme

    2007-07-01

    Life cycle impact assessment aims to translate the amounts of substance emitted during the life cycle of a product into a potential impact on the environment, which includes terrestrial ecosystems. This work suggests some possible improvements in assessing the toxicity of metals on soil ecosystems in life cycle assessment (LCA). The current available data on soil ecotoxicity allow one to calculate the chronic terrestrial HC50(EC50) (hazardous concentration affecting 50% of the species at their EC50 level, i.e. the level where 50% of the individuals of the species are affected) of nine metals and metalloids (As(III) or (V), Be(II), Cr(III) or (VI), Sb(III) or (V), Pb(II), Cu(II), Zn(II) and Ni(II)). Contrarily to what is generally advised in LCIA, the terrestrial HC50 of metals shall not be extrapolated from the aquatic HC50, using the Equilibrium Partitioning method since the partition coefficient (K(d)) of metals is highly variable. The experimental ecotoxicology generally uses metallic salts to contaminate artificial soils but the comparison of the EC50 or NOEC obtained for the same metal with different salts reveals that the kind of salt used insignificantly influences these values. In contrast, depending on the metallic fraction of concern, the EC50 may vary, as for cadmium: the EC50 of Folsomia candida, expressed as free Cd in pore water is almost 2.5 orders of magnitude lower than that expressed as total metal. A similar result is obtained with Eisenia fetida, confirming the importance of metals speciation in assessing their impact on soils. By ranking the metals according to the difference between their terrestrial and aquatic HC50 values, two groups are distinguished, which match the hard soft acids and bases (HSAB) concept. This allows to estimate their affinity for soil components and potential toxicity according to their chemical characteristics. PMID:17467037

  5. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation. PMID:20924666

  6. STREAMLINED LIFE CYCLE ASSESSMENT: A FINAL REPORT FROM THE SETAC-NORTH AMERICA STREAMLINED LCA WORKGROUP

    EPA Science Inventory

    The original goal of the Streamlined LCA workgroup was to define and document a process for a shortened form of LCA. At the time, because of the large amount of data needed to do a cradle-to-grave evaluation, it was believed that in addition to such a "full" LCA approach there w...

  7. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-03-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively. PMID:26856446

  8. IN LCA INTERNATIONAL CONFERENCE & EXHIBITION ON LIFE-CYCLE ASSESSMENT: TOOLS FOR SUSTAINABILITY

    EPA Science Inventory

    LCA is being developed and applied internationally by corporations, governments, and environmental groups to incorporate environmental concerns into the decision-making process. It is being widely adopted as a means to evaluate commercial systems and develop sustainable solution...

  9. Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan.

    PubMed

    Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji

    2010-06-01

    In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%. PMID:19942648

  10. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    PubMed

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  11. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA).

    PubMed

    Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab

    2013-01-01

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0

  12. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA)

    PubMed Central

    2013-01-01

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua). LCA requires both the identification and quantification of materials and energy used in all stages of the product’s life, when the inventory information is acquired, it will then be interpreted into the form of potential impact “ eco-indicators 99” towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts. Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that: – Pre-treatment, pumping and

  13. How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI data and interactions within the LCA calculation model.

    PubMed

    Wei, Wei; Larrey-Lassalle, Pyrene; Faure, Thierry; Dumoulin, Nicolas; Roux, Philippe; Mathias, Jean-Denis

    2015-01-01

    Sensitivity analysis (SA) is a significant tool for studying the robustness of results and their sensitivity to uncertainty factors in life cycle assessment (LCA). It highlights the most important set of model parameters to determine whether data quality needs to be improved, and to enhance interpretation of results. Interactions within the LCA calculation model and correlations within Life Cycle Inventory (LCI) input parameters are two main issues among the LCA calculation process. Here we propose a methodology for conducting a proper SA which takes into account the effects of these two issues. This study first presents the SA in an uncorrelated case, comparing local and independent global sensitivity analysis. Independent global sensitivity analysis aims to analyze the variability of results because of the variation of input parameters over the whole domain of uncertainty, together with interactions among input parameters. We then apply a dependent global sensitivity approach that makes minor modifications to traditional Sobol indices to address the correlation issue. Finally, we propose some guidelines for choosing the appropriate SA method depending on the characteristics of the model and the goals of the study. Our results clearly show that the choice of sensitivity methods should be made according to the magnitude of uncertainty and the degree of correlation. PMID:25436503

  14. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - Applied examples for a region in Northern Germany

    SciTech Connect

    Wittmaier, M. Langer, S.; Sawilla, B.

    2009-05-15

    Against the background of increasing concerns about climate change, the reduction of greenhouse gas emissions has become an integral part of processes in both the waste management and the energy industries. This is reflected in the development of new waste treatment concepts, in which domestic and commercial waste is treated with the aim of utilizing its energy content, while at the same time recycling as much of its material content as possible. Life cycle assessment (LCA) represents a method of assessing the environmental relevance of a waste management system, the basis of which is a material flow analysis of the system in question. GHG emissions from different options for thermal treatment and energy recovery from waste as applied to a region in Northern Germany have been analyzed by the LCA approach and an indicative LCA, which only considers those emissions resulting from operating stages of the system. Operating stages have the main share of emissions compared to pre-processing stages. Results show that through specific separation of waste material flows and highly efficient energy recovery, thermal treatment and energy generation from waste can be optimized resulting in reduction of emissions of greenhouse gases. There are also other areas of waste utilization, currently given little attention, such as the solar drying of sewage sludge, which can considerably contribute to the reduction of greenhouse gas emissions.

  15. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  16. Interest of the Theory of Uncertain in the Dynamic LCA- Fire Methodology to Assess Fire Effects

    NASA Astrophysics Data System (ADS)

    Chettouh, Samia; Hamzi, Rachida; Innal, Fares; Haddad, Djamel

    Life Cycle Impact Assessment (LCIA) is the third phase of Life Cycle Assessment (LCA) described in ISO 14042. The purpose of LCIA is to assess a product system's life cycle inventory analysis (LCI) in order to better understand its environmental significance. However, LCIA typically excludes spatial, temporal, threshold and dose-response information, and combines emissions or activities over space and/or time. This may diminish the environmental relevance of the indicator result. The methodology, Dynamic LCA -Fire proposed in this paper to complete the International Standard ISO 14042 in the fire field, combines the LCA - Fire method with the Dispersion Numerical Model. It is based on the use of the plume model used to assess pollutant concentrations and thermal effects from fire accident scenarios. In this study, The Dynamic LCA - Fire methodology is applied to a case study for petroleum production process management.

  17. Life cycle thinking in impact assessment—Current practice and LCA gains

    SciTech Connect

    Bidstrup, Morten

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  18. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    EPA Science Inventory

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  19. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  20. Innovation strategies in a fruit growers association impacts assessment by using combined LCA and s-LCA methodologies.

    PubMed

    Tecco, Nadia; Baudino, Claudio; Girgenti, Vincenzo; Peano, Cristiana

    2016-10-15

    In the challenging world of territorial transformations within the agriculture, there is an increasing need for an integrated methodological framework of assessment that is able to reconcile the demand for solutions that are both economically sustainable and contribute to environmental and social improvement. This study aims to assess the introduction of innovation into agro-food systems by combining an environmental life cycle (LCA) assessment and a social life cycle assessment (s-LCA) to support the decision making process of a fruit growers co-op for the adoption of mulching and covering in raspberry farming. LCA and s-LCA have been applied independently under specific consistency requirements, selecting two scenarios to compare the impact with (1) and without (2) the innovation and then combined within a cause-effect chain. The interactions between the environment and socioeconomic components were considered within a nested frameset of business and territorial features. The total emissions from raspberry production in Scenario 1, according to the Global Warming Potential (GWP) Impact Category amounted to 2.2840kg of CO2 eq. In Scenario 2, the impact of production was associated with a GWP of 0.1682kg of CO2 eq. Social repercussions analysis from Scenario 1 compared to Scenario 2 indicate more satisfaction for working conditions and the management of climate risks. The mulching and covering, implemented within a given framework of farm activity, created conditions for the preservation of a model in which raspberry production contributes to landscape protection, the business sustainability of farms and the creation of employment. The combined use of the two methods contributes to the development of a strategy planning due to its ability to deliver, as well as specific analysis at a functional level, a wider framework for assessing the consistency of the impacts related to innovation in raspberry production. PMID:27295596

  1. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    EPA Science Inventory

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  2. Biogrouting compared to jet grouting: environmental (LCA) and economical assessment.

    PubMed

    Suer, Pascal; Hallberg, Niklas; Carlsson, Christel; Bendz, David; Holm, Goran

    2009-03-01

    In order to predict consequences of replacing jet grouting with biogrouting, and identify major contributors to the cost of both technologies, a large road project in Stockholm, Sweden, was used as a case study. Jet grouting had been used to seal the contact between sheet piling and bedrock, biogrouting for the same function was computed. A comparative environmental and economical assessment was carried out using life cycle assessment (LCA). The results show that biogrouting was cheaper than jet grouting and would have had lower environmental impact. The major difference was the transport and use of heavier equipment for jet grouting. Biogrouting also used less water and produced less landfilled waste. However, the production of urea and CaCl(2) for biogrouting required much energy. PMID:19184701

  3. Environmental assessment of digestate treatment technologies using LCA methodology.

    PubMed

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments. PMID:26092475

  4. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools

    SciTech Connect

    Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Dubois, Maarten

    2014-09-15

    Increasing interest in sustainability has led to the development of sustainability assessment tools such as Life Cycle Analysis (LCA), Life Cycle Costing (LCC) and Cost–Benefit Analysis (CBA). Due to methodological disparity of these three tools, conflicting assessment results generate confusion for many policy and business decisions. In order to interpret and integrate assessment results, the paper provides a framework that clarifies the connections and coherence between the included assessment methodologies. Building on this framework, the paper further focuses on key aspects to adapt any of the methodologies to full sustainability assessments. Aspects dealt with in the review are for example the reported metrics, the scope, data requirements, discounting, product- or project-related and approaches with respect to scarcity and labor requirements. In addition to these key aspects, the review shows that important connections exist: (i) the three tools can cope with social inequality, (ii) processes such as valuation techniques for LCC and CBA are common, (iii) Environmental Impact Assessment (EIA) is used as input in both LCA and CBA and (iv) LCA can be used in parallel with LCC. Furthermore, the most integrated sustainability approach combines elements of LCA and LCC to achieve the Life Cycle Sustainability Assessment (LCSA). The key aspects and the connections referred to in the review are illustrated with a case study on the treatment of end-of-life automotive glass. - Highlights: • Proliferation of assessment tools creates ambiguity and confusion. • The developed assessment framework clarifies connections between assessment tools. • Broadening LCA, key aspects are metric and data requirements. • Broadening LCC, key aspects are scope, time frame and discounting. • Broadening CBA, focus point, timespan, references, labor and scarcity are key.

  5. How can LCA approaches contribute to improve geo-cycles management

    NASA Astrophysics Data System (ADS)

    Carreiras, M.; Ferreira, A. J. D.; Esteves, T. C. J.; Delgado, F.; Andrade, F.; Franco, J.; Pereira, C. D.

    2012-04-01

    Climate change and land use have become a major challenge for mankind and the natural environment. Greenhouse gas (GHG) emissions released into the atmosphere in ever rapidly growing volumes are most likely to be responsible for this change. Carbon dioxide gas (CO2) is suggested to be the main cause of global warming. Carbon reduction is the key to preventing this, for example, by enhancing energy efficiency and mitigating carbon emissions by means of green energy and adjusting the use of natural resources. Different activities produce distinguish impacts, and each product generates specific impacts on nature. The impact of man activities in the geo-cycles is of paramount importance in what concerns long term sustainability. Nevertheless, the environmental and sustainability impacts of different approaches and techniques of ecosystem management is a difficult question that can be assessed using LCA techniques LCA is a technique to assess environmental impacts associated with all the stages of a product's life from-cradle-to-grave. Based on that, LCA can be effective in supporting the assessment of decision making on complex sustainability issues because it can integrate the diversity of impacts categories guise and it can be adapted to a large variety of contexts. By incorporating quantitative data LCA allows decision makers to include a full range of economic, environmental, social and technical criteria. The integrated framework is configured such that the pros and cons of alternative environmental and energy strategies can be measured in terms of their ability to achieve the overall goals and objectives of the sustainable development, while satisfying the pollution control requirements. Because it is holistic, integrate and dynamic, this approach represents a state of the art tool for enhance the sustainable development of a sector, allowing a more transparent and participated management, a basic instrument for improved competitiveness. This approach may serve

  6. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  7. Revision and extension of Eco-LCA metrics for sustainability assessment of the energy and chemical processes.

    PubMed

    Yang, Shiying; Yang, Siyu; Kraslawski, Andrzej; Qian, Yu

    2013-12-17

    Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach. PMID:24228888

  8. Analysis and Assessment of Environmental Load of Vending Machines by a LCA Method, and Eco-Improvement Effect

    NASA Astrophysics Data System (ADS)

    Kimura, Yukio; Sadamichi, Yucho; Maruyama, Naoki; Kato, Seizo

    These days the environmental impact due to vending machines'(VM) diffusion has greatly been discussed. This paper describes the numerical evaluation of the environmental impact by using the LCA (Life Cycle Assessment) scheme and then proposes eco-improvements' strategy toward environmentally conscious products(ECP). A new objective and universal consolidated method for the LCA-evaluation, so-called LCA-NETS(Numerical Eco-load Standardization ) developed by the authors is applied to the present issue. As a result, the environmental loads at the 5years' operation and the material procurement stages are found to dominate others over the life cycle. Further eco-improvement is realized by following the order of the LCA-NETS magnitude; namely, energy saving, materials reducing, parts' re-using, and replacing with low environmental load material. Above all, parts' re-using is specially recommendable for significant reduction of the environmental loads toward ECP.

  9. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  10. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    PubMed

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-01

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail. PMID:23496419

  11. LIFE CYCLE ASSESSMENT: AN INTERNATIONAL EXPERIENCE

    EPA Science Inventory

    Life Cycle Assessment (LCA) is used to evaluate environmental burdens associated with a product, process or activity by identifying and quantifying relevant inputs and outputs of the defined system and evaluating their potential impacts. This article outlines the four components ...

  12. LCA: a decision support tool for environmental assessment of MSW management systems.

    PubMed

    Liamsanguan, Chalita; Gheewala, Shabbir H

    2008-04-01

    Life cycle assessment (LCA) can be successfully applied to municipal solid waste (MSW) management systems to identify the overall environmental burdens and to assess the potential environmental impacts. In this study, two methods used for current MSW management in Phuket, a province of Thailand, landfilling (without energy recovery) and incineration (with energy recovery), are compared from both energy consumption and greenhouse gas emission points of view. The comparisons are based on a direct activity consideration and also a life cycle perspective. In both cases as well as for both parameters considered, incineration was found to be superior to landfilling. However, the performance of incineration was much better when a life cycle perspective was used. Also, landfilling reversed to be superior to incineration when methane recovery and electricity production were introduced. This study reveals that a complete picture of the environmental performance of MSW management systems is provided by using a life cycle perspective. PMID:17350748

  13. IMPORTANCE OF LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    This paper presents Life Cycle Assessment (LCA) as a tool to assist the waste professional with integrated waste management. CA can be the connection between the waste professional and designer/producer to permit the waste professional to encourage the design of products so mater...

