These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

GLOBAL CARBON CYCLE AND CLIMATE CHANGE  

EPA Science Inventory

The production of greenhouse gases due to anthropogenic activities may have begun to change the global climate. he global carbon cycle plays a significant role in projected climate change. owever, considerable uncertainty exists regarding pools and flux in the global cycle. iven ...

2

Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change  

Microsoft Academic Search

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate-carbon cycle model accurately reproduces historical atmospheric CO2 trends,

H. Damon Matthews; Andrew J. Weaver; Katrin J. Meissner

2005-01-01

3

Modelling the hydrological cycle in assessments of climate change  

NASA Technical Reports Server (NTRS)

The predictions of climate change studies depend crucially on the hydrological cycles embedded in the different models used. It is shown here that uncertainties in hydrological processes and inconsistencies in both climate and impact models limit confidence in current assessments of climate change. A future course of action to remedy this problem is suggested.

Rind, D.; Rosenzweig, C.; Goldberg, R.

1992-01-01

4

Evolution of hydrological and carbon cycles under a changing climate  

E-print Network

Evolution of hydrological and carbon cycles under a changing climate Qiaozhen Mu,* Maosheng Zhao, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA Abstract: Hydrological and carbon cycles cycling). In this article, we first reviewed the concepts of hydrological and carbon cycles

Montana, University of

5

Positive feedback between future climate change and the carbon cycle  

Microsoft Academic Search

Future climate change due to increased atmospheric CO2 may affect land and ocean efficiency to absorb atmospheric CO2. Here, using climate and carbon three-dimensional models forced by a 1% per year increase in atmospheric CO2, we show that there is a positive feedback between the climate system and the carbon cycle. Climate change reduces land and ocean uptake of CO2,

Pierre Friedlingstein; Laurent Bopp; Philippe Ciais; Jean-Louis Dufresne; Laurent Fairhead; Hervé LeTreut; Patrick Monfray; James Orr

2001-01-01

6

Cycles of the Earth and Atmosphere: Global Climate Change  

NSDL National Science Digital Library

This web page is a module for Grades 6-9 on the processes associated with global climate change. It contains background information on the carbon cycle, greenhouse gas concentration, and explores how human activity has been linked with increased greenhouse gases.

2008-10-16

7

Geomagnetic Links to Climate Change and Orbital Cycles  

NASA Astrophysics Data System (ADS)

Years of speculation, newly recognized mechanisms for interactions, and a sparse but expanding number of observations support some form of link between geomagnetic field variability and climate change and/or orbital cycles. Early paleomagnetic observations only hinted at the links and failed to withstand scrutiny for a number of reasons including poor data quality, poor age control, poor resolution of short-term geomagnetic directional variability over sufficiently long time periods, and a reliance on relative paleointensity records. Even though Milankovitch periodicities have been observed in the latter, proving that these are not influenced by climatically induced lithologic changes rather than by geomagnetic field variability is difficult. At this point, the speculation has been more interesting that the evidence has been convincing. New long continuous records of short-term paleomagnetic directional variability that span the past 1 m.y., however, show intriguing correlations of geomagnetic excursions with precession cycles and with deglacials. The changes in directions for these excursions are too large to be attributed to lithologic variations nor can they be attributed to local sedimentary or tectonic processes as the excursion are observed regionally or globally. Although such correlations might have been regarded as fortuitous in the past, age constraints have improved significantly by obtaining stable isotope records or other climate proxies directly from the same stratigraphic sections as the geomagnetic records. Furthermore, speculation about mechanisms for geomagnetic links to climate and orbital cycles have been succeeded by climate studies that have found that cloud formation is associated with the amount of cosmogenic radiation, which is largely controlled by the geomagnetic field. Similarly, precession had been disregarded as a driving force for the geodynamo, but recent modeling shows that such conclusions were premature. Thus, causal relationships between geomagnetic field variability, climate change, and orbital cycles are not unexpected nor are they unobserved.

Acton, G.

2006-12-01

8

Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model  

E-print Network

feedback in the climate-carbon cycle system. INDEX TERMS: 0315 Atmospheric Composition and Structure: Impact phenomena; KEYWORDS: climate change impact, terrestrial carbon cycle Citation: Berthelot, M., P of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model, Global Biogeochem

Dufresne, Jean-Louis

9

On the magnitude of positive feedback between future climate change and the carbon cycle  

E-print Network

On the magnitude of positive feedback between future climate change and the carbon cycle J CO 2 will be 18% higher due to the climate change impact on the carbon cycle. Such a positive. They found a very large negative im- pact of climate change on land carbon cycle with a de- cline of tropical

Dufresne, Jean-Louis

10

Change in Water Cycle- Important Issue on Climate Earth System  

NASA Astrophysics Data System (ADS)

Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical resolution to date as well. Since water vapor is the Earth's primary greenhouse gas and co

Singh, Pratik

11

Climate and carbon cycle changes under the overshoot scenario  

NASA Astrophysics Data System (ADS)

The "overshoot scenario" is an emissions scenario in which CO 2 concentration in the atmosphere temporarily exceeds some pre-defined, "dangerous" threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that "dangerous" CO 2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO 2 emissions rates rather than with prescribed atmospheric pCO 2. Our standard CO 2 emissions rate is calculated on the basis of historical atmospheric pCO 2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.

Nusbaumer, Jesse; Matsumoto, Katsumi

2008-05-01

12

CHANGING CLIMATE AND PHOTOBIOGEOCHEMICAL CYCLES IN AQUATIC ENVIRONMENTS  

EPA Science Inventory

Global biogeochemistry plays a critical role in controlling life processes, climate and their interactions, including effects on atmospheric greenhouse gas concentrations. Recent evidence indicates that the light-driven part of aquatic biogeochemical cycles is being altered by in...

13

Carbon Cycle Sensitivity to Climate Change: Results from a Comprehensive GCM-Based Climate and Carbon Cycle Model  

NASA Astrophysics Data System (ADS)

We use an interactive global climate and carbon cycle model to perform simulations of climate change from 1870 AD to 2100 AD forced by anthropogenic emissions of greenhouse gases. The goal of this effort is to include and better understand feedbacks between the climate system and the carbon cycle. We use the Parallel Climate Model 2 (PCM-2) developed at NCAR as our climate model. The PCM-2 includes a version of NCAR's CCM3 for the atmospheric GCM and a version of the POP model for the ocean GCM. The ocean carbon model is based on OCMIP protocols, but modified to eliminate the phosphate-restoring restriction. The terrestrial biosphere model is IBIS-2 which simulates biophysical and biogeochemical surface fluxes and includes a dynamic vegetation model. Three simulations are performed using three different IPCC emission scenario: A1B, A2 and B1. These scenarios correspond to moderate, aggressive and low rates of fossil fuel burning in the 21st century. All cases assume historical greenhouse emissions and land use change emissions up to year 2000. The range of emissions rates by year 2100 that force these 3 experiments encompasses the range projected by Third Assessment Report of IPCC. We will discuss the sensitivity of model's carbon cycle for this range of global climate change. We will specifically discuss the sensitivity of terrestrial carbon uptake to changes in the magnitude of global warming.

Govindasamy, B.; Thompson, S. L.; Wickett, M.; Mirin, A.; Delire, C.

2004-12-01

14

Effects of the climate change in the hydrologic cycle  

NASA Astrophysics Data System (ADS)

Among the different effects resulting from the Climate Change around the world related to the water cycle those that account more are the drought and the flooding. Also the water supply sources is expected to diminished or polluted, wetlands tend to disappear and aquatic environments degrade, population is expected to be displaced because of the increase in sea level in deltaic zones and a lowering in health standards related to water diseases due to extreme meteorological phenomena and new climatic conditions. That the climate has changed in México is a fact and its features are the increase in seasonal temperature (winter and summer) as well as a reduction in summer precipitation in central and northern Mexico coupled to an increase in winter in the northwestern regions. More frequent severe storms in different Mexican regions (southeastern and central Mexico) and in urban areas like Mexico City and the gradual reduction in the water flowing in rivers are also evidence of this change. The National Water Commission has developed studies using maximum and minimum temperature and daily precipitation analysis from a new data base called Maya v1 which accounts for a regular network that covers the entire country. Also coastal aquifer studies, hurricane strikes incidence and identification of specific areas in water basins with major vulnerability (closely related to urban and rural settlements invading floodplains and water courses) are underway. Some studies and actions that need to be developed and taken are indicated and an example of coordinated work is shown. In addition a set of adaptation measures to take according to the regional situation is described. Such measures should focus on the present situation as well as for the future and need to be studied and foreseen now. If such measures are quickly taken in those vulnerable areas the costs they represent will be less compared with the costs of the damages due to the presence of the hydrometeorological phenomena.

Arreguin Cortés, F.; López Pérez, M.

2010-03-01

15

Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change  

E-print Network

Global Warming Potential and Life-cycle Assessment for Climate Change"Global Warming Potential and Life-cycle Assessment for Climate Changeglobal warming potential (GWP) method. GWP is a method to compare the global climate change

Horvath, Arpad

2005-01-01

16

Future climate change, the agricultural water cycle, and agricultural production in China  

Microsoft Academic Search

Climate change would have a major impact on the hydrological cycle and consequently on available water resources, the potential for flood and drought, and agricultural productivity. In this study, the impacts of climate change on the agricultural water cycle and their implications for agricultural production in the 2020s were assessed by water-balance calculations for Chinese croplands. Temporal and spatial changes

Fulu Tao; Masayuki Yokozawa; Yousay Hayashi; Erda Lina

2003-01-01

17

Linking climate change to population cycles of hares and lynx.  

PubMed

The classic 10-year population cycle of snowshoe hares (Lepus americanus, Erxleben 1777) and Canada lynx (Lynx canadensis, Kerr 1792) in the boreal forests of North America has drawn much attention from both population and community ecologists worldwide; however, the ecological mechanisms driving the 10-year cyclic dynamic pattern are not fully revealed yet. In this study, by the use of historic fur harvest data, we constructed a series of generalized additive models to study the effects of density dependence, predation, and climate (both global climate indices of North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI) and northern hemispheric temperature (NHT) and local weather data including temperature, rainfall, and snow). We identified several key pathways from global and local climate to lynx with various time lags: rainfall shows a negative, and snow shows a positive effect on lynx; NHT and NAO negatively affect lynx through their positive effect on rainfall and negative effect on snow; SOI positively affects lynx through its negative effect on rainfall. Direct or delayed density dependency effects, the prey effect of hare on lynx and a 2-year delayed negative effect of lynx on hare (defined as asymmetric predation) were found. The simulated population dynamics is well fitted to the observed long-term fluctuations of hare and lynx populations. Through simulation, we find density dependency and asymmetric predation, only producing damped oscillation, are necessary but not sufficient factors in causing the observed 10-year cycles; while extrinsic climate factors are important in producing and modifying the sustained cycles. Two recent population declines of lynx (1940-1955 and after 1980) were likely caused by ongoing climate warming indirectly. Our results provide an alternative explanation to the mechanism of the 10-year cycles, and there is a need for further investigation on links between disappearance of population cycles and global warming in hare-lynx system. PMID:23846828

Yan, Chuan; Stenseth, Nils Chr; Krebs, Charles J; Zhang, Zhibin

2013-11-01

18

Contribution of increasing CO2 and climate change to the carbon cycle in China's ecosystems  

Microsoft Academic Search

Atmospheric CO2 and China's climate have changed greatly during 1961-2000. The influence of increased CO2 and changing climate on the carbon cycle of the terrestrial ecosystems in China is still unclear. In this article we used a process-based ecosystem model, Biome-BGC, to assess the effects of changing climate and elevated atmospheric CO2 on terrestrial China's carbon cycle during two time

Qiaozhen Mu; Maosheng Zhao; Steven W. Running; Mingliang Liu; Hanqin Tian

2008-01-01

19

Contribution of increasing CO2 and climate change to the carbon cycle in China's ecosystems  

Microsoft Academic Search

Atmospheric CO2 and China's climate have changed greatly during 1961–2000. The influence of increased CO2 and changing climate on the carbon cycle of the terrestrial ecosystems in China is still unclear. In this article we used a process-based ecosystem model, Biome-BGC, to assess the effects of changing climate and elevated atmospheric CO2 on terrestrial China's carbon cycle during two time

Qiaozhen Mu; Maosheng Zhao; Steven W. Running; Mingliang Liu; Hanqin Tian

2008-01-01

20

Long-term changes of the diurnal temperature cycle: implications about mechanisms of global climate change  

NASA Astrophysics Data System (ADS)

We use a global climate model to investigate the impact of a wide range of radiative forcing and feedback mechanisms on the diurnal cycle of surface air temperature. This allows us not only to rule out many potential explanations for observed diurnal changes, but to infer fundamental information concerning the nature and location of the principal global climate forcings of this century. We conclude that the observed changes of the diurnal cycle result neither from natural climate variability nor a globally-distributed forcing, but rather they require the combination of a (negative) radiative forcing located primarily over continental regions together with the known globally-distributed forcing due to anthropogenic greenhouse gases. Tropospheric aerosols can account for part of the continentally-located forcing, but alone they do not damp the diurnal cycle as observed. Only an increase of continental cloud cover, possibly a consequence of anthropogenic aerosols, can damp the diurnal cycle by an amount comparable to observations. A corollary of these results is quantitative confirmation of the widely held suspicion that anthropogenic greenhouse gas warming has been substantially counterbalanced by a forced cooling. Under the assumption that the cloud change is sulfate driven, a further implication is that the net rate of global warming is likely to increase substantially in coming years. We note that, on the long run, the daily maximum temperature will increase by an amount not much less than the increase of the mean temperature.

Hansen, J.; Sato, M.; Ruedy, R.

21

Changing Climates  

E-print Network

. Masiello and her group, Rice Isotope Biogeochemistry, are currently studying how changes in climate and land use are controlling river carbon cycling. At The University of Texas at Austin (UT), researchers at the Environmental Science Institute (ESI... research grant, Dr. John Holbrook, professor of Earth and environmental sciences at The University of Texas at Arlington, is examining the rates and processes by which the Missouri River changes its pattern and erosion trends due to climate change...

Wythe, Kathy

2008-01-01

22

How positive is the feedback between climate change and the carbon cycle?  

Microsoft Academic Search

Future climate change induced by atmospheric emissions of greenhouse gases is believed to have a large impact on the global carbon cycle. Several offline studies focusing either on the marine or on the terrestrial carbon cycle highlighted such potential effects. Two recent online studies, using ocean-atmosphere general circulation models coupled to land and ocean carbon cycle models, in- vestigated in

P. FRIEDLINGSTEIN; J.-L. DUFRESNE; P. M. COX; P. RAYNER

2003-01-01

23

Relevance of Hydro-Climatic Change Projection and Monitoring for Assessment of Water Cycle Changes in the Arctic  

Microsoft Academic Search

Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate\\u000a adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment\\u000a of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections\\u000a with observed temperature changes, but high model inaccuracy

Arvid Bring; Georgia Destouni

2011-01-01

24

How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change?  

EPA Science Inventory

We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...

25

Millennial timescale carbon cycle and climate change in an efficient Earth system model.  

E-print Network

Millennial timescale carbon cycle and climate change in an efficient Earth system model. T. M and for traceability to earlier work. The model versions have climate sensitivity of 2.8-3.3 C and predict atmospheric temperature to anthro- pogenic CO2 emissions, will have a characteristic millennial timescale, set by the rate

Edwards, Neil

26

INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING  

EPA Science Inventory

This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

27

Long-term climate change and the geochemical cycle of carbon  

NASA Technical Reports Server (NTRS)

The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

1988-01-01

28

Trophic Interaction Cycles in Tundra Ecosystems and the Impact of Climate Change  

NSDL National Science Digital Library

This peer-reviewed article from BioScience journal is about the impact of climate change on tundra. While population cycles are geographically widespread, it is on arctic tundra that such cycles appear to be most influential for the functioning of the whole ecosystem. We give an overview of tundra species that exhibit population cycles and describe what are currently believed to be the causal mechanisms. Population cycles most likely originate from trophic interactions within the plant-based tundra food web, where lemmings, either as prey for carnivores or as consumers of plants, play the key role. The predominance of trophic interaction cycles at northern latitudes is ultimately related to climate, and such cycles should therefore be vulnerable to climate change. Recent evidence indicates that changes have already taken place in the dynamics of some key herbivores and their predators, consistent with the expected impacts of climate change. There is a strong need for large-scale integrated monitoring and research efforts to further document such changes and their ecosystem consequences.

ROLF A. IMS and EVA FUGLEI (;)

2005-04-01

29

Climate change and macro-economic cycles in pre-industrial europe.  

PubMed

Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

2014-01-01

30

Climate Change and Macro-Economic Cycles in Pre-Industrial Europe  

PubMed Central

Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong

2014-01-01

31

"Days of future passed" - climate change and carbon cycle history (Jean Baptiste Lamarck Medal Lecture)  

NASA Astrophysics Data System (ADS)

With the beginning of the fossil fuel age in the 19th century mankind has become an important geological agent on a global scale. For the first time in human history action of man has an impact on global biogeochemical cycles. Increasing CO2 concentrations will result in a perturbation of global carbon cycling coupled with climate change. Investigations of past changes in carbon cycling and in climate will improve our predictions of future climate. Increasing atmospheric CO2 concentrations will drive climate into a mode of operation, which may resemble climate conditions in the deep geological past. Pliocene climate will give insight into 400ppm world with higher global sea level than today. Doubling of pre-industrial atmospheric CO2 levels will shift the climate system into a state resembling greenhouse climate in the Early Cenozoic or even in the Cretaceous. Carbon isotope geochemistry serves as tool for tracing the pathway of the carbon cycle through geological time. Globally registered negative C-isotope anomalies in the C-isotope record are interpreted as signatures of rapid addition (103 to a few 104 years) of CO2 to the ocean-atmosphere system. Positive C-isotope excursions following negative spikes record the slow post-perturbation recovery of the biosphere at time scales of 105 to 106 years. Duration of C-cycle perturbations in earth history cannot be directly compared with rapid perturbation characterizing the Anthropocene. However, the investigation of greenhouse pulses in the geological past provides insight into different climate states, it allows to identify tipping points in past climate systems and it offers the opportunity to learn about response reactions of the biosphere to rapid changes in global carbon cycling. Sudden injection of massive amounts of carbon dioxide into the atmosphere is recorded in C-isotope record of the Early Cretaceous. The Aptian carbon cycle perturbation triggered changes in temperature and in global hydrological cycling. Changes in physical and chemical oceanography are reflected in widespread black shale deposition ("Oceanic Anoxic Event 1a"), in carbonate platform drowning and in biocalcification crises. "Days of future passed" (Moody Blues, 1967) reminds us that the past provides essential information needed for decisions to be made in the interest of mankind's future.

Weissert, Helmut

2013-04-01

32

Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model  

Microsoft Academic Search

We study the response of the land biosphere to climate change by coupling a climate general circulation model to a global carbon cycle model. This coupled model was forced by observed CO2 emissions for the 1860-1990 period and by the IPCC SRES-A2 emission scenario for the 1991-2100 period. During the historical period, our simulated Net Primary Production (NPP) and net

M. Berthelot; P. Friedlingstein; P. Ciais; P. Monfray; J. L. Dufresne; H. Le Treut; L. Fairhead

2002-01-01

33

Northern Iberian abrupt climate change dynamics during the last glacial cycle: A view from lacustrine sediments  

Microsoft Academic Search

We present a palaeoclimatic reconstruction of the last glacial cycle in Iberia (ca. 120,000–11,600cal yrs BP) based on multi-proxy reconstructions from lake sediments with robust chronologies, and with a particular focus on abrupt climate changes. The selected lake sequences provide an integrated approach from northern Iberia exploring temperature conditions, humidity variations and land-sea comparisons during the most relevant climate transitions

Ana Moreno; Penélope González-Sampériz; Mario Morellón; Blas L. Valero-Garcés; William J. Fletcher

2010-01-01

34

Changes in biocrust cover drive carbon cycle responses to climate change in drylands  

PubMed Central

Dryland ecosystems account for ~27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3°C promoted a drastic reduction in biocrust cover (~ 44% in four years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities, to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term. PMID:23818331

Maestre, Fernando T.; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L.; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

2013-01-01

35

Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)  

NASA Astrophysics Data System (ADS)

Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

Pouyat, R. V.

2009-12-01

36

The Twilight Zone of the Marine Carbon Cycle and Climate Change Past and Future  

NSDL National Science Digital Library

This Ocean and Climate Change Institute article provides information regarding carbon cycling and the ocean. It discusses where and how carbon moves through the ocean system, focusing on carbon dioxide in the atmosphere as it relates to biota and sediment records.

Loubere, Paul; Ridgwell, Andy; Stoll, Heather; Bijma, Jelle; Archer, David; Gregg, Watson

37

IIASA`s climate-vegetation-biogeochemical cycle module as a part of an integrated model for climate change  

SciTech Connect

The main objective of this study is the development of a hierarchy of coupled climate biosphere models with a full description of the global biogeochemical cycles. These models are planned for use as the core of a set of integrated models of climate change and they will incorporate the main elements of the Earth system (atmosphere, hydrosphere, pedosphere and biosphere) linked with each other (and eventually with the antroposphere) through the fluxes of heat, momentum, water and through the global biogeochemical cycles of carbon and nitrogen. This set of integrated models can be considered to fill the gap between highly simplified integrated models of climate change and very sophisticated and computationally expensive coupled models, developed on the basis of general circulation models (GCMs). It is anticipated that this range of integrated models will be an effective tool for investigating the broad spectrum of problems connected with the coexistence of human society and biosphere.

Ganopolski, A.V.; Jonas, M.; Krabec, J.; Olendrzynski, K.; Petoukhov, V.K.; Venevsky, S.V. [International Inst. for Applied Systems Analysis, Laxenburg (Austria)

1994-12-31

38

Vulnerability of Fraser River sockeye salmon to climate change: a life cycle perspective using expert judgments.  

PubMed

Fraser River sockeye salmon have been the basis for a major commercial fishery shared by Canada and the United States, and an important cultural foundation for many aboriginal groups; they are also of huge ecological significance throughout the Fraser Basin. The potential for altered aquatic habitat and temperature regimes due to climate change is an important concern for Fraser River sockeye salmon. This paper characterizes the vulnerability of Fraser River sockeye salmon to future climate change using an approach that is novel on three counts. First, previous efforts to assess the vulnerability of salmon to climate change have largely focused on only part of the life cycle, whereas we consider climate vulnerability at all stages in the life cycle. Second, we use the available scientific literature to provide a basis for structuring and eliciting judgments from fisheries science and management experts who research and manage these systems. Third, we consider prospects for mitigating the effects of climate change on sockeye salmon. Tests showed that participants' judgments differentiated in statistically significant ways among questions that varied in terms of life stages, spawning regions and climate scenarios. The consensus among participants was that Fraser River sockeye are most vulnerable to climate change during the egg and returning adult stages of the life cycle. A high temperature scenario was seen as imposing the greatest risk on sockeye stocks, particularly those that migrate to the upper reaches of the Fraser River system and spawn earlier in the summer. The inability to alter water temperature and the highly constrained nature of sockeye management, with competing gear types and sequential fisheries over a long distance, suggest the potential to mitigate adverse effects is limited. Fraser River sockeye already demonstrate a great deal of adaptive capacity in utilizing heterogeneous habitats in different river sub-basins. This adaptability points to the potential value of policies to make stocks more resilient to uncertain futures. PMID:20810206

McDaniels, Tim; Wilmot, Sarah; Healey, Michael; Hinch, Scott

2010-12-01

39

Climate Change  

NSDL National Science Digital Library

This site allows educators to locate and use the best resources for teaching about Earth's climate system and the changing climate over the past one million years. Here you will find climate data, visualizations, teaching activities and case studies. By learning from past climate changes, we can apply this to present-day and future climate shifts.

40

Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum  

PubMed Central

The Maunder Minimum (A.D. 1645–1715) is a useful period to investigate possible sun–climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (?18O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun–climate connections through high-temporal resolution solar activity (radiocarbon contents; ?14C) and climate (?18O) isotope records derived from annual tree rings. The tree-ring ?18O record in Japan shows distinct negative ?18O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring ?18O record and the GCR flux reconstructed by an ice-core 10Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum. PMID:21076031

Yamaguchi, Yasuhiko T.; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi

2010-01-01

41

Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient  

USGS Publications Warehouse

Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

2011-01-01

42

Interactive effects of solar UV radiation and climate change on biogeochemical cycling.  

PubMed

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery. PMID:17344963

Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

2007-03-01

43

Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface  

NASA Astrophysics Data System (ADS)

Humans have modified estuaries across the globe by altering the delivery of water, sediments and elements such as carbon and nitrogen that play important roles in biogeochemical processes. These activities have caused declines in the health and quality of estuarine ecosystems globally and this trend will likely continue due to increasing population growth in coastal regions, expected changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer and transformation of carbon and biogenic elements between land and ocean systems. The anticipated effects of climate change on biogeochemical processes in estuaries are likely to be both numerous and complex but are poorly understood. Climate change has the potential to influence the carbon cycle in estuaries through anticipated changes to organic matter production, transformation, burial and export. Estuarine biogeochemical processes will likely be altered by: 1) sea level rise and increased storm intensity which will amplify the erosion and transfer of terrigenous materials, 2) increases in water temperatures which will enhance the rates of biological and biogeochemical processes (e.g., enzyme kinetics, decomposition rates, and remineralization), while simultaneously decreasing the concentration of dissolved oxygen, 3) changes in particle (or sediment) loadings in response to altered patterns of precipitation and river runoff, and 4) altered inputs of nutrients and dissolved organic materials to coastal waters, also resulting from changing precipitation and runoff. In this presentation, we review the effects of climate change on the carbon cycle in estuaries, with a focus on the temperate estuaries of North America.

Canuel, E. A.; Cammer, S. S.; McIntosh, H.; Pondell, C. R.

2012-12-01

44

A critical review of methods for tourism climate change appraisal: life cycle assessment as a new approach  

Microsoft Academic Search

This paper reviews existing approaches to assessing tourism sustainability, especially its contribution to climate change. It assesses ecological footprint analysis, environmental impact assessment and input–output analysis but finds them inaccurate and unreliable. It goes on to argue that life cycle assessment (LCA) is a more promising tool for tourism climate change impact assessment, highlighting important areas where LCA application can

Viachaslau Filimonau; Janet E. Dickinson; Derek Robbins; Maharaj Vijay Reddy

2011-01-01

45

Impact of climate change on the northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle  

NASA Astrophysics Data System (ADS)

northwestern Mediterranean Sea (NWMS) is biologically one of the most productive Mediterranean regions. NWMS pelagic planktonic ecosystem is strongly influenced by hydrodynamics, in particular by deep convection that could significantly weaken under the influence of climate change. Here we investigate the response of this ecosystem and associated carbon cycle to the long-term evolution of oceanic and atmospheric circulations. For that we developed a tridimensional coupled physical-biogeochemical model and performed two groups of annual simulations under the climate conditions of respectively the 20th and the end of 21st centuries. Our results suggest that the evolution of oceanic and atmospheric circulations does not modify the NWMS pelagic planktonic ecosystem and associated carbon cycle at a first order. However, differences mainly induced by the deep convection weakening and the surface warming are obtained at a second order. The spring bloom occurs 1 month earlier. Resulting from the decrease in nutrients availability, the bottom up control of phytoplankton development and bacteria growth by the nitrogen and phosphorus availability strengthens and the microbial loop intensifies as the small-sized plankton biomass increases. Carbon net fixation and deep export do not change significantly. The choice of the biogeochemical initial and boundary conditions does not change the representation of the ecosystem seasonal cycle, but the associated uncertainty range can be one order of magnitude larger than the predicted interannual and long-term variabilities. The uncertainty range of long-term trends associated with the physical forcing (hydrological, atmospheric, hydrodynamical, and socioeconomic) is much smaller (<10%).

