Note: This page contains sample records for the topic cycle climate change from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

GLOBAL CARBON CYCLE AND CLIMATE CHANGE  

EPA Science Inventory

The production of greenhouse gases due to anthropogenic activities may have begun to change the global climate. he global carbon cycle plays a significant role in projected climate change. owever, considerable uncertainty exists regarding pools and flux in the global cycle. iven ...

2

Positive feedback between future climate change and the carbon cycle  

Microsoft Academic Search

Future climate change due to increased atmospheric CO2 may affect land and ocean efficiency to absorb atmospheric CO2. Here, using climate and carbon three-dimensional models forced by a 1% per year increase in atmospheric CO2, we show that there is a positive feedback between the climate system and the carbon cycle. Climate change reduces land and ocean uptake of CO2,

Pierre Friedlingstein; Laurent Bopp; Philippe Ciais; Jean-Louis Dufresne; Laurent Fairhead; Hervé LeTreut; Patrick Monfray; James Orr

2001-01-01

3

Climate System Impacts of the Changing Nitrogen Cycle (Invited)  

NASA Astrophysics Data System (ADS)

The bio-atmospheric exchange of reactive nitrogen has changed three to five fold since 1850 as a result of intensified fossil fuel use and agriculture. The changing nitrogen cycle is poised at the crossroads of climate change, air and water quality, agriculture, and sustainability. The carbon cycle has been in the limelight of public attention because of the importance of carbon dioxide as a greenhouse gas. Yet, the nitrogen cycle is central to the atmospheric concentrations of four of the top five greenhouse gases, carbon dioxide, methane, tropospheric ozone, and nitrous oxide, and to the concentration of atmospheric aerosols that provide radiative cooling offsets to the net positive radiative forcing that drives the warming of the globe. I evaluate the quantitative impact of the nitrogen cycle on each of greenhouse gases and on aerosol concentrations to lay the groundwork for further systematic study of the impact of the nitrogen cycle on the climate system.

Holland, E. A.

2010-12-01

4

Climate Change and Expected Impacts on the Global Water Cycle  

NASA Technical Reports Server (NTRS)

How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

Rind, David; Hansen, James E. (Technical Monitor)

2002-01-01

5

Constraints on future changes in climate and the hydrologic cycle  

Microsoft Academic Search

What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective,

Myles R. Allen; William J. Ingram

2002-01-01

6

Climate change impact on the carbon cycle in Russian peatlands  

NASA Astrophysics Data System (ADS)

Dynamic compartment model with annual time resolution of carbon cycle functioning with elements of nitrogen and water cycles for three basic types of peatlands (oligotrophic, mesotrophic, eutrophic) is designed and verified based on data for several peatland ecosystems from Russian European part and Western Siberia as well as on estimates of relative areas occupied by these types in each of wetland provinces marked by Kats (1970). Flows between three main reservoirs and input-output fluxes can have donor-, recipient-, Volterra-controlled forms or be saturation functions of storages in participating reservoirs. Possible steady states of combined cycles allow to distinguish forest, forest-swamp and swamp for each of three types of peatland ecosystems as stable equilibria. Stability and bifurcation analysis of the dynamic model, as well as numerical modeling of transient non-equilibrium dynamic regimes, is carried out in the space of three parameters corresponding to intensities of atmospheric carbon assimilation by vegetation, output runoff from soils and litter, decay of dead organic matter by animals and microorganisms. These parameters depend on climatic magnitudes - annual temperature and total precipitation, soil moisture, availability of nitrogen in the litterfall. Atmospheric CO2 concentration increase can lead to appearance of oscillations in system compartments or to transition into other steady states depending on two other parameter values. Numerical simulations and analytical findings allow establish stability boundaries of each peatland type as an equilibrium of the model, and to calculate critical values of external parameters for which stable functioning of matter cycles is provided. Change in climatic or human perturbation parameters initiates a shift in the model parameter space corresponding to the temporal evolution of carbon cycle capable to change the ecosystem state significantly. Estimations of relative areas occupied by peatland types in some regions of European Russia and Western Siberia help to make predictions on the contribution of large peatland regions to the carbon cycle dynamics at regional and global scales and clarify future biotic contribution into carbon emissions from peatland ecosystems to the atmosphere under several CO2 doubling climate change scenarios taken as an output of different climate models. Changes in areas occupied by oligotrophic, mesotrophic and eutrophic peatlands in wetland provinces under these scenarios are also studied. This work is supported by the program of the Earth Sciences Department of the Russian Academy of Sciences "Physical and chemical processes in atmosphere and on Earth surface determining climate change", projects 09-01-226a and 09-05-00153a of the Russian Foundation for Basic Research.

Zavalishin, N. N.

2009-04-01

7

Arctic Ocean shelf biogeochemical cycling under climate change  

NASA Astrophysics Data System (ADS)

Changes to Arctic Ocean biogeochemistry will result from a complex array of climate and chemical perturbations over the next decades. Changes to freshwater and nutrient supply through ice melt and continental runoff; warming of the ocean and an increasing ocean acidification through partial equilibrium with a rising anthropogenic CO2 load will change the nature of Arctic Ocean ecological and biogeochemical coupling. This is no more apparent on the shelf regions where there is strong influence from land sources of freshwater and total alkalinity. This presentation will document our combined approach of studying Arctic biogeochemical change through coupled observational, experimental and modelling campaigns. We have identified large changes in recent anthropogenic carbon transport to the Arctic and have characterised the associated regional and water mass ocean acidification. We have determined, through targeted Arctic pelagic ecosystem perturbations experiments, changes to ecosystem structure, succession and biogeochemical cycling under high CO2. Observations have been incorporated into regional, coupled physical-ecosystem-carbon biogeochemical models (informed at the boundaries by downscaled global earth system models) to develop scenarios of change in biogeochemical pathways. We have identified large regional variability in ocean acidification that is shown to impact on shelf biogeochemistry, ecosystems and climate feedbacks in the Arctic Ocean.

Bellerby, Richard; Silyakova, Anna; Slagstad, Dag

2014-05-01

8

Long-term changes of the diurnal temperature cycle: implications about mechanisms of global climate change  

Microsoft Academic Search

We use a global climate model to investigate the impact of a wide range of radiative forcing and feedback mechanisms on the diurnal cycle of surface air temperature. This allows us not only to rule out many potential explanations for observed diurnal changes, but to infer fundamental information concerning the nature and location of the principal global climate forcings of

J. Hansen; M. Sato; R. Ruedy

1995-01-01

9

Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

SciTech Connect

In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO2 reaches 1423 ppmv. In our simulation, the prescribed cumulative emission since pre-industrial period is about 5400 Gt-C by the end of 23rd century. At year 2300, nearly 45 % of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

2005-06-13

10

Effects of the climate change in the hydrologic cycle  

NASA Astrophysics Data System (ADS)

Among the different effects resulting from the Climate Change around the world related to the water cycle those that account more are the drought and the flooding. Also the water supply sources is expected to diminished or polluted, wetlands tend to disappear and aquatic environments degrade, population is expected to be displaced because of the increase in sea level in deltaic zones and a lowering in health standards related to water diseases due to extreme meteorological phenomena and new climatic conditions. That the climate has changed in México is a fact and its features are the increase in seasonal temperature (winter and summer) as well as a reduction in summer precipitation in central and northern Mexico coupled to an increase in winter in the northwestern regions. More frequent severe storms in different Mexican regions (southeastern and central Mexico) and in urban areas like Mexico City and the gradual reduction in the water flowing in rivers are also evidence of this change. The National Water Commission has developed studies using maximum and minimum temperature and daily precipitation analysis from a new data base called Maya v1 which accounts for a regular network that covers the entire country. Also coastal aquifer studies, hurricane strikes incidence and identification of specific areas in water basins with major vulnerability (closely related to urban and rural settlements invading floodplains and water courses) are underway. Some studies and actions that need to be developed and taken are indicated and an example of coordinated work is shown. In addition a set of adaptation measures to take according to the regional situation is described. Such measures should focus on the present situation as well as for the future and need to be studied and foreseen now. If such measures are quickly taken in those vulnerable areas the costs they represent will be less compared with the costs of the damages due to the presence of the hydrometeorological phenomena.

Arreguin Cortés, F.; López Pérez, M.

2010-03-01

11

Understanding and Predicting Water and Energy Cycle Changes in NOAA Climate Program  

NASA Astrophysics Data System (ADS)

The NOAA Climate Program leads and coordinates climate activities across all line offices in NOAA. The objectives of NOAA Climate Program are: 1) to describe and understand the state of the climate system through integrated observations, monitoring, and data management, 2) to understand and predict climate variability and change from weeks to decades to a century, and 3) to improve the ability of society to plan for and respond to climate variability and change. The NOAA Climate Program consists of three major programs: Climate Observation and Monitoring, Climate Research and Modeling and Climate Service Development. Understanding and predicting water & energy cycle variability and changes and their consequences to the society have been major undertaking within NOAA Climate Program. Climate variability and change profoundly influence the health, prosperity, and well-being of the people of the United States, as well as all other nations of the world, with vital global economic and security implications. NOAA Climate Program is currently working on a new strategy to develop an improved capability and better climate services to plan for and adapt to climate variability and change. Understanding and predicting water & energy cycle variability and changes will be an important component in NOAA's new strategy for improved climate services. NOAA is willing to work with national and international partners to improve climate services in the changing climate.

Koblinsky, C. J.

2008-05-01

12

Linking climate change to population cycles of hares and lynx.  

PubMed

The classic 10-year population cycle of snowshoe hares (Lepus americanus, Erxleben 1777) and Canada lynx (Lynx canadensis, Kerr 1792) in the boreal forests of North America has drawn much attention from both population and community ecologists worldwide; however, the ecological mechanisms driving the 10-year cyclic dynamic pattern are not fully revealed yet. In this study, by the use of historic fur harvest data, we constructed a series of generalized additive models to study the effects of density dependence, predation, and climate (both global climate indices of North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI) and northern hemispheric temperature (NHT) and local weather data including temperature, rainfall, and snow). We identified several key pathways from global and local climate to lynx with various time lags: rainfall shows a negative, and snow shows a positive effect on lynx; NHT and NAO negatively affect lynx through their positive effect on rainfall and negative effect on snow; SOI positively affects lynx through its negative effect on rainfall. Direct or delayed density dependency effects, the prey effect of hare on lynx and a 2-year delayed negative effect of lynx on hare (defined as asymmetric predation) were found. The simulated population dynamics is well fitted to the observed long-term fluctuations of hare and lynx populations. Through simulation, we find density dependency and asymmetric predation, only producing damped oscillation, are necessary but not sufficient factors in causing the observed 10-year cycles; while extrinsic climate factors are important in producing and modifying the sustained cycles. Two recent population declines of lynx (1940-1955 and after 1980) were likely caused by ongoing climate warming indirectly. Our results provide an alternative explanation to the mechanism of the 10-year cycles, and there is a need for further investigation on links between disappearance of population cycles and global warming in hare-lynx system. PMID:23846828

Yan, Chuan; Stenseth, Nils Chr; Krebs, Charles J; Zhang, Zhibin

2013-11-01

13

Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

SciTech Connect

In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

2005-02-17

14

Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)  

NASA Astrophysics Data System (ADS)

The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

2013-12-01

15

Long-term changes of the diurnal temperature cycle: implications about mechanisms of global climate change  

NASA Astrophysics Data System (ADS)

We use a global climate model to investigate the impact of a wide range of radiative forcing and feedback mechanisms on the diurnal cycle of surface air temperature. This allows us not only to rule out many potential explanations for observed diurnal changes, but to infer fundamental information concerning the nature and location of the principal global climate forcings of this century. We conclude that the observed changes of the diurnal cycle result neither from natural climate variability nor a globally-distributed forcing, but rather they require the combination of a (negative) radiative forcing located primarily over continental regions together with the known globally-distributed forcing due to anthropogenic greenhouse gases. Tropospheric aerosols can account for part of the continentally-located forcing, but alone they do not damp the diurnal cycle as observed. Only an increase of continental cloud cover, possibly a consequence of anthropogenic aerosols, can damp the diurnal cycle by an amount comparable to observations. A corollary of these results is quantitative confirmation of the widely held suspicion that anthropogenic greenhouse gas warming has been substantially counterbalanced by a forced cooling. Under the assumption that the cloud change is sulfate driven, a further implication is that the net rate of global warming is likely to increase substantially in coming years. We note that, on the long run, the daily maximum temperature will increase by an amount not much less than the increase of the mean temperature.

Hansen, J.; Sato, M.; Ruedy, R.

16

How positive is the feedback between climate change and the carbon cycle?  

Microsoft Academic Search

Future climate change induced by atmospheric emissions of greenhouse gases is believed to have a large impact on the global carbon cycle. Several offline studies focusing either on the marine or on the terrestrial carbon cycle highlighted such potential effects. Two recent online studies, using ocean-atmosphere general circulation models coupled to land and ocean carbon cycle models, in- vestigated in

P. FRIEDLINGSTEIN; J.-L. DUFRESNE; P. M. COX; P. RAYNER

2003-01-01

17

Freeze thaw cycles in Toronto, Canada in a changing climate  

NASA Astrophysics Data System (ADS)

Freeze thaw cycles are examined in Toronto Canada. Using data from 1960 to 1989 for three Toronto area weather stations, trends in freeze thaw activity, the relationship to mean monthly temperature and projections of freeze thaw activity are examined. For downtown Toronto the annual frequency of freeze thaw cycles is decreasing significantly, most notably in the shoulder months of October and April. At the Pearson International Airport and the Toronto Island Airport similar annual trends were not found, however there was evidence of decreased freeze thaw activity in April and October. Polynomial curve fitting provided functional relationships between mean monthly temperature and freeze thaw activity. These relationships enabled the assessment of freeze thaw activity under synthetic warming conditions. The results of this analysis show that the warming of the magnitude typically projected for the rest of this century will not likely generate a significant change in the freeze thaw activity although there are indications that the freeze thaw season will contract.

Ho, E.; Gough, W. A.

2006-01-01

18

How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change?  

EPA Science Inventory

We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...

19

Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks  

SciTech Connect

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

Erickson III, David J [ORNL

2011-01-01

20

Long-term climate change and the geochemical cycle of carbon  

NASA Technical Reports Server (NTRS)

The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

1988-01-01

21

Climate change and macro-economic cycles in pre-industrial europe.  

PubMed

Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

2014-01-01

22

Climate Change and Macro-Economic Cycles in Pre-Industrial Europe  

PubMed Central

Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.

Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong

2014-01-01

23

Projecting future climate change: Implications of carbon cycle model intercomparisons  

Microsoft Academic Search

The range of responses of alternate detailed models for the ocean and biosphere components of the global carbon cycle, cataloged in model intercomparison studies, are simulated by a reduced form Earth system model employing a range of model parameters. The reduced form model, parameterized in this way, allows the integration of these components of the carbon cycle with an energy

Haroon S. Kheshgi; Atul K. Jain

2003-01-01

24

The Twilight Zone of the Marine Carbon Cycle and Climate Change Past and Future  

NSDL National Science Digital Library

This Ocean and Climate Change Institute article provides information regarding carbon cycling and the ocean. It discusses where and how carbon moves through the ocean system, focusing on carbon dioxide in the atmosphere as it relates to biota and sediment records.

Loubere, Paul; Ridgwell, Andy; Stoll, Heather; Bijma, Jelle; Archer, David; Gregg, Watson

25

Complex life cycles and the responses of insects to climate change.  

PubMed

Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change. PMID:21724617

Kingsolver, Joel G; Woods, H Arthur; Buckley, Lauren B; Potter, Kristen A; MacLean, Heidi J; Higgins, Jessica K

2011-11-01

26

A long marine history of carbon cycle modulation by orbital-climatic changes.  

PubMed

Pacing of the marine carbon cycle by orbital forcing during the Pliocene and Pleistocene Ice Ages [past 2.5 million years (Myr)] is well known. As older deep-sea sediment records are being studied at greater temporal resolution, it is becoming clear that similar fluctuations in the marine carbon system have occurred throughout the late Mesozoic and Tertiary, despite the absence of large continental ice sheets over much of this time. Variations in both the organic and the calcium carbonate components of the marine carbon system seem to have varied cyclically in response to climate forcing, and carbon and carbonate time series appear to accurately characterize the frequency spectrum of ancient climatic change. For the past 35 Myr, much of the variance in carbonate content carries the "polar" signal of obliquity [41,000 years (41 kyr)] forcing. Over the past 125 Myr, there is evidence from marine sediments of the continued role of precessional (approximately 21 kyr) climatic cycles. Repeat patterns of sedimentation at about 100, 400, and 2,400 kyr, the modulation periods of precession, persistently enter into marine carbon cycle records as well. These patterns suggest a nonlinear response of climate and/or the sedimentation of organic carbon and carbonates to precessional orbital perturbations. Nonlinear responses of the carbon system may help to amplify relatively weak orbital insolation anomalies into more significant climatic perturbations through positive feedback effects. Nonlinearities in the carbon cycle may have transformed orbital-climatic cycles into long-wavelength features on time scales comparable to the residence times of carbon and nutrient elements in the ocean. PMID:11607746

Herbert, T D

1997-08-01

27

Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient  

USGS Publications Warehouse

Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

2011-01-01

28

Interactive effects of solar UV radiation and climate change on biogeochemical cycling.  

PubMed

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery. PMID:17344963

Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

2007-03-01

29

Climate change during Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities  

Microsoft Academic Search

This paper discusses climate change in the Cenozoic by constructing a global carbon cycle model which is based on the GEOCARB-type model. Major improvements over previous models in this study are as follows. Previous models have not considered CO2 behavior at subduction sufficiently. They do not distinguish at subduction zones between the CO2 degassing from a back-arc basin (BAB) and

Hirohiko Kashiwagi; Naotatsu Shikazono

2003-01-01

30

Climate Change  

NSDL National Science Digital Library

This website takes you to a collection of short video clips on a variety of climate change issues and lesson plans for K-12. Videos range from Arctic to Antarctic ice, biomes, capturing carbon, to the greenhouse effect and many other topics that deal with climate and climate change. Free registration is required.

31

Large changes in climate and Carbone cycle from Neoproterozoic to paleozoic: A modelling approach  

NASA Astrophysics Data System (ADS)

The link between changes in greenhouse gas in atmosphere and climate are heavily studied at different timescales. More specifically the link between carbon cycle and global glaciation during Neoproterozoic associated with tectonics and carbon burial in the deep ocean has recently been pointed out through carbone/climate modeling (Donnadieu et al 2004, Ramstein eal 2005). Moreover the escape of a snowball, the threshold in atmospheric CO2 (Pierrehumbert2004) and the large shifts of C13 occuring at he end of Neoproterozoic have also been investigated through modeling studies (LeHir et al 2005) and link with biological evolution (Kirshvink et al 2003). The drastic events correponding to Earth deglaciation are associated with large pulses of dc13 that may be produced by clathrate burst due either to deep water warming or transgressive regressive phases. Concerning more regional and recent glacial episodes of Paleozoic, it has been shown that major disturbances of carbon cycle has led these glaciations (Ordovician and Permo-Carboniferous episodes). These changes leading to the formation of carbonate plateforms preceeds the Ordovician glaciation or changes in alteration due to biosphere evolution on continents (Permo-Carboniferous). Our aim is to show how large perturbations of atmospheric greenhouse gas may produce large global glaciation using Carbon/climate models and to understand how carbon cycle perturbation leading and lagging glaciation may be explained.

Ramstein, G.; Le Hir, G.; Donndieu, Y.; Godderis, Y.; Fluteau, F.; Schneiders, G.

2005-12-01

32

Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface  

NASA Astrophysics Data System (ADS)

Humans have modified estuaries across the globe by altering the delivery of water, sediments and elements such as carbon and nitrogen that play important roles in biogeochemical processes. These activities have caused declines in the health and quality of estuarine ecosystems globally and this trend will likely continue due to increasing population growth in coastal regions, expected changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer and transformation of carbon and biogenic elements between land and ocean systems. The anticipated effects of climate change on biogeochemical processes in estuaries are likely to be both numerous and complex but are poorly understood. Climate change has the potential to influence the carbon cycle in estuaries through anticipated changes to organic matter production, transformation, burial and export. Estuarine biogeochemical processes will likely be altered by: 1) sea level rise and increased storm intensity which will amplify the erosion and transfer of terrigenous materials, 2) increases in water temperatures which will enhance the rates of biological and biogeochemical processes (e.g., enzyme kinetics, decomposition rates, and remineralization), while simultaneously decreasing the concentration of dissolved oxygen, 3) changes in particle (or sediment) loadings in response to altered patterns of precipitation and river runoff, and 4) altered inputs of nutrients and dissolved organic materials to coastal waters, also resulting from changing precipitation and runoff. In this presentation, we review the effects of climate change on the carbon cycle in estuaries, with a focus on the temperate estuaries of North America.

Canuel, E. A.; Cammer, S. S.; McIntosh, H.; Pondell, C. R.

2012-12-01

33

A critical review of methods for tourism climate change appraisal: life cycle assessment as a new approach  

Microsoft Academic Search

This paper reviews existing approaches to assessing tourism sustainability, especially its contribution to climate change. It assesses ecological footprint analysis, environmental impact assessment and input–output analysis but finds them inaccurate and unreliable. It goes on to argue that life cycle assessment (LCA) is a more promising tool for tourism climate change impact assessment, highlighting important areas where LCA application can

Viachaslau Filimonau; Janet E. Dickinson; Derek Robbins; Maharaj Vijay Reddy

2011-01-01

34

A simple explanation for the sensitivity of the hydrologic cycle to global climate change  

NASA Astrophysics Data System (ADS)

The global hydrologic cycle is likely to increase in strength with global warming, although some studies indicate that warming due to solar absorption may result in a different sensitivity than warming due to an elevated greenhouse effect. Here we show that these sensitivities of the hydrologic cycle can be derived analytically from an extremely simple surface energy balance model that is constrained by the assumption that vertical convective exchange within the atmosphere operates at the thermodynamic limit of maximum power. Using current climatic mean conditions, this model predicts a sensitivity of the hydrologic cycle of 2.2 % K-1 to greenhouse-induced surface warming which is the sensitivity reported from climate models. The sensitivity to solar-induced warming includes an additional term, which increases the total sensitivity to 3.2 % K-1. These sensitivities are explained by shifts in the turbulent fluxes in the case of greenhouse-induced warming, which is proportional to the change in slope of the saturation vapor pressure, and in terms of an additional increase in turbulent fluxes in the case of solar radiation-induced warming. We illustrate an implication of this explanation for geoengineering, which aims to undo surface temperature differences by solar radiation management. Our results show that when such an intervention compensates surface warming, it cannot simultaneously compensate the changes in hydrologic cycling because of the differences in sensitivities for solar vs. greenhouse-induced surface warming. We conclude that the sensitivity of the hydrologic cycle to surface temperature can be understood and predicted with very simple physical considerations but this needs to reflect on the different roles that solar and terrestrial radiation play in forcing the hydrologic cycle.

Kleidon, Axel; Renner, Maik

2014-05-01

35

Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change  

Microsoft Academic Search

The Japan Aerospace Exploration Agency (JAXA) is pursuing the Global Change Observation Mission (GCOM) that will inherit the Advanced Earth Observing Satellite-II (ADEOS-II) mission and develop into long-term monitoring. GCOM is not the name of a single satellite, but of a mission that consists of two series of medium-size satellites, GCOM-W (Water) and GCOM-C (Climate), and three generations of each

Keiji Imaoka; Misako Kachi; Hideyuki Fujii; Hiroshi Murakami; Masahiro Hori; Akiko Ono; Tamotsu Igarashi; Keizo Nakagawa; Taikan Oki; Yoshiaki Honda; Haruhisa Shimoda

2010-01-01

36

The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change  

PubMed Central

The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services.

Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

2013-01-01

37

Cogs in the endless machine: lakes, climate change and nutrient cycles: a review.  

PubMed

Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (Williamson et al., Limnol. Oceanogr. 2009; 54: 2273-82). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. PMID:21962562

Moss, Brian

2012-09-15

38

The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change  

PubMed Central

Variations in solar irradiance are widely believed to explain climatic change on 20,000- to 100,000-year time-scales in accordance with the Milankovitch theory of the ice ages, but there is no conclusive evidence that variable irradiance can be the cause of abrupt fluctuations in climate on time-scales as short as 1,000 years. We propose that such abrupt millennial changes, seen in ice and sedimentary core records, were produced in part by well characterized, almost periodic variations in the strength of the global oceanic tide-raising forces caused by resonances in the periodic motions of the earth and moon. A well defined 1,800-year tidal cycle is associated with gradually shifting lunar declination from one episode of maximum tidal forcing on the centennial time-scale to the next. An amplitude modulation of this cycle occurs with an average period of about 5,000 years, associated with gradually shifting separation-intervals between perihelion and syzygy at maxima of the 1,800-year cycle. We propose that strong tidal forcing causes cooling at the sea surface by increasing vertical mixing in the oceans. On the millennial time-scale, this tidal hypothesis is supported by findings, from sedimentary records of ice-rafting debris, that ocean waters cooled close to the times predicted for strong tidal forcing.

Keeling, Charles D.; Whorf, Timothy P.

2000-01-01

39

Global carbon cycle and climate change: Responses and feedbacks from below-ground systems  

Microsoft Academic Search

According to most global climate models, a continued build-up of CO2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. Belowground processes will strongly influence the response of the biosphere to climate change and are likely to contribute to positive or negative biospheric feedbacks to climate change. Current global

R. K. Dixon; D. P. Turner

1991-01-01

40

Climate Change  

MedlinePLUS

Weather can be hot or cold, dry or wet, calm or stormy, clear or cloudy. Climate is the average weather in a place over a long period of time. Changes in climate may be due to natural forces or from human activities. ...

41

Climate Change Collection (CCC)  

NSDL National Science Digital Library

The Climate Change Collection (CCC) provides access to high quality, digital materials relating to natural and human induced climate change and variability, including scientific, economic and policy issues of climate change. The collection focuses on background resources and learning activities that communicate the principles that underlie climate change and variability, including the differences and links between weather and climate; the basics of the climate system including the greenhouse effect and energy balance; climatic processes that occur at varying time scales, including orbital cycles and forcing; how scientific research is conducted relative to measuring change and variability; and how human activities, including the combustion of fossil fuels and changes of land cover, impact the climate system. The resources have been reviewed for scientific accuracy and currency, and annotated with comments and suggestions relating to their potential value to Earth system science teachers and their students, particularly at the middle school level.

42

Climatic Change, Wars and Dynastic Cycles in China Over the Last Millennium  

Microsoft Academic Search

In recent years, the phenomenon of global warming and its implications for the future of the human race have been intensively studied. In contrast, few quantitative studies have been attempted on the notable effects of past climatic changes upon human societies. This study explored the relationship between climatic change and war in China by comparing high-resolution paleo-climatic reconstructions with known

David D. Zhang; C. Y. Jim; George C-S Lin; Yuan-Qing He; James J. Wang; Harry F. Lee

2006-01-01

43

Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review  

NASA Astrophysics Data System (ADS)

The Tibetan Plateau (TP) exerts strong thermal forcing on the atmosphere over Asian monsoon region and supplies water resources to adjacent river basins. Recently, the Plateau experienced evident climate changes, which have changed atmospheric and hydrological cycles and thus reshaped the local environment. This study reviewed recent research progress in the climate changes and explored their impacts on the Plateau energy and water cycle, based on which a conceptual model to synthesize these changes was proposed and urgent issues to be explored were summarized.

Yang, Kun; Wu, Hui; Qin, Jun; Lin, Changgui; Tang, Wenjun; Chen, Yingying

2014-01-01

44

Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America  

NASA Astrophysics Data System (ADS)

This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore-plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes are determined largely by plant nitrogen content. Plant nitrogen content is known to be influenced by atmospheric CO 2 concentrations, temperature, and precipitation. It is argued that Lateglacial climate change, particularly increases in atmospheric CO 2, shifted herbivore-ecosystem dynamics from a nutrient accelerating mode to a nutrient decelerating mode at the end of the Pleistocene, leading to reduced megafaunal population densities. An examination of Sporormiella records - a proxy for megaherbivore biomass - indicates that megafaunal populations collapsed first in the east and later in the west, possibly reflecting regional differences in precipitation or vegetation structure. The fortuitous intersection of the climatically driven nitrogen sink, followed by any one or combination of subsequent anthropogenic, environmental, or extra-terrestrial mechanisms could explain why extinctions took place at the end of the Pleistocene rather than during previous glacial-interglacial cycles.

Faith, J. Tyler

2011-06-01

45

Impact of land use change on the diurnal cycle climate of the Canadian Prairies  

NASA Astrophysics Data System (ADS)

paper uses hourly observations from 1953 to 2011 of temperature, relative humidity, and opaque cloud cover from 14 climate stations across the Canadian Prairies to analyze the impact of agricultural land use change on the diurnal cycle climate, represented by the mean temperature and relative humidity and their diurnal ranges. We show the difference between the years 1953-1991 and 1992-2011. The land use changes have been largest in Saskatchewan where 15-20% of the land area has been converted in the past four decades from summer fallow (where the land was left bare for 1 year) to annual cropping. During the growing season from 20 May to 28 August, relative humidity has increased by about 7%. During the first 2 months, 20 May to 19 July, maximum temperatures and the diurnal range of temperature have fallen by 1.2°C and 0.6°C, respectively, cloud cover has increased by about 4%, reducing surface net radiation by 6 W m-2, and precipitation has increased. We use the dry-downs after precipitation to separate the impact of cloud cover and show the coupling between evapotranspiration and relative humidity. We estimate, using reanalysis data from ERA-Interim, that increased transpiration from the larger area of cropland has reduced the surface Bowen ratio by 0.14-0.2. For the month on either side of the growing season, cloud cover has fallen slightly; maximum temperatures have increased, increasing the diurnal temperature range and the diurnal range of humidity.