  14. Impact assessment of abiotic resources in LCA: quantitative comparison of selected characterization models.

    PubMed

    Rørbech, Jakob T; Vadenbo, Carl; Hellweg, Stefanie; Astrup, Thomas F

    2014-10-01

    Resources have received significant attention in recent years resulting in development of a wide range of resource depletion indicators within life cycle assessment (LCA). Understanding the differences in assessment principles used to derive these indicators and the effects on the impact assessment results is critical for indicator selection and interpretation of the results. Eleven resource depletion methods were evaluated quantitatively with respect to resource coverage, characterization factors (CF), impact contributions from individual resources, and total impact scores. We included 2247 individual market inventory data sets covering a wide range of societal activities (ecoinvent database v3.0). Log-linear regression analysis was carried out for all pairwise combinations of the 11 methods for identification of correlations in CFs (resources) and total impacts (inventory data sets) between methods. Significant differences in resource coverage were observed (9-73 resources) revealing a trade-off between resource coverage and model complexity. High correlation in CFs between methods did not necessarily manifest in high correlation in total impacts. This indicates that also resource coverage may be critical for impact assessment results. Although no consistent correlations between methods applying similar assessment models could be observed, all methods showed relatively high correlation regarding the assessment of energy resources. Finally, we classify the existing methods into three groups, according to method focus and modeling approach, to aid method selection within LCA. PMID:25208267

  15. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    PubMed

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  16. Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA.

    PubMed

    Baral, Anil; Bakshi, Bhavik R; Smith, Raymond L

    2012-02-21

    Recognizing the contributions of ecosystem services and the lack of their comprehensive accounting in life cycle assessment (LCA), an in-depth analysis of their contribution in the life cycle of cellulosic ethanol derived from five different feedstocks was conducted, with gasoline and corn ethanol as reference fuels. The relative use intensity of natural resources encompassing land and ecosystem goods and services by cellulosic ethanol was estimated using the Eco-LCA framework. Despite being resource intensive compared to gasoline, cellulosic ethanol offers the possibility of a reduction in crude oil consumption by as much as 96%. Soil erosion and land area requirements can be sources of concern for cellulosic ethanol derived directly from managed agriculture. The analysis of two broad types of thermodynamic metrics, namely: various types of physical return on investment and a renewability index, which indicate competitiveness and sustainability of cellulosic ethanol, respectively, show that only ethanol from waste resources combines a favorable thermodynamic return on investment with a higher renewability index. However, the production potential of ethanol from waste resources is limited. This finding conveys a possible dilemma of biofuels: combining high renewability, high thermodynamic return on investment, and large production capacity may remain elusive. A plot of renewability versus energy return on investment is suggested as one of the options for providing guidance on future biofuel selection. PMID:22283423

  17. Environmental assessment of Ammässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE).

    PubMed

    Niskanen, Antti; Manfredi, Simone; Christensen, Thomas H; Anderson, Reetta

    2009-08-01

    The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized. PMID:19423588

  18. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    ERIC Educational Resources Information Center

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  19. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  20. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  1. Integrated environmental assessment of tertiary and residuals treatment--LCA in the wastewater industry.

    PubMed

    Beavis, P; Lundie, S

    2003-01-01

    In the wastewater industry, decision-makers lack access to an environmental tool that can assist in further informing the non-financial analysis of a system. Such a tool should incorporate impacts beyond the effluent quality and look at the supporting processes of a plant as well as plant specific operations. Life Cycle Assessment can provide the means to fill a gap in pertinent information towards more sustainable decision-making. The project "Best Practice LCA in the Wastewater Industry" is commissioned by the CRC for Waste Management and Pollution Control at UNSW with representatives from Sydney Water Corporation (SWC), NSW Department of Land and Water Conservation and the NSW Department of Public Works. Two case studies were researched to provide a post-implementation review of changes in wastewater. Case study 1: The conversion from chlorine gas to hypochlorite and UV disinfection has been completed for several inland wastewater plants at SWC. A review of operational data for each of the options has been incorporated into an LCA of each technology. Under efficient dosing conditions, disinfection with the hypochlorite system has the minimum environmental impact. Case study 2 deals with the conversion from anaerobic to aerobic digestion. Aerobic digestion minimises release of nutrients into a sidestream to be further treated in the plant. However conversion results in more biosolids production and higher electricity requirements. This study includes a consideration of the environmental impacts of biosolids production and application. On the basis of the extended boundary including consideration of reflux composition, energy requirements and biosolids quality to potentially offset fertiliser production, anaerobic digestion performs best in 6 out of 9 impact categories. These results suggest that environmental LCA has a role in informing decision-making on unit process and treatment train selection by quantifying aspects on non-financial criteria. Also

  2. ANALYZING SHORT CUT METHODS FOR LIFE CYCLE ASSESSMENT INVENTORIES

    EPA Science Inventory

    Work in progress at the U.S. EPA's National Risk Management Research Laboratory is developing methods for quickly, easily, and inexpensively developing Life Cycle Assessment (LCA) inventories. An LCA inventory represents the inputs and outputs from processes, including fuel and ...

  3. Guidance on Data Quality Assessment for Life Cycle Inventory Data

    EPA Science Inventory

    Data quality within Life Cycle Assessment (LCA) is a significant issue for the future support and development of LCA as a decision support tool and its wider adoption within industry. In response to current data quality standards such as the ISO 14000 series, various entities wit...

  4. Incorporating exposure science into life-cycle assessment

    EPA Science Inventory

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  5. CASE STUDIES EXAMINING LCA STREAMLINING TECHNIQUES

    EPA Science Inventory

    Pressure is mounting for more streamlined Life Cycle Assessment (LCA) methods that allow for evaluations that are quick and simple, but accurate. As part of an overall research effort to develop and demonstrate streamlined LCA, the U.S. Environmental Protection Agency has funded ...

  6. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy).

    PubMed

    Blengini, Gian Andrea; Busto, Mirko

    2009-03-01

    The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers. PMID:19046619

  7. STREAMLINING LIFE CYCLE ASSESSMENT (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    After having completed work on investigating streamlining the life cycle inventory phase of Life Cycle Assessment (LCA), research efforts focused on the impact phase of LCA in the third and final year of this cooperative agreement. A simplified life cycle impact assessment model,...

  8. A new data architecture for advancing life cycle assessment

    EPA Science Inventory

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  9. Workshop on LCA: Methodology, Current Development, and Application in Standards - LCA Methodology

    EPA Science Inventory

    As ASTM standards are being developed including Life Cycle Assessment within the Standards it is imperative that practitioners in the field learn more about what LCA is, and how to conduct it. This presentation will include an overview of the LCA process and will concentrate on ...

  10. The changing nature of life cycle assessment

    PubMed Central

    McManus, Marcelle C.; Taylor, Caroline M.

    2015-01-01

    LCA has evolved from its origins in energy analysis in the 1960s and 70s into a wide ranging tool used to determine impacts of products or systems over several environmental and resource issues. The approach has become more prevalent in research, industry and policy. Its use continues to expand as it seeks to encompass impacts as diverse as resource accounting and social well being. Carbon policy for bioenergy has driven many of these changes. Enabling assessment of complex issues over a life cycle basis is beneficial, but the process is sometimes difficult. LCA's use in framing is increasingly complex and more uncertain, and in some cases, irreconcilable. The charged environment surrounding biofuels and bioenergy exacerbates all of these. Reaching its full potential to help guide difficult policy discussions and emerging research involves successfully managing LCA's transition from attributional to consequential and from retrospective to prospective. This paper examines LCA's on-going evolution and its use within bioenergy deployment. The management of methodological growth in the context of the unique challenges associated with bioenergy and biofuels is explored. Changes seen in bioenergy LCA will bleed into other LCA arenas, especially where it is important that a sustainable solution is chosen. PMID:26664146

  11. Systematic Review Checklist: A Standardized Technique for Assessing and Reporting Reviews of Life Cycle Assessment Data

    PubMed Central

    Zumsteg, Jennifer M.; Cooper, Joyce S.; Noon, Michael S.

    2015-01-01

    Summary Systematic review, including meta-analysis, is increasingly utilized in life cycle assessment (LCA). There are currently no widely recognized guidelines for designing, conducting, or reporting systematic reviews in LCA. Other disciplines such as medicine, ecology, and software engineering have both recognized the utility of systematic reviews and created standardized protocols for conducting and reporting systematic reviews. Based largely on the 2009 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, which updated the preferred format for reporting of such reviews in biomedical research, we provide an introduction to the topic and a checklist to guide the reporting of future LCA reviews in a standardized format. The standardized technique for assessing and reporting reviews of LCA (STARR-LCA) checklist is a starting point for improving the utility of systematic reviews in LCA. PMID:26069437

  12. LIFE CYCLE ASSESSMENT: INVENTORY GUIDELINES AND PRINCIPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is describing the process, the underlying data, and the Inherent assumptions Involved in conducting the Inventory component of a life-cycle assessment (LCA) In order to facilitate understanding by potential users. This Inventory...

  13. Measurement of thermophysical properties coupled with LCA assessment for the optimization of a historical building retrofit

    NASA Astrophysics Data System (ADS)

    Bortolin, A.; Bison, P.; Cadelano, G.; Ferrarini, G.; Fortuna, S.

    2015-11-01

    Historical buildings are a significant part of the Italian building stock and, in most cases, need deep refurbishment interventions to reach the energy criteria required by the current standards. A workflow that integrates on-site surveys and building modeling is mandatory to obtain effective energy saving measures. This work describes the analysis and modeling of the San Vito alla Rivera church, a XIV century building that was damaged during 2009 L'Aquila earthquake, suffering a partial collapse of the façade and of the roof. The latter was selected for a complete restoration that could improve its thermal performance while maintaining, as much as possible, the original structure. Several elements of the roof were collected in situ in order to measure, in laboratory, its thermophysical properties applying standard techniques and alternative methods based on infrared thermography. The accurate characterization of the materials was the starting point for the estimation of the environmental impact of the retrofit aimed to reach a defined thermal transmittance. A model of the building was created with TRNSYS software to calculate the energy consumption before and after the intervention. A Life Cycle Assessment (LCA) analysis was conducted on different insulation materials to determine the one with the lowest impact.

  14. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.

    PubMed

    Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo

    2014-04-01

    The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. PMID:24463258

  15. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Not Available

    2013-06-01

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  16. Emerging approaches, challenges and opportunities in life cycle assessment.

    PubMed

    Hellweg, Stefanie; Milà i Canals, Llorenç

    2014-06-01

    In the modern economy, international value chains--production, use, and disposal of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts and assess them from a systems perspective, identifying strategies for improvement without burden shifting. We review recent developments in LCA, including existing and emerging applications aimed at supporting environmentally informed decisions in policy-making, product development and procurement, and consumer choices. LCA constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but we also caution that completeness in scope comes at the price of simplifications and uncertainties. Future advances of LCA in enhancing regional detail and accuracy as well as broadening the assessment to economic and social aspects will make it more relevant for producers and consumers alike. PMID:24904154

  17. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  18. Life-Cycle inventory/impact Assessment in the context of Chemical Risk Assessment: An Informatics-driven Scoping Review

    EPA Science Inventory

    One of the goals of Life-Cycle Assessment (LCA) is to compare the full range of environmental effects assignable to products and services in order to improve processes, support policy and provide a sound “systems-thinking” basis for decision support. How in fact LCA can be incorp...

  19. LCA data quality: sensitivity and uncertainty analysis.

    PubMed

    Guo, M; Murphy, R J

    2012-10-01

    Life cycle assessment (LCA) data quality issues were investigated by using case studies on products from starch-polyvinyl alcohol based biopolymers and petrochemical alternatives. The time horizon chosen for the characterization models was shown to be an important sensitive parameter for the environmental profiles of all the polymers. In the global warming potential and the toxicity potential categories the comparison between biopolymers and petrochemical counterparts altered as the time horizon extended from 20 years to infinite time. These case studies demonstrated that the use of a single time horizon provide only one perspective on the LCA outcomes which could introduce an inadvertent bias into LCA outcomes especially in toxicity impact categories and thus dynamic LCA characterization models with varying time horizons are recommended as a measure of the robustness for LCAs especially comparative assessments. This study also presents an approach to integrate statistical methods into LCA models for analyzing uncertainty in industrial and computer-simulated datasets. We calibrated probabilities for the LCA outcomes for biopolymer products arising from uncertainty in the inventory and from data variation characteristics this has enabled assigning confidence to the LCIA outcomes in specific impact categories for the biopolymer vs. petrochemical polymer comparisons undertaken. Uncertainty combined with the sensitivity analysis carried out in this study has led to a transparent increase in confidence in the LCA findings. We conclude that LCAs lacking explicit interpretation of the degree of uncertainty and sensitivities are of limited value as robust evidence for decision making or comparative assertions. PMID:22854094

  20. International LCA

    EPA Science Inventory

    To provide global guidance on the establishment and maintenance of LCA databases, as the basis for improved dataset exchangeability and interlinkages of databases worldwide. Increase the credibility of existing LCA data, the generation of more data and their overall accessibilit...

  1. LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    An international workshop was held in Brussels on 11/29-30/1998, to discuss LCIA Sophistication. LCA experts from North America, Europs, and Asia attended. Critical reviews of associated factors, including current limitations of available assessment methodologies, and comparison...

  2. LCACCESS: A U.S. EPA-SPONSORED WEBSITE FOR ENVIRONMENTAL LIFE CYCLE ASSESSMENT INFORMATION

    EPA Science Inventory

    The EPA's Office of Research and Development has initiated a project with the aim of encouraging and supporting the use of life cycle assessments (LCA's) in environmental management. While LCA is being recognized internationally as an appropriate tool for dealing with environmen...

  3. LCACCESS: A GLOBAL DIRECTORY OF LIFE CYCLE ASSESSMENT RESOURCES

    EPA Science Inventory

    LCAccess is an EPA-sponsored website intended to promote the use of Life Cycle Assessment (LCA) in business decision-making by faciliatating access to data sources that are useful in developing a life cycle inventory (LCI). While LCAccess does not itself contain data, it is a sea...

  4. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  5. Energy life-cycle assessment of soybean biodiesel revisited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A life-cycle assessment (LCA) was conducted to quantify the energy flows associated with biodiesel production. A similar study conducted previously (Sheehan et al., Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus, Publication NREL/SR-580-24089, National Renewable Ener...

  6. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    EPA Science Inventory

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  7. From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy.

    PubMed

    Cellura, Maurizio; Ardente, Fulvio; Longo, Sonia

    2012-01-01

    In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling. PMID:22054586

  8. Life cycle assessment in market, research, and policy: Harmonization beyond standardization.

    PubMed

    Zamagni, Alessandra; Cutaia, Laura

    2015-07-01

    This article introduces the special series "LCA in Market Research and Policy: Harmonization beyond standardization," which was generated from the 19th SETAC Life Cycle Assessment (LCA) Case Study Symposium held November 2013, in Rome, Italy. This collection of invited articles reflects the purpose of symposium and focuses on how LCA can support the decision-making process at all levels (i.e., in industry and policy contexts) and how LCA results can be efficiently communicated and used to support market strategies. PMID:26119764

  9. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  10. EVALUATION OF PUBLIC DATABASES AS SOURCES OF DATA FOR LIFE CYCLE ASSESSMENTS

    EPA Science Inventory

    Methods to determine the environmental effects of production systems must encourage a comprehensive evaluation of all "upstream" and "downstream" effects and their interrelationships. This cradle-to-grave approach, called Life Cycle Assessment (LCA), has led to the development...

  11. ENVIRONMENTAL COMPARISON METRICS FOR LIFE CYCLE IMPACT ASSESSMENT AND PROCESS DESIGN

    EPA Science Inventory

    Metrics (potentials, potency factors, equivalency factors or characterization factors) are available to support the environmental comparison of alternatives in application domains like proces design and product life-cycle assessment (LCA). These metrics typically provide relative...

  12. RISK ASSESSMENT AND LIFE CYCLE IMPACT ASSESSMENT (LCIA) FOR HUMAN HEALTH CANCEROUS AND NONCANCEROUS EMISSIONS: INTEGRATED AND COMPLEMENTARY WITH CONSISTENCY WITHIN THE USEPA

    EPA Science Inventory

    The historical parallels, complementary roles, and potential for integration of human health risk assessment (RA) and Life-Cycle Impact Assessment (LCIA) are explored. Previous authors have considered the comparison of LCA and risk assessment recognizing the inherent differences ...