Herrmann, Marine; Estournel, Claude; Adloff, Fanny; Diaz, Frédéric

2014-09-01

46

A simple explanation for the sensitivity of the hydrologic cycle to global climate change  

NASA Astrophysics Data System (ADS)

The global hydrologic cycle is likely to increase in strength with global warming, although some studies indicate that warming due to solar absorption may result in a different sensitivity than warming due to an elevated greenhouse effect. Here we show that these sensitivities of the hydrologic cycle can be derived analytically from an extremely simple surface energy balance model that is constrained by the assumption that vertical convective exchange within the atmosphere operates at the thermodynamic limit of maximum power. Using current climatic mean conditions, this model predicts a sensitivity of the hydrologic cycle of 2.2 % K-1 to greenhouse-induced surface warming which is the sensitivity reported from climate models. The sensitivity to solar-induced warming includes an additional term, which increases the total sensitivity to 3.2 % K-1. These sensitivities are explained by shifts in the turbulent fluxes in the case of greenhouse-induced warming, which is proportional to the change in slope of the saturation vapor pressure, and in terms of an additional increase in turbulent fluxes in the case of solar radiation-induced warming. We illustrate an implication of this explanation for geoengineering, which aims to undo surface temperature differences by solar radiation management. Our results show that when such an intervention compensates surface warming, it cannot simultaneously compensate the changes in hydrologic cycling because of the differences in sensitivities for solar vs. greenhouse-induced surface warming. We conclude that the sensitivity of the hydrologic cycle to surface temperature can be understood and predicted with very simple physical considerations but this needs to reflect on the different roles that solar and terrestrial radiation play in forcing the hydrologic cycle.

Kleidon, Axel; Renner, Maik

2014-05-01

47

The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change  

PubMed Central

The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services. PMID:23713119

Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

2013-01-01

48

The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change.  

PubMed

The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services. PMID:23713119

Voss, Maren; Bange, Hermann W; Dippner, Joachim W; Middelburg, Jack J; Montoya, Joseph P; Ward, Bess

2013-07-01

49

Interactive effects of ozone depletion and climate change on biogeochemical cycles.  

PubMed

The effects of ozone depiction on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the detailed interactions between ozone depletion and climate change are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B has significant effects on the terrestrial biosphere with important implications for the cycling of carbon, nitrogen and other elements. Increased UV has been shown to induce carbon monoxide production from dead plant matter in terrestrial ecosystems, nitrogen oxide production from Arctic and Antarctic snowpacks, and halogenated substances from several terrestrial ecosystems. New studies on UV effects on the decomposition of dead leaf material confirm that these effects are complex and species-specific. Decomposition can be retarded, accelerated or remain unchanged. It has been difficult to relate effects of UV on decomposition rates to leaf litter chemistry, as this is very variable. However, new evidence shows UV effects on some fungi, bacterial communities and soil fauna that could play roles in decomposition and nutrient cycling. An important new result is that not only is nitrogen cycling in soils perturbed significantly by increased UV-B, but that these effects persist for over a decade. As nitrogen cycling is temperature dependent, this finding clearly links the impacts of ozone depletion to the ability of plants to use nitrogen in a warming global environment. There are many other potential interactions between UV and climate change impacts on terrestrial biogeochemical cycles that remain to be quantified. There is also new evidence that UV-B strongly influences aquatic carbon, nitrogen, sulfur, and metals cycling that affect a wide range of life processes. UV-B accelerates the decomposition of colored dissolved organic matter (CDOM) entering the sea via terrestrial runoff, thus having important effects on oceanic carbon cycle dynamics. Since UV-B influences the distribution of CDOM, there is an impact of UV-B on estimates of oceanic productivity based on remote sensing of ocean color. Thus, oceanic productivity estimates based on remote sensing require estimates of CDOM distributions. Recent research shows that UV-B transforms dissolved organic matter to dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium and to organic substances that are either more or less readily available to micro-organisms. The extent of these transformations is correlated with loss of UV absorbance by the organic matter. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply, which occur concurrently with increased UV-B exposure, have synergistic influences on the penetration of light into aquatic ecosystems. New research has confirmed that UV affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. There are several instances where UV-B modifies the air sea exchange of trace gases that in turn alter atmospheric chemistry, including the carbon cycle. PMID:12659539

Zepp, Richard G; Callaghan, Terry V; Erickson, David J

2003-01-01

50

A simple explanation for the sensitivity of the hydrologic cycle to global climate change  

NASA Astrophysics Data System (ADS)

The global hydrologic cycle is likely to increase its strength with global warming. Climate models generally predict an increase in strength of 2.2% K-1, which is much weaker than what would be expected from the increase in saturation vapor pressure of 6.5% K-1. Furthermore, it has been reported that the sensitivity of the hydrologic cycle to surface temperature differences caused by solar radiation is about 50% greater than by an equivalent difference induced by the greenhouse effect. Here we show that these sensitivities can be derived analytically from an extremely simple surface energy balance model that is constrained by the assumption that vertical convective transport within the atmosphere operates at maximum power. Using current climatic mean conditions, this model predicts a sensitivity of the hydrologic cycle of 2.2% K-1 to surface temperature induced by differences in the greenhouse effect, and a sensitivity of 3.2% K-1 for differences caused by absorbed solar radiation. These sensitivities can be explained by considering the changes in the surface energy balance in which the heating by solar radiation is partitioned equally into radiative and turbulent cooling at a state of maximum power of convective exchange. This explanation emphasizes the different roles that solar and terrestrial radiation play in the surface energy balance and hydrologic cycling that cannot be lumped together into a radiative forcing concept. We illustrate one implication of this explanation for the case of geoengineering, which aims to undo surface temperature differences by solar radiation management, but will nevertheless result in substantial differences in hydrologic cycling due to the difference in sensitivities. We conclude that the overall sensitivity of the hydrologic cycle to surface temperature can be understood and predicted by very simple physical considerations.

Kleidon, A.; Renner, M.

2013-08-01

51

Demonstrating Climate Change and the Water Cycle to Fifth Grade Students  

NASA Astrophysics Data System (ADS)

Scientists in academia often want to share their knowledge of and enthusiasm for science with K-12 students, but feel wary of the time commitment and logistical details involved with volunteer work. As a PhD student at UC Berkeley, I participated in the Community in the Classroom program, organized by the non-profit Community Resources for Science. CRS acts as the liaison between local schools and scientists in the community, taking care of all the administrative details regarding the classroom visits. Volunteers are asked to prepare a fun, hands-on presentation for a specific grade level, which is linked to elementary science standards. I chose to visit several fifth grade classrooms and talk about the connection between climate change and the water cycle in California. My presentation included a demonstration of the greenhouse effect, an experiment to see where the water on the outside of a cold glass comes from, and an investigation into the role of temperature in the phase changes of water, using plastic containers, icepacks and mitten warmers. The students were encouraged to make predictions about the impact of climate change on the water cycle based on their recent observations. I will share my demonstrations, discuss feedback from the students and teachers and offer suggestions to those interested in volunteer teaching.

Murphy, J. G.

2005-12-01

52

Mars: History of Climate Change and Evolution of the Water Cycle (Runcorn-Florensky Medal Lecture)  

NASA Astrophysics Data System (ADS)

Atmospheric general circulation models are becoming more and more sophisticated and can now be analyzed at various scales, and include variations in atmospheric water vapor content, orbital parameters and surface properties. A wide variety of geological evidence indicates that the climate on Mars has changed during its past history. We are now approaching the time when synergism is developing between studies of the observed geological record and predictions and results of climate models. Geological evidence for climate change ranges in physical scale from layering in the polar caps and sediments, to meters-thick ice-rich layers extending from high to mid-latitudes, to kilometers-thick polar and circumpolar deposits. Clear temporal changes in the mineralogy and alteration style of surface and subsurface materials signal long-term climate change. Evidence is found throughout the geologic record of Mars, ranging from interpreted Amazonian tropical mountain glaciers to much longer term trends implied by the temporal distribution of geological features such as valley networks and outflow channels. Furthermore, there is strong evidence for changes in the hydrological cycle of Mars that reflect long-term climate change. For the last ~80% of its history (the Hesperian and Amazonian) Mars appears to have been a very cold, hyper-arid polar desert, similar to the McMurdo Dry Valleys of Antarctica. During this time, the hydrologic system on Mars has been horizontally layered, with the near-surface hydrologic cycle involving water movement between the atmosphere, polar caps, the surface and regolith at various latitudes; variations in spin-axis orbital parameters caused significant surface redistribution of ice and dust, and abundant ice has been sequestered beneath glacial debris-cover in the mid-latitudes for several hundred million years. Existing groundwater is sequestered below a globally continuous cryosphere; liquid water occasionally emerged to the surface during magmatic events that cracked or melted the cryosphere, forming outlet channels. In contrast, many believe that Mars was "warm and wet" during the first 20% of its history (the Noachian); in this scenario, there was no global cryosphere, and the hydrological cycle was vertically integrated. Geological evidence for this includes extensive valley network systems, hundreds of closed-basin and open-basin lakes, depositional fans and deltas, and integrated systems that extend for thousands of kilometers across the surface. Major outstanding questions include the causes and the duration of these more clement conditions in the Noachian, whether they led to the formation and evolution of life, why they changed in the late Noachian-Hesperian, the duration of the change, how the climate stabilized to its current state, whether any early-evolving life could survive this transition, and if so, where such life might reside today. The questions raised by the long-term climate history of Mars provide a compelling framework for future robotic and human exploration.

Head, James W.

2010-05-01

53

Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change.  

PubMed Central

Repeated predictions that vector-borne disease prevalence will increase with global warming are usually based on univariate models. To accommodate the full range of constraints, the present-day distribution of tick-borne encephalitis virus (TBEv) was matched statistically to current climatic variables, to provide a multivariate description of present-day areas of disease risk. This was then applied to outputs of a general circulation model that predicts how climatic variables may change in the future, and future distributions of TBEv were predicted for them. The expected summer rise in temperature and decrease in moisture appears to drive the distribution of TBEv into higher-latitude and higher-altitude regions progressively through the 2020s, 2050s and 2080s. The final toe-hold in the 2080s may be confined to a small part of Scandinavia, including new foci in southern Finland. The reason for this apparent contraction of the range of TBEv is that its transmission cycles depend on a particular pattern of tick seasonal dynamics, which may be disrupted by climate change. The observed marked increase in incidence of tick-borne encephalitis in most parts of Europe since 1993 may be due to non-biological causes, such as political and sociological changes. PMID:12233771

Randolph, S E; Rogers, D J

2000-01-01

54

Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios*  

E-print Network

under Climate Change Scenarios* PABLO IMBACH,1 LUIS MOLINA,1 BRUNO LOCATELLI,# OLIVIER ROUPSARD,1,@ GIL MAHE´ ,& RONALD NEILSON,**,&& LENIN CORRALES,11 MARKO SCHOLZE,## AND PHILIPPE CIAIS @@ 1 Climate Change 2011) ABSTRACT The likelihood and magnitude of the impacts of climate change on potential vegetation

Boyer, Edmond

55

Climate Change  

Microsoft Academic Search

In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely

Jonathan Cowie

2001-01-01

56

Carbon cycle and climate change, a tale of increasing emissions and uncertain future sinks  

NASA Astrophysics Data System (ADS)

CO2 has increased by 40% in the atmosphere above pre-industrial levels, and is reaching close to 400 ppm. It's a fact that the increase of CO2 is due to human-caused emissions from land use change and fossil fuel use. Yet, an average of 54% of these human emissions was removed from the atmosphere by CO2 sinks in the ocean and the land biosphere. In the IPCC AR5 report, an update of the global carbon budget is provided, together with CH4 sources and sinks, over the last 3 decades. The first finding is the recent acceleration of fossil fuel CO2 emissions during the last decade, and the fact that sinks have increased proportionally with emissions. Future projections of the coupled climate-carbon cycle system using CMIP5 models, translated into compatible emissions for each RCP pathway radiative forcing trajectory will be presented. When the carbon cycle is coupled to simulations of climate change, the sinks weaken, causing a positive feedback on warming, but uncertainties on the magnitude of this feedback and on the role of each regions, remain very high, as shown by the large spread between models. The second finding concerns additional feedbacks, most likely of positive sign, such as CO2 and CH4 emissions from thawed permafrost and nutrient limitations on land carbon storage. These feedbacks were not included in the CMIP5 models and represent a large (but uncertain) source of extra warming for any given economic scenario of anthropogenic emissions

Ciais, P.; Sabine, C. L.

2013-12-01

57

Quaternary Science Reviews 23 (2004) 431448 Modelling carbon cycle feedbacks during abrupt climate change  

E-print Network

of abrupt transitions from cold to warm states associated with significant changes in atmospheric CO2 understanding of abrupt climate change. Although the mechanisms which have led to abrupt climate change latitude regions. Associated changes in sea surface temperatures (SSTs), salinities (SSSs) and alkalinity

Schmittner, Andreas

58

Climate Change  

MedlinePLUS

Weather can be hot or cold, dry or wet, calm or stormy, clear or cloudy. Climate is the average weather in a place over a long period of time. Changes in climate may be due to natural forces or from human activities. ...

59

Biotic controls over the carbon cycle in dryland ecosystems under climate change  

NASA Astrophysics Data System (ADS)

The majority of land types in the vast drylands of the globe are composed of spatially heterogeneous ecosystems, such as shrublands. These systems are ideally suited for studying biotic effects on the carbon cycle, considering that they are composed of a matrix of distinct vegetated microsites, such as shrubs and herbaceous patches among shrubs. Climate change in many drylands will result in drier conditions as a consequence of lower rain amounts and higher temperatures. Soil respiration (SR) is the greatest fraction of ecosystem respiration in shrublands, and, thus, largely controls the carbon balance in such systems. Because SR under shrubs is higher than SR in herbaceous patches, the decline in shrub cover with increasing drought under climate change could potentially be the main determining factor of the decrease in SR at the ecosystem scale. In an eastern Mediterranean region, shrub cover decreased linearly along a steep aridity gradient which served as a long-term climate-change proxy. However, biological activity as measured by SR and soil CO2 production decreased logarithmically and at a greater rate along the gradient, and this decrease occurred at the same rate both under and between shrubs. Therefore, the decrease in ecosystem-level SR following rainfall reduction is mainly driven by the decline in biological activity and less by the changed relative distribution of vegetation types. Plant biomass and cover represent essentially the activity of ephemerals in herbaceous patches. The decrease in organic carbon storage with increased aridity correlated with an exponential reduction in biomass production and a less pronounced reduction in the decay of organic matter. It appears that under drier conditions, less organic carbon is produced and this carbon is decomposed at a relatively high rate. Plant species composition in herbaceous patches changed along the gradient, which was associated with alterations in plant functional traits. Leaf nitrogen content (LNC) increased, while specific leaf area and plant size decreased with increasing aridity and declining SR and carbon storage. The trend in LNC might explain the relatively high decay rates of organic matter under drier conditions. Surrogates of biological activity can be used for projecting SR under climate change. Remotely-sensed vegetation cover in herbaceous patches was a better predictor of SR during the growing season than abiotic factors, including soil water content. However, the SR response to vegetation cover decreased with the reduction in rain amounts applied by climate-change manipulations. Therefore, plant cover needs to be combined with a measure of water availability to predict climate-change effects on SR. Over larger spatial and temporal scales, climate-change effects on biogeochemical processes may be projected by coupling microclimatic variables with vegetation-based factors, such as biomass, cover and plant functional traits.

Grünzweig, J. M.; Sternberg, M.

2012-04-01

60

Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations  

NASA Astrophysics Data System (ADS)

Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).

Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

2013-09-01

61

Impact of land use change on the diurnal cycle climate of the Canadian Prairies  

NASA Astrophysics Data System (ADS)

paper uses hourly observations from 1953 to 2011 of temperature, relative humidity, and opaque cloud cover from 14 climate stations across the Canadian Prairies to analyze the impact of agricultural land use change on the diurnal cycle climate, represented by the mean temperature and relative humidity and their diurnal ranges. We show the difference between the years 1953-1991 and 1992-2011. The land use changes have been largest in Saskatchewan where 15-20% of the land area has been converted in the past four decades from summer fallow (where the land was left bare for 1 year) to annual cropping. During the growing season from 20 May to 28 August, relative humidity has increased by about 7%. During the first 2 months, 20 May to 19 July, maximum temperatures and the diurnal range of temperature have fallen by 1.2°C and 0.6°C, respectively, cloud cover has increased by about 4%, reducing surface net radiation by 6 W m-2, and precipitation has increased. We use the dry-downs after precipitation to separate the impact of cloud cover and show the coupling between evapotranspiration and relative humidity. We estimate, using reanalysis data from ERA-Interim, that increased transpiration from the larger area of cropland has reduced the surface Bowen ratio by 0.14-0.2. For the month on either side of the growing season, cloud cover has fallen slightly; maximum temperatures have increased, increasing the diurnal temperature range and the diurnal range of humidity.

Betts, Alan K.; Desjardins, Raymond; Worth, Devon; Cerkowniak, Darrel

2013-11-01

62

North atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles  

USGS Publications Warehouse

Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5??C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3??C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5??C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.

Dwyer, G.S.; Cronin, T.M.; Baker, P.A.; Raymo, M.E.; Buzas, J.S.; Correge, T.

1995-01-01

63

Sulfate-Reducing Microorganisms in Wetlands - Fameless Actors in Carbon Cycling and Climate Change  

PubMed Central

Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change. PMID:22403575

Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

2012-01-01

64

Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change.  

PubMed

Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36-50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change. PMID:22403575

Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W; Wagner, Michael; Loy, Alexander

2012-01-01

65

Using Elemental Budgets to Determine Effects of Simulated Climate Change on Phosphorus Cycling in a Grassland Ecosystem  

NASA Astrophysics Data System (ADS)

The purpose of the Jasper Ridge Global Change Experiment is to find out the effects of climate change on a terrestrial grassland ecosystem. The different treatments include increased carbon dioxide, nitrogen deposition, temperature, and precipitation. A portion of the above ground biomass of each plot was harvested, and an abundant species chosen to analyze. The goal of this project was to investigate the effects of climate change on phosphorus cycling in the grassland vegetation. Total phosphorus content of each sample was determined by combustion and acid digestion along with optical emission spectrometry. Total nitrogen and carbon was determined via flash combustion in an isotope ratio mass spectrometer. This information was combined to evaluate the limitation of phosphorus in each treatment and better understand how climate change may affect phosphorus cycling in terrestrial grasslands.

Yoo, S.; Paytan, A.; Mellett, T.

2013-12-01

66

Climate Change  

Microsoft Academic Search

Weather can change many times a day. Climate.the sum of weather.changes slowly, over decades and centuries, but it can change\\u000a abruptly with large volcanic eruptions, instabilities in ocean currents, or meteorite crashes. The dramatic 1815 Tambora eruption\\u000a spewed 100 km3 of ash, causing “a year without a summer” to cool Earth by 4°C. Cooling from volcanic and anthropogenic aerosols must

David Hafemeister

67

The impacts of climate change on the annual cycles of birds  

PubMed Central

Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past. PMID:19833644

Carey, Cynthia

2009-01-01

68

Response of peatland development and carbon cycling to climate change: a dynamic system modeling approach  

Microsoft Academic Search

Peatlands contain approximately 25% of the total soil organic carbon, despite covering only 3% of earth’s land surface. The\\u000a ecological, hydrological and biogeochemical functions of peatlands are tightly coupled to climate. Therefore, both direct\\u000a human impacts and indirect effects of climate change can threaten the ecological function of peatlands through changes in\\u000a hydrology. However, little is known about how peatland

Jianghua Wu

69

How Much of the Science of Climate Change Does the Public Really Understand? Evaluation of University Students' Ideas on the Carbon Cycle  

Microsoft Academic Search

To be able to effectively bring the science of climate change to educational audiences, it is important to have an understanding of the learners' prior knowledge of the scientific topics involved in the study of climate change. We have evaluated the prior knowledge of the carbon cycle and how human activities affect this cycle using a cohort of university-level students,

J. Madsen; E. Gerhman; D. Ford

2007-01-01

70

On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle  

Microsoft Academic Search

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at\\u000a the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation\\u000a are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the\\u000a past. The relevant feedback mechanisms and

P. D. Williams; E. Guilyardi; R. T. Sutton; J. M. Gregory; G. Madec

2006-01-01

71

Response of the Greenland ice sheet to ice age cycles and to recent climate changes  

Microsoft Academic Search

The Greenland ice sheet is seldom in a steady state, because of climate change and transient ice dynamic response. Observations on elevation both by geodetic methods on the ground and by satellite alti- metry suggest a slight change in elevation of about 10 mm per year at the centre part of the ice sheet. The aims of this work are

AYAKO ABE-OUCHI

1994-01-01

72

Millennial timescale carbon cycle and climate change in an efficient Earth system model  

Microsoft Academic Search

A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine\\u000a biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture\\u000a balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability\\u000a to earlier work. The model versions have

T. M. Lenton; M. S. Williamson; N. R. Edwards; R. Marsh; A. R. Price; A. J. Ridgwell; J. G. Shepherd; S. J. Cox

2006-01-01

73

Millennial timescale carbon cycle and climate change in an efficient Earth system model  

Microsoft Academic Search

A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have

T. M. Lenton; M. S. Williamson; N. R. Edwards; R. Marsh; A. R. Price; A. J. Ridgwell; J. G. Shepherd; S. J. Cox

2006-01-01

74

Impact of climate change on forests, forest products and the carbon cycle in the Congo Basin.  

NASA Astrophysics Data System (ADS)

Africa is widely seen as the continent most vulnerable to climate change. Current climate variability already has a large impact on the economies of developing countries. Large parts of African economies are highly climate sensitive, in particular agriculture, infrastructure and water sector. In this study we performed an analysis of climate change impacts in the Congo Basin on Forest ecosystem functioning and carbon storage. We emphasise the methodologies and validation involved in modelling the basin-wide carbon budgets. We also studied the potential shifts in broad classes of vegetation types, resulting from climate change. Finally, we compared annual productivity of the Congo forests with statistics of wood fuel and charcoal use for each of the countries in the region. The model simulations suggest that the region's forests will see increasing productivity under future climate, however, the effect of rising CO2 concentrations, stimulating growth, is highly uncertain. From these findings it follows that the potential in the region to implement UNFCCC-REDD+ projects is still very uncertain, but probably sustainable and feasible. The analysis shows that, averaged over 10 years, wood fuel and charcoal use amount to 50% and in some countries up to 100% or even more of the yearly vegetation carbon increase. These percentages generally increases with population density.

Kruijt, Bart; Jans, Wilma; Franssen, Wietse; Ludwig, Fulco

2014-05-01

75

Climate change, adaptive cycles, and the persistence of foraging economies during the late Pleistocene/Holocene transition in the Levant  

PubMed Central

Climatic forcing during the Younger Dryas (?12.9–11.5 ky B.P.) event has become the theoretical basis to explain the origins of agricultural lifestyles in the Levant by suggesting a failure of foraging societies to adjust. This explanation however, does not fit the scarcity of data for predomestication cultivation in the Natufian Period. The resilience of Younger Dryas foragers is better illustrated by a concept of adaptive cycles within a theory of adaptive change (resilience theory). Such cycles consist of four phases: release/collapse (?); reorganization (?), when the system restructures itself after a catastrophic stimulus through innovation and social memory—a period of greater resilience and less vulnerability; exploitation (r); and conservation (K), representing an increasingly rigid system that loses flexibility to change. The Kebarans and Late Natufians had similar responses to cold and dry conditions vs. Early Natufians and the Pre-Pottery Neolithic A responses to warm and wet climates. Kebarans and Late Natufians (?-phase) shifted to a broader-based diet and increased their mobility. Early Natufian and Pre-Pottery Neolithic A populations (r- and K-phases) had a growing investment in more narrowly focused, high-yield plant resources, but they maintained the broad range of hunted animals because of increased sedentism. These human adaptive cycles interlocked with plant and animal cycles. Forest and grassland vegetation responded to late Pleistocene and early Holocene climatic fluctuations, but prey animal cycles reflected the impact of human hunting pressure. The combination of these three adaptive cycles results in a model of human adaptation, showing potential for great sustainability of Levantine foraging systems even under adverse climatic conditions. PMID:22371591

Rosen, Arlene M.; Rivera-Collazo, Isabel

2012-01-01

76

The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.  

PubMed

With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's 'third pole') has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH(4)) emissions from wetlands and increased CH(4) consumption of meadows, but might increase CH(4) emissions from lakes. Warming-induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO(2)) and CH(4). Nitrous oxide (N(2)O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles. PMID:23744573

Chen, Huai; Zhu, Qiuan; Peng, Changhui; Wu, Ning; Wang, Yanfen; Fang, Xiuqing; Gao, Yongheng; Zhu, Dan; Yang, Gang; Tian, Jianqing; Kang, Xiaoming; Piao, Shilong; Ouyang, Hua; Xiang, Wenhua; Luo, Zhibin; Jiang, Hong; Song, Xingzhang; Zhang, Yao; Yu, Guirui; Zhao, Xinquan; Gong, Peng; Yao, Tandong; Wu, Jianghua

2013-10-01

77

Complex Life Cycles and the Responses of Insects to Climate Change  

E-print Network

to the Response of Organisms to Climate Change: The Role of Thermal Adaptation'' presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3�7, 2011, at Salt Lake City, Utah. 1 E microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses

78

Nutrient cycling and N2O emissions in a changing climate: the subsurface water system role  

NASA Astrophysics Data System (ADS)

This study has quantified the subsurface (groundwater, soil, sediment) water system role for hydrological nitrogen (N) and phosphorus (P) loading to the coast and agricultural N2O emissions to the atmosphere in a changing climate. Results for different climate and hydrological model scenarios in the Swedish Norrström drainage basin show that the subsurface water system may largely control a long-term increase in the coastal nutrient loading, in particular for P, irrespectively of the realized future climate change scenario and our uncertainty about it and its water flow effects. The results also indicate an important subsurface water system role for current atmospheric N2O emissions from agriculture, and an even greater role for future ones. The current N2O-N emissions from agriculture are quantified to be about 0.05 g m-2 yr-1 over the basin surface area, or 3% of the direct N mass application on the agricultural land. These results are consistent with recent global emission estimates, and show how the latter can be reconciled with previous, considerably smaller subsystem emission estimates made by the IPCC (Intergovernmental Panel on Climate Change).

Destouni, Georgia; Darracq, Amélie

2009-09-01

79

Rapid climate change  

SciTech Connect

Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

Morantine, M.C. [Tulane Univ., New Orleans, LA (United States). Dept. of Mechanical Engineering

1995-12-31

80

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle  

NSDL National Science Digital Library

Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as the associated ecosystem changes that occur with thawing. We show that accounting for C stored deep in the permafrost more than doubles previous high-latitude inventory estimates, with this new estimate equivalent to twice the atmospheric C pool. The thawing of permafrost with warming occurs both gradually and catastrophically, exposing organic C to microbial decomposition. Other aspects of ecosystem dynamics can be altered by climate change along with thawing permafrost, such as growing season length, plant growth rates and species composition, and ecosystem energy exchange. However, these processes do not appear to be able to compensate for C release from thawing permafrost, making it likely that the net effect of widespread permafrost thawing will be a positive feedback to a warming climate.