Betts, Alan K.; Desjardins, Raymond; Worth, Devon; Cerkowniak, Darrel

2013-11-01

46

Responses of Hydrological Cycle to Recent Climatic Changes in the Yellow River Basin  

NASA Astrophysics Data System (ADS)

China Meteorological Administration (CMA) data showed that precipitation in Yellow River Basin was low in the 1990s but returned to above normal after 2002. In recent decades, the meteorological observations also showed rapid increase in surface air temperature and decrease in wind speed. However, little is known about how hydrological cycle responds to these recent climatic changes. Here, we applied a well calibrated and verified hydrological model, the Soil and Water Assessment Tool (SWAT), to reconstruct the hydrological cycle in the Yellow River Basin during 1960-2009. The basin was divided into 76 sub-basins. We calculated percentage changes in three hydrologic variables runoff, evapotranspiration (ET) and precipitation between two periods 1991-2002 and 2003-2009 and historical period 1960-1990. The results showed that basin-averaged runoff and precipitation in 1991-2002 were lower than those in 1960-1990, and runoff became higher and precipitation was still lower in 2003-2009. ET in both periods 1991-2002 and 2003-2009 was lower than that in 1960-1990. The hydrologic changes were not homogeneous over the basin. In the arid upper and middle reaches, precipitation in 2003-2009 had recovered to be higher than that in 1960-1990. However, runoff was lower and ET was higher than that in 1960-1990. In the middle and lower basin, precipitation in 2003-2009 had never recovered to its level in 1960-1990 whereas runoff was greatest. Meanwhile, ET in 2003-2009 was lower than that in 1960-1990. The distinct change patterns in runoff and precipitation suggests long-term water resources change could be largely modulated by ET change.

Tang, Y.; Tang, Q.

2012-12-01

47

North atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles  

USGS Publications Warehouse

Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5??C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3??C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5??C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.

Dwyer, G. S.; Cronin, T. M.; Baker, P. A.; Raymo, M. E.; Buzas, J. S.; Correge, T.

1995-01-01

48

North Atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles  

SciTech Connect

Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5{degrees}C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3{degrees}C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5{degrees}C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deepwater production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal. 49 refs., 5 figs.

Dwyer, G.S.; Baker, P.A. [Duke Univ., Durham, NC (United States); Cronin, T.M. [Geological Survey, Reston, VA (United States)] [and others

1995-11-24

49

Biogeochemical cycling in an annual grassland matrix: Responses and feedbacks to climate change  

NASA Astrophysics Data System (ADS)

I used empirical methods and model simulations to examine the effects of altered rainfall, climate warming, and grazing management on biogeochemical cycling in a Northern California annual grassland landscape. Greenhouse gas fluxes from ecosystems in the annual grassland matrix create feedbacks to climate change and my primary research aim was to measure the magnitude of fluxes and their major environmental controls along multiple spatial and temporal scales. A multi-year field experiment in the Sierra Foothills of Northern California tested the effects of 50% increased rainfall quantity and a longer wet season on annual grassland net primary production, soil respiration, nitrous oxide (N2O) fluxes, inorganic nitrogen cycling, litter decomposition, net ecosystem production, and other ecosystem functions. Changes in rainfall timing had a much stronger effect on soil respiration relative to altered wet-season rainfall totals, with implications that a longer or later wet season could result in significant losses of soil carbon (C). On a regional scale, I assessed the radiative warming potential of inland freshwater wetlands situated within the annual grassland matrix and contrasted this value with that of annual grasslands. Three years of monthly flux measurements revealed that spring-fed wetlands emitted more N2O and methane (CH4) than grasslands on a per-area basis, but that more radiative warming potential was attributable to grasslands when scaled up to the state. I conducted a laboratory incubation of grassland soils subjected to a range of temperature and wet-up levels. Temperature was a good linear predictor of cumulative CO 2 fluxes over the experiment but was a poorer predictor of N2O production, which was more strongly limited by moisture availability. Finally, I employed the DayCent soil organic matter model to explore longer-term effects of altered climate and grazing intensity on soil C storage, plant dynamics, and N2O emissions. According to the model, warming and wet-season extension increased both CO2 and N2O fluxes, whereas grazing removal caused divergent effects, enhancing N2O emissions and decreasing CO2 fluxes. In sum, these findings contribute toward a better understanding of how global change and ecosystem management affect biogeochemical fluxes and ecosystem stability.

Chou, Wendy Wen-Ting

50

The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.  

NASA Astrophysics Data System (ADS)

The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research questions from local to global scales with both present and future environmental conditions.

Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

2007-12-01

51

Gimme shelter--the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change.  

PubMed

Climate change is expected to alter the dynamics of host-parasite systems globally. One key element in developing predictive models for these impacts is the life cycle of the parasite. It is, for example, commonly assumed that parasites with an indirect life cycle would be more sensitive to changing environmental conditions than parasites with a direct life cycle due to the greater chance that at least one of their obligate host species will go extinct. Here, we challenge this notion by contrasting parasitic nematodes with a direct life cycle against those with an indirect life cycle. Specifically, we suggest that behavioral thermoregulation by the intermediate host may buffer the larvae of indirectly transmitted parasites against temperature extremes, and hence climate warming. We term this the 'shelter effect'. Formalizing each life cycle in a comprehensive model reveals a fitness advantage for the direct life cycle over the indirect life cycle at low temperatures, but the shelter effect reverses this advantage at high temperatures. When examined for seasonal environments, the models suggest that climate warming may in some regions create a temporal niche in mid-summer that excludes parasites with a direct life cycle, but allows parasites with an indirect life cycle to persist. These patterns are amplified if parasite larvae are able to manipulate their intermediate host to increase ingestion probability by definite hosts. Furthermore, our results suggest that exploiting the benefits of host sheltering may have aided the evolution of indirect life cycles. Our modeling framework utilizes the Metabolic Theory of Ecology to synthesize the complexities of host behavioral thermoregulation and its impacts on various temperature-dependent parasite life history components in a single measure of fitness, R0 . It allows quantitative predictions of climate change impacts, and is easily generalized to many host-parasite systems. PMID:23801641

Molnár, Péter K; Dobson, Andrew P; Kutz, Susan J

2013-11-01

52

Sulfate-Reducing Microorganisms in Wetlands - Fameless Actors in Carbon Cycling and Climate Change  

PubMed Central

Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

Pester, Michael; Knorr, Klaus-Holger; Friedrich, Michael W.; Wagner, Michael; Loy, Alexander

2012-01-01

53

Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change  

PubMed Central

The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly.

Bevis, Michael; Wahr, John; Khan, Shfaqat A.; Madsen, Finn Bo; Brown, Abel; Willis, Michael; Kendrick, Eric; Knudsen, Per; Box, Jason E.; van Dam, Tonie; Caccamise, Dana J.; Johns, Bjorn; Nylen, Thomas; Abbott, Robin; White, Seth; Miner, Jeremy; Forsberg, Rene; Zhou, Hao; Wang, Jian; Wilson, Terry; Bromwich, David; Francis, Olivier

2012-01-01

54

Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle  

Microsoft Academic Search

This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a

H. D. Matthews; A. J. Weaver; K. J. Meissner; N. P. Gillett; M. Eby

2004-01-01

55

Cycles, Cycles Everywhere - Corals, Coccoliths, and Climate  

Microsoft Academic Search

Critical to our understanding of both past and future climate change is the biogeochemcial cycle of carbon on Earth. This is popularly recognized in the context of the creation and destruction of solid organic matter such as vegetation and fossil fuels, which has a clear and intuitive relationship to the amount of carbon dioxide in the atmosphere. Less widely recognized

A. Ridgwell

2004-01-01

56

Using Elemental Budgets to Determine Effects of Simulated Climate Change on Phosphorus Cycling in a Grassland Ecosystem  

NASA Astrophysics Data System (ADS)

The purpose of the Jasper Ridge Global Change Experiment is to find out the effects of climate change on a terrestrial grassland ecosystem. The different treatments include increased carbon dioxide, nitrogen deposition, temperature, and precipitation. A portion of the above ground biomass of each plot was harvested, and an abundant species chosen to analyze. The goal of this project was to investigate the effects of climate change on phosphorus cycling in the grassland vegetation. Total phosphorus content of each sample was determined by combustion and acid digestion along with optical emission spectrometry. Total nitrogen and carbon was determined via flash combustion in an isotope ratio mass spectrometer. This information was combined to evaluate the limitation of phosphorus in each treatment and better understand how climate change may affect phosphorus cycling in terrestrial grasslands.

Yoo, S.; Paytan, A.; Mellett, T.

2013-12-01

57

Mechanisms for Annual Cycle Changes in Monsoons in a Warming Climate  

NASA Astrophysics Data System (ADS)

Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) experiments show that the global monsoon is expected to increase in area, precipitation, and intensity as the climate system responds to anthropogenic forcing. Concurrently, detailed analyses for several individual monsoons indicate a re-distribution of rainfall from early to late in the rainy season. This presentation will further examine CMIP5 projected changes in the annual cycle of precipitation in monsoon regions, and use a moist static energy framework to evaluate competing mechanisms identified to be important in precipitation changes over land. In the presence of sufficient surface moisture, the local response to the increase in downwelling energy is characterized by increased evaporation, increased low-level moist static energy, and decreased stability with consequent increases in precipitation. A remote mechanism begins with warmer oceans and operates on land regions via a warmer tropical troposphere, increased stability, and decreased precipitation. The remote mechanism controls the projected changes during winter, and the local mechanism appears to control the switch to increased precipitation during summer in several monsoon regions. During the early summer transition, regions where boundary layer moisture availability is reduced due to decreases in evaporation and moisture convergence experience an enhanced convective barrier. This enhanced convective barrier leads to a redistribution of rainfall from early to late summer, and is robust in the American and African monsoons but not seen in Asia.

Seth, Anji

2014-05-01

58

Disturbance history and nitrogen cycle controls on ecosystem response to increased CO2 and climate change  

NASA Astrophysics Data System (ADS)

Land ecosystem response to increasing atmospheric CO2 concentration and changing climate depends on interactions among carbon and nitrogen cycles and previous changes in ecosystem state due to natural and anthropogenic disturbances. The current study quantifies these interactions using a model of coupled carbon, nitrogen, and disturbance dynamics (the Community Land Model with Carbon and Nitrogen, CLM- CN). CLM-CN is parameterized and applied for several sites where free-air CO2 enrichment (FACE) experiments have been performed. Simulations are performed with and without nitrogen limitations, and with and without including historical disturbance patterns. N-limitation is shown to reduce the CO2 fertilization effect in all systems, while recent disturbance is shown to have a strong transient effect on fertilization. Significant interactions among recent disturbance, elevated CO2, and nitrogen availability result in transient ecosystem responses to step-changes in atmospheric CO2. These responses are in qualitative and quantitative agreement with the observed fertilization responses at several FACE sites. The analysis is extended to present model-derived hypothetical responses to increased CO2 and warming, in anticipation of future multi-factor experiments.

Thornton, P. E.

2008-12-01

59

Testing causes for long-term changes in carbon cycling and climate during the early Paleogene  

NASA Astrophysics Data System (ADS)

The late Paleocene to the early Eocene (˜58-52 Ma) was marked by significant changes in global climate and carbon cycling. Among the evidence for these changes, stable isotope records reveal a prominent decrease of ?13C and ?18O (in both surface and deep ocean), indicating a reorganization in the long-term global carbon cycle and a long-term warming trend (˜4°C), respectively. Concurrently, deep-sea carbonate records at several sites indicate a deepening of the calcite compensation depth (CCD). Here, we investigate possible causes (e.g., increased volcanic degassing, decreased net organic burial, and accelerated dissociation of gas hydrate) for these observations, but from a new perspective. The basic model employed is a modified version of GEOCARB III. However, we have coupled this well-known geochemical model to LOSCAR, a model that enables simulation of seawater carbonate chemistry, the CCD, and ocean ?13C. We have also added a gas hydrate capacitor that can account for the storage and release of methane from the seafloor over millions of years. We further consider accurate input data (e.g., ?13C of carbonate) on a currently accepted time scale that spans an interval much longer than the perturbation. Several different scenarios are investigated with the goal of consistency amongst inferred changes in temperature, the CCD, and surface ocean and deep ocean ?13C. The results strongly suggest that a decrease in net organic carbon burial drove carbon cycle changes during the late Paleocene and early Eocene, although an increase in volcanic activity might have contributed. Importantly, a drop in net organic carbon burial may represent increased oxidation of previously deposited organic carbon, such as stored in peat or gas hydrates. The model successfully recreates trends in Earth surface warming, as inferred from ?18O records, the CCD, and ?13C. At the moment, however, our coupled modeling effort cannot reproduce the magnitude of change in all these records collectively. Similar problems have arisen in simulations of short-term hyperthermal events during the early Paleogene (PETM), suggesting one or more basic issues with data interpretation or geochemical modeling remain.

Komar, N.; Zeebe, R. E.; Dickens, G. R.

2013-12-01

60

A numerical simulation of climate changes during the obliquity cycle on Mars  

NASA Technical Reports Server (NTRS)

A one-dimensional seasonal energy balance climate model of the Martian surface is developed. The model shows the importance of using short-period diurnal and seasonal variations of solar irradiance instead of yearly-averaged quantities. The roles of meridional heat transport and greenhouse warming are shown to be important. The possible existence of hysteresis cycles in the formation and sublimation of permanent deposits during the course of the obliquity cycle is demonstrated.

Francois, L. M.; Walker, J. C. G.; Kuhn, W. R.

1990-01-01

61

The water cycle in context: Another time series view on climate variability and change  

NASA Astrophysics Data System (ADS)

A time series study is presented that pinpoints the potential of a constitutive role in the climate system's dynamics of major elements of the global hydrologic cycle (analysis period 1870-1997). Major source regions and mechanisms of the latter include tropic/subtropical systems, notably the monsoons and El Nino-Southern Oscillation. Onset, retreat, and seasonal precipitation data over India of the South Asian seasonal monsoon systems are posed into perspective with the evolution of the climate system, as exemplified by insolation, surface air and sea surface temperatures, as well as dynamic indices of the North Atlantic and the Tropical Pacific. Synchronized motions galore are found when looking at these data through the glasses of a matching pursuit approach that admits of deep frequency modulation. The results are suggestive of a dynamically excited atmospheric branch of the hydrologic cycle, at the very core of global climate dynamics.

Carl, P.

2009-04-01

62

Transient Climate Change Simulations with a Coupled Atmosphere-Ocean GCM Including the Tropospheric Sulfur Cycle  

Microsoft Academic Search

The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4\\/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860-1990) and projected into the future according to International Panel on Climate Change (IPCC)

E. Roeckner; L. Bengtsson; J. Feichter; J. Lelieveld; H. Rodhe

1999-01-01

63

Challenge of modelling the climate of the last glacial-interglacial cycle and millennial climate change as a background of evolution of modern Human  

NASA Astrophysics Data System (ADS)

The environment of the evolution of Homo-Sapience is characterized by the climate change of glacial-interglacial cycle (about 125 thousand years in the past), which includes frequent occurrence of abrupt climate change (Dansgaard Oeschger events, = D-O events) of millenial time scale during the marine isotope stage 3. I We will have an overview on our work which we investigate the glacial-interglacial climate change and D-O events and its influence on vegetation of Africa through Eurasia (Europe and Asia). The numerical simulations are based on several model types, a coupled atmosphere-ocean-land GCM, MIROC, developed in Japan as well as ice sheet model IcIES, and a dynamical vegetation model LPJ. The condition that is given and changed for each time period is the following: orbital parameter (so called Milankovitch forcing) which influence the seasonal-latitudinal insolation, atmospheric content such as Carbon dioxide, ice sheet extent, and melt water from the ice sheet, which influence the ocean circulation and induce abrupt climate change. A transient ice sheet model behaviour is analyzed with the ice sheet model with climatic parameterization (Abe-Ouchi et al, 2013, Nature). Several snap shots of experimentsf are obtained both by slab ocean coupled GCM and AOGCM for the stadial - interstadial climate states and high resolution AGCM experiments are used to focus on the regional detail. The factors of climate change important for human evolution is examined and discussed, such as the change of climate, hydrology and vegetation associated with the abrupt climate change of D-O events is investigated.

Abe-Ouchi, Ayako; Chan, Wing-Le; O'ishi, Ryouta; Obrochta, Stephen; Yokoyama, Yusuke; Kondo, Yasuhisa; Yoneda, Minoru

2014-05-01

64

Impact of climate change on forests, forest products and the carbon cycle in the Congo Basin.  

NASA Astrophysics Data System (ADS)

Africa is widely seen as the continent most vulnerable to climate change. Current climate variability already has a large impact on the economies of developing countries. Large parts of African economies are highly climate sensitive, in particular agriculture, infrastructure and water sector. In this study we performed an analysis of climate change impacts in the Congo Basin on Forest ecosystem functioning and carbon storage. We emphasise the methodologies and validation involved in modelling the basin-wide carbon budgets. We also studied the potential shifts in broad classes of vegetation types, resulting from climate change. Finally, we compared annual productivity of the Congo forests with statistics of wood fuel and charcoal use for each of the countries in the region. The model simulations suggest that the region's forests will see increasing productivity under future climate, however, the effect of rising CO2 concentrations, stimulating growth, is highly uncertain. From these findings it follows that the potential in the region to implement UNFCCC-REDD+ projects is still very uncertain, but probably sustainable and feasible. The analysis shows that, averaged over 10 years, wood fuel and charcoal use amount to 50% and in some countries up to 100% or even more of the yearly vegetation carbon increase. These percentages generally increases with population density.

Kruijt, Bart; Jans, Wilma; Franssen, Wietse; Ludwig, Fulco

2014-05-01

65

Millennial timescale carbon cycle and climate change in an efficient Earth system model  

Microsoft Academic Search

A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine\\u000a biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture\\u000a balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability\\u000a to earlier work. The model versions have

T. M. Lenton; M. S. Williamson; N. R. Edwards; R. Marsh; A. R. Price; A. J. Ridgwell; J. G. Shepherd; S. J. Cox

2006-01-01

66

Sedimentary cycles related to the late Palaeozoic cold-warm climate change, Talchir Formation, Talchir Basin, India  

NASA Astrophysics Data System (ADS)

Attributes of sedimentary facies within Permo-Carboniferous Talchir Formation (Gondwana Supergroup), Talchir Basin, India, attest to sedimentation under glaciomarine setting. Facies architecture reveals three sedimentary cycles of distinct orders. Cycle-1 sediments are 10s of m thick and are represented by repeated occurrences of glacigenic/reworked-glacigenic sediments followed by storm-reworked glacial outwash deposits. Juxtaposition of multiple Cycle-1 sequences indicate repeated ice-front advance-retreats related to climatic fluctuations, which led to accumulation of glacier-laden coarse-grained sediments, and subsequent flooding by marine storm surges. Cm-thin sandstone-mudstone interbeds of Cycle-2 belong within the Cycle-1 sequences and represent deposition from episodic storm surges. Mm-thin Cycle-3 sediments occur within the Cycle-2 sequences and attribute their genesis to semi-diurnal tidal fluctuations. Open marine storm surges have reworked these tidal sediments. In absence of major tectonic influences, the studied sedimentary cycles and associated palaeogeographic changes in the ice-marginal Talchir marine basin bear direct relation to late Palaeozoic cold-warm climatic transitions.

Bhattacharya, Biplab

2013-06-01

67

Climate Change  

NSDL National Science Digital Library

This new report from the World Wildlife Fund (WWF) and the Marine Conservation Biology Institute argues that rising temperatures have impacted the world's oceans to a far greater extent than previously acknowledged. Addressing topics such as sea-level rise, ocean circulation, coral reefs, sea birds and invertebrates, as well as the increasing threats to Salmon, the report predicts a dangerous chain reaction in marine ecosystems if global warming continues unabated. On the positive side, it also argues that decisive actions now to reduce pollution can slow the warming and preserve the world's oceans. Accessible from the WWF Climate Change page, the full text of the report is available in .pdf, Word 6.0, and HTML versions. A summary is also provided.

68

Climate change, adaptive cycles, and the persistence of foraging economies during the late Pleistocene/Holocene transition in the Levant.  

PubMed

Climatic forcing during the Younger Dryas (?12.9-11.5 ky B.P.) event has become the theoretical basis to explain the origins of agricultural lifestyles in the Levant by suggesting a failure of foraging societies to adjust. This explanation however, does not fit the scarcity of data for predomestication cultivation in the Natufian Period. The resilience of Younger Dryas foragers is better illustrated by a concept of adaptive cycles within a theory of adaptive change (resilience theory). Such cycles consist of four phases: release/collapse (?); reorganization (?), when the system restructures itself after a catastrophic stimulus through innovation and social memory--a period of greater resilience and less vulnerability; exploitation (r); and conservation (K), representing an increasingly rigid system that loses flexibility to change. The Kebarans and Late Natufians had similar responses to cold and dry conditions vs. Early Natufians and the Pre-Pottery Neolithic A responses to warm and wet climates. Kebarans and Late Natufians (?-phase) shifted to a broader-based diet and increased their mobility. Early Natufian and Pre-Pottery Neolithic A populations (r- and K-phases) had a growing investment in more narrowly focused, high-yield plant resources, but they maintained the broad range of hunted animals because of increased sedentism. These human adaptive cycles interlocked with plant and animal cycles. Forest and grassland vegetation responded to late Pleistocene and early Holocene climatic fluctuations, but prey animal cycles reflected the impact of human hunting pressure. The combination of these three adaptive cycles results in a model of human adaptation, showing potential for great sustainability of Levantine foraging systems even under adverse climatic conditions. PMID:22371591

Rosen, Arlene M; Rivera-Collazo, Isabel

2012-03-01

69

GLOBAL CARBON CYCLE AND CLIMATE CHANGE: RESPONSES AND FEEDBACKS FROM BELOW-GROUND SYSTEMS  

EPA Science Inventory

According to most global climate models, a continued build-up of OC2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. elow-ground processes will strongly influence the response of the biosphere to...

70

Changes in the hydrologic cycle of the central U.S. since 1984: The relative roles of multiple climatic drivers  

NASA Astrophysics Data System (ADS)

The climate system and the hydrologic cycle are strongly connected with each other. Understanding the interactions between these two systems is important, since variations in climate can trigger extensive changes in the hydrologic cycle, with significant impacts on agriculture, ecosystems, and society. Observations over the central U.S. in recent decades show numerous changes in hydrologically significant climatic variables. This includes decreases in cloud cover and wind speed, increases in air temperature, and seasonal shifts in precipitation rate and rain/snow fraction. To assess the impacts of these variations in climate on the regional water cycle, a terrestrial ecosystem / land surface hydrologic model (Agro-IBIS) is employed in this study, forced by observed climatic inputs for the period 1984-2007. The results generally show an acceleration of the water cycle in the Upper Mississippi, Missouri, Ohio, and Great Lakes basins, but with significant seasonal and spatial complexity. Over the past 24 years, evapotranspiration (ET) has increased in most regions and most seasons, particularly during the fall, which is also a time of pronounced solar brightening. Trends in runoff are characterized by distinct spatial and seasonal variations. Since recent warming has led to a greater fraction of winter precipitation falling as rain rather than snow, spring runoff in some snow-dominated regions (such as the northern Great Lakes) has declined significantly since 1984. Other regions, however, such as the northern Missouri basin, show large increases in runoff throughout all seasons, primarily as a result of increased precipitation. Sensitivity experiments using the Agro-IBIS model show that the aforementioned hydrologic responses to climate change are highly dependent on the regional availability of water and energy. In the western half of the central U.S., for example (a water-limited region), changes in precipitation dominate the ET trend, while in the energy-limited eastern half, ET is more sensitive to changes in solar radiation and temperature.; Maps showing spatial distribution of annual trends in observed and Agro-IBIS simulated water balance components for the period 1984-2007, including (a) observed precipitation, (b) ET, (c) runoff, and (d) dW/dt. Trends that are statistically significant at 90% confidence level are hatched. Each basin is highlighted with the dark line as the boundary.

Dong, B.; Lenters, J. D.

2012-12-01

71

Solar Cycle Variability, Ozone, and Climate  

Microsoft Academic Search

Results from a global climate model including an interactive parameterization of stratospheric chemistry show how upper stratospheric ozone changes may amplify observed, 11-year solar cycle irradiance changes to affect climate. In the model, circulation changes initially induced in the stratosphere subsequently penetrate into the troposphere, demonstrating the importance of the dynamical coupling between the stratosphere and troposphere. The model reproduces

Drew Shindell; David Rind; Nambeth Balachandran; Judith Lean; Patrick Lonergan

1999-01-01

72

How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?  

NASA Astrophysics Data System (ADS)

In this study we deal with the effect of varying the length of the diurnal cycle on its bi-stability properties. By using a general circulation model, PlaSim, we consider several values for the diurnal cycle, from tidally locked, to that of 1 Earth day. For each value of the diurnal cycle, we slowly modulate the solar constant between 1510 and 1000 Wm-2 and perform a hysteresis experiment. It is found that the width of the bi-stable region, i.e. the range of climate states - determined here by changes in S* - which support two climatic attractors, reduces when the diurnal cycle is increased in length and disappears - signifying the merging of both attractors - for climates with a diurnal cycle greater than 180 days. Crucial to the loss of bi-stability is the longitudinally asymmetric distribution of solar radiation, incident on the planet's surface, leading to the development of equatorial sea-ice. For diurnal cycles where bi-stability is found, the longitudinally asymmetric heating is sufficiently compensated for by the strength of the zonal winds and the rate of solar distribution, which redistribute heat and maintain the meridional temperature gradient across all longitudes. Conversely, for mono-stable regimes, the energy transport associated with zonal winds becomes insufficient to compensate for the increase in the length of the diurnal cycle, resulting in large zonal temperature gradients along the equatorial band. Furthermore, the results found here confirm and reenforce the robustness of those found in Boschi et al (2013), showing that, for climates which support bistability, it may be possible to parameterise variables such as the material entropy production and the meridional heat transport in terms of the surface and emission temperatures, within reasonably well defined upper and lower bounds, even when considering a wide range of planetary rotation speeds and changes to the infrared opacity. This paves the way for the possibility of practically deducing fundamental properties of planets in the habitable zone from relatively simple observables.

Boschi, R.; Valerio, L.

2013-09-01

73

Current Climate Variability & Change  

NASA Astrophysics Data System (ADS)

Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'

Diem, J.; Criswell, B.; Elliott, W. C.

2013-12-01

74

Global Studies of the Sulfur Cycle Including the Influence of DMS and Fossil Fuel Sulfur on Climate and Climate Change  

NASA Technical Reports Server (NTRS)

The indirect effect of anthropogenic aerosols, wherein aerosol particles are thought to increase cloud droplet concentrations and cloud lifetime, is the most uncertain component of climate forcing over the past 100 years. Here, for the first time, we use a mechanistic treatment of droplet nucleation and a prognostic treatment of the number of cloud droplets to study the indirect aerosol effect from changes in carbonaceous and sulfate aerosols. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity and a shape parameter, which takes into account the mechanism, of sulfate aerosol formation, while cloud droplet number depends on the nucleation as well as on droplet sinks. Whereas previous treatments have predicted annual average indirect effects between -1 and -2 W/sq m, we obtain an indirect aerosol effect between -0.14 W/sq m and -0.42 W/sq m in the global mean.

Penner, Joyce E.

1998-01-01

75

Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil  

NASA Astrophysics Data System (ADS)

Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we question the sustainability of such forests under projected climate change conditions, but also discuss potential mitigation and adaptation options. Important comment: The topic of this abstract is subject to a press embargo, because it is in review at a Nature Journal

Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

2014-05-01

76

Trophic Interaction Cycles in Tundra Ecosystems and the Impact of Climate Change  

Microsoft Academic Search

While population cycles are geographically widespread, it is on arctic tundra that such cycles appear to be most influential for the functioning of the whole ecosystem. We give an overview of tundra species that exhibit population cycles and describe what are currently believed to be the causal mechanisms. Population cycles most likely originate from trophic interactions within the plant-based tundra

ROLF A. IMS; EVA FUGLEI

2005-01-01

77

Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States  

PubMed Central

To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO2 and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO2 (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

Le, Phong V. V.; Kumar, Praveen; Drewry, Darren T.

2011-01-01

78

Expansion of bioenergy crops in the Midwestern United States: Implications for the hydrologic cycle under climate change  

NASA Astrophysics Data System (ADS)

To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to 2nd generation bioenergy crops such as miscanthus and switchgrass. Their high biomass productivity in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO2 and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO2 (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

Le, P. V.; Kumar, P.; Drewry, D. T.

2011-12-01

79

Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100  

NASA Astrophysics Data System (ADS)

The impacts of climatic change and land-cover change on soil carbon displacement by water erosion were investigated using a global ecosystem carbon cycle model (Sim-CYCLE) and an empirical erosion model (RUSLE). Simulations considering the climate and land-cover changes were performed in two phases, from 1901 to 1990 on the basis of historical data, and from 1991 to 2100 using climate projections in the IPCC Forth Assessment Report. During the first phase, total lateral displacement of soil carbon was estimated to be 1.6 +/- 0.1 Pg C y-1 with remarkable geographical heterogeneity, and it was gradually intensified in regions where forests were converted into croplands. During the second phase, both projected rainfall and land-use changes affected the erosion regime in many regions. Consequently, the total amount of soil carbon displacement increased by 32-57%, implying an intensified vulnerability to soil loss and further perturbations in the carbon cycle.