  13. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    PubMed

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. PMID:24926621

  14. An evaluation of life cycle assessment of European milk production.

    PubMed

    Yan, Ming-Jia; Humphreys, James; Holden, Nicholas M

    2011-03-01

    Life cycle assessment (LCA) is a method regulated by ISO that conveys the environmental impact of products. LCA studies of the same product should be comparable to benefit environmental policy making. LCA of milk production has evaluated environmental issues such as greenhouse gas emissions, resource utilisation and land use change. Thirteen LCA studies of European milk production were analysed for comparability, and direct comparison was difficult due to technical issues, arbitrary choices and inconsistent assumptions. The strengths and weaknesses of LCA for evaluating an agricultural system are identified and improvements for comparability of future studies are also considered. Future LCA of milk production should ensure that: (1) the production system is appropriately characterized according to the goal of study; (2) a clear description of the system boundary and allocation procedures is provided according to ISO standards; (3) a common functional unit, probably Energy Corrected Milk, should be used or assumed fat and protein content presented to enable comparisons; (4) where appropriate, site-specific emission factors and characterization factors should be used in environmental hotspots (e.g. manure management, spreading of synthetic fertilizer, production of purchased feed), and phosphorous loss should be better addressed; (5) a range of impact categories including climate change, energy use, land use, acidification and eutrophication should be used to assess pollution swapping, all of which are subject to national or regional directives; perhaps in the future biodiversity should also be included; and (6) the sensitivity to choices of methods and uncertainty of final results should be evaluated. PMID:21055870

  15. A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment.

    PubMed

    Cucurachi, S; Borgonovo, E; Heijungs, R

    2016-02-01

    The life cycle assessment (LCA) framework has established itself as the leading tool for the assessment of the environmental impact of products. Several works have established the need of integrating the LCA and risk analysis methodologies, due to the several common aspects. One of the ways to reach such integration is through guaranteeing that uncertainties in LCA modeling are carefully treated. It has been claimed that more attention should be paid to quantifying the uncertainties present in the various phases of LCA. Though the topic has been attracting increasing attention of practitioners and experts in LCA, there is still a lack of understanding and a limited use of the available statistical tools. In this work, we introduce a protocol to conduct global sensitivity analysis in LCA. The article focuses on the life cycle impact assessment (LCIA), and particularly on the relevance of global techniques for the development of trustable impact assessment models. We use a novel characterization model developed for the quantification of the impacts of noise on humans as a test case. We show that global SA is fundamental to guarantee that the modeler has a complete understanding of: (i) the structure of the model and (ii) the importance of uncertain model inputs and the interaction among them. PMID:26595377

  16. What life-cycle assessment does and does not do in assessments of waste management

    SciTech Connect

    Ekvall, Tomas Assefa, Getachew; Bjoerklund, Anna; Eriksson, Ola; Finnveden, Goeran

    2007-07-01

    In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.

  17. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    PubMed

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. PMID:25971645

  18. Public participation in life cycle assessment and risk assessment: a shared need.

    PubMed

    Anex, Robert P; Focht, Will

    2002-10-01

    Life cycle assessment (LCA) and risk assessment are operationally different but share the common purpose of supporting decisions about reducing threats to human welfare. Both analysis methods also involve a complex mixture of science and value judgments reflecting epistemological as well as moral and esthetic values. The inability of risk assessment and LCA to be "value free" has been a source of considerable controversy in both communities. Recognition of the contingent and social nature of human interpretation of the risks and environmental impacts created by public and private decisions has led to an increased appreciation of the importance of involving interested and affected parties in risk characterization. Comparison of the value-based nature of LCA and risk assessment demonstrates the need for participation in LCA. Although the need for participation by affected parties in decision-making processes is gaining acceptance, there is little agreement as to how participation should be structured. Risk assessment and LCA have a shared need for research examining the design and analysis of participation processes appropriate to a given decision context. A proposed framework recommends participation strategies designed to enhance the effectiveness of policy-driven analyses such as risk assessment and LCA based on the level of trust that interested and affected parties have for other policy participants. PMID:12442985

  19. Life cycle assessment of CO2 capture and utilization: a tutorial review.

    PubMed

    von der Assen, Niklas; Voll, Philip; Peters, Martina; Bardow, André

    2014-12-01

    Capturing CO2 and using it as an alternative carbon feedstock for chemicals, fuels and materials has the potential to reduce both CO2 emissions and fossil resource depletion. To assess the actual environmental benefits of CO2 capture and utilization (CCU), life cycle assessment (LCA) is considered as suitable metric. To enhance the use of LCA of CCU, this tutorial review gives a jargon-free introduction of LCA of CCU directed at LCA novices. Nine particularly important aspects for conducting an LCA of CCU are identified and illustrated with CCU examples. These aspects, phrased as action items, can serve LCA novices as a checklist through all steps in LCA of CCU: from defining the LCA purpose and the system boundaries, over data collection and environmental impact computation, to interpretation and sensitivity analysis of the results. Finally, in the context of CCU, an outlook is given on recent developments in LCA that aim to cover all pillars of sustainability (people, planet, and profit). PMID:24441866

  20. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    NASA Astrophysics Data System (ADS)

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.

  1. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to p...

  2. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    EPA Science Inventory

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  3. Improvements to Emergy evaluations by using Life Cycle Assessment.

    PubMed

    Rugani, Benedetto; Benetto, Enrico

    2012-05-01

    Life Cycle Assessment (LCA) is a widely recognized, multicriteria and standardized tool for environmental assessment of products and processes. As an independent evaluation method, emergy assessment has shown to be a promising and relatively novel tool. The technique has gained wide recognition in the past decade but still faces methodological difficulties which prevent it from being accepted by a broader stakeholder community. This review aims to elucidate the fundamental requirements to possibly improve the Emergy evaluation by using LCA. Despite its capability to compare the amount of resources embodied in production systems, Emergy suffers from its vague accounting procedures and lacks accuracy, reproducibility, and completeness. An improvement of Emergy evaluations can be achieved via (1) technical implementation of Emergy algebra in the Life Cycle Inventory (LCI); (2) selection of consistent Unit Emergy Values (UEVs) as characterization factors for Life Cycle Impact Assessment (LCIA); and (3) expansion of the LCI system boundaries to include supporting systems usually considered by Emergy but excluded in LCA (e.g., ecosystem services and human labor). Whereas Emergy rules must be adapted to life-cycle structures, LCA should enlarge its inventory to give Emergy a broader computational framework. The matrix inversion principle used for LCAs is also proposed as an alternative to consistently account for a large number of resource UEVs. PMID:22489863

  4. Life Cycle Assessment as an Environmental Management Tool

    EPA Science Inventory

    Listed by Time Magazine as the method behind calculating “Ecological Intelligence,” one of “10 Ideas Changing the World Right Now” (March 23, 2009), Life Cycle Assessment (LCA) is the tool that is used to understand the environmental impacts of the products we make and sell. Jo...

  5. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to ...

  6. Assessing burden of disease as disability adjusted life years in life cycle assessment.

    PubMed

    Kobayashi, Yumi; Peters, Greg M; Ashbolt, Nicholas J; Shiels, Sean; Khan, Stuart J

    2015-10-15

    Disability adjusted life years (DALYs) have been used to quantify endpoint indicators of the human burden of disease in life cycle assessment (LCA). The purpose of this paper was to examine the current use of DALYs in LCA, and also to consider whether DALYs as used in LCA have the potential to be compatible with DALYs as used in quantitative risk assessment (QRA) to facilitate direct comparison of the results of the two approaches. A literature review of current usage of DALYs in LCA was undertaken. Two prominent methods were identified: ReCiPe 2008 and LIME2. The methods and assumptions used in their calculations were then critically reviewed. The assumptions used for the derivation of characterization factors in DALYs were found to be considerably different between LCA methods. In many cases, transparency of these calculations and assumptions is lacking. Furthermore, global average DALY values are often used in these calculations, but may not be applicable for impact categories where the local factors play a significant role. The concept of DALYs seems beneficial since it enables direct comparison and aggregation of different health impacts. However, given the different assumptions used in each LCA method, it is important that LCA practitioners are aware of the differences and select the appropriate method for the focus of their study. When applying DALYs as a common metric between LCA and QRA, understanding the background information on how DALYs were derived is crucial to ensure the consistency of DALYs used in LCA and QRA for resulting DALYs to be comparable and to minimize any double counting of effects. PMID:26042893

  7. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  8. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  9. Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects.

    PubMed

    Loubet, Philippe; Roux, Philippe; Núñez, Montserrat; Belaud, Gilles; Bellon-Maurel, Véronique

    2013-12-17

    Physical water deprivation at the midpoint level is assessed in water-related LCIA methods using water scarcity indicators (e.g., withdrawal-to-availability and consumption-to-availability) at the river basin scale. Although these indicators represent a great step forward in the assessment of water-use-related impacts in LCA, significant challenges still remain in improving their accuracy and relevance. This paper presents a methodology that can be used to derive midpoint characterization factors for water deprivation taking into account downstream cascade effects within a single river basin. This effect is considered at a finer scale because a river basin must be split into different subunits. The proposed framework is based on a two-step approach. First, water scarcity is defined at the sub-river basin scale with the consumption-to-availability (CTA) ratio, and second, characterization factors for water deprivation (CFWD) are calculated, integrating the effects on downstream sub-river basins. The sub-river basin CTA and CFWD were computed based on runoff data, water consumption data and a water balance for two different river basins. The results show significant differences between the CFWD in a given river basin, depending on the upstream or downstream position. Finally, an illustrative example is presented, in which different land planning scenarios, taking into account additional water consumption in a city, are assessed. Our work demonstrates how crucial it is to localize the withdrawal and release positions within a river basin. PMID:24256030

  10. Comparative life cycle assessments: The case of paper and digital media

    SciTech Connect

    Bull, Justin G. Kozak, Robert A.

    2014-02-15

    The consumption of the written word is changing, as media transitions from paper products to digital alternatives. We reviewed the life cycle assessment (LCA) research literature that compared the environmental footprint of digital and paper media. To validate the role of context in influencing LCA results, we assessed LCAs that did not compare paper and print, but focused on a product or component that is part of the Information and Communication Technology (ICT) sector. Using a framework that identifies problems in LCA conduct, we assessed whether the comparative LCAs were accurate expressions of the environmental footprints of paper and print. We hypothesized that the differences between the product systems that produce paper and digital media weaken LCA's ability to compare environmental footprints. We also hypothesized that the characteristics of ICT as an industrial sector weaken LCA as an environmental assessment methodology. We found that existing comparative LCAs offered problematic comparisons of paper and digital media for two reasons — the stark material differences between ICT products and paper products, and the unique characteristics of the ICT sector. We suggested that the context of the ICT sector, best captured by the concept of “Moore's Law”, will continuously impede the ability of the LCA methodology to measure ICT products. -- Highlights: • We review the LCA research that compares paper and digital media. • We contrast the comparative LCAs with LCAs that examine only digital products. • Stark differences between paper and digital media weakens LCA findings. • Digital products in general challenge the LCA method's reliability. • Continuous innovation and global nature of digital products impedes LCA methodology.

  11. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    SciTech Connect

    Bjoerklund, Anna

    2012-01-15

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: Black-Right-Pointing-Pointer LCA was explored as analytical tool in an SEA process of municipal energy planning. Black-Right-Pointing-Pointer The process also integrated LCA with scenario planning and public participation. Black-Right-Pointing-Pointer Benefits of using LCA were a systematic framework and wider systems perspective. Black-Right-Pointing-Pointer Integration of tools required some methodological challenges to be solved. Black-Right-Pointing-Pointer This proved an innovative approach to define alternatives and scope of assessment.

  12. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection

    SciTech Connect

    Allegrini, E.; Butera, S.; Kosson, D.S.; Van Zomeren, A.; Van der Sloot, H.A.; Astrup, T.F.

    2015-04-15

    Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results

  13. Temporal discounting in life cycle assessment: A critical review and theoretical framework

    SciTech Connect

    Yuan, Chris; Wang, Endong; Zhai, Qiang; Yang, Fan

    2015-02-15

    Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting in LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework.

  14. EDITORIAL: THE STATUS OF LCA IN THE USA

    EPA Science Inventory

    Life Cycle Assessment (LCA) is alive and well in the USA. Concerns for environmental management, over strict command and control approaches, has led to an increasing presence of the life cycle concept since its initial appearance in the 1970's. In addition, the very reasonablen...

  15. Life cycle assessment applied to wastewater treatment: state of the art.

    PubMed

    Corominas, Ll; Foley, J; Guest, J S; Hospido, A; Larsen, H F; Morera, S; Shaw, A

    2013-10-01

    Life cycle assessment (LCA) is a technique to quantify the impacts associated with a product, service or process from cradle-to-grave perspective. Within the field of wastewater treatment (WWT) LCA was first applied in the 1990s. In the pursuit of more environmentally sustainable WWT, it is clear that LCA is a valuable tool to elucidate the broader environmental impacts of design and operation decisions. With growing interest from utilities, practitioners, and researchers in the use of LCA in WWT systems, it is important to make a review of what has been achieved and describe the challenges for the forthcoming years. This work presents a comprehensive review of 45 papers dealing with WWT and LCA. The analysis of the papers showed that within the constraints of the ISO standards, there is variability in the definition of the functional unit and the system boundaries, the selection of the impact assessment methodology and the procedure followed for interpreting the results. The need for stricter adherence to ISO methodological standards to ensure quality and transparency is made clear and emerging challenges for LCA applications in WWT are discussed, including: a paradigm shift from pollutant removal to resource recovery, the adaptation of LCA methodologies to new target compounds, the development of regional factors, the improvement of the data quality and the reduction of uncertainty. Finally, the need for better integration and communication with decision-makers is highlighted. PMID:23969400

  16. Life-cycle impact assessment: A conceptual framework, key issues, and summary of existing methods

    SciTech Connect

    1995-07-01

    Life-Cycle Assessment (LCA) is a holistic concept and approach for evaluating the environmental and human health impacts associated with a product, process, or activity. A complete LCA looks upstream and down stream, identifies inputs and outputs, and assesses the potential effects of those inputs and outputs on ecosystems, human health, and natural resoures. This report presents a conceptual framework for conducting a life-cycle impact assessment (LCIA), discusses major issues, and summarizes existing methods. It also identifies some of the advantages and disadvantages of various methods.

  17. Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

    NASA Astrophysics Data System (ADS)

    Wender, Benjamin

    Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and

  18. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  19. Comparison of energy-based indicators used in life cycle assessment tools for buildings

    EPA Science Inventory

    Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits t...

  20. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    EPA Science Inventory

    Life cycle approaches are critical for identifying and managing to reduce burdens in the sustainability of product systems. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA) methods fail to integrate the multiple im...

  1. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes.

    PubMed

    Bovea, M D; Powell, J C

    2016-04-01

    This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. PMID:26919970

  2. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    PubMed

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). PMID:25282088

  3. A Life Cycle Assessment of a Magnesium Automotive Front End

    SciTech Connect

    Das, Sujit; Dubreuil, Alain; Bushi, Lindita; Tharumarajah, Ambalavanar

    2009-01-01

    The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

  4. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  5. The Added Value of Integrating Emergy into LCA

    EPA Science Inventory

    Life Cycle Assessment (LCA) has become a standard procedure to investigate the environmental performance of human-dominated products and processes. It is meant to capture the overall impact of a product or service along its lifetime and supply chain, and it is structured in four ...

  6. Integrating Emergy into LCA: potential added value and lingering obstacles

    EPA Science Inventory

    Emergy attempts to measure the environmental work required to generate (ecosystem) goods and services that can be used by humans. It is claimed that the use of inventory modelling principles behind the Life Cycle Assessment (LCA) method (European Commission, 2010a) may improve th...