Edward A. G. Schuur (University of Florida;)

2008-09-01

81

Solar Cycle Variability, Ozone, and Climate  

Microsoft Academic Search

Results from a global climate model including an interactive parameterization of stratospheric chemistry show how upper stratospheric ozone changes may amplify observed, 11-year solar cycle irradiance changes to affect climate. In the model, circulation changes initially induced in the stratosphere subsequently penetrate into the troposphere, demonstrating the importance of the dynamical coupling between the stratosphere and troposphere. The model reproduces

Drew Shindell; David Rind; Nambeth Balachandran; Judith Lean; Patrick Lonergan

1999-01-01

82

Climate Change Scoping Plan  

E-print Network

Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

83

Climate Change Scoping Plan  

E-print Network

Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

84

Forests, climate change and tourism  

Microsoft Academic Search

Forests are an important store of carbon within the global carbon cycle and increasingly play a role in climate change adaptation and mitigation. The review illustrates that the cultural, economic and environmental services of forests that are utilized for tourism and recreation are being affected by climate change. In addition to the changes to the distribution and composition of forests

C. Michael Hall; Daniel Scott; Stefan Gössling

2011-01-01

85

Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review  

NASA Astrophysics Data System (ADS)

The Tibetan Plateau (TP) exerts strong thermal forcing on the atmosphere over Asian monsoon region and supplies water resources to adjacent river basins. Recently, the Plateau experienced evident climate changes, which have changed atmospheric and hydrological cycles and thus reshaped the local environment. This study reviewed recent research progress in the climate changes and explored their impacts on the Plateau energy and water cycle, based on which a conceptual model to synthesize these changes was proposed and urgent issues to be explored were summarized. The TP has experienced an overall surface air warming and moistening, solar dimming, and wind stilling since the beginning of the 1980s. The surface warming depends on elevation and its horizontal pattern is consistent with the one of the glacier change. Accompanying the warming was air moistening, and both facilitated the trigger of more deep-clouds, which resulted in solar dimming. Surface wind speed declined from the 1970s, as a result of atmospheric circulation adjustment caused by the differential surface warming between the Asian high-latitude and low-latitude. The climate changes had weakened the thermal forcing over the TP. The warming and wind stilling lowered the Bowen ratio and led to less surface sensible heating. Atmospheric radiative cooling was enhanced, mainly by outgoing longwave emission from the warming planetary system and slightly by solar radiation reflection. Both processes contributed to the thermal forcing weakening over the Plateau. The water cycle was also altered by the climate changes. The wind stilling may have weakened water vapor exchange between the Asia monsoon region and the Plateau and thus led to less precipitation in the monsoon-impacted southern and eastern Plateau, but the warming enhanced land evaporation. Their overlap resulted in runoff reduction in the southern and eastern Plateau regions. By contrast, more convective precipitation over the central TP was triggered under the warmer and moister condition and yielded more runoff; meanwhile, the solar dimming weakened lake evaporation. The two together with enhanced glacier melts contributed to the lake expansion in the central TP.

Yang, Kun; Wu, Hui; Qin, Jun; Lin, Changgui; Tang, Wenjun; Chen, Yingying

2014-01-01

86

Climate Change  

NSDL National Science Digital Library

This website is intended to describe the differences between weather and climate. It includes sections about sky, sea, ice, land, life, and people. Each section has a discussion of the human impact on that part of the environment.

2009-05-04

87

Climate change action plan  

E-print Network

Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

88

Preliminary results of carbon cycling in southwestern ecosystems: Implications for climate change  

SciTech Connect

By determining the C pool sizes, cycling and relative sequestering rates, the authors intend to estimate the effects of a vegetation change caused by a temperature increase and available moisture decrease. A predominant source of C for the soil compartment is the plant litter and its subsequent decomposition. The resulting effect of temperature and moisture on decomposition will vary according to the biome and litter quality of that biome. Litter quality, referring to the carbon and other nutrient fractions, strongly influences the potential rate of decomposition. The preliminary findings indicate that litter quality and moisture, not temperature, are the major controlling variables in decomposition.

Klopatek, C.C. [Forest Service, Tempe, AZ (United States). Rocky Mountain Station; [Arizona State Univ., Tempe, AZ (United States). Dept. of Microbiology; Murphy, K.L.; Klopatek, J.M. [Arizona State Univ., Tempe, AZ (United States). Dept. of Botany

1995-12-31

89

Global Studies of the Sulfur Cycle Including the Influence of DMS and Fossil Fuel Sulfur on Climate and Climate Change  

NASA Technical Reports Server (NTRS)

The indirect effect of anthropogenic aerosols, wherein aerosol particles are thought to increase cloud droplet concentrations and cloud lifetime, is the most uncertain component of climate forcing over the past 100 years. Here, for the first time, we use a mechanistic treatment of droplet nucleation and a prognostic treatment of the number of cloud droplets to study the indirect aerosol effect from changes in carbonaceous and sulfate aerosols. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity and a shape parameter, which takes into account the mechanism, of sulfate aerosol formation, while cloud droplet number depends on the nucleation as well as on droplet sinks. Whereas previous treatments have predicted annual average indirect effects between -1 and -2 W/sq m, we obtain an indirect aerosol effect between -0.14 W/sq m and -0.42 W/sq m in the global mean.

Penner, Joyce E.

1998-01-01

90

Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.  

PubMed

As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae. PMID:22924795

Radchuk, Viktoriia; Turlure, Camille; Schtickzelle, Nicolas

2013-01-01

91

Trophic Interaction Cycles in Tundra Ecosystems and the Impact of Climate Change  

Microsoft Academic Search

While population cycles are geographically widespread, it is on arctic tundra that such cycles appear to be most influential for the functioning of the whole ecosystem. We give an overview of tundra species that exhibit population cycles and describe what are currently believed to be the causal mechanisms. Population cycles most likely originate from trophic interactions within the plant-based tundra

ROLF A. IMS; EVA FUGLEI

2005-01-01

92

Current Climate Variability & Change  

NASA Astrophysics Data System (ADS)

Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'

Diem, J.; Criswell, B.; Elliott, W. C.

2013-12-01

93

Climate Change Adaptation Planning  

E-print Network

Climate Change Adaptation Planning On the Navajo Nation #12;Navajo Nation Climate Change Adaptation of Colorado Law School #12;What is Climate Change Adaptation? "Adjustment in natural or human systems change #12;Examples of Adaptation Activities Seed banks Land restoration #12;What is Climate Change

Neff, Jason

94

Climate Systems and Climate Change Is Climate Change Real?  

E-print Network

Chapter 10 Climate Systems and Climate Change #12;Is Climate Change Real? 1980 1898 2005 2003 #12;Arctic Sea Ice Changes #12;Observed Global Surface Air Temperature #12;! Current climate: weather station data, remote sensing data, numerical modeling using General Circulation Models (GCM) ! Past climate

Pan, Feifei

95

Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States  

PubMed Central

To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO2 and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO2 (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand. PMID:21876137

Le, Phong V. V.; Kumar, Praveen; Drewry, Darren T.

2011-01-01

96

Climate Change and Transportation  

E-print Network

1 Climate Change and Transportation Addressing Climate Change in the Absence of Federal Guidelines;6 WSDOT Efforts · Climate Change Team · Project Level GHG Approach · Planning Level GHG Approach · Alternative Fuels Corridor · Recent legislation and research #12;7 WSDOT Efforts: Climate Change Team

Minnesota, University of

97

Climate Change Schools Project...  

ERIC Educational Resources Information Center

This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

McKinzey, Krista

2010-01-01

98

Corporate Climate Change Adaptation.  

E-print Network

?? On-going and future climate change is universally acknowledged. Climate changeincorporating global mean temperature rise, impacts on global hydrology and ecosystems willaffect human society and… (more)

Herbertsson, Nicole

2010-01-01

99

The Carbon Cycle and its Role in Climate Change: Activity 3  

NSDL National Science Digital Library

In this activity, learners explore the human influences on the carbon cycle and examine how fossil fuels release carbon. Learners role play as miners, power plant operators, car drivers, and home owners in a city. Learners will act out how each member of society contributes to the carbon cycle and then create a classroom mural depicting the path of carbon. Learners can reflect on this process as well as brainstorm ways to lower their carbon footprints. This activity is the third in a series of three activities that introduce learners to the carbon cycle (see related sources), although it is not mandatory that all three activities are completed as a set.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

100

Climate Change: Basic Information  

MedlinePLUS

... change is happening now. Learn More What are climate change and global warming? Global warming refers to the ... effects, that occur over several decades or longer. Climate change is happening Our Earth is warming. Earth's average ...

101

The role of the hydrological cycle and the ocean`s thermohaline circulation in climate change: A multicomponent climate model study. Ph.D. Thesis  

SciTech Connect

Global ocean-atmosphere and ocean-atmosphere-continental ice sheet models are developed to address the question of feedbacks between the hydrological cycle and the global thermohaline circulation capable of explaining the climate changes seen in paleoclimate records of the late Pleistocene and the last deglaciation. The ocean-atmosphere model climate system displays two distinct stable equilibria controlled by latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, one mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The other has strong deep water production in the Southern Ocean and weak production in the North Pacific and small heat transport to high-latitude North Atlantic. The ocean-atmosphere-ice sheet system displays feedbacks which produce century/millennium time scale oscillations. The thermohaline circulation plays a central role in these feedbacks because of its transport of both heat and salt. The feedbacks could potentially play a causal role in the century/milliennium climate change seen in the paleoclimate record.

Wang, Huaxiao

1993-12-31

102

Designing Global Climate Change  

NASA Astrophysics Data System (ADS)

In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

Griffith, P. C.; ORyan, C.

2012-12-01

103

"Managing Department Climate Change"  

E-print Network

"Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

Sheridan, Jennifer

104

The Carbon Cycle and its Role in Climate Change: Activity 1  

NSDL National Science Digital Library

In this activity (on page 1), learners role play as atoms to explore how atoms can be rearranged to make different materials. Learners group together and link arms or hold hands to form chemical bonds and act out the processes of photosynthesis and respiration. Use this activity to introduce the carbon cycle and follow this activity with two associated activities from the same resource.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

105

Uncertainty in Predicting the Effect of Climatic Change on the Carbon Cycling of Canadian Peatlands  

Microsoft Academic Search

Northern peatlands play an important role globally in the cycling of C, through the exchange of CO2 with the atmosphere, the emission of CH4, the production and export of dissolved organic carbon (DOC) and the storage of C. Under 2 × CO2 GCM scenarios, most Canadian peatlands will be exposed to increases in mean annual temperature ranging between 2 and

T. R. Moore; N. T. Roulet; J. M. Waddington

1998-01-01

106

From Fall to Spring, or Spring to Fall? Seasonal Cholera Transmission Cycles and Implications for Climate Change  

NASA Astrophysics Data System (ADS)

Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and the annual recurrence of this infectious disease in endemic areas continues to be of considerable interest to scientists and public health workers. Despite major advances in the ecological, and microbiological understanding of Vibrio cholerae, the causative agent, the role of underlying macro-scale hydroclimatic processes in propagating the disease in different seasons and years is not well understood. The incidence of cholera in the Bengal Delta region, the ‘native homeland’ of cholera, shows distinct biannual peaks in the southern floodplains, as opposed to single annual peaks in coastal areas and the northern parts of Bangladesh, as well as other cholera-endemic regions in the world. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the spatio-temporal variability of incidence peaks with seasonal processes and extreme events. At a seasonal scale, the cycles indicate a spring-fall transmission pattern, contrary to the prevalent notion of a fall-spring transmission cycle. We show that the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating transmission to fall by flooding. This seasonal interpretation of the progression of cholera has important implications, for formulating effective cholera intervention and mitigation efforts through improved water management and understanding the impacts of changing climate patterns on seasonal cholera transmission. (Water Environental Research Education Actionable Solutions Network)

Akanda, A. S.; Jutla, A. S.; Huq, A.; Colwell, R.; Islam, S.; WE Reason

2010-12-01

107

Effect of long-term snow climate change on C and N cycling in the Great Basin Desert, USA  

NASA Astrophysics Data System (ADS)

Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. Fundamental ecological models envision migrations of species to higher elevations under a warmer climate, altered water cycling patterns, changes in carbon fluxes, and impacts on nutrient cycling. How will future complex patterns of snow depth and melt timing affect ecosystem patterns and processes at seasonal and decadal scales? To address such questions, my experiments utilize large-scale, long-term roadside snow fences to manipulate snow depth and melt timing at the ecotone between the Great Basin Desert shrub and the Sierra Nevada conifer forest in eastern California, USA. Soil water, carbon, and nitrogen dynamics were compared across snow depth treatments (increased, decreased, and ambient snow depths) as well as across microhabitats (under the canopies of the two dominant shrub species and in open, intercanopy sites.) At this site, April 1 snow pack averages 1344 mm (1928-2008) with a CV of 48%. Snow was about 2-fold deeper on increased depth plots, and was about 20% reduced on decreased snow plots, compared to upwind, ambient-depth plots. Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Soil temperature was colder during the low-snowfall winter of 2006-2007, compared to the prior and subsequent winters when ambient snowfall was higher. Short-term turnover rates of NO3- and NH4+ were higher after winter compared to summer, but there was considerable variation across snow depth treatments and small-scale microhabitats. Wintertime fluxes of CO2 from soils were dependent on soil temperature, which was affected by snow depth. Snow depth and microhabitat (particularly under the canopies of a N-fixing shrub) interacted to affect long-term patterns of snow depth forcing on total C and NO3-. Results indicate that snow depth affects water, carbon, and nitrogen dynamics in both winter and the subsequent spring and summer, and that plant community composition will feedback on water cycling, carbon storage, and N availability over longer time scales. Interactions between species responses and ecosystem processes may help maintain resilience to snow climate change at this widespread shrub-conifer ecotone.

Loik, Michael

2010-05-01

108

Abrupt Climate Change  

NSDL National Science Digital Library

This site serves as a broad introduction to the subject of abrupt climate change. It cites several historical examples of climate change and their impact on human civilization. In addition, some of the current questions about climate are presented including the drying of the Sahel since the 1960s and changes in the El Nino pattern. The site includes links to a question and answer feature, paleoclimate research that focuses on how and why abrupt climate change events occurred in the recent past, and an explanation of a joint observational and modeling approach to climate change. There is also a link to the Climate Kids Corner with on-line activities.

109

How Much of the Science of Climate Change Does the Public Really Understand? Evaluation of University Students' Ideas on the Carbon Cycle  

NASA Astrophysics Data System (ADS)

To be able to effectively bring the science of climate change to educational audiences, it is important to have an understanding of the learners' prior knowledge of the scientific topics involved in the study of climate change. We have evaluated the prior knowledge of the carbon cycle and how human activities affect this cycle using a cohort of university-level students, primarily freshman and sophomore elementary education majors. The movement of carbon through the earth's atmosphere, biosphere, hydrosphere, and lithosphere is a fundamental biogeochemical cycle that influences earth's climate. As a pre-assessment of content knowledge, approximately 170 students enrolled in an introductory-level earth science course were asked to describe what a standard diagram illustrating the carbon cycle shows about how carbon cycles on earth and how energy is involved in this cycle. They were then asked to describe how human activities might affect the carbon cycle. This pre-assessment, assigned and submitted as an on-line activity, was given during the middle portion of the semester before topics directly pertaining to climate change were addressed in the course. These prior knowledge assessments were collected as part of an integrated research project funded by the National Science Foundation designed to study how teachers' science content and pedagogical knowledge develops as they move from university student to practicing K-8 teacher. The initial evaluation of the pre-assessments focused on the identification of alternative conceptions of the carbon cycle and of how human activities affected the cycle. These alternative conceptions were grouped into broad categories. The results show a remarkable lack of understanding of the some of the basic components of the carbon cycle and of how humans may affect this cycle. For example, there was a general lack of understanding of how carbon moves between reservoirs. A popular alternative conception was that carbon, like water, is involved in processes of evaporation, associated with clouds, and falls as precipitation back to the oceans or land. In terms of how human activities might affect the carbon cycle, the most common alternative conception was that human activity is causing pollution and that pollution would disturb the carbon cycle. In only a few cases was the type of pollution or how the pollution would actually disturb the cycle defined. These results demonstrate the crucial need to continue to educate the public about even the most basic concepts underlying the science of climate change and, when engaged in these educational activities, to be aware of the level of prior knowledge of the audiences so as to maximize their learning experience.

Madsen, J.; Gerhman, E.; Ford, D.

2007-12-01

110

The Carbon Cycle and its Role in Climate Change: Activity 2  

NSDL National Science Digital Library

In this activity (on page 7), learners explore the meaning of a "carbon sink." Using simple props, learners and/or an educator demonstrate how plants act as carbon sinks and how greenhouse gases cause global warming. This activity is the second in a series of three activities that introduce learners to the carbon cycle (see related sources), although it is not mandatory that all three activities are completed as a set.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

111

Fiddling with climate change  

NASA Astrophysics Data System (ADS)

Composer and string musician, turned award-winning environmentalist, Aubrey Meyer tells Nature Climate Change why he is campaigning for countries to adopt his 'contraction and convergence' model of global development to avoid dangerous climate change.

2012-01-01

112

Climate Change and Biodiverstiy  

NSDL National Science Digital Library

This site describes climate change due to human activities and natural factors; future scenarios due to global warming; and how climate change will impact ecosystems and biodiversity. It includes information on political activity such as avoidance, mitigation and adaptation as a response to climate change. Current projects of the United Nations Environment Programme - World Conservation Monitoring Centre( UNEP-WCMC) involving involving climate change migration and adaptation and impact on the ecosystem services.

113

Environment and Climate Change  

E-print Network

Migration, Environment and Climate Change: ASSESSING THE EVIDENCE #12;The opinions expressed;Migration, Environment and Climate Change: ASSESSING THE EVIDENCE Edited by Frank Laczko and Christine with with the financial support of #12;3 Migration, Environment and Climate Change: Assessing the Evidence Contents

Galles, David

114

Climate Change 1994  

Microsoft Academic Search

The United Nations Environment Program and the World Meterological Organization set up the Intergovernmental Panel on Climate Change (IPCC) in 1988 to provide an authoritative international consensus of scientific opinion on climate change. This report, prepared by IPCC Working Groups I and II, reviews the latest scientific evidence on the following key topics: radiative forcing of climate change; the latest

John T. Houghton; L. G. Meira Filho; James P. Bruce; Hoesung Lee; Bruce A. Callander; E. F. Haites

1995-01-01

115

Climate change and conflict  

Microsoft Academic Search

The prospect of human-induced climate change encourages drastic neomalthusian scenarios. A number of claims about the conflict-inducing effects of climate change have surfaced in the public debate in recent years. Climate change has so many potential consequences for the physical environment that we could expect a large number of possible paths to conflict. However, the causal chains suggested in the

Ragnhild Nordås; Nils Petter Gleditsch

2007-01-01

116

Global Climate Change Exploratorium  

NSDL National Science Digital Library

This site, funded by NSF, is the home page for the Global Climate Change research explorer. Multicolor tabs at the top of the page link to further information and visualizations (graphs, charts, pictures, etc.) for climate change resources in each of the Earth's spheres, including: atmosphere, hydrosphere, cryosphere, biosphere, and global effects of climate change.

Exploratorium, The

117

Climate Change Workshop 2007  

E-print Network

1 Climate Change Workshop 2007 Adaptive Management and Resilience Relevant for the Platte River, UNL Climate Change Workshop 2007 · Resilience ·Why it matters · Adaptive Management ·How it helps ·Adaptive Capacity · What it is Overview Climate Change Workshop 2007 "A public Domain, once a velvet carpet

Nebraska-Lincoln, University of

118

Forest Research: Climate Change  

E-print Network

Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

119

Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.  

PubMed

Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. PMID:24634279

Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

2014-06-01

120

Effects of climate change on rainfall extremes  

Microsoft Academic Search

Climate change due to enhanced emissions of greenhouse gases intensifies the hydrologic cycle and may have substantial impact on the natural environment and socio-economic activities. The rainfall process, being the principal component of the hydrologic cycle, is the most important element for quantifying both the extent of climate change and its consequential impacts on water resources. The change in extreme

S. S. Demissie; C. Cunnane

2003-01-01

121

The effects of global climate change on the cycling and processes of persistent organic pollutants (POPs) in the North Sea  

NASA Astrophysics Data System (ADS)

The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and ?-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models (HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilization of ?-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of ?-HCH and PCB 153 remain fairly steady in all three runs. In sediment, ?-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods. Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary sources will remain the key driver of levels of these contaminants over time.

O'Driscoll, K.; Mayer, B.; Su, J.; Mathis, M.

2014-05-01

122

Role of Natural Cycles in the Global Climate Change M.A. Vukcevic MSc  

E-print Network

of a vigorous debate, and finally there is the Atlantic Multidecadal Oscillation or AMO, with relatively regular between the estimates of the average land temperature Tav and AMO, the Atlantic Multidecadal oscillation oscillations emanating from the liquid part of the Earth's core, as detected in the secular changes

Paris-Sud XI, Université de

123

Climate change 2007 - mitigation of climate change  

Microsoft Academic Search

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry,

B. Metz; O. Davidson; P. Bosch; R. Dave; L. Meyer

2007-01-01

124

IISDnet: Climate Change  

NSDL National Science Digital Library

The International Institute for Sustainable Development (IISD) provides this site to present its knowledge base for climate change and adaptation. The knowledge base includes links to global projects on climate change, policy documents and research reports. The e-newsletter, Climate Canada, is accessible from this site as well.

125

Is Climate Change Happening?  

NSDL National Science Digital Library

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

Science, King'S C.

126

High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.  

PubMed

The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation. PMID:23671087

Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K

2013-05-28

127

High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle  

PubMed Central

The East Asian monsoon is one of Earth’s most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6–7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation. PMID:23671087

Eagle, Robert A.; Risi, Camille; Mitchell, Jonathan L.; Eiler, John M.; Seibt, Ulrike; Neelin, J. David; Li, Gaojun; Tripati, Aradhna K.

2013-01-01

128

NOVA: Climate Change  

NSDL National Science Digital Library

This video segment describes climate data collection from Greenland ice cores that indicate Earth's climate can change abruptly over a single decade rather than over thousands of years. The narrator describes how Earth has undergone dramatic climate shifts in relatively short spans of time prior to 8000 years ago. The video and accompanying essay provide explanations of the differences between weather and climate and how the climate itself had been unstable in the past, with wide variations in temperature occurring over decadal timescales.

Domain, Wgbh T.

129

Expansion of Bioenergy Crops in the Midwestern United States: Implications for the Hydrologic Cycle under Climate Change  

NASA Astrophysics Data System (ADS)

To meet the emerging bioenergy production demands, the agricultural Midwestern United States is likely to see large-scale land use conversions to accommodate expansion of perennial bioenergy crops such as Miscanthus (Miscanthus X giganteus) and Switchgrass (Panicum virgatum). This leads to open questions regarding the impact on the hydrologic cycle in the region. To address these, a mechanistic model MLCan (Multi-Layer Canopy model, Drewry et al. 2010) is applied to analyze and predict: (i) the eco-physiological adaptations in the two most promising perennial bioenergy C4 crops in the Midwest, viz. Miscanthus and Switchgrass; and (ii) the impact on soil-water use. Model validation is performed using recent 2005 observations and then projections under climate change for 2050 are analyzed. The result indicates that compared with corn (Zea mays L.), another C4 but annual crop, Miscanthus and Switchgrass utilize more water for total seasonal evapotranspiration (ET) by approximately 58% to 36%, respectively, due to their higher leaf area and longer growing season. Under projected 2050 scenario of elevated atmospheric concentration of carbon dioxide (CO2) [550 ppm], Miscanthus, Switchgrass, and corn are likely to decrease water use for ET by approximately 16%, 15%, 13% for respectively. However, when projected increase in air temperature is also considered, it results in an increase in ET. Air temperature sensitivity to water use of each crop under environmental changes is examined. Meanwhile, spatial extent and distribution of land-use change and bioenergy crop production is driven by economics and policy. Based on economic projections and the corresponding expansion of land area predicted for bioenergy crop production an analysis is conducted to assess the spatial impacts on hydrology. It is predicted that, based on projected elevated CO2 and air temperature increases, the total additional amount of water use in one growing season for these bioenergy crops in the Midwest may vary approximately from 5 to 35 (bil. m3), mostly contributed from the southern States.

Le, P. V.; Kumar, P.; Drewry, D.

2010-12-01

130

Climate Change: Teaching Through Technology  

NSDL National Science Digital Library

Maine Mathematics and Science Alliance Dec. 6, 2007 Agenda 8:00 Welcome Puzzle Intro Overview: The Science of Climate Change Carbon Cycle Activity Data Analysis: Buoy Data Activity Using Technology Effectively 10:00-10:15 Break Links to the 2007 Maine Learning Results Introduction to Afternoon Exploration COSEE (COSEE Ocean-Climate beta website) Giovanni project (Givoanni: Arabian Sea Lesson) (Giovanni Graphing Activity) Earth Exploration Toolkit: Whither Arctic Sea Ice? (Whither Arctic Sea Ice?) Google Earth Climate Change Resources 11:15-12:00 Lunch Afternoon Resource Exploration Exploration Report and Discussion Antarctic Expedition Opportunity WAIS Divide Outreach Blog WAIS Divide Main Science Page Wrap-Up/Evaluation ...

Chad, Deb A.

2007-12-06

131

Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.  

PubMed

Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020. PMID:22173417

van der Hoek, J P

2012-01-01

132

Tropical Forests in a Future Climate: Changes in Biological Diversity and Impact on the Global Carbon Cycle  

Microsoft Academic Search

Tropical forest ecosystems are large stores of carbon which supply millions of people with life support requirements. Currently tropical forests are undergoing massive deforestation. Here, I address the possible impact of global change conditions, including elevated CO2, temperature rise, and nitrogen deposition on forest structure and dynamics. Tropical forests may be particularly susceptible to climate change for the following reasons:

F. A. Bazzaz

1998-01-01

133

Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model  

Microsoft Academic Search

A complex Earth system model including atmosphere, ocean, ice sheets, marine carbon cycle and terrestrial vegetation was used to study the long-term response (100-1000 yrs) of the climate to different increased atmospheric CO2 concentrations. A 3.2 K global mean surface temperature increase is simulated for a 3xCO2 experiment. The freshwater input by melting of the Greenland Ice Sheet due to

A. Winguth; U. Mikolajewicz; M. Gröger; E. Maier-Reimer; G. Schurgers; M. Vizcaíno

2005-01-01

134

Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model  

Microsoft Academic Search

A complex Earth system model including atmosphere, ocean, ice sheets, marine carbon cycle and terrestrial vegetation was used to study the long-term response (100–1000 yrs) of the climate to different increased atmospheric CO2 concentrations. A 3.2 K global mean surface temperature increase is simulated for a 3xCO2 experiment. The freshwater input by melting of the Greenland Ice Sheet due to

A. Winguth; U. Mikolajewicz; M. Gröger; E. Maier-Reimer; G. Schurgers; M. Vizcaíno

2005-01-01

135

Global Climate Change.  

ERIC Educational Resources Information Center

Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

Hall, Dorothy K.

1989-01-01

136

Financing climate change adaptation.  

PubMed

This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability. PMID:16512861

Bouwer, Laurens M; Aerts, Jeroen C J H

2006-03-01

137

Responding to Climate Change  

NSDL National Science Digital Library

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

Science, King'S C.

138

Security and climate change  

Microsoft Academic Search

Despite it being the most studied and arguably most profound of global environmental change problems, there is relatively little research that explores climate change as a security issue. This paper systematically explores the range of possible connections between climate change and security, including national security considerations, human security concerns, military roles, and a discussion of the widely held assumption that

Jon Barnett; Macmillan Brown

2003-01-01

139

Climate Change Economics and Policy  

E-print Network

AFRICA COLLEGE Centre for Climate Change Economics and Policy Adapting to Climate Change 3 CLIMATE...Furthermore, there is strong scientific evidence that climate change will disrupt the global economy, environment and society a growing population in a changing climate is, therefore, a major global challenge. Changes in climate

Romano, Daniela

140

Climate ChangeClimate Change and Runoff Managementand Runoff Management  

E-print Network

Initiative on Climate Change Impacts addresses ways to adapt to consequences of climate change. #12;WeClimate ChangeClimate Change and Runoff Managementand Runoff Management in Wisconsinin Wisconsin NASECA February 3, 2011 David S. Liebl #12;Overview · Understanding climate change · Wisconsin's changing

Sheridan, Jennifer

141

Climate Change on Mars  

NASA Technical Reports Server (NTRS)

Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

1994-01-01

142

Rapid changes in temperature and hydrology in the western Mediterranean during the last climatic cycle from the high resolution record ODP Site 976 (Alboran Sea)  

NASA Astrophysics Data System (ADS)

High-resolution pollen record, pollen-inferred climate reconstructions and clay mineralogy records were performed over the last climatic cycle from the ODP Site 976 located in the Alboran Sea Continental paleoenvironment proxies were provided on the same samples to depict the short and long term variability of Mediterranean vegetation and climate during the two last terminations and the last two interglacials. Pollen record highlights the vegetation changes associated to climate variability while clay mineralogy informs about the terrigenous inputs related to wind and/or river transport. During the last cycle, both vegetation and clay minerals data have recorded the response of continental ecosystems to all the climate events which characterized the last 135000 years. The Dansgaard/Oeschger oscillations and the rapid cold events evidenced in the North Atlantic (Bond et al., 1993; McManus et al., 1994) are well evidenced in the ODP sequence. Thus, warm interstadials show a strong colonisation of temperate Mediterranean forest while cold events are particularly well expressed by correlative increases in dry steppic to semi-desert formation with enhanced input from African desert dust (Bout-Roumazeilles et al, 2007 and in progress). A special attention has been paid on the two last glacial/interglacial transitions 1 and 2 that occurred before the interglacial inception in order to better understand what happened during these key-periods in continental areas and also better understand how reacts the Mediterranean climate regime through these two periods. The two high resolution records from the Terminaison 2/ Stage 5 and Terminaison 1/ Holocene are compared especially with regards to the wind regime modifications through atmospheric supply, and to hydrological and temperature changes reconstructed from pollen data. Therefore for these two key-periods, we aim to produce a robust climate reconstruction pollen-inferred precipitation and temperature from the 0DP 976 marine Mediterranean core which also can be compared to climate estimates based on other marine cores (Peyron et al., in progress).