Ito, Akihiko

2007-05-01

80

Life-cycle assessment of electricity generation systems and applications for climate change policy analysis  

Microsoft Academic Search

This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle

Paul Joseph Meier

2002-01-01

81

Designing Global Climate Change  

NASA Astrophysics Data System (ADS)

In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

Griffith, P. C.; ORyan, C.

2012-12-01

82

Climate change during the last 150 million years: reconstruction from a carbon cycle model  

Microsoft Academic Search

Variations of the atmospheric CO2 level and the global mean surface temperature during the last 150 Ma are reconstructed by using a carbon cycle model with high-resolution input data. In this model, the organic carbon budget and the CO2 degassing from the mantle, both of which would characterize the carbon cycle during the Cretaceous, are considered, and the silicate weathering

Eiichi Tajika

1998-01-01

83

Changes in the terrestrial water cycle across an elevation gradient in the Colorado Headwaters region from cloud resolving simulations with the WRF regional climate model  

NASA Astrophysics Data System (ADS)

A number of studies have indicated that climate change will have a pronounced impact on the water cycle due to the enhanced moisture and evapotranspiration. The representation of the water cycle in most climate models, however, is relatively poor due in part to their coarse resolution, the resulting poor representation of complex topography, as well as the difficulty of representing convection using existing convective parameterizations. As a result, there is some uncertainty regarding the magnitude of these changes, especially in regions of complex terrain. To overcome these deficiencies, a high resolution (4 km) cloud resolving simulation of the current climate (continuous eight years starting 2001) and a perturbed, warmer and wetter, climate using the Pseudo Global Warming approach was performed using the WRF regional climate model over the Colorado Headwaters region. This region includes the headwaters of the Colorado, Platte, Rio Grande and Arkansas Rivers, and is one of the key source regions for water in the Southwest; ~85% of the streamflow for the Colorado River comes from snowmelt in this region. The current climate simulation was driven by the North American Regional Reanalysis (NARR) with 32 km resolution and 3 hourly updates. The future simulation was driven by the same NARR reanalysis with perturbed moisture and temperature from a CCSM A1B AR4 simulation of the global future climate in 2045-2055. This study examines changes in the terrestrial component of the water cycle, especially how climate change may impact the partitioning of precipitation between evapotranspiration and runoff and the availability of water in a future climate. We focus analysis on hydrologic changes across an elevation gradient to examine how changes in the climatological availability of energy and water affect seasonal cycles of snowpack, soil moisture, and evapotranspiration. Results show that the performance of the WRF model in current climate for precipitation, temperature and snowpack was reasonable for both winter and summer during the 2001-2008 period using SNOTEL observations at ~100 sites. This accuracy supports the use of such a model to make inferences about likely changes to the water cycle in a future climate. Such inferences are an important input to water resources planning in an environment where climate change is likely.

Rasmussen, R.; Ikeda, K.; Gochis, D. J.; Clark, M. P.; Liu, C.; Dudhia, J.; Yates, D. N.; Chen, F.; Tewari, M.; Gutmann, E. D.

2013-12-01

84

The role of the hydrological cycle and the ocean`s thermohaline circulation in climate change: A multicomponent climate model study. Ph.D. Thesis  

SciTech Connect

Global ocean-atmosphere and ocean-atmosphere-continental ice sheet models are developed to address the question of feedbacks between the hydrological cycle and the global thermohaline circulation capable of explaining the climate changes seen in paleoclimate records of the late Pleistocene and the last deglaciation. The ocean-atmosphere model climate system displays two distinct stable equilibria controlled by latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, one mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The other has strong deep water production in the Southern Ocean and weak production in the North Pacific and small heat transport to high-latitude North Atlantic. The ocean-atmosphere-ice sheet system displays feedbacks which produce century/millennium time scale oscillations. The thermohaline circulation plays a central role in these feedbacks because of its transport of both heat and salt. The feedbacks could potentially play a causal role in the century/milliennium climate change seen in the paleoclimate record.

Wang, Huaxiao

1993-12-31

85

The Carbon Cycle and its Role in Climate Change: Activity 3  

NSDL National Science Digital Library

In this activity, learners explore the human influences on the carbon cycle and examine how fossil fuels release carbon. Learners role play as miners, power plant operators, car drivers, and home owners in a city. Learners will act out how each member of society contributes to the carbon cycle and then create a classroom mural depicting the path of carbon. Learners can reflect on this process as well as brainstorm ways to lower their carbon footprints. This activity is the third in a series of three activities that introduce learners to the carbon cycle (see related sources), although it is not mandatory that all three activities are completed as a set.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

86

Geopolitics of Climate Change.  

National Technical Information Service (NTIS)

This report analyzes the consequences of climate change and global warming for international politics in general and international security in particular. The report focuses on whether and in what way climate change may alter the conditions of internation...

P. Halden

2007-01-01

87

Fiddling with climate change  

NASA Astrophysics Data System (ADS)

Composer and string musician, turned award-winning environmentalist, Aubrey Meyer tells Nature Climate Change why he is campaigning for countries to adopt his 'contraction and convergence' model of global development to avoid dangerous climate change.

2012-01-01

88

Climate Change and Biodiverstiy  

NSDL National Science Digital Library

This site describes climate change due to human activities and natural factors; future scenarios due to global warming; and how climate change will impact ecosystems and biodiversity. It includes information on political activity such as avoidance, mitigation and adaptation as a response to climate change. Current projects of the United Nations Environment Programme - World Conservation Monitoring Centre( UNEP-WCMC) involving involving climate change migration and adaptation and impact on the ecosystem services.

89

Abrupt Climate Change  

Microsoft Academic Search

Large, abrupt, and widespread climate changes with major impacts have occurred repeatedly in the past, when the Earth system was forced across thresholds. Although abrupt climate changes can occur for many reasons, it is conceivable that human forcing of climate change is increasing the probability of large, abrupt events. Were such an event to recur, the economic and ecological impacts

R. B. Alley; J. Marotzke; W. D. Nordhaus; J. T. Overpeck; D. M. Peteet; R. A. Pielke Jr; R. T. Pierrehumbert; P. B. Rhines; T. F. Stocker; L. D. Talley; J. M. Wallace

2003-01-01

90

Global Climate Change Exploratorium  

NSDL National Science Digital Library

This site, funded by NSF, is the home page for the Global Climate Change research explorer. Multicolor tabs at the top of the page link to further information and visualizations (graphs, charts, pictures, etc.) for climate change resources in each of the Earth's spheres, including: atmosphere, hydrosphere, cryosphere, biosphere, and global effects of climate change.

Exploratorium, The

91

Climate change and conflict  

Microsoft Academic Search

The prospect of human-induced climate change encourages drastic neomalthusian scenarios. A number of claims about the conflict-inducing effects of climate change have surfaced in the public debate in recent years. Climate change has so many potential consequences for the physical environment that we could expect a large number of possible paths to conflict. However, the causal chains suggested in the

Ragnhild Nordås; Nils Petter Gleditsch

2007-01-01

92

The Changing Climate.  

ERIC Educational Resources Information Center

Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

Schneider, Stephen H.

1989-01-01

93

Solar cycle 24: Implications for energetic particles and long-term space climate change  

NASA Astrophysics Data System (ADS)

The recent solar minimum was the longest and deepest of the space age, with the lowest average sunspot numbers for nearly a century. The Sun appears to be exiting a grand solar maximum (GSM) of activity which has persisted throughout the space age, and is headed into a significantly quieter period. Indeed, initial observations of solar cycle 24 (SC24) continue to show a relatively low heliospheric magnetic field strength and sunspot number (R), despite the average latitude of sunspots and the inclination of the heliospheric current sheet showing the rise to solar maximum is well underway. We extrapolate the available SC24 observations forward in time by assuming R will continue to follow a similar form to previous cycles, despite the end of the GSM, and predict a very weak cycle 24, with R peaking at ˜65-75 around the middle/end of 2012. Similarly, we estimate the heliospheric magnetic field strength will peak around 6nT. We estimate that average galactic cosmic ray fluxes above 1GV rigidity will be ˜10% higher in SC24 than SC23 and that the probability of a large SEP event during this cycle is 0.8, compared to 0.5 for SC23. Comparison of the SC24 R estimates with previous ends of GSMs inferred from 9300 years of cosmogenic isotope data places the current evolution of the Sun and heliosphere in the lowest 5% of cases, suggesting Maunder Minimum conditions are likely within the next 40 years.

Owens, M. J.; Lockwood, M.; Barnard, L.; Davis, C. J.

2011-10-01

94

The Carbon Cycle and its Role in Climate Change: Activity 1  

NSDL National Science Digital Library

In this activity (on page 1), learners role play as atoms to explore how atoms can be rearranged to make different materials. Learners group together and link arms or hold hands to form chemical bonds and act out the processes of photosynthesis and respiration. Use this activity to introduce the carbon cycle and follow this activity with two associated activities from the same resource.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

95

Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America  

Microsoft Academic Search

This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore–plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes

J. Tyler Faith

2011-01-01

96

Uncertainty in Predicting the Effect of Climatic Change on the Carbon Cycling of Canadian Peatlands  

Microsoft Academic Search

Northern peatlands play an important role globally in the cycling of C, through the exchange of CO2 with the atmosphere, the emission of CH4, the production and export of dissolved organic carbon (DOC) and the storage of C. Under 2 × CO2 GCM scenarios, most Canadian peatlands will be exposed to increases in mean annual temperature ranging between 2 and

T. R. Moore; N. T. Roulet; J. M. Waddington

1998-01-01

97

Climate change 2007 - mitigation of climate change  

Microsoft Academic Search

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry,

B. Metz; O. Davidson; P. Bosch; R. Dave; L. Meyer

2007-01-01

98

From Fall to Spring, or Spring to Fall? Seasonal Cholera Transmission Cycles and Implications for Climate Change  

NASA Astrophysics Data System (ADS)

Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and the annual recurrence of this infectious disease in endemic areas continues to be of considerable interest to scientists and public health workers. Despite major advances in the ecological, and microbiological understanding of Vibrio cholerae, the causative agent, the role of underlying macro-scale hydroclimatic processes in propagating the disease in different seasons and years is not well understood. The incidence of cholera in the Bengal Delta region, the ‘native homeland’ of cholera, shows distinct biannual peaks in the southern floodplains, as opposed to single annual peaks in coastal areas and the northern parts of Bangladesh, as well as other cholera-endemic regions in the world. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the spatio-temporal variability of incidence peaks with seasonal processes and extreme events. At a seasonal scale, the cycles indicate a spring-fall transmission pattern, contrary to the prevalent notion of a fall-spring transmission cycle. We show that the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating transmission to fall by flooding. This seasonal interpretation of the progression of cholera has important implications, for formulating effective cholera intervention and mitigation efforts through improved water management and understanding the impacts of changing climate patterns on seasonal cholera transmission. (Water Environental Research Education Actionable Solutions Network)

Akanda, A. S.; Jutla, A. S.; Huq, A.; Colwell, R.; Islam, S.; WE Reason

2010-12-01

99

The Sun's total irradiance: Cycles, trends and related climate change uncertainties since 1976  

Microsoft Academic Search

A composite record of the Sun's total irradiance compiled from measurements made by five independent space-based radiometers since 1978 exhibits a prominent 11-year cycle with similar levels during 1986 and 1996, the two most recent minimum epochs of solar activity. This finding contradicts recent assertions of a 0.04% irradiance increase from the 1986 to 1996 solar minima and suggests that

Claus Fröhlich; Judith Lean

1998-01-01

100

The Impact of the Changing Climate on the Supply and ReCycling of Phosphorus  

Microsoft Academic Search

\\u000a For more than half a century, phosphorus (P) has been a major focus of limnological research. Early studies by Rodhe (1948)\\u000a identified P as a key factor limiting the growth of algae. Recently, Istvánovics (2008) reviewed the cycling of phosphorus\\u000a in lakes and its role in eutrophication. Historical increases in P loading have been observed in lakes distributed throughout\\u000a Europe.

Kurt Pettersson; Glen George; Peeter Nõges; Tiina Nõges; Thorsten Blenckner

101

The Carbon Cycle and its Role in Climate Change: Activity 2  

NSDL National Science Digital Library

In this activity (on page 7), learners explore the meaning of a "carbon sink." Using simple props, learners and/or an educator demonstrate how plants act as carbon sinks and how greenhouse gases cause global warming. This activity is the second in a series of three activities that introduce learners to the carbon cycle (see related sources), although it is not mandatory that all three activities are completed as a set.

Management, Us B.; Agency, Us E.; Service, Us F.; Service, Us F.; Administration, National A.; Administration, National A.

2009-01-01

102

Is Climate Change Happening?  

NSDL National Science Digital Library

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

Science, King'S C.

103

IISDnet: Climate Change  

NSDL National Science Digital Library

The International Institute for Sustainable Development (IISD) provides this site to present its knowledge base for climate change and adaptation. The knowledge base includes links to global projects on climate change, policy documents and research reports. The e-newsletter, Climate Canada, is accessible from this site as well.

104

Global Climatic Change  

Microsoft Academic Search

This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed.

Richard A. Houghton; George M. Woodwell

1989-01-01

105

Climate change portal established  

NASA Astrophysics Data System (ADS)

The World Bank has developed a Climate Change Knowledge Portal as a kind of “onestop shop” for climate-related information, data, and tools. The portal provides access to global, regional, and national data and reports with an aim to providing a resource for learning about climate information and increasing knowledge on climate change—related actions. For more information, see http://sdwebx.worldbank.org/climateportal/.

Showstack, Randy

2011-12-01

106

Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.  

PubMed

Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. PMID:24634279

Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

2014-06-01

107

The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results  

Microsoft Academic Search

IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are

Roberto Ranzi; T. Kojiri; A. Mynett; S. Barontini; N. van de Giesen; E. Kolokytha; L. A. Ngo; R. Oreamuno; B. Renard; D. Sighomnou; A. Vizina

2010-01-01

108

Climate Change: Teaching Through Technology  

NSDL National Science Digital Library

Maine Mathematics and Science Alliance Dec. 6, 2007 Agenda 8:00 Welcome Puzzle Intro Overview: The Science of Climate Change Carbon Cycle Activity Data Analysis: Buoy Data Activity Using Technology Effectively 10:00-10:15 Break Links to the 2007 Maine Learning Results Introduction to Afternoon Exploration COSEE (COSEE Ocean-Climate beta website) Giovanni project (Givoanni: Arabian Sea Lesson) (Giovanni Graphing Activity) Earth Exploration Toolkit: Whither Arctic Sea Ice? (Whither Arctic Sea Ice?) Google Earth Climate Change Resources 11:15-12:00 Lunch Afternoon Resource Exploration Exploration Report and Discussion Antarctic Expedition Opportunity WAIS Divide Outreach Blog WAIS Divide Main Science Page Wrap-Up/Evaluation ...

Chad, Deb A.

2007-12-06

109

The effects of global climate change on the cycling and processes of persistent organic pollutants (POPs) in the North Sea  

NASA Astrophysics Data System (ADS)

The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and ?-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models (HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilization of ?-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of ?-HCH and PCB 153 remain fairly steady in all three runs. In sediment, ?-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods. Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary sources will remain the key driver of levels of these contaminants over time.

O'Driscoll, K.; Mayer, B.; Su, J.; Mathis, M.

2014-05-01

110

Global Climate Change.  

ERIC Educational Resources Information Center

Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

Hall, Dorothy K.

1989-01-01

111

Responding to Climate Change  

NSDL National Science Digital Library

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

Science, King'S C.

112

Climate Change Policy  

NSDL National Science Digital Library

Experts Jason Shogren and Michael Toman wrote this discussion paper (00-22) on the economics of climate change policy, recently posted on the Resources for the Future (RFF) Website. The paper (.pdf format) examines the risks of climate change, the benefits of protection from climate change, and the costs of alternative protection policies. Also included is a summary of key policy lessons and knowledge gaps.

113

High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.  

PubMed

The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation. PMID:23671087

Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K

2013-05-28

114

High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle  

PubMed Central

The East Asian monsoon is one of Earth’s most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6–7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.

Eagle, Robert A.; Risi, Camille; Mitchell, Jonathan L.; Eiler, John M.; Seibt, Ulrike; Neelin, J. David; Li, Gaojun; Tripati, Aradhna K.

2013-01-01

115

Winds of change: How will windstorms and forest harvesting affect C cycling in northern MN under different climate scenarios?  

NASA Astrophysics Data System (ADS)

Forest managers struggle to manage timber resources while integrating the complex interactions that exist among disturbances with the novel conditions produced by a changing climate. To help forest managers better integrate climate change and disturbance projections into their forest management plans, we are using a forest landscape disturbance and succession model (LANDIS-II, Century extension) to project carbon sequestration in northern Minnesota under multiple climate change, management and disturbance scenarios. The model was calibrated and validated using empirical estimates of aboveground productivity and net ecosystem exchange. Our simulations suggest that windstorms will decrease tree biomass and soil organic matter and will increase dead C, resulting in an overall decrease in total C and C sink strength under the GFDL A1FI climate scenario. However the direct effects of climate change on C via altered production and heterotrophic respiration were larger than the impacts of wind. In contrast, forest harvesting will remain the dominant determinant of C dynamics under A1FI, even under management scenarios of more selective logging and longer rotation periods. Recovery from historic (late 1800s and early 1900s) disturbance - clearcut logging and wildfire - remain an important, though declining, driver of long-term C dynamics. Our research results will inform regional planning efforts and help forest managers evaluate the relative importance of disturbances (e.g. wind) and forest harvesting under a changing climate.

Lucash, M. S.; Scheller, R. M.; Gustafson, E.; Sturtevant, B.

2013-12-01

116

climate change, economics of  

Microsoft Academic Search

Climate-change economics attends to the various threats posed by global climate change by offering theoretical and empirical insights relevant to the design of policies to reduce, avoid, or adapt to such change. This economic analysis has yielded new estimates of mitigation benefits, improved assessments of policy costs in the presence of various market distortions or imperfections, better tools for making

Lawrence H. Goulder; William A. Pizer

117

Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies  

NASA Astrophysics Data System (ADS)

It has been previously suggested that changes in the strength and position of the Southern Hemisphere westerlies could be a key contributor to glacial-interglacial atmospheric CO2 variations. To test this hypothesis, we perform a series of sensitivity experiments using an Earth system model of intermediate complexity. A strengthening of the climatological mean surface winds over the Southern Ocean induces stronger upwelling and increases the formation of Antarctic Bottom Water. Enhanced Ekman pumping brings more dissolved inorganic carbon (DIC)-rich waters to the surface. However, the stronger upwelling also supplies more nutrients to the surface, thereby enhancing marine export production in the Southern Hemisphere and decreasing the DIC content in the euphotic zone. The net response is a small atmospheric CO2 increase (˜5 ppmv) compared to the full glacial-interglacial CO2 amplitude of ˜90 ppmv. Roughly the opposite results are obtained for a weakening of the Southern Hemisphere westerly winds.

Menviel, L.; Timmermann, A.; Mouchet, A.; Timm, O.

2008-12-01

118

Expansion of Bioenergy Crops in the Midwestern United States: Implications for the Hydrologic Cycle under Climate Change  

NASA Astrophysics Data System (ADS)

To meet the emerging bioenergy production demands, the agricultural Midwestern United States is likely to see large-scale land use conversions to accommodate expansion of perennial bioenergy crops such as Miscanthus (Miscanthus X giganteus) and Switchgrass (Panicum virgatum). This leads to open questions regarding the impact on the hydrologic cycle in the region. To address these, a mechanistic model MLCan (Multi-Layer Canopy model, Drewry et al. 2010) is applied to analyze and predict: (i) the eco-physiological adaptations in the two most promising perennial bioenergy C4 crops in the Midwest, viz. Miscanthus and Switchgrass; and (ii) the impact on soil-water use. Model validation is performed using recent 2005 observations and then projections under climate change for 2050 are analyzed. The result indicates that compared with corn (Zea mays L.), another C4 but annual crop, Miscanthus and Switchgrass utilize more water for total seasonal evapotranspiration (ET) by approximately 58% to 36%, respectively, due to their higher leaf area and longer growing season. Under projected 2050 scenario of elevated atmospheric concentration of carbon dioxide (CO2) [550 ppm], Miscanthus, Switchgrass, and corn are likely to decrease water use for ET by approximately 16%, 15%, 13% for respectively. However, when projected increase in air temperature is also considered, it results in an increase in ET. Air temperature sensitivity to water use of each crop under environmental changes is examined. Meanwhile, spatial extent and distribution of land-use change and bioenergy crop production is driven by economics and policy. Based on economic projections and the corresponding expansion of land area predicted for bioenergy crop production an analysis is conducted to assess the spatial impacts on hydrology. It is predicted that, based on projected elevated CO2 and air temperature increases, the total additional amount of water use in one growing season for these bioenergy crops in the Midwest may vary approximately from 5 to 35 (bil. m3), mostly contributed from the southern States.

Le, P. V.; Kumar, P.; Drewry, D.

2010-12-01

119

Climate change and mitigation.  

PubMed

Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

Nibleus, Kerstin; Lundin, Rickard

2010-01-01

120

Climate Change on Mars  

NASA Technical Reports Server (NTRS)

Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

1994-01-01

121

Climate change 2007 - mitigation of climate change  

SciTech Connect

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. (eds.)

2007-07-01

122

Creationism & Climate Change (Invited)  

Microsoft Academic Search

Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious

S. Newton

2009-01-01

123

Learning and climate change  

Microsoft Academic Search

Learning – i.e. the acquisition of new information that leads to changes in our assessment of uncertainty – plays a prominent role in the international climate policy debate. For example, the view that we should postpone actions until we know more continues to be influential. The latest work on learning and climate change includes new theoretical models, better informed simulations

Brian C. Oneill; Paul Crutzen; Arnulf Grübler; Minh Ha-Duong; Klaus Keller; Charles Kolstad; Jonathan Koomey; Andreas Lange; Michael Obersteiner; Michael Oppenheimer; William Pepper; Warren Sanderson; Michael Schlesinger; Nicolas Treich; Alistair Ulph; Mort Webster; Chris Wilson

2006-01-01

124

Coastal Climate Change  

NSDL National Science Digital Library

As climate changes, dynamic coastal regions are experiencing a wide range of impacts. Sea levels, ocean acidification, sea surface temperatures, ocean heat, and ocean circulation have all been changing in ways unseen for thousands of years. Arctic sea ice melted significantly more during summers in the last 30 years, and storms are intensifying. Coastal ecosystems stand to be damaged, and coasts will likely erode from rising sea levels, intensified storm surges, and flooding that climate change may amplify. Coastal communities will need to prepare adaptation strategies to cope, and many who live or work in coastal regions are wondering what climate change might mean for them. This module provides an overview of the impacts coastal regions are experiencing and may continue to experience as a result of Earth's changing climate. A video series within the module demonstrates effective strategies for communicating climate science.

2011-01-01

125

Climate change and avian influenza  

PubMed Central

Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed.

Slingenbergh, J.; Xiao, X.

2009-01-01

126

Rapid changes in temperature and hydrology in the western Mediterranean during the last climatic cycle from the high resolution record ODP Site 976 (Alboran Sea)  

NASA Astrophysics Data System (ADS)

High-resolution pollen record, pollen-inferred climate reconstructions and clay mineralogy records were performed over the last climatic cycle from the ODP Site 976 located in the Alboran Sea Continental paleoenvironment proxies were provided on the same samples to depict the short and long term variability of Mediterranean vegetation and climate during the two last terminations and the last two interglacials. Pollen record highlights the vegetation changes associated to climate variability while clay mineralogy informs about the terrigenous inputs related to wind and/or river transport. During the last cycle, both vegetation and clay minerals data have recorded the response of continental ecosystems to all the climate events which characterized the last 135000 years. The Dansgaard/Oeschger oscillations and the rapid cold events evidenced in the North Atlantic (Bond et al., 1993; McManus et al., 1994) are well evidenced in the ODP sequence. Thus, warm interstadials show a strong colonisation of temperate Mediterranean forest while cold events are particularly well expressed by correlative increases in dry steppic to semi-desert formation with enhanced input from African desert dust (Bout-Roumazeilles et al, 2007 and in progress). A special attention has been paid on the two last glacial/interglacial transitions 1 and 2 that occurred before the interglacial inception in order to better understand what happened during these key-periods in continental areas and also better understand how reacts the Mediterranean climate regime through these two periods. The two high resolution records from the Terminaison 2/ Stage 5 and Terminaison 1/ Holocene are compared especially with regards to the wind regime modifications through atmospheric supply, and to hydrological and temperature changes reconstructed from pollen data. Therefore for these two key-periods, we aim to produce a robust climate reconstruction pollen-inferred precipitation and temperature from the 0DP 976 marine Mediterranean core which also can be compared to climate estimates based on other marine cores (Peyron et al., in progress).

Combourieu-Nebout, Nathalie; Peyron, Odile; Bout-Roumazeille, Viviane

2013-04-01

127

Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA  

USGS Publications Warehouse

Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

Yiping Wu; Liu , Shuguang; Gallant, Alisa L.

2012-01-01

128

Surface Ozone and Climate Change  

NASA Astrophysics Data System (ADS)

Surface ozone pollution will continue to be a concern in the coming decades as the effects of climate change couple with changing emissions to influence air quality. We analyze modeled surface ozone's seasonal cycle variability, long-term variability, and its correlation to atmospheric circulation using output from the GFDL coupled chemistry climate model (CM3) from CMIP5. We analyze the relationship between the jet stream and both ozone variability and mean ozone over the North Pacific. We also determine if ozone's seasonal cycle will shift in the future on a worldwide scale. We focus on surface ozone and 500mb zonal winds in order to analyze the large-scale circulation effects from 2006 to 2100. CMIP5 contains varying representative concentration pathways (RCPs), and we use three-member RCPs 4.5 and 4.5*, which are identical save the fact that 4.5* have fixed amounts of aerosols and ozone precursors at 2005 levels. The use of both 4.5 and 4.5* allows us to see effects due to changing emissions of ozone precursors such as NOx and which are due to climate change. Jet speed is found to correlate well with the maximum amount of decadal mean ozone in both 4.5 and 4.5* in the Pacific region. In addition, ozone's seasonal cycle across the globe peaks earlier in the year due to climate change alone, while decreasing emissions of ozone precursors is found to alter the amplitude of the cycle over industrial continental areas, causing the day of maximum ozone to occur months earlier long-term. The seasonal cycle change in 4.5* appears to be connected to the jet stream over the Pacific.

Gonzales, K.; Barnes, E. A.

2013-12-01

129

Climate change and skin.  

PubMed

Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses. PMID:23407083

Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

2013-02-01

130

Creationism & Climate Change (Invited)  

NASA Astrophysics Data System (ADS)

Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

Newton, S.

2009-12-01

131

Climate Change: An Activity.  

ERIC Educational Resources Information Center

Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

Lewis, Garry

1995-01-01

132

Climate Change and the Oceans  

NSDL National Science Digital Library

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

Science, The K.

133

Climate Change: Basic Information  

MedlinePLUS

... and ongoing rise in global average temperature near Earth's surface. It is caused mostly by increasing concentrations ... decades or longer. Climate change is happening Our Earth is warming. Earth's average temperature has risen by ...

134

Climate change and inuits  

NASA Astrophysics Data System (ADS)

The Inuit Circumpolar Conference will seek a declaration from the Inter-American Commission on Human Rights that emissions of greenhouse gases, which the conference says, are destroying the Inuit way of life, are a violation of human rights, conference chair Sheila Watt-Cloutier announced on 15 December.Her announcement comes shortly after the mid-November release of the Arctic Climate Impact Assessment, a scientific study by an international team of 300 scientists. That assessment noted, “The Arctic is now experiencing some of the most rapid and severe climate change on Earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in Arctic climate will also affect the rest of the world through increased global warming and rising sea levels.”

Showstack, Randy

135

Climate Change and Tennessee.  

National Technical Information Service (NTIS)

The earth's climate is predicted to change because human activities are altering the chemical composition of the atmosphere through the buildup of greenhouse gases -- primarily carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. The heat-trap...

1999-01-01

136

Climate Change and Kentucky.  

National Technical Information Service (NTIS)

The earth's climate is predicted to change because human activities are altering the chemical composition of the atmosphere through the buildup of greenhouse gases -- primarily carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. The heat-trap...

1998-01-01

137

Global climate change  

NASA Technical Reports Server (NTRS)

Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

Levine, Joel S.

1991-01-01

138

Global Climatic Change.  

ERIC Educational Resources Information Center

Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

Houghton, Richard A.; Woodwell, George M.

1989-01-01

139

Global climatic change  

SciTech Connect

This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

Houghton, R.A.; Woodwell, G.M.

1989-04-01

140

Global Biogeochemical Cycles and the Physical Climate System  

NSDL National Science Digital Library

This module focuses on the biogeochemical cycles of five of the major elements important to life - carbon, nitrogen, phosphorus, sulfur, and oxygen - and their role in climatic change. The chapters include: Biogeochemical Processes, Biogeochemical Cycles and Climate, The Modern Coupled C-N-P-S-O System, Carbon Cycles, The Important Nutrient Nitrogen, Phosphorus and Sulfur, and The Water Cycle. Study questions and answers are also available.

Mackenzie, Fred

1999-01-01

141

Solar Changes and Climate Changes. (Invited)  

NASA Astrophysics Data System (ADS)

During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

Feynman, J.