  7. Life cycle assessment of dairy farms.

    PubMed

    Taufiq, Fierly Muhammad; Padmi, Tri; Rahardyan, Dan Benno

    2016-03-01

    In 2013 the population of dairy cattle in Indonesia had reached 636,000 head with a 4.61% growth rate per year. The inputs were energy, water, and feed. These inputs produced outputs, such as emissions, solid waste and liquid waste. This research compared the maintenance systems in modern farms and local farms. The data were collected from 30 local farmers and one modern farm. This research used the life cycle assessment (LCA) method. LCA is based on ISO 14040. LCA consists of several stages: the goal and scope definition, inventory analysis, impact assessment, and interpretation. This research used the cradle to gate concept and fat corrected milk (FCM) as the function unit. The impacts of these activities could generate global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP). The calculations showed that the systems in local farms had the greatest emissions result over all impacts. In the case of local farms, the GWP was 2.34 kg CO2 eq/L of milk FCM, AP was 0.12 g SO2 eq/L of milk FCM, and EP was 18.28 g PO43- $P{O_{\\rm{4}}}^{{\\rm{3}} - }$ eq/L milk FCM. While the impact from the modern farm was GWP of 1.52 kg CO2 eq/L of milk FCM, AP of 0.02 g SO2 eq/L of milk FCM, and EP of 0.353 g PO43- $P{O_{\\rm{4}}}^{{\\rm{3}} - }$ eq/L of milk FCM. Based on the total-weighted result, the GWP had the greatest impact from the overall life cycle phase of milk production. The total-weighted result obtained was of 0.298 EUR/L of FCM from a local farm and 0.189 EUR/L of FCM from the modern farm. This amount could be used to remediate the global warming, acidification, and eutrophication impacts of milk production. PMID:26953699

  8. Net environmental benefit: introducing a new LCA approach on wastewater treatment systems.

    PubMed

    Godin, D; Bouchard, C; Vanrolleghem, P A

    2012-01-01

    Life cycle assessment (LCA) allows evaluating the potential environmental impacts of a product or a service in relation to its function and over its life cycle. In past LCAs applied to wastewater treatment plants (WWTPs), the system function definition has received little attention despite its great importance. This has led to some limitations in LCA results interpretation. A new methodology to perform LCA on WWTPs is proposed to avoid those limitations. It is based on net environmental benefit (NEB) evaluation and requires assessing the potential impact of releasing wastewater without and with treatment besides assessing the impact of the WWTP's life cycle. The NEB allows showing the environmental trade-offs between avoided impact due to wastewater treatment and induced impact by the WWTP's life cycle. NEB is compared with a standard LCA through the case study of a small municipal WWTP consisting of facultative aerated lagoons. The NEB and standard LCA show similar results for impact categories solely related to the WWTP's life cycle but differ in categories where wastewater treatment environmental benefit is accounted for as NEB considers influent wastewater quality whereas standard LCA does not. PMID:22508125

  9. Use of risk assessment and life cycle assessment in decision making: a common policy research agenda.

    PubMed

    Cowell, Sarah J; Fairman, Robyn; Lofstedt, Ragnar E

    2002-10-01

    Quantitative risk assessment (RA) and life cycle assessment (LCA) are both analytical tools used to support decision making in environmental management. They have been developed and used by largely separate groups of specialists, and it is worth considering whether there is a common research agenda that may increase the relevance of these tools in decision-making processes. The validity of drawing comparisons between use of the tools is established through examining key aspects of the two approaches for their similarities and differences, including the nature of each approach and contextual and methodological aspects. Six case studies involving use of each approach in public decision making are described and used to draw out concerns about using RA and LCA in this context. The following categories of concern can be distinguished: philosophical approach of the tools; quantitative versus qualitative assessment; stakeholder participation; the nature of the results; and the usefulness of the results in relation to time and financial resource requirements. These can be distilled into a common policy research agenda focusing on: the legitimacy of using tools built on a particular perspective in decision making; recognition and role of value judgments in RA and LCA; treatment of uncertainty and variability; the influence of analytical tools in focusing attention on particular aspects of a decision-making situation; and understandability of the results for nonspecialists. It is concluded that it is time to bring together the experiences of RA and LCA specialists and benefit from cross-fertilization of ideas. PMID:12442986

  10. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA). PMID:15051247

  11. Comparing life cycle assessments of different biofuel options.

    PubMed

    Kendall, Alissa; Yuan, Juhong

    2013-06-01

    Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition. PMID:23490811

  12. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.

    PubMed

    Gnansounou, Edgard; Vaskan, Pavel; Pachón, Elia Ruiz

    2015-11-01

    This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues. Four multiproduct scenarios were considered; two from sugar mills and the others from ethanol distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity in the context of Brazil. The scenarios were analysed and compared using techno-economic value-based approach and LCA methodology. The results show that the best economic configuration is provided by a scenario with largest ethanol production while the best environmental performance is presented by a scenario with full integration sugar - 1G2G ethanol production. PMID:26255600

  13. LCA-IWM: A decision support tool for sustainability assessment of waste management systems

    SciTech Connect

    Boer, J. den Boer, E. den; Jager, J.

    2007-07-01

    The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars.

  14. LCA-IWM: a decision support tool for sustainability assessment of waste management systems.

    PubMed

    den Boer, J; den Boer, E; Jager, J

    2007-01-01

    The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars. PMID:17428653

  15. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price. PMID:20860380

  16. Life-Cycle Assessment of Cookstove Fuels in India and China

    EPA Science Inventory

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...

  17. ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF GASOLINE ALTERNATIVES: MTBE AND ETHANOL ADDITIVES

    EPA Science Inventory

    Currently, the U.S. is considering options for additives to reformulated gasoline. To inform this debate the U.S. EPA's Office of Research and Development is conducting a screening life cycle assessment (LCA) of three gasoline alternatives. These alternatives include gasoline w...

  18. Economic Input-Output Life Cycle Assessment of Water Reuse Strategies in Residential Buildings

    EPA Science Inventory

    This paper evaluates the environmental sustainability and economic feasibility of four water reuse designs through economic input-output life cycle assessments (EIO-LCA) and benefit/cost analyses. The water reuse designs include: 1. Simple Greywater Reuse System for Landscape Ir...

  19. Life cycle assessment of greenhouse gas emissions from beef production systems in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef production is recognized as a source of greenhouse gas (GHG) emissions; however, little information exists on the net emission from production systems. A life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate whole-farm GHG emissions from representa...

  20. Maintaining quality critical peer review (CPR) as the demand for life cycle assessments increases

    EPA Science Inventory

    Environmental managers and government policy makers are becoming increasingly aware of the need to follow the holistic approach of Life Cycle Assessment (LCA) to move us in the right strategic direction to best achieve environmental sustainability. Along with this realization ha...

  1. Is the Critical Review Process Keeping Pace with the Growing Number of Life Cycle Assessments?

    EPA Science Inventory

    Environmental managers and government policy makers are becoming increasingly aware of the need to follow the holistic approach of Life Cycle Assessment (LCA) to move us in the right strategic direction to best achieve environmental sustainability. Along with this increasing real...

  2. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    SciTech Connect

    Jang, Minho; Hong, Taehoon; Ji, Changyoon

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  3. Life Cycle Assessment of Wall Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  4. FUNDAMENTALS OF LIFE CYCLE ASSESSMENT AND OFF-THE-SHELF SOFTWARE DEMONSTRATION

    EPA Science Inventory

    As the name implies, Life Cycle Assesssment (LCA) evaluates the entire life cycle of a product, process, activity, or service, not just simple economics at the time of delivery. This course on LCA covers the following issues:
    Basic principles of LCA for use in producing, des...

  5. Life cycle assessment of biogas upgrading technologies.

    PubMed

    Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia

    2012-05-01

    This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. PMID:22230660

  6. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    SciTech Connect

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie; Bernstad, Anna; Niero, Monia; Gentil, Emmanuel; Hauschild, Michael Z.; Christensen, Thomas H.

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of

  7. Life cycle assessment: Existing building retrofit versus replacement

    NASA Astrophysics Data System (ADS)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  8. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives

    PubMed Central

    Caffrey, Kevin R.; Veal, Matthew W.

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  9. Conducting an agricultural life cycle assessment: challenges and perspectives.

    PubMed

    Caffrey, Kevin R; Veal, Matthew W

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  10. Life cycle assessment and residue leaching: the importance of parameter, scenario and leaching data selection.

    PubMed

    Allegrini, E; Butera, S; Kosson, D S; Van Zomeren, A; Van der Sloot, H A; Astrup, T F

    2015-04-01

    Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results of the study, recommendations are provided regarding the use of leaching data in LCA studies. PMID:25573739

  11. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    PubMed

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies. PMID:26820700

  12. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect

    Bright, Ryan M. Cherubini, Francesco; Stromman, Anders H.

    2012-11-15

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black

  13. On process optimization considering LCA methodology.

    PubMed

    Pieragostini, Carla; Mussati, Miguel C; Aguirre, Pío

    2012-04-15

    The goal of this work is to research the state-of-the-art in process optimization techniques and tools based on LCA, focused in the process engineering field. A collection of methods, approaches, applications, specific software packages, and insights regarding experiences and progress made in applying the LCA methodology coupled to optimization frameworks is provided, and general trends are identified. The "cradle-to-gate" concept to define the system boundaries is the most used approach in practice, instead of the "cradle-to-grave" approach. Normally, the relationship between inventory data and impact category indicators is linearly expressed by the characterization factors; then, synergic effects of the contaminants are neglected. Among the LCIA methods, the eco-indicator 99, which is based on the endpoint category and the panel method, is the most used in practice. A single environmental impact function, resulting from the aggregation of environmental impacts, is formulated as the environmental objective in most analyzed cases. SimaPro is the most used software for LCA applications in literature analyzed. The multi-objective optimization is the most used approach for dealing with this kind of problems, where the ε-constraint method for generating the Pareto set is the most applied technique. However, a renewed interest in formulating a single economic objective function in optimization frameworks can be observed, favored by the development of life cycle cost software and progress made in assessing costs of environmental externalities. Finally, a trend to deal with multi-period scenarios into integrated LCA-optimization frameworks can be distinguished providing more accurate results upon data availability. PMID:22208397

  14. Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet?

    PubMed Central

    Souza, Danielle M; Teixeira, Ricardo FM; Ostermann, Ole P

    2015-01-01

    Ecosystems are under increasing pressure from human activities, with land use and land-use change at the forefront of the drivers that provoke global and regional biodiversity loss. The first step in addressing the challenge of how to reverse the negative outlook for the coming years starts with measuring environmental loss rates and assigning responsibilities. Pinpointing the global pressures on biodiversity is a task best addressed using holistic models such as Life Cycle Assessment (LCA). LCA is the leading method for calculating cradle-to-grave environmental impacts of products and services; it is actively promoted by many public policies, and integrated as part of environmental information systems within private companies. LCA already deals with the potential biodiversity impacts of land use, but there are significant obstacles to overcome before its models grasp the full reach of the phenomena involved. In this review, we discuss some pressing issues that need to be addressed. LCA mainly introduces biodiversity as an endpoint category modeled as a loss in species richness due to the conversion and use of land over time and space. The functional and population effects on biodiversity are mostly absent due to the emphasis on species accumulation with limited geographic and taxonomical reach. Current land-use modeling activities that use biodiversity indicators tend to oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats. To identify the main areas for improvement, we systematically reviewed LCA studies on land use that had findings related to global change and conservation ecology. We provide suggestion as to how to address some of the issues raised. Our overall objective was to encourage companies to monitor and take concrete steps to address the impacts of land use on biodiversity on a broader geographical scale and along increasingly globalized supply chains. PMID:25143302

  15. Life Cycle Sustainability Assessment of Sediment Remediation at the London Olympic Park

    NASA Astrophysics Data System (ADS)

    Hou, D.; Al-Tabbaa, A.

    2013-12-01

    In recent years, there is an emerging 'green and sustainable remediation' (GSR) movement. It is drawing increasing attention from both the government and the industry, because this GSR movement is promising in accelerating process in addressing the contaminated land issue, by overcoming regulatory barriers, encouraging technological innovation, and balancing life cycle environmental stewardship with economic vitality and social well-being. Life cycle assessment (LCA) has been increasingly used by both researchers and industrial practitioners in an initiative to make environmental remediation greener and more sustainable. Life cycle sustainability assessment (LCSA), aiming at expanding the traditional LCA model in both breadth and depth (e.g. to incorporate both environmental and social-economic sustainability), is an important research direction in the existing LCA research field. The present study intends to develop a LCSA method based on a hybrid LCA model and economic input-output (EIO) data. The LCSA method is applied to a contaminated sediment remediation project conducted at the London Olympic Park site.

  16. The Opportunities and Pitfalls of Applying Life Cycle Thinking to Nanoproducts and Nanomaterials

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a well-established methodology for evaluating the environmental impact of products, materials, and processes. LCA experts worldwide agree that existing LCA tools are capable of supporting the development of decisions on the use of nanomaterials and ...

  17. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    EPA Science Inventory

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  18. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  19. Background and Reflections on the Life Cycle Assessment Harmonization Project

    SciTech Connect

    Heath, G. A.; Mann, M. K.

    2012-04-01

    Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and

  20. Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment.

    PubMed

    Kong, Dung; Shan, Jilei; Iacoboni, Mario; Maguin, Stephen R

    2012-08-01

    Efforts to divert organics away from landfills are viewed by many as an important measure to significantly reduce the climate change impacts of municipal solid waste management. However, the actual greenhouse gas (GHG) impacts of organics diversion from landfills have yet to be thoroughly evaluated and whether such a diversion provides significant environmental benefits in terms of GHG impacts must be answered. This study, using California-specific information, aimed to analyse the GHG impacts of organics diversion through a life-cycle assessment (LCA). This LCA considered all aspects of organics management including transportation, materials handling, GHG emissions, landfill gas capture/utilization, energy impacts, and carbon sequestration. The LCA study evaluated overall GHG impacts of landfilling, and alternative management options such as composting and anaerobic digestion for diverted organic waste. The LCA analysis resulted in net GHG reductions of 0.093, 0.048, 0.065 and 0.073 tonnes carbon equivalent per tonne organic waste for landfilling, windrow composting, aerated static pile composting, and anaerobic digestion, respectively. This study confirms that all three options for organics management result in net reductions of GHG emissions, but it also shows that organics landfilling, when well-managed, generates greater GHG reductions. The LCA provides scientific insight with regards to the environmental impacts of organics management options, which should be considered in decision and policy-making. The study also highlights the importance of how site and case-specific conditions influence project outcomes when considering organic waste management options. PMID:22588112

  1. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    NASA Astrophysics Data System (ADS)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  2. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    PubMed

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement. PMID:26041501

  3. Global and local health burden trade-off through the hybridisation of quantitative microbial risk assessment and life cycle assessment to aid water management.