Combourieu-Nebout, Nathalie; Peyron, Odile; Bout-Roumazeille, Viviane

2013-04-01

143

Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA  

USGS Publications Warehouse

Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

Wu, Yiping; Liu, Shuguang; Gallant, Alisa L.

2012-01-01

144

Non-linear feedbacks between climate change, hydrologic partitioning, plant available water, and carbon cycling in montane forests  

NASA Astrophysics Data System (ADS)

Changes in both temperature and the amount and timing of precipitation have the potential to profoundly impact water balance in mountain ecosystems. Although changes in the amount of precipitation and potential evapotranspiration are widely considered in climate change scenarios, less attention has been given to how changes in climate or land cover may affect hydrologic partitioning and plant available water. The focus of this presentation is on how spatial transitions in ecosystem structure and temporal transitions in climate affect the fraction of precipitation potentially available to vegetation. In most temperate mountain environments winter snows are a significant fraction of annual precipitation and understanding the partitioning of snow and snow melt is critical for predicting both ecosystem water availability and stream flow under future climate scenarios. Spatial variability in net snow water input is a function of the interaction of snowfall, wind, and solar radiation with topography and vegetation structure. Integrated over larger scales these interactions may result in between 0% and 40% sublimation of winter snowfall before melt, effectively excluding this water from growing season water balance. Once melt begins, variability in the partitioning of snowmelt is driven by the rate of melt, and somewhat less intuitively, by the timing of snow accumulation the previous fall. Early accumulating snowpacks insulate soils and minimize soil frost increasing infiltration of melt the following spring. In contrast, later snowfall results in colder soils, more soil frost, reduced infiltration, increased runoff during melt, and reduced plant available water during the following growing season. This change in hydrologic partitioning, mediated by the timing of snowpack accumulation, results in lower evapotranspiration (ET) and net ecosystem exchange (NEE) the following spring. These findings suggest that abiotic controls on the partitioning of precipitation may exacerbate or attenuate the effects of climate change on mountain water balance.

Brooks, P. D.; Litvak, M. E.; Harpold, A. A.; Molotch, N. P.; McIntosh, J. C.; Troch, P. A.; Zapata, X.

2011-12-01

145

Climate Change and Groundwater  

Microsoft Academic Search

\\u000a Human civilisations have for millennia depended on the stability of groundwater resources to survive dry or unreliable climates.\\u000a While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer\\u000a time frames through changes in rainfall, temperature, snowfall, melting of glaciers and permafrost and vegetation and land-use\\u000a changes. Groundwater provides an archive of past climate

Catherine E. Hughes; Dioni I. Cendón; Mathew P. Johansen; Karina T. Meredith

146

Climate Change and Wildlife  

Microsoft Academic Search

challenges our planet faces today. Yet, a changing climate isn't anything new. Our climate is naturally variable, so it is always in the process of change. Over millions of years, the area we know as Canada has been covered at different times by glaciers, lush rain forests, fresh- water lakes, and even saltwater seas. The problem isn't just that our

Jim Richards

147

Learning and climate change  

Microsoft Academic Search

Learning – i.e. the acquisition of new information that leads to changes in our assessment of uncertainty – plays a prominent role in the international climate policy debate. For example, the view that we should postpone actions until we know more continues to be influential. The latest work on learning and climate change includes new theoretical models, better informed simulations

Brian C. Oneill; Paul Crutzen; Arnulf Grübler; Minh Ha-Duong; Klaus Keller; Charles Kolstad; Jonathan Koomey; Andreas Lange; Michael Obersteiner; Michael Oppenheimer; William Pepper; Warren Sanderson; Michael Schlesinger; Nicolas Treich; Alistair Ulph; Mort Webster; Chris Wilson

2006-01-01

148

Climate Change Policy  

Microsoft Academic Search

There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on

Catrinus J. Jepma; Mohan Munasinghe; Robert Watson; James P. Bruce

1998-01-01

149

Population and Climate Change  

Microsoft Academic Search

Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a

Brian C. O'Neill; F. Landis MacKellar; Wolfgang Lutz

2000-01-01

150

Climate Change Policy  

Microsoft Academic Search

There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on

Catrinus J. Jepma; Mohan Munasinghe

1997-01-01

151

Climate Change and Animals  

Microsoft Academic Search

Climate change is already having adverse effects on animal life, and those effects are likely to prove devastating in the future. Nonetheless, the relevant harms to animals have yet to become a serious part of the analysis of climate change policy. Even if animals and species are valued solely by reference to human preferences, inclusion of their welfare dramatically increases

Wayne Hsiung; Cass R. Sunstein

152

Climate Change and Health  

MedlinePLUS

... 171–78. Arnell NW. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change – Human and Policy Dimensions , 2004, 14:31–52. Zhou XN et ...

153

Climate Change Proposed Scoping Plan  

E-print Network

Climate Change Proposed Scoping Plan a amework for change Prepared by the California Air ResourcesBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

154

Forestry and ClimateForestry and Climate ChangeChange  

E-print Network

be made with significant uncertainty ­ we can outline likely consequences of the choices · Climate changeForestry and ClimateForestry and Climate ChangeChange Green Team April 2009 #12;Climate Change and Forests:Climate Change and Forests: The GoodThe Good ·Forests as carbon sinks ·Longer growing season · CO2

Sheridan, Jennifer

155

Climate Change: Conflict, Security and Vulnerability Professor of Climate Change  

E-print Network

Climate Change: Conflict, Security and Vulnerability Mike Hulme Professor of Climate Change Science, Society and Sustainability Group School of Environmental Sciences Rethinking Climate Change, Conflict security" "increase risk of conflicts among and within nations" #12;· from `climatic change' to `climate-change

Hulme, Mike

156

Coastal Climate Change  

NSDL National Science Digital Library

As climate changes, dynamic coastal regions are experiencing a wide range of impacts. Sea levels, ocean acidification, sea surface temperatures, ocean heat, and ocean circulation have all been changing in ways unseen for thousands of years. Arctic sea ice melted significantly more during summers in the last 30 years, and storms are intensifying. Coastal ecosystems stand to be damaged, and coasts will likely erode from rising sea levels, intensified storm surges, and flooding that climate change may amplify. Coastal communities will need to prepare adaptation strategies to cope, and many who live or work in coastal regions are wondering what climate change might mean for them. This module provides an overview of the impacts coastal regions are experiencing and may continue to experience as a result of Earthâs changing climate. A video series within the module demonstrates effective strategies for communicating climate science.

Comet

2011-05-31

157

Modeling Global Climate Change  

NSDL National Science Digital Library

Understanding global climate change is challenging, even for adults, yet having an understanding of this topic is consequential for the future. In this activity, middle school students learn about global climate change using models that allow them to make predictions, observations, and then explain mechanisms for climate change. Component ideas include change over time, deep time, and accumulation. Students are asked to act as advisers on how to lower energy use, and refine their understanding of how and why this is important, before testing their ideas and finally revising their advice.

Svihla, Vanessa

158

Abrupt climate change.  

PubMed

Large, abrupt, and widespread climate changes with major impacts have occurred repeatedly in the past, when the Earth system was forced across thresholds. Although abrupt climate changes can occur for many reasons, it is conceivable that human forcing of climate change is increasing the probability of large, abrupt events. Were such an event to recur, the economic and ecological impacts could be large and potentially serious. Unpredictability exhibited near climate thresholds in simple models shows that some uncertainty will always be associated with projections. In light of these uncertainties, policy-makers should consider expanding research into abrupt climate change, improving monitoring systems, and taking actions designed to enhance the adaptability and resilience of ecosystems and economies. PMID:12663908

Alley, R B; Marotzke, J; Nordhaus, W D; Overpeck, J T; Peteet, D M; Pielke, R A; Pierrehumbert, R T; Rhines, P B; Stocker, T F; Talley, L D; Wallace, J M

2003-03-28

159

Responding to the Consequences of Climate Change  

NASA Technical Reports Server (NTRS)

The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

Hildebrand, Peter H.

2011-01-01

160

Climate Change 1995: The Science of Climate Change  

Microsoft Academic Search

Climate Change 1995--The Science of Climate Change is the most comprehensive assessment available of current scientific understanding of human influences on past, present and future climate. Prepared under the auspices of the Intergovernmental Panel on Climate Change (IPCC), each chapter is written by teams of lead authors and contributors recognized internationally as leading experts in their field. Climate Change 1995

John T. Houghton; L. G. Meiro Filho; B. A. Callander; N. Harris; A. Kattenburg; K. Maskell

1996-01-01

161

What Is Climate Change?  

ERIC Educational Resources Information Center

Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

Beswick, Adele

2007-01-01

162

Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and  

E-print Network

1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to ­ Climate Change ­ Land Cover / Land Use Change ­ Interaction of Climate and Land Cover Change · Resolution ­ Space ­ Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data

163

Climate change and skin.  

PubMed

Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses. PMID:23407083

Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

2013-02-01

164

Climate Change Education .org  

NSDL National Science Digital Library

Climate Change Education .org is a volunteer organization made up primarily of docents and interns at California science centers and museums, along with students, scientists, and staff at the University of California, Berkeley. The organization specializes in hands-on science demonstrations relevant to climate change and other topics, and the encouragement of partnerships in education. The group's two portal web sites, Climate Change Education .org and Global Warming California .net, direct visitors to hundreds of links to great resources on subjects of interest.

165

Climate Change: An Activity.  

ERIC Educational Resources Information Center

Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

Lewis, Garry

1995-01-01

166

Understanding climate change  

SciTech Connect

Topics covered in this book are: include volcanism; biogeochemistry; land hydrology; modeling climate; past and present; cryosphere; paleoclimates; land-surface processes; tropical oceans and the global atmosphere; clouds and atmospheric radiation; aeronomy and planetary atmospheres; and modeling future climate changes. The papers presented include uptake by the Atlantic Ocean of excess atmospheric carbon dioxide and radiocarbon.

Berger, A.; Dickinson, R.E.; Kidson, J.W.

1989-01-01

167

Climate Change and the Oceans  

NSDL National Science Digital Library

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

Science, The K.

168

Abrupt Climate Change Inevitable Surprises  

E-print Network

Abrupt Climate Change Inevitable Surprises Committee on Abrupt Climate Change Ocean Studies Board of Congress Cataloging-in-Publication Data Abrupt climate change : inevitable surprises / Committee on Abrupt Climate Change, Ocean Studies Board, Polar Research Board, Board on Atmospheric Sciences and Climate

169

Mitigating Climate Change  

NSDL National Science Digital Library

In this video segment adapted from Navajo Technical College, meet a chemistry professor who explains some of the core concepts connected to climate change: carbon dioxide in the atmosphere and emissions from energy use.

Foundation, Wgbh E.

2012-03-23

170

Global Climatic Change.  

ERIC Educational Resources Information Center

Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

Houghton, Richard A.; Woodwell, George M.

1989-01-01

171

Australian agriculture: coping with dangerous climate change  

Microsoft Academic Search

Australian agriculture has operated successfully in one of the world’s most hostile environments for two centuries. However,\\u000a climate change is posing serious challenges to its ongoing success. Determining what might constitute dangerous climate change\\u000a for Australian agriculture is not an easy task, as most climate-related risks are associated with changes in the highly uncertain\\u000a hydrological cycle rather than directly to

Will Steffen; John Sims; James Walcott; Greg Laughlin

2011-01-01

172

Climate Change Challenges  

NASA Astrophysics Data System (ADS)

Anthropogenic climate change has emerged as one of the major challenges for mankind in the centuries to come. The strongly modified composition of the atmosphere, due to emissions of greenhouse gases and aerosol particles, leads to an enhanced greenhouse effect and also intensified backscattering of solar radiation by aerosol particles. The resulting global mean warming will have a major impact on the entire cryosphere, with global consequences via mean sea level rise and redistributed precipitation. This introductory presentation will summarize the emergence of the topic, its already observed consequences for the cryosphere, and it will also discuss issues in climate policy making when dealing with the climate change challenge.

Grassl, Hartmut

2011-09-01

173

Global climatic change  

SciTech Connect

This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

Houghton, R.A.; Woodwell, G.M.

1989-04-01

174

A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change  

NASA Astrophysics Data System (ADS)

The global hydrologic cycle is likely to increase in strength with global warming, although some studies indicate that warming due to solar absorption may result in a different sensitivity than warming due to an elevated greenhouse effect. Here we show that these sensitivities of the hydrologic cycle can be derived analytically from an extremely simple surface energy balance model that is constrained by the assumption that vertical convective exchange within the atmosphere operates at the thermodynamic limit of maximum power. Using current climatic mean conditions, this model predicts a sensitivity of the hydrologic cycle of 2.2% K-1 to greenhouse-induced surface warming which is the sensitivity reported from climate models. The sensitivity to solar-induced warming includes an additional term, which increases the total sensitivity to 3.2% K-1. These sensitivities are explained by shifts in the turbulent fluxes in the case of greenhouse-induced warming, which is proportional to the change in slope of the saturation vapor pressure, and in terms of an additional increase in turbulent fluxes in the case of solar radiation-induced warming. We illustrate an implication of this explanation for geoengineering, which aims to undo surface temperature differences by solar radiation management. Our results show that when such an intervention compensates surface warming, it cannot simultaneously compensate the changes in hydrologic cycling because of the differences in sensitivities for solar vs. greenhouse-induced surface warming. We conclude that the sensitivity of the hydrologic cycle to surface temperature can be understood and predicted with very simple physical considerations but this needs to reflect on the different roles that solar and terrestrial radiation play in forcing the hydrologic cycle.

Kleidon, A.; Renner, M.

2013-12-01

175

Climate Change 1994  

NASA Astrophysics Data System (ADS)

The United Nations Environment Program and the World Meterological Organization set up the Intergovernmental Panel on Climate Change (IPCC) in 1988 to provide an authoritative international consensus of scientific opinion on climate change. This report, prepared by IPCC Working Groups I and II, reviews the latest scientific evidence on the following key topics: radiative forcing of climate change; the latest values of global warming potential (used to compare the potential effect on future climate of different anthropogenic factors); the stabilization of greenhouse gas concentrations in the atmosphere; and an evaluation of scenarios of future greenhouse gas emissions. Researchers in climatology and environmental science, as well as environmental and science policy, will benefit from this book.

Houghton, John T.; Meira Filho, L. G.; Bruce, James P.; Lee, Hoesung; Callander, Bruce A.; Haites, E. F.

1995-06-01

176

IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES  

Microsoft Academic Search

Climate change poses uncertainties to the supply and management of water resources. The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean surface temperature has increased 0.6 ± 0.2 o C since 1861, and predicts an increase of 2 to 4 o C over the next 100 years. Temperature increases also affect the hydrologic cycle by directly increasing

R. D. Singh; C. P. Kumar

2010-01-01

177

Predicting impacts of increased CO? and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA.  

PubMed

Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO(2) concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO(3)-N) load under hypothetical climate-sensitivity scenarios in terms of CO(2), precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO(2) concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO(3)-N load to streams, which could be beneficial, but a concomitant increase in NO(3)-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. PMID:22641243

Wu, Yiping; Liu, Shuguang; Gallant, Alisa L

2012-07-15

178

International Finance and Climate Change  

E-print Network

International Finance and Climate Change Thursday, October 17, 2013 Breakfast ­ 8:30 a Principal Climate Change Specialist, Climate Business Group at International Finance Corporation, World Bank Group Vladimir Stenek Senior Climate Change Specialist, Climate Business Department of the International

Zhang, Junshan

179

Purdue Climate Change Research Center Impacts of Climate Change for  

E-print Network

on the State of Indiana, as well as the potential opportunities and consequences of climate change mitigationPurdue Climate Change Research Center Impacts of Climate Change for the State of Indiana Prepared for: The Honorable Richard G. Lugar Prepared by: The Purdue Climate Change Research Center

180

Geological perspective on climate change  

SciTech Connect

Current estimates of fossil fuel reserves approach 6x the current atmospheric CO[sub 2] content; model calculations have shown that much of this carbon will remain in the atmosphere for several millennia. The potential increase in atmospheric CO[sub 2] over the next few centuries dwarfs natural fluctuations on Milankovitch time scales. Indeed, one must turn far into the geological past to find an analogy for the climate system under such remarkably different atmospheric and climatic states. As a result, perhaps, of the growing need to understand future climates, paleoclimate research activity has intensified. The focus of much of this research has been on the unusually warm periods of the Eocene and Cretaceous. Atmospheric general circulation models have been used to study the adjustment of the climate system to changes in the geographical distribution of the continents. Such efforts generally show that the achievement of significantly enhanced global temperatures requires increases in the atmospheric content of greenhouse gases. The question then arises as to whether these modifications of atmospheric composition are consistent with the geologic record and its interpretation based on global geochemical cycles. Several approaches have been advanced to address this question. The dependence upon CO[sub 2] concentration of the isotope discrimination during photosynthesis means that the carbon isotopic composition of organic and carbonate carbon, as it is preserved in coeval sedimentary rocks, is a potential CO[sub 2] paleobarometer. Similarly, the isotopic composition of paleosols can be used to infer ancient atmospheric carbon contents. Finally, models of the global carbon cycle, especially when coupled with climate models, demonstrate that long-term climate change is intimately interwoven with the factors that affect the carbon cycle, including the geographical distribution of weathering lithologies, and intensity of tectonism.

Kump, L.R. (Pennsylvania State Univ., University Park, PA (United States). Dept of Geosciences)

1992-01-01

181

Poverty and Climate Change  

NASA Astrophysics Data System (ADS)

The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

2008-05-01

182

Climate Change: Good for Us?  

ERIC Educational Resources Information Center

Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

Oblak, Jackie

2000-01-01

183

Global Climate Change  

NSDL National Science Digital Library

Students learn how the greenhouse effect is related to global warming and how global warming impacts our planet, including global climate change. Extreme weather events, rising sea levels, and how we react to these changes are the main points of focus of this lesson.

Integrated Teaching And Learning Program

184

Solar Influence: Climate Change  

NSDL National Science Digital Library

This short video, the sixth in the National Academies Climate Change, Lines of Evidence series, explores the hypothesis that changes in solar energy output may be responsible for observed global surface temperature rise. Several lines of evidence, such as direct satellite observations, are reviewed.

Council, National R.; Academies, The N.

185

Climatic and topographic controls on soil organic carbon storage and dynamics in the Indian Himalaya: Potential carbon cycle and climate change feedbacks  

NASA Astrophysics Data System (ADS)

Soil organic carbon affects soil fertility and agricultural production, and organic C storage can also mitigate increasing atmospheric CO2 concentrations on decadal timescales or longer. Soil organic C storage is dependent on climatic conditions, and changes in temperature and precipitation associated with climate change can influence feedback mechanisms that contribute to controlling atmospheric CO2 concentrations. The storage of organic C in soils in high tropical and subtropical mountain regions, however, is poorly quantified. As a start to evaluate the importance of C storage in soils in high mountain regions, regional organic carbon abundance was examined across the Himalaya of northern India. As such soil organic carbon (SOC) would vary corresponding to these bioclimatic barriers, a result of this large precipitation and assumed vegetation discrepancy. Average annual C accumulation and C turnover time were estimated for selected soil down-core chronosequences, and results varied widely among the areas investigated (0.0019kg - 0.0332kg and ~66 years - 3,333 years, respectively). Soil organic C stocks in the Indian Himalaya are more sensitive to moisture availability than temperature, as average annual precipitation was a greater influence on SOC than altitude. C3 vegetation has been consistently dominant in the region up to ~6000 BP, and rates of C accumulation and turnover are influenced greatly by variations in climate, vegetation, and topography. Anthropogenically increased precipitation may lead to increased soil C storage in the region, unless soils are exposed to greater risk of erosion.

Longbottom, T. L.; Townsend-Small, A.; Owen, L. A.; Murari, M. K.

2012-12-01

186

Climate Change Major information sources  

E-print Network

Wh #12;3 What is the evidence, causes and consequences of changes in Earth's climate since the pre about the environmental, social, and economic consequences of climate changes since the pre1 Climate Change Major information sources: Climate Change : IPCC Synthesis Reports at http

187

Potential Impacts of CLIMATE CHANGE  

E-print Network

Potential Impacts of CLIMATE CHANGE on U.S. Transportation Potential Impacts of CLIMATE CHANGE on U.S. Transportation TRANSPORTATION RESEARCH BOARD SPECIAL REPORT 290 #12;#12;Committee on Climate Change and U Washington, D.C. 2008 www.TRB.org Potential Impacts of CLIMATE CHANGE on U.S. Transportation TRANSPORTATION

Sheridan, Jennifer

188

Climate Change and Indiana Agriculture  

E-print Network

contribute to changes in global climate patterns. Global warming can occur from a variety of causes, both generally to large scale weather patterns in time or space, i.e. a tropical climate. Climate Change & Global Warming Climate Change: Any systematic change in the state of the atmosphere (temperature, humidity

189

Climate change and disaster management  

Microsoft Academic Search

Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A

Geoff O'Brien; Phil O'Keefe; Joanne Rose; Ben Wisner

2006-01-01

190

CLIMATE CHANGE INITIATIVES AND NEPAL  

Microsoft Academic Search

This paper describes various aspects of the climate change issues that could be of interest to Nepal. It also describes the climate change activities in Nepal. Being a signatory of the United Nations Framework Convention on Climate Change (UNFCCC) and looking to the considerable vulnerable situation with the lack of resources to cope with the impacts of the climate changes,

Shobhakar Dhakal

191

Climate Change and Runoff Management  

E-print Network

Climate Change and Runoff Management in Wisconsin Fox-Wolf Watershed Alliance May 10, 2011 David S of Engineering #12;Overview · Understanding climate change · Wisconsin's changing climate · Expected impacts of a changing climate J. Magnuson Source: IPCC 2007 Potter, et al. A longer record is better! #12;What about

Sheridan, Jennifer

192

Climate change and marine plankton  

Microsoft Academic Search

Understanding how climate change will affect the planet is a key issue worldwide. Questions concerning the pace and impacts of climate change are thus central to many ecological and biogeochemical studies, and addressing the consequences of climate change is now high on the list of priorities for funding agencies. Here, we review the interactions between climate change and plankton communities,

Graeme C. Hays; Anthony J. Richardson; Carol Robinson

2005-01-01

193

Climate Change Impacts in the Amazon. Review of scientific literature  

SciTech Connect

The Amazon's hydrological cycle is a key driver of global climate, and global climate is therefore sensitive to changes in the Amazon. Climate change threatens to substantially affect the Amazon region, which in turn is expected to alter global climate and increase the risk of biodiversity loss. In this literature review the following subjects can be distinguished: Observed Climatic Change and Variability, Predicted Climatic Change, Impacts, Forests, Freshwater, Agriculture, Health, and Sea Level Rise.

NONE

2006-04-15

194

Soil vulnerability to future climate in the southwestern USA, with implications for vegetation change and water cycle  

NASA Astrophysics Data System (ADS)

Understanding soil response to changes in precipitation/snow cover and increasing temperatures is essential to predicting changes in riparian, wetland, and aquatic as well as terrestrial communities in the coming decades. Changes in precipitation and snowmelt are affecting streamflow seasonality and magnitude, and rising air temperatures and declining precipitation affect aquatic habitats directly by causing increases in stream temperatures and evapo-transpiration causing lower streamflow. The water resources of the Colorado River system are projected to be strained due to runoff losses of 7 to 20% this century, and a reduction of approximately 5% of the annual average runoff is due to increased evapotranspiration from early exposure of vegetation and soils. We are developing a spatially-explicit soil vulnerability index of high, moderate and low sensitivity soils for the southwestern USA and comparing it to projections of vegetation dieback under future climate change scenarios to provide 1) a measure of uncertainty of the model skill and 2) a warning that vegetation shifts may increase soil vulnerability in areas where it is still protected by current plant cover, thus enabling a preliminary estimate of the future location of sources of aeolian dust.

Peterman, W. L.; Bachelet, D. M.

2011-12-01

195

EPA's Climate Change Site  

NSDL National Science Digital Library

The Environmental Protection Agency (EPA) provides this site in order to present or direct users to accurate and timely social, scientific, and logistic information on the very broad issue of climate change and global warming in a way that is accessible and meaningful to all parts of society. The subtopics covered are climate - which includes information on global warming or The Greenhouse Effect -, emissions - with information on the Greenhouse Gases -, impacts, and actions, including what you can do to help with the problem of global warming. Specific information is presented for Concerned Citizens, Kids and Educators, Small Business and Industry and how they can help with the issue of global warming, Public Decision makers, International, Coastal Residents, Health Professionals, Meteorologists, and Wildlife Advocates. Some features are News, Calendar, Publications, Presentations (slide shows), Online tools (including software, calculators, case studies, and document searches), Science Frequently Asked Questions, Uncertainties, Glossary, and Links. The United States has based its climate change policies on the conclusions of the Intergovernmental Panel on Climate Change (IPCC), which has provided an authoritative international consensus on the science of climate change.

196

Marine viruses and global climate change.  

PubMed

Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans. PMID:21204862

Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

2011-11-01

197

To what extent can interannual CO2 variability constrain carbon cycle sensitivity to climate change in CMIP5 Earth System Models?  

NASA Astrophysics Data System (ADS)

analyze the carbon-climate feedback in eight Earth System Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). We focus on tropical land carbon change and find decreases (-31.02 to -169.32 GtC K-1) indicating tropical ecosystems will release carbon as temperature warms, thus contributing to a positive feedback identified in earlier studies. We further investigate the relationship between tropical land carbon change and sensitivity of historical atmospheric CO2 growth rate to tropical temperature variability and find a weak linear relationship. This sensitivity for most models is stronger than observed. We further use this "emergent constraint" to constrain uncertainties in model-projected future carbon-climate changes and find little effect in narrowing the model spread, but the mean sensitivity is slightly smaller. This contrasts with earlier Coupled Carbon Cycle Climate Model Intercomparison Project results, highlighting the challenge in constraining future projections by modern observations and the necessity for evaluating such relationships continuously.

Wang, Jun; Zeng, Ning; Liu, Yimin; Bao, Qing

2014-05-01

198

Climate-change scenarios  

USGS Publications Warehouse

In 1991, the United States Congress passed the Global Change Research Act directing the Executive Branch of government to assess the potential effects of predicted climate change and variability on the nation. This congressional action followed formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 by the United Nations Environmental Program and World Meteorological Organization. Some 2,000 scientists from more than 150 nations contribute to the efforts of the IPCC. Under coordination of the U.S. Global Change Research Program, the congressionally ordered national assessment has divided the country into 19 regions and five socio-economic sectors that cut across the regions: agriculture, coastal and marine systems, forests, human health, and water. Potential climate-change effects are being assessed in each region and sector, and those efforts collectively make up the national assessment. This document reports the assessment of potential climate-change effects on the Rocky Mountain/Great Basin (RMGB) region which encompasses parts of nine western states. The assessment began February 16-18, 1998 with a workshop in Salt Lake City co-convened by Frederic H. Wagner of Utah State University and Jill Baron of the U.S. Geological Survey Biological Resources Division (BRD). Invitations were sent to some 300 scientists and stakeholders representing 18 socio-economic sectors in nine statesa?|

Wagner, F.H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.