2009-12-01

142

Challenges for understanding the combined impacts of climate change and the 2001-2010 fires on carbon cycling in Alaskan boreal forests (Invited)  

NASA Astrophysics Data System (ADS)

During the 2000s, Alaska's boreal forest experienced more wildland fire than any decade in recorded history (since 1940). Examination of charcoal data suggests that the level of burning over the past decade surpasses that observed over the past 10,000 years in the Yukon River Flats(Kelly et al. 2013). Here, we will review recent research directed towards understanding how fire and climate interact to control carbon cycling in Alaska's boreal forest. In particular, we will focus on fire-climate-permafrost-ecosystem interactions as the key drivers of changes to carbon cycling in this biome. Topics covered in this presentation will include: (a) recent changes to Alaska's fire regime; (b) factors controlling the burning of surface organic layers in Alaskan boreal forests; (c) factors controlling changes in permafrost following fire; (d) how variations in fire severity and changes in permafrost control patterns of tree seedling recruitment and growth; and (e) integrated assessments (including modeling) of the impacts of these processes on carbon cycling. Reference: Kelly, R. et al. PNAS, doi/10.1073/ pnas.1305069110, 2013.

Kasischke, E. S.; Alexander, H. D.; Barrett, K.; Genet, H.; Goetz, S. J.; Harden, J. W.; Hoy, E.; Johnstone, J. F.; Jorgenson, T.; Kane, E. S.; Kavenskiy, M.; Mack, M. C.; McGuire, A. D.; Mitchell, S. R.; O'Donnell, J. A.; Turetsky, M.

2013-12-01

143

Avoiding dangerous climate change  

SciTech Connect

In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe (eds.)

2006-02-15

144

Insects and climate change  

Microsoft Academic Search

In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions

Scott A. Elias

1991-01-01

145

Debating Climate Change  

SciTech Connect

Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

Malone, Elizabeth L.

2009-11-01

146

The dating of dipterocarp tree rings: establishing a record of carbon cycling and climatic change in the tropics  

NASA Astrophysics Data System (ADS)

In a first step to obtain a proxy record of past climatic events (including the El Niño-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the juvenile effect, resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the anthropogenic effect caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings. Copyright

Robertson, I.; Froyd, C. A.; Walsh, R. P. D.; Newbery, D. M.; Woodborne, S.; Ong, R. C.

2004-10-01

147

Climate change and disaster management  

Microsoft Academic Search

Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A

Geoff O'Brien; Phil O'Keefe; Joanne Rose; Ben Wisner

2006-01-01

148

Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review  

NASA Astrophysics Data System (ADS)

We have reviewed the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, permafrost thawing, and destabilization of marine hydrates may affect the climate system. It is likely that methane wetland emissions will increase over the next century. Uncertainties arise from the temperature dependence of emissions and changes in the geographical distribution of wetland areas. Another major concern is the possible degradation or thaw of terrestrial permafrost due to climate change. The amount of carbon stored in permafrost, the rate at which it will thaw, and the ratio of methane to carbon dioxide emissions upon decomposition form the main uncertainties. Large amounts of methane are also stored in marine hydrates, and they could be responsible for large emissions in the future. The time scales for destabilization of marine hydrates are not well understood and are likely to be very long for hydrates found in deep sediments but much shorter for hydrates below shallow waters, such as in the Arctic Ocean. Uncertainties are dominated by the sizes and locations of the methane hydrate inventories, the time scales associated with heat penetration in the ocean and sediments, and the fate of methane released in the seawater. Overall, uncertainties are large, and it is difficult to be conclusive about the time scales and magnitudes of methane feedbacks, but significant increases in methane emissions are likely, and catastrophic emissions cannot be ruled out. We also identify gaps in our scientific knowledge and make recommendations for future research and development in the context of Earth system modeling.

O'Connor, Fiona M.; Boucher, O.; Gedney, N.; Jones, C. D.; Folberth, G. A.; Coppell, R.; Friedlingstein, P.; Collins, W. J.; Chappellaz, J.; Ridley, J.; Johnson, C. E.

2010-12-01

149

A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change  

NASA Astrophysics Data System (ADS)

The global hydrologic cycle is likely to increase in strength with global warming, although some studies indicate that warming due to solar absorption may result in a different sensitivity than warming due to an elevated greenhouse effect. Here we show that these sensitivities of the hydrologic cycle can be derived analytically from an extremely simple surface energy balance model that is constrained by the assumption that vertical convective exchange within the atmosphere operates at the thermodynamic limit of maximum power. Using current climatic mean conditions, this model predicts a sensitivity of the hydrologic cycle of 2.2% K-1 to greenhouse-induced surface warming which is the sensitivity reported from climate models. The sensitivity to solar-induced warming includes an additional term, which increases the total sensitivity to 3.2% K-1. These sensitivities are explained by shifts in the turbulent fluxes in the case of greenhouse-induced warming, which is proportional to the change in slope of the saturation vapor pressure, and in terms of an additional increase in turbulent fluxes in the case of solar radiation-induced warming. We illustrate an implication of this explanation for geoengineering, which aims to undo surface temperature differences by solar radiation management. Our results show that when such an intervention compensates surface warming, it cannot simultaneously compensate the changes in hydrologic cycling because of the differences in sensitivities for solar vs. greenhouse-induced surface warming. We conclude that the sensitivity of the hydrologic cycle to surface temperature can be understood and predicted with very simple physical considerations but this needs to reflect on the different roles that solar and terrestrial radiation play in forcing the hydrologic cycle.

Kleidon, A.; Renner, M.

2013-12-01

150

Investigating Climate Change Evidence  

NSDL National Science Digital Library

This activity uses the jigsaw method to encourage students, in groups, to become experts on different types of evidence as a means of understanding climate change. Each group focuses on a topic, highlights at least one data set within that topic, and researches the data collection process along with the potential consequences of the evidence. Students are asked to critique the evidence they investigate, using a prepared checklist, and to share the results of their research with their classmates. Finally, students evaluate the evidence behind a skepticÃÂs claim, and discuss the knowns and unknowns about climate change.

Harris, Cornelia

2012-02-24

151

Global Climate Change  

NSDL National Science Digital Library

Global Climate Change is one of the Exploring the Environment series of online modules. Emphasizing an integrated approach to environmental earth science through problem-based learning, this module asks students to predict how increasing atmospheric concentrations of carbon dioxide is changing the climate, and the possible effects this may have on Kansas wheat crops. Students access remote sensing data via links to both current and historical data and work through a sequence of hyperlinked background resources to investigate this problem. The site also offers a glossary, teacher resources, and a general description of the problem-based learning model.

2000-01-01

152

Nitrogen cycle in the earth climatic system and its modeling  

NASA Astrophysics Data System (ADS)

Investigations into the nitrogen cycle in the climatic system of the earth are reviewed with special emphasis on the biospheric nitrogen cycle. Approaches to modeling the biogeochemical nitrogen turnover are described. Excluding the nitrogen cycle from consideration when probable consequences of climate change are analyzed can lead to inaccurate estimates of the ecosystem response, in particular, for regions where mineral compounds of soil nitrogen are a limiting factor for the development of vegetation cover. Numerical experiments with climatic models point to a substantial influence of the nitrogen turnover on the feedback between climatic characteristics and the carbon cycle. Models of the combined dynamics of carbon and nitrogen make it possible to obtain realistic estimates of present-day resources and fluxes of these elements in ecosystems, as well as to estimate their changes during possible climatic changes.

Golubyatnikov, L. L.; Mokhov, I. I.; Eliseev, A. V.

2013-05-01

153

Climate Change Impacts in the Amazon. Review of scientific literature  

SciTech Connect

The Amazon's hydrological cycle is a key driver of global climate, and global climate is therefore sensitive to changes in the Amazon. Climate change threatens to substantially affect the Amazon region, which in turn is expected to alter global climate and increase the risk of biodiversity loss. In this literature review the following subjects can be distinguished: Observed Climatic Change and Variability, Predicted Climatic Change, Impacts, Forests, Freshwater, Agriculture, Health, and Sea Level Rise.

NONE

2006-04-15

154

Life cycle assessment of integrated municipal solid waste management systems, taking account of climate change and landfill shortage trade-off problems.  

PubMed

Steps taken to counter the climate change problem have a significant impact on the municipal solid waste management (MSW) sector, which must tackle regional environmental problems such as the shortage of sanitary landfills, especially in Japan. Moreover, greenhouse gas emissions and final disposal have a trade-off relationship. Therefore, alleviation of both these environmental problems is difficult, and Japanese local municipalities are anxious for action to solve these problems and reduce treatment costs. Although ambitious waste management measures have been enacted in many countries, they appear to lack a holistic view and do not adopt a life cycle approach. Therefore, it is important to reconstruct the MSW management system, taking into account environmental and economic aspects. In the present study, life cycle assessment and mathematical modelling were used to seek ways of redesigning the MSW management system in order to minimize environmental impacts and/or reduce treatment costs. One economic block was selected as the study area (Iwate Prefecture in Japan). The life cycle inventory and costs data for every MSW transportation and treatment process in this region were collected and processed. Then, taking account of geographic information, an optimal solution for the minimization of environmental impact or treatment costs was derived. To solve the trade-off problem, a sensitivity analysis was conducted to find optimal reduction targets for climate change and final disposal. PMID:20699290

Tabata, Tomohiro; Hishinuma, Tatsuo; Ihara, Tomohiko; Genchi, Yutaka

2011-04-01

155

Climate change and plant diseases  

Microsoft Academic Search

Human activities are altering greenhouse gas concentrations in the atmosphere and causing global climate change. In the near future, there will certainly be changes in the Brazilian phytosanitary scenario attributed to global climate change. The impacts of climate change can be positive, negative or neutral, since these changes can decrease, increase or have no impact on diseases, depending on each

Raquel Ghini; Emília Hamada; Wagner Bettiol

2008-01-01

156

Climate Variability, Climate Change and Land Degradation  

Microsoft Academic Search

Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate\\u000a variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis\\u000a of past land degradation and climate variability provides some understanding of vulnerability to current and future climate\\u000a changes and the information needs for more

Beverley Henry; Greg McKeon; Jozef Syktus; John Carter; Ken Day; David Rayner

157

Climate change and groundwater: a short review  

Microsoft Academic Search

Abstract: There is a general consensus that climate change is an ongoing phenomenon. This will inevitably bring about numerous environmental problems, including alterations to the hydrolo- gical cycle, which is already heavily influenced by anthropogenic activity. The available climate scenarios indicate areas where rainfall may increase or diminish, but the final outcome with respect to man and environment will, generally,

W. Dragoni; B. S. Sukhija

2008-01-01

158

To what extent can interannual CO2 variability constrain carbon cycle sensitivity to climate change in CMIP5 Earth System Models?  

NASA Astrophysics Data System (ADS)

analyze the carbon-climate feedback in eight Earth System Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). We focus on tropical land carbon change and find decreases (-31.02 to -169.32 GtC K-1) indicating tropical ecosystems will release carbon as temperature warms, thus contributing to a positive feedback identified in earlier studies. We further investigate the relationship between tropical land carbon change and sensitivity of historical atmospheric CO2 growth rate to tropical temperature variability and find a weak linear relationship. This sensitivity for most models is stronger than observed. We further use this "emergent constraint" to constrain uncertainties in model-projected future carbon-climate changes and find little effect in narrowing the model spread, but the mean sensitivity is slightly smaller. This contrasts with earlier Coupled Carbon Cycle Climate Model Intercomparison Project results, highlighting the challenge in constraining future projections by modern observations and the necessity for evaluating such relationships continuously.

Wang, Jun; Zeng, Ning; Liu, Yimin; Bao, Qing

2014-05-01

159

Global Changes of the Water Cycle Intensity.  

National Technical Information Service (NTIS)

In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on const...

M. G. Bosilovich S. D. Schubert G. K. Walker

2003-01-01

160

Climate Change and Extinction  

NSDL National Science Digital Library

A senior researcher discusses extinction due to global warming in this two-minute sound segment. He says that as climate warms, species will probably move upslope and towards the poles but in many cases, that may put species that are found on mountain tops at risk. Species with small ranges or lowland species that may not be able to get to mountain slopes and find equitable climate will die out. His study suggests that as many as one million species of plants and animals worldwide could be facing extinction as a result of climate change. This site is from an archive of a daily radio program called Pulse of the Planet, which provides its listeners with a portrait of Planet Earth, tracking the rhythms of nature, culture and science worldwide and blending interviews and extraordinary natural sound. The site also provides a written transcript of the broadcast.

2004-07-12

161

Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska  

NASA Astrophysics Data System (ADS)

Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

2011-12-01

162

Dialogue on Global Climate Change  

NSDL National Science Digital Library

This is a summary of a 2 day seminar on the topic "Dialogue on Global Climate Change." The sessions on October 1 included a scientific overview of global climate change, a discussion on religious perspectives on global climate change, and consideration of impacts and equity. The sessions on October 2 focused on policy considerations and the Kyoto Convention on Climate Change. Panelists discussed economic challenges in responding to climate change, reviewed the Kyoto convention and its political prospects, and examined the roles of science, religion, values, and economics in crafting public policy on climate change.

;

2007-06-28

163

Weather, Climate, Climate Change and Actions  

NSDL National Science Digital Library

This e-book contains the basics of weather and climate, climate change, and basic actions one can do to combat climate change. Included are embedded videos, slideshows, readings, and graphics. Discussion questions follow each section or chapter. This resource allows one to learn and/or use in a variety of ways integrating online resources that extend the learning, specifically flash animations, online labs, videos, curriculum, and readings. An iPad version is also available.

2012-01-01

164

Smithsonian climate change exhibits  

NASA Astrophysics Data System (ADS)

Two new museum exhibits, ``Arctic: A Friend Acting Strangely'' and ``Atmosphere: Change is in the Air'' opened 15 April at the Smithsonian Institution's National Museum of Natural History in Washington, D.C., in partnership with the U.S. National Oceanic and Atmospheric Administration, NASA, and the U.S. National Science Foundation. In ``Arctic: A Friend Acting Strangely,'' anecdotes from indigenous polar people reveal how climate changes have affected life within the last 50 years. For example, as permafrost melts and sea ice shrinks, plant distributions and animal migration patterns are changing, severely affecting culture.

Kumar, Mohi

2006-05-01

165

Teaching Climate Change  

NASA Astrophysics Data System (ADS)

In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

O'Donoghue, A.

2011-09-01

166

Perception of climate change.  

PubMed

"Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3?) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. PMID:22869707

Hansen, James; Sato, Makiko; Ruedy, Reto

2012-09-11

167

The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results  

NASA Astrophysics Data System (ADS)

IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of an Inventory of existing studies and projects considering observed and projected trends in the hydrological regimes of riverbasins and adaptation measures of the structural and non-structural type in Europe, Africa, America, Asia and Oceania and are presented.

Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

2010-05-01

168

Climate change? When? Where?  

Microsoft Academic Search

Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion\\u000a and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city.\\u000a \\u000a \\u000a The comparison was conducted to investigate whether more awareness and understanding of these issues is demonstrated by students\\u000a as a result of over 16 years’

Helen Boon

2009-01-01

169

Implications of abrupt climate change.  

PubMed Central

Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic.

Alley, Richard B.

2004-01-01

170

Climate extremes and the carbon cycle (Invited)  

NASA Astrophysics Data System (ADS)

The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Ongoing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that rare climate extremes can lead to a decrease in ecosystem carbon stocks and therefore have the potential to negate the expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. In addition to direct impact on the carbon fluxes of photosynthesis and respiration via extreme temperature and (or) drought, effects of extreme events may also lead to lagged responses, such as wildfires triggered by heat waves and droughts, or pest and pathogen outbreaks following wind-throw caused by heavy storms, reduced plant health due to drought stress or due to less frequent cold extremes in presently cold regions. One extreme event can potentially override accumulated previous carbon sinks, as shown by the Western European 2003 heat wave.. Extreme events have the potential to affect the terrestrial ecosystem carbon balance through a single factor, or as a combination of factors. Climate extremes can cause carbon losses from accumulated stocks, as well as long-lasting impacts on (e.g. lagged effects) on plant growth and mortality, extending beyond the duration of the extreme event itself. The sensitivity of terrestrial ecosystems and their carbon balance to climate change and extreme events varies according to the type of extreme, the climatic region, the land cover, and the land management. Extreme event impacts are very relevant in forests due to the importance of lagged and memory effects on tree growth and mortality, the longevity of tree species, the large forest carbon stocks and their vulnerability, as well as the long recovery time to re-gain the stock level previous to the extreme event impact. Given shorter regrowth times, grasslands are expected to recover more quickly from extremes than forests. Yet, degradation feedbacks come into play, where drought triggers loss of vegetation and heavy rain or wind causes subsequent erosion. Thus, an increase in the frequency of extreme events in some regions may contribute to e.g. desertification of semi-arid to arid grassland, in particular when (over-) grazing is an additional pressure. Croplands are also exposed to extremes with impacts on carbon cycling that are harder to disentangle as negative effects can be mitigated through evasive and adaptive farm management actions provided that sufficient resources are available. In most climatic zones, productivity and carbon sequestration potential of terrestrial ecosystems are strongly influenced by droughts that are a main source of inter-annual variation in terrestrial carbon sequestration. The expected regional impact of future climate extremes depends on changes in the occurrence probability of extremes, the compounded effects and timing of different extremes, the vulnerability of each land-cover type, the current mean climate in relation to the functioning of the ecosystem under consideration, and the ability to apply adaptive management.

Reichstein, M.; Bahn, M.; Ciais, P.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.

2013-12-01

171

Climate change hastens population extinctions  

PubMed Central

Climate change is expected to alter the distribution and abundance of many species. Predictions of climate-induced population extinctions are supported by geographic range shifts that correspond to climatic warming, but few extinctions have been linked mechanistically to climate change. Here we show that extinctions of two populations of a checkerspot butterfly were hastened by increasing variability in precipitation, a phenomenon predicted by global climate models. We model checkerspot populations to show that changes in precipitation amplified population fluctuations, leading to rapid extinctions. As populations of checkerspots and other species become further isolated by habitat loss, climate change is likely to cause more extinctions, threatening both species diversity and critical ecosystem services.

McLaughlin, John F.; Hellmann, Jessica J.; Boggs, Carol L.; Ehrlich, Paul R.

2002-01-01

172

Climate Change and Global Citizenship  

Microsoft Academic Search

The international climate change regime has failed. Even the most optimistic assessment of action to limit greenhouse pollution in the coming few decades will not prevent calamitous changes in Earth's climate. Arguments for international—that is, interstate—justice that have permeated international negotiations on climate change have been insufficient in fostering robust action by states. Indeed, by diverting all responsibility to states,

PAUL G. HARRIS

2008-01-01

173

Fair adaptation to climate change  

Microsoft Academic Search

This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries

Jouni Paavola; W. Neil Adger

2006-01-01

174

The Politics of Climate Change  

Microsoft Academic Search

This article explains the ways in which climate change is a geopolitical problem. It discusses the potential ramifications of the impacts of climate change on security, and argues that predictions of international conflicts arising from climate change are premature. It explains the spatial politics of reducing greenhouse gas emissions through an overview of the positions of the main actors in

L. Robert

2010-01-01

175

Past and Current Climate Change  

NASA Astrophysics Data System (ADS)

In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

Mercedes Rodríguez Ruibal, Ma

2014-05-01

176

Effect of climate and environmental changes on plankton biodiversity and bigeochemical cycles of the Dongsha (Pratas) Atoll, South China Sea  

NASA Astrophysics Data System (ADS)

Dongsha (Pratas) Atoll, the so called "Pearl Crown of South China Sea", is a well-developed atoll with a total area of 80000 hectares. It possesses various ecosystems and has very high biodiversity, but it is very sensitive to climate change and physical processes. According to our investigation within the shallow semi-enclosed atoll in April, July, and October, 2011 (i.e., spring, summer, and autumn, respectively), we found that plankton assemblages and hydrographical conditions exhibited clear seasonal and spatial variations. Colder and higher salinity water was observed in April, while warmer water in July and lower salinity water in October, respectively. Nutrient concentration within the atoll was similar to that of the oligotrophic South China Sea waters and seemed to be in nitrogen-limit situation, while the distribution pattern of DOC and POC was mainly attributed to Chla and imported detritus matters. Carbon deposition flux also showed significant seasonal changes, but POC/PN value was near Redfield ratio, implying mostly due to biogenic factors; however it could still be classified as a typical coral ecosystem, since CaCO3 sinking flux generally was 30 times higher than that of organic matter. Plankton biodiversity was quite high in the atoll, and preformed apparent seasonal succession; in total, 82 phytoplankton species and 67 copepod species were recorded; furthermore, crab zoea (17.3% of the total zooplankton by number), fish eggs (12.5%), and shrimp larvae (4.2%), were relatively abundant in zooplankton community, revealed that atoll might be a good hatching ground. We deduced that the seasonal patterns of chemical and biological variables were mainly influenced by monsoons and precipitation, while small scales of temporal and spatial variations could be ascribed to internal wave and tide in this study area.

Lo, Wen-tseng; Hsu, Pei-Kai; Hunag, Jia-Jang; Wang, Yu-Huai

2013-04-01

177

Activities for Conceptualizing Climate and Climate Change  

NSDL National Science Digital Library

This project is a digitally-based instructional program that contains data-rich case studies and visualization activities, as well as a visual library as a resource for teachers and students. A series of activities is organized to move scientifically from climate, to climate variability, to climate change. The site contains free teacher lesson plans, powerpoints, student activities, a summary of research on student conceptions and a curricular framework/philosopy document.

178

Predicting space climate change.  

NASA Astrophysics Data System (ADS)

Observations of solar activity measures have shown that the minimum between solar cycles 23 and 24 was the longest and deepest since about 1900, making it the lowest mean solar activity level of the space age. Furthermore, despite the fact that the evolution of solar cycle 24 is such that its maximum is due to occur in late 2012/2013, solar activity is still comparatively low, as can be observed in sunspot number, the interplanetary magnetic field strength and cosmic ray fluxes. This scenario is consistent with recent predictions that the sun is due to exit the grand solar maximum (GSM) that has persisted throughout the space age. If this prediction is correct, then two interesting questions arise: How much will average solar activity levels decline? How quickly do we expect this to happen? One way to answer these questions, in the absence of a predictive model of the solar dynamo, is to produce analogue forecasts of long term space climate by studying past variations of solar activity. This is achieved by compositing previous declines in solar activity upon exiting 24 GSMs contained in a 9300-year record of the solar modulation potential derived from cosmogenic isotopes. We present predictions of probable future variations in the near-Earth interplanetary magnetic field (IMF) and sunspot number and examine the likelihood that the descent will take us back to Maunder Minimum levels of activity. Furthermore we consider the cycle to cycle persistence in group sunspot number and the heliospheric modulation potential and use this to show that given the recent variation in solar activity we are almost certainly exiting a GSM and that there is an estimated chance of at least 8% of returning to Maunder Minimum conditions in the next 40 years.

Barnard, L.; Lockwood, M.; Owens, M. J.; Davis, C. J.; Hapgood, M. A.; Steinhilber, F.

2012-04-01

179

Agriculture and climate change  

SciTech Connect

How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

Abelson, P.H.

1992-07-03

180

Free Podcasts on Climate and Climate Change  

NSDL National Science Digital Library

In partnership with the National Science Digital Library and Apple, NCAR and UCAR offer podcasts that provide a brief and accessible overview on climate and climate change. These podcasts, short 5-8 minute videos you can download on your computer or iPod, are a part of the NSDL on iTunes U collection.

Payo, Robert

181

Insects and climate change  

SciTech Connect

In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

Elias, S.A. (Univ. of Colorado, Boulder (United States))

1991-09-01

182

Climate Change Workshop Links  

NSDL National Science Digital Library

This page is a collection of useful Web links to climate change resources. Only a few resources here right now, but you get the idea... NIERRS Water quality monitoring data page NERRS - Water quality monitoring data This is a great site for water stuff. GOMOOS Site -- buoy monitoring data GOMOOS - Weather and water data (real-time) from Gulf of Maine buoys This is a great site for ocean temperatures and wind speed, etc. Coastal Ocean Observing Center Here\\'s another: The COOLroom ...

Chad, Deb A.

2007-11-20

183

Climate change and ethics  

NASA Astrophysics Data System (ADS)

What does it matter if the climate changes? This kind of question does not admit of a scientific answer. Natural science can tell us what some of its biophysical effects are likely to be; social scientists can estimate what consequences such effects could have for human lives and livelihoods. But how should we respond? The question is, at root, about how we think we should live--and different people have myriad different ideas about this. The distinctive task of ethics is to bring some clarity and order to these ideas.

Hayward, Tim

2012-12-01

184

Contrails and Climate Change  

NSDL National Science Digital Library

In this problem-based learning unit, learners analyze the role of condensation trails from jets, or contrails, and their role in climate change. Contrails are thin ice clouds that form from the burning of jet fuel and release of water vapor. The issue with contrails is that narrow trails can spread and coalesce to form significant banks of cirrus-type clouds. Instructions to access NASA data are provided along with additional resources and activities. This module was developed to be used in the Earth System Science Education Alliance (ESSEA) courses for middle and high school teachers and is also available to teachers to adapt for general classroom use.

185

Climate Change: Prospects for Nature  

SciTech Connect

Thomas Lovejoy, President of The H. John Heinz III Center for Science, Economics and the Environment, explores the impact of climate change on the natural world. He also discusses the implications of climate change for climate policy and natural resource management.

Thomas Lovejoy

2008-03-12

186

Mapping vulnerability to climate change  

Microsoft Academic Search

This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natural

Rasmus Heltberg; Misha Bonch-Osmolovskiy

2011-01-01

187

Integrated Assessment of Climate Change  

Microsoft Academic Search

Because there is an immediate need for policy decisions on how to prevent or adapt to climate change and how to allocate scarce funds for climate research, we need to move beyond isolated studies of the various parts of the problem. Analysis frameworks are needed that incorporate our knowledge about precursors to, processes of, and consequences from climate change. This

Hadi Dowlatabadi; M. Granger Morgan

1993-01-01

188

Climate Change: Prospects for Nature  

ScienceCinema

Thomas Lovejoy, President of The H. John Heinz III Center for Science, Economics and the Environment, explores the impact of climate change on the natural world. He also discusses the implications of climate change for climate policy and natural resource management.

189

Climate Kids: Birds and Climate Change  

NSDL National Science Digital Library

Some bird species appear to respond to extreme weather changes in their native habitat by moving to more hospitable environments. This article discusses the role of NASA satellites, along with field and citizen scientists, in studying that movement. The article also includes an activity on constructing a bird feeder. The Climate Kids website is a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

190

Observed climate variability and change of relevance to the biosphere  

Microsoft Academic Search

In this paper we review the current instrumental evidence regarding climate variations and change during the 20th century emphasizing those changes that are likely to have direct interactions with the biosphere. Three basic questions are addressed: (1) Is the climate getting warmer, (2) is the hydrologic cycle changing, and (3) is the climate becoming more extreme. Based on global near-surface

David R. Easterling; Thomas R. Karl; Kevin P. Gallo; David A. Robinson; Kevin E. Trenberth; Aiguo Dai

2000-01-01

191

Climate Variability and Change in a Eutrophic Great Lakes Freshwater Embayment: Shifting Hydrodynamics and the Potential for Indirect Impacts on Biogeochemical Processes, Carbon Cycling and Hypoxia  

NASA Astrophysics Data System (ADS)

Future changes in the climatic regime of the Great Lakes region have the potential to induce a variety of both direct (e.g. thermal) and indirect (e.g. biogeochemical) alterations in ecosystem function. In the case of the later, we have identified a statistically significant shift in wind direction of the average wind field over the Great Lakes basin that is consistent with a southward migration of the dominant summer storm track. In Green Bay (NW Lake Michigan), we have shown that the new wind field has most likely resulted in periods of decreased thermal stratification and an overall decrease in water mass exchange with Lake Michigan. In subsequent studies, aimed at determining the impact of these shifts in the physical climate regime, time series measurements of currents, turbidity, dissolved oxygen, and the Be-7 activity of particulates in bottom sediments, sediment traps, and suspended particulates have been made over a 3 year period. A tracer of short term particle dynamics, Be-7 (half life 53 d) is useful in estimating particle residence times in the water column, along with episodic sediment deposition and erosion rates, and the average number of deposition/erosion cycles a particle experiences prior to permanent burial in the sediments. Be-7 derived estimates of the age of particulate organic carbon cycling between surface sediments and the overlying waters are on the order of months, and are dependent upon resuspension frequency. Remineralization of organic carbon within this actively resuspended pool of material results in estimated decomposition rates for POC ranging 0.08 to 0.04% per day, a rate intermediate between the rapid remineralization of fresh algal material and post-depositional diagenesis. Comparisons between 1989-90 and 2004-06 show a decrease in resuspension frequency, possibly in response to shifts in regional climatic scale dynamics. This appears to result in an increase in the efficiency of trapping of organic matter in the bay and a significant increase in the organic carbon content of suspended particulates within the resuspension reactor. Measured sedimentation rates determined via Pb-210 and Cs-137 also indicate increased sediment accumulation over this interval. Combined with the wind shift induced reduction in water mass exchange, these climatic changes have the potential to increase hypoxia via enhancing benthic oxygen demand - a common feature of lower Green Bay that recent evidence suggests may be exacerbated, triggering severe oxygen depletion and fish kills.

Klump, J. V.; Waples, J. T.

2008-12-01

192

Learn More About Climate Change  

NSDL National Science Digital Library

The phrase "climate change" might be combative to some and confusing to others. The University of Colorado's Office for University Outreach has worked with its scholars to create the Learn More About Climate (LMAC) site in order to translate climate change information into "resources and tools for teachers, policymakers, and citizens." Here, visitors can make their way through eight different areas, including Topics, Lessons, Videos, and Initiatives. In the Lessons area, educators will find model lessons about climate change, such as "Mountain Pine Beetles,â "Evidence of Climate Change,â and "What Makes You Hot.â Additionally, the Videos section offers up some excellent short films on rising sea levels and species adaption as a result of climate change. Those interested in specific LMAC projects will enjoy the Initiatives section, as it offers up brief summaries of ongoing projects, complete with two great webinars on Climate Change Conversations.