    PubMed

    Kobayashi, Yumi; Peters, Greg M; Ashbolt, Nicholas J; Heimersson, Sara; Svanström, Magdalena; Khan, Stuart J

    2015-08-01

    Life cycle assessment (LCA) and quantitative risk assessment (QRA) are commonly used to evaluate potential human health impacts associated with proposed or existing infrastructure and products. Each approach has a distinct objective and, consequently, their conclusions may be inconsistent or contradictory. It is proposed that the integration of elements of QRA and LCA may provide a more holistic approach to health impact assessment. Here we examine the possibility of merging LCA assessed human health impacts with quantitative microbial risk assessment (QMRA) for waterborne pathogen impacts, expressed with the common health metric, disability adjusted life years (DALYs). The example of a recent large-scale water recycling project in Sydney, Australia was used to identify and demonstrate the potential advantages and current limitations of this approach. A comparative analysis of two scenarios - with and without the development of this project - was undertaken for this purpose. LCA and QMRA were carried out independently for the two scenarios to compare human health impacts, as measured by DALYs lost per year. LCA results suggested that construction of the project would lead to an increased number of DALYs lost per year, while estimated disease burden resulting from microbial exposures indicated that it would result in the loss of fewer DALYs per year than the alternative scenario. By merging the results of the LCA and QMRA, we demonstrate the advantages in providing a more comprehensive assessment of human disease burden for the two scenarios, in particular, the importance of considering the results of both LCA and QRA in a comparative assessment of decision alternatives to avoid problem shifting. The application of DALYs as a common measure between the two approaches was found to be useful for this purpose. PMID:25965885

  4. Life Cycle Assessment of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, M.; Woods, J.

    2012-04-01

    One of the most significant challenges faced by modern-day society is that of global warming. An exclusive focus on reducing the greenhouse gas (GHG) emissions will not suffice and therefore technologies capable of removing CO2 directly from the atmosphere at low or minimal cost are gaining increased attention. The production and use of biochar is an example of such an emerging mitigation strategy. However, as with any novel product, process and technology it is vital to conduct an assessment of the entire life cycle in order to determine the environmental impacts of the new concept in addition to analysing the other sustainability criteria. Life Cycle Assessment (LCA), standardized by ISO (2006a), is an example of a tool used to calculate the environmental impacts of a product or process. Imperial College London will follow the guidelines and recommendations of the ISO 14040 series (ISO 2002, ISO 2006a-b) and the International Life Cycle Data System (ILCD) Handbook (EC JRC IES, 2010a-e), and will use the SimaPro software to conduct a LCA of the biochar supply chains for the EuroChar project. EuroChar ('biochar for Carbon sequestration and large-scale removal of GHG from the atmosphere') is a project funded by the European Commission under its Seventh Framework Programme (FP7). EuroChar aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar and, in particular, explore a possible introduction into modern agricultural systems in Europe, thereby moving closer to the determination of the true potential of biochar. EuroChar will use various feedstocks, ranging from wheat straw to olive residues and poplar, as feedstocks for biochar production and will focus on two conversion technologies, Hydrothermal Carbonization (HTC) and Thermochemical Carbonization (TC), followed by the application of the biochar in crop-growth field trials in England, France and Italy. In April 2012, the EuroChar project will be at its halfway mark and

  5. Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps.

    PubMed

    Hischier, Roland; Walser, Tobias

    2012-05-15

    The use of engineered nanomaterials offers advantages as well as disadvantages from a sustainability perspective. It is important to identify such points as early as possible in order to be able to build on existing strengths, while counteracting disadvantages. Life Cycle Assessment (LCA) is a suitable method to assess the environmental performance of a product or process. But so far studies applying LCA to the area of nanotechnology have been scarce. One reason might be that the LCA framework has a whole list of issues that need further precision in order to be applicable to nanotechnologies: system boundaries and a functional unit have to be chosen in a way that allows one to do a comparison of equal functionalities; adequate and comprehensive life cycle inventory data for engineered nanomaterials are the key on the level of inventory analysis; and the impact assessment step requires a clear definition of the degree of detail on the level of nanoparticle emissions. The LCA studies existing thus far in the area of nanotechnology have barely begun to cover all these aspects. Thus, in order to improve the current situation, the authors propose to go ahead in each of the LCA stages as far as scientific advances allow. For the inventory modelling this means e.g. that comprehensive, transparently documented and quality ensured data of the most important engineered nanomaterials should be collected and made available in a widely-accepted format. Concerning nanoparticle emissions, as many parameters as possible have to be collected pertaining to the production, use, and the disposal phase of these engineered nanomaterials. Furthermore, on the level of impact assessment, relevant physical characteristics have to be identified for a toxicity assessment of nanoparticles and a consensus has to be found for a limited but sufficient number of independent parameters influencing toxicity to be collected. PMID:22483746

  6. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management. PMID:21520943

  7. Sourcing Life Cycle Inventory Data

    EPA Science Inventory

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  8. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. PMID:27092420

  9. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    SciTech Connect

    Lu, Hongyou; Masanet, Eric; Price, Lynn

    2009-05-29

    The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

  10. Characterisation factors for life cycle impact assessment of sound emissions.

    PubMed

    Cucurachi, S; Heijungs, R

    2014-01-15

    Noise is a serious stressor affecting the health of millions of citizens. It has been suggested that disturbance by noise is responsible for a substantial part of the damage to human health. However, no recommended approach to address noise impacts was proposed by the handbook for life cycle assessment (LCA) of the European Commission, nor are characterisation factors (CFs) and appropriate inventory data available in commonly used databases. This contribution provides CFs to allow for the quantification of noise impacts on human health in the LCA framework. Noise propagation standards and international reports on acoustics and noise impacts were used to define the model parameters. Spatial data was used to calculate spatially-defined CFs in the form of 10-by-10-km maps. The results of this analysis were combined with data from the literature to select input data for representative archetypal situations of emission (e.g. urban day with a frequency of 63 Hz, rural night at 8000 Hz, etc.). A total of 32 spatial and 216 archetypal CFs were produced to evaluate noise impacts at a European level (i.e. EU27). The possibility of a user-defined characterisation factor was added to support the possibility of portraying the situation of full availability of information, as well as a highly-localised impact analysis. A Monte Carlo-based quantitative global sensitivity analysis method was applied to evaluate the importance of the input factors in determining the variance of the output. The factors produced are ready to be implemented in the available LCA databases and software. The spatial approach and archetypal approach may be combined and selected according to the amount of information available and the life cycle under study. The framework proposed and used for calculations is flexible enough to be expanded to account for impacts on target subjects other than humans and to continents other than Europe. PMID:24035845

  11. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production.

    PubMed

    van Zelm, Rosalie; Larrey-Lassalle, Pyrène; Roux, Philippe

    2014-04-01

    In Life Cycle Assessment (LCA), the Life Cycle Inventory (LCI) provides emission data to the various environmental compartments and Life Cycle Impact Assessment (LCIA) determines the final distribution, fate and effects. Due to the overlap between the Technosphere (anthropogenic system) and Ecosphere (environment) in agricultural case studies, it is, however, complicated to establish what LCI needs to capture and where LCIA takes over. This paper aims to provide guidance and improvements of LCI/LCIA boundary definitions, in the dimensions of space and time. For this, a literature review was conducted to provide a clear overview of available methods and models for both LCI and LCIA regarding toxicological assessments of pesticides used in crop production. Guidelines are provided to overcome the gaps between LCI and LCIA modeling, and prevent the overlaps in their respective operational spheres. The proposed framework provides a starting point for LCA practitioners to gather the right data and use the proper models to include all relevant emission and exposure routes where possible. It is also able to predict a clear distinction between efficient and inefficient management practices (e.g. using different application rates, washing and rinsing management, etc.). By applying this framework for toxicological assessments of pesticides, LCI and LCIA can be directly linked, removing any overlaps or gaps in between the two distinct LCA steps. PMID:24314898

  12. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  13. Life Cycle Assessment modelling of stormwater treatment systems.

    PubMed

    O'Sullivan, Aisling D; Wicke, Daniel; Hengen, Tyler J; Sieverding, Heidi L; Stone, James J

    2015-02-01

    Stormwater treatment technologies to manage runoff during rain events are primarily designed to reduce flood risks, settle suspended solids and concurrently immobilise metals and nutrients. Life Cycle Assessment (LCA) is scarcely documented for stormwater systems despite their ubiquitous implementation. LCA modelling quantified the environmental impacts associated with the materials, construction, transport, operation and maintenance of different stormwater treatment systems. A pre-fabricated concrete vortex unit, a sub-surface sandfilter and a raingarden, all sized to treat a functional unit of 35 m(3) of stormwater runoff per event, were evaluated. Eighteen environmental mid-point metrics and three end-point 'damage assessment' metrics were quantified for each system's lifecycle. Climate change (kg CO2 eq.) dominated net environmental impacts, with smaller contributions from human toxicity (kg 1,4-DB eq.), particulate matter formation (kg PM10 eq.) and fossil depletion (kg oil eq.). The concrete unit had the highest environmental impact of which 45% was attributed to its maintenance while impacts from the sandfilters and raingardens were dominated by their bulky materials (57%) and transport (57%), respectively. On-site infiltrative raingardens, a component of green infrastructure (GI), had the lowest environmental impacts because they incurred lower maintenance and did not have any concrete which is high in embodied CO2. Smaller sized raingardens affording the same level of stormwater treatment had the lowest overall impacts reinforcing the principle that using fewer resources reduces environmental impacts. LCA modelling can serve as a guiding tool for practitioners making environmentally sustainable solutions for stormwater treatment. PMID:25463586

  14. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.

    PubMed

    Yue, Dajun; Pandya, Shyama; You, Fengqi

    2016-02-01

    By combining life cycle assessment (LCA) with multiobjective optimization (MOO), the life cycle optimization (LCO) framework holds the promise not only to evaluate the environmental impacts for a given product but also to compare different alternatives and identify both ecologically and economically better decisions. Despite the recent methodological developments in LCA, most LCO applications are developed upon process-based LCA, which results in system boundary truncation and underestimation of the true impact. In this study, we propose a comprehensive LCO framework that seamlessly integrates MOO with integrated hybrid LCA. It quantifies both direct and indirect environmental impacts and incorporates them into the decision making process in addition to the more traditional economic criteria. The proposed LCO framework is demonstrated through an application on sustainable design of a potential bioethanol supply chain in the UK. Results indicate that the proposed hybrid LCO framework identifies a considerable amount of indirect greenhouse gas emissions (up to 58.4%) that are essentially ignored in process-based LCO. Among the biomass feedstock options considered, using woody biomass for bioethanol production would be the most preferable choice from a climate perspective, while the mixed use of wheat and wheat straw as feedstocks would be the most cost-effective one. PMID:26752618

  15. Life cycle assessment of the production of ethanol from eastern redcedar.

    PubMed

    Olukoya, Ife A; Ramachandriya, Karthikeyan D; Wilkins, Mark R; Aichele, Clint P

    2014-12-01

    This life cycle assessment (LCA) evaluates the environmental impacts of an ethanol production system using eastern redcedar (Juniperus virginiana L.) as the feedstock. Aspen Plus® was used to model the acid bisulfite pretreatment, enzymatic hydrolysis, fermentation, and distillation steps. A cradle-to-gate LCA was conducted to evaluate the environmental impacts from cutting the trees to the production of anhydrous ethanol. The environmental impacts of the redcedar ethanol process were compared to those from the production of corn ethanol. Inventory data for the system were collected and used to calculate a life cycle impact assessment (LCIA) using the IMPACT 2002+ and BEES+ framework in SimaPro 8.0.0. Four impact categories were evaluated: land occupation, water use, greenhouse gas (GHG) emissions, and non-renewable energy use. Results indicate that acid bisulfite pretreatment contributed to 65% of GHG emissions, 81% of non-renewable energy use, and 77% of water use of the overall process. PMID:25305654

  16. A Methodology for Robust Comparative Life Cycle Assessments Incorporating Uncertainty.

    PubMed

    Gregory, Jeremy R; Noshadravan, Arash; Olivetti, Elsa A; Kirchain, Randolph E

    2016-06-21

    We propose a methodology for conducting robust comparative life cycle assessments (LCA) by leveraging uncertainty. The method evaluates a broad range of the possible scenario space in a probabilistic fashion while simultaneously considering uncertainty in input data. The method is intended to ascertain which scenarios have a definitive environmentally preferable choice among the alternatives being compared and the significance of the differences given uncertainty in the parameters, which parameters have the most influence on this difference, and how we can identify the resolvable scenarios (where one alternative in the comparison has a clearly lower environmental impact). This is accomplished via an aggregated probabilistic scenario-aware analysis, followed by an assessment of which scenarios have resolvable alternatives. Decision-tree partitioning algorithms are used to isolate meaningful scenario groups. In instances where the alternatives cannot be resolved for scenarios of interest, influential parameters are identified using sensitivity analysis. If those parameters can be refined, the process can be iterated using the refined parameters. We also present definitions of uncertainty quantities that have not been applied in the field of LCA and approaches for characterizing uncertainty in those quantities. We then demonstrate the methodology through a case study of pavements. PMID:27219285

  17. Broadening GHG accounting with LCA: application to a waste management business unit.

    PubMed

    Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle

    2009-11-01

    In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors. PMID:19854813

  18. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    NASA Astrophysics Data System (ADS)

    Brecheisen, Thomas; Theis, Thomas

    2013-03-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. Methodological note: data for this life-cycle assessment were obtained from project reports, construction blueprints and utility bills.

  19. A framework for energy use indicators and their reporting in life cycle assessment.

    PubMed

    Arvidsson, Rickard; Svanström, Magdalena

    2016-07-01

    Energy use is a common impact category in life cycle assessment (LCA). Many different energy use indicators are used in LCA studies, accounting for energy use in different ways. Often, however, the choice behind which energy use indicator is applied is poorly described and motivated. To contribute to a more purposeful selection of energy use indicators and to ensure consistent and transparent reporting of energy use in LCA, a general framework for energy use indicator construction and reporting in LCA studies will be presented in this article. The framework differentiates between 1) renewable and nonrenewable energies, 2) primary and secondary energies, and 3) energy intended for energy purposes versus energy intended for material purposes. This framework is described both graphically and mathematically. Furthermore, the framework is illustrated through application to a number of energy use indicators that are frequently used in LCA studies: cumulative energy demand (CED), nonrenewable cumulative energy demand (NRCED), fossil energy use (FEU), primary fossil energy use (PFEU), and secondary energy use (SEU). To illustrate how the application of different energy use indicators may lead to different results, cradle-to-gate energy use of the bionanomaterial cellulose nanofibrils (CNF) is assessed using 5 different indicators and showing a factor of 3 differences between the highest and lowest results. The relevance of different energy use indicators to different actors and contexts will be discussed, and further developments of the framework are then suggested. Integr Environ Assess Manag 2016;12:429-436. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26551582

  20. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.

    PubMed

    Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D

    2010-07-01

    Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. PMID:20015644

  3. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.

    PubMed

    Heimersson, Sara; Morgan-Sagastume, Fernando; Peters, Gregory M; Werker, Alan; Svanström, Magdalena

    2014-06-25

    Assessing the environmental performance of emerging technologies using life cycle assessment (LCA) can be challenging due to a lack of data in relation to technologies, application areas or other life cycle considerations, or a lack of LCA methodology that address the specific concerns. Nevertheless, LCA can be a valuable tool in the environmental optimisation in the technology development phase. One emerging technology is the mixed-culture production of polyhydroxyalkanoates (PHAs). PHA production by pure microbial cultures has been developed and assessed in several LCAs during the previous decade. Recent developments within mixed-culture PHA production call for environmental assessment to guide in technology development. Mixed-culture PHA production can use the organic content in wastewater as a feedstock; the production may then be integrated with wastewater treatment (WWT) processes. This means that mixed-culture PHA is produced as a by-product from services in the WWT. This article explores different methodological challenges for LCA of mixed-culture PHA production using organic material in wastewater as feedstock. LCAs of both pure- and mixed-culture PHA production were reviewed. Challenges, similarities and differences when assessing PHA production by mixed- or pure-cultures were identified and the resulting implications for methodological choices in LCA were evaluated and illustrated, using a case study with mixed- and pure-culture PHA model production systems, based on literature data. Environmental impacts of processes producing multiple products or services need to be allocated between the different products or services. Such situations occur both in feedstock production and when the studied system is providing multiple functions. The selection of allocation method is shown to determine the LCA results. The type of data used, for electricity in the energy system, is shown to be important for the results, which indicates, a strong regional dependency of

  4. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    PubMed

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. PMID:25461117

  5. THE EPA'S EMERGING FOCUS ON LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    EPA has been actively engaged in LCA research since 1990 to help advance the methodology and application of life cycle thinking in decision making. Across the Agency consideration of the life cycle concept is increasing in the development of policies and programs. A major force i...