2003-01-01

199

Anthropogenic climate change  

SciTech Connect

The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

Budyko, M.I.; Izreal, Yu.A. (eds.)

1991-01-01

200

Status of Climate Change  

E-print Network

Status of Climate Change 2013 CaTee Conference San Antonio 2013 ESL-KT-13-12-56 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Menu for Today • IPCC 2013: Assessment Report #5 • Facts about Climate Change... • Who will Win, Who will Lose • What Needs to be Done ESL-KT-13-12-56 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 IPCC #5 • No great surprises - Sharper language • Uncertainties are still large • Essentially...

North, G.

2013-01-01

201

Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska  

NASA Astrophysics Data System (ADS)

Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

2011-12-01

202

Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model  

SciTech Connect

Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

2004-04-01

203

Understanding and Attributing Climate Change  

E-print Network

9 Understanding and Attributing Climate Change Coordinating Lead Authors: Gabriele C. Hegerl (USA. Nicholls, J.E. Penner and P.A. Stott, 2007: Under- standing and Attributing Climate Change. In: Climate of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M

Box, Jason E.

204

Biological Impacts of Climate Change  

E-print Network

Biological Impacts of Climate Change John P McCarty, University of Nebraska at Omaha, Omaha, NE and reproduction depend on how well adapted individuals are to local climate patterns. Climate change can disrupt subsequent impacts on populations or species' distributions across geographic regions. Climate change may

McCarty, John P.

205

The Mathematics Climate Change  

E-print Network

must be used by US Congress before funding large projects. #12;Examples: Asteroids and Global Warming Warming: Probability of global warming is 1, it is happening Will produce a permanent loss of about $2;Evaluating global warming #12;The Intergovernmental Panel on Climate Change (IPCC) nds that human - induced

Zeeman, Mary Lou

206

Emissions versus climate change  

EPA Science Inventory

Climate change is likely to offset some of the improvements in air quality expected from reductions in pollutant emissions. A comprehensive analysis of future air quality over North America suggests that, on balance, the air will still be cleaner in coming decades....

207

Coping with climate change  

Microsoft Academic Search

The Second North American Conference on Preparing for Climate Change may be the most ambitious assemblage of experts ever to assess impact and response strategies to the twin challenges of greenhouse warming and stratospheric ozone depletion. Presentations were made by over 160 scientists, environmental leaders and policy makers from the Western Hemisphere, Europe and Asia in 38 sessions over a

Topping; J. C. Jr

1989-01-01

208

Confronting Climate Change  

ERIC Educational Resources Information Center

The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

Roach, Ronald

2009-01-01

209

Climate Change? When? Where?  

ERIC Educational Resources Information Center

Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

Boon, Helen

2009-01-01

210

Biological Effects of Climate Change  

NSDL National Science Digital Library

How important is climate change--something that has occurred throughout Earth's history? Can ecosystems tolerate the magnitude and rate of future change? How will other conservation threats interact with climate change? How likely are widespread extinction

Constible, Juanita; Sandro, Luke; Lee Jr., Richard E.

2008-10-01

211

Volcanoes and Climate Change  

NSDL National Science Digital Library

Major volcanic eruptions alter the Earth's radiative balance, as volcanic ash and gas clouds absorb terrestrial radiation and scatter a significant amount of the incoming solar radiation, an effect known as "radiative forcing" that can last from two to three years following a volcanic eruption. This results in reduced temperatures in the troposphere, and changes in atmospheric circulation patterns. This site uses text, photographs, and links to related sites to describe volcano-induced climate change.

212

Climate Kids: What is Global Climate Change?  

NSDL National Science Digital Library

A question and answer format is used to differentiate between weather and climate, and to provide a brief overview of global warming. This lesson is part of the Climate Kids website, a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

213

Climate Change and Extinction  

NSDL National Science Digital Library

A senior researcher discusses extinction due to global warming in this two-minute sound segment. He says that as climate warms, species will probably move upslope and towards the poles but in many cases, that may put species that are found on mountain tops at risk. Species with small ranges or lowland species that may not be able to get to mountain slopes and find equitable climate will die out. His study suggests that as many as one million species of plants and animals worldwide could be facing extinction as a result of climate change. This site is from an archive of a daily radio program called Pulse of the Planet, which provides its listeners with a portrait of Planet Earth, tracking the rhythms of nature, culture and science worldwide and blending interviews and extraordinary natural sound. The site also provides a written transcript of the broadcast.

2004-07-12

214

Effect of climate and environmental changes on plankton biodiversity and bigeochemical cycles of the Dongsha (Pratas) Atoll, South China Sea  

NASA Astrophysics Data System (ADS)

Dongsha (Pratas) Atoll, the so called "Pearl Crown of South China Sea", is a well-developed atoll with a total area of 80000 hectares. It possesses various ecosystems and has very high biodiversity, but it is very sensitive to climate change and physical processes. According to our investigation within the shallow semi-enclosed atoll in April, July, and October, 2011 (i.e., spring, summer, and autumn, respectively), we found that plankton assemblages and hydrographical conditions exhibited clear seasonal and spatial variations. Colder and higher salinity water was observed in April, while warmer water in July and lower salinity water in October, respectively. Nutrient concentration within the atoll was similar to that of the oligotrophic South China Sea waters and seemed to be in nitrogen-limit situation, while the distribution pattern of DOC and POC was mainly attributed to Chla and imported detritus matters. Carbon deposition flux also showed significant seasonal changes, but POC/PN value was near Redfield ratio, implying mostly due to biogenic factors; however it could still be classified as a typical coral ecosystem, since CaCO3 sinking flux generally was 30 times higher than that of organic matter. Plankton biodiversity was quite high in the atoll, and preformed apparent seasonal succession; in total, 82 phytoplankton species and 67 copepod species were recorded; furthermore, crab zoea (17.3% of the total zooplankton by number), fish eggs (12.5%), and shrimp larvae (4.2%), were relatively abundant in zooplankton community, revealed that atoll might be a good hatching ground. We deduced that the seasonal patterns of chemical and biological variables were mainly influenced by monsoons and precipitation, while small scales of temporal and spatial variations could be ascribed to internal wave and tide in this study area.

Lo, Wen-tseng; Hsu, Pei-Kai; Hunag, Jia-Jang; Wang, Yu-Huai

2013-04-01

215

Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD  

NASA Astrophysics Data System (ADS)

A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year 2100 and subsequent linear decrease to zero until year 2300, corresponding to a total release of 5100 GtC). Atmospheric CO2 increases to a peak of more than 2000 ppmv near year 2300 (that is an airborne fraction of 72% of the emissions) followed by a gradual decline to ˜1700 ppmv at year 4000 (airborne fraction of 56%). Forty-four percent of the additional atmospheric CO2 at year 4000 is due to positive carbon cycle-climate feedbacks. Global surface air warms by ˜10°C, sea ice melts back to 10% of its current area, and the circulation of the abyssal ocean collapses. Subsurface oxygen concentrations decrease, tripling the volume of suboxic water and quadrupling the global water column denitrification. We estimate 60 ppb increase in atmospheric N2O concentrations owing to doubling of its oceanic production, leading to a weak positive feedback and contributing about 0.24°C warming at year 4000. Global ocean primary production almost doubles by year 4000. Planktonic biomass increases at high latitudes and in the subtropics whereas it decreases at midlatitudes and in the tropics. In our model, which does not account for possible direct impacts of acidification on ocean biology, production of calcium carbonate in the surface ocean doubles, further increasing surface ocean and atmospheric pCO2. This represents a new positive feedback mechanism and leads to a strengthening of the positive interaction between climate change and the carbon cycle on a multicentennial to millennial timescale. Changes in ocean biology become important for the ocean carbon uptake after year 2600, and at year 4000 they account for 320 ppmv or 22% of the atmospheric CO2 increase since the preindustrial era.

Schmittner, Andreas; Oschlies, Andreas; Matthews, H. Damon; Galbraith, Eric D.

2008-03-01

216

The origin of climate changes  

Microsoft Academic Search

Summary Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present

P. Delecluse

2008-01-01

217

Climate Change Proposed Scoping Plan  

E-print Network

Climate Change Proposed Scoping Plan a amework for change Prepared by the California Air Resources #12;CLIMATE CHANGE SCOPING PLAN State of California Air Resources Board Resolution 08-47 December 11 greenhouse gas (GHG) emissions that cause global warming; WHEREAS, the adverse impacts of climate change

218

Climate Change 1995: Economic and Social Dimensions of Climate Change  

Microsoft Academic Search

Large, irreversible changes in climate may have a major effect on the economies of the world. The social costs of climate change will vary dramatically from country to country. This landmark assessment from Working Group III of the IPCC addresses the costs of climate change, both in terms of society and equity issues, and the economic burden of combating adverse

James P. Bruce; Hoesung Lee; Erik F. Haites

1996-01-01

219

Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle  

NASA Astrophysics Data System (ADS)

Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006-2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between -0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.

Boysen, L. R.; Brovkin, V.; Arora, V. K.; Cadule, P.; de Noblet-Ducoudré, N.; Kato, E.; Pongratz, J.; Gayler, V.

2014-09-01

220

Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate EngineeringImplications for Climate Engineering  

E-print Network

Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate Engineering Center Global Climate Change Impacts in the United States October 29, 2009 #12;2Global Climate Change Impacts in the United States 2 Response Strategies to ClimateResponse Strategies to Climate ChangeChange

Polz, Martin

221

Perception of climate change.  

PubMed

"Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3?) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. PMID:22869707

Hansen, James; Sato, Makiko; Ruedy, Reto

2012-09-11

222

Climate Change and Citizen Science  

NSDL National Science Digital Library

This animation describes how citizen observations can document the impact of climate change on plants and animals. It introduces the topic of phenology and data collection, the impact of climate change on phenology, and how individuals can become citizen scientists.

Citizen Science Central, Cornell L.

223

Health Effects of Climate Change  

MedlinePLUS

... over generations. TODAY It is now established that climate changes are occurring at an increasingly rapid rate. These ... are becoming alert to the dynamic relationship between climate change and human health. Some of these impacts are ...

224

Climate change and child health.  

PubMed

Postindustrial human activity has contributed to rising atmospheric levels of greenhouse gases causing global warming and climate change. The adverse effects of climate change affect children disproportionately, especially in the developing world. Urgent action is necessary to mitigate the causes and adapt to the negative effects of climate change. Paediatricians have an important role in managing the effects of climate change on children and promoting sustainable development. PMID:21335625

Seal, Arnab; Vasudevan, Chakrapani

2011-12-01

225

Global climate change and infectious diseases.  

PubMed

Climate change is occurring as a result of warming of the earth's atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations. PMID:23022814

Shuman, E K

2011-01-01

226

Past and Current Climate Change  

NASA Astrophysics Data System (ADS)

In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

Mercedes Rodríguez Ruibal, Ma

2014-05-01

227

Climate Change 2007: Synthesis Report  

E-print Network

of the Intergovernmental Panel on Climate Change This summary, approved in detail at IPCC Plenary XXVII (Valencia, Spain out by the three Working Groups of the Intergovernmental Panel on Climate Change (IPCC). It providesClimate Change 2007: Synthesis Report Summary for Policymakers An Assessment

Pasternack, Gregory B.

228

CLIMATE CHANGE: A POLITICAL INTRODUCTION  

Microsoft Academic Search

Syllabus Summary Climate change has now grown from a scientific concern to one of the most pressing issues of our time. This seminar aims to look at the topic from a political viewpoint, and analyze the different mechanisms of cooperation in the fight against climate change. The first part provides an appraisal of climate change as a political issue: it

François Gemenne

229

4, 28752899, 2007 Climate change  

E-print Network

HESSD 4, 2875­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page are under open-access review for the journal Hydrology and Earth System Sciences Climate change impact­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

230

CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND  

E-print Network

CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND ADAPTATION IN THE SAN FRANCISCO BAY AREA Commission's California Climate Change Center JULY 2012 CEC5002012071 Prepared for: California Energy, as well as projections of future changes in climate based on modeling studies using various plausible

231

Climate Change Action Plan Report  

E-print Network

Climate Change Action Plan Report Intermountain Region 2013 National Park Service Resource Stewardship and Science Landscape Conservation and Climate Change Division #12;About this Report Each National Park Service is responding to the challenge of climate change; and (2) raise awareness among NPS

Hansen, Andrew J.

232

Climate Variability and Change in a Eutrophic Great Lakes Freshwater Embayment: Shifting Hydrodynamics and the Potential for Indirect Impacts on Biogeochemical Processes, Carbon Cycling and Hypoxia  

NASA Astrophysics Data System (ADS)

Future changes in the climatic regime of the Great Lakes region have the potential to induce a variety of both direct (e.g. thermal) and indirect (e.g. biogeochemical) alterations in ecosystem function. In the case of the later, we have identified a statistically significant shift in wind direction of the average wind field over the Great Lakes basin that is consistent with a southward migration of the dominant summer storm track. In Green Bay (NW Lake Michigan), we have shown that the new wind field has most likely resulted in periods of decreased thermal stratification and an overall decrease in water mass exchange with Lake Michigan. In subsequent studies, aimed at determining the impact of these shifts in the physical climate regime, time series measurements of currents, turbidity, dissolved oxygen, and the Be-7 activity of particulates in bottom sediments, sediment traps, and suspended particulates have been made over a 3 year period. A tracer of short term particle dynamics, Be-7 (half life 53 d) is useful in estimating particle residence times in the water column, along with episodic sediment deposition and erosion rates, and the average number of deposition/erosion cycles a particle experiences prior to permanent burial in the sediments. Be-7 derived estimates of the age of particulate organic carbon cycling between surface sediments and the overlying waters are on the order of months, and are dependent upon resuspension frequency. Remineralization of organic carbon within this actively resuspended pool of material results in estimated decomposition rates for POC ranging 0.08 to 0.04% per day, a rate intermediate between the rapid remineralization of fresh algal material and post-depositional diagenesis. Comparisons between 1989-90 and 2004-06 show a decrease in resuspension frequency, possibly in response to shifts in regional climatic scale dynamics. This appears to result in an increase in the efficiency of trapping of organic matter in the bay and a significant increase in the organic carbon content of suspended particulates within the resuspension reactor. Measured sedimentation rates determined via Pb-210 and Cs-137 also indicate increased sediment accumulation over this interval. Combined with the wind shift induced reduction in water mass exchange, these climatic changes have the potential to increase hypoxia via enhancing benthic oxygen demand - a common feature of lower Green Bay that recent evidence suggests may be exacerbated, triggering severe oxygen depletion and fish kills.

Klump, J. V.; Waples, J. T.

2008-12-01

233

Earth's Climate Changes: Virtual Bookshelf  

NSDL National Science Digital Library

This list of carefully selected books for grades K-5 highlights nonfiction about climate proxies, those preserved physical characteristics, such as fossils, that scientists use to reconstruct past climates. Also highlighted are a few books that provide information about two past climatic events -- the last ice age and the Dust Bowl. In each issue of the free, online magazine Beyond Weather and the Water Cycle, the virtual bookshelf recommends books that accurately portray the theme drawn from the principles of climate sciences.

Fries-Gaither, Jessica

2011-07-01

234

Climate Variability and Change Lectures, July 2013  

NSDL National Science Digital Library

This lesson presents 13 recorded presentations from the 29 Julyâ2 August, 2013 offering of the Climate Variability and Change Virtual Course (CVCVC). This five-day live facilitated online course provided an extensive background on a range of climate variability and change topics with an emphasis on developing communication skills for challenging climate topics. The topics covered in this course, while aimed primarily at NOAA operational climate services delivery staff will also be helpful for others who already possess a basic level of understanding of climate science. Presentations include: Weather vs. Climate â Derek Arndt, National Climatic Data Center, NOAA Climate Variability â Matt Newman, NOAA Earth System Research Laboratory Climate Science Communication â Derek Arndt, National Climatic Data Center, NOAA The El Niño/ Southern Oscillation (ENSO) Cycle â Michelle L'Heureux, Climate Prediction Center, NOAA/National Weather Service NOAA's Atlantic Hurricane Season Outlooks â Gerry Bell, Climate Prediction Center, NOAA/National Weather Service The Madden-Julian Oscillation â Jon Gottschalk, Climate Prediction Center, NOAA/National Weather Service Drought: Science, Monitoring and Early Warning â Roger Pulwarty, National Integrated Drought Information System (NIDIS), Earth System Research Laboratory/NOAA Climate Prediction Center Outlooks â Mike Halpert, Climate Prediction Center, NOAA/National Weather Service Climate.gov: Information, Products, and Tools â David Herring, Climate Program Office, NOAA/National Weather Service Climate Communication Skills for Decision-support Audiences â Susan Buhr, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Climate Change Science â Wayne Higgins, Climate Program Office, NOAA Climate Change Impacts â Peter Backlund, University Corporation for Atmospheric Research Managing Marine and Coastal Resources in a Changing Climate â Kenric Osgood, Marine Ecosystems Division, NOAA, NMFS Please Note: There are no quizzes available on MetEd for these materials. However, National Weather Service users may complete a quiz for each lecture and receive credit in the NWS Learning Center. The quizzes may be found in the NWS Learning Center by searching for "Climate Variability and Change Lecture". Alternatively, a learning plan containing quizzes for all 13 lectures is available on the NWS Learning Center's COMET Page.

Comet

2014-04-08

235

Agriculture and climate change  

SciTech Connect

How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

Abelson, P.H.

1992-07-03

236

Population and climate change.  

PubMed

To review, the four broad dimensions of any complex human problem, including climate change, are the human population, economics, culture, and environment. These dimensions interact with one another in all directions and on many time-scales. From 2010 to 2050, the human population is likely to grow bigger, more slowly, older, and more urban. It is projected that by 2050 more than 2.6 billion people (almost 94% of global urban growth) will be added to the urban population in today's developing countries. That works out to 1.26 million additional urban people in today's developing countries every week from 2010 to 2050. Humans alter the climate by emitting greenhouse gases, by altering planetary albedo, and by altering atmospheric components. Between 1900 and 2000, humans' emissions of carbon into the atmosphere increased fifteenfold, while the numbers of people increased less than fourfold. Population growth alone, with constant rates of emissions per person, could not account for the increase in the carbon emissions to the atmosphere. The world economy grew sixteenfold in the twentieth century, accompanied by enormous increases in the burning of gas, oil, and coal. In the last quarter of the twentieth century, population grew much faster in developing countries than in high-income countries, and, compared with population growth, the growth of carbon emissions to the atmosphere was even faster in developing countries than in high-income countries. The ratio of emissions-to-population growth rates was 2.8 in developing countries compared with 1.6 in high-income countries. Emissions of CO2 and other greenhouse gases are influenced by the sizes and density of settlements, the sizes of households, and the ages of householders. Between 2010 and 2050, these demographic factors are anticipated to change substantially. Therefore demography will play a substantial role in the dynamics of climate changes. Climate changes affect many aspects of the living environment, including human settlements, food production, and diseases. These changes will affect poor people more severely than rich, and poor nations more severely than rich. Yet not enough is known to predict quantitatively many details that will matter enormously to future people and other species. Three kinds of responses are related to demographic issues that affect climate changes: universal secondary education, voluntary contraception and maternal health services, and smarter urban design and construction. These responses may prevent, reduce, or ameliorate the impacts of climate changes. They are as relevant to rich countries as to poor, though in ways that are as different as are rich countries and poor. They are desirable in their own right because they improve the lives of the people they affect directly; and they are desirable for their beneficial effects on the larger society and globe. They are effective responses to the twin challenges of reducing poverty and reducing greenhouse gas emissions. PMID:21553595

Cohen, Joel E

2010-06-01

237

Seasonality and Cenozoic climate change  

SciTech Connect

Previous attempts to model the transition from an ice-free to an ice-covered state have employed annually-averaged insolation to determine whether continental drift may have caused high-latitude cooling. Results have been ambiguous. Resolving the seasonal cycle greatly changes this picture. The authors have modeled the evolution of high-latitude temperatures during the last 100 million years with an energy balance model that resolves geography and has a seasonal cycle. Early Cenozoic summer temperatures were relatively high due to increased continentality over key areas. However, changing land/sea distribution caused a significant reduction in the magnitude of summer warming. Results indicate that summer temperatures decreased by more than 10/sup 0/C over Greenland and about 7/sup 0/C over Antarctica. The transition to near-freezing temperatures occurs during the Oligocene in both hemispheres and suggests that significant ice volume may have developed by that time. An important implication of their model results concerns the nature of presumed ice-free climates. Since warm summers are balanced by cold winters, their results imply that an ice-free earth may not necessarily be a particularly warm earth. Preliminary reevaluation of some paleoecological data either support the authors hypothesis or raise questions about the alternate hypothesis that an ice-free climate implies year-around warmth at all high latitudes.

Crowley, T.J.; Short, D.A.; North, G.R.

1985-01-01

238

Modelling hydrological responses of Nerbioi River Basin to Climate Change  

Microsoft Academic Search

Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more

Maddalen Mendizabal; Roberto Moncho; Guillem Chust; Peter Torp

2010-01-01

239

How does climate change influence arctic mercury?  

Microsoft Academic Search

Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb

Gary A. Stern; Robie W. Macdonald; Peter M. Outridge; Simon Wilson; John Chételat; Amanda Cole; Holger Hintelmann; Lisa L. Loseto; Alexandra Steffen; Feiyue Wang; Christian Zdanowicz

240

Free Podcasts on Climate and Climate Change  

NSDL National Science Digital Library

In partnership with the National Science Digital Library and Apple, NCAR and UCAR offer podcasts that provide a brief and accessible overview on climate and climate change. These podcasts, short 5-8 minute videos you can download on your computer or iPod, are a part of the NSDL on iTunes U collection.

Payo, Robert

241

Scenarios of climate change  

NASA Astrophysics Data System (ADS)

This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8°C, and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere’s greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2°C is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun’s supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action.

Graßl, H.

2009-09-01

242

Climate change and ethics  

NASA Astrophysics Data System (ADS)

What does it matter if the climate changes? This kind of question does not admit of a scientific answer. Natural science can tell us what some of its biophysical effects are likely to be; social scientists can estimate what consequences such effects could have for human lives and livelihoods. But how should we respond? The question is, at root, about how we think we should live--and different people have myriad different ideas about this. The distinctive task of ethics is to bring some clarity and order to these ideas.

Hayward, Tim

2012-12-01

243

Climate change and security.  

PubMed

Climate change was originally expected to have its main impact on countries in temperate latitudes which, because of their relative wealth, would be best able to cope. It is now far more likely that much poorer states in the tropics and sub-tropics will experience severe impacts. This is compounded by the widening socioeconomic divide and the combination of these divisions, with environmental constraints, will have a profound impact on human security. The dangerous response to the prospects of mass migration and radical social movements is to attempt to maintain control without addressing underlying problems. Instead, there is an urgent need to embrace new concepts of sustainable security. PMID:19435111

Rogers, Paul

2009-04-01

244

Contrails and Climate Change  

NSDL National Science Digital Library

In this problem-based learning unit, learners analyze the role of condensation trails from jets, or contrails, and their role in climate change. Contrails are thin ice clouds that form from the burning of jet fuel and release of water vapor. The issue with contrails is that narrow trails can spread and coalesce to form significant banks of cirrus-type clouds. Instructions to access NASA data are provided along with additional resources and activities. This module was developed to be used in the Earth System Science Education Alliance (ESSEA) courses for middle and high school teachers and is also available to teachers to adapt for general classroom use.

245

Prehistoric Climate Change  

NSDL National Science Digital Library

In this online interactive, learners use fossils to infer temperatures 55 million years ago, at the sites where the fossils were found. Using their observation skills, learners examine fossils of tree leaves and sort them into "smooth" and "toothed" leaves. Learners follow the process founded by Smithsonian paleontologist Scott Wing (featured in a video) to determine the temperature at the site where the fossils were found. Learners are challenged to: distinguish between smooth and toothed leaves using a scientific method called "leaf-margin analysis"; calculate the smooth-leaf percentage; calculate average annual temperature at two fossil sites; compare calculations between sites; and consider how prehistoric climate change matters today.

Institution, Smithsonian

2009-01-01

246

Climate Variability and Change  

USGS Publications Warehouse

In 2007, the U.S. Geological Survey (USGS) developed a science strategy outlining the major natural science issues facing the Nation in the next decade. The science strategy consists of six science directions of critical importance, focusing on areas where natural science can make a substantial contribution to the well-being of the Nation and the world. This fact sheet focuses on climate variability and change and how USGS research can strengthen the Nation with information needed to meet the challenges of the 21st century.

Geological Survey (U.S.)

2007-01-01

247

Enviropedia: Introduction to Climate Change  

NSDL National Science Digital Library

This resource provides an overview of the concept of climate change and discusses past climate changes, as evidenced by sea sediments and sedimentary rock studied by paleoclimatologists. More recently, ice cores, tree rings, and historical records tell of changes such as interglacial periods and the little ice age. Other factors like volcanoes, changes in the Earth's orbit, comets, and meteorites that may alter the energy balance, change the greenhouse effect, or cause climate forcing are also explored in these pages.

248

Climate Change and Extreme Weather  

NSDL National Science Digital Library

This module discusses how a changing climate can also lead to changes in extreme weather events on the local scale. The role of natural variability is also explained. The module describes how climate change can have both positive and negative effects, depending on the situation, location, and the vulnerability of the population. While research on climate change and extreme events is still relatively new, the module discusses what changes scientists think are likely if greenhouse gas emissions continue to rise.

Comet

2012-08-14

249

Climatic Change An Interdisciplinary, International  

E-print Network

for the fact that in the real world agents vary in both: (1) their resources to mitigate climate change, and (2 were more skeptical about climate change in the real world cooperated less in our games. Insofar states, these results suggest that voluntary cooperation to avoid climate catastrophe in the real world

West, Stuart

250

Climate change and vegetation response  

Microsoft Academic Search

This study, as many other current investigations in palaeoecology is focused on the long-term dynamics of vegetation and the extent to which they are controlled by climate change. Climate and classes of climate change are defined and reviewed, and examples cited of vegetation response. The concepts of vegetation, plant community and equilibrium are examined, with particular emphasis on theories on

J. C. Ritchie

1986-01-01

251

Climate Change and Regional Impacts  

NSDL National Science Digital Library

This short module is an overview of the different effects climate change produces in different regions of the United States. In addition to discussing impacts already being experienced, the module presents information on how climate scientists use specialized models and statistical techniques to estimate how regional climates are likely to change in the future.

Comet

2012-08-14

252

Human Engineering and Climate Change  

Microsoft Academic Search

Anthropogenic climate change is arguably one of the biggest problems that confront us today. There is ample evidence that climate change is likely to affect adversely many aspects of life for all people around the world, and that existing solutions such as geoengineering might be too risky and ordinary behavioural and market solutions might not be sufficient to mitigate climate

S. Matthew Liao; Anders Sandberg; Rebecca Roache

2012-01-01

253

Communicating Climate Change (Invited)  

NASA Astrophysics Data System (ADS)

I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

Mann, M. E.

2009-12-01

254

Uncertainty in Climate Change Modeling  

NSDL National Science Digital Library

Learn why trout are important indicators in Wisconsin’s changing climate, and why the uncertainty of global climate models complicates predictions about their survival, in this video produced by the Wisconsin Educational Communications Board.