193

California Climate Change Portal  

NSDL National Science Digital Library

Global warming and climate change have been a top priority for a number of international organizations, and in recent years, a number of states have also become profoundly concerned about these transformations. Not surprisingly, the state of California has been interested in these subjects for some time, and this website is an initiative of the various agencies working in this area of research. On this site, visitors can learn about various initiatives sponsored by different agencies within the state and also peruse a list of FAQâÂÂs on the subject. First-time visitors will want to start at the âÂÂBackgroundâ section; they may then proceed to the âÂÂPolicy & Programâ area, where they can learn what the state is doing to combat this situation. Some of these programs include a voluntary greenhouse gas emission registry for California companies and a research program to spur environmentally-friendly energy alternatives. Finally, the site also includes a very nice glossary of terms used in discussing global climate change.

194

Geophysical Monitoring for Climatic Change.  

National Technical Information Service (NTIS)

The Plan for Geophysical Monitoring for Climatic Change is the National Oceanic and Atmospheric Administration (NOAA) program for global monitoring of man's inadvertent modification of weather and climate. The interrelated activities, several of which sho...

1971-01-01

195

Climate Change: Assessing Our Actions.  

National Technical Information Service (NTIS)

The power sector is a major source of the anthropogenic greenhouse gas (GHG) emissions that threaten the stability of the global climate system. OPIC understands the serious implications of GHG emissions and climate change and was the first bilateral fina...

2000-01-01

196

Predicting space climate change  

NASA Astrophysics Data System (ADS)

The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largest-fluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how long-term change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, near-Earth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300-year record.

Barnard, L.; Lockwood, M.; Hapgood, M. A.; Owens, M. J.; Davis, C. J.; Steinhilber, F.

2011-08-01

197

Coccolithophore response to Abrupt and short-term climate changes in the Gulf of Lions (Western Mediterranean) during the last climatic cycle  

NASA Astrophysics Data System (ADS)

Cores PRGL-1 (310 m long) and MD99-2348 (21.5 m long) were recovered in the Gulf of Lions (42.690N; 03.838 E) at 298.48 m water depth, during the PROMESS 1 campaign (SRV Bavenit drilling vessel) and IMAGES V (RV Marion Dufresne, Calypso piston core), respectively. The high sedimentation rates -estimated by robust 14C dating- have given us an excellent opportunity to perform high resolution analyses on these materials. In this study we present data from the last 25 kys. The retrieved sediments consist of silty-clay terrigenous material mixed with a small amount of calcareous microfossils. Quantitative analyses of coccolithophore assemblages allow us to identify significant changes in sea surface temperature in this period. Cold peaks are marked by increases in the proportion of Gephyrocapsa muellerae and large morphotypes of Emiliania huxleyi (>5 ?m); some of the most significant can be correlated with Heinrich events. The high sedimentation rates observed during most of the studied interval also allow us to identify an overprinted multicentennial scale pattern related to Dansgaard-Oeschger cycles. The combined analyses of coccolithophores and planktonic foraminifers permits to produce a sea surface temperature (SST) record in which sharp fluctuations of around 4º C in amplitude have been detected. These abrupt changes in SST are also linked to changes in surface productivity and in the deep and intermediate water dynamics, probably related with variations in the atmospheric pattern (NAO-like oscillations). PROMESS 1 is funded by the European Community (EVR1-T-40024).

Flores, J.; Gravalosa, J.; Colmenero-Hidalgo, E.; Sierro, F. J.; Canals, M.; Frigola, J.; Grimalt, J.; Berné, S.; Dannielou, B.

2007-12-01

198

The role of high-speed rail in mitigating climate change – The Swedish case Europabanan from a life cycle perspective  

Microsoft Academic Search

In this paper a life cycle perspective is used to analyse Europabanan, a proposed high-speed rail track in Sweden. The life cycle emissions reductions are found to be 550,000tons of CO2-equivalents per annum by 2025\\/2030 with almost 60% of this coming from a shift from truck to rail freight and 40% from a shift from air and road travel to

Jonas Åkerman

2011-01-01

199

Middle Miocene Climate Change and Carbon Cycle: Milankovitch Forcing and Deep Ocean circulation in the Western Pacific and Eastern Indian Ocean  

NASA Astrophysics Data System (ADS)

The relation of enhanced carbon burial, carbon isotope excursions and global cooling remains an unsolved problem in the Mesozoic and early Neogene climate history of the Earth. The enigmatic long-term positive carbon isotope excursion between 16.4 and 13.6 Ma ("Monterey excursion") coincided initially with a period of extreme warmth and high sea level (mid-Miocene climate optimum) and a subsequent increase in deep-water oxygen isotopic values, related to the cooling of deep water masses and growth of the East Antarctic ice sheet. High resolution reconstruction of the succession of events reveals a complex relationship between orbital forcing, carbon burial and climate cooling, mediated by a major re-organization of ocean circulation patterns. We used high resolution benthic deep water oxygen and carbon isotopes in combination with new age models at critical locations in a West Pacific marginal basin (South China Sea, ODP Site 1146), in the eastern Indian Ocean (NW Australian margin, ODP Site 761) and in the tropical Pacific (Ontong Java Plateau, ODP Site 806) to investigate the frequency and amplitude of deep water isotope fluctuations during the middle Miocene. Benthic stable isotope records document complete recovery of the six main ? 13C maxima of the,Monterey Excursion" between 16.4 and 13.6 Ma and the characteristic stepped increase in ? 18O between 14.5 and 13.1 Ma. At Site 761, the ? 18O curve shows an excellent match with the global sea level curve between 11.5 and 15.1 Ma, and thus closely reflects changes in global ice volume. Prior to 15.1 Ma, the ? 18O curve is mainly driven by bottom water temperature. At Site 1146, a major increase in ? 18O and ? 13C values (1\\permil) at 14.0 Ma, indicates a radical change in the deep water circulation of this marginal West Pacific basin. Spectral analysis of benthic isotopes time series, combined with magnetic susceptibility and color reflectance records, indicate Milankovitch forcing on virtually all proxies and a change from eccentricity to precession driven cyclicity at approximately 14.8 Ma. The ? 13C curve closely reflects the eccentricity forcing of Laskar's astronomical solution. Strikingly, a period of anomalous eccentricity forcing between approximately 14.8 and 14.1 Ma coincides with the fifth carbon maximum and initiation of major global cooling. Variations in the global carbon cycle modulated by eccentricity probably played a major role in controlling mid Miocene climate evolution.

Holbourn, A.; Kuhnt, W.; Schulz, M.

2003-12-01

200

Global Climate Change: Atmosphere  

NSDL National Science Digital Library

This site explains how climate change affects everything from stratospheric temperatures to the golden toad of Costa Rica. Graphs, articles, and maps monitor humankind's impact on the planet. The site features five thumbnails including two maps showing Global Outgoing Longwave Heat Radiation, and Global Reflected Shortwave Solar Radiation and three graphs entitled Atmospheric Carbon Dioxide Records from Mauna Loa, Hawaii (1958 - 2000), Global Average Near-Surface Temperatures - Monthly Anomalies (1961 - 2002), and Global Stratospheric and Tropospheric Temperature Anomalies (1979 - 2001). Each of these provides a link to a larger version of the visual and a detailed explanation. Each section has links to a glossary as well as links to questions about each section and additional references.

201

Earth's Climate and Global Change  

NSDL National Science Digital Library

With three levels to choose from on each page - beginner, intermediate or advanced - this site provides information on the way climate affects our world. Global climate, regional climate, and climate change are all explained. There is an important section on what controls climate change, like the sun, volcanic eruptions, greenhouse gases, snow, and ice. there is a module called Energy Choices and Climate Change that provides a new way to look at issues related to energy and climate change. In the scenarios within this module, you will be able to make decisions about the types and amount of energy used and see what effect your decisions have on the amount of greenhouse gases emitted to the atmosphere. Your goal is to reduce the amount of warming greenhouse gases added to the atmosphere from fossil fuel emissions while keeping costs within reason.

2004-05-11

202

Preparing for climate change.  

PubMed

There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and chlorofluorocarbons (CFCs) have been released in great quantities through their use in aerosol sprays, refrigerator fluids, and insulating foams. We can get rid of CFCs and curb the pollutants generating ozone, but it will be difficult to put the brake on either methane or nitrous oxide. And the reduction in carbon dioxide emissions will demand major changes in energy policy as well as action to slow deforestation. It appears that we are already committed to rising temperatures and sea levels. The question is by how much, in which areas? A number of things can be done to prepare for these changes: Governments must recognize that there is a problem; Better models must be worked out, especially to define where the greatest impacts from climate change and sea level rise will hit; Reference scenarios must be developed to see what the impacts are likely to be in ecological, agricultural, social and economic terms; Every country should develop "avoidance strategies" to minimize risk (for example, by not building on land likely to be flooded); We must cut down on the amount of greenhouse gases released into the atmosphere from human activities, by eliminating CFCs and adopting energy conservation programs and other measures to minimize CO2 release; Global agreements to protect the atmosphere are needed. PMID:12285901

Holdgate, M

1989-01-01

203

Climate Change and Agriculture: Economic  

Microsoft Academic Search

Agriculture is arguably the most important sector of the economy that is highly dependent on climate. A large body of scientific data and models have been developed to predict the impacts of the contemporary and future climate. Since the first IPCC Assessment Report was published in 1990, substantial efforts have been directed toward understand - ing climate change impacts on

John M. Antle

2008-01-01

204

Hurricanes-Climate Change Connection  

NSDL National Science Digital Library

This page focuses on recent natural disasters and the latest climate change research to engage students with topical issues and help them understand the larger issue of climate change. Includes resources and visualizations of recent storms such as Katrina and changing coastlines worldwide.

205

How does climate change influence Arctic mercury?  

PubMed

Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations. PMID:22104383

Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

2012-01-01

206

Climate change and moral judgement  

NASA Astrophysics Data System (ADS)

Converging evidence from the behavioural and brain sciences suggests that the human moral judgement system is not well equipped to identify climate change -- a complex, large-scale and unintentionally caused phenomenon -- as an important moral imperative. As climate change fails to generate strong moral intuitions, it does not motivate an urgent need for action in the way that other moral imperatives do. We review six reasons why climate change poses significant challenges to our moral judgement system and describe six strategies that communicators might use to confront these challenges. Enhancing moral intuitions about climate change may motivate greater support for ameliorative actions and policies.

Markowitz, Ezra M.; Shariff, Azim F.

2012-04-01

207

Clouds and climate change  

NASA Astrophysics Data System (ADS)

As concern grows over the possibility of altering the Earth's climate, a major uncertainty exists in computer models used to study the Earth's atmosphere, regarding our current understanding of clouds and our ability to simulate their effect on climate. A number of recent observations and computer simulation studies, however, have shed light on the important role of clouds in determining the present and future climate of our atmosphere.Data from the National Aeronautics and Space Administration's (NASA's) Earth Radiation Budget Experiment have been used to obtain an accurate picture of how clouds affect our present global climate system [Ramanathan, 1989]. The effect of clouds on solar and thermal radiation entering and leaving our climate is known as cloud forcing. Low clouds generally cool the Earth's surface, while high clouds warm the climate system. For the entire planet, however, the cooling effect of low clouds is stronger than the warming effect from high clouds, so that overall, clouds cool the climate.

Kiehl, Jeffrey T.

208

Life-Cycle Assessment (LCA) as a Management Tool: An Emphasis on Electricity Generation, Global Climate Change, and Sustainability  

Microsoft Academic Search

The International Organization for Standardization (ISO) recommends the use of life-cycle assessment (LCA) to better comprehend\\u000a and reduce environmental impacts related to manufactured products and services offered to our society. The principles of LCA\\u000a are presented in the international standard ISO 14040; however, the implementation of the standard is not simple, and a couple\\u000a of studies have addressed the existing

Sergio Pacca

209

Understanding North Pacific Carbon Cycle Changes  

NASA Astrophysics Data System (ADS)

Although increasing levels of atmospheric carbon dioxide have been well documented, the response of the ocean to these changes is less understood, particularly on regional space scales. Evidence is accumulating that there is substantial variability in the cycling of carbon and related biogeochemical elements over a wide range of timescales, including interannual and decadal timescales, which have been the focus of studies aimed at identifying a climate change signal. Most of these studies, however, have been limited in time, space, or number of parameters examined, preventing a full appreciation of the scale and magnitude of the changes. In June 2004, scientists gathered in Seattle, Washington, to synthesize individual studies of the North Pacific into a coherent picture of North Pacific carbon cycle changes, and to identify the requirements for detecting a long-term climate change signal. The workshop established many new international and interdisciplinary collaborations and helped develop plans for 14 synthesis manuscripts.

Sabine, Christopher L.; Juranek, Laurie; Lee, Carrie; Nicholson, David; Ver, Ana

2004-10-01

210

Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.  

NASA Astrophysics Data System (ADS)

The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic winter or reversed greenhouse conditions resulting from a draw-down of carbon dioxide after accelerated weathering and massive burial of organic carbon-rich sediments in the oceans.

Erba, E.

2005-12-01

211

Climate@Home: Crowdsourcing Climate Change Research  

NASA Astrophysics Data System (ADS)

Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

2011-12-01

212

Climate Change and National Security  

SciTech Connect

Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

Malone, Elizabeth L.

2013-02-01

213

Vegetation and climate changes in the South Eastern Mediterranean during the Last Glacial-Interglacial cycle (86 ka): new marine pollen record  

NASA Astrophysics Data System (ADS)

The Eastern Mediterranean, located at the meeting between the Mediterranean vegetation of the Eurasian continent and the desert vegetation of the Saharan-Arabian desert belt, is ideal for tracking changes in regional vegetation as function of climate changes. Reconstruction of these changes in the South Eastern Mediterranean during the last 86 ka is based on a palynological record, from deep-sea core 9509, taken by R/V Marion Dufresne, off the southern Israeli coast. The chronological framework is based on the correlation of ? 18O records of planktonic foraminifera with the high resolution, well-dated U-Th speleothem record from the Soreq Cave, Israel and the occurrence of sapropel layers. Several cycles of humid/dry periods were documented during the last 86 ka. The record starts with the moderate humid and warm sapropel S3 marking the end of Marine Isotope Stage (MIS) 5. The climate during the Last Glacial period (75.5-16.2 ka) was cold and dry, with low Arboreal Pollen (AP) levels, and high values of semi-desert and desert vegetation (e.g. Artemisia - sagebrush). The driest and coldest period during the last 86 ka corresponds to MIS 2 (27.1-16.2 ka), characterized by the lowest tree cover along the sequence and the dominance of steppe vegetation. Some slightly more humid fluctuations were identified during the period of 56.3 and 43.5 ka with its peak between 56.0 and 54.4 ka. The most pronounced climate change started at the beginning of the Deglaciation (16.2-10 ka) and continued throughout the Holocene (last 10 ka), notwithstanding some short fluctuations. High AP levels were dominated by Quercus callipprinos (evergreen oak), suggesting that the Mediterranean forest was more extensive in the area and the climate was wet. Sapropels S3 and S1 were clearly recognized here by the high concentrations and good state of preservation of pollen because of the development of anoxia in the bottom water that may be related to more extensive Nile discharge coinciding with high insolation values at 65° N and enhanced westerlies activity. Another wet and warm event is the Bölling-Allerød (14.6-12.3 ka). Cold and dry spells identified by low AP and high steppe elements correspond with Heinrich Events H2-H6, the Last Glacial Maximum, Younger Dryas and the 8.2 ka event. Similar pattern of vegetation trends was observed also in Lake Zeribar Western Iran, Tenaghi Philippon North East Greece and the Alborán Sea. There is a clear general difference between the South East Mediterranean and western and central Mediterranean because of W-E climatic moisture gradient reflected in the dominance of Mediterranean maquis, lower tree population and higher steppe vegetation in the South East Mediterranean.

Langgut, D.; Almogi-Labin, A.; Bar-Matthews, M.; Weinstein-Evron, M.

2011-12-01

214

Ground water and climate change  

NASA Astrophysics Data System (ADS)

As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

2013-04-01

215

Can ice sheets trigger abrupt climatic change?  

SciTech Connect

The discovery in recent years of abrupt climatic changes in climate proxy records from Greenland ice cores and North Atlantic sediment cores, and from other sites around the world, has diverted attention from gradual insolation changes caused by Earth`s orbital variations to more rapid processes on Earth`s surface as forcing Quaternary climatic change. In particular, forcing by ice sheets has been quantified for a major ice stream that drained the Laurentide Ice Sheet along Hudson Strait. The history of these recent discoveries leading to an interest in ice sheets is reviewed, and a case is made that ice sheets may drive abrupt climatic change that is virtually synchronous worldwide. Attention is focused on abrupt inception and termination of a Quaternary glaciation cycle, abrupt changes recorded as stadials and interstadials within the cycle, abrupt changes in ice streams that trigger stadials and interstadials, and abrupt changes in the Laurentide Ice Sheet linked to effectively simultaneous abrupt changes in its ice streams. Remaining work needed to quantify further these changes is discussed. 90 refs., 14 figs.

Hughes, T. [Univ. of Maine, Orono, ME (United States)

1996-11-01

216

Generating Arguments About Climate Change  

NSDL National Science Digital Library

In this article from the NSTA Press Journal, Science Scope, students participate in a unit on global climate change by engaging in the process of scientific argumentation. The lessons presented in this article were created using the generate-an-argument model to help students understand climate change science. The article is free to both NSTA members and nonmembers.

Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

2012-03-01

217

Climate Change and African Development  

Microsoft Academic Search

People in Africa are already experiencing a significant impact on their livelihoods from climate change. This is tragic in on several levels. Firstly, Africa's historical contribution to the causes of heightened greenhouse gas levels in the atmosphere is negligible. Climate change is not a threat of Africa's making. Secondly, the solution to the problem is mostly outside of Africa's control.

Nick Mabey; Jan Ole Kiso

2007-01-01

218

Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations  

Microsoft Academic Search

Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem)

Yun Qian; William I. Gustafson Jr; L. Ruby Leung; Steven J. Ghan

2009-01-01

219

Biotic and Biogeochemical Feedbacks to Climate Change  

NASA Astrophysics Data System (ADS)

Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental, observational, or modeling, can adequately capture the complex factors that govern species distributions over relevant spatial and temporal scales, careful integration of these methods can yield needed insights. The potential for large, rapid, or unexpected feedbacks of biogeochemistry and energy balance to climate change make this a worthwhile challenge.

Torn, M. S.; Harte, J.

2002-12-01

220

Climate Kids: How Do We Know the Climate Is Changing?  

NSDL National Science Digital Library

This question is addressed through a series of questions and answers, each providing related introductory information such as how climate change is studied, the history of Earthâs climate, and the effects of climate change on Earthâs geology and biology. The Climate Kids website is a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

221

The World Bank: Climate Change  

NSDL National Science Digital Library

Climate change continues to be of grave concern to many, and the World Bank is particularly concerned with the ramifications it will have on people in the developing world. Their Climate Change site is designed to provide an overview of their work on this vexing problem and information about their current projects, data sets, research papers, and books. Visitors should start by looking over their weblog, and then take a look at their "What's New" area. Here they can learn about innovative carbon trading programs, engineering projects, and international agreements designed to mitigate the effects of climate change. The "Research & Analysis" area has dozens of free publications, including the very relevant "Climate Resilient Cities" work, which discusses how city governments can better understand how to plan for the impact of climate change through sound urban planning.

2009-08-13

222

The World Bank: Climate Change  

NSDL National Science Digital Library

Climate change continues to be of grave concern to many, and the World Bank is particularly concerned with the ramifications it will have on people in the developing world. Their Climate Change site is designed to provide an overview of their work on this vexing problem including information about their current projects, data sets, research papers, and books. Visitors should start by looking over their weblog, and then take a look at their "News" area. Here, they can learn about innovative carbon trading programs, engineering projects, and international agreements designed to mitigate the effects of climate change. The "Research" area has dozens of free publications, including the very relevant "Climate Resilient Cities" work, which discusses how city governments can better understand how to plan for the impact of climate change through sound urban planning.

223

Adapting agriculture to climate change  

PubMed Central

The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

Howden, S. Mark; Soussana, Jean-Francois; Tubiello, Francesco N.; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

2007-01-01

224

Microbial mediation of carbon-cycle feedbacks to climate warming  

NASA Astrophysics Data System (ADS)

Understanding the mechanisms of biospheric feedbacks to climate change is critical to project future climate warming. Although microorganisms catalyse most biosphere processes related to fluxes of greenhouse gases, little is known about the microbial role in regulating future climate change. Integrated metagenomic and functional analyses of a long-term warming experiment in a grassland ecosystem showed that microorganisms play crucial roles in regulating soil carbon dynamics through three primary feedback mechanisms: shifting microbial community composition, which most likely led to the reduced temperature sensitivity of heterotrophic soil respiration; differentially stimulating genes for degrading labile but not recalcitrant carbon so as to maintain long-term soil carbon stability and storage; and enhancing nutrient-cycling processes to promote plant nutrient-use efficiency and hence plant growth. Elucidating microbially mediated feedbacks is fundamental to understanding ecosystem responses to climate warming and provides a mechanistic basis for carbon-climate modelling.

Zhou, Jizhong; Xue, Kai; Xie, Jianping; Deng, Ye; Wu, Liyou; Cheng, Xiaoli; Fei, Shenfeng; Deng, Shiping; He, Zhili; van Nostrand, Joy D.; Luo, Yiqi

2012-02-01

225

Diverse views on climate change  

NASA Astrophysics Data System (ADS)

Third Santa Fe Conference on Global and Regional Climate Change; Santa Fe, New Mexico, 30 October to 4 November 2011 At the Third Santa Fe Conference on Global and Regional Climate Change, hosted by the Los Alamos National Laboratory's Center for Nonlinear Studies, researchers offered some of the latest thinking on how to observe and model the driving forces as well as the impacts of regional and global climate change, climate system responses, and societal impacts. It was the third in a series of conferences held at 5-year intervals. More than 140 climate science experts from the United States and foreign universities and research centers attended the conference, held at the La Fonda Hotel in historic downtown Santa Fe. The conference program included more than 80 invited and contributed oral presentations and about 30 posters. The oral sessions were grouped by topic into sessions of four or five talks, with discussion occurring at the end of each session

Garrett, Timothy; Dubey, Manvendra; Schwartz, Stephen

2012-04-01

226

Dictionary of global climate change  

SciTech Connect

This book represents a revision of the climate change lexicon that was prepared for the Second World Climate Conference in 1990. The conference had 1400 participants and consisted of a scientific component followed by a ministerial meeting. To foster communication among the different constituencies, a lexicon of climate and climate change was prepared for the participants. The dictionary includes definitions and descriptions of most of the scientific terms, organizations, and programs related to the physical aspects of climate change. Nearly 40% of the material describes organized projects, experiments, or programs, mostly international. Some information on biological topics, such as the difference between C3 and C4 plants, is also included. The length of definitions and descriptions ranges from one line to one or more pages, with the longer descriptions usually related to programs.

Maunder, W.J. (ed.)

1992-01-01

227

In situ permafrost thaw due to climate change drives holistic microbial community shifts with implications for methane cycling  

NASA Astrophysics Data System (ADS)

Thawing permafrost is a potentially significant source of radiative forcing feedback due to increased emissions of methane, a biogenic greenhouse gas (GHG). This study investigated changes in the microbial community along a permafrost thaw gradient at Stordalen Mire, Sweden using 16S rRNA gene amplicon and metagenomic methods. In situ measurements of geochemical parameters, including CH4 and C isotopes, enabled linkage of community dynamics to significant shifts in C balance. The thaw gradient ranged from intact at a palsa (low productivity and GHG emissions), through partially thawed in a bog (high productivity, low GHG emissions) to a completely thawed fen (high productivity and GHG emissions). Microbial assemblages in both the palsa and fen were highly diverse (in both richness and evenness), consistent with climax communities. The microbial community in the bog had distinctly lower diversity, characteristic of ecosystem disturbance. The palsa community was dominated by Acidobacteria and Proteobacteria, as is typical of a range of soils including permafrost. Methanogens dominated both the bog and fen and were most abundant within the zone of water table fluctuation. Inferring methanogens' production pathway from phylogeny showed a shift from mostly hydrogenotrophic methanogens in the bog towards acetotrophic methanogens in the fen. This corroborated porewater and flux emitted CH4 and CO2 carbon isotopic 13C signatures of CH4 and CO2. The fen, where the highest CH4 flux was recorded, was significantly richer in methanogenic archaea. A novel archaea, Candidatus Methanoflorens stordalenmirensis, was present at up to 70% relative abundance in the bog, enabling recovery of a population genome. The genome (and associated metaproteome) of 'M. stordalenmirensis' indicates that hydrogenotrophic methane production is its main energy conservation pathway. 'Methanoflorens' may be an indicator species of permafrost thaw, it is globally ubiquitous, and appears a major contributor to global methane production. Our results revealed a distinct difference in the microbial community structure and membership at each site, which can be directly associated with increasing methane emission and thaw state.

Mondav, Rhiannon; McCalley, Carmody; Hodgkins, Suzanne; Rich, Virginia; Frolking, Steve; Saleska, Scott; Barnes, Andrew; Chanton, Jeff; Crill, Patrick

2014-05-01

228

Basic science of climate change  

SciTech Connect

Anthropogenic emissions of greenhouse gases are enhancing the natural greenhouse effect. There is almost universal agreement in the scientific community that this will lead to a warming of the lower atmosphere and of the earth's surface. However, the exact timing, magnitude, and regional distribution of this future warming are very uncertain. Merely taking account of changes in the global mean climate is not enough, especially when considering the impacts of climate change. Man also have to consider the rate and regional distribution of climate change and changes in the frequency of events. An increase in the frequency of extremes, such as droughts and storms, and rapid climate change are two factors which could have dramatic effects on human society and natural ecosystems. However, systems already under stress or close to their climate limits are likely to experience the greatest difficulty in adapting to change. Although human activity has been increasing greenhouse gas concentrations for a hundred years, man cannot yet detect unequivocally a greenhouse gas induced signal in climate records. However, increases in greenhouse gas concentrations are almost bound to continue and are likely to emerge as the dominant perturbation of the earth's climate in the coming decades.

Maskell, K.; Callander, B.A. (Hadley Centre, Bracknell (United Kingdom)); Mintzer, I.M. (Univ. of Maryland, College Park, MD (United States))

1993-10-23

229

Extinction risk from climate change  

Microsoft Academic Search

Climate change over the past ~30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of

Chris D. Thomas; Alison Cameron; Rhys E. Green; Michel Bakkenes; Linda J. Beaumont; Yvonne C. Collingham; Barend F. N. Erasmus; Marinez Ferreira de Siqueira; Alan Grainger; Lee Hannah; Lesley Hughes; Brian Huntley; Albert S. van Jaarsveld; Guy F. Midgley; Lera Miles; Miguel A. Ortega-Huerta; A. Townsend Peterson; Oliver L. Phillips; Stephen E. Williams

2004-01-01

230

Global climate change: Policy implications for fisheries  

SciTech Connect

Several government agencies are evaluating policy options for addressing global climate change. These include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. For fisheries resources, policy questions address effects on international, national, and regional scales. Climate change variables expected to affect inland and offshore fisheries include temperature rise, changes in the hydrologic cycle, alterations in nutrient fluxes, and reduction and relocation of spawning and nursery habitat. These variables will affect resources at all levels of biological organization, including the genetic, organism, population, and ecosystem levels. In this context, changes in primary productivity, species composition in the food-web, migration, invasions, synchrony in biological cycles, shifts in utilization of niches, and problems of larvae entrainment in estuaries have been identified. Maintaining ecosystem robustness (i.e., high biodiversity) is another component of the problem. Action requires establishing priorities for information needs, determining appropriate temporal and spatial scales at which to model effects, and accounting for interactive changes in physical and biological cycles. A policy response can be derived when these results are integrated with social needs and human population constraints.

Gucinski, H.; Lackey, R.T.; Spence, B.C.

1990-01-01

231

Taking Action on Climate Change  

NSDL National Science Digital Library

At this Government of Canada website, visitors can "learn about the science, impacts and adaptation to climate change and how individuals, governments, businesses, industry and communities take action by reducing greenhouse gas emissions." Through maps, graphs, and clear text, users can learn the basics of climate change and the greenhouse gases. The website details many of the ecological, economic, and global impacts of climate change. Users can find out about the One-Tonne Challenge, which encourages everyone to reduce their emissions. Teachers can find questions and activities to educate their students about climate change. The website also offers a calculator to estimate a user's current emissions, a series of videos instructing individuals how to create an energy efficient home and car, as well as publications and media resources. This site is also reviewed in the March 18, 2005 _NSDL Physical Sciences Report_.

232

Psychology: Climate change hits home  

NASA Astrophysics Data System (ADS)

Engaging the public with climate change has proved difficult, in part because they see the problem as remote. New evidence suggests that direct experience of one anticipated impact -- flooding -- increases people's concern and willingness to save energy.

Weber, Elke U.

2011-04-01

233

Climate change and human health.  