  6. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households.

    PubMed

    Rosenbaum, Ralph K; Meijer, Arjen; Demou, Evangelia; Hellweg, Stefanie; Jolliet, Olivier; Lam, Nicholas L; Margni, Manuele; McKone, Thomas E

    2015-11-01

    Human exposure to indoor pollutant concentrations is receiving increasing interest in Life Cycle Assessment (LCA). We address this issue by incorporating an indoor compartment into the USEtox model, as well as by providing recommended parameter values for households in four different regions of the world differing geographically, economically, and socially. With these parameter values, intake fractions and comparative toxicity potentials for indoor emissions of dwellings for different air tightness levels were calculated. The resulting intake fractions for indoor exposure vary by 2 orders of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking in non-OECD countries. This study demonstrates the appropriateness and significance of integrating indoor environments into LCA, which ensures a more holistic account of all exposure environments and allows for a better accountability of health impacts. The model, intake fractions, and characterization factors are made available for use in standard LCA studies via www.usetox.org and in standard LCA software. PMID:26444519

  7. Life-cycle assessment of the beef cattle production system for the northern great plains, USA.

    PubMed

    Lupo, Christopher D; Clay, David E; Benning, Jennifer L; Stone, James J

    2013-09-01

    A life-cycle assessment (LCA) model was developed to estimate the environmental impacts associated with four different U.S. Northern Great Plains (NPG) beef production systems. The LCA model followed a "cradle-to-gate" approach and incorporated all major unit processes, including mineral supplement production. Four distinct operation scenarios were modeled based on production strategies common to the NGP, and a variety of impacts were determined. The scenarios include a normal operation, early weaning of the calf, fast-tack backgrounding, and grassfed. Enteric emissions and manure emissions and handling were consistently the largest contributors to the LCA impacts. There was little variability between production scenarios except for the grassfed, where the greenhouse gas (GHG) emissions were 37% higher due to a longer finishing time and lower finishing weight. However, reductions to GHG emissions (15-24%) were realized when soil organic carbon accrual was considered and may be a more realistic estimate for the NGP. Manure emissions and handing were primary contributors to potential eutrophication and acidification impacts. Mitigation strategies to reduce LCA impacts, including diet manipulation and management strategies (i.e., treatment of manure), were considered from a whole-systems perspective. Model results can be used for guidance by NGP producers, environmental practitioners, and policymakers. PMID:24216416

  8. Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production.

    PubMed

    Sills, Deborah L; Paramita, Vidia; Franke, Michael J; Johnson, Michael C; Akabas, Tal M; Greene, Charles H; Tester, Jefferson W

    2013-01-15

    As a result of algae's promise as a renewable energy feedstock, numerous studies have used Life Cycle Assessment (LCA) to quantify the environmental performance of algal biofuels, yet there is no consensus of results among them. Our work, motivated by the lack of comprehensive uncertainty analysis in previous studies, uses a Monte Carlo approach to estimate ranges of expected values of LCA metrics by incorporating parameter variability with empirically specified distribution functions. Results show that large uncertainties exist at virtually all steps of the biofuel production process. Although our findings agree with a number of earlier studies on matters such as the need for wet lipid extraction, nutrients recovered from waste streams, and high energy coproducts, the ranges of reported LCA metrics show that uncertainty analysis is crucial for developing technologies, such as algal biofuels. In addition, the ranges of energy return on (energy) invested (EROI) values resulting from our analysis help explain the high variability in EROI values from earlier studies. Reporting results from LCA models as ranges, and not single values, will more reliably inform industry and policy makers on expected energetic and environmental performance of biofuels produced from microalgae. PMID:23237457

  9. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  10. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS. PMID:25839834

  11. LIFE CYCLE DESIGN OF IN-MOLD SURFACING FILM

    EPA Science Inventory

    Since 1990, the NRMRL has been at the forefront in the development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in...

  12. Life Cycle Impact Assessment (videotape)

    EPA Science Inventory

    Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...

  13. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    SciTech Connect

    Song Qingbin; Wang Zhishi; Li Jinhui; Zeng Xianlai

    2012-10-15

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  14. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    PubMed

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. PMID:23500422

  15. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment.

    PubMed

    Muñoz, Ivan; José Gómez, M; Molina-Díaz, Antonio; Huijbregts, Mark A J; Fernández-Alba, Amadeo R; García-Calvo, Eloy

    2008-12-01

    Life cycle impact assessment (LCIA), a feature of the Life cycle assessment (LCA) methodology, is used in this work outside the LCA framework, as a means to quantify the potential environmental impacts on ecotoxicity and human toxicity of wastewater containing priority and emerging pollutants. In order to do this, so-called characterisation factors are obtained for 98 frequently detected pollutants, using two characterisation models, EDIP97 and USES-LCA. The applicability of this methodology is shown in a case study in which wastewater influent and effluent samples from a Spanish wastewater treatment plant located in the Mediterranean coast were analysed. Characterisation factors were applied to the average concentration of each pollutant, obtaining impact scores for different scenarios: discharging wastewater to aquatic recipient, and using it for crop irrigation. The results show that treated wastewater involves a substantially lower environmental impact when compared to the influent, and pharmaceuticals and personal care products (PPCPs) are very important contributors to toxicity in this wastewater. Ciprofloxacin, fluoxetine, and nicotine constitute the main PPCPs of concern in this case study, while 2,3,7,8-TCDD, Nickel, and hexachlorobenzene are the priority pollutants with highest contribution. Nevertheless, it must be stressed that the new characterisation factors are based on very limited data, especially with regard to toxicology, and therefore they must be seen as a first screening to be improved in the future when more and higher quality data is available. PMID:18951608

  16. Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China.

    PubMed

    Yu, Fei; Han, Feng; Cui, Zhaojie

    2015-04-01

    Reusing industrial waste may have impressive potential environmental benefits, especially in terms of the total life cycle, and life cycle assessment (LCA) has been proved to be an effective method to evaluate industrial symbiosis (IS). Circular economy and IS have been developed for decades and have been successful in China. However, very few studies about the environmental benefit assessment of IS applied by LCA in China have been conducted. In the current article, LCA was used to evaluate the environmental benefits and costs of IS, compared with a no-IS scenario for four environmental impact categories. The results showed that four environmental benefits were avoided by the 11 symbiosis performances, namely, 41.6 thousand TJ of primary energy, 4.47 million t CO2e of greenhouse gasses, 19.7 thousand t SO2e of acidification, and 81.1 t PO4(3+)e of eutrophication. Among these IS performances, the comprehensive utilization of red mud produced the most visible benefit. The results also present that energy conservation was the distinctive feature of IS in China. PMID:25339529

  17. How Well Does LCA Model Land Use Impacts on Biodiversity?--A Comparison with Approaches from Ecology and Conservation.

    PubMed

    Curran, Michael; de Souza, Danielle Maia; Antón, Assumpció; Teixeira, Ricardo F M; Michelsen, Ottar; Vidal-Legaz, Beatriz; Sala, Serenella; Milà i Canals, Llorenç

    2016-03-15

    The modeling of land use impacts on biodiversity is considered a priority in life cycle assessment (LCA). Many diverging approaches have been proposed in an expanding literature on the topic. The UNEP/SETAC Life Cycle Initiative is engaged in building consensus on a shared modeling framework to highlight best-practice and guide model application by practitioners. In this paper, we evaluated the performance of 31 models from both the LCA and the ecology/conservation literature (20 from LCA, 11 from non-LCA fields) according to a set of criteria reflecting (i) model completeness, (ii) biodiversity representation, (iii) impact pathway coverage, (iv) scientific quality, and (v) stakeholder acceptance. We show that LCA models tend to perform worse than those from ecology and conservation (although not significantly), implying room for improvement. We identify seven best-practice recommendations that can be implemented immediately to improve LCA models based on existing approaches in the literature. We further propose building a "consensus model" through weighted averaging of existing information, to complement future development. While our research focuses on conceptual model design, further quantitative comparison of promising models in shared case studies is an essential prerequisite for future informed model choice. PMID:26830787

  18. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    PubMed

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  19. Can comprehensive climate impact assessment of terrestrial ecosystems be included in Life Cycle Assessment to support policy decisions?

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Cherubini, F.; Strømman, A. H.

    2014-12-01

    Decisions resulting in land use change (LUC) or land management change (LMC) rarely consider the changes to surface biophysical properties that lead to immediate land-atmosphere feedbacks and subsequent local- to regional-scale climate changes. This is likely because the sign and magnitude of the various feedback mechanisms depend largely on a multitude of highly site-specific meteorological, eco-physiological, structural, and topographic factors, making them difficult to quantify in the absence of sophisticated models with high spatial and temporal resolution. In a world increasingly dependent on biomass (and thus land) resources for energy and materials, it is unacceptable to continue ignoring important biogeophysical factors linked to land use activities in climate impact assessment studies. Although a number of useful land-atmosphere impact assessment methodologies and metrics have been proposed in recent years, they are rarely applied in the decision making process. Over the last 10-15 years, Life Cycle Assessment (LCA) has emerged as a prominent decision-support tool that relies on well-established IPCC climate metrics, yet land-atmosphere climate metrics are rarely applied. Here, we present a review of the literature enveloping methods and metrics for quantifying or characterizing climate change impacts in terrestrial ecosystems. We highlight their merits and discuss practical limitations with respect to their integration into the LCA framework. We conclude by proposing some solutions for overcoming the integration barrier and suggest some practical ways forward for both climate modelers/metric developers and LCA practitioners.

  20. LCA as a Tool to Evaluate Green Infrastructure's Environmental Performance

    NASA Astrophysics Data System (ADS)

    Catalano De Sousa, M.; Erispaha, A.; Spatari, S.; Montalto, F.

    2011-12-01

    Decentralized approaches to managing urban stormwater through use of green infrastructure (GI) often lead to system-wide efficiency gains within the urban watershed's energy supply system. These efficiencies lead to direct greenhouse gas (GHG) emissions savings, and also restore some ecosystem functions within the urban landscape. We developed a consequential life cycle assessment (LCA) model to estimate the life cycle energy, global warming potential (GWP), and payback times for each if GI were applied within a select neighborhood in New York City. We applied the SIMAPRO LCA software and the economic input-output LCA (EIO-LCA) tool developed by Carnegie Mellon University. The results showed that for a new intersection installation highlighted in this study a conventional infrastructure construction would emit and use approximately 3 times more for both CO2 and energy than a design using GI. Two GI benefits were analyzed with regards to retrofitting the existing intersection. The first was related to the savings in energy and CO2 at the Waste Water Treatment Plant via runoff reduction accrued from GI use. The second benefit was related to the avoided environmental costs associated with an additional new grey infrastructure installation needed to prevent CSO in case of no GI implementation. The first benefit indicated a high payback time for a GI installation in terms of CO2 and energy demand (80 and 90 years respectively) and suggest a slow energy and carbon recovery time. However, concerning to the second benefit, GI proved to be a sustainable alternative considering the high CO2 releases (429 MTE) and energy demand (5.5 TJ) associated with a grey infrastructure construction.

  1. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC. PMID:27082715

  2. Life cycle assessment of active and passive groundwater remediation technologies

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2006-02-01

    Groundwater remediation technologies, such as pump-and-treat (PTS) and funnel-and-gate systems (FGS), aim at reducing locally appearing contaminations. Therefore, these methodologies are basically evaluated with respect to their capability to yield local improvements of an environmental situation, commonly neglecting that their application is also associated with secondary impacts. Life cycle assessment (LCA) represents a widely accepted method of assessing the environmental aspects and potential impacts related to a product, process or service. This study presents the set-up of a LCA framework in order to compare the secondary impacts caused by two conceptually different technologies at the site of a former manufactured gas plant in the city of Karlsruhe, Germany. As a FGS is already operating at this site, a hypothetical PTS of the same functionality is adopted. During the LCA, the remediation systems are evaluated by focusing on the main technical elements and their significance with respect to resource depletion and potential adverse effects on ecological quality, as well as on human health. Seven impact categories are distinguished to address a broad spectrum of possible environmental loads. A main point of discussion is the reliability of technical assumptions and performance predictions for the future. It is obvious that a high uncertainty exists when estimating impact specific indicator values over operation times of decades. An uncertainty analysis is conducted to include the imprecision of the underlying emission and consumption data and a scenario analysis is utilised to contrast various possible technological variants. Though the results of the study are highly site-specific, a generalised relative evaluation of potential impacts and their main sources is the principle objective rather than a discussion of the calculated absolute impacts. A crucial finding that can be applied to any other site is the central role of steel, which particularly derogates

  3. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.

    PubMed

    Rebitzer, G; Ekvall, T; Frischknecht, R; Hunkeler, D; Norris, G; Rydberg, T; Schmidt, W-P; Suh, S; Weidema, B P; Pennington, D W

    2004-07-01

    Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for the provision of goods and services (both of which are summarized under the term "products"). Environmental impacts include those from emissions into the environment and through the consumption of resources, as well as other interventions (e.g., land use) associated with providing products that occur when extracting resources, producing materials, manufacturing the products, during consumption/use, and at the products' end-of-life (collection/sorting, reuse, recycling, waste disposal). These emissions and consumptions contribute to a wide range of impacts, such as climate change, stratospheric ozone depletion, tropospheric ozone (smog) creation, eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources, water use, land use, and noise-among others. A clear need, therefore, exists to be proactive and to provide complimentary insights, apart from current regulatory practices, to help reduce such impacts. Practitioners and researchers from many domains come together in life cycle assessment (LCA) to calculate indicators of the aforementioned potential environmental impacts that are linked to products-supporting the identification of opportunities for pollution prevention and reductions in resource consumption while taking the entire product life cycle into consideration. This paper, part 1 in a series of two, introduces the LCA framework and procedure, outlines how to define and model a product's life cycle, and provides an overview of available methods and tools for tabulating and compiling associated emissions and resource consumption data in a life cycle inventory (LCI). It also discusses the application of LCA in industry and policy making. The second paper, by Pennington et al. (Environ. Int. 2003, in press), highlights the key features, summarises available approaches, and outlines the key

  4. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. PMID:20599249

  5. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-01

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents. PMID:25587896

  6. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems. PMID:20553042

  7. Life Cycle Assessment of Biogas Production from Marine Macroalgae: a Latvian Scenario

    NASA Astrophysics Data System (ADS)

    Pilicka, Iluta; Blumberga, Dagnija; Romagnoli, Francesco

    2011-01-01

    There is potential environmental benefit to be gained from the use of algae because of their ability to fix CO2, no need for direct land use and utilization of bio-waste (rich in potassium, phosphate and nitrogen based compounds) as a nutrients. The aim of the research is to assess the impact of biogas production and the final use in a cogeneration unit system from a Life Cycle Assessment (LCA) in comparison with a similar reference system using a non-renewable source (e.g. natural gas). The paper is intended to be a preliminary study for understanding the implementation of this novel technology in a Latvian context.

  8. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens.

    PubMed

    Harder, Robin; Heimersson, Sara; Svanström, Magdalena; Peters, Gregory M

    2014-08-19

    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series. PMID:25058492

  9. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to

  10. Environmental impact of an agro-waste based polygeneration without and with CO2 storage: Life cycle assessment approach.

    PubMed

    Jana, Kuntal; De, Sudipta

    2016-09-01

    Life cycle assessment (LCA) is the most scientific tool to measure environmental sustainability. Poly-generation is a better option than single-utility generation due to its higher resource utilization efficiency and more flexibility. Also biomass based polygeneration with CO2 capture and storage may be useful being 'net negative' greenhouse gas emission option. But this 'negativity' should be studied and confirmed through LCA. In this paper, cradle-to-gate life cycle assessment of a straw based polygeneration without and with CO2 storage is studied. Results show that captured CO2 of this polygeneration should be stored to get a net negative energy system. However, biomass distribution density, ethanol production rate and CO2 transportation distance affect the net GHG emission. For this polygeneration system, exergy based allocation should be preferred. PMID:27336697

  11. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.