Ecb, Wisconsin

2010-11-30

255

Abrupt climate change revisited  

NASA Astrophysics Data System (ADS)

Taken together, evidence from east Greenland's mountain moraines and results from atmospheric models appear to provide the answer to a question which has long dogged abrupt climate change research: namely, how were impacts of the Younger Dryas (YD), Dansgaard-Oeschger (D-O) and Heinrich (H) events transmitted so quickly and efficiently throughout the northern hemisphere and tropics? The answer appears to lie in extensive winter sea ice formation which created Siberian-like conditions in the regions surrounding the northern Atlantic. Not only would this account for the ultra cold conditions in the north, but, as suggested by models, it would have pushed the tropical rain belt southward and weakened the monsoons. The requisite abrupt changes in the extent of sea ice cover are of course best explained by the turning on and turning off of the Atlantic's conveyor circulation.

Broecker, Wallace S.

2006-12-01

256

UK Climate Change Risk Assessment and National  

E-print Network

UK Climate Change Risk Assessment and National Adaptation Programme Meg Patel Defra #12 change #12;Weather & climate impacts - economic, societal, environmental Water consumption per capita;Legislative Framework Climate Change Act 2008 Adaptation Reporting Power 2011 Climate Change Risk Assessment

Wirosoetisno, Djoko

257

Life-Cycle Assessment (LCA) as a Management Tool: An Emphasis on Electricity Generation, Global Climate Change, and Sustainability  

Microsoft Academic Search

The International Organization for Standardization (ISO) recommends the use of life-cycle assessment (LCA) to better comprehend\\u000a and reduce environmental impacts related to manufactured products and services offered to our society. The principles of LCA\\u000a are presented in the international standard ISO 14040; however, the implementation of the standard is not simple, and a couple\\u000a of studies have addressed the existing

Sergio Pacca

258

Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.  

NASA Astrophysics Data System (ADS)

The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic winter or reversed greenhouse conditions resulting from a draw-down of carbon dioxide after accelerated weathering and massive burial of organic carbon-rich sediments in the oceans.

Erba, E.

2005-12-01

259

Ecological Impacts of Climate Change  

NSDL National Science Digital Library

This 28-page downloadable booklet is based on Ecological Impacts of Climate Change (2009), a report by an independent panel of experts convened by the National Research Council. It explains general themes about the ecological consequences of climate change and identifies examples of ecological changes across the United States. Also available are powerpoints on current effects of climate changes. Each example is of a specific species. The powerpoints are tailored for different parts of the country.

2009-03-10

260

Climate change and marine life.  

PubMed

A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change. PMID:22791706

Richardson, Anthony J; Brown, Christopher J; Brander, Keith; Bruno, John F; Buckley, Lauren; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V; Kiessling, Wolfgang; Moore, Pippa J; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Schoeman, David S; Schwing, Frank; Sydeman, William J; Poloczanska, Elvira S

2012-12-23

261

Climate change and marine life  

PubMed Central

A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change. PMID:22791706

Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith; Bruno, John F.; Buckley, Lauren; Burrows, Michael T.; Duarte, Carlos M.; Halpern, Benjamin S.; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V.; Kiessling, Wolfgang; Moore, Pippa J.; O'Connor, Mary I.; Pandolfi, John M.; Parmesan, Camille; Schoeman, David S.; Schwing, Frank; Sydeman, William J.; Poloczanska, Elvira S.

2012-01-01

262

Earth's Climate and Global Change  

NSDL National Science Digital Library

With three levels to choose from on each page - beginner, intermediate or advanced - this site provides information on the way climate affects our world. Global climate, regional climate, and climate change are all explained. There is an important section on what controls climate change, like the sun, volcanic eruptions, greenhouse gases, snow, and ice. there is a module called Energy Choices and Climate Change that provides a new way to look at issues related to energy and climate change. In the scenarios within this module, you will be able to make decisions about the types and amount of energy used and see what effect your decisions have on the amount of greenhouse gases emitted to the atmosphere. Your goal is to reduce the amount of warming greenhouse gases added to the atmosphere from fossil fuel emissions while keeping costs within reason.

2004-05-11

263

Global Climate Change: Atmosphere  

NSDL National Science Digital Library

This site explains how climate change affects everything from stratospheric temperatures to the golden toad of Costa Rica. Graphs, articles, and maps monitor humankind's impact on the planet. The site features five thumbnails including two maps showing Global Outgoing Longwave Heat Radiation, and Global Reflected Shortwave Solar Radiation and three graphs entitled Atmospheric Carbon Dioxide Records from Mauna Loa, Hawaii (1958 - 2000), Global Average Near-Surface Temperatures - Monthly Anomalies (1961 - 2002), and Global Stratospheric and Tropospheric Temperature Anomalies (1979 - 2001). Each of these provides a link to a larger version of the visual and a detailed explanation. Each section has links to a glossary as well as links to questions about each section and additional references.

264

Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations  

Microsoft Academic Search

Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem)

Yun Qian; William I. Gustafson Jr; L. Ruby Leung; Steven J. Ghan

2009-01-01

265

Emerging Legal and Policy Strategies for Climate Change Adaptation: Opportunities and Constraints for Action in Africa  

Microsoft Academic Search

The climate of the Africa is changing. When the climate started changing and when it will end is subject to endless debate. Climate is important for development in Africa but natural climate fluctuations from autonomous climate cycles (such as those linked to the El Nino phenomenon) disrupt ecological, economic and social systems. The causes of climate of change include: continued

Emmanuel Kasimbazi

2012-01-01

266

Preparing for climate change.  

PubMed

There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and chlorofluorocarbons (CFCs) have been released in great quantities through their use in aerosol sprays, refrigerator fluids, and insulating foams. We can get rid of CFCs and curb the pollutants generating ozone, but it will be difficult to put the brake on either methane or nitrous oxide. And the reduction in carbon dioxide emissions will demand major changes in energy policy as well as action to slow deforestation. It appears that we are already committed to rising temperatures and sea levels. The question is by how much, in which areas? A number of things can be done to prepare for these changes: Governments must recognize that there is a problem; Better models must be worked out, especially to define where the greatest impacts from climate change and sea level rise will hit; Reference scenarios must be developed to see what the impacts are likely to be in ecological, agricultural, social and economic terms; Every country should develop "avoidance strategies" to minimize risk (for example, by not building on land likely to be flooded); We must cut down on the amount of greenhouse gases released into the atmosphere from human activities, by eliminating CFCs and adopting energy conservation programs and other measures to minimize CO2 release; Global agreements to protect the atmosphere are needed. PMID:12285901

Holdgate, M

1989-01-01

267

Climate Change and Arctic Ecosystems  

NSDL National Science Digital Library

In this activity, students learn about how climate change is affecting the Arctic ecosystem and then investigate how this change is impacting polar bear populations. Students analyze maps of Arctic sea ice, temperature graphs, and polar bear population data to answer questions about the impact of climate change on the Arctic ecosystem.

Change, Project A.; University, Purdue

268

Climate Change and Agriculture: Economic  

Microsoft Academic Search

Agriculture is arguably the most important sector of the economy that is highly dependent on climate. A large body of scientific data and models have been developed to predict the impacts of the contemporary and future climate. Since the first IPCC Assessment Report was published in 1990, substantial efforts have been directed toward understand - ing climate change impacts on

John M. Antle

2008-01-01

269

BC Agriculture Climate Change Adaptation  

E-print Network

BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

Pedersen, Tom

270

BC Agriculture Climate Change Adaptation  

E-print Network

BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report executive summary #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

Pedersen, Tom

271

Geomorphic responses to climatic change  

Microsoft Academic Search

The primary focus of this book is the response of landscapes to Pleistocene and Holocene climatic changes. During the past 40 ky the global climate has varied from full-glacial to interglacial. Global temperatures decreased between 40 and 20 ka culminating in full-glacial climatic conditions at 20 ka. This resulted in a sea level decline of 130 m. Only 8 to

W. B. Bull

1991-01-01

272

Demographic Approaches to Assessing Climate Change Impact  

E-print Network

between many species' life histories and aquatic hydropattern, which is the "normal" cycling of high-Breeding Frogs and Shifting Hydropatterns John H. Matthews, W. Chris Funk, and Cameron K. Ghalambor Applications ecosystems through their life histories, amphibians may be especially vulnerable to climate change impacts

Funk, W. Chris

273

Ground-water, population, and climate change  

NASA Astrophysics Data System (ADS)

On a world-wide basis, ground water constitutes about 50% of the total fresh water consumption. Ground water has, in general, a longer residence time and better quality characteristics than surface water. Through recharge processes, ground water is linked to the atmospheric and land-surface water cycle, thus making it -unless held underground as a fossil deposit- a renewable resource of immense value. A methodology to link regional climate to ground water is presented in this review article, along with a review of difficulties posed by the downscaling of synoptic-scale and mesoscale climatic patterns to regional aquifers. The article focuses on regional aquifer systems and on the methods to link large-scale climate-change processes to ground-water recharge, ground-water flow, and solute transport in a warmer climate. There are substantial uncertainties associated with climate-change scenarios, be they transient or equilibrium 2xCO2 cases. Those uncertainties arise primarily from the complexity of the Earth's climate system, and from complex, non-linear, climate feedbacks that arise in connection with a warming planet. The article introduces also a methodology to calculate the partial effects of climate change and population growth on hydrologic response. It is illustrated with one of the largest fresh-water aquifer in the USA, which shows that changes in ground-water use by population/economic growth may cause aquifer-response impacts of greater severity than those caused by global warming impacts.

Loaiciga, H. A.

2002-05-01

274

Can ice sheets trigger abrupt climatic change?  

SciTech Connect

The discovery in recent years of abrupt climatic changes in climate proxy records from Greenland ice cores and North Atlantic sediment cores, and from other sites around the world, has diverted attention from gradual insolation changes caused by Earth`s orbital variations to more rapid processes on Earth`s surface as forcing Quaternary climatic change. In particular, forcing by ice sheets has been quantified for a major ice stream that drained the Laurentide Ice Sheet along Hudson Strait. The history of these recent discoveries leading to an interest in ice sheets is reviewed, and a case is made that ice sheets may drive abrupt climatic change that is virtually synchronous worldwide. Attention is focused on abrupt inception and termination of a Quaternary glaciation cycle, abrupt changes recorded as stadials and interstadials within the cycle, abrupt changes in ice streams that trigger stadials and interstadials, and abrupt changes in the Laurentide Ice Sheet linked to effectively simultaneous abrupt changes in its ice streams. Remaining work needed to quantify further these changes is discussed. 90 refs., 14 figs.

Hughes, T. [Univ. of Maine, Orono, ME (United States)

1996-11-01

275

Climate change hastens population extinctions  

PubMed Central

Climate change is expected to alter the distribution and abundance of many species. Predictions of climate-induced population extinctions are supported by geographic range shifts that correspond to climatic warming, but few extinctions have been linked mechanistically to climate change. Here we show that extinctions of two populations of a checkerspot butterfly were hastened by increasing variability in precipitation, a phenomenon predicted by global climate models. We model checkerspot populations to show that changes in precipitation amplified population fluctuations, leading to rapid extinctions. As populations of checkerspots and other species become further isolated by habitat loss, climate change is likely to cause more extinctions, threatening both species diversity and critical ecosystem services. PMID:11972020

McLaughlin, John F.; Hellmann, Jessica J.; Boggs, Carol L.; Ehrlich, Paul R.

2002-01-01

276

Climate Change to the Nuclear Fuel Cycle: Expanding the spectral (14)CO(2) database for non-AMS Field Measurement Systems  

NASA Astrophysics Data System (ADS)

Accelerator Mass Spectrometry (AMS) is well known and universally employed for radiocarbon analysis but is not adaptable to in-situ field measurements limiting applications. 14CO2 is a key tracer for fossil fuel CO2 as well as for release of enriched 14CO2 characteristic of the nuclear fuel cycle with ?14CO2 values ranging from -1000 to ˜+500 per mil. However, to exploit the full value of in situ 14CO2 data in diverse climate change and nuclear fuel cycle applications, high data rate temporal and spatial field measurement sensors and systems are required. The development of non-AMS methods based on quantum cascade laser, cavity ring down and optogalvanic spectroscopy are emerging applications but not fully developed for field use or widely accepted. Spectral data for lasing transitions for 14CO2 are lacking in contrast to HITRAN data available for 12CO2 (626) and 13CO2 (636) (among other isotopologues 628, 638, etc.) in the spectral databases limiting development and innovation in non-AMS 14CO2 sensors and systems. We review the corpus of 14CO2 spectral data available in the literature and document grating tuned isotopic lasers (e.g., Freed 19901; Bradley et al., 19862), well suited for expanded spectral studies of 14CO2 and inclusion in the HITRAN database. Non-AMS 14CO2 approaches are reviewed with suggestions for future work to support field systems for 14CO2 measurements. Available isotopic lasers for 14CO2 collaborative studies are described.

Marino, B. D. V.; Odonnell, R. G.; Tolliver, D. E.

2014-06-01

277

Climate@Home: Crowdsourcing Climate Change Research  

NASA Astrophysics Data System (ADS)

Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

2011-12-01

278

Ground Water and Climate Change  

NASA Technical Reports Server (NTRS)

As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

2013-01-01

279

Congress Assesses Climate Change Paleodata  

NASA Astrophysics Data System (ADS)

The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

Bierly, Eugene W.

2006-08-01

280

Sorting Out Climate Change Science  

Microsoft Academic Search

Much debate has swirled around the idea of human-induced climate change for several decades now. The idea that human activities could alter the composition of the seemingly massive atmosphere seemed far- fetched, let alone change global-scale patterns in temperature and precipitation. Climate science has made dramatic leaps forward over these past decades to help paint a clearer and clearer picture

Michael A. Crimmins

281

Climate change and its consequences  

Microsoft Academic Search

Are humans changing the climate? In its latest assessment, scientists on the Intergovernmental Panel on Climate Change say we probably are, and the consequences could be serious. But uncertainties about risks and response costs make it difficult to formulate a specific long-term action plan. The potential risks the panel identifies, however, are sufficient to warrant additional actions beyond those now

M. A. Toman; J. Firor; J. Darmstadter

1996-01-01

282

Could climate change precipitate peace?  

Microsoft Academic Search

Growing interest in the social consequences of climate change has fueled speculation that global warming could lead to an increase in various forms of political violence. This article examines the effects of climate change on international conflict subsequent to the onset of European industrialization. Surprisingly, analysis at the system level suggests that global warming is associated with a reduction in

Erik Gartzke

2012-01-01

283

Market Strategies for Climate Change  

Microsoft Academic Search

The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on

Ans Kolk; Jonatan Pinkse

2004-01-01

284

Comedy, Economics, and Climate Change!  

E-print Network

Comedy, Economics, and Climate Change! Tuesday, October 22, 2013 12:00 - 1:30 p.m. University Club for reforming our tax system and tackling climate change with a revenue-neutral carbon tax that places higher, South Room Arizona State University, Tempe campus (lunch will be provided) Yoram Bauman Environmental

Zhang, Junshan

285

Generating Arguments About Climate Change  

NSDL National Science Digital Library

In this article from the NSTA Press Journal, Science Scope, students participate in a unit on global climate change by engaging in the process of scientific argumentation. The lessons presented in this article were created using the generate-an-argument model to help students understand climate change science. The article is free to both NSTA members and nonmembers.

Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

2012-03-01

286

Climatic Change An Interdisciplinary, International  

E-print Network

.1007/s10584-012-0579-1 "Grand Paris": regional landscape change to adapt city to climate warming V. #12;"Grand Paris": regional landscape change to adapt city to climate warming V. Masson & Y. Lion & A and the local microclimate. 1 Introduction The goal of this interdisciplinary study is to show how city planning

Ribes, Aurélien

287

Intergovernmental Panel on Climate Change  

NSDL National Science Digital Library

This organization was established by the World Meteorological Organization and the United Nations Environment Programme to assess scientific, technical and socio- economic information relevant for the understanding of climate change. The website contains reports, publications, technical papers, press releases, and official documents related to climate change.

World Meteorological Organization, United N.

288

Climate change and forest fires  

Microsoft Academic Search

This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity

M. D Flannigan; B. J Stocks; B. M Wotton

2000-01-01

289

Teaching about Global Climate Change  

ERIC Educational Resources Information Center

Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

Heffron, Susan Gallagher; Valmond, Kharra

2011-01-01

290

Generating Arguments about Climate Change  

ERIC Educational Resources Information Center

This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

2012-01-01

291

SPRING 2011 + Solving climate change  

E-print Network

SPRING 2011 + Solving climate change one continent at a time + Supporting former child soldiers in Uganda Education improves global stability Studying abroad changes lives #12;CEHD.UMN.EDU 1 from the dean

Blanchette, Robert A.

292

Tropical Cyclones and Climate Change  

E-print Network

Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude ...

Knutson, Thomas R.

293

AAAS - Global Climate Change Video  

NSDL National Science Digital Library

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change. The roles of teachers, scientists, policymakers, and concerned citizens in mitigating the changes are highlighted.

American Association for the Advancement of Science (AAAS); Aaas

294

1DANGEROUS CLIMATE CHANGE IN BRAZIL Dangerous Climate  

E-print Network

Ange And deforestAtion impACts in the AmAzon Change in Brazil #12;3DANGEROUS CLIMATE CHANGE IN BRAZIL April 2011Alysis of ClimAte ChAnge And deforestAtion impACts in the AmAzon Change in Brazil #12;4 DANGEROUS CLIMATE CHANGE. Deforestation, land use change and climate...................................................... 43 4. Summary

295

In situ permafrost thaw due to climate change drives holistic microbial community shifts with implications for methane cycling  

NASA Astrophysics Data System (ADS)

Thawing permafrost is a potentially significant source of radiative forcing feedback due to increased emissions of methane, a biogenic greenhouse gas (GHG). This study investigated changes in the microbial community along a permafrost thaw gradient at Stordalen Mire, Sweden using 16S rRNA gene amplicon and metagenomic methods. In situ measurements of geochemical parameters, including CH4 and C isotopes, enabled linkage of community dynamics to significant shifts in C balance. The thaw gradient ranged from intact at a palsa (low productivity and GHG emissions), through partially thawed in a bog (high productivity, low GHG emissions) to a completely thawed fen (high productivity and GHG emissions). Microbial assemblages in both the palsa and fen were highly diverse (in both richness and evenness), consistent with climax communities. The microbial community in the bog had distinctly lower diversity, characteristic of ecosystem disturbance. The palsa community was dominated by Acidobacteria and Proteobacteria, as is typical of a range of soils including permafrost. Methanogens dominated both the bog and fen and were most abundant within the zone of water table fluctuation. Inferring methanogens' production pathway from phylogeny showed a shift from mostly hydrogenotrophic methanogens in the bog towards acetotrophic methanogens in the fen. This corroborated porewater and flux emitted CH4 and CO2 carbon isotopic 13C signatures of CH4 and CO2. The fen, where the highest CH4 flux was recorded, was significantly richer in methanogenic archaea. A novel archaea, Candidatus Methanoflorens stordalenmirensis, was present at up to 70% relative abundance in the bog, enabling recovery of a population genome. The genome (and associated metaproteome) of 'M. stordalenmirensis' indicates that hydrogenotrophic methane production is its main energy conservation pathway. 'Methanoflorens' may be an indicator species of permafrost thaw, it is globally ubiquitous, and appears a major contributor to global methane production. Our results revealed a distinct difference in the microbial community structure and membership at each site, which can be directly associated with increasing methane emission and thaw state.

Mondav, Rhiannon; McCalley, Carmody; Hodgkins, Suzanne; Rich, Virginia; Frolking, Steve; Saleska, Scott; Barnes, Andrew; Chanton, Jeff; Crill, Patrick

2014-05-01

296

Climatic Change An Interdisciplinary,  

E-print Network

will reverse in the near future. 1 Introduction Since the end of the last ice age the earth's climate has enjoyed a period of relative stability. The earth is now in a period of rising global temperatures millenia, in an effort to estimate the natural variability of the earth's climate. These series often

Reale, Marco

297

CLIMATE CHANGE IMPACTS ON CALIFORNIA VEGETATION  

E-print Network

CLIMATE CHANGE IMPACTS ON CALIFORNIA VEGETATION: PHYSIOLOGY, LIFE HISTORY, AND ECOSYSTEM CHANGE A White Paper from the California Energy Commission's California Climate Change Center of the uncertainties with climate change effects on terrestrial ecosystems is understanding where transitions

298

The World Bank: Climate Change  

NSDL National Science Digital Library

Climate change continues to be of grave concern to many, and the World Bank is particularly concerned with the ramifications it will have on people in the developing world. Their Climate Change site is designed to provide an overview of their work on this vexing problem including information about their current projects, data sets, research papers, and books. Visitors should start by looking over their weblog, and then take a look at their "News" area. Here, they can learn about innovative carbon trading programs, engineering projects, and international agreements designed to mitigate the effects of climate change. The "Research" area has dozens of free publications, including the very relevant "Climate Resilient Cities" work, which discusses how city governments can better understand how to plan for the impact of climate change through sound urban planning.

299

Climate change and hydrology with emphasis on the Indian subcontinent  

Microsoft Academic Search

On a regional scale, some of the most profound impacts of climate change due to increases in greenhouse gases would probably be major changes in the hydrological cycle, in water availability, in agri­ cultural production and in the use of energy. This paper gives a brief overview of studies carried out on climate change and possible impacts on hydrology and

R. MEHROTRA

1995-01-01

300

Earth's Changing Climate  

NSDL National Science Digital Library

In 1896, Svante Arrhenius published the first model of the effects of industrial carbon dioxide (CO 2 ) on Earth's climate. Since the days of Arrhenius, scientists have moved from pencils to supercomputers. Calculations take hours or days instead

Constible, Juanita; Sandro, Luke; Lee Jr., Richard E.

2008-10-01

301

CLIMATE CHANGE: Past, Present and Future: Introduction  

E-print Network

CLIMATE CHANGE: Past, Present and Future: Introduction Richard Allan, Department of Meteorology r.p.allan@reading.ac.uk #12;Text Books and References · Henson, B., Rough Guide to Climate Change http://www.amazon.co.uk/Climate-Change-Guides-Reference- Titles/dp/1858281059 · Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, www

Allan, Richard P.

302

Climate Change Adaptation for Local Government  

E-print Network

Climate Change Adaptation for Local Government A Resource Guide June 2011 Jenny Fraser, Adaptation to Climate Change Team, Simon Fraser University #12;Page 1 of 26 Climate Change Adaptation for Local: RESOURCES THAT SUPPORT CLIMATE CHANGE ASSESSMENT 3. Past and Future Climate Change and Its Impacts 4

Pedersen, Tom

303

Global climate change: Policy implications for fisheries  

SciTech Connect

Several government agencies are evaluating policy options for addressing global climate change. These include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. For fisheries resources, policy questions address effects on international, national, and regional scales. Climate change variables expected to affect inland and offshore fisheries include temperature rise, changes in the hydrologic cycle, alterations in nutrient fluxes, and reduction and relocation of spawning and nursery habitat. These variables will affect resources at all levels of biological organization, including the genetic, organism, population, and ecosystem levels. In this context, changes in primary productivity, species composition in the food-web, migration, invasions, synchrony in biological cycles, shifts in utilization of niches, and problems of larvae entrainment in estuaries have been identified. Maintaining ecosystem robustness (i.e., high biodiversity) is another component of the problem. Action requires establishing priorities for information needs, determining appropriate temporal and spatial scales at which to model effects, and accounting for interactive changes in physical and biological cycles. A policy response can be derived when these results are integrated with social needs and human population constraints.

Gucinski, H.; Lackey, R.T.; Spence, B.C.

1990-01-01

304

Climate, carbon cycling, and deep-ocean ecosystems  

PubMed Central

Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy ?60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate. PMID:19901326

Smith, K. L.; Ruhl, H. A.; Bett, B. J.; Billett, D. S. M.; Lampitt, R. S.; Kaufmann, R. S.

2009-01-01

305

Dictionary of global climate change  

SciTech Connect

This book represents a revision of the climate change lexicon that was prepared for the Second World Climate Conference in 1990. The conference had 1400 participants and consisted of a scientific component followed by a ministerial meeting. To foster communication among the different constituencies, a lexicon of climate and climate change was prepared for the participants. The dictionary includes definitions and descriptions of most of the scientific terms, organizations, and programs related to the physical aspects of climate change. Nearly 40% of the material describes organized projects, experiments, or programs, mostly international. Some information on biological topics, such as the difference between C3 and C4 plants, is also included. The length of definitions and descriptions ranges from one line to one or more pages, with the longer descriptions usually related to programs.

Maunder, W.J. (ed.)

1992-01-01

306

Deep solar minimum and global climate changes  

NASA Astrophysics Data System (ADS)

This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

Hady, Ahmed A.

2013-05-01

307

Deep solar minimum and global Climate Changes  

NASA Astrophysics Data System (ADS)

This paper examines the deep minimum of solar cycle 23 and its likely impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 100 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activities are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

Abdel Hady, Ahmed

2012-07-01

308

Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern  

E-print Network

Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction et al., 2008). Understanding the patterns of climatic change across the tropics and its potential, USA Abstract Most studies that examine the influence of climatic change on flora and fauna have

Dunham, Amy E.

309

Atmospheric Composition Change: Climate-Chemistry Interactions  

NASA Technical Reports Server (NTRS)

Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.

Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

2011-01-01

310

Climate change, wine, and conservation  

PubMed Central

Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

2013-01-01

311

Climate change, wine, and conservation.  

PubMed

Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

2013-04-23

312

Climate change in Central America and Mexico: regional climate model validation and climate change projections  

NASA Astrophysics Data System (ADS)

Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

2011-08-01

313

BIOFUELS, AGRICULTURE AND CLIMATE CHANGE  

Microsoft Academic Search

In the context of ever-increasing petroleum prices combined with concerns about climate change, timing of adoption and rate of diffusion of land-based fuels and backstop technologies for transportation use are examined in this paper. A global model of land allocation joined with a Hotelling model has been developed. Using this framework, effects of climate and energy policies on world agricultural

Marie-Helene Hubert; Ujjayant Chakravorty; G. Cornelis van Kooten

2008-01-01

314

Climate change: Flawed science, or  

E-print Network

- Past climates 2. Impacts - Plants & animals - The seasons 3. Fundamental dilemma - Overpopulation-shaped valley of Glen Coe #12;Ice cores #12;Antarctic ice: the world's air museum Climate Records from changing seasons in a warming world. (2004) #12;Thompson, 2011 #12;Recent developments in LED technology

315

Extinction risk from climate change  

Microsoft Academic Search

Climate change over the past ~30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of

Chris D. Thomas; Alison Cameron; Rhys E. Green; Michel Bakkenes; Linda J. Beaumont; Yvonne C. Collingham; Barend F. N. Erasmus; Marinez Ferreira de Siqueira; Alan Grainger; Lee Hannah; Lesley Hughes; Brian Huntley; Albert S. van Jaarsveld; Guy F. Midgley; Lera Miles; Miguel A. Ortega-Huerta; A. Townsend Peterson; Oliver L. Phillips; Stephen E. Williams

2004-01-01

316

Climatic and Internal Controls on Ice Stream Surge Cycles: Changes in Ice Stream Width May Lead to Switches between Stable and Unstable Behavior  

NASA Astrophysics Data System (ADS)

One of the pivotal contributions of B. Kamb to glaciology is his quantitative model of glacier surges (Kamb, 1987). Kamb (1991) was also one of the earliest advocates of ice stream flow instability. The last decade yielded an increasingly abundant evidence of unstable and recent (~10 to ~1000 years) behavior of the Siple Coast ice streams, West Antarctica (e.g., Retzlaff and Bentley, 1993; Bindschadler and Vornberger, 1998; Fahnestock et al., 2000; Jacobel et al., 2000). This evidence provides a powerful incentive to study the possibility that soft-bedded ice streams experience surge-like cyclicity. Such cyclicity may have far-reaching consequences for near-future mass balance of the West Antarctic ice sheet (WAIS). Initiation/cessation of flow in a single ice stream is equivalent to approximately +/- 0.1 mm/yr of global sea level change. The glaciological constraints on recent ice-stream instability can be contrasted with geological evidence which indicates that ice streams affected the WAIS during the last glacial maximum (LGM) as well (e.g., Shipp and Anderson, 2001). Here we present results of numerical modeling of ice stream evolution that may help reconcile the short-term glaciological and long-term geological evidence. Our simulations show that relatively small ( ~10 km or less) changes in ice-stream width can switch ice stream flow between stable and unstable modes. Observations confirm that ice stream margins may migrate outward and/or inward, at rates varying between a few m/yr and 100 m/yr (e.g., Echelmeyer et al., 1993; Clarke et al., 1999). Our model produces two width-dependent flow modes: (1) a stable tributary-like flow with narrow widths and ice velocity at the balance velocity ( ~100 m/yr) and (2) an unstable ice-streaming mode (ice velocity exceeding the balance velocity) occurring when width is increased above a threshold value (close to the maximum width observed for the stopped Ice Stream C). A switch from the first to a second mode, equivalent to a 'purge' phase of glacier surges, leads in our model to a complete ice-stream shutdown within ~100 years or less. Based on these results we propose that under glacial climatic conditions (e.g., LGM) ice streams were narrower than today and stable. The post-LGM climatic warming may have facilitated widening of ice streams because warmer ice in inter-stream ridges facilitated basal melting near ice-stream margins, which then migrated outward. This climatically triggered widening and speed-up of ice-streams may be responsible for the collapse of the WAIS that occurred during the Holocene. At the present time, the post-LGM 'purge' part of the ice stream surge cycle may be coming to an end (e.g., stoppage of Siple Ice Stream ~500 years ago, stoppage of Ice Stream C ~150 years ago, current slowdown of Ice Stream B) because over-thinned ice streams are freezing to their beds.