PubMed

Climate change impacts on human health span the trajectory of time-past, present, and future. The key finding from the Working Group II, Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states that health impacts due to climate change have already occurred in the past, are currently occurring and will continue to occur, at least for the foreseeable future, even with immediate reductions in greenhouse gas emissions [1]. According to the IPCC, there has been increased heat-related mortality and decreased cold-related mortality in some regions as a result of warming (Box 1). Moreover, local changes in temperature and rainfall have altered the distribution of some water-borne illnesses and disease vectors. Impacts of climate-related extremes include alteration of ecosystems, disruption of food production and water supply, damage to infrastructure and settlements, morbidity and mortality, and consequences for mental health and human well-being [1]. [...]. PMID:25046633

Semenza, Jan C

2014-01-01

234

Climate Change and South Dakota.  

National Technical Information Service (NTIS)

The earth's climate is predicted to change because human activities are altering the chemical composition of the atmosphere through the buildup of greenhouse gases -- primarily carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. The heat-trap...

1998-01-01

235

NASA Climate Change Resource Reel  

NSDL National Science Digital Library

This collection of resources from NASA includes animations and still shots covering a wide range of topics in climate, including the cryosphere, ocean sciences, changes on land, the atmosphere, and satellite images.

Nasa

236

Climate Change, Soils, and Human Health  

NASA Astrophysics Data System (ADS)

According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Brevik, Eric C.

2013-04-01

237

Climate change epidemiology: methodological challenges  

Microsoft Academic Search

Climate change is now thought to be unequivocal, while its potential effects on global and public health cannot be ignored.\\u000a However, the complexities of the causal webs, the dynamics of the interactions and unpredictability mean that climate change\\u000a presents new challenges to epidemiology and magnifies existing methodological problems. This article reviews a number of such\\u000a challenges, including topics such as

Wei W. Xun; Aneire E. Khan; Edwin Michael; Paolo Vineis

2010-01-01

238

U.S. Global Climate Change Impacts Report, Water Sector  

Microsoft Academic Search

Substantial changes in the water cycle are expected as the planet warms because the movement of water in the atmosphere and oceans is one of the primary mechanisms for the redistribution of heat. Changes in the water cycle will adversely affect many other sectors including energy production, human health, transportation, agriculture, and ecosystems. Major findings include: - Climate change has

B. Udall; R. Pulwarty

2009-01-01

239

Changes in the Annual Cycle in the Earth's Temperature  

Microsoft Academic Search

The annual cycle in temperature is massive relative to most climate variations, generally exceeding even the amplitude of glacial-interglacial temperature changes. Here we explore the spatial and temporal variability in the structure of the annual cycle using the CRU monthly gridded temperature records from 1950 to 2005, as well as a collection of individual long temperature records. The seasonal cycle

A. R. Stine; P. Huybers; I. Y. Fung

2006-01-01

240

Classifying climate change adaptation frameworks  

NASA Astrophysics Data System (ADS)

Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

Armstrong, Jennifer

2014-05-01

241

Climate change and biodiversity  

Microsoft Academic Search

Summary There is already widespread change in the natural calendars (phenology) of plants and animals, as well as change in some species distributions. Now threshold change (sudden, fundamental change) in ecosystems is beginning to be observed in nature. At minimum, the natural world will experience an equal amount of warming to that which has already taken place. This all suggests

T. Lovejoy

2008-01-01

242

Climate, carbon cycling, and deep-ocean ecosystems  

PubMed Central

Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy ?60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

Smith, K. L.; Ruhl, H. A.; Bett, B. J.; Billett, D. S. M.; Lampitt, R. S.; Kaufmann, R. S.

2009-01-01

243

Climate change and preventive medicine.  

PubMed

Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. PMID:18043291

Faergeman, Ole

2007-12-01

244

Climate change, thermal stress and mortality changes.  

PubMed

One of the potential effects of an anthropogenically induced climate change is a change in mortality related to thermal stress. In this paper, existing literature on the relationship between average temperatures and mortality is evaluated. By means of a simple meta-analysis an aggregated effect of a change in temperature on mortality is estimated for total, cardiovascular and respiratory mortality. These effect estimates are combined with projections of changes in baseline climate conditions of 20 cities, according to climate change scenarios of three General Circulation Models (GCMs). The results indicate that for most of the cities included, global climate change is likely to lead to a reduction in mortality rates due to decreasing winter mortality. This effect is most pronounced for cardiovascular mortality in elderly people in cities which experience temperate or cold climates at present. The sensitivity of the results to physiological and socio-economical adaptation is examined. However, more research is necessary to extend this work by inclusion of data from a wider range of populations. PMID:9460815

Martens, W J

1998-02-01

245

The Scatterometer Climate Record Pathfinder: Tools for Climate Change Studies  

NASA Astrophysics Data System (ADS)

While originally designed for wind measurement over the ocean, scatterometers have proven to be very effective in monitoring land cover and ice conditions as well. Scatterometer data is being operationally used for iceberg tracking and sea ice extent mapping. The frequent, global measurements make the instrument particularly well suited for global monitoring and the long-time series of scatterometer measurements dating back to SASS provide a valuable baseline for studies of climate change. For this reason the NASA Scatterometer Climate Record Pathfinder (SCP) project is generating a climate data record from the series of historic and ongoing, and approved scatterometer missions. Selected data is currently available from the SCP at URL http://www.scp.byu.edu/ in the form of resolution-enhanced backscatter image time series. A variety of tools for analyzing the image time series have been developed. The application of QuikSCAT data to climate change in Greenland and sea ice motion in the Arctic is illustrated. By comparing QuikSCAT with NSCAT and SASS data, long-term scatterometer-observed changes in Greenland are related to annual variations in melt extent and snow accumulation. Qu ikSCAT sampling enables high spatial resolution evaluation of the diurnal melt cycle. We demonstrate the value of the scatterometer data to augment passive microwave measurements by using PCA. The scatterometer data plays a key role in helping to discriminate physical changes in the Greenland firn from surface temperature effects.

Long, D. G.; Jensen, M. A.

2001-12-01

246

Global climate changes and the soil cover  

NASA Astrophysics Data System (ADS)

The relationships between climate changes and the soil cover are analyzed. The greenhouse effect induced by the rising concentrations of CO2, CH4, N2O, and many other trace gases in the air has been one of the main factors of the global climate warming in the past 30-40 years. The response of soils to climate changes is considered by the example of factual data on soil evolution in the dry steppe zone of Russia. Probable changes in the carbon cycle under the impact of rising CO2 concentrations are discussed. It is argued that this rise may have an effect of an atmospheric fertilizer and lead to a higher productivity of vegetation, additional input of organic residues into the soils, and activation of soil microflora. Soil temperature and water regimes, composition of soil gases, soil biotic parameters, and other dynamic soil characteristics are most sensitive to climate changes. For the territory of Russia, in which permafrost occupies more than 50% of the territory, the response of this highly sensitive natural phenomenon to climate changes is particularly important. Long-term data on soil temperatures at a depth of 40 cm are analyzed for four large regions of Russia. In all of them, except for the eastern sector of Russian Arctic, a stable trend toward the rise in the mean annual soil temperature. In the eastern sector (the Verkhoyansk weather station), the soil temperature remains stable.

Kudeyarov, V. N.; Demkin, V. A.; Gilichinskii, D. A.; Goryachkin, S. V.; Rozhkov, V. A.

2009-09-01

247

Abrupt climate change: can society cope?  

Microsoft Academic Search

Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and

Mike Hulme

2003-01-01

248

Phenological changes reflect climate change in Wisconsin  

Microsoft Academic Search

A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes ref lect climate change. The mean of regressions for the 55 phenophases studied was 20.12 day per year, an

NINA L. BRADLEY; A. CARL LEOPOLD; J OHN ROSS; WELLINGTON HUFFAKER

1999-01-01

249

Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values  

NASA Astrophysics Data System (ADS)

ensemble simulations with the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) climate model (CM) for the 21st century are analyzed taking into account anthropogenic forcings in accordance with the Special Report on Emission Scenarios (SRES) A2, A1B, and B1, whereas agricultural land areas were assumed to change in accordance with the Land Use Harmonization project scenarios. Different realizations within these ensemble experiments were constructed by varying two governing parameters of the terrestrial carbon cycle. The ensemble simulations were analyzed with the use of Bayesian statistics, which makes it possible to suppress the influence of unrealistic members of these experiments on their results. It is established that, for global values of the main characteristics of the terrestrial carbon cycle, the SRES scenarios used do not differ statistically from each other, so within the framework of the model, the primary productivity of terrestrial vegetation will increase in the 21st century from 74 ± 1 to 102 ± 13 PgC yr-1 and the carbon storage in terrestrial vegetation will increase from 511 ± 8 to 611 ± 8 PgC (here and below, we indicate the mean ± standard deviations). The mutual compensation of changes in the soil carbon stock in different regions will make global changes in the soil carbon storage in the 21st century statistically insignificant. The global CO2 uptake by terrestrial ecosystems will increase in the first half of the 21st century, whereupon it will decrease. The uncertainty interval of this variable in the middle (end) of the 21st century will be from 1.3 to 3.4 PgC yr-1 (from 0.3 to 3.1 PgC yr-1). In most regions, an increase in the net productivity of terrestrial vegetation (especially outside the tropics), the accumulation of carbon in this vegetation, and changes in the amount of soil carbon stock (with the total carbon accumulation in soils of the tropics and subtropics and the regions of both accumulation and loss of soil carbon at higher latitudes) will be robust within the ensemble in the 21st century, as will the CO2 uptake from the atmosphere only by terrestrial ecosystems located at extratropical latitudes of Eurasia, first and foremost by the Siberian taiga. However, substantial differences in anthropogenic emissions between the SRES scenarios in the 21st century lead to statistically significant differences between these scenarios in the carbon dioxide uptake by the ocean, the carbon dioxide content in the atmosphere, and changes in the surface air temperature. In particular, according to the SRES A2 (A1B, B1) scenario, in 2071-2100 the carbon flux from the atmosphere to the ocean will be 10.6 ± 0.6 PgC yr-1 (8.3 ± 0.5, 5.6 ± 0.3 PgC yr-1), and the carbon dioxide concentration in the atmosphere will reach 773 ± 28 ppmv (662 ± 24, 534 ± 16 ppmv) by 2100. The annual mean warming in 2071-2100 relatively to 1961-1990 will be 3.19 ± 0.09 K (2.52 ± 0.08, 1.84 ± 0.06 K).

Eliseev, A. V.

2011-04-01

250

Global lightning activity and climate change  

SciTech Connect

The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

Price, C.G.

1993-12-31

251

Climate change and food security  

PubMed Central

Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their vulnerability to climate change is not uniform. Improved systems of food production, food distribution and economic access may all contribute to food systems adapted to cope with climate change, but in adopting such changes it will be important to ensure that they contribute to sustainability. Agriculture is a major contributor of the greenhouse gases methane (CH4) and nitrous oxide (N2O), so that regionally derived policies promoting adapted food systems need to mitigate further climate change.

Gregory, P.J; Ingram, J.S.I; Brklacich, M

2005-01-01

252

Climate change impacts on forestry  

SciTech Connect

Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

Kirilenko, A.P. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Earth System Science and Policy; Sedjo, R.A. [Resources for the Future, Washington, DC (United States)

2007-12-11

253

Study of Climate Change in the Arctic  

NSDL National Science Digital Library

This page describes why and how scientists study climate change in the Arctic. It includes information on the climate indices and important research concepts used by scientists to study climate change.

Overland, Jim; Soreide, Nancy; Bond, Nick

2000-01-01

254

Greenhouse gas induced climate change.  

PubMed

Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

Hegerl, G C; Cubasch, U

1996-06-01

255

Inuit Observations on Climate Change  

NSDL National Science Digital Library

This is an overview of the International Institute for Sustainable Development (IISD) project at Sachs Harbour on Banks Island, Northwest Territories, Canada, an effort to document the problem of Arctic climate change as experienced by the Inuit living there. There is video commentary by Inuit in which they describe changes in daily life for animals and people at Sachs Harbour: banks caving from permafrost melt, seasonal changes and new types of animals appearing as the old familiar animals disappear, ice dangerously opening up, and most importantly, a new unpredictability added to the usual extreme weather conditions in the Arctic region. The video comes in an abbreviated version, 14 minutes in length, as well as the full version, which is 42 minutes in length. There are reports of IISD trips made during different seasons at Sachs Harbour, a teacher guide for the video, and a report on the climate observations discussed in the IISD: Inuit Observations on Climate Change workshop.

256

Greenhouse gas induced climate change  

Microsoft Academic Search

Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse\\u000a gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate\\u000a if this postulated human influence is already evident. This paper gives an overview on some recent material on this question.\\u000a One particular study

Gabriele C. Hegerl; Ulrich Cubasch

1996-01-01

257

FY 2002 GLOBAL CLIMATE CHANGE  

EPA Science Inventory

PRA Goal 6: Reducing Global and Transboundary Environmental Risks Objective 6.2: Greenhouse Gas Emissions Sub-Objective 6.2.3: Global Climate Change Research Activity F55 - Assessing the Consequences of Global Change on Ecosystem Health NRMRL R...

258

Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate  

NASA Astrophysics Data System (ADS)

Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918-3932 Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004 Seneviratne, S.I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Teuling, A.J., S.I. Seneviratne, et al. 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 3, 722-727, doi:10.1038/ngeo950.

Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

2011-12-01

259

Adapting to Climate Change: Research Challenges  

Microsoft Academic Search

Climate Change Impacts, Adaptation, and Vulnerability Community Coordination; Boulder, Colorado, 8-9 January 2009; In 2007, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) reaffirmed that anthropogenic climate change is under way, that future climate change is unavoidable, and that observed impacts can be attributed, at least in part, to anthropogenic warming. In addition, a growing number of

Jean Palutikof; Patricia Romero-Lankao

2009-01-01

260

Setting priorities for adapting to climate change  

Microsoft Academic Search

It is not likely that efforts to control greenhouse gas emissions will completely eliminate the risk of climate change. Thus, policymakers will eventually have to address adaptation to the effects of climate change. Given the uncertainties about the timing, direction, and magnitude of regional climate change, it might seem preferable to postpone adaptive measures until after climate changes. Yet, this

Joel B Smith

1997-01-01

261

Climate Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison  

Microsoft Academic Search

Eleven coupled climate-carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovern- mental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850-2100 time period. For each model, two simulations were performed in

P. Friedlingstein; P. Cox; R. Betts; L. Bopp; W. von Bloh; V. Brovkin; P. Cadule; S. Doney; M. Eby; I. Fung; G. Bala; J. John; C. Jones; F. Joos; T. Kato; M. Kawamiya; W. Knorr; K. Lindsay; H. D. Matthews; T. Raddatz; P. Rayner; C. Reick; E. Roeckner; K.-G. Schnitzler; R. Schnur; K. Strassmann; A. J. Weaver; C. Yoshikawa; N. Zeng

2006-01-01

262

Interactive Quizzes on Climate Change  

NSDL National Science Digital Library

This website allows you to test your knowledge on 5 topics. Warm Up: Test your knowledge about global temperature change and its impact on Earth's climate; Freeze Frames: How much do you know about glaciers and ice caps?; Sea Change: Test your knowledge of sea level rise and its effect on global populations; It's A Gas: Test your knowledge of carbon dioxide and why it's so important to climate stability and our quality of life; Each test consists of 10 questions and are immediately scored. The final module, 10 Things You Never Knew About Earth: Discover some amazing and little-known facts about our home planet, allows you to learn facts about the Earth and Climate Change.

263

Fisheries and Global Climate Change  

NSDL National Science Digital Library

When populations of harvestable fish start to decline, managers look for explanations of the changes throughout the Earth system. In this activity, the impact of global climate change on marine and Great Lakes fish is considered. First, decline in the striped bass population of the North Atlantic, noted in the Downeaster Alexa song by Billy Joel, is examined with spreadsheet analysis and on-line searches of National Marine Fisheries Service databases. In a second investigation, ArcView generates a model of the Lake Erie depths that could be associated with global climate change (shallower water). Students identify fish species that use nearshore shallows for spawning and nursery areas, and speculate on the impact of the lower water. In both activities, the thermal niche of the species is considered as a factor in where fish populations may migrate with new climate regimes.

Fortner, Rosanne; Merry, Carolyn

2002-07-31

264

Renewable Energy and Climate Change  

SciTech Connect

The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

Chum, H. L.

2012-01-01

265

Studying Hydrological Response of the Churchill River to Climate Change Using Distributed Hydrological Models  

Microsoft Academic Search

The global climate has shown drastic changes in recent decades. It is of critical importance to investigate how global climate changes affect the different aspects of the hydrological cycle and the availability of freshwater resources in particular. In this study, the impact of climate change on the regional water and energy cycles in the Churchill River basin was assessed using

Y. Yi; P. F. Rasmussen

2009-01-01

266

Informing adaptation responses to climate change through theories of transformation  

Microsoft Academic Search

Transformative actions are increasingly being required to address changes in climate. As an aid to understanding and supporting informed decision-making regarding transformative change, we draw on theories from both the resilience and vulnerability literature to produce the Adaptation Action Cycles concept and applied framework. The resulting Adaptation Action Cycles provides a novel conceptualisation of incremental and transformative adaptation as a

S. E. Park; N. A. Marshall; E. Jakku; A. M. Dowd; S. M. Howden; E. Mendham; A. Fleming

267

Atmospheric rivers in changing climate  

NASA Astrophysics Data System (ADS)

Atmospheric rivers are impressive, intermittent circulation features in mid-latitude regions of the globe that can cause disastrous floods if they smash against mountainous terrain. While discovered by meteorologists and long feared by hydrologists they have only recently come to the broader attention of climate scientists. In a new letter published in Environmental Research Letters, Lavers et al (2013 Environ. Res. Lett. 8 034010) investigate atmospheric rivers reaching the British Isles in the context of climate change. They consider these potentially devastating meteorological features in present and future climate model scenarios, and walk through possible mechanisms that could cause them to strengthen. This is a refreshingly new work that estimates extreme events in future climates with an impact driven approach.

Liepert, Beate G.

2013-09-01

268

Plate Movements and Climate Change  

NSDL National Science Digital Library

In this activity students use maps of the positions of the continents over the past 180 million years, and, with some basic concepts about climate zones, hypothesize what climate changes may have occurred due to plate movements. They will discover that even though climate zones are oriented roughly parallel to lines of latitude about the Earth, according to the theory of plate tectonics, the continents "ride" on dynamic plates which make up the Earth's surface. Although the resulting movement of the continents is very slow, over millions of years it is enough to get a continent from one place to another, and that movement may take the landmass through several latitudes and climate zones.

Bice, Karen

269

US Climate Change Science Program  

NSDL National Science Digital Library

This Web site offers a portal to the recently held Planning Workshop for Scientists and Stakeholders, convened by the Bush administration to set the research agenda for its US Climate Change Science Program (CCSP). Clicking on Library will call up the draft strategic plan for the CCSP, which may be downloaded in whole or in part. The Web site also provides an overview of the meetings and the program, along with various publications and white papers also available to download. Climate change researchers and other interested parties should find this site a useful resource for keeping tabs on the current administration's stance on the issue.

270

Preparing for climate change in Washington State  

Microsoft Academic Search

Climate change is expected to bring potentially significant changes to Washington State’s natural, institutional, cultural,\\u000a and economic landscape. Addressing climate change impacts will require a sustained commitment to integrating climate information\\u000a into the day-to-day governance and management of infrastructure, programs, and services that may be affected by climate change.\\u000a This paper discusses fundamental concepts for planning for climate change and

Lara C. Whitely Binder; Jennifer Krencicki Barcelos; Derek B. Booth; Meriel Darzen; Marketa McGuire Elsner; Richard Fenske; Thomas F. Graham; Alan F. Hamlet; John Hodges-Howell; J. Elizabeth Jackson; Catherine Karr; Patrick W. Keys; Jeremy S. Littell; Nathan Mantua; Jennifer Marlow; Don McKenzie; Michael Robinson-Dorn; Eric A. Rosenberg; Claudio O. Stöckle; Julie A. Vano

2010-01-01

271

Applying Conceptual Change to climate change communication  

Microsoft Academic Search

Misconceptions in science are usually developed as ways to explain the world before receiving correct teaching on the matter. In the case of climate change, however, some common misconceptions are still developed by the individual but others are deliberately manufactured and communicated to others by those in ideological opposition to the scientific consensus. Regardless of the source of the misconceptions,

K. Hayhoe; D. Hayhoe

2008-01-01

272

AEROSOL, CLOUDS, AND CLIMATE CHANGE  

SciTech Connect

Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

SCHWARTZ, S.E.

2005-09-01

273

United Nations Environment Programme: Climate Change  

NSDL National Science Digital Library

This portal provides access to information on the United Nations Environment Programme's (UNEP) initiatives on the issue of climate change. Materials include UNEP's areas of focus on addressing climate change (climate, finance, and business; emissions mitigation; carbon sequestration; vulnerability and adaptation to climate change; and others); links to UNEP Climate Change Centres; links to partner organizations; and links to information and media activities. There are also links to multimedia materials (posters, films, and video), printed publications on climate change, maps and graphics, and links to other organizations working on the issue of climate change.

274

Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology?  

Microsoft Academic Search

Paleoclimatologists generally consider past epochs on the basis of whether they were warmer or colder than today's climate. It is often not possible, however, to consider potential changes in the annual cycle because of limited seasonal emphases in many climate proxies. Using both long European instrumental records and longer European and Chinese documentary series, we show that winters have warmed

P. D. Jones; K. R. Briffa; T. J. Osborn

2003-01-01

275

Coal in a changing climate  

SciTech Connect

The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

Lashof, D.A.; Delano, D.; Devine, J. (and others)

2007-02-15

276

The Atlantic Climate Change Program  

SciTech Connect

The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

Molinari, R.L. (Atlantic Oceanographic and Meteorological Lab., Miami, FL (United States)); Battisti, D. (Univ. of Washington, Seattle, WA (United States)); Bryan, K. (Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)); Walsh, J. (Univ. of Illinois, Urbana, IL (United States))

1994-07-01

277

Stratospheric aerosols and climatic change  

NASA Technical Reports Server (NTRS)

Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

1976-01-01

278

The basic science of anthropogenic climate change  

Microsoft Academic Search

This article presents the basic science of climate change upon which our concern of possible anthropogenic interference with the climate system is based. Where possible, those aspects of particular relevance to the study of climate change impact assessment will be highlighted to set the scene for the remaining articles in this issue, which focus on the effects of climate change

Kathy Maskell

1995-01-01

279

On the timing and mechanism of millennial-scale climate variability during the last glacial cycle  

Microsoft Academic Search

The demonstration that natural climate vari- ability during the last glacial cycle shifted rapidly be- tween remarkable extremes has dramatically revised the understanding of climate change. To further advance our understanding, research continues into the timings, geographic distribution, and nature of the millennial- scale climate extremes, and into the mechanisms for in- tra- and inter-hemispheric transmission of variability through the

E. J. Rohling; P. Challenor; P. A. Mayewski

2003-01-01

280

Climate variability and climate change vulnerability and adaptation. Workshop summary  

Microsoft Academic Search

Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by

N. Bhatti; R. R. Cirillo; R. K. Dixon

1995-01-01

281

A Lesson on Climate Change.  

ERIC Educational Resources Information Center

This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

Lewis, Jim

282

Global Climate Change Interaction Web.  

ERIC Educational Resources Information Center

Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

Fortner, Rosanne W.

1998-01-01

283

CLIMATE CHANGE AND N DEPOSITION  

EPA Science Inventory

This project investigates the potential influence of climate change on wet deposition of reduced nitrogen across the U.S. The concentration of ammonium-nitrogen in precipitation is known to increase with temperature, owing to temperature dependent ammonia source strengths (natur...

284

Climatic Change and Human Evolution.  

ERIC Educational Resources Information Center

Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

Garratt, John R.

1995-01-01

285

Forensic entomology and climatic change  

Microsoft Academic Search

Forensic entomology establishes the postmortem interval (PMI) by studying cadaveric fauna. The PMI today is still largely based on tables of insect succession on human cadavers compiled in the late 19th- or mid-20th centuries. In the last few years, however, the gradual warming of the climate has been changing faunal communities by favouring the presence of thermophilous species. To demonstrate

Margherita Turchetto; Stefano Vanin

2004-01-01

286

Farm programs and climate change  

Microsoft Academic Search

The view that the agricultural sector could largely offset any negative impacts of climate change by altering production practices assumes the government will not create disincentives for farmers to adapt. U.S. farm programs, however, often discourage such obvious adaptations as switching crops, investing in water conserving technologies, and entry or exit. We outline a simple portfolio model describing producer decision

J. K. Lewandrowski; R. J. Brazee

1993-01-01

287

Efficient Adaptation to Climate Change  

Microsoft Academic Search

Firms and individuals will likelyengage in substantial private adaptation with respectto climate change in such sectors as farming, energy,timber, and recreation because it is in their interestto do so. The shared benefit nature of jointadaptation, however, will cause individuals tounderprovide joint adaptation in such areas as watercontrol, sea walls, and ecological management. Governments need to start thinking about jointadaptation, being

Robert Mendelsohn

2000-01-01

288

Protected areas and climate change.  

PubMed

The study of protected areas and climate change has now spanned two decades. Pioneering work in the late 1980s recognized the potential implications of shifting species range boundaries for static protected areas. Many early recommendations for protected area design were general, emphasizing larger protected areas, buffer zones, and connectivity between reserves. There were limited practical tests of these suggestions. Development of modeling and conservation planning methods in the 1990s allowed more rigorous testing of concepts of reserve and connectivity function in a changing climate. These studies have shown decreasing species representation in existing reserves due to climate change, and the ability of new protected areas to help slow loss of representation in mid-century scenarios. Connectivity on protected area periphery seems more effective than corridors linking protected areas. However, corridors serving other purposes, such as large carnivore movement, may be useful for accommodating species range shifts as well. Assisted migration and ex situ management strategies to complement protected areas are being explored. Finally, in scenarios of the latter half of the century, protected areas and connectivity become increasingly expensive and decreasingly effective, indicating the importance of reducing human-induced climate change. PMID:18566095

Hannah, Lee

2008-01-01

289

Poverty Traps and Climate Change  

Microsoft Academic Search

We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro

Richard S. J. Tol

2011-01-01

290

Path Dependence of Regional Climate Change  

NASA Astrophysics Data System (ADS)

Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path dependence of regional climate change. Some evidence exists to support the idea of hysteresis in the Greenland Ice Sheet, and since tipping points represent non-linear elements of the climate system, we suspect that the other tipping points might also show path dependence.

Herrington, Tyler; Zickfeld, Kirsten

2013-04-01

291

Climate change and trace gases.  

PubMed

Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment. PMID:17513270

Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

2007-07-15

292

Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change  

NASA Astrophysics Data System (ADS)

We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be combined in various ways to comprise focused, lively, accurate primers to what we all need to know about climate change. With college classrooms as our intended venue, we are looking at such topics as why the weather in your backyard tells you nothing about global climate change-but a good deal about climate; how tiny molecules warm the planet; how snowpack, drought, bark beetles, fire suppression, and wildfire interact as stress complexes; why (and where) women, children, and the poor are especially vulnerable to harm from climate change; what international policy negotiators argue about; what poets and artists can contribute to understanding and solving the climate problem; and why ecologists are worried about changes in the seasonal timing of natural events. We will describe what we have done and how we did it; offer a few tips to others who might wish to do something similar; and introduce our website.

Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

2011-12-01

293

Climate Change and Intertidal Wetlands  

PubMed Central

Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

Ross, Pauline M.; Adam, Paul

2013-01-01

294

Inuit Observations of Climate Change  

NSDL National Science Digital Library

This video features changes in the land, sea, and animals that are being observed by the residents of Sachs Harbour, Northwest Territories, Canada many of whom hunt, trap, and fishbecause of their long-standing and intimate connection with their ecosystem. Scientists interview the residents and record their observations in order to deepen our understanding of climate change in the polar region. Background essay and discussion questions are included.

Wgbh/boston

295

Climate change and intertidal wetlands.  

PubMed

Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

Ross, Pauline M; Adam, Paul

2013-01-01

296

10 CFR 960.4-2-4 - Climatic changes.  

...surface-water system such that expected climatic cycles over the next 100,000 years would not...facility in a previously unsaturated host rock. (2) Evidence that climatic changes...the ground-water flux through the host rock and the surrounding geohydrologic...

2014-01-01

297

10 CFR 960.4-2-4 - Climatic changes.  

Code of Federal Regulations, 2013 CFR

...surface-water system such that expected climatic cycles over the next 100,000 years would not...facility in a previously unsaturated host rock. (2) Evidence that climatic changes...the ground-water flux through the host rock and the surrounding geohydrologic...

2013-01-01

298

10 CFR 960.4-2-4 - Climatic changes.  

Code of Federal Regulations, 2011 CFR

...surface-water system such that expected climatic cycles over the next 100,000 years would not...facility in a previously unsaturated host rock. (2) Evidence that climatic changes...the ground-water flux through the host rock and the surrounding geohydrologic...

2011-01-01

299

10 CFR 960.4-2-4 - Climatic changes.  

Code of Federal Regulations, 2012 CFR

...surface-water system such that expected climatic cycles over the next 100,000 years would not...facility in a previously unsaturated host rock. (2) Evidence that climatic changes...the ground-water flux through the host rock and the surrounding geohydrologic...

2012-01-01

300

10 CFR 960.4-2-4 - Climatic changes.  

Code of Federal Regulations, 2010 CFR

...surface-water system such that expected climatic cycles over the next 100,000 years would not...facility in a previously unsaturated host rock. (2) Evidence that climatic changes...the ground-water flux through the host rock and the surrounding geohydrologic...

2010-01-01

301

Global Climate Change: A Glance in the Rear View Mirror  

NSDL National Science Digital Library

This Geotimes article provides information regarding the inference of paleoclimate (global climate change) from proxy data such as ice core (oxygen isotope) records and biota found in deep sea sediments. The article discusses the history of proxy usage, the basis of current proxies, and gaps in our understanding of carbon/material cycling and climate records.