    PubMed

    Peters, Glen P; Aamaas, Borgar; T Lund, Marianne; Solli, Christian; Fuglestvedt, Jan S

    2011-10-15

    The Life Cycle Assessment (LCA) impact category "global warming" compares emissions of long-lived greenhouse gases (LLGHGs) using Global Warming Potential (GWP) with a 100-year time-horizon as specified in the Kyoto Protocol. Two weaknesses of this approach are (1) the exclusion of short-lived climate forcers (SLCFs) and biophysical factors despite their established importance, and (2) the use of a particular emission metric (GWP) with a choice of specific time-horizons (20, 100, and 500 years). The GWP and the three time-horizons were based on an illustrative example with value judgments and vague interpretations. Here we illustrate, using LCA data of the transportation sector, the importance of SLCFs relative to LLGHGs, different emission metrics, and different treatments of time. We find that both the inclusion of SLCFs and the choice of emission metric can alter results and thereby change mitigation priorities. The explicit inclusion of time, both for emissions and impacts, can remove value-laden assumptions and provide additional information for impact assessments. We believe that our results show that a debate is needed in the LCA community on the impact category "global warming" covering which emissions to include, the emission metric(s) to use, and the treatment of time. PMID:21936535

  12. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    SciTech Connect

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  13. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  14. Life cycle assessment for dredged sediment placement strategies.

    PubMed

    Bates, Matthew E; Fox-Lent, Cate; Seymour, Linda; Wender, Ben A; Linkov, Igor

    2015-04-01

    Dredging to maintain navigable waterways is important for supporting trade and economic sustainability. Dredged sediments are removed from the waterways and then must be managed in a way that meets regulatory standards and properly balances management costs and risks. Selection of a best management alternative often results in stakeholder conflict regarding tradeoffs between local environmental impacts associated with less expensive alternatives (e.g., open water placement), more expensive measures that require sediment disposal in constructed facilities far away (e.g., landfills), or beneficial uses that may be perceived as risky (e.g., beach nourishment or island creation). Current sediment-placement decisions often focus on local and immediate environmental effects from the sediment itself, ignoring a variety of distributed and long-term effects from transportation and placement activities. These extended effects have implications for climate change, resource consumption, and environmental and human health, which may be meaningful topics for many stakeholders not currently considered. Life-Cycle Assessment (LCA) provides a systematic and quantitative method for accounting for this wider range of impacts and benefits across all sediment management project stages and time horizons. This paper applies a cradle-to-use LCA to dredged-sediment placement through a comparative analysis of potential upland, open water, and containment-island placement alternatives in the Long Island Sound region of NY/CT. Results suggest that, in cases dealing with uncontaminated sediments, upland placement may be the most environmentally burdensome alternative, per ton-kilometer of placed material, due to the emissions associated with diesel fuel combustion and electricity production and consumption required for the extra handling and transportation. These results can be traded-off with the ecosystem impacts of the sediments themselves in a decision-making framework. PMID:25553545

  15. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    PubMed

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online. PMID:23869533

  16. Life cycle assessment in support of sustainable transportation

    NASA Astrophysics Data System (ADS)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  17. Comparative life cycle assessment and life cycle costing of four disposal scenarios for used polyethylene terephthalate bottles in Mauritius.

    PubMed

    Foolmaun, Rajendra Kumar; Ramjeeawon, Toolseeram

    2012-09-01

    The annual rise in population growth coupled with the flourishing tourism industry in Mauritius has lead to a considerable increase in the amount of solid waste generated. In parallel, the disposal of non-biodegradable wastes, especially plastic packaging and plastic bottles, has also shown a steady rise. Improper disposal of used polyethylene terephthalate (PET) bottles constitutes an eyesore to the environmental landscape and is a threat to the flourishing tourism industry. It is of utmost importance, therefore, to determine a suitable disposal method for used PET bottles which is not only environmentally efficient but is also cost effective. This study investigated the environmental impacts and the cost effectiveness of four selected disposal alternatives for used PET bottles in Mauritius. The four disposal routes investigated were: 100% landfilling; 75% incineration with energy recovery and 25% landfilling; 40% flake production (partial recycling) and 60% landfilling; and 75% flake production and 25% landfilling. Environmental impacts of the disposal alternatives were determined using ISO standardized life cycle assessment (LCA) and with the support of SimaPro 7.1 software. Cost effectiveness was determined using life cycle costing (LCC). Collected data were entered into a constructed Excel-based model to calculate the different cost categories, Net present values, damage costs and payback periods. LCA and LCC results indicated that 75% flake production and 25% landfilling was the most environmentally efficient and cost-effective disposal route for used PET bottles in Mauritius. PMID:23240194

  18. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.

    PubMed

    Zhang, Yi; Singh, Shweta; Bakshi, Bhavik R

    2010-04-01

    If life cycle oriented methods are to encourage sustainable development, they must account for the role of ecosystem goods and services, since these form the basis of planetary activities and human well-being. This article reviews methods that are relevant to accounting for the role of nature and that could be integrated into life cycle oriented approaches. These include methods developed by ecologists for quantifying ecosystem services, by ecological economists for monetary valuation, and life cycle methods such as conventional life cycle assessment, thermodynamic methods for resource accounting such as exergy and emergy analysis, variations of the ecological footprint approach, and human appropriation of net primary productivity. Each approach has its strengths: economic methods are able to quantify the value of cultural services; LCA considers emissions and assesses their impact; emergy accounts for supporting services in terms of cumulative exergy; and ecological footprint is intuitively appealing and considers biocapacity. However, no method is able to consider all the ecosystem services, often due to the desire to aggregate all resources in terms of a single unit. This review shows that comprehensive accounting for ecosystem services in LCA requires greater integration among existing methods, hierarchical schemes for interpreting results via multiple levels of aggregation, and greater understanding of the role of ecosystems in supporting human activities. These present many research opportunities that must be addressed to meet the challenges of sustainability. PMID:20178382

  19. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    SciTech Connect

    Rigamonti, L. Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  20. Life cycle assessment of construction and demolition waste management

    SciTech Connect

    Butera, Stefania Christensen, Thomas H.; Astrup, Thomas F.

    2015-10-15

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  1. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems.

    PubMed

    Corominas, Lluís; Larsen, Henrik F; Flores-Alsina, Xavier; Vanrolleghem, Peter A

    2013-10-15

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating strategies. Therefore, the LCA evaluation is repeated for three different scenarios depending on the limitation of nitrogen (N), phosphorus (P), or both, when evaluating the nutrient enrichment impact in water bodies. The LCA results indicate that for treated effluent discharged into N-deficient aquatic systems (e.g. open coastal areas) the most eco-friendly strategies differ from the ones dealing with discharging into P-deficient (e.g. lakes and rivers) and N&P-deficient systems (e.g. coastal zones). More particularly, the results suggest that strategies that promote increased nutrient removal and/or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P-deficient aquatic systems. PMID:23856224

  2. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  3. Life cycle assessment of the waste hierarchy--a Danish case study on waste paper.

    PubMed

    Schmidt, Jannick H; Holm, Peter; Merrild, Anne; Christensen, Per

    2007-01-01

    The waste hierarchy is being widely discussed these days, not only by cost-benefit analysts, but a growing number of life cycle assessments (LCA) have also begun to question it. In this article, we investigate the handling of waste paper in Denmark and compare the present situation with scenarios of more waste being recycled, incinerated or consigned to landfill. The investigations are made in accordance with ISO 14040-43 and based on the newly launched methodology of consequential LCA and following the recent guidelines of the European Centre on Waste and Material Flows. The LCA concerns the Danish consumption of paper in 1999, totalling 1.2 million tons. The results of the investigation indicate that the waste hierarchy is reliable; from an environmental point of view recycling of paper is better than incineration and landfilling. For incineration, the reason for the advantage of landfilling mainly comes from the substitution of fossil fuels, when incinerators provide heat and electricity. For recycling, the advantage is related to the saved wood resources, which can be used for generating energy from wood, i.e., from renewable fuel which does not contribute to global warming. PMID:17112716

  4. Process based life-cycle assessment of natural gas from the Marcellus Shale.

    PubMed

    Dale, Alexander T; Khanna, Vikas; Vidic, Radisav D; Bilec, Melissa M

    2013-05-21

    The Marcellus Shale (MS) represents a large potential source of energy in the form of tightly trapped natural gas (NG). Producing this NG requires the use of energy and water, and has varying environmental impacts, including greenhouse gases. One well-established tool for quantifying these impacts is life-cycle assessment (LCA). This study collected information from current operating companies to perform a process LCA of production for MS NG in three areas--greenhouse gas (GHG) emissions, energy consumption, and water consumption--under both present (2011-2012) and past (2007-2010) operating practices. Energy return on investment (EROI) was also calculated. Information was collected from current well development operators and public databases, and combined with process LCA data to calculate per-well and per-MJ delivered impacts, and with literature data on combustion for calculation of impacts on a per-kWh basis during electricity generation. Results show that GHG emissions through combustion are similar to conventional natural gas, with an EROI of 12:1 (90% confidence interval of 4:1-13:1), lower than conventional fossil fuels but higher than unconventional oil sources. PMID:23611587

  5. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  6. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. PMID:25052337

  7. Including the introduction of exotic species in life cycle impact assessment: the case of inland shipping.

    PubMed

    Hanafiah, Marlia M; Leuven, Rob S E W; Sommerwerk, Nike; Tockner, Klement; Huijbregts, Mark A J

    2013-12-17

    While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction. PMID:24251685

  8. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach.

    PubMed

    Woon, Kok Sin; Lo, Irene M C; Chiu, Sam L H; Yan, Dickson Y S

    2016-04-01

    This paper aims to evaluate the environmental impacts of valorizing food waste for three types of energy use, namely electricity and heat, city gas, and biogas fuel as a petrol, diesel, and liquefied petroleum gas substitute for vehicle use, with reference to the Hong Kong scenario. The life cycle based environmental assessment is conducted from bin-to-cradle system boundary via SimaPro 7.2.4 with ReCiPe 1.04. All of the inventory data of included processes is based on reports of government and industrial sectors. The results show that biogas fuel as a petrol substitute for vehicle use is advantageous over other types of energy use in regard to human health and ecosystems, and it is also the best considering the government's future emission reduction targets set out for the power and transport sectors in Hong Kong. By turning 1080 tonnes per day of food waste into biogas vehicle fuel as petrol substitute, it reduces 1.9% of greenhouse gas emissions in the transport sectors, which results a larger decrease of GHG emissions than the achieved mitigation in Hong Kong from 2005 to 2010. PMID:26923298

  9. Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts

    PubMed Central

    2011-01-01

    A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The “cradle-to-gate” climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO2-equiv (FSP) and 7.67–166 kg of CO2-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO2-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required. PMID:21506582

  10. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    SciTech Connect

    Josa, Alejandro; Byars, Ewan

    2007-05-15

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.

  11. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    PubMed

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE. PMID:17802833

  12. Indirect water management through Life Cycle Assessment: Fostering sustainable production in developing countries

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.

    2009-04-01

    Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that

  13. Life cycle assessment in support of sustainable transportation

    NASA Astrophysics Data System (ADS)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  14. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    SciTech Connect

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H.; Hauschild, Michael Z.

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  15. Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment.

    PubMed

    Remy, C; Boulestreau, M; Warneke, J; Jossa, P; Kabbe, C; Lesjean, B

    2016-01-01

    Energy and resource recovery from municipal wastewater is a pre-requisite for an efficient and sustainable water management in cities of the future. However, a sound evaluation of available processes and pathways is required to identify opportunities and short-comings of the different options and reveal synergies and potentials for optimization. For evaluating environmental impacts in a holistic view, the tool of life cycle assessment (LCA, ISO 14040/44) is suitable to characterize and quantify the direct and indirect effects of new processes and concepts. This paper gives an overview of four new processes and concepts for upgrading existing wastewater treatment plants towards energy positive and resource efficient wastewater treatment, based upon an evaluation of their environmental impacts with LCA using data from pilot and full-scale assessments of the considered processes. PMID:26942529

  16. Life cycle assessment of a packaging waste recycling system in Portugal.

    PubMed

    Ferreira, S; Cabral, M; da Cruz, N F; Simões, P; Marques, R C

    2014-09-01

    Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called "Baseline" scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called "Incineration" scenario) or to landfill ("Landfill" scenario). Overall, the results show that the "Baseline" scenario is more environmentally sound than the hypothetical scenarios. PMID:24910140

  17. Review of LCA studies of solid waste management systems--part II: methodological guidance for a better practice.

    PubMed

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H; Hauschild, Michael Z

    2014-03-01

    Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs. PMID:24388596

  18. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    NASA Astrophysics Data System (ADS)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating

  19. Assessing food security in water scarce regions by Life Cycle Analysis: a case study in the Gaza strip

    NASA Astrophysics Data System (ADS)

    Recanati, Francesca; Castelletti, Andrea; Melià, Paco; Dotelli, Giovanni

    2013-04-01

    Food security is a major issue in Palestine for both political and physical reasons, with direct effects on the local population living conditions: the nutritional level of people in Gaza is classified by FAO as "insecure". As most of the protein supply comes from irrigated agricultural production and aquaculture, freshwater availability is a limiting factor to food security, and the primary reason for frequent conflicts among food production processes (e.g. aquaculture, land livestock or different types of crops). In this study we use Life Cycle Analysis to assess the environmental impacts associated to all the stages of water-based protein production (from agriculture and aquaculture) in the Gaza strip under different agricultural scenarios and hydroclimatic variability. As reported in several recent studies, LCA seems to be an appropriate methodology to analyze agricultural systems and assess associated food security in different socio-economic contexts. However, we argue that the inherently linear and static nature of LCA might prove inadequate to tackle with the complex interaction between water cycle variability and the food production system in water-scarce regions of underdeveloped countries. Lack of sufficient and reliable data to characterize the water cycle is a further source of uncertainty affecting the robustness of the analysis. We investigate pros and cons of LCA and LCA-based option planning in an average size farm in Gaza strip, where farming and aquaculture are family-based and integrated by reuse of fish breeding water for irrigation. Different technological solutions (drip irrigation system, greenhouses etc.) are evaluated to improve protein supply and reduce the pressure on freshwater, particularly during droughts. But this use of technology represent also a contribution in increasing sustainability in agricultural processes, and therefore in economy, of Gaza Strip (reduction in chemical fertilizers and pesticides etc.).