Bougamont, M.; Tulaczyk, S.

2001-12-01

317

Adaptation to Climate Change; from Resilience to Transformation  

E-print Network

Adaptation to Climate Change; from Resilience to Transformation · Transformation and incremental change towards resilience · The adaptive cycle heuristic · Applying the heuristic in Mexico · A journey - with no normative conditionality #12;Adaptive Cycle heuristic: exploring risk-society relations and systems change

Botea, Adi

318

Climate Change, Soils, and Human Health  

NASA Astrophysics Data System (ADS)

According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Brevik, Eric C.

2013-04-01

319

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-print Network

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER SYSTEM Energy Commission's California Climate Change Center JULY 2012 CEC5002012020 Prepared for: California consideration of climate change effects on highelevation hydropower supply and demand in California. Artificial

320

Energy and global climate change: Why ORNL?  

SciTech Connect

Subtle signs of global warming have been detected in studies of the climate record of the past century after figuring in the cooling effects of sulfur emissions from volcanoes and human sources. According to the December 1995 report of the Intergovernment Panel on Climate Change (IPCC), the earth`s surface temperature has increased by about 0.2{degrees}C per decade since 1975. the panel projects about a 2{degrees} increase in global temperature by 2100. The IPCC report states that pollutants-greenhouse gases such as carbon dioxide and fluorocarbons that warm the globe and sulfur emission that cool it-are responsible for recent patterns of climate change. {open_quotes}The balance of evidence,{close_quotes} states the report, {open_quotes}suggests that there is a discrenible human influence on global climate.{close_quotes} This human influence stems largely from fossil fuel combustion, cement production, and the burning of forests, and could intensify as populations grow and developing countries increase energy production and industrial development. The two facts have caught the attention of the news media and public. First, 1995 was declared the hottest year in the 140-year-long record of reliable global measurements. Second, recent years have been marked by an unusually high number of extreme weather events, such as hurricanes, blizzards, and floods. In the 1990`s the world has become more aware of the prospect and possible impacts of global climate change. In the late 1950`s, global climate change was an unknown threat to the world`s environment and social systems. Except for a few ORNL researchers who had just completed their first briefing to the U.S. Atomic Energy Commission on the need to understand the global carbon cycle, the connection between rising carbon dioxide concentrations and potential changes in global climate was not common knowledge, nor were the consequences of climate change understood.

Farrell, M.P.

1995-12-31

321

A Survey of Climate Change Adaptation Planning  

E-print Network

A Survey of Climate Change Adaptation Planning THE H. JOHN HEINZ III CENTER FOR SCIENCE, ECONOMICS" "Cities Preparing for Climate Change: A Study of 6 Urban Regions" "Adapting to Climate Change and Climate Change: A Guidance Manual for Local Governments in New Zealand" "Climate Adaptation: Risk

Ford, Andrew

322

Climate Change and Tourism Dr David Viner  

E-print Network

Climate Change and Tourism éCLAT Dr David Viner Climatic Research Unit University of East Anglia d.viner@uea.ac.uk Tourism has a strong international dimension and is sensitive to any changes of climate that alter to attract visitors are likely to be vulnerable to climate change and the implementation of climate change

Feigon, Brooke

323

Natural and anthropogenic climate change  

SciTech Connect

This report consists of two parts: (1) progress for the period 9/1/91--3/31/92 and (2) the plan for the remaining period 4/1/92--8/31/92. The project includes two tasks: atmospheric radiation and improvement of climate models to evaluate the climatic effects of radiation changes. The atmospheric radiation task includes four subtasks: (1) Intercomparison of Radiation Codes in Climate Models (ICRCCM), (2) analysis of the water vapor continuum using line-by-line calculations to develop a parameterization for use in climate models, (3) parameterization of longwave radiation and (4) climate/radiation interactions of desert aerosols. Our effort in this period is focused on the first three subtasks. The improvement of climate models to evaluate the subtasks: (1) general circulation model study and (2) 2- D model development and application.

Ko, M.K.W.; Clough, S.A.; Molnar, G.I.; Iacono, M. (Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)); Wang, W.C. (Atmospheric and Environmental Research, Inc., Cambridge, MA (United States) State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center)

1992-03-01

324

Climate Change and Future World.  

National Technical Information Service (NTIS)

Climate change, as a security problem, is a global problem that could affect everyone, everywhere, and in many cases with negative repercussions. It constitutes a 'threat multiplier' that accelerates and amplifies existing trends, tensions, and instabilit...

S. Scanu

2013-01-01

325

Global Climate Change Key Indicators  

NSDL National Science Digital Library

This website charts measurement of key indicators of global climate change. Simple explanations and "What Does This Mean?" sections accompany each area of sea level, carbon dioxide concentration, global surface temperature, Arctic sea ice and land ice.

326

Taking Action on Climate Change  

NSDL National Science Digital Library

At this Government of Canada website, visitors can "learn about the science, impacts and adaptation to climate change and how individuals, governments, businesses, industry and communities take action by reducing greenhouse gas emissions." Through maps, graphs, and clear text, users can learn the basics of climate change and the greenhouse gases. The website details many of the ecological, economic, and global impacts of climate change. Users can find out about the One-Tonne Challenge, which encourages everyone to reduce their emissions. Teachers can find questions and activities to educate their students about climate change. The website also offers a calculator to estimate a user's current emissions, a series of videos instructing individuals how to create an energy efficient home and car, as well as publications and media resources. This site is also reviewed in the March 18, 2005 _NSDL Physical Sciences Report_.

327

Climate Change and Human Health  

NSDL National Science Digital Library

In this interactive, students explore, at their own pace, how global climate change may affect health issues. Issues include airborne diseases, developmental disorders, mental health disorders, vector-borne diseases and waterborne diseases.

Sciences, National I.; Domain, Teachers'

328

Climate Change is About... Water  

NSDL National Science Digital Library

Climate Change Is About...Water tells the story of climate change and impacts on water in Bolivia through a range of voices and multimedia materials. Case studies bring the explanatory analysis of vulnerability and the social, economic and cultural impacts of climate change vividly to life. A Teaching and Activities Guide is available to help educators and learners delve into this material, understand the realities of climate change for affected communities, apply this to their own experiences and encourage citizenship in responding to it. The resources are designed to be flexible and accessible for use with secondary-level students upwards, and can be adapted for self-led or teacher-led exploration in both formal and informal settings.

Center, The D.

329

Climate Change and Water Resources Management: A Federal Perspective  

USGS Publications Warehouse

Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

2009-01-01

330

Is this climate porn? How does climate change communication  

E-print Network

Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

Watson, Andrew

331

Is Climate Change Predictable? Really?  

SciTech Connect

This project is the first application of a completely different approach to climate modeling, in which new prognostic equations are used to directly compute the evolution of two-point correlations. This project addresses three questions that are critical for the credibility of the science base for climate prediction: (1) What is the variability spectrum at equilibrium? (2) What is the rate of relaxation when subjected to external perturbations? (3) Can variations due to natural processes be distinguished from those due to transient external forces? The technical approach starts with the evolution equation for the probability distribution function and arrives at a prognostic equation for ensemble-mean two-point correlations, bypassing the detailed weather calculation. This work will expand our basic understanding of the theoretical limits of climate prediction and stimulate new experiments to perform with conventional climate models. It will furnish statistical estimates that are inaccessible with conventional climate simulations and likely will raise important new questions about the very nature of climate change and about how (and whether) climate change can be predicted. Solid progress on such issues is vital to the credibility of the science base for climate change research and will provide policymakers evaluating tradeoffs among energy technology options and their attendant environmental and economic consequences.

Dannevik, W P; Rotman, D A

2005-11-14

332

Climate Change and Knowledge Communities  

Microsoft Academic Search

Climate change is a global problem whose particular characteristics mean that public-sector policy is fundamental in tackling it: a public-sector policy implemented world-wide that requires the co-operation of a large number of very different stakeholders. Innovative instruments are needed that can overcome the difficulties inherent in a global challenge of this magnitude. This paper looks at climate change as an

M. C. Gallastegui; Ibon Galarraga

2010-01-01

333

Global Climate Change Briefing Book  

NSDL National Science Digital Library

This website presents general resources and legislative issues related to global climate change. The site includes greenhouse gas sources, trends and effects on the environment, the text of the Kyoto Protocol, and a glossary with acronyms. Other topics such as legal, economic and energy issues are also covered, and links to the latest updates on climate change from the White House and the National Academy of Sciences are found here.

Service, Congressional R.; Environment, National C.

334

Climate change epidemiology: methodological challenges  

Microsoft Academic Search

Climate change is now thought to be unequivocal, while its potential effects on global and public health cannot be ignored.\\u000a However, the complexities of the causal webs, the dynamics of the interactions and unpredictability mean that climate change\\u000a presents new challenges to epidemiology and magnifies existing methodological problems. This article reviews a number of such\\u000a challenges, including topics such as

Wei W. Xun; Aneire E. Khan; Edwin Michael; Paolo Vineis

2010-01-01

335

Global Climate Change and National Security  

E-print Network

5/16/2014 1 Global Climate Change and National Security RADM Jon White Oceanographer and Navigator of the Navy Director, Task Force Climate Change 15 May 2014 Our climate is changing ... Our world is changing Change Increases with Time CLIMATE CHANGE CONSIDERATIONS Maintenance Actions Major Refurbishment

Howat, Ian M.

336

Global Climate Change Policy Book  

NSDL National Science Digital Library

This website summarizes the current administration's approach to global climate change, including the President's Program of Domestic and International Initiatives. These include a national goal to reduce emissions growth by 18 percent in the next ten years, substantially improve the emission reduction registry, protect and provide transferable credits for emissions reduction, increase funding for America's commitment to climate change, take action on the Science and Technology Review and a range of international climate initiatives. Descriptions of these programs, as well as their costs, are included.

House, The W.

337

Climate Change: The Sun's Role  

E-print Network

The sun's role in the earth's recent warming remains controversial even though there is a good deal of evidence to support the thesis that solar variations are a very significant factor in driving climate change both currently and in the past. This precis lays out the background and data needed to understand the basic scientific argument behind the contention that variations in solar output have a significant impact on current changes in climate. It also offers a simple, phenomenological approach for estimating the actual-as opposed to model dependent-magnitude of the sun's influence on climate.

Gerald E. Marsh

2007-06-23

338

Classifying climate change adaptation frameworks  

NASA Astrophysics Data System (ADS)

Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

Armstrong, Jennifer

2014-05-01

339

ASSESSING THE IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES  

Microsoft Academic Search

Climate change poses uncertainties to the supply and management of water resources. The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean surface temperature has increased 0.6 ± 0.2 o C since 1861, and predicts an increase of 2 to 4 o C over the next 100 years. Temperature increases also affect the hydrologic cycle by directly increasing

C. P. KUMAR

2012-01-01

340

Climate Change and Its Impact on Groundwater Resources  

Microsoft Academic Search

Climate change poses uncertainties to the supply and management of water resources. The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean surface temperature has increased 0.6 ± 0.2 o C since 1861, and predicts an increase of 2 to 4 o C over the next 100 years. Temperature increases also affect the hydrologic cycle by directly increasing

C. P. Kumar

2012-01-01

341

The role of carbon in climate change: a lifecyclethinking approach to a complex issue  

E-print Network

2, CH4, N2O, ... #12;The Carbon Cycle 5 UNESCO Chair in Life Cycle and Climate Change #12 carbonate rock forma>on (largely biogenic) The Carbon Cycle 6 UNESCO Chair in Life Cycle Anthropogenic carbon emissions #12;Fossil fuel burning 12 UNESCO Chair in Life Cycle and Climate

342

Climate Adaptation Futures: Second International Climate Change Adaptation Conference 2012  

E-print Network

Climate Adaptation Futures: Second International Climate Change Adaptation Conference 2012 to climate change! May 29­May 31, 2012, University of Arizona, Tucson, Arizona, USA Conference Web Site: http://www.adaptation.arizona.edu/adaptation, and by UNEP's Programme of Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA

Matthews, Adrian

343

The role of solar absorption in climate and climate change  

E-print Network

1 The role of solar absorption in climate and climate change William Collins UC Berkeley · Changes to surface and atmosphere by aerosols · Climate sensitivity to changes in aerosols and CO2 Research Boulder, Colorado, USA #12;2 Prior Research on Absorption and Climate Field Experiments: · Central

344

CLIMATE CHANGE IMPACTS ON THE UNITED STATES  

E-print Network

CLIMATE CHANGE IMPACTS ON THE UNITED STATES The Potential Consequences of Climate Variability SynthesisTeam Climate Change Impacts on the United States: The Potential Consequences of Climate Variability Assessment of the Potential Consequences of Climate Variability and Change is a landmark in the major ongoing

McCarl, Bruce A.

345

IN THIS ISSUE Regional Climate Change..............1  

E-print Network

IN THIS ISSUE · Regional Climate Change..............1 · From the Executive Director...........2 release of new climate change scenarios from the Canadian Regional Climate Model (CRCM) heralds of the fundamental questions remaining with respect to understanding climate change and even climate variability. And

Hamann, Andreas

346

Climate change and human security in Africa  

Microsoft Academic Search

Climate change poses a major threat to human security and poverty in Africa. In Africa, where livelihoods are mainly based on climate-dependent resources and environment, the effect of climate change will be disproportionate and severe. Moreover, Africa's capacity to adapt to and cope with the adverse effects of climate variability is generally weak. This article discusses how climate change affects

Asfaw Kumssa; John F. Jones

2010-01-01

347

Abrupt climate change: can society cope?  

Microsoft Academic Search

Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and

Mike Hulme

2003-01-01

348

GUNNISON BASIN CLIMATE CHANGE VULNERABILITY ASSESSMENT  

E-print Network

, develop effective adaptation strategies, and build resilience in the face of climate change. Vulnerability is collaborating with the Southwest Climate Change Initiative (SWCCI), whose aim is to provide climate adaptationGUNNISON BASIN CLIMATE CHANGE VULNERABILITY ASSESSMENT For the Gunnison Climate Working Group

Neff, Jason

349

Climate change in Central America and Mexico: regional climate model validation and climate change projections  

E-print Network

-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using climate change Á Biodiversity Á Central America 1 Introduction The Mexican and Central American landmass

Bradley, Raymond S.

350

The EPA Climate Change Kids Site  

NSDL National Science Digital Library

This interactive site features games, animations, and teachers' materials intended to introduce younger students to climate change. There is information about what climate change is, the difference between weather and climate, and the greenhouse effect. There are also materials on the climate system, ancient climates, and how scientists investigate climate. Other topics include discussions of whether people can actually change Earth's climate, what the potential effects might be, and what people can do to reduce the emission of greenhouse gases.

2003-01-29

351

Urban sites in climate change  

NASA Astrophysics Data System (ADS)

For the 21st century a significant rise of near surface air temperature is expected from IPCC global climate model simulations. The additional heat load associated with this warming will especially affect cities since it adds to the well-known urban heat island effect. With already more than half of the world's population living in cities and continuing urbanization highly expected, managing urban heat load will become even more important in future. To support urban planners in their effort to maintain or improve the quality of living in their city, detailed information on future urban climate on the residential scale is required. To pursue this question the 'Umweltamt der Stadt Frankfurt am Main' and the 'Deutscher Wetterdienst' (DWD, German Meteorological Service) built a cooperation. This contribution presents estimates of the impact of climate change on the heat load in Frankfurt am Main, Germany, using the urban scale climate model MUKLIMO3 and climate projections from different regional climate models for the region of Frankfurt. Ten different building structures were considered to realistically represent the spatial variability of the urban environment. The evaluation procedure combines the urban climate model simulations and the regional climate projections to calculate several heat load indices based on the exceedance of a temperature threshold. An evaluation of MUKLIMO3 results is carried out for the time period 1971 - 2000. The range of potential future heat load in Frankfurt is statistically analyzed using an ensemble of four different regional climate projections. Future work will examine the options of urban planning to mitigate the enhanced heat load expected from climate change.

Früh, B.; Kossmann, M.

2010-09-01

352

Climate change impacts on forestry  

SciTech Connect

Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

Kirilenko, A.P. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Earth System Science and Policy; Sedjo, R.A. [Resources for the Future, Washington, DC (United States)

2007-12-11

353

CLIMATE CHANGE AND WATER SUPPLY SECURITY  

E-print Network

CLIMATE CHANGE AND WATER SUPPLY SECURITY: Reconfiguring Groundwater Management to Reduce with climate change, present a significant planning challenge for California's water agencies. This research Drought Vulnerability A White Paper from the California Energy Commission's California Climate

354

A signature of persistent natural thermohaline circulation cycles in observed climate  

E-print Network

A signature of persistent natural thermohaline circulation cycles in observed climate Jeff R thermohaline circulation (THC). This relationship suggests we can attempt to reconstruct past THC changes), A signature of persistent natural thermohaline circulation cycles in observed climate, Geophys. Res. Lett., 32

355

Indigenous health and climate change.  

PubMed

Indigenous populations have been identified as vulnerable to climate change. This framing, however, is detached from the diverse geographies of how people experience, understand, and respond to climate-related health outcomes, and overlooks nonclimatic determinants. I reviewed research on indigenous health and climate change to capture place-based dimensions of vulnerability and broader determining factors. Studies focused primarily on Australia and the Arctic, and indicated significant adaptive capacity, with active responses to climate-related health risks. However, nonclimatic stresses including poverty, land dispossession, globalization, and associated sociocultural transitions challenge this adaptability. Addressing geographic gaps in existing studies alongside greater focus on indigenous conceptualizations on and approaches to health, examination of global-local interactions shaping local vulnerability, enhanced surveillance, and an evaluation of policy support opportunities are key foci for future research. PMID:22594718

Ford, James D

2012-07-01

356

To What Degree? What Science is Telling Us About Climate Change  

NSDL National Science Digital Library

What is science telling us about climate change? Leading climate change experts discuss one of the most complex scientific puzzles ever to confront humankind. Included is information on how climate change affects the carbon cycle, water cycle, and heat balance of the Earth.

357

The Science of Climate Change  

Microsoft Academic Search

limate change is a complex scientific problem, but its implications could have major consequences for the human species and indeed the rest of the world. Moreover, human actions to reduce climate change and adapt to its effects could also have major consequences. In order to make informed decisions about our responses to the issue, we require robust scientific un- derstanding

Richard A. Betts

358

Surviving climate change in the  

E-print Network

; IBM Global Business Services across other industries) have responded in a narrow fashion addressingSurviving climate change in the property & casualty industry by growing customer advocacy Insurance; The property & casualty (P&C) industry is facing significant change. Shifting demographics, evolving consumer

359

Conservation and Global Climate Change  

E-print Network

it back down to earth, creating a ``greenhouse effect'' that warms the earth's surface interannual how the Earth is responding, both from an abiotic perspective (including atmo- spheric changes for conservation under conditions of a changing climate. Finally, we end with a discussion of Go here for book

Landweber, Laura

360

FY 2002 GLOBAL CLIMATE CHANGE  

EPA Science Inventory

PRA Goal 6: Reducing Global and Transboundary Environmental Risks Objective 6.2: Greenhouse Gas Emissions Sub-Objective 6.2.3: Global Climate Change Research Activity F55 - Assessing the Consequences of Global Change on Ecosystem Health NRMRL R...

361

Faces of Climate Change: Introduction  

NSDL National Science Digital Library

This is the first of three short videos showcasing the dramatic changes in Alaska's marine ecosystems through interviews with scientists and Alaska Natives. This introduction to the impacts of climate change in Alaska includes interviews with Alaska Natives, commentary by scientists, and footage from Alaska's Arctic.

Dugan, Darcy; Noaa Sea Grant, Alaska C.

362

Climate Change: Meeting the Challenge  

ERIC Educational Resources Information Center

In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

Chance, Paul; Heward, William L.

2010-01-01

363

Climate Wisconsin: Temperature Change  

NSDL National Science Digital Library

This interactive visualization allows users to compare future projections of Wisconsin's average annual temperature with the actual changes of the last five decades. Text on the web page encourages students to think about the challenges Wisconsin could face if these changes occur.

Ryan, Finn; Pauli, Scott; Interactive, Pitch; Board, Wisconsin E.

364

Climate Variability and Climate Change: The New Climate Dice 10 November 2011  

E-print Network

1 Climate Variability and Climate Change: The New Climate Dice 10 November 2011 J. Hansen, M. Sato, coincident with increased global warming. The most dramatic and important change of the climate dice change is the natural variability of climate. How can a person discern long-term climate change, given

Hansen, James E.

365

Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate  

NASA Astrophysics Data System (ADS)

Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918-3932 Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004 Seneviratne, S.I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Teuling, A.J., S.I. Seneviratne, et al. 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 3, 722-727, doi:10.1038/ngeo950.

Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

2011-12-01

366

On the timing and mechanism of millennial-scale climate variability during the last glacial cycle  

Microsoft Academic Search

The demonstration that natural climate vari- ability during the last glacial cycle shifted rapidly be- tween remarkable extremes has dramatically revised the understanding of climate change. To further advance our understanding, research continues into the timings, geographic distribution, and nature of the millennial- scale climate extremes, and into the mechanisms for in- tra- and inter-hemispheric transmission of variability through the

E. J. Rohling; P. Challenor; P. A. Mayewski

2003-01-01

367

The Forcing Agents Underlying Climate Change An Alternative Scenario for Climate Change in the 21st  

E-print Network

The Forcing Agents Underlying Climate Change An Alternative Scenario for Climate Change in the 21st for the forcing agents that underlie climate change. These are climate forcings that exist today, compared climate projection is the "business-as-usual" scenario. It leads to dramatic climate change later

368

Global Climate Change Earth, 1972, Apollo 17,  

E-print Network

Variability in Rates of Climate Change IPCC WGI AR5. 2013 Chang. 2013 #12;Ecological Consequences of PastGlobal Climate Change Earth, 1972, Apollo 17, 29,000 km into space. #12;Natural Variation in Climate #12;Natural Variation in Climate Precession - change in the orientation of the rotational axis

Hansen, Andrew J.

369

Climate Change and Trout in Wisconsin Streams  

E-print Network

Climate Change and Trout in Wisconsin Streams Photo Matt Mitro W John J. Magnuson Center Climate Change Fishes and Climate Change Adaptation Magnuson Photo #12;The Invisible Present The Invisible in Weather versus Climate Change Magnuson 2009 #12;Magnuson 2006 The Invisible Present The Invisible Place

Sheridan, Jennifer

370

How overconfident are current climate change projections?  

Microsoft Academic Search

Climate change projections are an important input for decision-making about water resource management. These climate change projections are typically driven by greenhouse gas emission scenarios provided, for example, by the Intergovernmental Panel on Climate Change (IPCC) in the Special Report on Emission Scenarios (SRES). Here we show how relying on SRES scenarios can lead to overconfident climate change projections. Using

K. Keller; L. Miltich; A. Robinson; R. S. Tol

2006-01-01

371

Adapting to Climate Change: Research Challenges  

Microsoft Academic Search

Climate Change Impacts, Adaptation, and Vulnerability Community Coordination; Boulder, Colorado, 8-9 January 2009; In 2007, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) reaffirmed that anthropogenic climate change is under way, that future climate change is unavoidable, and that observed impacts can be attributed, at least in part, to anthropogenic warming. In addition, a growing number of

Jean Palutikof; Patricia Romero-Lankao

2009-01-01

372

Can Science Win Over Climate Change Skeptics?  

NSDL National Science Digital Library

Explaining global warming is complex, making it harder to argue against climate change skeptics. Teaching the nature of science may be a better way to help students and the public understand that climate change is real; highlight the benefits from climate change awareness; and provide concise, direct answers to critics of climate change theory.

Michael Dougherty (The American Society of Human Genetics;)

2009-07-25

373

Our Changing Climate 2012 Vulnerability & Adaptation  

E-print Network

understanding of climate change. A solid body of vital data is available to assist state and local leadersOur Changing Climate 2012 Vulnerability & Adaptation to the Increasing Risks from Climate Change in California A Summary Report on the Third Assessment from the California Climate Change Center #12;1 OUR

374

CLIMATE CHANGE 2013 The Physical Science Basis  

E-print Network

CLIMATE CHANGE 2013 The Physical Science Basis Summary for Policymakers WORKING GROUP I INTERGOVERNMENTAL PANEL ON climate change #12;#12;Climate Change 2013 The Physical Science Basis Working Group I be cited as: IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis

Stocker, Thomas

375

Climate Change: High Water Impacts and Adaptation  

E-print Network

Climate Change: High Water Impacts and Adaptation David S. Liebl and Kenneth W. Potter Co of global climate change­ WICCI Stormwater Working Group #12;Projected Climate Change 200-2100 What Global Change Probability Distribution of 14 Global Climate Model Projections D. Vimont, UW-Madison 90% chance

Sheridan, Jennifer

376

Prospective Climate Change Impact on Large Rivers  

E-print Network

1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

Julien, Pierre Y.

377

An iconic approach to representing climate change  

E-print Network

1 An iconic approach to representing climate change Saffron Jessica O'Neill A thesis submitted-experts to be meaningfully engaged with the issue of climate change. This thesis investigates the value of engaging non-experts with climate change at the individual level. Research demonstrates that individuals perceive climate change

Feigon, Brooke

378

Behavioral dimensions of climate change: drivers, responses,  

E-print Network

Overview Behavioral dimensions of climate change: drivers, responses, barriers, and interventions of global climate change, reviews the behavioral and psychological responses to its impacts (including for confronting the complex challenges posed by global climate change. The human dimensions of climate change

Pedersen, Tom

379

Fisheries and Global Climate Change  

NSDL National Science Digital Library

When populations of harvestable fish start to decline, managers look for explanations of the changes throughout the Earth system. In this activity, the impact of global climate change on marine and Great Lakes fish is considered. First, decline in the striped bass population of the North Atlantic, noted in the Downeaster Alexa song by Billy Joel, is examined with spreadsheet analysis and on-line searches of National Marine Fisheries Service databases. In a second investigation, ArcView generates a model of the Lake Erie depths that could be associated with global climate change (shallower water). Students identify fish species that use nearshore shallows for spawning and nursery areas, and speculate on the impact of the lower water. In both activities, the thermal niche of the species is considered as a factor in where fish populations may migrate with new climate regimes.

Fortner, Rosanne; Merry, Carolyn

2008-04-08

380

Interactive Quizzes on Climate Change  

NSDL National Science Digital Library

This website allows you to test your knowledge on 5 topics. Warm Up: Test your knowledge about global temperature change and its impact on Earth's climate; Freeze Frames: How much do you know about glaciers and ice caps?; Sea Change: Test your knowledge of sea level rise and its effect on global populations; It's A Gas: Test your knowledge of carbon dioxide and why it's so important to climate stability and our quality of life; Each test consists of 10 questions and are immediately scored. The final module, 10 Things You Never Knew About Earth: Discover some amazing and little-known facts about our home planet, allows you to learn facts about the Earth and Climate Change.