Huber, Matt; Geotimes

302

A common-sense climate index: Is climate changing noticeably?  

PubMed Central

We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than “business-as-usual” scenarios.

Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

1998-01-01

303

Climate change impacts of US reactive nitrogen  

PubMed Central

Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at ?290 to ?510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just ?16 to ?95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change.

Pinder, Robert W.; Davidson, Eric A.; Goodale, Christine L.; Greaver, Tara L.; Herrick, Jeffrey D.; Liu, Lingli

2012-01-01

304

Climate change impacts of US reactive nitrogen.  

PubMed

Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N(2)O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO(2) equivalents (CO(2)e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at -290 to -510 Tg CO(2)e on a GTP(20) basis. However, these effects are largely short-lived. On a GTP(100) basis, combustion contributes just -16 to -95 Tg CO(2)e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N(2)O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N(2)O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO(2) emission reductions will be required to avoid dangerous climate change. PMID:22547815

Pinder, Robert W; Davidson, Eric A; Goodale, Christine L; Greaver, Tara L; Herrick, Jeffrey D; Liu, Lingli

2012-05-15

305

Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change  

NASA Astrophysics Data System (ADS)

The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle through their administrations.

Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

2008-12-01

306

Unit Plans: Earth's Climate Changes  

NSDL National Science Digital Library

Unit plans for Grades K-2 and 3-5 are a regular feature of the magazine Beyond Weather and the Water Cycle. The plans draw on articles and resources in a themed issue and are aligned with national science and language arts standards. This unit is designed to provide elementary students with the opportunity to investigate how the annual rings in trees help scientists learn about past climates. It uses hands-on experiences and nonfiction text to answer the unit question: How do trees help scientists learn about the past?

Fries-Gaither, Jessica

2011-07-01

307

60 FR 22078 - Reports; Availability, etc.: Climate Change; Second Assessment by Climate Change...  

Federal Register 2010, 2011, 2012, 2013

...FOUNDATION Reports; Availability, etc.: Climate Change; Second Assessment by Climate Change Intergovernmental Panel AGENCY: National...Group I of the Intergovernmental Panel on Climate Change (IPCC) has prepared a draft Second...

1995-05-04

308

Risk management and climate change  

NASA Astrophysics Data System (ADS)

The selection of climate policies should be an exercise in risk management reflecting the many relevant sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution of exposure, vulnerability or possible outcomes. Hence policy analysis cannot effectively evaluate alternatives using standard approaches, such as expected utility theory and benefit-cost analysis. This Perspective highlights the value of robust decision-making tools designed for situations such as evaluating climate policies, where consensus on probability distributions is not available and stakeholders differ in their degree of risk tolerance. A broader risk-management approach enables a range of possible outcomes to be examined, as well as the uncertainty surrounding their likelihoods.

Kunreuther, Howard; Heal, Geoffrey; Allen, Myles; Edenhofer, Ottmar; Field, Christopher B.; Yohe, Gary

2013-05-01

309

Climate change and allergic disease.  

PubMed

Allergies are prevalent throughout the United States and impose a substantial quality of life and economic burden. The potential effect of climate change has an impact on allergic disorders through variability of aeroallergens, food allergens and insect-based allergic venoms. Data suggest allergies (ocular and nasal allergies, allergic asthma and sinusitis) have increased in the United States and that there are changes in allergies to stinging insect populations (vespids, apids and fire ants). The cause of this upward trend is unknown, but any climate change may induce augmentation of this trend; the subspecialty of allergy and immunology needs to be keenly aware of potential issues that are projected for the near and not so distant future. PMID:23065327

Bielory, Leonard; Lyons, Kevin; Goldberg, Robert

2012-12-01

310

Thermohaline circulations and global climate change  

SciTech Connect

Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO{sub 2}-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co{sub 2}, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.

Hanson, H.P.

1992-01-01

311

Thermohaline circulations and global climate change  

SciTech Connect

This report discusses research activities conducted during the period 15 January 1992--14 December 1992. Thermohaline Circulations and Global Climate Change is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany C0[sub 2]-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced C0[sub 2], changes in the rate of deep-water production are important to future climates. Since deep-water Production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 11 months has proceeded according to the continuation discussion of last January and several new results have arisen.

Hanson, H.P.

1992-01-01

312

Earth's Changing Climate: Natural Variation and Human Impact  

NSDL National Science Digital Library

This article looks at the content knowledge teachers will need to prepare young students for later introduction of the fourth essential principle of the climate sciences, which is "Climate varies over space and time through both natural and man-made processes." The author describes the concepts that underlie the principle, provides maps and visuals from the federal agencies that monitor weather and climate changes, and identifies online resources for the teacher. The free, online magazine Beyond Weather and the Water Cycle is structured on the seven essential principles of the climate sciences, which are required for climate literacy.

Lightle, Kimberly

2011-07-01

313

Public Perceptions of Climate Change: A \\  

Microsoft Academic Search

In this paper, we examine for a sample of Los Angeles residents their willingness to pay to prevent significant climate change. We employ a frac- tional factorial design in which various climate change sce narios differing in ways consistent with existing variation in climate are pres ented to respon- dents. These are contrasted to respondents' current climat e before willing-

Richard A. Berk; Robert G. Fovell

1998-01-01

314

1000 years of climate change  

NASA Astrophysics Data System (ADS)

Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these problems have been adequately solved although caution is warranted. A promising adjunct to tree rings is actual measurement of temperatures in boreholes. Inversion of such records gives low frequency temperatures that are potentially more accurate than any proxy- derived ones. All these records give a fairly consistent picture of at least one major warming and cooling extreme (Medieval Warming Period (MWP) and Little Ice Age (LIA). Many modeling efforts using direct solar forcing have been done. These typically employ proxy data (sunspot number and variations in Be-10 and C -14 calibrated by satellite observations) for changes in solar forcing, and give the same general picture-- that of a substantial warming 1,000 yrs ago (MWP) followed by cooling that was particularly marked in the late 17th and early 19th centuries (LIA). The resulting amplitude of temperature change between MWP and LIA agrees well with paleo-temperature reconstructions and suggests that solar forcing alone is inadequate to account for more than about half the 20th century warming (Lean et al 1995, Crowley and Lowry 2000). Since these quantitatively reproduce climate variations in the past 1000 years, the role of indirect solar forcing is inferred to be small but may be important (Lean and Rind 2001). Gerard Bond, Bernd Kromer, Juerg Beer, Raimund Muscheler, Michael N. Evans, William Showers, Sharon Hoffmann, Rusty Lotti-Bond, Irka Hajdas, and Georges Bonani, (2001) Persistent Solar Influence on North Atlantic Climate During the Holocene,Science 294: 2130-2136 Briffa and Osborne, (2002) Blowing Hot and Cold, Science 295, 2227-2228. Lean, J., Beer, J., and Bradley, R., (1995) Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Lett.., 22, 3195-3198. Crowley ,T., (2000) Causes of climate change over the past 1000 years, Science,289, 270- 277. Lean and Rind, (2001), Earth's Response to a Variable Sun, Science, 292, 234-236.

Keller, C.

315

A Common-Sense Climate Index: Is Climate Changing Noticeably?  

Microsoft Academic Search

We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent

James Hansen; Makiko Sato; Jay Glascoe; Reto Ruedy

1998-01-01

316

Ecosystem Responses to Global Climate Change: Moving Beyond Color Mapping  

NSDL National Science Digital Library

This peer-reviewed article from BioScience is on the effects of climate change on ecosystems. Current assessments of climate-change effects on ecosystems use two key approaches: (1) empirical synthesis and modeling of species range shifts and life-cycle processes that coincide with recent evidence of climate warming, from which scenarios of ecosystem change are inferred; and (2) experiments examining plant-soil interactions under simulated climate warming. Both kinds of assessment offer indisputable evidence that climate change and its effects on ecosystems are ongoing. However, both approaches often provide conservative estimates of the effects of climate change on ecosystems, because they do not consider the interplay and feedback among higher trophic levels in ecosystems, which may have a large effect on plant species composition and on ecosystem services such as productivity. Understanding the impacts of these top-down processes on ecosystems is critical for determining large-scale ecosystem response to climate change. Using examples of links between climate forcing, trophic interactions, and changes in ecosystem state in selected terrestrial, freshwater, and marine systems, we show that the ability to understand and accurately forecast future effects of climate change requires an integrated perspective, linking climate and the biotic components of the ecosystem as a whole.

OSWALD J. SCHMITZ, ERIC POST, CATHERINE E. BURNS, and KEVIN M. JOHNSTON (;)

2003-12-01

317

Ecological Consequences of Recent Climate Change  

Microsoft Academic Search

Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5 8 C over the past century, and recent studies show that it is possible to detect the ef- fects of a changing climate on ecological systems. This suggests that global change may be a current and fu- ture conservation threat. Changes in

John P. McCarty

2001-01-01

318

Climate Change: Impacts and Adaptation in Forestry  

Microsoft Academic Search

Current changes in climate are already affecting forest species. Future climate change will bring greater changes in range of occurrence, forest disturbance and growth rates. These changes in turn will affect society's ability to use forest resources. We already take account of climate in forest management; in the future we will have to apply these techniques with a greater intensity

David L. Spittlehouse

319

Ecological Restoration and Global Climate Change  

Microsoft Academic Search

There is an increasing consensus that global climate change occurs and that potential changes in climate are likely to have important regional consequences for biota and ecosystems. Ecological restoration, including (re)- afforestation and rehabilitation of degraded land, is included in the array of potential human responses to cli- mate change. However, the implications of climate change for the broader practice

James A. Harris; Richard J. Hobbs; Eric Higgs; James Aronson

2006-01-01

320

Cosmic rays, geomagnetic field and climate changes  

NASA Astrophysics Data System (ADS)

The possibility of a connection between cosmic radiation and climate has intrigued scientists for the past several decades. The recent studies of Friis -Christensen and Svensmark has shown an observed variation of 3-4% of the global cloud cover between 1980 and 1995 that appeared to be directly correlated with the change in galactic cosmic radiation flux over the solar cycle. However, in studies of this type, not only the solar cycle modulation of cosmic radiation must be considered, but also the changes in the cosmic radiation impinging at the top of the atmosphere as a result of the long term evolution of the geomagnetic field. We present preliminary results of an on-going study of geomagnetic cutoff rigidities over a 400-year interval. These results show (1) the change in cutoff rigidity is sufficient large so that the change in cosmic radiation flux impacting the earth is approximately equal to the relative change in flux over a solar cycle, and (2) the changes in cutoff rigidity are non- uniform over the globe with both significant increases and decreases at mid-latitude locations.

Shea, M.; Smart, D.

321

A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change  

SciTech Connect

In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a serious change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.

Bolin, B. [University of Stockholm, Stockholm (Sweden)

2007-11-15

322

Novel communities from climate change  

PubMed Central

Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.

Lurgi, Miguel; Lopez, Bernat C.; Montoya, Jose M.

2012-01-01

323

Estimating the compensation strength of coniferous forests for climate change  

Microsoft Academic Search

Since several years it is been realised that our climate conditions are changing. Scenarios to approximate future conditions as realistic as possible have been constructed and projections for different areas on Earths have been made. However, several complex processes such as aerosols and feedback cycles are not fully understood. One of those feedback cycles is the interactions between different vegetation

Boris Bonn; Michael Boy; Dominick Spracklen; Markku Kulmala; Ken Carslaw; Katrin Trawny; Stefan Jacobi

2010-01-01

324

Oceans' Role in Climate Variability and Climate Change.  

National Technical Information Service (NTIS)

In view of the significant impacts of climate change, the question of whether the warming trend induced by the greenhouse effect has actually been detected is addressed. Natural climatic variability over various time scales is first illustrated, such as t...

L. A. Mysak C. A. Lin

1989-01-01

325

Climate benefits of changing diet  

Microsoft Academic Search

Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little\\u000a attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land\\u000a use. From a dietary perspective, new insights in the adverse health effects of beef and pork have lead to a revision

Elke Stehfest; Lex Bouwman; Detlef P. van Vuuren; Michel G. J. den Elzen; Bas Eickhout; Pavel Kabat

2009-01-01

326

Biodiversity Challenges with Climate Change  

Microsoft Academic Search

\\u000a Genetic resources, mainly in ex situ genebanks, have an important role in the adaptation of agriculture to climate change. There is an urgent need to collect\\u000a traditional landraces where they are still grown across diverse environments, to access genes with tolerance of abiotic stresses\\u000a and resistance to biotic stresses. The genetic diversity in wild relatives of crops is also under

Robert Redden; Michael Materne; Ahmad Maqbool; Angela Freeman

327

Study of Climate effect on evapotranspiration change procedure  

NASA Astrophysics Data System (ADS)

Evapotranspiration (ET) is one of the most important of parameters in water cycle. This parameter changes in climate different conditions. In this manner the probability of ET is important for design of irrigation systems. This study investigated climate effect on evapotranspiration changes procedure. Thus ET was estimated by Hargreaves-Samani (H-S) method in the some of regions: Gorgan(semi wet,), Gonbad (semi dry) , Maraveh-Tappeh (semi dry to dry). Then diagrams of ET were drawn for different probabilities. Investigation shown that if climate was drier, irrigation periods increased and difference of ET averages decreased. Keyword : Evapotranspiration, Probability, Hargreave-Samani method, Climate, water use.

Asady, A.; Sharifan, H.

2009-04-01

328

NASA Nice Climate Change Education  

NASA Astrophysics Data System (ADS)

Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate change education can be beneficial to future learners and general public. The main scope is to increase the amount of STEM knowledge throughout the nations scientific literacy as we are using the platform of climate change. Federal entities which may include but not limited to National Security Agency and the Department of Homeland Security and Management will serve as resources partners for this common goal of having a more knowledgeable technological savvy and scientific literate society. The presentation will show that incorporating these best practices into elementary and early childhood education undergraduate programs will assist with increasing a enhance scientific literate society. As a measurable outcome have a positive impact on instructional effectiveness of future teachers. Their successfully preparing students in meeting the standards of the Common Core Initiative will attempt to measure across the curriculum uniformly.

Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

2013-12-01

329

Communicating Uncertainties on Climate Change  

NASA Astrophysics Data System (ADS)

The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

Planton, S.

2009-09-01

330

On the timing and mechanism of millennial-scale climate variability during the last glacial cycle  

Microsoft Academic Search

The demonstration that natural climate variability during the last glacial cycle shifted rapidly between remarkable extremes has dramatically revised the understanding of climate change. To further advance our understanding, research continues into the timings, geographic distribution, and nature of the millennial-scale climate extremes, and into the mechanisms for intra- and inter-hemispheric transmission of variability through the climate\\/ocean system. Complementing the

E. J. Rohling; P. Mayewski; P. Challenor

2003-01-01

331

RISKS, OPPORTUNITIES, AND ADAPTATION TO CLIMATE CHANGE  

EPA Science Inventory

Adaptation is an important approach for protecting human health, ecosystems, and economic systems from the risks posed by climate variability and change, and to exploit beneficial opportunities provided by a changing climate. This paper presents nine fundamental principles that ...

332

What do Squirrels know about Climate Change?  

NSDL National Science Digital Library

What do Squirrels know about Climate Change? This activity was developed during the Teaching Climate Change from the Geological Record workshop, held in August 2010.Contributed by: Beth Norman, Allan Ashworth, and ...

333

GLOBAL CLIMATE CHANGE: POLICY IMPLICATIONS FOR FISHERIES  

EPA Science Inventory

Several government agencies are evaluating policy options for addressing global climate change. hese include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. or fisheries resources, policy questions address eff...

334

Strategic Threat of Inevitable Climate Change.  

National Technical Information Service (NTIS)

The world's climate is changing. Scientific evidence clearly demonstrates an unprecedented rate of global warming is taking place. This warming is serving as a driving force behind changes to the global climate. Leaders across the globe are confronted wit...

W. D. Conner

2013-01-01

335

Mitigating Climate Change in China and Ethiopia  

NSDL National Science Digital Library

In this video segment adapted from Hope in a Changing Climate, learn how an environmentally devastated ecosystem has been restored, benefiting both the local economy and global efforts to fight climate change.

Foundation, Wgbh E.

2010-11-30

336

Using Climate Change as a Teaching Tool.  

ERIC Educational Resources Information Center

Points out that climate change is an ideal pedagogical tool for encouraging a number of desirable outcomes in environmental education. Climate change can be used to teach about complex systems. (Contains 16 references.) (DDR)

Dahlberg, Steven

2001-01-01

337

Climate Change Impact on Forestry in India  

Microsoft Academic Search

\\u000a Climate change represents a significant threat to global biodiversity and ecosystem integrity. Climate change is expected\\u000a to have also impacts on forest ecology. It is thus important to make assessments of possible impacts of climate change on\\u000a forests in different regions to allow respective governments and communities to adapt. Climate change is projected to affect\\u000a individual organisms, populations, species distributions

Geetanjali Kaushik; M. A. Khalid

338

Climate change and the global harvest  

Microsoft Academic Search

This book summarizes state-of-the-art knowledge on the potential impacts of climate change on agriculture. The book begins by introducing the nonspecialist to the causes of climate change, and reviews the main climate change drivers and impacts. It then goes on to review all major aspects of climate change impact on agriculture in detail. The scope is very broad indeed--the authors

Cynthia Rosenzweig; Daniel Hillel

1998-01-01

339

Ocean Circulation and Climate Change  

NSDL National Science Digital Library

While the mainstream media has provided extensive coverage of El Nino and La Nina -- the warmer and colder phases of a perpetual oscillation in the surface temperature of the tropical Pacific Ocean -- little attention has been paid to deep-water phases. Several recent publications in leading scientific journals (Science and Nature) are adding new dimensions to the link between large-scale ocean circulation patterns and climate. Researchers Dr. Wallace Broecker and researchers at Columbia University's Lamont-Doherty Earth Observatory (see the November 5, 1999 issue of Science and the November 9, 1999 issue of The New York Times) found that deep ocean currents, operating as an oceanic "conveyor belt," may hold clues to climate change. The conveyor belt works by transporting warm, increasingly salty, ocean water from the Pacific to the Atlantic Ocean; eventually, the warm water current runs into a cold water current, causing the warm water to cool quickly and sink, due to greater density. In turn, this creates a "sub-surface countercurrent which carries the cool water back to the Indian and Pacific oceans" (2). In this week's issue of Nature (December 2, 1999), German scientist Carsten Ruhlemann and colleagues provide new evidence that the thermohaline circulation has triggered rapid climate change events in the past, including the last deglaciation. In addition, the current issue of Science Times (December 7, 1999) highlights the connection between thawing Arctic ice sheets and oceanic currents. This week's In The News focuses on ocean circulation patterns and climate change. The seven resources provide background information and specific links to related resources.

Payne, Laura X.

340

Adaptation to climate change in forest management  

Microsoft Academic Search

Adaptation in forestry is sustainable forest management that includes a climate change focus. Climate change over the next 100 years is expected to have significant impacts on forest ecosystems. The forestry community needs to evaluate the long-term effects of climate change on forests and determine what the community might do now and in the future to respond to this threat.

David L. Spittlehouse; Robert B. Stewart

2003-01-01

341

Getting to the Core of Climate Change  

NSDL National Science Digital Library

This is a lab about evidence for past climate change as captured in ice sheets of Greenland and Antarctica. Students investigate climate changes going back thousands of years by graphing and analyzing ice core data from both Greenland and Antarctica. They use information about natural and human-caused changes in the atmosphere to formulate predictions about the Earth's climate.

2005-01-01

342

Climate change and agriculture in developing countries  

Microsoft Academic Search

Most analysts agree that the poorest countries` agricultures are likely to be the most vulnerable to-and least capable of adapting to-climate change or other environmental disruptions. Research has only recently begun to assess what the likely impacts of climate change on developing countries` agricultures may be, how these agricultures might adapt to climate change, and how policies might be designed

John M. Antle

1995-01-01

343

Integrating climate change adaptation into forest management  

Microsoft Academic Search

Future climate change will affect society's ability to use forest resources. We take account of climate in forest management and this will help us adapt to the effects of climate change on forests. However, society will have to adjust to how forests adapt by changing expectations for the use of forest resources because management can only influence the timing and

David L. Spittlehouse

2005-01-01

344

Climate Change: Fitting the Pieces Together  

NSDL National Science Digital Library

Earth Gauge and the COMET Program have designed a two-hour course for that provides a basic overview of climate change science and resources to answer common questions about climate change. Although initially designed for broadcast meteorologists, the course is a good primer for anyone interested in climate change.

2009-01-01

345

Climate Change and U.S. Interests  

Microsoft Academic Search

The public policy debate on the appropriate American response to climate change is now in full swing. There are no longer significant voices disputing that climate change is real or that it is primarily the result of human activity. The issue today is what the United States should do about climate change given the risks the country faces and the

Andrew T Guzman; Jody Freeman

2009-01-01

346

Climate Change Projections for African Urban Areas  

NASA Astrophysics Data System (ADS)

Mainly driven by changes in the orbital characteristics of Earth around the sun, the planet's climate has been continuously changing over periods of tens of thousands of years. However, the warming that has been detected in the Earth's atmosphere over the last century is occurring at a rate that cannot be explained by any known natural cycle. Main-stream science has indeed reached consensus that the 'enhanced green house effect', caused by the interplay of incoming short-wave irradiation, outgoing long-wave radiation and the absorption of energy by enhanced levels of CO2 and water vapour in the troposphere, is the main forcing mechanism responsible for the phenomena of global warming. The enhanced greenhouse effect strengthens the 'natural green house effect' that results from the CO2 and water vapour occurring naturally in the atmosphere. The continuous burning of fossil fuels since the industrial revolution and the simultaneous degradation of large forests, are the main reasons for the increase in CO2 concentrations in the atmosphere. The availability of climate change projection data varies considerably for different areas on Earth. Whereas the data centres storing climate change projections for Europe and North America now store petabytes of data, regionally downscaled projections for Africa are rarely available. In the context of the research project CLUVA, (Assessing vulnerability of urban systems, populations and goods in relation to natural and man-made disasters in Africa, co-funded by the European Commission under grant agreement no: 265137), the Council for Industrial and Scientific Research (CSIR) in South Africa and the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) in Italy have produced a large set of projections of climate change over Africa, covering the time period 1950 to 2100. Through the collaboration between CMCC and CSIR, a multi-model ensemble of eight high-resolution simulations of climate change over parts of West and East Africa have been derived (six at CSIR and two at CMCC). That is, a multi-model ensemble of simulations of present-day and future climate has been made available for a number of African regions. This approach is most useful to describe the range of uncertainty associated with future climate. In order to obtain a set of plausible and physically defensible projections that can be used for a broad range of subsequent research questions, the two partners followed two different modelling approaches. The first approach, (by CMCC) uses a single dynamic climate change model: the model gets executed several times using a number of pertubations, e.g. changing initial conditions to account for the non-linear dynamics, perturbations of the boundary conditions to account for the 'imperfect' characterizations of the non-atmospheric components of the climate system or to handle the uncertainty of the driving global model, or perturbations of the model physics to account for the uncertainties inherent in the parameterizations. The second approach, (by CSIR) keeps the boundary conditions static but downscales a number of different global circulation models to account for the uncertainties inherent in the models themselves. In total, CSIR has run six different dynamic models. All runs have been conducted on super computing clusters to be completed within reasonable timeframes. The full data set is currently made available on the web. A number of tools is used to provide maximum user experience for climate change experts, social geographers, city planners and policy decision makers.

Simonis, Ingo; Engelbrecht, Francois; Bucchignani, Edoardo; Mercogliano, Paola; Naidoo, Mogesh

2013-04-01

347

North American Regional Climate Change Assessment Program (NARCCAP): Producing Regional Climate Change Projections for Climate Impacts Studies  

Microsoft Academic Search

The North American Regional Climate Change Assessment Program (NARCCAP) is constructing projections of regional climate change over the coterminous United States and Canada in order to provide climate change information at decision relevant scales. A major goal of NARCCAP is to estimate uncertainties in regional scale projections of future climate by using multiple regional climate models (RCMs) nested within multiple

R. W. Arritt; L. Mearns; C. Anderson; D. Bader; E. Buonomo; D. Caya; P. Duffy; N. Elguindi; F. Giorgi; W. Gutowski; I. Held; A. Nunes; R. Jones; R. Laprise; L. R. Leung; D. Middleton; W. Moufouma-Okia; D. Nychka; Y. Qian; J. Roads; S. Sain; M. Snyder; L. Sloan; E. Takle

2006-01-01

348

Climate Change in Small Islands  

NASA Astrophysics Data System (ADS)

Isolated islands are especially vulnerable to climate change. But their climate is generally not well reproduced in GCMs, due to their small size and complex topography. Here, results from a new generation of climate models, forced by scenarios RCP8.5 and RCP4.5 of greenhouse gases and atmospheric aerosol concentrations, established by the IPCC for its fifth report, are used to characterize the climate of the islands of Azores and Madeira, and its response to the ongoing global warming. The methodology developed here uses the new global model EC-Earth, data from ERA-Interim reanalysis and results from an extensive set of simulations with the WRF research model, using, for the first time, a dynamic approach for the regionalization of global fields at sufficiently fine resolutions, in which the effect of topographical complexity is explicitly represented. The results reviewed here suggest increases in temperature above 1C in the middle of the XXI century in Azores and Madeira, reaching values higher than 2.5C at the end of the century, accompanied by a reduction in the annual rainfall of around 10% in the Azores, which could reach 30% in Madeira. These changes are large enough to justify much broader impacts on island ecosystems and the human population. The results show the advantage of using the proposed methodology, in particular for an adequate representation of the precipitation regime in islands with complex topography, even suggesting the need for higher resolutions in future work. The WRF results are also compared against two different downscaling techniques using an air mass transformation model and a modified version of the upslope precipitation model of Smith and Barstad (2005).

Tomé, Ricardo; Miranda, Pedro M. A.; Brito de Azevedo, Eduardo; Teixeira, Miguel A. C.

2014-05-01

349

Climate Reel: Global Climate Change - NASA's Eyes on the Earth  

NSDL National Science Digital Library

This website is a collection of NASA's best videos and visualizations of climate change. The Top 10 Climate Movies are featured. Other videos, animated visuals and images are listed by themes: Life on Earth, Water, The Land, The Atmosphere, The Sun, Frozen Places, and Climate Data. Links to complete transcripts are available.

350

Oceans Effect on Weather and Climate: Changing Climate  

NSDL National Science Digital Library

This Science Object is the fourth of four Science Objects in the Ocean's Effect on Weather and Climate SciPack. It explores how Earth's climate has changed in the past and how it may change in the future. Climate change may occur as a result of changes in Earth's surface, atmosphere, and oceans. Such changes may be abrupt (such as gas and dust from volcanic eruptions or asteroid impacts) or may occur over very long times (such as changes in landscape or increase in carbon dioxide levels in the atmosphere). Even relatively small changes in atmospheric or ocean content and/or temperature can have widespread effects on climate if the change lasts long enough. Since the industrial revolution, the concentration of greenhouse gases in the atmosphere has increased at an unprecedented rate. Though climate change and changes in the composition of the oceans and atmosphere are natural, present modifications far exceed natural rates. Learning Outcomes:� Explain the role that phenomena such as volcanic eruptions or asteroid impact play in changing climate.� Describe the type of atmospheric conditions and weather related data that can be obtained from ice core and deep-sea sediment records.� Describe how a small change in the content of oceans and atmosphere (such as a rise in carbon dioxide levels) can have significant impacts on global climate.� Describe human activity that has an affect on climate.

National Science Teachers Association (NSTA)

2007-03-28

351

Towards a Psychology of Climate Change  

Microsoft Academic Search

\\u000a This paper gives a structured overview about possible contributions of psychology to the climate change debate. As a starting\\u000a point, it assumes that understanding people’s behaviour related to climate change (mitigation and adaptation) is crucial for\\u000a successfully dealing with the future challenges. Climate change-related behaviour includes voting, support for climate lobbyists,\\u000a individual consumption, adapting new technology, and taking adaptive actions.

Christian A. Kloeckner

352

Climate Change: NASA's Eyes on the Earth  

NSDL National Science Digital Library

This interactive website features many great tools that are designed to keep your students informed and up to date on whats going on with our planet and its climate. There is a brief history on our climate, and the recent changes that the planet has been experiencing. The effects of global climate change are introduced, and the different indicators of climate change, such as rising sea levels, global surface temperature, and the ozone hole, are discussed and explained.

Conway, Erik; Jackson, Randal; Jenkins, Amber; Sullivant, Rosemary

2010-01-01

353

A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene-Early Eocene climate and carbon cycling  

NASA Astrophysics Data System (ADS)

The Late Paleocene and Early Eocene were characterized by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as “hyperthermals”, thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (?52.5-60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (?2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (?18O) and carbon-isotope (?13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (?13C, CIEs) and coeval negative oxygen-isotope (?18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and ?18O events coincide with maxima in eccentricity, with changes in ?18O leading changes in ?13C by ?6 (±5) kyr in the 405-kyr band and by ?3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ?4 (±5) kyr to ?21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4 °C, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5 °C. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.

Littler, Kate; Röhl, Ursula; Westerhold, Thomas; Zachos, James C.