  20. Environmental life cycle assessment of Ethiopian rose cultivation.

    PubMed

    Sahle, Abiy; Potting, José

    2013-01-15

    A life cycle assessment (LCA) was conducted for Ethiopian rose cultivation. The LCA covered the cradle-to-gate production of all inputs to Ethiopian rose cultivation up to, and including transport to the Ethiopian airport. Primary data were collected about materials and resources used as inputs to, and about the product outputs from 21 farms in 4 geographical regions (i.e. Holleta, Sebeta, Debre Ziet, and Ziway). The primary data were imported in, and analyzed with the SimaPro7.3 software. Data for the production of used inputs were taken from the EcoInvent®2.0 database. Emissions from input use on the farms were quantified based on estimates and emission factors from various studies and guidelines. The resulting life cycle inventory (LCI) table was next evaluated with the CML 2 baseline 2000 V2/world, 1990/characterization method to quantify the contribution of the rose cultivation chain to 10 environmental impact categories. The set of collected primary data was comprehensive and of high quality. The data point to an intensive use of fertilizers, pesticides, and greenhouse plastic. Production and use of these inputs also represent the major contributors in all environmental impact categories. The largest contribution comes from the production of the used fertilizers, specifically nitrogen-based fertilizers. The use of calcium nitrate dominates Abiotic Depletion (AD), Global Warming (GW), Human Toxicity (HT) and Marine Aquatic Ecotoxicity (MAET). It also makes a large contribution to Ozone Depletion (OD), Acidification (AD) and Fresh water Aquatic Ecotoxicity (FAET). Acidification (AC) and Eutrophication (EU) are dominated by the emission of fertilizers. The emissions from the use of pesticides, especially insecticides dominate Terrestrial Ecotoxicity (TE) and make a considerable contribution to Freshwater Aquatic Ecotoxicity (FAET) and Photochemical Oxidation (PhO). There is no visible contribution from the use of pesticides to the other toxicity categories

  1. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-01

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany. PMID:26061620

  2. Life cycle assessment of fuel selection for power generation in Taiwan.

    PubMed

    Yang, Ying-Hsien; Lin, Sue-Jane; Lewis, Charles

    2007-11-01

    Life cycle assessment (LCA) was applied to performance data from 1997-2002 to evaluate the environmental impacts of the energy input, airborne emission, waterborne emission, and solid waste inventories for Taiwan's electric power plants. Eco-indicator 95 was used to compare the differences among the generation processes and fuel purification. To better understand the environmental trends related to Taiwan's electric power industry, three fuel scenarios were selected for LCA system analysis. Results indicate that there are differences in characteristic environmental impact among the 13 power plants. Scenario simulation provided a basis for minimizing environmental impacts from fuel selection targets. Fuel selection priority should be a gas-fired combined cycle substituted for a coal-fired steam turbine to be more environmentally friendly, particularly in the areas of the greenhouse effect, acidification, winter smog, and solid waste. Furthermore, based purely on economic and environmental criteria, it is recommended that the gas-fired combined cycle be substituted for the oil-fired steam turbine. PMID:18069462

  3. Nanotoxicity and Life Cycle Assessment: First attempt towards the determination of characterization factors for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Garcia, Gonzalo; Zimmermann, Benedikt; Weil, Marcel

    2014-08-01

    Carbon materials, whether at macro, micro or at nanoscale, play an important role in the battery industry, as they can be used as electrodes, electrode enhancers, bipolar separators, or current collectors. When conducting a Life Cycle Assessment (LCA) of novel batteries manufacturing processes, we also need to consider the fate of potentially emitted carbon based nanomaterials. However, the knowledge generated in the last decade regarding the behavior of such materials in the environment and its toxicological effects has yet to be included in the Life Cycle Impact Assessment (LCIA) methodologies. Conventional databases of chemical products (e.g. ECHA, ECOTOX) offer little information regarding engineered nanomaterials (ENM). It is thus necessary to go one step further and compile physicochemical and toxicological data directly from scientific literature. Such studies do not only differ in their results, but also in their methodologies, and several calls have been made towards a more consistent approach that would allow us model the fate of ENM in the environment as well as their potentially harmful effects. Trying to overcome these limitations we have developed a tool based on Microsoft Excel® combining several methods for the estimation of physicochemical properties of carbon nanotubes (CNT). The information generated with this tool is combined with degradation rates and toxicological data consistent with the methods followed by the USEtox methodology. Thus, it is possible to calculate the characterization factors of CNTs and integrate them as a first proxy in future LCA of products including these ENM.

  4. Life cycle assessment of gas atomised sponge nickel for use in alkaline hydrogen fuel cell applications

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin P.; Lavery, Nicholas P.; Jarvis, David J.; Anttila, Tomi; Rantanen, Jyri; Brown, Stephen G. R.; Adkins, Nicholas J.

    2013-12-01

    This paper presents a cradle-to-grave comparative Life Cycle Assessment (LCA) of new gas atomised (GA) sponge nickel catalysts and evaluates their performance against the both cast and crush (CC) sponge nickel and platinum standards currently used in commercial alkaline fuel cells (AFC). The LCA takes into account the energy used and emissions throughout the entire life cycle of sponge nickel catalysts - ranging from the upstream production of materials (mainly aluminium and nickel), to the manufacturing, to the operation and finally to the recycling and disposal. Through this assessment it was found that the energy and emissions during the operational phase associated with a given catalyst considerably outweigh the primary production, manufacturing and recycling. Primary production of the nickel (and to a lesser extent dopant materials) also has a significant environmental impact but this is offset by operational energy savings over the electrode's estimated lifetime and end of life recyclability. From the results it can be concluded that higher activity spongy nickel catalysts produced by gas atomisation could have a significantly lower environmental impact than either CC nickel or platinum. Doped GA sponge nickel in particular showed comparable performance to that of the standard platinum electrode used in AFCs.

  5. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  6. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    PubMed

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  7. Algae biodiesel life cycle assessment using current commercial data.

    PubMed

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required. PMID:23900083

  8. Influence of data collection schemes on the Life Cycle Assessment of a municipal wastewater treatment plant.

    PubMed

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte; Christensen, Thomas H

    2014-06-01

    A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but

  9. The Assessment Cycle: A Model for Learning through Peer Assessment

    ERIC Educational Resources Information Center

    Reinholz, Daniel

    2016-01-01

    This paper advances a model describing how peer assessment supports self-assessment. Although prior research demonstrates that peer assessment promotes self-assessment, the connection between these two activities is underspecified. This model, the assessment cycle, draws from theories of self-assessment to elaborate how learning takes place…

  10. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    PubMed

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES. PMID:24195778

  11. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system. PMID:26218291

  12. Life cycle assessment and carbon footprint in the wine supply-chain.

    PubMed

    Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo

    2012-06-01

    Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies. PMID:22525986

  13. Assessing relationships among life-cycle environmental impacts with dimension reduction techniques.

    PubMed

    Gutiérrez, Ester; Lozano, Sebastián; Moreira, M Teresa; Feijoo, Gumersindo

    2010-01-01

    Nowadays, there is a trend in many countries towards more environmentally benign products and processes. Life-Cycle Assessment (LCA) is a quantitative analysis tool developed and utilized for the evaluation of environmental impacts occurring throughout the entire life-cycle of a product, process or activity. LCA requires a large amount of data in its different phases and can also generate large amounts of results which may be hard to interpret. In order to uncover and visualize the structure of large multidimensional data sets, Multivariate Analysis techniques can help. Hence, in this paper, a methodology using Principal Component Analysis and Multi-Dimensional Scaling is proposed and illustrated by means of two case studies. The first case study evaluates the operation of several wastewater treatment plants. The second case study deals with the environmental evaluation of the cultivation, processing and consumption of mussels. In both case studies, the redundancy present in the data allowed a dimensionality reduction from seven and ten to two dimensions, with a small loss of information. Plotting the environmental impact data in these two dimensions can help visualize, interpret and communicate them. PMID:20042268

  14. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel. PMID:26811919

  15. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    PubMed

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT. PMID:25708404

  16. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  17. Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives.

    PubMed

    Tsang, Michael P; Bates, Matthew E; Madison, Marcus; Linkov, Igor

    2014-10-01

    Assessing the best options among emerging technologies (e.g., new chemicals, nanotechnologies) is complicated because of trade-offs across benefits and risks that are difficult to quantify given limited and fragmented availability of information. This study demonstrates the integration of multicriteria decision analysis (MCDA) and life cycle assessment (LCA) to address technology alternative selection decisions. As a case study, prioritization of six lumber treatment alternatives [micronized copper quaternary (MCQ); alkaline copper quaternary (ACQ); water-borne copper naphthenate (CN); oil-borne copper naphthenate (CNo); water-borne copper quinolate (CQ); and water-borne zinc naphthenate (ZN)] for military use are considered. Multiattribute value theory (MAVT) is used to derive risk and benefit scores. Risk scores are calculated using a cradle-to-gate LCA. Benefit scores are calculated by scoring of cost, durability, and corrosiveness criteria. Three weighting schemes are used, representing Environmental, Military and Balanced stakeholder perspectives. Aggregated scores from all three perspectives show CQ to be the least favorable alterative. MCQ is identified as the most favorable alternative from the Environmental stakeholder perspective. From the Military stakeholder perspective, ZN is determined to be the most favorable alternative, followed closely by MCQ. This type of scoring and ranking of multiple heterogeneous criteria in a systematic and transparent way facilitates better justification of technology selection and regulation. PMID:25209330

  18. The work environment disability-adjusted life year for use with life cycle assessment: a methodological approach

    PubMed Central

    2013-01-01

    Background Life cycle assessment (LCA) is a systems-based method used to determine potential impacts to the environment associated with a product throughout its life cycle. Conclusions from LCA studies can be applied to support decisions regarding product design or public policy, therefore, all relevant inputs (e.g., raw materials, energy) and outputs (e.g., emissions, waste) to the product system should be evaluated to estimate impacts. Currently, work-related impacts are not routinely considered in LCA. The objectives of this paper are: 1) introduce the work environment disability-adjusted life year (WE-DALY), one portion of a characterization factor used to express the magnitude of impacts to human health attributable to work-related exposures to workplace hazards; 2) outline the methods for calculating the WE-DALY; 3) demonstrate the calculation; and 4) highlight strengths and weaknesses of the methodological approach. Methods The concept of the WE-DALY and the methodological approach to its calculation is grounded in the World Health Organization’s disability-adjusted life year (DALY). Like the DALY, the WE-DALY equation considers the years of life lost due to premature mortality and the years of life lived with disability outcomes to estimate the total number of years of healthy life lost in a population. The equation requires input in the form of the number of fatal and nonfatal injuries and illnesses that occur in the industries relevant to the product system evaluated in the LCA study, the age of the worker at the time of the fatal or nonfatal injury or illness, the severity of the injury or illness, and the duration of time lived with the outcomes of the injury or illness. Results The methodological approach for the WE-DALY requires data from various sources, multi-step instructions to determine each variable used in the WE-DALY equation, and assumptions based on professional opinion. Conclusions Results support the use of the WE-DALY in a

  19. Space transportation main engine cycle assessment process

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Lyles, G. M.

    1991-01-01

    The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.

  20. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    PubMed

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. PMID:27297045

  1. Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison.

    PubMed

    Igos, Elorri; Benetto, Enrico; Venditti, Silvia; Kohler, Christian; Cornelissen, Alex; Moeller, Ruth; Biwer, Arno

    2012-11-01

    After ingestion, pharmaceuticals are excreted unchanged or metabolized. They subsequently arrive in conventional wastewater treatment plants and are then released into the environment, often without undergoing any degradation. Conventional treatment plants can be upgraded with post treatment, alternatively the removal of pharmaceuticals could be achieved directly at point sources. In the European project PILLS, several solutions for decentralized treatment of pharmaceuticals at hospitals were investigated at both pilot plant and full scale, and were then compared to conventional and upgraded centralized treatment plants using Life Cycle Assessment (LCA). Within the scope of the study, pharmaceuticals were found to have a comparatively minor environmental impact. As a consequence, an additional post treatment does not provide significant benefits. In the comparison of post treatment technologies, ozonation and activated carbon performed better than UV. These results suffer however from high uncertainties due to the assessment models of the toxicity of pharmaceuticals in LCA. Our results should therefore be interpreted with caution. LCA is a holistic approach and does not cover effects or issues on a local level, which may be highly relevant. We should therefore apply the precautionary ALARA principle (As Low As Reasonably Achievable) and not conclude that the effect of pharmaceuticals is negligible in the environment. PMID:23037813

  2. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.

    PubMed

    Parkes, Olga; Lettieri, Paola; Bogle, I David L

    2015-06-01

    This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning. PMID:25837786

  3. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study

    NASA Astrophysics Data System (ADS)

    Goldstein, Benjamin; Birkved, Morten; Quitzau, Maj-Britt; Hauschild, Michael

    2013-09-01

    Cities now consume resources and produce waste in amounts that are incommensurate with the populations they contain. Quantifying and benchmarking the environmental impacts of cities is essential if urbanization of the world’s growing population is to occur sustainably. Urban metabolism (UM) is a promising assessment form in that it provides the annual sum material and energy inputs, and the resultant emissions of the emergent infrastructural needs of a city’s sociotechnical subsystems. By fusing UM and life cycle assessment (UM-LCA) this study advances the ability to quantify environmental impacts of cities by modeling pressures embedded in the flows upstream (entering) and downstream (leaving) of the actual urban systems studied, and by introducing an advanced suite of indicators. Applied to five global cities, the developed UM-LCA model provided enhanced quantification of mass and energy flows through cities over earlier UM methods. The hybrid model approach also enabled the dominant sources of a city’s different environmental footprints to be identified, making UM-LCA a novel and potentially powerful tool for policy makers in developing and monitoring urban development policies. Combining outputs with socioeconomic data hinted at how these forces influenced the footprints of the case cities, with wealthier ones more associated with personal consumption related impacts and poorer ones more affected by local burdens from archaic infrastructure.

  4. Advances in life cycle assessment and emergy evaluation with case studies in gold mining and pineapple production

    NASA Astrophysics Data System (ADS)

    Ingwersen, Wesley W.

    Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.

  5. A proposal for the definition of resource equivalency factors for use in product life-cycle assessment

    SciTech Connect

    Guinee, J.B.; Heijungs, R.

    1995-05-01

    Environmental life-cycle assessment (LCA) of products has been the focus of growing attention in the last few years. The methodological framework has been developed rapidly, and a provisional Code of Practice has been drawn up by an international group of experts. One of the elements of LCA is impact assessment, which includes a characterization step in which the contributions of resource extraction and polluting emissions to impact categories such as resource depletion, global warming, and acidification are quantified and aggregated as far as possible. This can be achieved by multiplying extractions and emissions by a so-called equivalency factor and aggregating the results in one or more effect score(s) per impact category. In this report a proposal is developed for equivalency factors indicating the relative depletion of a resource per unit extracted. It is proposed to measure depletion by physical data on reserves and production and regeneration rates, and to distinguish between abiotic and biotic resources. Equations are developed to calculate equivalency factors for these two categories of resources, resulting in so-called abiotic depletion potentials (ADP) and biotic depletion potentials (BDP). The application of these ADPs and BDPs in LCA is illustrated.

  6. Using Life Cycle Assessment methodology to assess UHT milk production in Portugal.

    PubMed

    González-García, Sara; Castanheira, Erica G; Dias, Ana Cláudia; Arroja, Luis

    2013-01-01

    Milk and dairy products constitute an important ingredient in the human diet. Ultra-high temperature (UHT) milk is the main dairy product consumed in Portugal and its production entails large inputs of resources which derive on negative environmental effects such as nutrient enrichment of the ecosystem and climate change. In this study, Life Cycle Assessment (LCA) methodology was considered for the environmental assessment of packaged UHT milk produced in Portugal, including simple (whole, semi-skimmed and skimmed) and cocoa milk from a cradle-to-gate perspective and to identify the environmental hot spots. Results showed that the production of the raw milk in the dairy farm is the main hot spot in almost all the categories under assessment mainly due to the emissions from enteric fermentation, manure management and fertilisers production and application. Furthermore, on-site emissions derived from dairy factory are remarkable together with the packages and energy requirements production. The values reported in this study are in the range of other related papers. However, differences were also identified due to several reasons such as allocation approach, data sources, characterisation factors, farm management regimes and assumptions considered. Therefore, these aspects should be carefully addressed and sensitivity to the assumptions and uncertainty of the results should be evaluated. PMID:23178782

  7. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops

    EPA Science Inventory

    The WULCA group, active since 2007 on Water Use in LCA, commenced the development of consensus-based indicators in January 2014. This activity is planned to last 2 years and covers human health, ecosystem quality, and a stress-based indicator. This latter encompasses potential de...

  8. TRACI - TOOL FOR THE REDUCTION AND ASSESSMENT OF CHEMICAL AND ENVIRONMENTAL IMPACTS (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    TRACI is an impact assessment tool being developed to assist in environmental decision making for programs in Pollution Prevention (P2), Life Cycle Assessment (LCA) and Sustainable Development (SD). TRACI includes impact assessment methodologies and supporting databases to allow ...

  9. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    NASA Astrophysics Data System (ADS)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  10. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...