381

Changing the intellectual climate  

NASA Astrophysics Data System (ADS)

Calls for more broad-based, integrated, useful knowledge now abound in the world of global environmental change science. They evidence many scientists' desire to help humanity confront the momentous biophysical implications of its own actions. But they also reveal a limited conception of social science and virtually ignore the humanities. They thereby endorse a stunted conception of 'human dimensions' at a time when the challenges posed by global environmental change are increasing in magnitude, scale and scope. Here, we make the case for a richer conception predicated on broader intellectual engagement and identify some preconditions for its practical fulfilment. Interdisciplinary dialogue, we suggest, should engender plural representations of Earth's present and future that are reflective of divergent human values and aspirations. In turn, this might insure publics and decision-makers against overly narrow conceptions of what is possible and desirable as they consider the profound questions raised by global environmental change.

Castree, Noel; Adams, William M.; Barry, John; Brockington, Daniel; Büscher, Bram; Corbera, Esteve; Demeritt, David; Duffy, Rosaleen; Felt, Ulrike; Neves, Katja; Newell, Peter; Pellizzoni, Luigi; Rigby, Kate; Robbins, Paul; Robin, Libby; Rose, Deborah Bird; Ross, Andrew; Schlosberg, David; Sörlin, Sverker; West, Paige; Whitehead, Mark; Wynne, Brian

2014-09-01

382

Teaching About Global Climate Change  

NSDL National Science Digital Library

The Association of American Geographers (AAG) presents free, online professional development modules for geography and social studies teachers at middle and high school levels who are preparing to teach about global climate change. The modules provide information and materials including assessments, overview of the Earth system science, frequently asked questions about global climate change, examples of how to address common student misconceptions and an interactive resource library that delivers a resource list to your e-mail inbox. Free registration is required to access the complete materials and resources.

383

About sponsorship Climate change  

E-print Network

included sessions on climatology, dinosaurs, longevity and alien life SCOTT WING, a palaeo was one of a panel of experts on emissions of ancient greenhouse gases that gathered at the American. The main body of this evidence is changes in the chemical properties of the fossilised remains of ancient

Bice, Karen L.

384

Climate Change and Speciation of Mammals  

NSDL National Science Digital Library

This intriguing and informative interview highlights the keypoints in the climate change/ speciation debate. Whether climate change is a major factor in speciation, the author explains that new species of mammals evolve when significant climate change persists over very long periods of time, when mammals cant move to habitats that provide favorable climate, climate change leads to evolutionary changes or extinction, and fossils provide clues that can help predict effects on species in the current warming trend.

Anthony Barnosky (University of CaliforniaâÃÂÃÂBerkeley;)

2006-03-01

385

Public Engagement on Climate Change  

NASA Astrophysics Data System (ADS)

Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically literate public, many of whom have become increasingly skeptical of climate science the more they investigate the topic. Specific issues that this group has with climate science include concerns that science that cannot easily be separated from risk assessment and value judgments; concern that assessments (e.g. IPCC) have become a Maxwell's daemon for climate research; inadequate assessment of our ignorance of this complex scientific issue; elite scientists and scientific institutions losing credibility with the public; political exploitation of the public's lack of understanding; and concerns about the lack of public accountability of climate science and climate models that are being used as the basis for far reaching decisions and policies. Individuals in this group have the technical ability to understand and examine climate science arguments and are not prepared to cede judgment on this issue to the designated and self-proclaimed experts. This talk will describe my experiences in engaging with this group and what has been learned, both by myself and by participants in the discussion at Climate Etc.

Curry, J.

2011-12-01

386

The climate is changing and world popula4on is growing. These are increasing demands on the Earth's water resources and uncertainty on water availability. Advances in water cycle  

E-print Network

these challenges. With this in mind, JPL's Center for Climate Sciences February to May 2012 at JPL. A separate workshop on Water Resource Management water cycle science ques4ons; - integrate water cycle science across JPL

387

Sensitivity and Thresholds of Ecosystems to Abrupt Climate Change  

NASA Astrophysics Data System (ADS)

Rapid vegetational change is a hallmark of past abrupt climate change, as evidenced from Younger Dryas records in Europe, eastern North America, and the Pacific North American rim. The potential response of future ecosystems to abrupt climate change is targeted, with a focus on particular changes in the hydrological cycle. The vulnerability of ecosystems is notable when particular shifts cross thresholds of precipitation and temperature, as many plants and animals are adapted to specific climatic "windows". Significant forest species compositional changes occur at ecotonal boundaries, which are often the first locations to record a climatic response. Historical forest declines have been linked to stress, and even Pleistocene extinctions have been associated with human interaction at times of rapid climatic shifts. Environmental extremes are risky for reproductive stages, and result in nonlinearities. The role of humans in association with abrupt climate change suggests that many ecosystems may cross thresholds from which they will find it difficult to recover. Sectors particularly vulnerable will be reviewed.

Peteet, D. M.; Peteet, D. M.

2001-12-01

388

Coal in a changing climate  

SciTech Connect

The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

Lashof, D.A.; Delano, D.; Devine, J. (and others)

2007-02-15

389

United Nations Environment Programme: Climate Change  

NSDL National Science Digital Library

This portal provides access to information on the United Nations Environment Programme's (UNEP) initiatives on the issue of climate change. Materials include UNEP's areas of focus on addressing climate change (climate, finance, and business; emissions mitigation; carbon sequestration; vulnerability and adaptation to climate change; and others); links to UNEP Climate Change Centres; links to partner organizations; and links to information and media activities. There are also links to multimedia materials (posters, films, and video), printed publications on climate change, maps and graphics, and links to other organizations working on the issue of climate change.

390

Mars Recent Climate Change Workshop  

NASA Astrophysics Data System (ADS)

Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are presented in this NASA/CP and are available to the public at http://spa

Haberle, Robert M.; Owen, Sandra J.

2012-11-01

391

The origin of climate changes.  

PubMed

Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world. PMID:18819661

Delecluse, P

2008-08-01

392

Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change  

E-print Network

Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4) has resulted in a wider acceptance of global climate change climate extremes and change impacts. Uncertainties in process studies, climate models, and associated

393

PICUS v1.6 - enhancing the water cycle within a hybrid ecosystem model to assess the provision of drinking water in a changing climate  

NASA Astrophysics Data System (ADS)

The PICUS model is a hybrid ecosystem model which is based on a 3D patch model and a physiological stand level production model. The model includes, among others, a submodel of bark beetle disturbances in Norway spruce and a management module allowing any silvicultural treatment to be mimicked realistically. It has been tested intensively for its ability to realistically reproduce tree growth and stand dynamics in complex structured mixed and mono-species temperate forest ecosystems. In several applications the models capacity to generate relevant forest related attributes which were subsequently fed into indicator systems to assess sustainable forest management under current and future climatic conditions has been proven. However, the relatively coarse monthly temporal resolution of the driving climate data as well as the process resolution of the major water relations within the simulated ecosystem hampered the inclusion of more detailed physiologically based assessments of drought conditions and water provisioning ecosystem services. In this contribution we present the improved model version PICUS v1.6 focusing on the newly implemented logic for the water cycle calculations. Transpiration, evaporation from leave surfaces and the forest floor, snow cover and snow melt as well as soil water dynamics in several soil horizons are covered. In enhancing the model overarching goal was to retain the large-scale applicability by keeping the input requirements to a minimum while improving the physiological foundation of water related ecosystem processes. The new model version is tested against empirical time series data. Future model applications are outlined.

Schimmel, A.; Rammer, W.; Lexer, M. J.

2012-04-01

394

The Atlantic Climate Change Program  

SciTech Connect

The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

Molinari, R.L. (Atlantic Oceanographic and Meteorological Lab., Miami, FL (United States)); Battisti, D. (Univ. of Washington, Seattle, WA (United States)); Bryan, K. (Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)); Walsh, J. (Univ. of Illinois, Urbana, IL (United States))

1994-07-01

395

The Science of Abrupt Climate Change  

Microsoft Academic Search

The issue of abrupt climate change has been highlighted by a recent National Academy of Sciences (NRC) study as one of the most troubling potential aspects of future global climate change. The science of abrupt climate change originated in the discovery and study of huge climatic shifts during the last glacial period, particularly in and around the North Atlantic. We

J. T. Overpeck

2002-01-01

396

4, 289308, 2008 Climate change and  

E-print Network

CPD 4, 289­308, 2008 Climate change and rainstorms in East China M. Domroes and D. Schaefer Title forum of Climate of the Past Recent climate change affecting rainstorm occurrences? A case study in East­308, 2008 Climate change and rainstorms in East China M. Domroes and D. Schaefer Title Page Abstract

Boyer, Edmond

397

The basic science of anthropogenic climate change  

Microsoft Academic Search

This article presents the basic science of climate change upon which our concern of possible anthropogenic interference with the climate system is based. Where possible, those aspects of particular relevance to the study of climate change impact assessment will be highlighted to set the scene for the remaining articles in this issue, which focus on the effects of climate change

Kathy Maskell

1995-01-01

398

Perceptions of Climate Change 27 March 2011  

E-print Network

are causing global warming (or global climate disruption, as you please). It is hard to persuade peoplePerceptions of Climate Change 27 March 2011 This past winter, for the second year in a row, seemed seasonal climate change is stacking up against expectations. People's perception of climate change may

Hansen, James E.

399

Stormwater, Climate Change and Wisconsin's Coastal Communities  

E-print Network

Stormwater, Climate Change and Wisconsin's Coastal Communities Johnson Foundation at Wingspread · Precipitation and high water · Adapting to our changing climate · Assisting coastal communities Photo: WDNR #12 source of risk from changing climate. City of Green Bay watershed - #12;Predicted climate includes

Sheridan, Jennifer

400

Appendix L: Climate Change and Power Planning  

E-print Network

Page 1 Appendix L: Climate Change and Power Planning Power Committee Webinar June 3, 2009 June 3, 2009 2 Outline · Climate Change Data · Assessing impacts to the power system · Dealing with climate;Page 5 June 3, 2009 9 Outline · Climate Change Data · Assessing impacts to the power system · Dealing

401

Probabilistic Predictions of Regional Climate Change  

NASA Astrophysics Data System (ADS)

We present a methodology for quantifying the leading sources of uncertainty in climate change projections that allows more robust prediction of probability distribution functions (PDFs) for transient regional climate change than is possible, for example, with the multimodel ensemble in the the CMIP3 archive used for the IPCC Fourth Assessment. Uncertainty in equilibrium climate response has been systematically explored by varying uncertain parameters in the atmosphere, sea-ice and surface components in a ensemble of simulations with the third version of the Hadley Centre model coupled to a slab ocean. The ensemble is used to emulate the response for one million parameter combinations, ensuring robust prediction of the prior distributions of equilibrium response for this model. Posterior PDFs are estimated using a weighting scheme that calculates the likelihood for each model version, based upon its ability to reproduce a large set of observed seasonal-mean climate variables. Information from the CMIP3 simulations is used to assess the effect of structural uncertainty, and this is included as an additional variance in the weighting. The posterior distributions of equilibrium response are shown to be relatively robust to variation in key assumptions of the method. A time-scaling technique that maps equilibrium to transient change is then used to predict PDFs for transient regional climate change for specified emissions scenarios. The scaling uses a simple climate model (SCM), with global climate feedbacks and local response sampled from the equilibrium response, and other SCM parameters tuned to the response of other AOGCM ensembles. Use of the SCM allows efficient sampling of uncertainties not fully sampled by expensive GCM simulation, including uncertainty in aerosol radiative forcing, the rate of ocean heat uptake, and the strength of carbon-cycle feedbacks. Uncertainties arising from statistical components of the method, such as emulation or scaling, are quantified by validation with GCM ensemble output, and included as additional variance in our projections. The final step in the probabilistic projections is to downscale to 25km resolution over Europe. To do this we use statistical relationships relating coarse and fine scales obtained using an ensemble of perturbed versions of the HadRM3 regional model driven by an equivalent ensemble of HadCM3 global simulations. Our methodology allows us to assess the relative contributions from the major sources of uncertainty, including: parameter uncertainty, internal variability, carbon cycle uncertainty, scaling uncertainty, structural uncertainty, and downscaling. Although parameter uncertainty is generally the largest contributor, no one source of uncertainty is found to dominate. This methodology has recently been used for climate projections for the UK for the 21st century, and is more fully documented at:

Harris, G. R.; Sexton, D. M.; Booth, B. B.; Brown, K.; Collins, M.; Murphy, J. M.

2009-12-01

402

Delayed Seasonal Cycle and African Monsoon in a Warmer Climate  

E-print Network

Increasing greenhouse gases will change many aspects of the Earth's climate, from its annual mean to the frequency of extremes such as heat waves and droughts. Here we report that the current generation of climate models predicts a delay in the seasonal cycle of global rainfall and ocean temperature in response to increasing greenhouse gases, with important implications for the regional monsoons. In particular, the rainy season of the semi-arid African Sahel is projected to start later and become shorter: an undesirable change for local rainfed agriculture and pastoralism. Previous work has highlighted the uncertainty in this region's response to anthropogenic global warming: summer rainfall is predicted either to decrease or increase by up to 30% depending which model is used. The robust agreement across models on the seasonal distribution of rainfall changes signifies that the onset date and length of the rainy season should be more predictable than annual mean anomalies.

Biasutti, Michela

2009-01-01

403

Role of Biochar in Mitigation of Climate Change  

Microsoft Academic Search

By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present.

Johannes C. Lehmann; James E. Amonette; Kelli G. Roberts

2010-01-01

404

Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs.  

PubMed

Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2). PMID:22325430

Susca, Tiziana

2012-04-01

405

Perturbations to the River Nitrogen Cycling from the Historical Land Use and Climate Changes: the Susquehanna River Case Study with GFDL Land Model LM3-N  

NASA Astrophysics Data System (ADS)

We developed a regional version of the GFDL land model LM3-N to assess human influences on the nitrogen cycle in both terrestrial and aquatic ecosystems. The new features include integrated effects of point and non-point sources on river nitrogen loads, a denitrification module and stream microbial processes within the LM3's terrestrial and river component respectively. We have used the improved version to investigate the intertwined relationship between nitrogen dynamics and hydrological processes under different climate scenarios. We applied the modified model to the Susquehanna River basin, the largest of the watersheds in the northeastern U.S., draining an area of 71,220 square kilometers, at the resolution of 1/8 degree. Within the LM3's integrated modeling framework, we simulated stream NH4-N and DON loads in addition to NO3-N loads for the entire drainage network, which were verified using 20 year (1986-2005) river data from 6 long-term monitoring stations. Results suggest that mechanistic land-surface models like LM3, which are capable of capturing long-term hydrological cycles, allow for the simulation of inter-annual variations of stream nitrogen loadings caused by differences in weather patterns. Most of the non-point nitrogen inputs to the terrestrial ecosystem were stored in the vegetation and soil in the secondary land use, but they were removed by soil denitrification in the agricultural land, indicating that artificial nitrogen applications could drive substantial increase of N2O emission. Simulations using different idealized climate scenarios showed that after a series of dry years (e.g., 1961-1963) the median and upper 10 percent of the estimated river nitrogen loadings increase by 25 and 26 percent respectively, as compared to the loadings after a mean hydrological year (2005). This shows that prolonged drought periods could induce a significant increase of stream nutrient load in the post drought year due to the delayed release of the accumulated soil nitrogen during the drought periods. The above discussion points illustrate the critical role of historical climate patterns in addition to the increasing anthropogenic nutrient loads when assessing nutrient-related water quality problems and designing optimal nutrient loading controls.

Lee, M.; Malyshev, S.; Shevliakova, E.; Jaffe, P. R.

2013-12-01

406

Conservation, Development and Climate Change  

Microsoft Academic Search

Deforestation in Latin America, especially in the A mazon Basin, is a major source of greenhouse gases such as CO 2 which contribute to global warming. Protected area s play a vital role in minimizing forest loss and in supplyi ng key environmental services, including carbon sequestration and rainfall regulat ion, which mitigate the adverse impacts of climate change amidst

Anthony Hall

407

Climate change and knowledge politics  

Microsoft Academic Search

This paper addresses the paradox that although the Intergovernmental Panel on Climate Change has reached a broad consensus, various governments pursue different, if not opposing policies. This puzzle not only challenges the traditional belief that scientific knowledge is objective and can be more or less directly translated into political action, but also calls for a better understanding of the relation

Reiner Grundmann

2007-01-01

408

MAPPING CLIMATE CHANGE EXPOSURES, VULNERABILITIES,  

E-print Network

in both regions. Lack of car ownership was the major impact in creating such inequalities. Air pollution IN THE SAN FRANCISCO BAY AND FRESNO REGIONS A White Paper from the California Energy Commission's California Climate Change Center JULY 2012 CEC5002012041 Prepared for: California Energy Commission

409

Forests / Climate change persp ctive  

E-print Network

T Forests / Climate change persp ctive e 15The recent food price increases in international markets threaten food security and have led many researchers, policy makers and NGOs to ana- lyse them in order countries. Placing these spikes within the context of an upward trend opens new avenues for national

Paris-Sud XI, Université de

410

Impacts of Climate Change Animation  

NSDL National Science Digital Library

This site presents one of three animated films for schoolchildren, commissioned by the Great Barrier Reef Marine Park Authority. An emotive and visual animation conveys the effects climate change will have on marine ecosystems and suggests ways to minimize our impact.

2010-01-01

411

CLIMATE CHANGE AND N DEPOSITION  

EPA Science Inventory

This project investigates the potential influence of climate change on wet deposition of reduced nitrogen across the U.S. The concentration of ammonium-nitrogen in precipitation is known to increase with temperature, owing to temperature dependent ammonia source strengths (natur...

412

Forensic entomology and climatic change  

Microsoft Academic Search

Forensic entomology establishes the postmortem interval (PMI) by studying cadaveric fauna. The PMI today is still largely based on tables of insect succession on human cadavers compiled in the late 19th- or mid-20th centuries. In the last few years, however, the gradual warming of the climate has been changing faunal communities by favouring the presence of thermophilous species. To demonstrate

Margherita Turchetto; Stefano Vanin

2004-01-01

413

Climatic Change and Human Evolution.  

ERIC Educational Resources Information Center

Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

Garratt, John R.

1995-01-01

414

A Lesson on Climate Change.  

ERIC Educational Resources Information Center

This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

Lewis, Jim

415

Electric Vehicles Global Climate Change  

E-print Network

to global warming. The UKgovernment has just announced it is investing $1 billion in their developmentHot Topics Electric Vehicles Global Climate Change Green Building Hydraulic Fracturing Nuclear globally. These facilities will trap carbon emissions, which scientists believe maybe contributing

Sóbester, András

416

Responding to Climate Change Debate  

Microsoft Academic Search

Responding to Climate Change was the topic for the 2011 Big Issues Forum recently hosted by The University of Notre Dame Australia (UNDA). Panellists included Senator Scott Ludlam, Federal Greens Senator for WA; Melissa Parke MP, Federal Labor Member for Fremantle; Dr Dennis Jensen MP, Federal Liberal Member for Tangney and Dr Michael O’Leary, UNDA Lecturer in the School of

Leigh Dawson

2011-01-01

417

Climate Change Wildlife and Wildlands  

NSDL National Science Digital Library

This video focuses on the science of climate change and its impacts on wildlife on land and in the sea, and their habitats in the U.S. There are short sections on walruses, coral reefs, migrating birds and their breeding grounds, freshwater fish, bees, etc. Video concludes with some discussion about solutions, including reduce/recyle/reuse, energy conservation, backyard habitats, citizen scientists.

Service, U. S.; Program, U. S.

418

Climate Change: Evidence and Causes  

ERIC Educational Resources Information Center

The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

Wolff, Eric

2014-01-01

419

Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests  

NASA Astrophysics Data System (ADS)

The world’s forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

Bonan, Gordon B.

2008-06-01

420

Climate change and intertidal wetlands.  

PubMed

Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

Ross, Pauline M; Adam, Paul

2013-01-01

421

Inuit Observations of Climate Change  

NSDL National Science Digital Library

This video features changes in the land, sea, and animals that are being observed by the residents of Sachs Harbour, Northwest Territories, Canada â many of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists interview the residents and record their observations in order to deepen our understanding of climate change in the polar region. Background essay and discussion questions are included.

Wgbh/boston

422

Climate change impacts of US reactive nitrogen  

PubMed Central

Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at ?290 to ?510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just ?16 to ?95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change. PMID:22547815

Pinder, Robert W.; Davidson, Eric A.; Goodale, Christine L.; Greaver, Tara L.; Herrick, Jeffrey D.; Liu, Lingli

2012-01-01

423

Unit Plans: Earth's Climate Changes  

NSDL National Science Digital Library

Unit plans for Grades K-2 and 3-5 are a regular feature of the magazine Beyond Weather and the Water Cycle. The plans draw on articles and resources in a themed issue and are aligned with national science and language arts standards. This unit is designed to provide elementary students with the opportunity to investigate how the annual rings in trees help scientists learn about past climates. It uses hands-on experiences and nonfiction text to answer the unit question: How do trees help scientists learn about the past?

Fries-Gaither, Jessica

2011-07-01

424

Much of what we know about abrupt climate change and tipping points in the climate  

E-print Network

Much of what we know about abrupt climate change and tipping points in the climate system comes vegetation, it deals with the global nitrogen cycle only in a simplified fashion. Production of marine N2O the new possibilities. Only months after the 454 tech- nology became available, it was applied to mammoth

Stocker, Thomas

425

On the timing and mechanism of millennial-scale climate variability during the last glacial cycle  

Microsoft Academic Search

The demonstration that natural climate variability during the last glacial cycle shifted rapidly between remarkable extremes has dramatically revised the understanding of climate change. To further advance our understanding, research continues into the timings, geographic distribution, and nature of the millennial-scale climate extremes, and into the mechanisms for intra- and inter-hemispheric transmission of variability through the climate\\/ocean system. Complementing the

E. J. Rohling; P. Mayewski; P. Challenor

2003-01-01

426

Thermohaline circulations and global climate change  

SciTech Connect

Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO{sub 2}-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co{sub 2}, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.

Hanson, H.P.

1992-01-01

427

Thermohaline circulations and global climate change  

SciTech Connect

This report discusses research activities conducted during the period 15 January 1992--14 December 1992. Thermohaline Circulations and Global Climate Change is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany C0[sub 2]-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced C0[sub 2], changes in the rate of deep-water production are important to future climates. Since deep-water Production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 11 months has proceeded according to the continuation discussion of last January and several new results have arisen.

Hanson, H.P.

1992-01-01

428

Chapter 10: Biological Impacts of ClimateChange 1.Nature of Climate Change  

E-print Network

Chapter 10: Biological Impacts of ClimateChange 1.Nature of Climate Change 2.Current and Future the industrial era Human and Natural Drivers of ClimateChange IPCC 2007 #12;Warming of the climate system, widespread melting of snow and ice, and rising global mean sea level. Direct Observations of Recent ClimateChange

Gottgens, Hans

429

Engaging the Public in Climate Change Research  

NASA Astrophysics Data System (ADS)

Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, currently finishing its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. In anticipation of the 2010 campaign, Project BudBurst has developed and released innovative and exciting projects with a special focus in the field of phenology and climate change. The collaborations between Project BudBurst and other organizations are producing unique campaigns for engaging the public in environmental research. The special project foci include on-the-spot and in-the-field data reporting via mobile phones, an emphasis on urban tree phenology data, as well as monitoring of native gardens across the US National Wildlife Refuge System. This presentation will provide an overview of Project Budburst and the new special projects, and share results from 2007-2009. Project BudBurst is managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, and the University of Montana.

Meymaris, K. K.; Henderson, S.; Alaback, P.; Havens, K.; Schwarz Ballard, J.

2009-12-01

430

A common-sense climate index: is climate changing noticeably?  

NASA Technical Reports Server (NTRS)

We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

1998-01-01

431

A common-sense climate index: Is climate changing noticeably?  

PubMed Central

We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than “business-as-usual” scenarios. PMID:9539699

Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

1998-01-01

432

Climate change and allergic disease.  

PubMed

Allergies are prevalent throughout the United States and impose a substantial quality of life and economic burden. The potential effect of climate change has an impact on allergic disorders through variability of aeroallergens, food allergens and insect-based allergic venoms. Data suggest allergies (ocular and nasal allergies, allergic asthma and sinusitis) have increased in the United States and that there are changes in allergies to stinging insect populations (vespids, apids and fire ants). The cause of this upward trend is unknown, but any climate change may induce augmentation of this trend; the subspecialty of allergy and immunology needs to be keenly aware of potential issues that are projected for the near and not so distant future. PMID:23065327

Bielory, Leonard; Lyons, Kevin; Goldberg, Robert

2012-12-01

433

Global Climate Change and Agriculture  

SciTech Connect

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

Izaurralde, Roberto C.

2009-01-01

434

Climate Science in a Nutshell: Climate Change Around the World?  

NSDL National Science Digital Library

This video is part of the Climate Science in a Nutshell video series. This short video looks at the effects of climate change happening right now around the globe, including: more extreme weather events, droughts, forest fires, land use changes, altered ranges of disease-carrying insects, and the loss of some agricultural products. It concludes with a discussion of the differences among weather, climate variability and climate change.

Nutshell, Planet; Network, Utah E.

435

Risk management and climate change  

NASA Astrophysics Data System (ADS)

The selection of climate policies should be an exercise in risk management reflecting the many relevant sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution of exposure, vulnerability or possible outcomes. Hence policy analysis cannot effectively evaluate alternatives using standard approaches, such as expected utility theory and benefit-cost analysis. This Perspective highlights the value of robust decision-making tools designed for situations such as evaluating climate policies, where consensus on probability distributions is not available and stakeholders differ in their degree of risk tolerance. A broader risk-management approach enables a range of possible outcomes to be examined, as well as the uncertainty surrounding their likelihoods.

Kunreuther, Howard; Heal, Geoffrey; Allen, Myles; Edenhofer, Ottmar; Field, Christopher B.; Yohe, Gary

2013-05-01

436

Earth's Changing Climate: Natural Variation and Human Impact  

NSDL National Science Digital Library

This article looks at the content knowledge teachers will need to prepare young students for later introduction of the fourth essential principle of the climate sciences, which is "Climate varies over space and time through both natural and man-made processes." The author describes the concepts that underlie the principle, provides maps and visuals from the federal agencies that monitor weather and climate changes, and identifies online resources for the teacher. The free, online magazine Beyond Weather and the Water Cycle is structured on the seven essential principles of the climate sciences, which are required for climate literacy.

Lightle, Kimberly

2011-07-01

437

Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment  

Microsoft Academic Search

We developed a complex Earth system model by coupling terrestrial and oceanic carbon cycle components into the Bergen Climate Model. For this study, we have generated two model simulations (one with climate change inclusions and the other without) to study the large scale climate and carbon cycle variability as well as its feedback for the period 1850-2100. The simulations are

J. F. Tjiputra; K. Assmann; M. Bentsen; I. Bethke; O. H. Otterâ; C. Sturm; C. Heinze

2010-01-01

438

Bergen earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment  

Microsoft Academic Search

A complex earth system model is developed by coupling terrestrial and oceanic carbon cycle models into the Bergen Climate Model. Two model simulations (one with climate change inclusions and the other without) are generated to study the large scale climate and carbon cycle variability as well as its feedback for the period 1850-2100. The simulations are performed based on historical

J. F. Tjiputra; K. Assmann; M. Bentsen; I. Bethke; O. H. Otterâ; C. Sturm; C. Heinze

2009-01-01

439

Ecosystem Responses to Global Climate Change: Moving Beyond Color Mapping  

NSDL National Science Digital Library

This peer-reviewed article from BioScience is on the effects of climate change on ecosystems. Current assessments of climate-change effects on ecosystems use two key approaches: (1) empirical synthesis and model