2014-09-01

354

Impact of Climate Change on Diamondback Terrapin  

NSDL National Science Digital Library

This resource includes five lessons related to the habitat and life cycle of the diamondback terrapin and human influence on them. Learners will participate in a series of dramatic play modeling activities that simulate the coastline and marsh habitat changes that are occurring. They will use a map to identify where in the watershed a diamondback terrapin lives and what the habitat looks like. They will then explain how humans moving into the coastal area affect the terrapinâs habitat and how changes in water level will affect the habitat. They will explain how human presence affects the ability of the marsh to extend inland as sea level rises. Finally, learners will brainstorm realistic ways for humans and terrapins to coexist. Extensions for each lesson are available. The lessons are planned on the 5-Eâs model (engage, explore, explain, extend and evaluate). The lessons are part of Climate Change, Wildlife and Wildlands: A Toolkit for Formal and Informal Educators.

355

Regional Climate Change Hotspots over Africa  

Microsoft Academic Search

Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from

U. Anber

2009-01-01

356

Climate Change: A Controlled Experiment  

SciTech Connect

Researchers are altering temperature, carbon dioxide and precipitation levels across plots of forests, grasses and crops to see how plant life responds. Warmer temperatures and higher CO{sub 2} concentrations generally result in more leaf growth or crop yield, but these factors can also raise insect infestation and weaken plants ability to ward off pests and disease. Future field experiments that can manipulate all three conditions at once will lead to better models of how long-term climate changes will affect ecosystems worldwide.

Wullschleger, Stan D [ORNL; Strahl, Maya [ORNL

2010-01-01

357

Climate Change and Greenhouse Gases  

NASA Technical Reports Server (NTRS)

The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

1999-01-01

358

World Wildlife Fund: Climate Change  

NSDL National Science Digital Library

This site provides information about the World Wildlife Fund's (WWF) position on climate change and its efforts to address the issue. There are links to information about the causes and potential risks of global warming, to some suggested solutions for energy, business and industry, and public policy solutions. There are also suggestions for actions that individuals can take themselves to conserve energy, as well as links to news articles on the issue. Other links provide access to press materials, to a blog, and to conference reports and a brochure describing WWF's activities on behalf of the issue.

359

Climate Change in the Preservice Teacher's Mind  

NASA Astrophysics Data System (ADS)

Given the recent media attention on the public’s shift in opinion toward being more skeptical about climate change, 154 preservice teachers’ participated in an intervention in an elementary science methods course. Findings indicated that students developed a deeper level of concern about climate change. Their perceptions on the evidence for climate change, consensus of scientists, impacts of climate change, and influence of politics also changed significantly. The curriculum and instruction appear to be an important factor in increasing understanding of climate change and developing perceptions more aligned to those of climate scientists. More broadly, this study provides preliminary support for the value of providing a careful framing of the topic of climate change within the context of science methods courses.

Lambert, Julie L.; Bleicher, Robert E.

2013-10-01

360

Fundamental influence of carbon-nitrogen cycle coupling on climate-carbon cycle feedbacks  

Microsoft Academic Search

A long history of ecological and biogeochemical research demonstrates the critical role of nutrients in general, and nitrogen in particular, in the dynamics of the terrestrial carbon cycle. The current generation of global coupled climate-carbon cycle models has not included an explicit (prognostic) representation of the nitrogen cycle over land. Recent development of the NCAR Community Climate System Model (CCSM)

P. Thornton; K. Lindsay; S. Doney; J. K. Moore; N. Mahowald

2007-01-01

361

Changes in voltinism in a pine moth Dendrolimus spectabilis (Lepidoptera: Lasiocampidae) population: implications of climate change  

Microsoft Academic Search

Climate change induces an alteration in the life cycle of many poikilothermic organisms, resulting in changes in the structure\\u000a and function of communities. Changes in voltinism in the pine moth Dendrolimus spectabilis (Butler), which is known to be univoltine in South Korea, were studied to elucidate the effects of climate change on their\\u000a voltinism. The developmental stages of the pine

Won Il Choi; Young-Kyu Park; Young-Seuk Park; Mun Il Ryoo; Hai-Poong Lee

2011-01-01

362

The ocean and climate change policy  

Microsoft Academic Search

The ocean plays a major role in regulating Earth's climate system, and is highly vulnerable to climate change, but continues to receive little attention in the ongoing policymaking designed to mitigate and adapt to global climate change. There are numerous ways to consider the ocean more significantly when developing these policies, several of which offer the co-benefits of biodiversity protection

Grantly Galland; Ellycia Harrould-Kolieb; Dorothée Herr

2012-01-01

363

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) HOMEPAGE  

EPA Science Inventory

The IPCC is divided into three Working Groups. Working Group I assesses the scientific aspects of the climate system and climate change. Working Group II assesses the vulnerability to climate change of, and the negative and positive impacts for, ecological systems, socio-economic...

364

Adaptation Policy Frameworks for Climate Change  

Microsoft Academic Search

Adaptation is a process by which individuals, communities and countries seek to cope with the consequences of climate change. The process of adaptation is not new; the idea of incorporating future climate risk into policy-making is. While our understanding of climate change and its potential impacts has become clearer, the availability of practical guidance on adaptation has not kept pace.

Bo Lim; Erika Spanger-Siegfried; Ian Burton; Eizabeth Malone; Saleemul Huq

2004-01-01

365

Climate Change Vulnerability and Policy Support  

Microsoft Academic Search

Climate scientists note that the effects of climate change vary regionally. Citizen willingness to absorb the costs of adaptation and mitigation policies may correspond with these place-specific effects. Geographic information systems (GIS) analytic techniques are used to map and measure survey respondents' climate change risk at various levels of spatial resolution and precision. Spatial data are used to analyze multiple

Sammy Zahran; Samuel D. Brody; Himanshu Grover; Arnold Vedlitz

2006-01-01

366

Risks, opportunities and adaptation to climate change  

Microsoft Academic Search

Adaptation is an important approach for protecting human health, ecosystems, and eco- nomic systems from the risks posed by climate variability and change, and for exploiting beneficial opportunities provided by a changing climate. This paper presents 9 fundamenal principles that should be considered when designing adaptation policy, for example, a sound understanding of the potential regional effects of climate on

Joel D. Scheraga; Anne E. Grambsch

1998-01-01

367

The physical science behind climate change  

Microsoft Academic Search

For a scientist studying climate change, 'eureka' moments are unusually rare. Instead progress is generally made by a painstaking piecing together of evidence from every new temperature measurement, satellite sounding or climate-model experiment. Data get checked and rechecked, ideas tested over and over again. Do the observations fit the predicted changes? Could there be some alternative explanation? Good climate scientists,

William Collins; Robert Colman; James Haywood; Martin R. Manning; Philip Mote

2007-01-01

368

Integrated assessment of abrupt climatic changes  

Microsoft Academic Search

One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and documented in current models

Michael D. Mastrandrea; Stephen H. Schneider

2001-01-01

369

The role of the thermohaline circulation in abrupt climate change.  

PubMed

The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean-atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state. PMID:11859359

Clark, Peter U; Pisias, Nicklas G; Stocker, Thomas F; Weaver, Andrew J

2002-02-21

370

Is climate change affecting human health?  

NASA Astrophysics Data System (ADS)

First principles suggest that climate change is affecting human health, based on what is understood about the relationships between the mean and variability of temperature, precipitation, and other weather variables and climate-sensitive health outcomes, and the magnitude of climate change that has occurred. However, the complexity of these relationships and the multiple drivers of climate-sensitive health outcomes makes the detection and attribution of changing disease patterns to climate change very challenging. Nevertheless, efforts to do so are vital for informing policy and for prioritizing adaptation and mitigation options.

Ebi, Kristie L.

2013-09-01

371

Climate change and wildlife health: direct and indirect effects  

USGS Publications Warehouse

Climate change will have significant effects on the health of wildlife, domestic animals, and humans, according to scientists. The Intergovernmental Panel on Climate Change projects that unprecedented rates of climate change will result in increasing average global temperatures; rising sea levels; changing global precipitation patterns, including increasing amounts and variability; and increasing midcontinental summer drought (Intergovernmental Panel on Climate Change, 2007). Increasing temperatures, combined with changes in rainfall and humidity, may have significant impacts on wildlife, domestic animal, and human health and diseases. When combined with expanding human populations, these changes could increase demand on limited water resources, lead to more habitat destruction, and provide yet more opportunities for infectious diseases to cross from one species to another. Awareness has been growing in recent years about zoonotic diseases— that is, diseases that are transmissible between animals and humans, such as Lyme disease and West Nile virus. The rise of such diseases results from closer relationships among wildlife, domestic animals, and people, allowing more contact with diseased animals, organisms that carry and transmit a disease from one animal to another (vectors), and people. Disease vectors include insects, such as mosquitoes, and arachnids, such as ticks. Thus, it is impossible to separate the effects of global warming on wildlife from its effects on the health of domestic animals or people. Climate change, habitat destruction and urbanization, the introduction of exotic and invasive species, and pollution—all affect ecosystem and human health. Climate change can also be viewed within the context of other physical and climate cycles, such as the El Niño Southern Oscillation (El Niño), the North Atlantic Oscillation, and cycles in solar radiation that have profound effects on the Earth’s climate. The effects of climate change on wildlife disease are summarized in several areas of scientific study discussed briefly below: geographic range and distribution of wildlife diseases, plant and animal phenology (Walther and others, 2002), and patterns of wildlife disease, community and ecosystem composition, and habitat degradation.

Hofmeister, Erik; Rogall, Gail Moede; Wesenberg, Kathy; Abbott, Rachel; Work, Thierry; Schuler, Krysten; Sleeman, Jonathan; Winton, James

2010-01-01

372

Effects of Holocene climate change on mercury deposition in Elk Lake, Minnesota: The importance of eolian transport in the mercury cycle  

NASA Astrophysics Data System (ADS)

Sediments in Elk Lake, Minnesota, consist of 10,400 varve layers that provide a precise chronology for Holocene fluctuations in climate and biota recorded in the strata. Progressively greater concentrations and accumulation rates of mercury since ca. A.D. 1875 reflect deposition of anthropogenic mercury additions to the atmosphere. Within the Holocene record are numerous short intervals in which mercury concentrations and accumulation rates exceed the modern values. The highest mercury concentrations formed ca. 8 ka, coincident with a rapid change from cool, moist conditions to warm, dry conditions. A related change in flora from pine forest to prairie caused destruction of organic forest soils and the release of mercury that had been sequestered in them, resulting in a short-lived pulse of mercury to the lake. Accumulation rates of mercury were highest during the 4 k.y. mid-Holocene dry interval and show a correlation with periods of rapid deposition of eolian dust. The mercury was probably bound to wind-borne mineral particles, which were derived from an unidentified mercury-rich source region west of Elk Lake.

Cannon, W. F.; Dean, Walter E.; Bullock, John H., Jr.

2003-02-01

373

Effects of Holocene climate change on mercury deposition in Elk Lake, Minnesota: The importance of eolain transport in the mercury cycle  

USGS Publications Warehouse

Sediments in Elk Lake, Minnesota, consist of 10,400 varve layers that provide a precise chronology for Holocene fluctuations in climate and biota recorded in the strata. Progressively greater concentrations and accumulation rates of mercury since ca. A.D. 1875 reflect deposition of anthropogenic mercury additions to the atmosphere. Within the Holocene record are numerous short intervals in which mercury concentrations and accumulation rates exceed the modern values. The highest mercury concentrations formed ca. 8 ka, coincident with a rapid change from cool, moist conditions to warm, dry conditions. A related change in flora from pine forest to prairie caused destruction of organic forest soils and the release of mercury that had been sequestered in them, resulting in a short- lived pulse of mercury to the lake. Accumulation rates of mercury were highest during the 4 k.y. mid-Holocene dry interval and show a correlation with periods of rapid deposition of eolian dust. The mercury was probably bound to wind-borne mineral particles, which were derived from an unidentified mercury-rich source region west of Elk Lake.

Cannon, W. F.; Dean, W. E.; Bullock, J. H.

2003-01-01

374

[Climate change and Kyoto protocol].  

PubMed

Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy. PMID:19798904

Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

2009-01-01

375

Climate Kids: A Student's Guide to Global Climate Change  

NSDL National Science Digital Library

A product of the Environmental Protection Agency (EPA), this website features sections entitled "Learn the Basics," "See the Impacts," "Think Like a Scientist," and "Be Part of the Solution" through which participants gain a deeper understanding of climate change issues. This resource is part of the Climate Kids website, a NASA education resource featuring articles, videos, images and games focused on the science of climate change.

376

Abrupt climate change: can society cope?  

PubMed

Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation. PMID:14558906

Hulme, Mike

2003-09-15

377

Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment  

SciTech Connect

Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

2012-11-15

378

Climate change impact on available water resources obtained using multiple global climate and hydrology models  

NASA Astrophysics Data System (ADS)

Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate-hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

Hagemann, S.; Chen, C.; Clark, D. B.; Folwell, S.; Gosling, S. N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; Wiltshire, A. J.

2013-05-01

379

Aerosol indirect effect on biogeochemical cycles and climate.  

PubMed

The net effect of anthropogenic aerosols on climate is usually considered the sum of the direct radiative effect of anthropogenic aerosols, plus the indirect effect of these aerosols through aerosol-cloud interactions. However, an additional impact of aerosols on a longer time scale is their indirect effect on climate through biogeochemical feedbacks, largely due to changes in the atmospheric concentration of CO(2). Aerosols can affect land and ocean biogeochemical cycles by physical forcing or by adding nutrients and pollutants to ecosystems. The net biogeochemical effect of aerosols is estimated to be equivalent to a radiative forcing of -0.5 ± 0.4 watts per square meter, which suggests that reaching lower carbon targets will be even costlier than previously estimated. PMID:22076375

Mahowald, Natalie

2011-11-11

380

Influence of Dynamic Land Use and Land Cover Change on Simulated Global Terrestrial Carbon and Nitrogen Cycles, Climate-carbon Cycle Feedbacks, and Interactions with Rising CO2 and Anthropogenic Nitrogen Deposition  

SciTech Connect

Previous work has demonstrated the sensitivity of terrestrial net carbon exchange to disturbance history and land use patterns at the scale of individual sites or regions. Here we show the influence of land use and land cover dynamics over the historical period 1850-present on global-scale carbon, nutrient, water, and energy fluxes. We also explore the spatial and temporal details of interactions among land use and disturbance history, rising atmospheric carbon dioxide consentation, and increasing anthropogenic nitrogen deposition. Our simulations show that these interactions are significant, and that their importance grows over time, expressed as a fraction of the independent forcing terms. We conclude with an analysis of the influence of these interactions on the sign and magnitude of global climate-carbon cycle feedbacks.

Thornton, Peter E [ORNL; Hoffman, Forrest M [ORNL; Hurtt, George C [University of Hew Hampshire

2009-12-01

381

America's Climate Choices: Advancing the Science of Climate Change (Invited)  

Microsoft Academic Search

At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies the nation can take to respond to climate change. This suite of activities included a panel report on Advancing the Science of Climate Change. The report concludes that a strong, credible body of scientific evidence shows that

P. A. Matson; T. Dietz; I. Kraucunas

2010-01-01

382

Are abrupt climate changes predictable?  

NASA Astrophysics Data System (ADS)

It is taken for granted that the limited predictability in the initial value problem, the weather prediction, and the predictability of the statistics are two distinct problems. Lorenz (1975) dubbed this predictability of the first and the second kind respectively. Predictability of the first kind in a chaotic dynamical system is limited due to the well-known critical dependence on initial conditions. Predictability of the second kind is possible in an ergodic system, where either the dynamics is known and the phase space attractor can be characterized by simulation or the system can be observed for such long times that the statistics can be obtained from temporal averaging, assuming that the attractor does not change in time. For the climate system the distinction between predictability of the first and the second kind is fuzzy. This difficulty in distinction between predictability of the first and of the second kind is related to the lack of scale separation between fast and slow components of the climate system. The non-linear nature of the problem furthermore opens the possibility of multiple attractors, or multiple quasi-steady states. As the ice-core records show, the climate has been jumping between different quasi-stationary climates, stadials and interstadials through the Dansgaard-Oechger events. Such a jump happens very fast when a critical tipping point has been reached. The question is: Can such a tipping point be predicted? This is a new kind of predictability: the third kind. If the tipping point is reached through a bifurcation, where the stability of the system is governed by some control parameter, changing in a predictable way to a critical value, the tipping is predictable. If the sudden jump occurs because internal chaotic fluctuations, noise, push the system across a barrier, the tipping is as unpredictable as the triggering noise. In order to hint at an answer to this question, a careful analysis of the high temporal resolution NGRIP isotope record is presented. The result of the analysis points to a fundamental limitation in predictability of the third kind. Reference: P. D. Ditlevsen and S. Johnsen, "Tipping points: Early warning and wishful thinking", Geophys. Res. Lett., 37, 2010

Ditlevsen, Peter

2013-04-01

383

Introduction to Earth's Dynamically Changing Climate  

NSDL National Science Digital Library

In this self-paced tutorial, examine evidence of climate change from different parts of the Earthâs system and consider what it means to live on a planet with a dynamically changing climate. The resource includes multimedia resources such as video clips of local impacts of climate change in the Arctic and Samoa, data visualization exercise featuring digital resources on climate.nasa.gov, and an interview with NASA climate scientist Dr. Gavin Schmidt, a discussion on teaching using data, and an interactive quiz. Introduction to the Earth's Dynamically Changing Climate is the first of a series of ten self-paced professional development modules providing opportunities for teachers to learn about climate change through first-hand data exploration. Activities and resources that can be employed in the classroom are featured.

384

Economic Consequences Of Climate Change  

NASA Astrophysics Data System (ADS)

Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

Szlávik, János

2009-07-01

385

Statistical principles for climate change studies  

SciTech Connect

Predictions of climate change due to human-induced increases in greenhouse gas and aerosol concentrations have been an ongoing arena for debate and discussion. A major difficulty in early detection of changes resulting from anthropogenic forcing of the climate system is that the natural climate variability overwhelms the climate change signal in observed data. Statistical principles underlying fingerprint methods for detecting a climate change signal above natural climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate change problem is introduced through an exposition of statistical issues in modeling the climate signal and natural climate variability. The fingerprint approach is shown to be analogous to optimal hypothesis testing procedures from the classical statistics literature. The statistical formulation of the fingerprint scheme suggests new insights into the implementation of the techniques for climate change studies. In particular, the statistical testing ideas are exploited to introduce alternative procedures within the fingerprint model for attribution of climate change and to shed light on practical issues in applying the fingerprint detection strategies.

Levine, R.A. [Univ. of California, Davis, CA (United States). Div. of Statistics] [Univ. of California, Davis, CA (United States). Div. of Statistics; Berliner, L.M. [Ohio State Univ., Columbus, OH (United States)] [Ohio State Univ., Columbus, OH (United States); [National Inst. of Statistical Sciences, Columbus, OH (United States)

1999-02-01

386

Misconceptions Surrounding Climate Change: A Review of the Literature  

NASA Astrophysics Data System (ADS)

Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to communicate and share resources in a common community. Many organizations are addressing these critical needs and we will compile these efforts in our analysis as well.

Templeton, C. M.; McNeal, K. S.; Libarkin, J.

2011-12-01

387

Covering Climate Change in Wikipedia  

NASA Astrophysics Data System (ADS)

The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

2010-12-01

388

Geoengineering and the Risk of Rapid Climate Change  

NASA Astrophysics Data System (ADS)

Many scientists have proposed that geoengineering could be used to artificially cool the planet as a means of reducing CO2-induced climate warming. However, several recent studies have shown some of the potential risks of geoengineering, including negative impacts on stratospheric ozone, the hydrologic cycle and the possibility of rapid climate change in the case of abrupt failure, or rapid decommissioning of geoengineering technology. In this study, we have emulated a geoengineering scenario in the MAGICC climate model, by counteracting the radiative forcing from greenhouse gases. We have used a hypothetical scenario of business-as-usual greenhouse gas emissions, in which geoengineering is implemented at the year 2020, and is removed abruptly after 40 years. By varying the climate sensitivity of the MAGICC model, and using previously published estimates of climate sensitivity likelihoods, we are able to derive a probabilistic prediction of the rate of temperature change following the removal of geoengineering. In a simulation without geoengineering (considering only the A1B AIM emissions scenario) the maximum annual rate of temperature change (in the highest climate sensitivity simulation) was 0.5° C per decade. In the geoengineering simulations the maximum annual rate of temperature change, occurring in the year after geoengineering was stopped, varied from 0.22° C per decade for a climate sensitivity of 0.5° C to nearly 8° C per decade for a climate sensitivity of 10° C. The most likely maximum rate of change (corresponding to a climate sensitivity of 2.5° C) was just over 5° C per decade. There is a 99.8 percent probability that the rate of temperature change following the stoppage of geoengineering in this scenario would exceed 3° C per decade. This risk of rapid climate change associated with the use of planetary-scale geoengineering is highly relevant to discussion of climate policies aimed at avoiding "dangerous anthropogenic interference" in the climate system. Many ecosystems would be significantly stressed by the high rates of temperature change shown in this study, which could compromise ecosystems' ability to adapt to climate change There are also possible implications of rapid temperature change for other aspects of the climate system, such as the strength of the meridional overturning circulation. Based on the results of this study, we argue that the risk of rapid climate change following the abrupt removal of geoengineering could constitute increased risk of dangerous anthropogenic interference in the climate system.

Ross, A. J.; Matthews, D.

2008-12-01

389

Weathering of Building Infrastructure and the Changing Climate: Adaptation Options  

Microsoft Academic Search

The changing climate will impact infrastructure through gradual changes in weather patterns, increasing variability and potential increases in extremes. Although most concerns have focused on changing extremes, the changes in day-to-day weathering processes may be equally important. These significant day-to-day weathering processes include wind-driven rain, freeze-thaw cycles, frost penetration, wetting and drying, wind-driven abrasive materials, the action of broad spectrum

H. Auld; J. Klaassen; N. Comer

2006-01-01

390

America's Climate Choices: Advancing the Science of Climate Change (Invited)  

NASA Astrophysics Data System (ADS)

At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies the nation can take to respond to climate change. This suite of activities included a panel report on Advancing the Science of Climate Change. The report concludes that a strong, credible body of scientific evidence shows that climate change is occurring, is caused largely by human activities, and poses significant risks for a broad range of human and natural systems. As decision makers respond to these risks, the nation's scientific enterprise can contribute both by continuing to improve understanding of the causes and consequences of climate change, and by improving and expanding the options available to limit the magnitude of climate change and adapt to its impacts. To make this possible, the nation needs a comprehensive, integrated, and flexible climate change research enterprise that is closely linked with action-oriented programs at all levels. The report recommends that a single federal entity or program be given the authority and resources to coordinate a national research effort integrated across many disciplines and aimed at improving both understanding and responses to climate change. The U.S. Global Change Research Program, established in 1990, could fulfill this role, but it would need to address weaknesses in the current program and form partnerships with action-oriented programs at all levels. A comprehensive climate observing system, improved climate models and other analytical tools, investment in human capital, and better linkages between research and decision making are also essential for advancing the science of climate change.

Matson, P. A.; Dietz, T.; Kraucunas, I.

2010-12-01

391

Atmospheric Composition and Climate Change  

NSDL National Science Digital Library

This experiment has student teams comparing a sample of room air with one of the greenhouse gases - carbon dioxide, nitrous oxide, or methane - and observing the relative effectiveness of the gases in trapping infrared (IR) radiation. The activity requires an IR heat source, such as a heat lamp, two 2-liter beverage bottles, #4 one hole rubber stoppers, and a thermometer or temperature probes. Nitrous oxide can be obtained from a dentist, methane from gas jets in a chemistry lab, and CO² can be generated using vinegar and baking soda. Students compare the heating and cooling curves in data they collect. The investigation is supported by the textbook, Climate Change, part of Global System Science, an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact.

392

Chemistry implications of climate change  

SciTech Connect

Since preindustrial times, the concentrations of a number of key greenhouse gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and the nitric oxides (N{sub 2}O) have increased. Additionally, the concentrations of anthropogenic aerosols have also increased during the same time period. Increasing concentrations of greenhouse gases are expected to increase temperature, while the aerosols tend to have a net cooling effect. Taking both of these effects into account, the current best scientific estimate is that the global average surface temperature is expected to increase by 2{degrees}C between the years 1990 to 2100. A climate change if this magnitude will both directly and indirectly impact atmospheric chemistry. For example, many important tropospheric reactions have a temperature dependence (either Arrhenius or otherwise). Thus, if temperature increase, reaction rates will also increase.

Atherton, C.S.

1997-05-01

393

Climate Change: Environmental Literacy and Inquiry  

NSDL National Science Digital Library

Climate Change is a technology-supported middle school science inquiry curriculum. This curriculum focuses on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change. Students use geospatial information technology tools (Google Earth), Web-based tools (including an interactive carbon calculator and geologic timeline), and inquiry-based lab activities to investigate important climate change topics. Climate Change is aligned to the Essential Principles of Climate Literacy in addition to national science and environmental education standards. The unit takes 21 days which include pretest and post test. Assessments for each learning activity are available using the following login and password: Login: eliteacher Password: 87dja92

394

COP4: International Conference on Climate Change  

NSDL National Science Digital Library

This week's In The News highlights a critical international conference on climate change, the Fourth Meeting of the Conference of the Parties to the UN Framework Convention on Climate Change, currently being held (November 2-13) in Buenos Aires, Argentina. The Convention on Climate Change, signed and ratified by over 175 countries, is one of a series of recent international agreements dedicated to reducing anthropogenic (human-induced) climate change. Although the detection of climate change is a complex and contentious issue among scientists (and is generally refuted by industries afraid of the regulatory consequences), the potential impacts to the earth's ecosystems cannot be ignored. Thus, the Convention's "ultimate objective" is to stabilize greenhouse gas concentrations in the atmosphere at a level -- and with enough time -- to prevent "dangerous anthropogenic interference with the atmosphere." The nine sites discussed provide background information, resources, and information related to COP4 and to climate change.

Nannapaneni, Sujani.

395

India's National Action Plan on Climate Change  

PubMed Central

Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture – further endangering food security – to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

Pandve, Harshal T.

2009-01-01

396

Global Climate Change Pilot Course Project  

NASA Astrophysics Data System (ADS)

In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region's attitude towards climate change science, policy, and the stances taken by other regions on climate change. The professor will provide a model of integrative research using the U.S. as a focus, and on discussion days, prompt a sort of United Nations discussion on each of these topics with the intention of having the students look at climate change from a different point of view that contrasts their current U.S.-centric view, as well as realize the interdependence of regions particularly in regards to climate change.

Schuenemann, K. C.; Wagner, R.

2011-12-01

397

Plural Methodologies in Climate Change Research  

Microsoft Academic Search

Summary The proposed paper explores plural methodological strategies in climate change. The paper investigates the possibilities and difficulties associated with bridging the gap between model- based approaches in climate change science and climate-change economics, which need validation or 'ground-truthing', and qualitative and case-study based approaches of other social sciences, which from an instrumental viewpoint would need to be more generalisable.

J. Paavola

398

Climate change and health - what's the problem?  

PubMed Central

The scientific consensus is that global warming is occurring and is largely the result of greenhouse gas emissions from human activity. This paper examines the health implications of global warming, the current socio-political attitudes towards action on climate change and highlight the health co-benefits of reducing greenhouse gas emissions. In addition, policy development for climate change and health should embrace health systems strengthening, commencing by incorporating climate change targets into Millennium Development Goal 7.

2013-01-01

399

Climate change and trace gases  

Microsoft Academic Search

Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice\\/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia

James Hansen; Makiko Sato; Pushker Kharecha; Gary Russell; David W. Lea; Mark Siddall

2007-01-01

400

Warming asymmetry in climate change simulations  

Microsoft Academic Search

Climate change simulations made with coupled global climate models typically show a marked hemispheric asymmetry with more warming in the northern high lati- tudes than in the south. This asymmetry is ascribed to heat uptake by the ocean at high southern latitudes. A re- cent version of the CCCma climate model exhibits a much more symmetric warming, compared to an

G. M. Flato; G. J. Boer

2001-01-01

401

Climate change: The IPCC scientific assessment  

SciTech Connect

Book review of the intergovernmental panel on climate change report on global warming and the greenhouse effect. Covers the scientific basis for knowledge of the future climate. Presents chemistry of greenhouse gases and mathematical modelling of the climate system. The book is primarily for government policy makers.

Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J. (eds.)

1990-01-01

402

Science and the climate change regime  

Microsoft Academic Search

Given rapidly increasing losses from extreme climate events, the world community already has a common interest in action to mitigate and adapt to climate change. However, this common interest is not well served through continued promotion of either mandatory (legally- binding) policies or 'do nothing' policies by various participants in the regime established by the U.N. Framework Convention on Climate

RONALD D. BRUNNER

2001-01-01

403

Economics, institutions and adaptation to climate change  

Microsoft Academic Search

Adaptation to the consequences of climate change has attracted increasing interest as a necessary complement to greenhouse gas mitigation. Economic approaches to climate adaptation are rarely articulated and discussed explicitly despite many benefits of such a framework-level discourse. Therefore, this article investigates how climate adaptation is framed and approached in economics and attempts to contribute to the development of economic

Christoph Oberlack; Bernhard Neumärker

2011-01-01

404

Tools for Teaching Climate Change Studies  

Microsoft Academic Search

The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has

A. M. Maestas; L. A. Jones

2005-01-01

405

Ecosystem Climate Change Vulnerability Assessment Framework  

Microsoft Academic Search

Vulnerability is the degree to which human and environmental systems are likely to experience harm due to a perturbation or a stress. In the last years, it has become a central focus of the global change (including climate change). The climate change literature contains many explanations of vulnerability, stemming from the notion of sensitivity to more complex ideas, yet taking

Romain Lardy; Raphaël Martin; Bruno Bachelet; David R. C. Hill; Gianni Bellocchi

2012-01-01